WO2012060280A1 - Metal oxide semiconductor particle dispersion - Google Patents

Metal oxide semiconductor particle dispersion Download PDF

Info

Publication number
WO2012060280A1
WO2012060280A1 PCT/JP2011/074852 JP2011074852W WO2012060280A1 WO 2012060280 A1 WO2012060280 A1 WO 2012060280A1 JP 2011074852 W JP2011074852 W JP 2011074852W WO 2012060280 A1 WO2012060280 A1 WO 2012060280A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal oxide
oxide semiconductor
particle dispersion
semiconductor particle
Prior art date
Application number
PCT/JP2011/074852
Other languages
French (fr)
Japanese (ja)
Inventor
直幹 出口
別当 温
真木 伸一郎
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2012060280A1 publication Critical patent/WO2012060280A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a metal oxide semiconductor particle dispersion suitably used for producing a photoelectric conversion element, a metal oxide semiconductor electrode using the same, and a photoelectric conversion element.
  • the proposed battery is a dye-sensitized photoelectric conversion cell comprising a titanium oxide porous layer spectrally sensitized with a sensitizing dye such as a ruthenium complex as a working electrode, an electrolyte mainly composed of iodine, and a counter electrode. .
  • the first advantage of this method is that an inexpensive photoelectric conversion element can be provided because an inexpensive oxide semiconductor such as titanium oxide is used.
  • the second advantage is that the ruthenium complex used is widely used in the visible light range. Since it has absorption, a relatively high conversion efficiency is obtained.
  • a method of using a titanium oxide sol by hydrothermal synthesis for the titanium oxide porous layer is often used, but this has many manufacturing problems.
  • the production method by hydrothermal synthesis requires a high temperature and high pressure condition near 200 ° C in an aqueous solvent using an autoclave, so there are problems in mass production, reproducibility of quality, safety during production, cost, etc. have. Further, since the titanium oxide content ratio to the aqueous solvent in the autoclave is not a low concentration of less than 10%, fine particles are not formed, and a concentration step is also required for use as a paste.
  • the titanium oxide content ratio remains around 20% in order to maintain the film forming viscosity, and it is necessary to perform printing a plurality of times in order to obtain a photoelectric conversion electrode with good performance. Etc., productivity was reduced.
  • Patent Document 2 a technique of mixing titanium oxide fine particles and a titanium oxide precursor (Patent Document 2) and a technique of treating titanium dioxide and polyvinyl butyral resin with two rolls (Patent Document 3) have been proposed.
  • Patent Document 3 a technique of treating titanium dioxide and polyvinyl butyral resin with two rolls.
  • Patent Document 4 a technique of adding a metal atom complex alone to disperse titanium oxide particles has been proposed, but further improvement has been desired.
  • An object of the present invention is to improve the performance of a metal oxide semiconductor electrode produced from a relatively inexpensive material. Furthermore, it is to provide a high-performance photoelectric conversion element at low cost by using the same electrode.
  • the problem to be solved by the present invention is to provide a dispersion having a low viscosity even at a high titanium oxide concentration by improving the dispersibility of titanium oxide. Furthermore, it is to provide an electrode and a photoelectric conversion element having high photoelectric conversion efficiency using the dispersion.
  • the present invention relates to a metal oxide semiconductor particle dispersion comprising an amine compound, an organic titanate having at least one of an alkoxy group and a diketonate group, and a solvent.
  • the present invention also relates to a metal oxide semiconductor electrode comprising a conductive substrate and a film formed on the conductive substrate using the metal oxide semiconductor particle dispersion according to the present invention.
  • this invention relates to the photoelectric conversion element which comprises the said metal oxide semiconductor electrode, a sensitizing dye, electrolyte, and a conductive counter electrode.
  • dispersion particles can be made fine even in a dispersion process under a mild condition using a relatively inexpensive material
  • concentration of titanium oxide particles in the metal oxide semiconductor particle dispersion can be increased.
  • the stability of the dispersion can be increased.
  • a metal oxide semiconductor electrode and a photoelectric conversion element that are inexpensive and have excellent photoelectric conversion performance using the metal oxide semiconductor particle dispersion can be provided.
  • the metal oxide semiconductor particle dispersion according to the present invention is also referred to as a treated metal oxide semiconductor particle dispersion, that is, a titanium oxide dispersion (in the following description, also simply referred to as “dispersion”).
  • This dispersion exhibits an excellent function by using an organic titanate such as a metal atom complex and an amine compound as a dispersion treatment agent and dispersing titanium oxide particles in a solvent.
  • the dispersion treatment agent refers to an auxiliary agent that helps the dispersion of the metal oxide semiconductor particles in the solvent and promotes the dispersion, and can also be referred to as a dispersion agent.
  • Titanium oxide (titanium dioxide) particles have relatively low material costs, are available in various particle sizes, have stable characteristics and are easy to handle, and have hydroxyl groups on the crystal surface. It is most useful as a photoelectric conversion material for dye-sensitized solar cells, because it has strong absorption of dyes and has little absorption in the visible range and does not interfere with sunlight absorption of sensitizing dyes. is there.
  • the rutile type tetragonal high temperature type
  • anatase type tetragonal low temperature type
  • brookite type orthorhombic type
  • crystal structures but the anatase type (tetragonal low temperature type) is the most suitable.
  • the primary particle diameter of titanium oxide is not particularly limited, but the average primary particle diameter is preferably 3 to 40 nm. If the average primary particle size is smaller than 3 nm, the voids in the film are remarkably reduced, which may cause problems such as the dye solution not permeating. On the other hand, if it exceeds 40 nm, the specific surface area may not be sufficiently increased.
  • the average primary particle diameter here can be determined as follows. That is, 100 arbitrary particles are selected from an image obtained by photographing titanium oxide particles with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and the average value of the minor axis diameter and major axis diameter of each particle is calculated. The particle diameter (d) is assumed.
  • Each particle is regarded as a sphere having a particle size (d), and the volume (V) of each particle is determined. This operation is performed for 100 particles, and the value calculated using the following formula (A) is taken as the average primary particle diameter.
  • Formula (A): MV ⁇ (V ⁇ d) / ⁇ (V)
  • Organic titanate is a component that can be adsorbed on the surface of metal oxide semiconductor particles used in the metal oxide semiconductor particle dispersion, that is, titanium oxide particles, and can function as a dispersion treatment agent for achieving good dispersion. Furthermore, after this dispersion is applied to a conductive substrate to form an electrode layer, it is a component that can provide high adhesion and conversion efficiency even after firing or non-firing.
  • the organic titanate is an alkoxytitanium or organic titanium chelate (metal atom complex) having a structure containing a Ti—O—C bond formed by Ti (IV) and an alcoholic hydroxyl group and / or a diketonate group.
  • the organic titanate is preferably a metal atom complex having a partial structure represented by the following general formula (1a).
  • General formula (1a) In the formula, R 1 to R 3 each independently represent a hydrogen atom or a monovalent substituent. The arrow indicates a coordinate bond or ionic bond from the oxygen atom to Ti. Dashed lines indicate delocalized bonds in the diketonate compound structure.
  • n is an integer of 0 to 4 and represents the coordination number of the diketato compound. In the above formula (1a), n is preferably an integer of 1 to 3.
  • R 1 to R 3 each independently represent a hydrogen atom or a monovalent substituent.
  • the arrow indicates a coordinate bond or ionic bond from the oxygen atom to Ti. Dashed lines indicate delocalized bonds in the diketonate compound structure.
  • n is an integer of 0 to 4 and represents the coordination number of the diketato compound.
  • R represents an alkoxy group.
  • p represents an integer of 0 to 4.
  • O represents an oxygen atom.
  • the organic titanate is also referred to as a metal atom complex
  • the compound represented by the general formula (1a) or (1b) is also referred to as “metal atom complex (1)”.
  • the metal atom complex (1) may contain a plurality of ligands.
  • An example including a plurality of ligands is shown as a compound in which any two or more of p, q, and n are not 0 in the general formula (1b). More specifically, the compounds shown in Table 8-1 and Table 8-2 used in Examples described later are preferable examples of the metal atom complex (1).
  • the alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 8 carbon atoms, such as a methoxy group, an ethoxy group, or a diisopropoxy group. Most preferred is a propoxy group or a butoxy group such as an n-butoxy group.
  • typical examples of the monovalent substituent include a halogen group, an alkyl group, an aryl group, a heterocyclic group, an alkoxy group, an alkylthio group, an arylthio group, a nitro group, and a cyano group.
  • thiocyanic acid group isothiocyanic acid group, amino group, monoalkylamino group, dialkylamino group, aryloxy group, monoarylamino group, diarylamino group, alkylcarbonyl group or alkenylcarbonyl group (acyl group), alkylcarbonyloxy Groups, alkenylcarbonyloxy groups, arylcarbonyl groups, sulfonic acid amide groups, sulfonic acid ester groups, phthalimidomethyl groups, and the like, but are not limited thereto.
  • the following exemplary compounds are not limited to these.
  • halogen group examples include fluorine, chlorine, bromine and iodine.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isohexyl group, Heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl Groups and the like. *
  • Aryl groups include phenyl, biphenylyl, terphenylyl, quarterphenylyl, o-, m-, and p-tolyl, xylyl, o-, m-, and p-cumenyl, mesityl, pentalenyl Group, indenyl group, naphthyl group, binaphthalenyl group, turnaphthalenyl group, quarternaphthalenyl group, azulenyl group, heptaenyl group, biphenylenyl group, indacenyl group, fluoranthenyl group, acenaphthylenyl group, aceanthrylenyl group, phenenyl group, fluorenyl group , Anthryl group, bianthracenyl group, teranthracenyl group, quarteranthracenyl group, anthraquinolyl group, phenanthryl group, triphenylenyl
  • Heterocyclic groups include thienyl group, benzo [b] thienyl group, naphtho [2,3-b] thienyl group, thiantenyl group, furyl group, pyranyl group, isobenzofuranyl group, chromenyl group, xanthenyl group, phenoxathi Inyl, 2H-pyrrolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, 1H-indazolyl, purinyl Group, 4H-quinolidinyl group, isoquinolyl group, quinolyl group, phthalazinyl group, naphthyridinyl group, quinoxanilyl group, quinazolinyl group, c
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an isopropoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, and an isopentyloxy group.
  • alkylthio group examples include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, an isopropylthio group, an isobutylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, and an isopentylthio group.
  • arylthio group examples include a phenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, a 9-anthrylthio group, and a 9-phenanthrylthio group.
  • Monoalkylamino groups include methylamino, ethylamino, propylamino, butylamino, pentylamino, hexylamino, heptylamino, octylamino, nonylamino, decylamino, dodecylamino, octadecyl Amino group, isopropylamino group, isobutylamino group, isopentylamino group, sec-butylamino group, tert-butylamino group, sec-pentylamino group, tert-pentylamino group, tert-octylamino group, neopentylamino group , Cyclopropylamino group, cyclobutylamino group, cyclopentylamino group, cyclohexylamino group, cycloheptylamino group, cyclooctyla
  • Dialkylamino group includes dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, dinonylamino group, didecylamino group, didodecylamino group, Dioctadecylamino group, diisopropylamino group, diisobutylamino group, diisopentylamino group, methylethylamino group, methylpropylamino group, methylbutylamino group, methylisobutylamino group, cyclopropylamino group, pyrrolidino group, piperidino group, And piperazino group.
  • Aryloxy groups include phenyloxy, biphenylyloxy, terphenylyloxy, quarterphenylyloxy, o-, m-, and p-tolyloxy, xylyloxy, o-, m-, and p -Cumenyloxy group, mesityloxy group, pentarenyloxy group, indenyloxy group, naphthyloxy group, binaphthalenyloxy group, turnaphthalenyloxy group, quarternaphthalenyloxy group, azulenyloxy group, heptalenyloxy Group, biphenylenyloxy group, indacenyloxy group, fluoranthenyloxy group, acenaphthylenyloxy group, aseantrirenyloxy group, phenalenyloxy group, fluorenyloxy group, anthryloxy group, Bianthracenyloxy group, teranthracenyloxy group, -
  • the monoarylamino group includes N-arylamino group, anilino group, 1-naphthylamino group, 2-naphthylamino group, o-toluidino group, m-toluidino group, p-toluidino group, 2-biphenylamino group, 3 -Biphenylamino group, 4-biphenylamino group, 1-fluoreneamino group, 2-fluoreneamino group, 2-thiazoleamino group, p-terphenylamino group and the like.
  • diarylamino group examples include a diarylamino group, a diphenylamino group, a ditolylamino group, an N-phenyl-1-naphthylamino group, and an N-phenyl-2-naphthylamino group.
  • alkylcarbonyl group or alkenylcarbonyl group examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, cyclopentylcarbonyl group, Examples include cyclohexylcarbonyl group, acryloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, oleoyl group and the like.
  • alkylcarbonyloxy group or alkenylcarbonyloxy group examples include groups derived from the above alkylcarbonyl group or alkenylcarbonyl group.
  • arylcarbonyl group benzoyl group, 2-methylbenzoyl group, 4-methoxybenzoyl group, 1-naphthoyl group, 2-naphthoyl group, cinnamoyl group, 3-furoyl group, 2-thenoyl group, nicotinoyl group, isonicotinoyl group, Examples thereof include 9-anthroyl group and 5-naphthacenoyl group.
  • the sulfonate group include a methoxysulfonyl group, an ethoxysulfonyl group, a butoxysulfonyl group, and a phenoxysulfonyl group.
  • the monovalent substituent may be further substituted.
  • examples of the group that further substitutes the monovalent substituent include the monovalent substituent described above or a group having a double bond.
  • examples of the group having a double bond include a vinyl group, an allyl group, a 2-methylallyl group, a crotyl group, an isocrotyl group, a crotonoyl group, an isocrotonoyl group, a (meth) acryloyl group, and a (meth) acryloxy group.
  • R 1 to R 3 are preferably selected from a hydrogen atom, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkoxy group.
  • the number of carbon atoms of the alkyl group or alkoxy group is not particularly limited, but is preferably 1 to 10, and particularly preferably 1 to 4.
  • the substituent is preferably a halogen group, and particularly preferably fluorine.
  • metal atom complexes together with the amine compound described later function as a dispersion treatment agent in the same solvent, thereby making a paste or dispersion solution, that is, a metal oxide semiconductor particle dispersion together with titanium oxide particles.
  • a paste or dispersion solution that is, a metal oxide semiconductor particle dispersion together with titanium oxide particles.
  • this dispersion is formed, it is sintered by heating to form a titanium oxide porous layer, and by further connecting a sensitizing dye, photoelectric conversion up to the visible light and / or near infrared light region is possible. Become.
  • the presence of the metal atom complex further improves the adhesion after film formation.
  • the metal atom complex can be selected from a plurality of types and combined.
  • the metal atom complexes By bringing titanium oxide particles into contact with these metal atom complexes, the metal atom complexes are adsorbed on the surface of the titanium oxide particles to form a titanium oxide particle-metal atom complex complex. It is considered that a new similar metal oxide layer is formed.
  • the newly formed metal oxide layer promotes the bonding between titanium oxide particles and facilitates the movement of electrons between the particles, so that the metal oxide semiconductor electrode has a relatively high performance even in a low-temperature firing process. It is thought that can be obtained.
  • metal atom complexes can be purchased from Amax Co., Ltd., but can also be obtained by reacting, for example, a halide of an inorganic element with alcohols, carboxylic acids, free beta diketones, and the like.
  • the amine compound in the present invention is a compound having at least a primary amino group, a secondary amino group, or a tertiary amino group in the molecule.
  • a primary amino group such as ethylamine, n-propylamine, isopropylamine, t-butylamine, sec-butylamine, hexylamine, 2-ethylhexylamine, 2-ethylhexyloxypropylamine, 3-ethoxypropylamine, dodecylamine, stearylamine, allylamine, aniline, etc.
  • undec-7-ene 6-dibutylamino-1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, etc.
  • examples thereof include, but are not limited to, cyclic amine compounds.
  • an amine compound represented by the following general formula (2) can be used.
  • General formula (2) In the formula, each of R 4 to R 6 independently represents a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted aryl group, unsubstituted or An alkylcarbonyl group having a substituent is represented.
  • Examples of the alkyl group, alkoxy group, aryl group, and alkylcarbonyl group in R 4 to R 6 include the same groups as those represented by R 1 to R 3 in the metal atom complex (1).
  • R 4 to R 6 When R 4 to R 6 are substituted with a substituent, they may be substituted with one or more substituents, and bonded to any carbon atom on which R 4 to R 6 are not bonded to N. ing.
  • substituents examples include a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an amino group, for example, an alkylamino group such as a monoalkylamino group and a dialkylamino group, an alkylcarbonyl group, and a hydroxy group. It is done.
  • the alkyl group, alkoxy group, aryl group, aryloxy group, monoalkylamino group, dialkylamino group, and alkylcarbonyl group mentioned here are those represented by R 1 to R 3 in the metal atom complex (1). Similar groups can be mentioned. Moreover, these substituents may be further substituted.
  • the amine compound represented by the general formula (2) is not particularly limited, but a compound in which at least one of R 4 to R 6 is an alkyl group substituted with a hydroxy group is preferable.
  • alkyl group substituted with a hydroxy group examples include hydroxymethyl group, hydroxyethyl group, hydroxypropyl group, hydroxyisopropyl group, hydroxy-n-butyl group, hydroxyisobutyl group, hydroxy-sec-butyl group, hydroxy-tert- Butyl, hydroxy-n-amyl, hydroxy-sec-amyl, hydroxy-tert-amyl, hydroxyisoamyl, hydroxy-n-hexyl, hydroxycyclohexyl, hydroxy-n-heptyl, hydroxy-n- Octyl group, hydroxy-2-ethylhexyl group, hydroxynonyl group, hydroxyisononyl group, hydroxydecyl group, hydroxyisodecyl group, hydroxyundecyl group, hydroxylauryl group, hydroxytridecyl group Hydroxy isotridecyl group, hydroxy myristyl group, hydroxy cety
  • an amine compound represented by the following general formula (3) can be preferably used as the amine compound containing a hydroxyethyl group.
  • General formula (3) In the amine compound, R 7 and R 8 each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted alkylcarbonyl group.
  • Examples of the alkyl group and aryl group in R 7 and R 8 include the same groups as those represented by R 1 to R 3 in the metal atom complex (1).
  • R 7 and R 8 When R 7 and R 8 are substituted with a substituent, they may be substituted with one or more substituents and bonded to any carbon atom on R 7 and R 8 where N is not bonded. ing.
  • Examples of the substituent groups include the same groups as the substituents may include the R 4 ⁇ R 6 described above, these substituents may be further substituted.
  • R 7 and R 8 in the general formula (3) are methyl groups. In another preferred embodiment, R 7 and R 8 in the general formula (3) are hydroxyethyl groups. That is, the amine compound represented by the general formula (3) is not particularly limited, but N, N-dimethylethanolamine and triethanolamine are preferable.
  • the amine compound is a nitrogen-containing aromatic heterocyclic compound which may have a substituent. That is, it is also preferable to use a nitrogen-containing aromatic heterocyclic compound as the amine compound.
  • the nitrogen-containing aromatic heterocyclic compound refers to a compound having a nitrogen atom represented by pyridine, pyrazine, or pyrimidine as a constituent atom of the aromatic ring.
  • R 9 to R 13 each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted alkylamino A group, an unsubstituted or substituted aryl group, an unsubstituted or substituted alkylcarbonyl group, an amino group, a hydroxy group, an N-alkylcarbamoyl group, and an alkoxycarbonyl group;
  • Examples of the alkyl group, alkoxy group, alkylamino group, aryl group, and alkylcarbonyl group in R 9 to R 13 include the same groups as those represented by R 1 to R 3 in the metal atom complex (1). Can do.
  • Examples of the N-alkylcarbamoyl group include an N-methylcarbamoyl group.
  • Examples of the alkoxycarbonyl group include a methoxycarbonyl group.
  • R 9 to R 13 When R 9 to R 13 are substituted with a substituent, they may be substituted with one or more substituents and bonded to any carbon atom on R 9 to R 13 to which N is not bonded. ing. Examples of the substituent include the same groups as the substituents that R 4 to R 6 can contain, and these substituents may be further substituted.
  • the amine compound represented by the general formula (4) is not particularly limited, but a compound in which R 9 to R 13 are all hydrogen atoms is preferable.
  • a plurality of types of amine compounds can be selected and combined.
  • the amine compound is considered not to be a ligand of the metal atom complex but to be adsorbed on the surface of the titanium oxide particles, and is considered to exhibit a dispersion effect by being adsorbed.
  • Various amine compounds are completely or partially dissolved in a solvent, and titanium oxide particles are added and mixed in the solution, so that it is considered that the adsorption of amine compounds on the surface of titanium oxide particles proceeds. And it seems that wetting with respect to the solvent of the titanium oxide particle surface is promoted by the polarity of the amine compound adsorbed on the surface of the titanium oxide particle, and the aggregation of the titanium oxide particles is easy to be solved.
  • the dispersion proceeds with a synergistic effect, so that not only the dispersion treatment is performed by adding the metal atom complex alone, but the stability of the dispersion state is increased, It is also possible to increase the concentration of titanium oxide particles in the dispersion. That is, titanium oxide particles can be favorably dispersed at a high concentration by using a metal atom complex and an amine compound in combination.
  • the improvement of the dispersibility of the titanium oxide particles improves the photoelectric conversion efficiency.
  • Increasing the concentration of the dispersion makes it possible to increase the film thickness of the metal oxide semiconductor electrode and to improve the photoelectric conversion efficiency by increasing the film thickness.
  • the above metal atom complex and amine compound are contained in the dispersion as a dispersion treatment agent, and both are in a range of 0.01% by weight to 100% by weight with respect to the entire titanium oxide particles before treatment. That is, it is preferably used in the range of 0.0001 to 1 with respect to the weight 1 of titanium oxide particles to be blended.
  • the amount is preferably 0.01% by weight or more.
  • the weight of the titanium oxide particles is 1, the total of the metal atom complex and the amine compound is more preferably 0.001 or more, still more preferably 0.01 or more, and most preferably 0.1 or more, more preferably Is used in an amount of 0.8 or less, more preferably 0.6 or less, and most preferably 0.4 or less.
  • the amine compound may be used in the range of 0.1 to 30% by weight with respect to the entire metal atom complex, that is, in the range of 0.001 to 0.3 with respect to the weight 1 of the metal atom complex to be blended. preferable.
  • the blending amount is preferably 0.1% by weight or more.
  • the amount of the amine compound relative to the metal atom complex is too large, a large amount of the amine compound adheres to the surface of the titanium oxide particles, so that the conduction band level of the titanium oxide semiconductor electrode after film formation changes or the electron trap is In some cases, such as formation may occur, so the content is preferably 30% by weight or less.
  • the amine compound is preferably used in an amount of 0.005 or more, more preferably 0.01 or more, most preferably 0.03 or more, more preferably 0.25 or less, and more preferably 0.005 or more, with the weight of the metal atom complex being 1. Preferably it is used in an amount of 0.2 or less, most preferably 0.16 or less.
  • the water content in the solvent used is preferably 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less.
  • the water content in the solvent can be measured by, for example, a moisture meter such as a Karl Fischer moisture meter MKC-610 manufactured by Kyoto Electronics Industry Co., Ltd. Further, when this dispersion is used for measuring screen printing or the like, it is desirable that the boiling point of the solvent is higher than 100 ° C., because plate drying is less likely to occur.
  • an alcohol having 1 to 30 carbon atoms is preferably used, an alcohol having 4 to 10 carbon atoms is more preferably used, and an alcohol having 6 to 8 carbon atoms is further used.
  • the alcohol is preferably an aliphatic alcohol, preferably a linear alcohol, and preferably a monoalcohol. It is also preferable to use these alcohol solvents mixed with a ketone solvent such as isophorone (terpene monoketone).
  • the metal oxide semiconductor particle dispersion is produced, for example, by dispersing titanium oxide particles, a metal atom complex, and an amine compound in a solvent, and mixing a binder component with the dispersion as necessary. Can do.
  • the order of addition of each component is not limited to this.
  • a solvent may be further added during or after mixing.
  • zirconia beads are used for the dispersion treatment, and the dispersion treatment is generally performed by a paint shaker or a mill, but is not limited thereto.
  • the titanium oxide is preferably used in an amount of 25% by weight or more, more preferably 30% by weight or more, and still more preferably 40% by weight or more based on the entire dispersion. If it is less than 25% by weight, it may be unfavorable in that overprinting is required to form a film having a thickness of several microns to tens of microns, which is optimal for a metal oxide semiconductor electrode. From the viewpoint of facilitating dispersibility, titanium oxide is preferably used in the dispersion in an amount of 75% by weight or less, more preferably 70% by weight or less, and still more preferably 60% by weight or less.
  • the amine compound is preferably used in an amount of 0.01% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.2% by weight or more, preferably 5% by weight or less based on the entire dispersion. More preferably, it is used in an amount of 3% by weight or less, more preferably 1.5% by weight or less.
  • the metal atom complex (1) is preferably used in an amount of 1% by weight or more, more preferably 3% by weight or more, and still more preferably 5% by weight or more, preferably 20% by weight or less, more preferably based on the whole dispersion. Is used in an amount of 10% by weight or less.
  • the solvent is used in an amount of preferably 20% by weight or more, more preferably 30% by weight or more, and further preferably 40% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less, based on the entire dispersion. Used in the amount of.
  • the target viscosity of the dispersion (value at 25 ° C. using an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd.) varies depending on the film forming method using this.
  • the standard is about 0.001 to 1000 mPa ⁇ s for a film forming method using squeegee, and about 0.1 to 350 mPa ⁇ s for a film forming method using screen printing. Absent.
  • the dispersion using the inkjet printing method is preferably 0.02 mPa ⁇ s or less, but is not limited thereto.
  • the viscosity can be adjusted by changing the amount ratio of the titanium oxide particles, the metal atom complex, and the amine compound solution, changing the degree of dispersion, or adding an appropriate amount of a thickening component such as a binder resin. *
  • binder resin added as an optional component examples include cellulose, polyethylene glycol, acrylic, urethane, polyol, polyethylene, polyamide, and the like. It is not restricted to these as long as the characteristic as a metal oxide semiconductor electrode after a film is acquired.
  • a binder resin it is preferably used in the range of 0.1 wt% or more and less than 60 wt% in the dispersion, and more preferably used in a range of 0.1 wt% or more and less than 20 wt%. preferable.
  • the dispersion can contain additives as required. Various additives can be added for the purpose of improving the properties of the dispersion, such as storage stability, drying properties, substrate adhesion, and film formation suitability.
  • a metal oxide semiconductor electrode according to the present invention is obtained by forming a metal oxide semiconductor particle dispersion into a film, and includes a conductive substrate and the conductive material using the dispersion. A film formed on the substrate.
  • the metal oxide semiconductor particle dispersion is applied on a conductive substrate, and then dried or sintered.
  • a spin coater application method, a screen printing method, an application method using a squeegee, a dipping method, a spraying method, a roller method, and the like are used. Absent. After the applied dispersion is dried or baked, volatile components in the dispersion are removed, and a film made of the dispersion or a metal oxide porous body is formed on the conductive substrate.
  • the conductive base material on which the metal oxide semiconductor particle dispersion is applied is not particularly limited, but a conductive film is formed on the surface of a non-conductive base body, or the base material itself has conductivity. If it is. Specifically, a metal oxide layer having good conductivity and transparency such as ITO (indium-tin oxide), tin oxide (including those doped with fluorine), zinc oxide, etc. was laminated on the surface. It may be a transparent substrate, a metal such as Ti (titanium) that does not react with the electrolyte described later, an oxide having a conductive layer formed on the surface, or a carbon material.
  • the transparent substrate used for the electrode having a conductive surface is not particularly limited as long as it is a material that absorbs less light from the visible to the near infrared region of sunlight.
  • Glass substrates such as quartz, ordinary glass, BK7, lead glass, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyester, polyethylene, polycarbonate, polyvinyl butyrate, polypropylene, tetraacetylcellulose, syndioctane polystyrene, polyphenylene sulfide, polyarylate Resin base materials such as polysulfone, polyester sulfone, polyetherimide, cyclic polyolefin, brominated phenoxy, and vinyl chloride can be used.
  • At least one of the conductive base material on which the metal oxide semiconductor particle dispersion is applied and the conductive counter electrode described later is a transparent conductive base material having light transmittance. Therefore, at least one is preferably a transparent substrate having a transparent conductive film formed on the surface.
  • a drying or firing condition for example, a method of applying thermal energy for 1 hour at a temperature of 400 ° C. to 500 ° C. is generally used. If it is the drying or baking method which has adhesiveness and can obtain a favorable electromotive force at the time of sunlight irradiation, it will not be restricted to this.
  • the metal oxide semiconductor particle dispersion of the present invention has a good electromotive force even under heating conditions of 250 ° C. or lower, further 200 ° C. or lower, at which a resin having low heat resistance does not melt. It is possible to give
  • a metal oxide semiconductor electrode in which a film using a metal oxide semiconductor particle dispersion is formed on a resin substrate with a transparent conductive film can provide high conversion efficiency even in a drying treatment at room temperature to 250 ° C., Furthermore, before, during or after heating, metal oxide semiconductor electrode is subjected to pressure treatment, ultrasonic welding treatment, microwave irradiation treatment, ultraviolet light irradiation treatment, ozone treatment, flash annealing treatment, laser annealing treatment, discharge plasma sintering treatment. Alternatively, by adding an additional process such as an excimer lamp process, conversion efficiency, film adhesion, and the like can be increased. When the electrode is irradiated with ultraviolet light simultaneously with heating, the organic component on the particle surface is effectively reduced. In this case, the conversion efficiency is higher as the temperature by heating is higher. Similarly, UV-ozone treatment can reduce organic substances and improve conversion efficiency.
  • the film thickness (thickness after drying or firing) of the dispersion or metal oxide porous layer formed on the conductive substrate is preferably 3 ⁇ m or more from the viewpoint of obtaining effective conversion efficiency. From the viewpoint of film formability, it is preferably 50 ⁇ m or less. If the film thickness is too large, it will be difficult to create such as cracking or peeling during film formation, and the distance between the metal oxide porous body surface layer and the conductive surface will increase, and the generated charge will be effectively transmitted to the conductive surface. Therefore, it becomes difficult to obtain good conversion efficiency.
  • This film thickness is more preferably 5 ⁇ m or more, further preferably 7 ⁇ m or more, more preferably 30 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • a photoelectric conversion element includes the metal oxide semiconductor electrode, a sensitizing dye (sensitizing dye for photoelectric conversion), an electrolyte, and a conductive counter electrode.
  • the sensitizing dye is adsorbed on the surface of the film (or the metal oxide porous body) (this is also referred to as a photoelectric conversion electrode), and the photoelectric conversion is performed by combining the conductive counter electrode via the electrolyte. An element is formed.
  • sensitizing dye A sensitizing dye, that is, a sensitizing dye for photoelectric conversion, has a role of absorbing light in a wavelength region where the metal oxide semiconductor electrode cannot be photoelectrically converted and injecting excited electrons into the valence band of the metal oxide semiconductor. ing. Ruthenium dyes (N719 dye, etc.) that can be obtained from Solaronics, etc. are typical examples, but there are concerns about resource depletion and cost in terms of using rare elements, and in recent years there have been organic sensitizing dyes that replace them. Many have been developed.
  • Coumarin-based, cyanine-based, rhodanine-based, squarylium-based, diketopyrrolopyrrole-based, phenylene vinylene-based, fluorene-based dyes, merocyanine-based dyes, and the like fall under this, and these can also be used as sensitizing dyes in the present invention.
  • Some of these organic dyes exhibit bright red or blue color, and there is an advantage that they can be selected and used according to the use in which design properties are emphasized.
  • merocyanine dyes manufactured by Mitsubishi Paper Industries are well known, and D77, D102, D131, D149, D358 and the like can be obtained from the company.
  • the sensitizing dye for photoelectric conversion two or more kinds of dyes may be mixed and used.
  • the sensitizing dye can be adhered to the surface of the electrode film (or metal oxide porous body) by dissolving it in an arbitrary solvent and immersing the metal oxide semiconductor electrode in the solution.
  • the solvent for preparing the sensitizing dye solution needs to be a solvent that can dissolve the sensitizing dye and mediate dye adsorption on the metal oxide layer. In order to dissolve the sensitizing dye, it may be heated as necessary, or a solubilizing agent may be added and insoluble matter may be filtered.
  • Solvents include alcohol solvents such as ethanol, isopropyl alcohol and benzyl alcohol; nitrile solvents such as acetonitrile and propionitrile; halogen solvents such as chloroform, dichloromethane and chlorobenzene; ether solvents such as diethyl ether and tetrahydrofuran; acetic acid Ester solvents such as ethyl and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone; carbonate solvents such as diethyl carbonate and propylene carbonate; hydrocarbon solvents such as hexane, octane, toluene and xylene; dimethylformamide, Dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolinone, N-methylpyrrolidone, water and the like can be used, but are not limited thereto. Two or more kinds of solvents
  • the photoelectric conversion electrode includes a conductive substrate, a film (or a metal oxide porous body) formed on the conductive substrate using the metal oxide semiconductor particle dispersion, and, for example, as described above.
  • the electrolyte provided in contact with these electrodes between the metal oxide semiconductor electrode and the conductive counter electrode is preferably provided as an electrolyte layer.
  • the electrolyte layer is preferably composed of an electrolyte, a medium, and an additive.
  • I 2 and an iodide LiI Examples, NaI, KI, CsI, MgI 2, CaI 2, CuI, tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, etc.
  • bromide for example, LiBr
  • an electrolyte in which LiI, pyridinium iodide, imidazolium iodide, or the like is mixed as a combination of I 2 and iodide is preferable, but is not limited to this combination.
  • the preferable electrolyte concentration is I 2 in the medium is 0.01 M or more and 0.5 M or less, and the iodide mixture is 0.1 M or more and 15 M or less.
  • the medium used for the electrolyte layer is preferably a compound that can exhibit good ionic conductivity.
  • the solution medium include ether compounds such as dioxane and diethyl ether; chain ethers such as ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether; methanol, ethanol, ethylene glycol monoalkyl Alcohols such as ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether; polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin; acetonitrile, glutarodinitrile, Methoxyacetonitrile, propioni Lil, nitrile compounds such as benzonitrile, ethylene carbonate, carbonate compounds such as propylene carbonate; heterocycl
  • a polymer may be included for the purpose of using a solid (including gel) medium.
  • a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution-like medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution-like medium, so that the medium is solid.
  • a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution-like medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution-like medium, so that the medium is solid.
  • additives that functions to improve the electrical output of the photoelectric conversion element or improve the durability can be added to the electrolyte layer.
  • additives that improve electrical output include 4-t-butylpyridine, 2-picoline, 2,6-lutidine, and cyclodextrin.
  • additives that improve durability include MgI.
  • the conductive counter electrode functions as a positive electrode of the photoelectric conversion element.
  • the conductive material used for the counter electrode is metal (for example, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxide (ITO (indium-tin oxide), FTO ((fluorine-doped tin oxide)) , Zinc oxide, etc.), or carbon.
  • a photoelectric conversion cell is formed by combining the photoelectric conversion electrode and the conductive counter electrode via an electrolyte or an electrolyte layer. If necessary, sealing is performed around the photoelectric conversion cell in order to prevent leakage or volatilization of the electrolyte or the electrolyte layer.
  • a thermoplastic resin, a photocurable resin, glass frit, or the like can be used as a sealing material.
  • the photoelectric conversion cell is formed by connecting small-area photoelectric conversion cells as necessary. By combining the photoelectric conversion cells in series, the electromotive voltage can be increased.
  • Tables 1 to 5 show the amine compounds used as the dispersant and the viscosity of the dispersion.
  • Comparative Example 1 the viscosity of a dispersion obtained by carrying out a dispersion treatment using 52 parts of 1-hexanol without using an amine compound is also shown.
  • Examples 1 to 23 are obtained by preparing a metal oxide semiconductor particle dispersion using the compound represented by the general formula (3) as an amine compound and measuring the viscosity. It can be seen that the viscosity of the dispersions of Examples 1 to 23 is lower than that of Comparative Example 1. In Comparative Example 1, gelation occurred and the viscosity became too high, and measurement with the viscometer used was not possible. Since the upper limit of measurement of this viscometer is 350 mPa ⁇ s, it is confirmed with a viscometer for high viscosity measurement (Brookfield Analog Viscometer HBT for high viscosity, manufactured by Brookfield) that can measure up to about 64,000 Pa ⁇ s. As a result, it was found that the viscosity was higher than 100 Pa ⁇ s.
  • metal oxide semiconductor particle dispersions were produced using compounds in which at least one of R 4 to R 6 in the general formula (2) is an alkyl group substituted with a hydroxy group as an amine compound. The viscosity was measured. It can be seen that the viscosity of the dispersions of Examples 24 to 42 is lower than that of Comparative Example 1.
  • Examples 43 to 63 are obtained by preparing a metal oxide semiconductor particle dispersion using the compound of the general formula (2) as an amine compound and measuring the viscosity. Compared with Comparative Example 1, it can be seen that the dispersions of Examples 43 to 63 have lower viscosities.
  • Examples 64 to 84 were prepared by preparing metal oxide semiconductor particle dispersions using the compound group of the general formula (4) as amine compounds and measuring the viscosity. Compared to Comparative Example 1, it can be seen that the dispersions of Examples 64-84 have lower viscosities.
  • Examples 85 to 122 are prepared by preparing a metal oxide semiconductor particle dispersion using a nitrogen-containing aromatic heterocyclic compound which may have a substituent as an amine compound, and measuring the viscosity. Compared with Comparative Example 1, it can be seen that the dispersions of Examples 85 to 122 have lower viscosities.
  • the amine compound is a compound in which at least one of R 4 to R 6 in the general formula (2) is an alkyl group substituted with a hydroxy group, or may contain a substituent. It turns out that a nitrogen aromatic heterocyclic compound is suitable. Furthermore, it turns out that the compound shown by General formula (3) or the compound shown by General formula (4) is more suitable among those compound groups.
  • Example 123 (Preparation of screen printing paste) 44.75 parts of 1-octanol, 9 parts of titanium acetyl oxide acetonate (TiO (acac) 2 ) as a metal atom complex, 1.25 parts of the amine compound described in Example 3, titanium oxide ST— manufactured by Ishihara Sangyo Co., Ltd. 45 parts of 01 (average particle diameter 7 nm) was added, mixed with zirconia beads, and dispersed using a paint shaker to obtain a metal oxide semiconductor particle dispersion. The viscosity of the dispersion was measured with an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd. and found to be 82.4 mPa ⁇ s.
  • the above screen printing paste was applied onto a glass substrate with an FTO film (type UT CO manufactured by Asahi Glass Co., Ltd.) using a stainless steel mesh screen (# 180) having a 1 cm square pattern, dried, and then 470 By baking at 1 ° C. for 1 hour to form a film, a metal oxide semiconductor electrode having a 1 cm square metal oxide porous body formed on a conductive transparent substrate was obtained.
  • the film thickness of the porous metal oxide was measured using a stylus type surface shape measuring device DEKTAK6M manufactured by Veeco, and found to be 9.4 ⁇ m.
  • Sensitizing dye (Ru complex; manufactured by Solaronics: N719) 3 ⁇ 10 ⁇ 4 M was dissolved in a 1: 1 mixture of t-butyl alcohol and acetonitrile, and the insoluble matter was removed with a membrane filter.
  • the metal oxide semiconductor electrode was immersed in this dye solution and allowed to stand at 40 ° C. for 2 hours.
  • the colored electrode surface was washed with the solvent used and then dried to obtain a photoelectric conversion electrode on which the sensitizing dye was adsorbed.
  • a platinum layer having a thickness of 200 nm was formed by sputtering on a conductive layer of a glass substrate with an FTO film (type UTCO manufactured by Asahi Glass Co., Ltd.).
  • FTO film type UTCO manufactured by Asahi Glass Co., Ltd.
  • a resin film spacer a “High Milan” film (25 ⁇ m thickness) made by Mitsui DuPont Polychemical Co., Ltd. is prepared, the photoelectric conversion electrode and the conductive counter electrode are opposed to each other via a spacer, and the above electrolyte solution is contained inside Was filled to form an electrolytic solution layer, thereby completing a photoelectric conversion element.
  • Example 124 to 133 and Comparative Examples 2 and 3 The same procedure as in Example 123, except that the metal oxide semiconductor electrode was produced by changing the type of amine compound as a dispersion aid, the composition of the metal oxide semiconductor particle dispersion, and the preparation composition of the screen printing paste. The performance of the photoelectric conversion element was measured. The amine compound used, the composition of the dispersion, and the viscosity (value at 25 ° C.
  • Example 123 is also shown in the table.
  • the dispersibility of the metal oxide semiconductor particle dispersion can be improved, and the titanium oxide concentration in the dispersion can be improved.
  • the metal oxide semiconductor electrode produced by screen printing is used.
  • the film thickness can be increased.
  • the specific surface area of a metal oxide semiconductor electrode increases and more sensitizing dyes can be adsorbed, the photoelectric conversion efficiency can be increased.
  • Comparative Example 2 a metal oxide semiconductor electrode prepared by screen printing after preparing a dispersion without using an amine compound and preparing a paste has a sufficient film thickness (titanium oxide). Since the dispersion state of the titanium oxide particles is insufficient because the concentration is high), the photoelectric conversion performance was low.
  • the metal oxide semiconductor particle dispersion produced by reducing the titanium oxide concentration was used as a paste. After preparation, the film thickness of the metal oxide semiconductor electrode produced by screen printing was low, and high photoelectric conversion performance could not be achieved.
  • Examples 134 to 144 When producing the metal oxide semiconductor particle dispersion, a metal oxide semiconductor electrode was produced in the same manner as in Example 123 except that the kind of the metal atom complex to be added was changed, and the performance of the photoelectric conversion element was measured. Viscosity of added metal atom complex, metal oxide semiconductor particle dispersion (value at 25 ° C. using an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd.), film thickness of metal oxide semiconductor electrode, photoelectric conversion efficiency Is shown in Table 8.
  • iPr represents an isopropyl group
  • nBu represents a normal butyl group.
  • the ligand of the metal atom complex represented by the general formula (1a) or (1b) is represented by the following general formula (5).
  • acac and L1 to L5 are represented in Table 9.
  • the dispersibility can be improved by using a metal atom complex and an amine compound in combination as a dispersion treatment agent and dispersing titanium oxide particles in a solvent.
  • An increase in the thickness of the metal oxide semiconductor electrode leads to the development of good photoelectric conversion performance and a reduction in the number of printings during electrode production.
  • the mixture was mixed with zirconia beads and dispersed using a paint shaker to obtain a metal oxide semiconductor particle dispersion.
  • an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd. was used, and the value at 25 ° C. was used.
  • Table 10 shows the amine compounds used as the dispersant and the viscosity of the dispersion.
  • Examples 145 to 152 are examples using an amine compound of the general formula (2)
  • Examples 153 to 154 are examples using an amine compound of the general formula (3)
  • Examples 155 to 161 are those of the general formula (4).
  • Examples using amine compounds are shown.
  • the viscosity of the metal oxide semiconductor particle dispersion was lower than that of Comparative Example 1. Thereby, the titanium oxide concentration in the dispersion can be increased.
  • Example 161 to 183 Except that the metal oxide semiconductor electrode was produced by changing the type of amine compound as a dispersion aid, the composition of the metal oxide semiconductor particle dispersion, and the composition of the paste for screen printing, the same procedure as in Example 123 was performed. The performance of the conversion element was measured.
  • Table 11 shows the amine compound used, the composition of the dispersion, and the viscosity (value at 25 ° C. using an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd.).
  • Table 12 shows the film thickness and photoelectric conversion efficiency of the metal oxide semiconductor electrode measured by a cone plate type (E type) TV22 viscometer manufactured by a company, measured at 25 ° C.).
  • the prescription index Resin / TiO 2 is the same as the weight ratio in Table 7.
  • the dispersibility of the metal oxide semiconductor particle dispersion can be improved, and the titanium oxide concentration in the dispersion can be improved.
  • the metal oxide semiconductor electrode manufactured by screen printing is used. The film thickness can be increased. As a result, the specific surface area of the metal oxide semiconductor electrode increases and more sensitizing dyes can be adsorbed, so that the photoelectric conversion efficiency can be increased.

Abstract

Disclosed are: a metal oxide semiconductor particle dispersion containing an amine compound, an organic titanate having an alkoxy group and/or a diketonate group, titanium oxide particles, and a solvent; a metal oxide semiconductor electrode including an electroconductive base material and a film formed on the electroconductive base material by using said metal oxide semiconductor particle dispersion; and a photoelectric conversion element including said metal oxide semiconductor electrode, a sensitizing dye, an electrolyte, and an electroconductive opposing electrode.

Description

金属酸化物半導体粒子分散体Metal oxide semiconductor particle dispersion
 本発明は、光電変換素子を作成する際に好適に用いられる金属酸化物半導体粒子分散体、それを用いた金属酸化物半導体電極および光電変換素子に関する。 The present invention relates to a metal oxide semiconductor particle dispersion suitably used for producing a photoelectric conversion element, a metal oxide semiconductor electrode using the same, and a photoelectric conversion element.
 太陽光発電では、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、テルル化カドミウムやセレン化インジウム銅などの化合物太陽電池が実用化、もしくは研究開発対象となっているが、普及させる上で製造コスト、原材料確保、エネルギーペイバックタイムが長い等の問題点を克服する必要がある。一方、大面積化や低価格を指向した有機材料を用いた太陽電池もこれまでに多く提案されているが、変換効率が低く、耐久性も悪いという問題があった。 In solar power generation, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and compound solar cells such as cadmium telluride and indium copper selenide have been put into practical use or are subject to research and development. Therefore, it is necessary to overcome problems such as manufacturing cost, securing raw materials, and long energy payback time. On the other hand, many solar cells using organic materials aimed at increasing the area and price have been proposed so far, but have the problems of low conversion efficiency and poor durability.
 こうした状況の中で、色素によって増感された半導体微多孔質体を用いた光電変換電極および光電変換セル、ならびにこれを作成するための材料および製造技術が開示された(特許文献1および非特許文献1)。提案された電池は、ルテニウム錯体等の増感色素によって分光増感された酸化チタン多孔質層を作用電極とし、ヨウ素を主体とする電解質および対電極から成る色素増感型の光電変換セルである。この方式の第一の利点は、酸化チタン等の安価な酸化物半導体を用いるため、安価な光電変換素子を提供できる点であり、第二の利点は、用いられるルテニウム錯体が可視光域に幅広く吸収を有していることから、比較的高い変換効率が得られる点である。 Under such circumstances, a photoelectric conversion electrode and a photoelectric conversion cell using a semiconductor microporous body sensitized with a dye, and a material and a manufacturing technique for producing the photoelectric conversion electrode have been disclosed (Patent Document 1 and Non-Patent Document). Reference 1). The proposed battery is a dye-sensitized photoelectric conversion cell comprising a titanium oxide porous layer spectrally sensitized with a sensitizing dye such as a ruthenium complex as a working electrode, an electrolyte mainly composed of iodine, and a counter electrode. . The first advantage of this method is that an inexpensive photoelectric conversion element can be provided because an inexpensive oxide semiconductor such as titanium oxide is used. The second advantage is that the ruthenium complex used is widely used in the visible light range. Since it has absorption, a relatively high conversion efficiency is obtained.
 高い変換効率を有する色素増感型光電変換セルを作成するために、酸化チタン多孔質層に水熱合成による酸化チタンゾルを利用する方法がしばしば用いられるが、これには製造上の問題点が多い。水熱合成による製造方法は、オートクレーブを用い水溶剤中200℃近くの高温高圧状態を必要とするので、大量生産には量産性、品質の再現性、製造時の安全性、コスト面等で課題を持っている。さらに、オートクレーブ中で水溶剤に対する酸化チタン含有比が10%未満の低濃度でなければ微粒子化しないので、ペーストとして使用するためには濃縮工程をも必要とする。また、濃縮を行ったとしても、成膜可能な粘度を維持するために酸化チタン含有比は20%前後に留まり、性能の良好な光電変換電極を得るには複数回の印刷を行う必要があるなど、生産性を低下させていた。 In order to produce a dye-sensitized photoelectric conversion cell having high conversion efficiency, a method of using a titanium oxide sol by hydrothermal synthesis for the titanium oxide porous layer is often used, but this has many manufacturing problems. . The production method by hydrothermal synthesis requires a high temperature and high pressure condition near 200 ° C in an aqueous solvent using an autoclave, so there are problems in mass production, reproducibility of quality, safety during production, cost, etc. have. Further, since the titanium oxide content ratio to the aqueous solvent in the autoclave is not a low concentration of less than 10%, fine particles are not formed, and a concentration step is also required for use as a paste. Moreover, even if concentration is performed, the titanium oxide content ratio remains around 20% in order to maintain the film forming viscosity, and it is necessary to perform printing a plurality of times in order to obtain a photoelectric conversion electrode with good performance. Etc., productivity was reduced.
 このような課題を克服するため、酸化チタン微粒子と酸化チタン前駆体を混合する手法(特許文献2)や、二酸化チタンとポリビニルブチラール樹脂を二本ロールで処理する手法(特許文献3)が提案されている。しかし、上記水熱合成による手法に比べて分散粒子が微細化されておらず、光電変換特性が劣るため、性能が良好な光電変換電極を安価に提供することは困難であった。さらに、金属原子錯体を単独で添加して酸化チタン粒子の分散処理を行う技術も提案されているが、さらなる改良が望まれていた(特許文献4)。 In order to overcome such problems, a technique of mixing titanium oxide fine particles and a titanium oxide precursor (Patent Document 2) and a technique of treating titanium dioxide and polyvinyl butyral resin with two rolls (Patent Document 3) have been proposed. ing. However, since the dispersed particles are not miniaturized and the photoelectric conversion characteristics are inferior as compared with the above-described hydrothermal synthesis method, it has been difficult to provide a photoelectric conversion electrode with good performance at low cost. Furthermore, a technique of adding a metal atom complex alone to disperse titanium oxide particles has been proposed, but further improvement has been desired (Patent Document 4).
米国特許4927721号明細書US Pat. No. 4,927,721 特開2002-75477号公報JP 2002-75477 A 特開2007-115602号公報JP 2007-115602 A 特開2005-203360号公報JP 2005-203360 A
 本発明の目的は、比較的安価な材料で生産される金属酸化物半導体電極の性能を向上させることである。さらには、同電極を用いることで高性能の光電変換素子を安価に提供することである。また、本発明が解決しようとする課題は、酸化チタンの分散性を向上させることにより、高い酸化チタン濃度でも低粘度な分散体を提供することである。さらに、その分散体を用いた、光電変換効率の高い電極と光電変換素子を提供することである。 An object of the present invention is to improve the performance of a metal oxide semiconductor electrode produced from a relatively inexpensive material. Furthermore, it is to provide a high-performance photoelectric conversion element at low cost by using the same electrode. The problem to be solved by the present invention is to provide a dispersion having a low viscosity even at a high titanium oxide concentration by improving the dispersibility of titanium oxide. Furthermore, it is to provide an electrode and a photoelectric conversion element having high photoelectric conversion efficiency using the dispersion.
 本発明は、アミン化合物と、アルコキシ基およびジケトナート基のうちの少なくとも一つを有する有機チタネートと、溶剤とを含む金属酸化物半導体粒子分散体に関する。
 また、本発明は、導電性基材と、上記本発明に係る金属酸化物半導体粒子分散体を用いて該導電性基材上に形成された膜とを備える金属酸化物半導体電極に関する。
 さらに、本発明は、前記金属酸化物半導体電極、増感色素、電解質、及び導電性対極を具備する光電変換素子に関する。
The present invention relates to a metal oxide semiconductor particle dispersion comprising an amine compound, an organic titanate having at least one of an alkoxy group and a diketonate group, and a solvent.
The present invention also relates to a metal oxide semiconductor electrode comprising a conductive substrate and a film formed on the conductive substrate using the metal oxide semiconductor particle dispersion according to the present invention.
Furthermore, this invention relates to the photoelectric conversion element which comprises the said metal oxide semiconductor electrode, a sensitizing dye, electrolyte, and a conductive counter electrode.
 本発明は、比較的安価な材料を用いた、穏和な条件での分散処理でも、分散粒子の微細化が可能となるため、金属酸化物半導体粒子分散体中の酸化チタン粒子の高濃度化と、分散体の安定性を高めることができる。その結果、当該金属酸化物半導体粒子分散体を用いた、安価でかつ優れた光電変換性能を有する金属酸化物半導体電極、および光電変換素子を提供できる。 In the present invention, since dispersion particles can be made fine even in a dispersion process under a mild condition using a relatively inexpensive material, the concentration of titanium oxide particles in the metal oxide semiconductor particle dispersion can be increased. , The stability of the dispersion can be increased. As a result, a metal oxide semiconductor electrode and a photoelectric conversion element that are inexpensive and have excellent photoelectric conversion performance using the metal oxide semiconductor particle dispersion can be provided.
 本発明に係る金属酸化物半導体粒子分散体は、処理金属酸化物半導体粒子分散体ともいい、すなわち酸化チタン分散体である(以下の記載において、単に「分散体」とも記す。)。この分散体は、分散処理剤として金属原子錯体等の有機チタネート及びアミン化合物を併用し、溶剤中で酸化チタン粒子を分散することにより、良好な機能を発現する。ここで、分散処理剤とは、金属酸化物半導体粒子の溶剤中での分散を助け、分散を促進させる助剤をいい、分散剤ということもできる。 The metal oxide semiconductor particle dispersion according to the present invention is also referred to as a treated metal oxide semiconductor particle dispersion, that is, a titanium oxide dispersion (in the following description, also simply referred to as “dispersion”). This dispersion exhibits an excellent function by using an organic titanate such as a metal atom complex and an amine compound as a dispersion treatment agent and dispersing titanium oxide particles in a solvent. Here, the dispersion treatment agent refers to an auxiliary agent that helps the dispersion of the metal oxide semiconductor particles in the solvent and promotes the dispersion, and can also be referred to as a dispersion agent.
1.金属酸化物半導体粒子分散体
 (酸化チタン粒子)
 酸化チタン(二酸化チタン)粒子は、その材料費が比較的安価であること、種々の粒径の材料を入手可能であること、特性が安定しており取り扱いが容易であること、結晶表面に水酸基を持っており色素吸着が強固に起こること、可視域に吸収が少なく増感色素の太陽光吸収の妨げにならないこと等の点から、色素増感太陽電池用の光電変換材料としては最も有用である。また、結晶構造には、ルチル型(正方晶高温型)、アナターゼ型(正方晶低温型)、ブルッカイト型(斜方晶)が知られているが、アナターゼ型(正方晶低温型)がもっとも好適である。
 酸化チタンの一次粒子径は、特に限定はされないが、平均一次粒子径が3~40nmであることが好ましい。平均一次粒子径が3nmより小さいと、膜内の空隙が著しく小さくなるため、色素溶液が浸透しなくなる等の問題が生じる恐れがある。一方、40nmより大きくなると、比表面積を十分に大きくできなくなる恐れがある。ここでいう平均一次粒子径は、次のように定めることができる。すなわち、酸化チタン粒子を走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)で撮影した画像から、任意の粒子100個を選び、個々の粒子の短軸径と長軸径の平均値を粒子の粒径(d)とする。個々の粒子を、粒径(d)を有する球とみなして、それぞれ粒子の体積(V)を求める。この作業を100個の粒子について行い、下記式(A)を用いて算出した値を、平均一次粒子径とする。
  式(A):MV=Σ(V・d)/Σ(V)
1. Metal oxide semiconductor particle dispersion (titanium oxide particles)
Titanium oxide (titanium dioxide) particles have relatively low material costs, are available in various particle sizes, have stable characteristics and are easy to handle, and have hydroxyl groups on the crystal surface. It is most useful as a photoelectric conversion material for dye-sensitized solar cells, because it has strong absorption of dyes and has little absorption in the visible range and does not interfere with sunlight absorption of sensitizing dyes. is there. In addition, the rutile type (tetragonal high temperature type), anatase type (tetragonal low temperature type), and brookite type (orthorhombic type) are known as crystal structures, but the anatase type (tetragonal low temperature type) is the most suitable. It is.
The primary particle diameter of titanium oxide is not particularly limited, but the average primary particle diameter is preferably 3 to 40 nm. If the average primary particle size is smaller than 3 nm, the voids in the film are remarkably reduced, which may cause problems such as the dye solution not permeating. On the other hand, if it exceeds 40 nm, the specific surface area may not be sufficiently increased. The average primary particle diameter here can be determined as follows. That is, 100 arbitrary particles are selected from an image obtained by photographing titanium oxide particles with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and the average value of the minor axis diameter and major axis diameter of each particle is calculated. The particle diameter (d) is assumed. Each particle is regarded as a sphere having a particle size (d), and the volume (V) of each particle is determined. This operation is performed for 100 particles, and the value calculated using the following formula (A) is taken as the average primary particle diameter.
Formula (A): MV = Σ (V · d) / Σ (V)
 (有機チタネート)
 有機チタネートは、金属酸化物半導体粒子分散体に用いる金属酸化物半導体粒子、すなわち酸化チタン粒子の表面に吸着し、分散を良好に行わせるための分散処理剤として機能し得る成分である。さらには、この分散体を導電性基材に塗布して電極層の作成を行った後、焼成後あるいは非焼成時においてもこれが高い密着性と変換効率を与えることができる成分である。
(Organic titanate)
The organic titanate is a component that can be adsorbed on the surface of metal oxide semiconductor particles used in the metal oxide semiconductor particle dispersion, that is, titanium oxide particles, and can function as a dispersion treatment agent for achieving good dispersion. Furthermore, after this dispersion is applied to a conductive substrate to form an electrode layer, it is a component that can provide high adhesion and conversion efficiency even after firing or non-firing.
 有機チタネートは、Ti(IV)とアルコール性水酸基および/またはジケトナート基によって形成されるTi-O-C結合を含む構造を備えるアルコキシチタンまたは有機チタンキレート(金属原子錯体)である。 The organic titanate is an alkoxytitanium or organic titanium chelate (metal atom complex) having a structure containing a Ti—O—C bond formed by Ti (IV) and an alcoholic hydroxyl group and / or a diketonate group.
 すなわち、有機チタネートは下記一般式(1a)で示される部分構造を有する金属原子錯体であることが好ましい。
 一般式(1a)
Figure JPOXMLDOC01-appb-C000005


 式中、R1~R3は、それぞれ独立に水素原子又は1価の置換基を示す。矢印は酸素原子からTiへの配位結合またはイオン結合を示す。破線はジケトナート化合物構造中の非局在結合を示す。nは0~4の整数であり、ジケトナート化合物の配位数を示す。
 上記式(1a)において、nは1~3の整数であることが好ましい。
That is, the organic titanate is preferably a metal atom complex having a partial structure represented by the following general formula (1a).
General formula (1a)
Figure JPOXMLDOC01-appb-C000005


In the formula, R 1 to R 3 each independently represent a hydrogen atom or a monovalent substituent. The arrow indicates a coordinate bond or ionic bond from the oxygen atom to Ti. Dashed lines indicate delocalized bonds in the diketonate compound structure. n is an integer of 0 to 4 and represents the coordination number of the diketato compound.
In the above formula (1a), n is preferably an integer of 1 to 3.
 これを全体構造で示すと、有機チタネートとしては、次の一般式(1b)で示される化合物を用いることが好ましい。
 一般式(1b)
Figure JPOXMLDOC01-appb-C000006

 式中、R1~R3は、それぞれ独立に水素原子又は1価の置換基を示す。矢印は酸素原子からTiへの配位結合またはイオン結合を示す。破線はジケトナート化合物構造中の非局在結合を示す。nは0~4の整数であり、ジケトナート化合物の配位数を示す。Rは、アルコキシ基を示す。pは、0~4の整数を示す。Oは、酸素原子を示す。qは、0または1の整数を示す。qが0の場合、p+n=4である。qが1の場合、p+n=2である。
When this is shown by the whole structure, it is preferable to use the compound shown by the following general formula (1b) as organic titanate.
General formula (1b)
Figure JPOXMLDOC01-appb-C000006

In the formula, R 1 to R 3 each independently represent a hydrogen atom or a monovalent substituent. The arrow indicates a coordinate bond or ionic bond from the oxygen atom to Ti. Dashed lines indicate delocalized bonds in the diketonate compound structure. n is an integer of 0 to 4 and represents the coordination number of the diketato compound. R represents an alkoxy group. p represents an integer of 0 to 4. O represents an oxygen atom. q represents an integer of 0 or 1. When q is 0, p + n = 4. When q is 1, p + n = 2.
 以下の記載において、有機チタネートを金属原子錯体とも記載し、一般式(1a)または(1b)で示される化合物を、「金属原子錯体(1)」とも記載する。
 金属原子錯体(1)は、複数の配位子を含んでいてもよい。この複数の配位子を含む例が、一般式(1b)においてp、qおよびnのいずれか二つ以上が0ではない化合物として示される。
 より具体的には、後述する実施例で使用した表8-1および表8-2に示された化合物が、金属原子錯体(1)の好ましい例として挙げられる。表中、「Ti(acac)4」は、一般式(1b)においてp=0、q=0、n=4の化合物であり、「Ti(OnBu)4」および「Ti(OiPr)4」は、p=4、q=0、n=0の化合物であり、「Ti(acac)2(OnBu)2」、「Ti(acac)2(OiPr)2」、「Ti(L2)2(OnBu)2」および「Ti(L4)2(OiPr)2」は、p=2、q=0、n=2の化合物であり、「Ti(L3)(OiPr)3」および「Ti(L5)(OiPr)3」は、p=1、q=0、n=3の化合物であり、「Ti=O(L1)2」および「Ti=O(L2)2」は、p=0、q=1、n=2の化合物である。
In the following description, the organic titanate is also referred to as a metal atom complex, and the compound represented by the general formula (1a) or (1b) is also referred to as “metal atom complex (1)”.
The metal atom complex (1) may contain a plurality of ligands. An example including a plurality of ligands is shown as a compound in which any two or more of p, q, and n are not 0 in the general formula (1b).
More specifically, the compounds shown in Table 8-1 and Table 8-2 used in Examples described later are preferable examples of the metal atom complex (1). In the table, “Ti (acac) 4” is a compound of p = 0, q = 0, n = 4 in the general formula (1b), and “Ti (OnBu) 4” and “Ti (OiPr) 4” are , P = 4, q = 0, n = 0, “Ti (acac) 2 (OnBu) 2”, “Ti (acac) 2 (OiPr) 2”, “Ti (L 2) 2 (OnBu)” 2 ”and“ Ti (L4) 2 (OiPr) 2 ”are compounds of p = 2, q = 0, n = 2, and“ Ti (L3) (OiPr) 3 ”and“ Ti (L5) (OiPr) ) 3 ”is a compound with p = 1, q = 0, n = 3, and“ Ti═O (L1) 2 ”and“ Ti═O (L2) 2 ”are p = 0, q = 1, It is a compound of n = 2.
 上記式(1b)においてアルコキシ基は、炭素数1~20のアルコキシ基であることが好ましく、炭素数1~8のアルコキシ基であることがより好ましく、メトキシ基、エトキシ基、ジイソプロポキシ基等のプロポキシ基、またはn-ブトキシ基等のブトキシ基であることが最も好ましい。 In the above formula (1b), the alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 8 carbon atoms, such as a methoxy group, an ethoxy group, or a diisopropoxy group. Most preferred is a propoxy group or a butoxy group such as an n-butoxy group.
 上記式(1a)および(1b)において1価の置換基の代表例としては、ハロゲン基、アルキル基、アリール基、複素環基、アルコキシ基、あるけにアルキルチオ基、アリールチオ基、ニトロ基、シアノ基、チオシアン酸基、イソチオシアン酸基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、モノアリールアミノ基、ジアリールアミノ基、アルキルカルボニル基またはアルケニルカルボニル基(アシル基)、アルキルカルボニルオキシ基またはアルケニルカルボニルオキシ基、アリールカルボニル基、スルホン酸アミド基、スルホン酸エステル基、フタルイミドメチル基等が挙げられるが、これらに限定されるものではない。以下の例示化合物についても、これらに限定されることはない。 In the above formulas (1a) and (1b), typical examples of the monovalent substituent include a halogen group, an alkyl group, an aryl group, a heterocyclic group, an alkoxy group, an alkylthio group, an arylthio group, a nitro group, and a cyano group. Group, thiocyanic acid group, isothiocyanic acid group, amino group, monoalkylamino group, dialkylamino group, aryloxy group, monoarylamino group, diarylamino group, alkylcarbonyl group or alkenylcarbonyl group (acyl group), alkylcarbonyloxy Groups, alkenylcarbonyloxy groups, arylcarbonyl groups, sulfonic acid amide groups, sulfonic acid ester groups, phthalimidomethyl groups, and the like, but are not limited thereto. The following exemplary compounds are not limited to these.
 ハロゲン基としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。 Examples of the halogen group include fluorine, chlorine, bromine and iodine.
 アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。   Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isohexyl group, Heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl Groups and the like. *
 アリール基としては、フェニル基、ビフェニリル基、ターフェニリル基、クオーターフェニリル基、o-、m-、およびp-トリル基、キシリル基、o-、m-、およびp-クメニル基、メシチル基、ペンタレニル基、インデニル基、ナフチル基、ビナフタレニル基、ターナフタレニル基、クオーターナフタレニル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、インダセニル基、フルオランテニル基、アセナフチレニル基、アセアントリレニル基、フェナレニル基、フルオレニル基、アントリル基、ビアントラセニル基、ターアントラセニル基、クオーターアントラセニル基、アントラキノリル基、フェナントリル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基、プレイアデニル基、ピセニル基、ペリレニル基、ペンタフェニル基、ペンタセニル基、テトラフェニレニル基、ヘキサフェニル基、ヘキサセニル基、ルビセニル基、コロネニル基、トリナフチレニル基、ヘプタフェニル基、ヘプタセニル基、ピラントレニル基、オバレニル基等が挙げられる。 Aryl groups include phenyl, biphenylyl, terphenylyl, quarterphenylyl, o-, m-, and p-tolyl, xylyl, o-, m-, and p-cumenyl, mesityl, pentalenyl Group, indenyl group, naphthyl group, binaphthalenyl group, turnaphthalenyl group, quarternaphthalenyl group, azulenyl group, heptaenyl group, biphenylenyl group, indacenyl group, fluoranthenyl group, acenaphthylenyl group, aceanthrylenyl group, phenenyl group, fluorenyl group , Anthryl group, bianthracenyl group, teranthracenyl group, quarteranthracenyl group, anthraquinolyl group, phenanthryl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, preadenyl group, picenyl group, perylene Group, pentaphenyl group, pentacenyl group, tetraphenylenyl les group, hexaphenyl group, hexacenyl group, rubicenyl group, coronenyl groups, trinaphthylenyl groups, heptacenyl groups, pyranthrenyl groups, ovalenyl group and the like.
 複素環基としては、チエニル基、ベンゾ[b]チエニル基、ナフト[2,3-b]チエニル基、チアントレニル基、フリル基、ピラニル基、イソベンゾフラニル基、クロメニル基、キサンテニル基、フェノキサチイニル基、2H-ピロリル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリジニル基、イソインドリル基、3H-インドリル基、インドリル基、1H-インダゾリル基、プリニル基、4H-キノリジニル基、イソキノリル基、キノリル基、フタラジニル基、ナフチリジニル基、キノキサニリル基、キナゾリニル基、シンノリニル基、プテリジニル基、4aH-カルバゾリル基、カルバゾリル基、β-カルボリニル基、フェナントリジニル基、アクリジニル基、ペリミジニル基、フェナントロリニル基、フェナジニル基、フェナルサジニル基、イソチアゾリル基、フェノチアジニル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、イソクロマニル基、クロマニル基、ピロリジニル基、ピロリニル基、イミダゾリジニル基、イミダゾリニル基、ピラゾリジニル基、ピラゾリニル基、ピペリジル基、ピペラジニル基、インドリニル基、イソインドリニル基、キヌクリジニル基、モルホリニル基等が挙げられる。 Heterocyclic groups include thienyl group, benzo [b] thienyl group, naphtho [2,3-b] thienyl group, thiantenyl group, furyl group, pyranyl group, isobenzofuranyl group, chromenyl group, xanthenyl group, phenoxathi Inyl, 2H-pyrrolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, 1H-indazolyl, purinyl Group, 4H-quinolidinyl group, isoquinolyl group, quinolyl group, phthalazinyl group, naphthyridinyl group, quinoxanilyl group, quinazolinyl group, cinnolinyl group, pteridinyl group, 4aH-carbazolyl group, carbazolyl group, β-carbolinyl group, phenanthridinyl group, Acridinyl Perimidinyl group, phenanthrolinyl group, phenazinyl group, phenalsadinyl group, isothiazolyl group, phenothiazinyl group, isoxazolyl group, furazanyl group, phenoxazinyl group, isochromanyl group, chromanyl group, pyrrolidinyl group, pyrrolinyl group, imidazolidinyl group, imidazolinyl group, Examples include pyrazolidinyl group, pyrazolinyl group, piperidyl group, piperazinyl group, indolinyl group, isoindolinyl group, quinuclidinyl group, morpholinyl group and the like.
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、イソプロポキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、イソペンチルオキシ基等が挙げられる。 Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an isopropoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, and an isopentyloxy group. .
 アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、イソプロピルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、イソペンチルチオ基等が挙げられる。 Examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, an isopropylthio group, an isobutylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, and an isopentylthio group.
 アリールチオ基としては、フェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、9-アンスリルチオ基、9-フェナントリルチオ基等が挙げられる。 Examples of the arylthio group include a phenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, a 9-anthrylthio group, and a 9-phenanthrylthio group.
 モノアルキルアミノ基としては、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、ノニルアミノ基、デシルアミノ基、ドデシルアミノ基、オクタデシルアミノ基、イソプロピルアミノ基、イソブチルアミノ基、イソペンチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、sec-ペンチルアミノ基、tert-ペンチルアミノ基、tert-オクチルアミノ基、ネオペンチルアミノ基、シクロプロピルアミノ基、シクロブチルアミノ基、シクロペンチルアミノ基、シクロヘキシルアミノ基、シクロヘプチルアミノ基、シクロオクチルアミノ基、シクロドデシルアミノ基、1-アダマンタミノ基、2-アダマンタミノ基等が挙げられる。 Monoalkylamino groups include methylamino, ethylamino, propylamino, butylamino, pentylamino, hexylamino, heptylamino, octylamino, nonylamino, decylamino, dodecylamino, octadecyl Amino group, isopropylamino group, isobutylamino group, isopentylamino group, sec-butylamino group, tert-butylamino group, sec-pentylamino group, tert-pentylamino group, tert-octylamino group, neopentylamino group , Cyclopropylamino group, cyclobutylamino group, cyclopentylamino group, cyclohexylamino group, cycloheptylamino group, cyclooctylamino group, cyclododecylamino group, 1-adamantamino group, 2-adamantamino group Etc. The.
 ジアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、ジヘプチルアミノ基、ジオクチルアミノ基、ジノニルアミノ基、ジデシルアミノ基、ジドデシルアミノ基、ジオクタデシルアミノ基、ジイソプロピルアミノ基、ジイソブチルアミノ基、ジイソペンチルアミノ基、メチルエチルアミノ基、メチルプロピルアミノ基、メチルブチルアミノ基、メチルイソブチルアミノ基、シクロプロピルアミノ基、ピロリジノ基、ピペリジノ基、ピペラジノ基等が挙げられる。 Dialkylamino group includes dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, dinonylamino group, didecylamino group, didodecylamino group, Dioctadecylamino group, diisopropylamino group, diisobutylamino group, diisopentylamino group, methylethylamino group, methylpropylamino group, methylbutylamino group, methylisobutylamino group, cyclopropylamino group, pyrrolidino group, piperidino group, And piperazino group.
 アリールオキシ基としては、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、クオーターフェニリルオキシ基、o-、m-、およびp-トリルオキシ基、キシリルオキシ基、o-、m-、およびp-クメニルオキシ基、メシチルオキシ基、ペンタレニルオキシ基、インデニルオキシ基、ナフチルオキシ基、ビナフタレニルオキシ基、ターナフタレニルオキシ基、クオーターナフタレニルオキシ基、アズレニルオキシ基、ヘプタレニルオキシ基、ビフェニレニルオキシ基、インダセニルオキシ基、フルオランテニルオキシ基、アセナフチレニルオキシ基、アセアントリレニルオキシ基、フェナレニルオキシ基、フルオレニルオキシ基、アントリルオキシ基、ビアントラセニルオキシ基、ターアントラセニルオキシ基、クオーターアントラセニルオキシ基、アントラキノリルオキシ基、フェナントリルオキシ基、トリフェニレニルオキシ基、ピレニルオキシ基、クリセニルオキシ基、ナフタセニルオキシ基、プレイアデニルオキシ基、ピセニルオキシ基、ペリレニルオキシ基、ペンタフェニルオキシ基、ペンタセニルオキシ基、テトラフェニレニルオキシ基、ヘキサフェニルオキシ基、ヘキサセニルオキシ基、ルビセニルオキシ基、コロネニルオキシ基、トリナフチレニルオキシ基、ヘプタフェニルオキシ基、ヘプタセニルオキシ基、ピラントレニルオキシ基、オバレニルオキシ基等が挙げられる。 Aryloxy groups include phenyloxy, biphenylyloxy, terphenylyloxy, quarterphenylyloxy, o-, m-, and p-tolyloxy, xylyloxy, o-, m-, and p -Cumenyloxy group, mesityloxy group, pentarenyloxy group, indenyloxy group, naphthyloxy group, binaphthalenyloxy group, turnaphthalenyloxy group, quarternaphthalenyloxy group, azulenyloxy group, heptalenyloxy Group, biphenylenyloxy group, indacenyloxy group, fluoranthenyloxy group, acenaphthylenyloxy group, aseantrirenyloxy group, phenalenyloxy group, fluorenyloxy group, anthryloxy group, Bianthracenyloxy group, teranthracenyloxy group, -Anthracenyloxy group, anthraquinolyloxy group, phenanthryloxy group, triphenylenyloxy group, pyrenyloxy group, chrysenyloxy group, naphthacenyloxy group, preadenyloxy group, picenyloxy group, perylenyloxy group, penta Phenyloxy group, pentacenyloxy group, tetraphenylenyloxy group, hexaphenyloxy group, hexacenyloxy group, rubicenyloxy group, coronenyloxy group, trinaphthylenyloxy group, heptaphenyloxy group, heptacene Examples include a nyloxy group, a pyrantrenyloxy group, and an oberenyloxy group.
 モノアリールアミノ基としては、N-アリールアミノ基、アニリノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、o-トルイジノ基、m-トルイジノ基、p-トルイジノ基、2-ビフェニルアミノ基、3-ビフェニルアミノ基、4-ビフェニルアミノ基、1-フルオレンアミノ基、2-フルオレンアミノ基、2-チアゾールアミノ基、p-ターフェニルアミノ基等が挙げられる。 The monoarylamino group includes N-arylamino group, anilino group, 1-naphthylamino group, 2-naphthylamino group, o-toluidino group, m-toluidino group, p-toluidino group, 2-biphenylamino group, 3 -Biphenylamino group, 4-biphenylamino group, 1-fluoreneamino group, 2-fluoreneamino group, 2-thiazoleamino group, p-terphenylamino group and the like.
 ジアリールアミノ基としては、ジアリールアミノ基、ジフェニルアミノ基、ジトリルアミノ基、N-フェニル-1-ナフチルアミノ基、N-フェニル-2-ナフチルアミノ基等が挙げられる。 Examples of the diarylamino group include a diarylamino group, a diphenylamino group, a ditolylamino group, an N-phenyl-1-naphthylamino group, and an N-phenyl-2-naphthylamino group.
 アルキルカルボニル基またはアルケニルカルボニル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基、アクリロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基等が挙げられる。
 アルキルカルボニルオキシ基またはアルケニルカルボニルオキシ基は、上記アルキルカルボニル基またはアルケニルカルボニル基に由来する基が挙げられる。
Examples of the alkylcarbonyl group or alkenylcarbonyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, cyclopentylcarbonyl group, Examples include cyclohexylcarbonyl group, acryloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, oleoyl group and the like.
Examples of the alkylcarbonyloxy group or alkenylcarbonyloxy group include groups derived from the above alkylcarbonyl group or alkenylcarbonyl group.
 アリールカルボニル基としては、ベンゾイル基、2-メチルベンゾイル基、4-メトキシベンゾイル基、1-ナフトイル基、2-ナフトイル基、シンナモイル基、3-フロイル基、2-テノイル基、ニコチノイル基、イソニコチノイル基、9-アンスロイル基、5-ナフタセノイル基等が挙げられる。
 スルホン酸エステル基としては、メトキシスルホニル基、エトキシスルホニル基、ブトキシスルホニル基、フェノキシスルホニル基等が挙げられる。
As the arylcarbonyl group, benzoyl group, 2-methylbenzoyl group, 4-methoxybenzoyl group, 1-naphthoyl group, 2-naphthoyl group, cinnamoyl group, 3-furoyl group, 2-thenoyl group, nicotinoyl group, isonicotinoyl group, Examples thereof include 9-anthroyl group and 5-naphthacenoyl group.
Examples of the sulfonate group include a methoxysulfonyl group, an ethoxysulfonyl group, a butoxysulfonyl group, and a phenoxysulfonyl group.
 前記の1価の置換基は、さらに置換されても良い。このとき1価の置換基にさらに置換する基としては、前記の1価の置換基、または、二重結合を有する基が挙げられる。 The monovalent substituent may be further substituted. In this case, examples of the group that further substitutes the monovalent substituent include the monovalent substituent described above or a group having a double bond.
 ここで、二重結合を有する基としては、ビニル基、アリル基、2-メチルアリル基、クロチル基、イソクロチル基、クロトノイル基、イソクロトノイル基、(メタ)アクリロイル基、(メタ)アクリロキシ基等が挙げられる。
 なかでもR~Rは、水素原子、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基のなかから選択されることが好ましい。アルキル基またはアルコキシ基の炭素数は、特に限定はされないが、1~10であることが好ましく、1~4であることが特に好ましい。置換基は、ハロゲン基であることが好ましく、フッ素であることが特に好ましい。
Here, examples of the group having a double bond include a vinyl group, an allyl group, a 2-methylallyl group, a crotyl group, an isocrotyl group, a crotonoyl group, an isocrotonoyl group, a (meth) acryloyl group, and a (meth) acryloxy group. .
In particular, R 1 to R 3 are preferably selected from a hydrogen atom, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted alkoxy group. The number of carbon atoms of the alkyl group or alkoxy group is not particularly limited, but is preferably 1 to 10, and particularly preferably 1 to 4. The substituent is preferably a halogen group, and particularly preferably fluorine.
 これらの金属原子錯体が、後述するアミン化合物とともに、同一溶剤中で分散処理剤として機能することにより、酸化チタン粒子と共にペーストもしくは分散溶液、すなわち金属酸化物半導体粒子分散体を作る。この分散体を成膜後、加熱により焼結して酸化チタン多孔質層を形成し、さらに増感色素を連結することによって、可視光および/又は近赤外光領域までの光電変換が可能となる。金属原子錯体の存在は、さらに、成膜後の密着性を向上させる。
 酸化チタン多孔質層表面が増感色素によって増感されるためには、その電導帯が増感色素の光励起順位から電子を受け取りやすい位置に存在することが望ましい。
 本発明において金属原子錯体は、複数の種類を選択して組み合わせることができる。
These metal atom complexes together with the amine compound described later function as a dispersion treatment agent in the same solvent, thereby making a paste or dispersion solution, that is, a metal oxide semiconductor particle dispersion together with titanium oxide particles. After this dispersion is formed, it is sintered by heating to form a titanium oxide porous layer, and by further connecting a sensitizing dye, photoelectric conversion up to the visible light and / or near infrared light region is possible. Become. The presence of the metal atom complex further improves the adhesion after film formation.
In order for the surface of the titanium oxide porous layer to be sensitized by the sensitizing dye, it is desirable that the conduction band exists at a position where electrons are easily received from the photoexcitation order of the sensitizing dye.
In the present invention, the metal atom complex can be selected from a plurality of types and combined.
 酸化チタン粒子と、これらの金属原子錯体とを接触させることにより、金属原子錯体は酸化チタン粒子表面に吸着して酸化チタン粒子-金属原子錯体複合体となり、これを焼成することにより酸化チタン粒子表面に新たな同種金属酸化物層が形成されるものと考えられる。新たに形成された金属酸化物層は、酸化チタン粒子同士の結合を促進し、粒子間の電子の移動が行いやすくなるため、低温焼成プロセスであっても比較的高い性能の金属酸化物半導体電極を得ることができると考えられる。 By bringing titanium oxide particles into contact with these metal atom complexes, the metal atom complexes are adsorbed on the surface of the titanium oxide particles to form a titanium oxide particle-metal atom complex complex. It is considered that a new similar metal oxide layer is formed. The newly formed metal oxide layer promotes the bonding between titanium oxide particles and facilitates the movement of electrons between the particles, so that the metal oxide semiconductor electrode has a relatively high performance even in a low-temperature firing process. It is thought that can be obtained.
 これら金属原子錯体は、アヅマックス株式会社などで購入も可能であるが、たとえば無機元素のハロゲン化物とアルコール類、カルボン酸類、遊離の状態のベータージケトン類等とを反応させることで得ることもできる。 These metal atom complexes can be purchased from Amax Co., Ltd., but can also be obtained by reacting, for example, a halide of an inorganic element with alcohols, carboxylic acids, free beta diketones, and the like.
 (アミン化合物)
 本発明におけるアミン化合物とは、分子内に少なくとも第一級アミノ基、第二級アミノ基、又は、第三級アミノ基を有する化合物である。例えば、
 エチルアミン、n-プロピルアミン、イソプロピルアミン、t-ブチルアミン、sec-ブチルアミン、ヘキシルアミン、2-エチルヘキシルアミン、2-エチルヘキシルオキシプロピルアミン、3-エトキシプロピルアミン、ドデシルアミン、ステアリルアミン、アリルアミン、アニリン等の第一級アミン化合物;
 ジエチルアミン、ジn-ブチルアミン、ジイソプロピルアミン、ジイソブチルアミン、ジ-2-エチルヘキシルアミン、ジオクチルアミン、ジラウリルアミン、ジアリルアミン、イミノビスプロピルアミン、メチルアミノプロピルアミン、N-メチルエタノールアミン、アミノエチルエタノールアミン、ジフェニルアミン、2,4-ジメチルジフェニルアミン、3-メトキシジフェニルアミン、4-イソプロポキシジフェニルアミン、3-ヒドロキシジフェニルアミン、3,3'-ジヒドロキシジフェニルアミン、ピペリジン等の第二級アミン化合物;
 トリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリアリルアミン、3-ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン、トリ-n-オクチルアミン、ジメチルアミノプロピルアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、N,N-ジエチルエタノールアミン、N-メチル-N,N-ジエタノールアミン、N,N-ジブチルエタノールアミン、トリフェニルアミン、4-メチルトリフェニルアミン、4,4-ジメチルトリフェニルアミン、ジフェニルエチルアミン、ジフェニルベンジルアミン、N、N-ジフェニル-p-アニシジン等の第三級アミン化合物;
 ピリジン、2-ピコリン、ピラジン、2-ピリジンメタノール、ピロリジン、1,4-ビス(3-アミノプロピル)ピペラジン、1―(2-ヒドロキシエチル)ピペラジン、2-ピペコリン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等の環状アミン化合物等が挙げられるが、これらに限定されるものではない。
(Amine compound)
The amine compound in the present invention is a compound having at least a primary amino group, a secondary amino group, or a tertiary amino group in the molecule. For example,
Such as ethylamine, n-propylamine, isopropylamine, t-butylamine, sec-butylamine, hexylamine, 2-ethylhexylamine, 2-ethylhexyloxypropylamine, 3-ethoxypropylamine, dodecylamine, stearylamine, allylamine, aniline, etc. Primary amine compounds;
Diethylamine, di-n-butylamine, diisopropylamine, diisobutylamine, di-2-ethylhexylamine, dioctylamine, dilaurylamine, diallylamine, iminobispropylamine, methylaminopropylamine, N-methylethanolamine, aminoethylethanolamine, Secondary amine compounds such as diphenylamine, 2,4-dimethyldiphenylamine, 3-methoxydiphenylamine, 4-isopropoxydiphenylamine, 3-hydroxydiphenylamine, 3,3′-dihydroxydiphenylamine, piperidine;
Triethylamine, tributylamine, trihexylamine, triallylamine, 3-diethylaminopropylamine, dibutylaminopropylamine, tetramethylethylenediamine, triethylenediamine, tri-n-octylamine, dimethylaminopropylamine, N, N-dimethylethanolamine, Triethanolamine, N, N-diethylethanolamine, N-methyl-N, N-diethanolamine, N, N-dibutylethanolamine, triphenylamine, 4-methyltriphenylamine, 4,4-dimethyltriphenylamine, Tertiary amine compounds such as diphenylethylamine, diphenylbenzylamine, N, N-diphenyl-p-anisidine;
Pyridine, 2-picoline, pyrazine, 2-pyridinemethanol, pyrrolidine, 1,4-bis (3-aminopropyl) piperazine, 1- (2-hydroxyethyl) piperazine, 2-pipecoline, 1,5,7-triaza Bicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, 1,8-diazabicyclo [5.4. 0] undec-7-ene, 6-dibutylamino-1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, etc. Examples thereof include, but are not limited to, cyclic amine compounds.
 好ましくは、下記一般式(2)で示されるアミン化合物を用いることができる。
 一般式(2)
Figure JPOXMLDOC01-appb-C000007

 式中、R~Rは、それぞれ独立に、水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアリール基、無置換もしくは置換基を有するアルキルカルボニル基を表す。
Preferably, an amine compound represented by the following general formula (2) can be used.
General formula (2)
Figure JPOXMLDOC01-appb-C000007

In the formula, each of R 4 to R 6 independently represents a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted aryl group, unsubstituted or An alkylcarbonyl group having a substituent is represented.
 R~Rにおけるアルキル基、アルコキシ基、アリール基、およびアルキルカルボニル基としては上記金属原子錯体(1)中のR~Rで表したものと同様の基を挙げることができる。
 R~Rが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、R~R上の、Nが結合していない任意の炭素原子に結合している。該置換基としては、水素原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、例えばモノアルキルアミノ基、ジアルキルアミノ基のようなアルキルアミノ基、アルキルカルボニル基、ヒドロキシ基等が挙げられる。ここでいうアルキル基、アルコキシ基、アリール基、アリールオキシ基、モノアルキルアミノ基、ジアルキルアミノ基、アルキルカルボニル基としては、上記金属原子錯体(1)中のR~Rで表したものと同様の基を挙げることができる。また、これらの置換基はさらに置換されても良い。
Examples of the alkyl group, alkoxy group, aryl group, and alkylcarbonyl group in R 4 to R 6 include the same groups as those represented by R 1 to R 3 in the metal atom complex (1).
When R 4 to R 6 are substituted with a substituent, they may be substituted with one or more substituents, and bonded to any carbon atom on which R 4 to R 6 are not bonded to N. ing. Examples of the substituent include a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an amino group, for example, an alkylamino group such as a monoalkylamino group and a dialkylamino group, an alkylcarbonyl group, and a hydroxy group. It is done. The alkyl group, alkoxy group, aryl group, aryloxy group, monoalkylamino group, dialkylamino group, and alkylcarbonyl group mentioned here are those represented by R 1 to R 3 in the metal atom complex (1). Similar groups can be mentioned. Moreover, these substituents may be further substituted.
 上記一般式(2)で示されるアミン化合物としては、特に限定されないが、R~Rのうち少なくとも一つは、ヒドロキシ基で置換されたアルキル基である化合物が好ましい。 The amine compound represented by the general formula (2) is not particularly limited, but a compound in which at least one of R 4 to R 6 is an alkyl group substituted with a hydroxy group is preferable.
 ヒドロキシ基で置換されたアルキル基としては、例えばヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシイソプロピル基、ヒドロキシ-n-ブチル基、ヒドロキシイソブチル基、ヒドロキシ-sec-ブチル基、ヒドロキシ-tert-ブチル基、ヒドロキシ-n-アミル基、ヒドロキシ-sec-アミル基、ヒドロキシ-tert-アミル基、ヒドロキシイソアミル基、ヒドロキシ-n-ヘキシル基、ヒドロキシシクロヘキシル基、ヒドロキシ-n-ヘプチル基、ヒドロキシ-n-オクチル基、ヒドロキシ-2-エチルヘキシル基、ヒドロキシノニル基、ヒドロキシイソノニル基、ヒドロキシデシル基、ヒドロキシイソデシル基、ヒドロキシウンデシル基、ヒドロキシラウリル基、ヒドロキシトリデシル基、ヒドロキシイソトリデシル基、ヒドロキシミリスチル基、ヒドロキシセチル基、ヒドロキシイソセチル基、ヒドロキシステアリル基、ヒドロキシイソステアリル基等があるが、特にヒドロキシエチル基が好ましい。 Examples of the alkyl group substituted with a hydroxy group include hydroxymethyl group, hydroxyethyl group, hydroxypropyl group, hydroxyisopropyl group, hydroxy-n-butyl group, hydroxyisobutyl group, hydroxy-sec-butyl group, hydroxy-tert- Butyl, hydroxy-n-amyl, hydroxy-sec-amyl, hydroxy-tert-amyl, hydroxyisoamyl, hydroxy-n-hexyl, hydroxycyclohexyl, hydroxy-n-heptyl, hydroxy-n- Octyl group, hydroxy-2-ethylhexyl group, hydroxynonyl group, hydroxyisononyl group, hydroxydecyl group, hydroxyisodecyl group, hydroxyundecyl group, hydroxylauryl group, hydroxytridecyl group Hydroxy isotridecyl group, hydroxy myristyl group, hydroxy cetyl group, hydroxy isocetyl group, hydroxy stearyl group, there are hydroxy isostearyl group, especially a hydroxyethyl group are preferable.
 ヒドロキシエチル基を含むアミン化合物として、下記一般式(3)で示されるアミン化合物を好ましく用いることができる。
 一般式(3)
Figure JPOXMLDOC01-appb-C000008

 上記アミン化合物において、RおよびRは、それぞれ独立に、水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアリール基、無置換もしくは置換基を有するアルキルカルボニル基を表す。
As the amine compound containing a hydroxyethyl group, an amine compound represented by the following general formula (3) can be preferably used.
General formula (3)
Figure JPOXMLDOC01-appb-C000008

In the amine compound, R 7 and R 8 each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted alkylcarbonyl group. To express.
 RおよびRにおけるアルキル基およびアリール基としては上記金属原子錯体(1)中のR~Rで表したものと同様の基を挙げることができる。
 RおよびRが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、RおよびR上の、Nが結合していない任意の炭素原子に結合している。該置換基としては、上述したR~Rが含みうる置換基と同様の基が挙げられ、これらの置換基はさらに置換されても良い。
Examples of the alkyl group and aryl group in R 7 and R 8 include the same groups as those represented by R 1 to R 3 in the metal atom complex (1).
When R 7 and R 8 are substituted with a substituent, they may be substituted with one or more substituents and bonded to any carbon atom on R 7 and R 8 where N is not bonded. ing. Examples of the substituent groups include the same groups as the substituents may include the R 4 ~ R 6 described above, these substituents may be further substituted.
 好ましい一実施形態において、前記一般式(3)のR及びRはメチル基である。
 別の好ましい一実施形態において、前記一般式(3)のR及びRはヒドロキシエチル基である。
 すなわち、上記一般式(3)で示されるアミン化合物としては、特に限定されないが、N,N-ジメチルエタノールアミンおよびトリエタノールアミンが好ましい。
In a preferred embodiment, R 7 and R 8 in the general formula (3) are methyl groups.
In another preferred embodiment, R 7 and R 8 in the general formula (3) are hydroxyethyl groups.
That is, the amine compound represented by the general formula (3) is not particularly limited, but N, N-dimethylethanolamine and triethanolamine are preferable.
 別の好ましい一実施形態において、前記アミン化合物は、置換基を有しても良い含窒素芳香族複素環化合物である。すなわち、アミン化合物として、含窒素芳香族複素環化合物を用いることも好ましい。ここで、含窒素芳香族複素環化合物とは、ピリジン、ピラジン、ピリミジン類に代表される窒素原子を芳香環の構成原子とする化合物を指す。 In another preferred embodiment, the amine compound is a nitrogen-containing aromatic heterocyclic compound which may have a substituent. That is, it is also preferable to use a nitrogen-containing aromatic heterocyclic compound as the amine compound. Here, the nitrogen-containing aromatic heterocyclic compound refers to a compound having a nitrogen atom represented by pyridine, pyrazine, or pyrimidine as a constituent atom of the aromatic ring.
 さらに、含窒素芳香族複素環化合物として、下記一般式(4)で示されるアミン化合物を用いることも好ましい。
 一般式(4)
Figure JPOXMLDOC01-appb-C000009

 一般式(4)において、R~R13は、それぞれ独立に、水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアルキルアミノ基、無置換もしくは置換基を有するアリール基、無置換もしくは置換基を有するアルキルカルボニル基、アミノ基、ヒドロキシ基、N-アルキルカルバモイル基、アルコキシカルボニル基を表す。
Furthermore, it is also preferable to use an amine compound represented by the following general formula (4) as the nitrogen-containing aromatic heterocyclic compound.
General formula (4)
Figure JPOXMLDOC01-appb-C000009

In the general formula (4), R 9 to R 13 each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted alkylamino A group, an unsubstituted or substituted aryl group, an unsubstituted or substituted alkylcarbonyl group, an amino group, a hydroxy group, an N-alkylcarbamoyl group, and an alkoxycarbonyl group;
 R~R13におけるアルキル基、アルコキシ基、アルキルアミノ基、アリール基、およびアルキルカルボニル基としては上記金属原子錯体(1)中のR~Rで表したものと同様の基を挙げることができる。N-アルキルカルバモイル基としては、N-メチルカルバモイル基等が挙げられる。アルコキシカルボニル基としては、メトキシカルボニル基等が挙げられる。 Examples of the alkyl group, alkoxy group, alkylamino group, aryl group, and alkylcarbonyl group in R 9 to R 13 include the same groups as those represented by R 1 to R 3 in the metal atom complex (1). Can do. Examples of the N-alkylcarbamoyl group include an N-methylcarbamoyl group. Examples of the alkoxycarbonyl group include a methoxycarbonyl group.
 R~R13が置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、R~R13上の、Nが結合していない任意の炭素原子に結合している。該置換基としては、上述したR~Rが含みうる置換基と同様の基が挙げられ、これらの置換基はさらに置換されても良い。 When R 9 to R 13 are substituted with a substituent, they may be substituted with one or more substituents and bonded to any carbon atom on R 9 to R 13 to which N is not bonded. ing. Examples of the substituent include the same groups as the substituents that R 4 to R 6 can contain, and these substituents may be further substituted.
 一般式(4)で示されるアミン化合物としては、特に限定されないが、R~R13がすべて水素原子である化合物が好ましい。 The amine compound represented by the general formula (4) is not particularly limited, but a compound in which R 9 to R 13 are all hydrogen atoms is preferable.
 本発明において、アミン化合物は複数の種類を選択して組み合わせることができる。
 本発明においてアミン化合物は、金属原子錯体の配位子となるのではなく、酸化チタン粒子表面に吸着していると考えられ、吸着することにより、分散効果を発揮するものと考えられる。各種アミン化合物を溶剤中に完全ないしは一部溶解させ、その溶液中に酸化チタン粒子を添加、混合することで、アミン化合物の酸化チタン粒子表面への吸着が進むものと思われる。そして、酸化チタン粒子表面に吸着したアミン化合物の極性により、酸化チタン粒子表面の溶剤に対する濡れが促進され、酸化チタン粒子同士の凝集が解しやすくなるものと思われる。更に、上述の金属原子錯体を併用することにより、相乗効果で分散が進むため、金属原子錯体を単独で添加して分散処理を実施したときよりも、分散状態の安定性が増すだけでなく、分散体中における酸化チタン粒子の高濃度化も可能となる。
 すなわち、金属原子錯体とアミン化合物とを併用することにより、酸化チタン粒子を高濃度で良好に分散させることができる。ここで、酸化チタン粒子の分散性の向上は光電変換効率を向上させる。分散体の高濃度化は、金属酸化物半導体電極の膜厚増加を可能とし、膜厚増加による光電変換効率の向上をもたらす。
In the present invention, a plurality of types of amine compounds can be selected and combined.
In the present invention, the amine compound is considered not to be a ligand of the metal atom complex but to be adsorbed on the surface of the titanium oxide particles, and is considered to exhibit a dispersion effect by being adsorbed. Various amine compounds are completely or partially dissolved in a solvent, and titanium oxide particles are added and mixed in the solution, so that it is considered that the adsorption of amine compounds on the surface of titanium oxide particles proceeds. And it seems that wetting with respect to the solvent of the titanium oxide particle surface is promoted by the polarity of the amine compound adsorbed on the surface of the titanium oxide particle, and the aggregation of the titanium oxide particles is easy to be solved. Furthermore, by using the above metal atom complex in combination, the dispersion proceeds with a synergistic effect, so that not only the dispersion treatment is performed by adding the metal atom complex alone, but the stability of the dispersion state is increased, It is also possible to increase the concentration of titanium oxide particles in the dispersion.
That is, titanium oxide particles can be favorably dispersed at a high concentration by using a metal atom complex and an amine compound in combination. Here, the improvement of the dispersibility of the titanium oxide particles improves the photoelectric conversion efficiency. Increasing the concentration of the dispersion makes it possible to increase the film thickness of the metal oxide semiconductor electrode and to improve the photoelectric conversion efficiency by increasing the film thickness.
 上記の金属原子錯体及びアミン化合物は、分散処理剤として分散体中に含まれるものであり、両者は合計で、処理前の酸化チタン粒子全体に対して0.01重量%~100重量%の範囲で、すなわち配合する酸化チタン粒子の重量1に対し0.0001~1の範囲で用いられることが好ましい。金属原子錯体及びアミン化合物の処理による分散性向上や低温焼成による変換効率向上等の効果を十分に発揮させるために、この配合量は0.01重量%以上であることが好ましい。一方で、100重量%を越える場合は、これら分散処理剤が金属酸化物半導体表面の処理に対して過剰となるので、分散体中に単独に存在する分散処理剤が増加し、成膜時に密着性が低下するなど、膜質を悪化させる点で好ましくないことがある。酸化チタン粒子の重量を1として、金属原子錯体及びアミン化合物は合計で、より好ましくは0.001以上、さらに好ましくは0.01以上、最も好ましくは0.1以上の量で用いられ、より好ましくは0.8以下、さらに好ましくは0.6以下、最も好ましくは0.4以下の量で用いられる。 The above metal atom complex and amine compound are contained in the dispersion as a dispersion treatment agent, and both are in a range of 0.01% by weight to 100% by weight with respect to the entire titanium oxide particles before treatment. That is, it is preferably used in the range of 0.0001 to 1 with respect to the weight 1 of titanium oxide particles to be blended. In order to sufficiently exhibit effects such as improvement in dispersibility by the treatment of the metal atom complex and amine compound and improvement in conversion efficiency by low-temperature firing, the amount is preferably 0.01% by weight or more. On the other hand, when the amount exceeds 100% by weight, these dispersion treatment agents become excessive with respect to the treatment of the surface of the metal oxide semiconductor, so that the dispersion treatment agent present alone in the dispersion increases and adheres during film formation. It may be undesirable in terms of deteriorating film quality, such as a decrease in properties. When the weight of the titanium oxide particles is 1, the total of the metal atom complex and the amine compound is more preferably 0.001 or more, still more preferably 0.01 or more, and most preferably 0.1 or more, more preferably Is used in an amount of 0.8 or less, more preferably 0.6 or less, and most preferably 0.4 or less.
 また、アミン化合物は金属原子錯体全体に対して0.1重量%~30重量%の範囲で、すなわち配合する金属原子錯体の重量1に対し0.001~0.3の範囲で用いられることが好ましい。アミン化合物による分散性向上や酸化チタン粒子の高濃度化等の効果を十分に発揮させるために、この配合量は0.1重量%以上であることが好ましい。一方、金属原子錯体に対するアミン化合物の量が多すぎると、酸化チタン粒子表面へ多くのアミン化合物が付着するため、成膜後の酸化チタン半導体電極の伝導帯準位が変化したり、電子トラップが形成したりするなどの影響が発現する場合があるので、30重量%以下であることが好ましい。金属原子錯体の重量を1としてアミン化合物は、より好ましくは0.005以上、さらに好ましくは0.01以上、最も好ましくは0.03以上の量で用いられ、より好ましくは0.25以下、さらに好ましくは0.2以下、最も好ましくは0.16以下の量で用いられる。 The amine compound may be used in the range of 0.1 to 30% by weight with respect to the entire metal atom complex, that is, in the range of 0.001 to 0.3 with respect to the weight 1 of the metal atom complex to be blended. preferable. In order to sufficiently exhibit effects such as improvement of dispersibility by the amine compound and increase in concentration of the titanium oxide particles, the blending amount is preferably 0.1% by weight or more. On the other hand, if the amount of the amine compound relative to the metal atom complex is too large, a large amount of the amine compound adheres to the surface of the titanium oxide particles, so that the conduction band level of the titanium oxide semiconductor electrode after film formation changes or the electron trap is In some cases, such as formation may occur, so the content is preferably 30% by weight or less. The amine compound is preferably used in an amount of 0.005 or more, more preferably 0.01 or more, most preferably 0.03 or more, more preferably 0.25 or less, and more preferably 0.005 or more, with the weight of the metal atom complex being 1. Preferably it is used in an amount of 0.2 or less, most preferably 0.16 or less.
 (溶剤)
 金属酸化物半導体粒子分散体の作成に用いることのできる溶剤としてはエタノール、イソプロピルアルコール、ベンジルアルコール、ターピネオールなどのアルコール系溶剤;アセトニトリル、プロピオニトリルなどのニトリル系溶剤;クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;アセトン、メチルエチルケトン、シクロヘキサノン、イソホロン等のケトン系溶剤;炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤;ヘキサン、オクタン、トルエン、キシレン等の炭化水素系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチルイミダゾリノン、N-メチルピロリドン、水等を用いることができるがこれに限らない。また、二種類以上の溶剤を混合して用いても良い。
(solvent)
Solvents that can be used to prepare the metal oxide semiconductor particle dispersion include alcohol solvents such as ethanol, isopropyl alcohol, benzyl alcohol, and terpineol; nitrile solvents such as acetonitrile and propionitrile; chloroform, dichloromethane, chlorobenzene, and the like Halogen solvents; ether solvents such as diethyl ether and tetrahydrofuran; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone and isophorone; carbonate solvents such as diethyl carbonate and propylene carbonate; Hydrocarbon solvents such as hexane, octane, toluene, xylene; dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolinone, N-methyl Pyrrolidone, water, etc. can be used, but are not limited thereto. Two or more kinds of solvents may be mixed and used.
 成膜後の揮発分の環境への影響等の点から、アルコール系溶剤を単独で、又は他の溶媒と併用して用いることがさらに望ましい。また、分散処理剤の加水分解が起こらないようにするために、使用する溶剤中の含水率は、10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下であることが好ましい。溶剤中の含水率は、例えば、京都電子工業社製カールフィッシャー水分計MKC-610型等の水分計により測定することができる。また、測定スクリーン印刷等の用途にこの分散体を用いる場合、溶剤の沸点が100℃より高い方が、版乾き等が起こりにくいので望ましい。
 アルコール系溶剤としては、上記に加えて、炭素数1~30のアルコールを用いることが好ましく、炭素数4~10のアルコールを用いることがより好ましく、炭素数6~8のアルコールを用いることが更に好ましい。また、アルコールは、脂肪族アルコールであることが好ましく、直鎖アルコールであることが好ましく、モノアルコールであることが好ましい。これらのアルコール系溶剤に、イソホロン(テルペン系モノケトン)などのケトン系溶媒を混合して使用することも好ましい。
From the viewpoint of the influence of the volatile components after film formation on the environment, it is more desirable to use an alcohol solvent alone or in combination with another solvent. In order to prevent hydrolysis of the dispersion treatment agent, the water content in the solvent used is preferably 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less. . The water content in the solvent can be measured by, for example, a moisture meter such as a Karl Fischer moisture meter MKC-610 manufactured by Kyoto Electronics Industry Co., Ltd. Further, when this dispersion is used for measuring screen printing or the like, it is desirable that the boiling point of the solvent is higher than 100 ° C., because plate drying is less likely to occur.
As the alcohol solvent, in addition to the above, an alcohol having 1 to 30 carbon atoms is preferably used, an alcohol having 4 to 10 carbon atoms is more preferably used, and an alcohol having 6 to 8 carbon atoms is further used. preferable. The alcohol is preferably an aliphatic alcohol, preferably a linear alcohol, and preferably a monoalcohol. It is also preferable to use these alcohol solvents mixed with a ketone solvent such as isophorone (terpene monoketone).
 (分散体の作成)
 金属酸化物半導体粒子分散体は、例えば、酸化チタン粒子と、金属原子錯体と、アミン化合物と、を溶剤に分散し、該分散体に、必要に応じてバインダー成分を混合することにより製造することができる。各成分の添加順序等については、これに限定されるわけではない。又、必要に応じて混合の途中または混合後に更に溶剤を追加してもかまわない。分散処理は例えばジルコニア製ビーズを使用し、ペイントシェーカーやミルで行うのが一般的であるがこれに限らない。
(Create dispersion)
The metal oxide semiconductor particle dispersion is produced, for example, by dispersing titanium oxide particles, a metal atom complex, and an amine compound in a solvent, and mixing a binder component with the dispersion as necessary. Can do. The order of addition of each component is not limited to this. Further, if necessary, a solvent may be further added during or after mixing. For example, zirconia beads are used for the dispersion treatment, and the dispersion treatment is generally performed by a paint shaker or a mill, but is not limited thereto.
 分散体全体に対し酸化チタンは、好ましくは25重量%以上、より好ましくは30重量%以上、さらに好ましくは40重量%以上の量で用いられる。25重量%未満では、金属酸化物半導体電極に最適な数ミクロンから十数ミクロンの厚みに成膜するために重ね印刷を必要とする点で、好ましくないことがある。また、分散性を容易にする観点から酸化チタンは、分散体中に好ましくは75重量%以下、より好ましくは70重量%以下、さらに好ましくは60重量%以下の量で用いられる。 The titanium oxide is preferably used in an amount of 25% by weight or more, more preferably 30% by weight or more, and still more preferably 40% by weight or more based on the entire dispersion. If it is less than 25% by weight, it may be unfavorable in that overprinting is required to form a film having a thickness of several microns to tens of microns, which is optimal for a metal oxide semiconductor electrode. From the viewpoint of facilitating dispersibility, titanium oxide is preferably used in the dispersion in an amount of 75% by weight or less, more preferably 70% by weight or less, and still more preferably 60% by weight or less.
 分散体全体に対しアミン化合物は、好ましくは、0.01重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.2重量%以上の量で用いられ、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは1.5重量%以下の量で用いられる。
 分散体全体に対し金属原子錯体(1)は、好ましくは1重量%以上、より好ましくは3重量%以上、さらに好ましくは5重量%以上の量で用いられ、好ましくは20重量%以下、より好ましくは10重量%以下の量で用いられる。
 分散体全体に対し溶媒は、好ましくは20重量%以上、より好ましくは30重量%以上、さらに好ましくは40重量%以上の量で用いられ、好ましくは70重量%以下、より好ましくは60重量%以下の量で用いられる。
The amine compound is preferably used in an amount of 0.01% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.2% by weight or more, preferably 5% by weight or less based on the entire dispersion. More preferably, it is used in an amount of 3% by weight or less, more preferably 1.5% by weight or less.
The metal atom complex (1) is preferably used in an amount of 1% by weight or more, more preferably 3% by weight or more, and still more preferably 5% by weight or more, preferably 20% by weight or less, more preferably based on the whole dispersion. Is used in an amount of 10% by weight or less.
The solvent is used in an amount of preferably 20% by weight or more, more preferably 30% by weight or more, and further preferably 40% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less, based on the entire dispersion. Used in the amount of.
 分散体の目標とする粘度(山一電機社製超音波振動式粘度計を使用した25℃での値)は、これを利用した成膜方法によって異なる。たとえばスキージーを利用した成膜方法であれば0.001~1000mPa・s程度、スクリーン印刷を利用した成膜方法用であれば0.1~350mPa・s程度が目安であるが、これに限られない。インクジェット印刷方式を利用する分散体は0.02mPa・s以下が望ましいが、これに限られない。粘度は、酸化チタン粒子、金属原子錯体、アミン化合物溶液の量比を変えたり、分散度合いを変えたり、適切量のバインダー樹脂などの増粘成分を添加したりすることで調節できる。  The target viscosity of the dispersion (value at 25 ° C. using an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd.) varies depending on the film forming method using this. For example, the standard is about 0.001 to 1000 mPa · s for a film forming method using squeegee, and about 0.1 to 350 mPa · s for a film forming method using screen printing. Absent. The dispersion using the inkjet printing method is preferably 0.02 mPa · s or less, but is not limited thereto. The viscosity can be adjusted by changing the amount ratio of the titanium oxide particles, the metal atom complex, and the amine compound solution, changing the degree of dispersion, or adding an appropriate amount of a thickening component such as a binder resin. *
 任意成分として添加されるバインダー樹脂としては、セルロース系、ポリエチレングリコール系、アクリル系、ウレタン系、ポリオール系、ポリエチレン系、ポリアミド系などが挙げられるが、ペーストの適切な粘度、成膜性、および成膜後の金属酸化物半導体電極としての特性を得られるものであればこれらに限られない。バインダー樹脂を配合する場合は、分散体中に、0.1重量%以上60重量%未満の範囲で用いられることが好ましく、0.1重量%以上20重量%未満の範囲で用いられることがより好ましい。また、0.1重量%以上10重量%未満の範囲でバインダー樹脂を配合してもよい。0.1重量%未満では、粘度を変化させたり、成膜性を向上させたりする効果が認められなくなる等の点で好ましくないことがある。また、60重量%以上では、分散体としての粘度が上がりすぎたり、成膜しづらくなったりする点で好ましくないことがある。さらに、分散体は、必要に応じて添加剤を含むことができる。分散体の保存安定性、乾燥性、基板密着性、成膜適正等の性質を向上させる目的で、種々の添加剤を加えることができる。 Examples of the binder resin added as an optional component include cellulose, polyethylene glycol, acrylic, urethane, polyol, polyethylene, polyamide, and the like. It is not restricted to these as long as the characteristic as a metal oxide semiconductor electrode after a film is acquired. When blending a binder resin, it is preferably used in the range of 0.1 wt% or more and less than 60 wt% in the dispersion, and more preferably used in a range of 0.1 wt% or more and less than 20 wt%. preferable. Moreover, you may mix | blend binder resin in 0.1 weight% or more and less than 10 weight% of range. If it is less than 0.1% by weight, it may be unfavorable in that the effect of changing the viscosity or improving the film formability is not recognized. On the other hand, if it is 60% by weight or more, it may be unfavorable in that the viscosity as a dispersion is excessively increased or film formation becomes difficult. Furthermore, the dispersion can contain additives as required. Various additives can be added for the purpose of improving the properties of the dispersion, such as storage stability, drying properties, substrate adhesion, and film formation suitability.
2.金属酸化物半導体電極
 本発明に係る金属酸化物半導体電極は、金属酸化物半導体粒子分散体を成膜して得られるものであって、導電性基材と、該分散体を用いて該導電性基材上に形成された膜とを備える。例えば、金属酸化物半導体粒子分散体を導電性基材上に塗布後、乾燥または焼結することにより形成する。分散体を導電性基材上に塗布する方法としては、スピンコーターによる塗布方法やスクリーン印刷法、スキージーを用いた塗布方法、ディップ法、吹き付け法、ローラー法等が用いられるが、これらに限られない。
 塗布された分散体は、乾燥又は焼成後、該分散体中の揮発成分が除去され、導電性基材上に、分散体からなる膜又は金属酸化物多孔質体を形成する。
2. Metal Oxide Semiconductor Electrode A metal oxide semiconductor electrode according to the present invention is obtained by forming a metal oxide semiconductor particle dispersion into a film, and includes a conductive substrate and the conductive material using the dispersion. A film formed on the substrate. For example, the metal oxide semiconductor particle dispersion is applied on a conductive substrate, and then dried or sintered. As a method of applying the dispersion onto the conductive substrate, a spin coater application method, a screen printing method, an application method using a squeegee, a dipping method, a spraying method, a roller method, and the like are used. Absent.
After the applied dispersion is dried or baked, volatile components in the dispersion are removed, and a film made of the dispersion or a metal oxide porous body is formed on the conductive substrate.
 (導電性基材)
 金属酸化物半導体粒子分散体を塗布する導電性基材としては、特に限定されないが、非導電性の基材本体の表面に導電性膜を形成したもの、または基材自体が導電性を有するものであればよい。具体的には、ITO(インジウム-スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛等の導電性及び透明性の良好な金属酸化物層が表面に積層された透明基材や、後述する電解質と反応することのない、例えばTi(チタン)などの金属、あるいは表面に導電層を形成した酸化物、あるいは炭素材料であっても良い。
 導電性表面を有する電極に用いられる透明基材としては、太陽光の可視から近赤外領域に対して光吸収が少ない材料であれば特に限定されない。石英、並ガラス、BK7、鉛ガラス等のガラス基材、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、ポリビニルブチラート、ポリプロピレン、テトラアセチルセルロース、シンジオクタチックポリスチレン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフォン、ポリエステルスルフォン、ポリエーテルイミド、環状ポリオレフィン、ブロム化フェノキシ、塩化ビニル等の樹脂基材を用いることができる。但し、光電変換素子を構成する上で、金属酸化物半導体粒子分散体を塗布する導電性基材と後述する導電性対極のうち、少なくとも一方は、光透過性を有する透明の導電性基材である必要があり、そのため、少なくとも一方は表面に透明導電膜が形成された透明基材であることが好ましい。
(Conductive substrate)
The conductive base material on which the metal oxide semiconductor particle dispersion is applied is not particularly limited, but a conductive film is formed on the surface of a non-conductive base body, or the base material itself has conductivity. If it is. Specifically, a metal oxide layer having good conductivity and transparency such as ITO (indium-tin oxide), tin oxide (including those doped with fluorine), zinc oxide, etc. was laminated on the surface. It may be a transparent substrate, a metal such as Ti (titanium) that does not react with the electrolyte described later, an oxide having a conductive layer formed on the surface, or a carbon material.
The transparent substrate used for the electrode having a conductive surface is not particularly limited as long as it is a material that absorbs less light from the visible to the near infrared region of sunlight. Glass substrates such as quartz, ordinary glass, BK7, lead glass, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyester, polyethylene, polycarbonate, polyvinyl butyrate, polypropylene, tetraacetylcellulose, syndioctane polystyrene, polyphenylene sulfide, polyarylate Resin base materials such as polysulfone, polyester sulfone, polyetherimide, cyclic polyolefin, brominated phenoxy, and vinyl chloride can be used. However, in constituting the photoelectric conversion element, at least one of the conductive base material on which the metal oxide semiconductor particle dispersion is applied and the conductive counter electrode described later is a transparent conductive base material having light transmittance. Therefore, at least one is preferably a transparent substrate having a transparent conductive film formed on the surface.
 金属酸化物半導体電極を作成する場合、乾燥又は焼成の条件としては、例えば400℃から500℃の温度で1時間の熱エネルギーを与える方法が一般的であるが、導電性基材の電導面に密着性を有し、太陽光照射時に良好な起電力が得られる乾燥又は焼成方法であるなら、これに限られない。 When producing a metal oxide semiconductor electrode, as a drying or firing condition, for example, a method of applying thermal energy for 1 hour at a temperature of 400 ° C. to 500 ° C. is generally used. If it is the drying or baking method which has adhesiveness and can obtain a favorable electromotive force at the time of sunlight irradiation, it will not be restricted to this.
 特に、本発明の金属酸化物半導体粒子分散体は、導電性基材が樹脂である場合に、耐熱性の低い樹脂が融解しない250℃以下、さらには200℃以下の加熱条件でも良好な起電力を与えることが可能である。 In particular, when the conductive base material is a resin, the metal oxide semiconductor particle dispersion of the present invention has a good electromotive force even under heating conditions of 250 ° C. or lower, further 200 ° C. or lower, at which a resin having low heat resistance does not melt. It is possible to give
 金属酸化物半導体粒子分散体を用いた膜が透明導電膜付き樹脂基材上に形成されてなる金属酸化物半導体電極は、室温~250℃の乾燥処理でも高い変換効率を与えることができるが、さらに加熱の前後または加熱と同時に、金属酸化物半導体電極に加圧処理、超音波溶着処理、マイクロ波照射処理、紫外光照射処理、オゾン処理、フラッシュアニール処理、レーザーアニール処理、放電プラズマ焼結処理またはエキシマーランプ処理などの追加処理を加えることにより、変換効率及び膜の密着性などを上げることができる。加熱と同時に電極に紫外光の照射を行った場合、効果的に粒子表面の有機成分が減少する。この場合、変換効率は、加熱による温度が高いほど高い値が得られる。UV-オゾン処理でも同様に有機物を減少させ、変換効率を向上させることができる。 A metal oxide semiconductor electrode in which a film using a metal oxide semiconductor particle dispersion is formed on a resin substrate with a transparent conductive film can provide high conversion efficiency even in a drying treatment at room temperature to 250 ° C., Furthermore, before, during or after heating, metal oxide semiconductor electrode is subjected to pressure treatment, ultrasonic welding treatment, microwave irradiation treatment, ultraviolet light irradiation treatment, ozone treatment, flash annealing treatment, laser annealing treatment, discharge plasma sintering treatment. Alternatively, by adding an additional process such as an excimer lamp process, conversion efficiency, film adhesion, and the like can be increased. When the electrode is irradiated with ultraviolet light simultaneously with heating, the organic component on the particle surface is effectively reduced. In this case, the conversion efficiency is higher as the temperature by heating is higher. Similarly, UV-ozone treatment can reduce organic substances and improve conversion efficiency.
 導電性基材上に形成される、分散体からなる膜又は金属酸化物多孔質層の膜厚(乾燥又は焼成後の厚み)は、有効な変換効率を得る観点から3μm以上であることが好ましく、成膜性の観点から50μm以下であることが望ましい。膜厚が大きすぎると、成膜時に割れや剥がれが生じる等作成が困難になるとともに、金属酸化物多孔質体表層と電導面との距離が増えるために発生電荷が導電面に有効に伝えられなくなるので、良好な変換効率を得にくくなる。この膜厚は、より好ましくは5μm以上、さらに好ましくは7μm以上であり、より好ましくは30μm以下であり、さらに好ましくは20μm以下である。 The film thickness (thickness after drying or firing) of the dispersion or metal oxide porous layer formed on the conductive substrate is preferably 3 μm or more from the viewpoint of obtaining effective conversion efficiency. From the viewpoint of film formability, it is preferably 50 μm or less. If the film thickness is too large, it will be difficult to create such as cracking or peeling during film formation, and the distance between the metal oxide porous body surface layer and the conductive surface will increase, and the generated charge will be effectively transmitted to the conductive surface. Therefore, it becomes difficult to obtain good conversion efficiency. This film thickness is more preferably 5 μm or more, further preferably 7 μm or more, more preferably 30 μm or less, and further preferably 20 μm or less.
3.光電変換素子
 本発明に係る光電変換素子は、上記金属酸化物半導体電極、増感色素(光電変換用増感色素)、電解質、及び導電性対極を備える。金属酸化物半導体電極は、その膜(又は金属酸化物多孔質体)表面に増感色素が吸着され(これを光電変換電極ともいう。)、電解質を介して導電性対極を組み合わせることによって光電変換素子を形成する。
3. Photoelectric Conversion Element A photoelectric conversion element according to the present invention includes the metal oxide semiconductor electrode, a sensitizing dye (sensitizing dye for photoelectric conversion), an electrolyte, and a conductive counter electrode. In the metal oxide semiconductor electrode, the sensitizing dye is adsorbed on the surface of the film (or the metal oxide porous body) (this is also referred to as a photoelectric conversion electrode), and the photoelectric conversion is performed by combining the conductive counter electrode via the electrolyte. An element is formed.
 (増感色素)
 増感色素すなわち光電変換用増感色素は、金属酸化物半導体電極が光電変換できない波長領域の光を吸収して、励起された電子を金属酸化物半導体の荷電子帯へ注入する役割を有している。ソラロニクス社等から得ることができるルテニウム色素(N719色素等)等が代表例であるが、希少元素を用いる点で資源枯渇、コスト面で懸念があり、近年これに代わる有機系の増感色素が多く開発されている。クマリン系、シアニン系、ロダニン系、スクワリリウム系、ジケトピロロピロール系、フェニレンビニレン系、フルオレン系色素、メロシアニン系色素等がこれに該当し、これらも本発明における増感色素として用いることができる。これらの有機色素の中には、鮮やかな赤色や青色を呈するものがあり、意匠性を重視した用途に応じて選択して用いることができるという利点もある。これら有機系色素では、三菱製紙株式会社のメロシアニン系色素がよく知られており、同社よりD77、D102、D131、D149、D358などを入手することができる。光電変換用増感色素として、2種以上の色素を混合して用いても良い。
(Sensitizing dye)
A sensitizing dye, that is, a sensitizing dye for photoelectric conversion, has a role of absorbing light in a wavelength region where the metal oxide semiconductor electrode cannot be photoelectrically converted and injecting excited electrons into the valence band of the metal oxide semiconductor. ing. Ruthenium dyes (N719 dye, etc.) that can be obtained from Solaronics, etc. are typical examples, but there are concerns about resource depletion and cost in terms of using rare elements, and in recent years there have been organic sensitizing dyes that replace them. Many have been developed. Coumarin-based, cyanine-based, rhodanine-based, squarylium-based, diketopyrrolopyrrole-based, phenylene vinylene-based, fluorene-based dyes, merocyanine-based dyes, and the like fall under this, and these can also be used as sensitizing dyes in the present invention. Some of these organic dyes exhibit bright red or blue color, and there is an advantage that they can be selected and used according to the use in which design properties are emphasized. Among these organic dyes, merocyanine dyes manufactured by Mitsubishi Paper Industries are well known, and D77, D102, D131, D149, D358 and the like can be obtained from the company. As the sensitizing dye for photoelectric conversion, two or more kinds of dyes may be mixed and used.
 増感色素は、任意の溶剤に溶解させ、該溶液に金属酸化物半導体電極を浸漬等することにより、該電極の膜(又は金属酸化物多孔質体)表面に付着させることができる。
 増感色素の溶液を作るための溶剤は、増感色素を溶解させ、金属酸化物層に色素吸着の仲立ちを行える溶剤である必要がある。増感色素を溶解させるために必要に応じて加熱してもよいし、溶解助剤の添加および不溶分のろ過を行っても良い。溶剤としては、エタノール、イソプロピルアルコール、ベンジルアルコールなどのアルコール系溶剤;アセトニトリル、プロピオニトリルなどのニトリル系溶剤;クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤;炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤;ヘキサン、オクタン、トルエン、キシレン等の炭化水素系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチルイミダゾリノン、N-メチルピロリドン、水等を用いることができるが、これらに限られない。溶剤は二種類以上の溶剤を混合して用いても良い。
The sensitizing dye can be adhered to the surface of the electrode film (or metal oxide porous body) by dissolving it in an arbitrary solvent and immersing the metal oxide semiconductor electrode in the solution.
The solvent for preparing the sensitizing dye solution needs to be a solvent that can dissolve the sensitizing dye and mediate dye adsorption on the metal oxide layer. In order to dissolve the sensitizing dye, it may be heated as necessary, or a solubilizing agent may be added and insoluble matter may be filtered. Solvents include alcohol solvents such as ethanol, isopropyl alcohol and benzyl alcohol; nitrile solvents such as acetonitrile and propionitrile; halogen solvents such as chloroform, dichloromethane and chlorobenzene; ether solvents such as diethyl ether and tetrahydrofuran; acetic acid Ester solvents such as ethyl and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone; carbonate solvents such as diethyl carbonate and propylene carbonate; hydrocarbon solvents such as hexane, octane, toluene and xylene; dimethylformamide, Dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolinone, N-methylpyrrolidone, water and the like can be used, but are not limited thereto. Two or more kinds of solvents may be mixed and used.
 (光電変換電極)
 光電変換電極は、導電性基材と、上記金属酸化物半導体粒子分散体を用いて該導電性基材上に形成された膜(又は金属酸化物多孔質体)と、たとえば上記のようにして該膜(又は金属酸化物多孔質体)の表面に吸着された増感色素と、を備える。
(Photoelectric conversion electrode)
The photoelectric conversion electrode includes a conductive substrate, a film (or a metal oxide porous body) formed on the conductive substrate using the metal oxide semiconductor particle dispersion, and, for example, as described above. A sensitizing dye adsorbed on the surface of the membrane (or porous metal oxide).
 (電解質及び電解質層)
 上記金属酸化物半導体電極と導電性対極の間に、これらの極と接触して設けられる電解質は、電解質層として設けられることが好ましい。電解質層は、電解質、媒体、および添加物から構成されることが好ましい。電解質としては、I2とヨウ化物(例としてLiI、NaI、KI、CsI、MgI2、CaI2、CuI、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等)の混合物、Br2と臭化物(例としてLiBr等)の混合物、Inorg. Chem. 1996,35,1168-1178に記載の溶融塩等を用いることができるがこの限りではない。この中でも、I2とヨウ化物の組み合わせとしてLiI、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等を混合した電解質が好ましいが、この組み合わせ方に限られない。
 好ましい電解質濃度は、媒体中I2が0.01M以上0.5M以下であり、ヨウ化物の混合物が0.1M以上15M以下である。
(Electrolyte and electrolyte layer)
The electrolyte provided in contact with these electrodes between the metal oxide semiconductor electrode and the conductive counter electrode is preferably provided as an electrolyte layer. The electrolyte layer is preferably composed of an electrolyte, a medium, and an additive. As the electrolyte, I 2 and an iodide (LiI Examples, NaI, KI, CsI, MgI 2, CaI 2, CuI, tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, etc.) mixtures, and Br 2 A mixture of bromide (for example, LiBr), a molten salt described in Inorg. Chem. 1996, 35, 1168-1178, and the like can be used, but this is not a limitation. Among these, an electrolyte in which LiI, pyridinium iodide, imidazolium iodide, or the like is mixed as a combination of I 2 and iodide is preferable, but is not limited to this combination.
The preferable electrolyte concentration is I 2 in the medium is 0.01 M or more and 0.5 M or less, and the iodide mixture is 0.1 M or more and 15 M or less.
 電解質層に用いられる媒体は、良好なイオン電導性を発現できる化合物であることが望ましい。溶液状の媒体としては、ジオキサン、ジエチルエーテルなどのエーテル化合物;エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類;メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類;エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類;アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物;エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物;3-メチル-2-オキサゾリジノンなどの複素環化合物;ジメチルスルホキシド、スルホランなど非プロトン極性物質、水などを用いることができる。 The medium used for the electrolyte layer is preferably a compound that can exhibit good ionic conductivity. Examples of the solution medium include ether compounds such as dioxane and diethyl ether; chain ethers such as ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether; methanol, ethanol, ethylene glycol monoalkyl Alcohols such as ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether; polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin; acetonitrile, glutarodinitrile, Methoxyacetonitrile, propioni Lil, nitrile compounds such as benzonitrile, ethylene carbonate, carbonate compounds such as propylene carbonate; heterocyclic compounds such as 3-methyl-2-oxazolidinone; dimethyl sulfoxide, can be used aprotic polar substances such as sulfolane, water, and the like.
 固体状(ゲル状を含む)の媒体を用いる目的で、ポリマーを含ませることもできる。この場合、ポリアクリロニトリル、ポリフッ化ビニリデン等のポリマーを前記溶液状媒体中に添加したり、エチレン性不飽和基を有する多官能性モノマーを前記溶液状媒体中で重合させたりして媒体を固体状にすることができる。 A polymer may be included for the purpose of using a solid (including gel) medium. In this case, a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution-like medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution-like medium, so that the medium is solid. Can be.
 電解質層としてはこの他、Nature,Vol.395, 8 Oct. 1998,p583-585記載の2,2’,7,7’-テトラキス(N,N-ジ-p-メトキシフェニルアミン)9,9’-スピロビフルオレンのような正孔輸送材料を用いることができる。 As the electrolyte layer, 2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenylamine) 9, 9 described in Nature, Vol. 395, 8 Oct. 1998, p583-585 is also used. A hole transport material such as' -spirobifluorene can be used.
 電解質層には、光電変換素子の電気的出力を向上させたり、耐久性を向上させたりする働きをする添加物を添加することができる。電気的出力を向上させる添加物として、4-t-ブチルピリジン、2-ピコリン、2,6-ルチジン、シクロデキストリン等が挙げられる。耐久性を向上させる添加物として、MgI等が挙げられる。 An additive that functions to improve the electrical output of the photoelectric conversion element or improve the durability can be added to the electrolyte layer. Examples of additives that improve electrical output include 4-t-butylpyridine, 2-picoline, 2,6-lutidine, and cyclodextrin. Examples of additives that improve durability include MgI.
 (導電性対極)
 電導性対極は、光電変換素子の正極として機能するものである。対極に用いる導電性の材料としては、金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、金属酸化物(ITO(インジウム‐スズ酸化物)、FTO((フッ素ドープ酸化スズ)、酸化亜鉛等)、または炭素等が挙げられる。
(Conductive counter electrode)
The conductive counter electrode functions as a positive electrode of the photoelectric conversion element. The conductive material used for the counter electrode is metal (for example, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxide (ITO (indium-tin oxide), FTO ((fluorine-doped tin oxide)) , Zinc oxide, etc.), or carbon.
 (光電変換素子の組み立て)
 前記の光電変換電極と導電性対極を、電解質又は電解質層を介して組み合わせることによって光電変換セルを形成する。必要に応じて、電解質又は電解質層の漏れや揮発を防ぐために、光電変換セルの周囲に封止を行う。封止には、熱可塑性樹脂、光硬化性樹脂、ガラスフリット等を封止材料として用いることができる。光電変換セルは、必要に応じて、小面積の光電変換セルを連結させて作る。光電変換セルを直列に組み合わせることによって、起電圧を高くすることができる。
(Assembly of photoelectric conversion element)
A photoelectric conversion cell is formed by combining the photoelectric conversion electrode and the conductive counter electrode via an electrolyte or an electrolyte layer. If necessary, sealing is performed around the photoelectric conversion cell in order to prevent leakage or volatilization of the electrolyte or the electrolyte layer. For sealing, a thermoplastic resin, a photocurable resin, glass frit, or the like can be used as a sealing material. The photoelectric conversion cell is formed by connecting small-area photoelectric conversion cells as necessary. By combining the photoelectric conversion cells in series, the electromotive voltage can be increased.
 以下、実施例に基づき本発明を更に詳しく説明するが、本発明は、実施例に限定されるものではない。なお、使用した溶剤の含水量は、いずれも試薬レベルで1重量%未満であった。実施例中、部は重量部を、%は重量%をそれぞれ表す。acacとは、アセチルアセトナート残基(-OC(CH)CHC(CH)O)を表す。 EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to an Example. The water content of the solvent used was less than 1% by weight at the reagent level. In the examples, “part” means “part by weight” and “%” means “% by weight”. acac represents an acetylacetonate residue (—OC (CH 3 ) CH 2 C (CH 3 ) O).
(1)実施例1~122及び比較例1
 1-ヘキサノール50.75部に、一般式(1b)で示される金属原子錯体としてチタンオキサイドアセチルアセトナート(TiO(acac))(一般式(1b)において、p=0、q=1、n=2)を8部、アミン化合物を1.25部、石原産業社製酸化チタンST-01(平均粒子径7nm)を40部加え、ジルコニアビーズと混合し、ペイントシェーカーを用いて分散することで金属酸化物半導体粒子分散体を得た。粘度は、山一電機社製超音波振動式粘度計を使用し、25℃での値を用いた。表1~5に、分散処理剤として用いたアミン化合物と、該分散体の粘度を示す。なお、比較例1として、アミン化合物を用いず、1-ヘキサノール52部として分散処理を行って得られた分散体の粘度も示す。
(1) Examples 1-122 and Comparative Example 1
In 50.75 parts of 1-hexanol, titanium oxide acetylacetonate (TiO (acac) 2 ) (in general formula (1b), p = 0, q = 1, n as a metal atom complex represented by general formula (1b) = 2) 8 parts, amine compound 1.25 parts, Ishihara Sangyo Co., Ltd. titanium oxide ST-01 (average particle size 7 nm) 40 parts, mixed with zirconia beads, dispersed using a paint shaker A metal oxide semiconductor particle dispersion was obtained. For the viscosity, an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd. was used, and the value at 25 ° C. was used. Tables 1 to 5 show the amine compounds used as the dispersant and the viscosity of the dispersion. As Comparative Example 1, the viscosity of a dispersion obtained by carrying out a dispersion treatment using 52 parts of 1-hexanol without using an amine compound is also shown.
表1
Figure JPOXMLDOC01-appb-T000010
Table 1
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例1~23は、アミン化合物として、一般式(3)で示される化合物を用いて金属酸化物半導体粒子分散体を作製し、粘度測定したものである。比較例1と比べて、実施例1~23の分散体では、粘度が低くなっていることがわかる。比較例1ではゲル化してしまい、高粘度となりすぎて、使用した粘度計では測定ができなかった。この粘度計の測定上限値は350mPa・sであるため、64,000Pa・s程度まで測定可能な高粘度測定用の粘度計(ブルックフィールドアナログ粘度計HBT高粘度用、ブルックフィールド社製)で確認したところ100Pa・sよりも粘度が高いことが判明した。 Examples 1 to 23 are obtained by preparing a metal oxide semiconductor particle dispersion using the compound represented by the general formula (3) as an amine compound and measuring the viscosity. It can be seen that the viscosity of the dispersions of Examples 1 to 23 is lower than that of Comparative Example 1. In Comparative Example 1, gelation occurred and the viscosity became too high, and measurement with the viscometer used was not possible. Since the upper limit of measurement of this viscometer is 350 mPa · s, it is confirmed with a viscometer for high viscosity measurement (Brookfield Analog Viscometer HBT for high viscosity, manufactured by Brookfield) that can measure up to about 64,000 Pa · s. As a result, it was found that the viscosity was higher than 100 Pa · s.
表2
Figure JPOXMLDOC01-appb-T000013
Table 2
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例24~42はアミン化合物として、一般式(2)のR~Rのうちの少なくともひとつがヒドロキシ基で置換されたアルキル基である化合物を用いて金属酸化物半導体粒子分散体を作製し、粘度測定したものである。比較例1と比べて、実施例24~42の分散体では、粘度が低くなっていることがわかる。 In Examples 24 to 42, metal oxide semiconductor particle dispersions were produced using compounds in which at least one of R 4 to R 6 in the general formula (2) is an alkyl group substituted with a hydroxy group as an amine compound. The viscosity was measured. It can be seen that the viscosity of the dispersions of Examples 24 to 42 is lower than that of Comparative Example 1.
表3
Figure JPOXMLDOC01-appb-T000015
Table 3
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例43~63は、アミン化合物として、一般式(2)の化合物を用いて金属酸化物半導体粒子分散体を作製し、粘度測定したものである。比較例1と比べると、実施例43~63の分散体では、粘度が低くなっていることがわかる。 Examples 43 to 63 are obtained by preparing a metal oxide semiconductor particle dispersion using the compound of the general formula (2) as an amine compound and measuring the viscosity. Compared with Comparative Example 1, it can be seen that the dispersions of Examples 43 to 63 have lower viscosities.
表4
Figure JPOXMLDOC01-appb-T000017
Table 4
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例64~84は、アミン化合物として、一般式(4)の化合物群を用いて金属酸化物半導体粒子分散体を作製し、粘度測定したものである。比較例1と比べると、実施例64~84の分散体では、粘度が低くなっていることがわかる。 Examples 64 to 84 were prepared by preparing metal oxide semiconductor particle dispersions using the compound group of the general formula (4) as amine compounds and measuring the viscosity. Compared to Comparative Example 1, it can be seen that the dispersions of Examples 64-84 have lower viscosities.
表5
Figure JPOXMLDOC01-appb-T000020
Table 5
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 実施例85~122は、アミン化合物として、置換基を有しても良い含窒素芳香族複素環化合物を用いて金属酸化物半導体粒子分散体を作製し、粘度測定したものである。比較例1と比べると、実施例85~122の分散体では、粘度が低くなっていることがわかる。 Examples 85 to 122 are prepared by preparing a metal oxide semiconductor particle dispersion using a nitrogen-containing aromatic heterocyclic compound which may have a substituent as an amine compound, and measuring the viscosity. Compared with Comparative Example 1, it can be seen that the dispersions of Examples 85 to 122 have lower viscosities.
 これら実施例1~122と比較例1の結果より、アミン化合物を用いると分散体の粘度が低下しており、アミン化合物が分散剤として機能していることがわかった。また、粘度の低下の効果は、一般式(2)のR~Rのうち少なくともひとつがヒドロキシ基で置換されたアルキル基である化合物か、もしくは、置換基を有しても良い含窒素芳香族複素環化合物を用いた場合が大きく、さらに、一般式(3)で示される化合物、もしくは、一般式(4)で示される化合物を用いた場合が特に大きかった。 From the results of Examples 1 to 122 and Comparative Example 1, it was found that when an amine compound was used, the viscosity of the dispersion decreased, and the amine compound functions as a dispersant. The effect of decreasing the viscosity is a compound in which at least one of R 4 to R 6 in the general formula (2) is an alkyl group substituted with a hydroxy group, or a nitrogen-containing compound that may have a substituent. The case where an aromatic heterocyclic compound was used was large, and the case where a compound represented by general formula (3) or a compound represented by general formula (4) was used was particularly large.
 以上のように、アミン化合物を使用することで、酸化チタンの分散性が向上したため、比較例1に比べて金属酸化物半導体粒子分散体の粘度が低下した。これにより、分散体中の酸化チタン濃度の増加も可能となる。また、本発明においてアミン化合物としては、一般式(2)のR~Rのうち少なくともひとつがヒドロキシ基で置換されたアルキル基である化合物か、もしくは、置換基を有しても良い含窒素芳香族複素環化合物が好適であることがわかる。さらに、それら化合物群の中でも、一般式(3)で示される化合物、もしくは、一般式(4)で示される化合物がより好適であることがわかる。 As described above, since the dispersibility of titanium oxide was improved by using an amine compound, the viscosity of the metal oxide semiconductor particle dispersion was lower than that of Comparative Example 1. Thereby, the titanium oxide concentration in the dispersion can be increased. In the present invention, the amine compound is a compound in which at least one of R 4 to R 6 in the general formula (2) is an alkyl group substituted with a hydroxy group, or may contain a substituent. It turns out that a nitrogen aromatic heterocyclic compound is suitable. Furthermore, it turns out that the compound shown by General formula (3) or the compound shown by General formula (4) is more suitable among those compound groups.
(2)実施例123
 (スクリーン印刷用ペーストの調製)
 1-オクタノール44.75部に、金属原子錯体としてチタンアセチルオキサイドアセトナート(TiO(acac))を9部、実施例3記載のアミン化合物を1.25部、石原産業社製酸化チタンST-01(平均粒子径7nm)を45部加え、ジルコニアビーズと混合し、ペイントシェーカーを用いて分散し、金属酸化物半導体粒子分散体を得た。該分散体の粘度を山一電機社製超音波振動式粘度計により測定したところ、82.4mPa・sであった。その後、該分散体70.37部に対して、エチルセルロース(ハーキュレス社製N-4)14.81部と1-オクタノール14.81部を溶解混練して、スクリーン印刷用ペーストを調製した。調製後の粘度は、東機産業社製コーンプレートタイプ(E型)TV22型粘度計を用いて測定したところ、25℃、0.3rpmで210Pa・sであった。
(2) Example 123
(Preparation of screen printing paste)
44.75 parts of 1-octanol, 9 parts of titanium acetyl oxide acetonate (TiO (acac) 2 ) as a metal atom complex, 1.25 parts of the amine compound described in Example 3, titanium oxide ST— manufactured by Ishihara Sangyo Co., Ltd. 45 parts of 01 (average particle diameter 7 nm) was added, mixed with zirconia beads, and dispersed using a paint shaker to obtain a metal oxide semiconductor particle dispersion. The viscosity of the dispersion was measured with an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd. and found to be 82.4 mPa · s. Thereafter, 14.81 parts of ethyl cellulose (N-4 manufactured by Hercules Co., Ltd.) and 14.81 parts of 1-octanol were dissolved and kneaded into 70.37 parts of the dispersion to prepare a screen printing paste. The viscosity after the preparation was 210 Pa · s at 25 ° C. and 0.3 rpm when measured with a cone plate type (E type) TV22 viscometer manufactured by Toki Sangyo Co., Ltd.
 (金属酸化物半導体電極の作製)
 上記スクリーン印刷用ペーストを、1cm角のパターンを形成したステンレス製メッシュスクリーン(#180)を用いてFTO膜付きのガラス基板(旭ガラス社製 タイプU-T CO)上に塗布、乾燥後、470℃で1時間焼成して成膜することで、導電性透明基板上に1cm角の金属酸化物多孔質体が形成された金属酸化物半導体電極を得た。該金属酸化物多孔質体の膜厚を、Veeco社製触針式表面形状測定器DEKTAK6Mを用いて測定したところ、9.4μmであった。
(Production of metal oxide semiconductor electrode)
The above screen printing paste was applied onto a glass substrate with an FTO film (type UT CO manufactured by Asahi Glass Co., Ltd.) using a stainless steel mesh screen (# 180) having a 1 cm square pattern, dried, and then 470 By baking at 1 ° C. for 1 hour to form a film, a metal oxide semiconductor electrode having a 1 cm square metal oxide porous body formed on a conductive transparent substrate was obtained. The film thickness of the porous metal oxide was measured using a stylus type surface shape measuring device DEKTAK6M manufactured by Veeco, and found to be 9.4 μm.
 (増感色素の吸着)
 t-ブチルアルコールとアセトニトリルの1:1混合液に増感色素(Ru錯体;ソラロニクス社製:N719)3×10-4Mを溶解し、さらにメンブランフィルターで不溶分を除去した。この色素溶液に前記金属酸化物半導体電極を浸し、40℃で2時間放置した。着色した電極表面を、使用溶剤で洗浄した後乾燥させることで、増感色素の吸着した光電変換電極を得た。
(Adsorption of sensitizing dye)
Sensitizing dye (Ru complex; manufactured by Solaronics: N719) 3 × 10 −4 M was dissolved in a 1: 1 mixture of t-butyl alcohol and acetonitrile, and the insoluble matter was removed with a membrane filter. The metal oxide semiconductor electrode was immersed in this dye solution and allowed to stand at 40 ° C. for 2 hours. The colored electrode surface was washed with the solvent used and then dried to obtain a photoelectric conversion electrode on which the sensitizing dye was adsorbed.
 (電解質溶液の調整)
 下記処方で電解質溶液を得た。
  溶剤 3-メトキシアセトニトリル
  LiI :0.1M
  I2 :0.05M
  4-t-ブチルピリジン :0.5M
  1-プロピル-2,3-ジメチルイミダゾリウムヨーダイド :0.6M
(Preparation of electrolyte solution)
An electrolyte solution was obtained according to the following formulation.
Solvent 3-methoxyacetonitrile LiI: 0.1M
I 2 : 0.05M
4-t-butylpyridine: 0.5M
1-propyl-2,3-dimethylimidazolium iodide: 0.6M
 (光電変換素子の組み立て)
 導電性対極には、FTO膜付きのガラス基板(旭ガラス社製 タイプU-T CO)の導電層上に、スパッタリング法により200nmの白金層を積層したものを用いた 。また、樹脂フィルム製スペーサーとして、三井・デュポンポリケミカル社製 「ハイミラン」フィルム(25μm厚)を準備し、前記光電変換電極と導電性対極とをスペーサーを介して対向させ、内部に上記の電解質溶液を充填して電解液層を形成することで、光電変換素子を完成させた。
(Assembly of photoelectric conversion element)
As the conductive counter electrode, a platinum layer having a thickness of 200 nm was formed by sputtering on a conductive layer of a glass substrate with an FTO film (type UTCO manufactured by Asahi Glass Co., Ltd.). In addition, as a resin film spacer, a “High Milan” film (25 μm thickness) made by Mitsui DuPont Polychemical Co., Ltd. is prepared, the photoelectric conversion electrode and the conductive counter electrode are opposed to each other via a spacer, and the above electrolyte solution is contained inside Was filled to form an electrolytic solution layer, thereby completing a photoelectric conversion element.
 (変換効率の測定)
 ORIEL社製ソーラーシュミレーター(#8116)とエアマスフィルターとを組み合わせ、光量計で1-SUNの光量に調整して測定用光源とし、光電変換素子の試験サンプルに光照射をしながら、KEITHLEY社製2400型ソースメータを使用してI-Vカーブ特性を測定した。変換効率ηは、I-Vカーブ特性測定から得られたVoc(開放電圧値)、Jsc(短絡電流値)、FF(フィルファクター値) を用いて下式により算出した。
(Measurement of conversion efficiency)
Combined with a solar simulator (# 8116) manufactured by ORIEL and an air mass filter, the light quantity is adjusted to 1-SUN with a light meter to obtain a light source for measurement, and a test sample of a photoelectric conversion element is irradiated with light, and 2400 manufactured by KEITHLEY The IV curve characteristics were measured using a type source meter. The conversion efficiency η was calculated by the following equation using Voc (open circuit voltage value), Jsc (short circuit current value), and FF (fill factor value) obtained from the IV curve characteristic measurement.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 その結果、Voc=0.72V、Jsc=15.73mA/cm、FF=0.64、η=7.25%を得た。 As a result, Voc = 0.72 V, Jsc = 15.73 mA / cm 2 , FF = 0.64, and η = 7.25% were obtained.
(3)実施例124~133及び比較例2、3
 分散助剤であるアミン化合物の種類、金属酸化物半導体粒子分散体の組成、およびスクリーン印刷用ペーストの調製組成を変更して金属酸化物半導体電極を作製した以外は、実施例123と同様にして光電変換素子の性能を測定した。使用したアミン化合物、分散体の組成および粘度(山一電機社製超音波振動式粘度計を使用し、25℃での値)を表6に、また、ペースト調製(組成)、粘度(東機産業社製コーンプレートタイプ(E型)TV22型粘度計により測定、25℃での値)、金属酸化物半導体電極の膜厚及び光電変換効率を表7に示した。なお、参考のため、表中には実施例123も記載している。
(3) Examples 124 to 133 and Comparative Examples 2 and 3
The same procedure as in Example 123, except that the metal oxide semiconductor electrode was produced by changing the type of amine compound as a dispersion aid, the composition of the metal oxide semiconductor particle dispersion, and the preparation composition of the screen printing paste. The performance of the photoelectric conversion element was measured. The amine compound used, the composition of the dispersion, and the viscosity (value at 25 ° C. using an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd.) are shown in Table 6, and the paste preparation (composition) and viscosity (Toki Table 7 shows the film thickness and photoelectric conversion efficiency of the metal oxide semiconductor electrode measured with a cone plate type (E type) TV22 viscometer manufactured by Sangyo Co., Ltd., measured at 25 ° C.). For reference, Example 123 is also shown in the table.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表7中、処方指標Resin/TiOは、エチルセルロース(ハーキュレス社製N-4)の重量と、ペーストの調製に用いた金属酸化物半導体粒子分散体中の酸化チタンの重量との比(=(エチルセルロース重量/酸化チタン重量)×100)である。 In Table 7, the prescription index Resin / TiO 2 is the ratio of the weight of ethyl cellulose (N-4 manufactured by Hercules Co.) to the weight of titanium oxide in the metal oxide semiconductor particle dispersion used for preparing the paste (= ( Ethyl cellulose weight / titanium oxide weight) × 100).
 アミン化合物を用いることで金属酸化物半導体粒子分散体の分散性が向上し、該分散体中における酸化チタン濃度を向上させることができ、ペースト調製後、スクリーン印刷により作製した金属酸化物半導体電極の膜厚増加も可能となる。これにより、金属酸化物半導体電極の比表面積が増加し、より多くの増感色素を吸着できるため、光電変換効率を増加させることができる。一方で、比較例2に示したように、アミン化合物を用いずに分散体を作製し、ペースト調製後、スクリーン印刷により作製した金属酸化物半導体電極では、膜厚は十分であるが(酸化チタン濃度が高いため)、酸化チタン粒子の分散状態が不十分であるため、その光電変換性能は低いものであった。また、比較例3に示したように、アミン化合物を用いず、酸化チタン粒子の分散状態を十分なものとするため、酸化チタン濃度を低下させて作製した金属酸化物半導体粒子分散体では、ペースト調製後、スクリーン印刷により作製した金属酸化物半導体電極の膜厚が低く、高い光電変換性能を達成することができなかった。 By using an amine compound, the dispersibility of the metal oxide semiconductor particle dispersion can be improved, and the titanium oxide concentration in the dispersion can be improved. After the paste is prepared, the metal oxide semiconductor electrode produced by screen printing is used. The film thickness can be increased. Thereby, since the specific surface area of a metal oxide semiconductor electrode increases and more sensitizing dyes can be adsorbed, the photoelectric conversion efficiency can be increased. On the other hand, as shown in Comparative Example 2, a metal oxide semiconductor electrode prepared by screen printing after preparing a dispersion without using an amine compound and preparing a paste has a sufficient film thickness (titanium oxide). Since the dispersion state of the titanium oxide particles is insufficient because the concentration is high), the photoelectric conversion performance was low. In addition, as shown in Comparative Example 3, in order to make the dispersion state of the titanium oxide particles sufficient without using an amine compound, the metal oxide semiconductor particle dispersion produced by reducing the titanium oxide concentration was used as a paste. After preparation, the film thickness of the metal oxide semiconductor electrode produced by screen printing was low, and high photoelectric conversion performance could not be achieved.
(4)実施例134~144
 金属酸化物半導体粒子分散体を作成する際に、添加する金属原子錯体の種類を変更した以外は実施例123と同様にして金属酸化物半導体電極を作製し、光電変換素子の性能を測定した。添加した金属原子錯体、金属酸化物半導体粒子分散体の粘度(山一電機社製超音波振動式粘度計を使用し、25℃での値)、金属酸化物半導体電極の膜厚、光電変換効率を表8に示した。
(4) Examples 134 to 144
When producing the metal oxide semiconductor particle dispersion, a metal oxide semiconductor electrode was produced in the same manner as in Example 123 except that the kind of the metal atom complex to be added was changed, and the performance of the photoelectric conversion element was measured. Viscosity of added metal atom complex, metal oxide semiconductor particle dispersion (value at 25 ° C. using an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd.), film thickness of metal oxide semiconductor electrode, photoelectric conversion efficiency Is shown in Table 8.
表8
Figure JPOXMLDOC01-appb-T000028
Table 8
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表8より、金属原子錯体(有機チタネート)の種類を変更しても、本発明の効果が十分に達成されることが認められる。 From Table 8, it can be seen that the effect of the present invention is sufficiently achieved even if the type of the metal atom complex (organic titanate) is changed.
 表8中、iPrはイソプロピル基、nBuはノルマルブチル基を示す。
 また、表8中における一般式(1a)または(1b)で示される金属原子錯体の配位子を下記一般式(5)で表し、その場合のacacおよびL1~L5を表9で示す。
In Table 8, iPr represents an isopropyl group, and nBu represents a normal butyl group.
In Table 8, the ligand of the metal atom complex represented by the general formula (1a) or (1b) is represented by the following general formula (5). In this case, acac and L1 to L5 are represented in Table 9.
 一般式(5)
Figure JPOXMLDOC01-appb-C000030


 (矢印は酸素原子から金属原子への配位結合またはイオン結合を示す。破線はジケトナート化合物構造中の非局在結合を示す。)
General formula (5)
Figure JPOXMLDOC01-appb-C000030


(An arrow indicates a coordinate bond or an ionic bond from an oxygen atom to a metal atom. A broken line indicates a delocalized bond in the structure of the diketonate compound.)
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 以上のように、金属酸化物半導体粒子分散体を作製する際に、分散処理剤として金属原子錯体及びアミン化合物を併用し、溶剤中で酸化チタン粒子を分散することにより、その分散性を向上でき、該分散体中の酸化チタン濃度の増加、ひいては金属酸化物半導体電極の膜厚増加も可能となる。金属酸化物半導体電極の膜厚増加は、良好な光電変換性能の発現と電極作製時の印刷回数の削減につながる。 As described above, when preparing a metal oxide semiconductor particle dispersion, the dispersibility can be improved by using a metal atom complex and an amine compound in combination as a dispersion treatment agent and dispersing titanium oxide particles in a solvent. In addition, it is possible to increase the titanium oxide concentration in the dispersion and thus increase the film thickness of the metal oxide semiconductor electrode. An increase in the thickness of the metal oxide semiconductor electrode leads to the development of good photoelectric conversion performance and a reduction in the number of printings during electrode production.
(5)実施例145~161
 1-ヘキサノール50.75部に、チタンオキサイドアセチルアセトナート(TiO(acac))を8部、アミン化合物を1.25部、石原産業社製酸化チタンST-01(平均粒子径7nm)を40部加え、ジルコニアビーズと混合し、ペイントシェーカーを用いて分散することで金属酸化物半導体粒子分散体を得た。粘度は、山一電機社製超音波振動式粘度計を使用し、25℃での値を用いた。表10に分散処理剤として用いたアミン化合物と、分散体の粘度を示す。
 実施例145~152は一般式(2)のアミン化合物を用いた実施例、実施例153~154は一般式(3)のアミン化合物を用いた実施例、実施例155~161は一般式(4)のアミン化合物を用いた実施例をそれぞれ示す。
(5) Examples 145 to 161
50.75 parts of 1-hexanol, 8 parts of titanium oxide acetylacetonate (TiO (acac) 2 ), 1.25 parts of amine compound, and titanium oxide ST-01 (average particle diameter 7 nm) manufactured by Ishihara Sangyo Co., Ltd. In addition, the mixture was mixed with zirconia beads and dispersed using a paint shaker to obtain a metal oxide semiconductor particle dispersion. For the viscosity, an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd. was used, and the value at 25 ° C. was used. Table 10 shows the amine compounds used as the dispersant and the viscosity of the dispersion.
Examples 145 to 152 are examples using an amine compound of the general formula (2), Examples 153 to 154 are examples using an amine compound of the general formula (3), and Examples 155 to 161 are those of the general formula (4). ) Examples using amine compounds are shown.
表10
Figure JPOXMLDOC01-appb-T000032
Table 10
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 以上のように、アミン化合物を使用することで、酸化チタンの分散性が向上したため、比較例1に比べて金属酸化物半導体粒子分散体の粘度が低下した。これにより、分散体中の酸化チタン濃度の増加も可能となる。 As described above, since the dispersibility of titanium oxide was improved by using an amine compound, the viscosity of the metal oxide semiconductor particle dispersion was lower than that of Comparative Example 1. Thereby, the titanium oxide concentration in the dispersion can be increased.
(6)実施例161~183
 分散助剤であるアミン化合物の種類、金属酸化物半導体粒子分散体の組成、およびスクリーン印刷用ペーストの組成を変更して金属酸化物半導体電極を作製した以外は、実施例123と同様にして光電変換素子の性能を測定した。使用したアミン化合物、分散体の組成と粘度(山一電機社製超音波振動式粘度計を使用し、25℃での値)を表11に、また、ペーストの調製組成、粘度(東機産業社製コーンプレートタイプ(E型)TV22型粘度計により測定、25℃での値)、金属酸化物半導体電極の膜厚及び光電変換効率を表12に示した。
(6) Examples 161 to 183
Except that the metal oxide semiconductor electrode was produced by changing the type of amine compound as a dispersion aid, the composition of the metal oxide semiconductor particle dispersion, and the composition of the paste for screen printing, the same procedure as in Example 123 was performed. The performance of the conversion element was measured. Table 11 shows the amine compound used, the composition of the dispersion, and the viscosity (value at 25 ° C. using an ultrasonic vibration viscometer manufactured by Yamaichi Electronics Co., Ltd.). Table 12 shows the film thickness and photoelectric conversion efficiency of the metal oxide semiconductor electrode measured by a cone plate type (E type) TV22 viscometer manufactured by a company, measured at 25 ° C.).
表11
Figure JPOXMLDOC01-appb-T000035
Table 11
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表12中、処方指標Resin/TiOは、表7の重量比と同じである。
 アミン化合物を用いることで金属酸化物半導体粒子分散体の分散性が向上し、該分散体中における酸化チタン濃度を向上させることができ、ペースト調製後、スクリーン印刷により作製した金属酸化物半導体電極の膜厚増加も可能となる。これにより、金属酸化物半導体電極の比表面積が増加し、より多くの増感色素を吸着できるため、光電変換効率を増加させることができる。
In Table 12, the prescription index Resin / TiO 2 is the same as the weight ratio in Table 7.
By using an amine compound, the dispersibility of the metal oxide semiconductor particle dispersion can be improved, and the titanium oxide concentration in the dispersion can be improved. After the paste is prepared, the metal oxide semiconductor electrode manufactured by screen printing is used. The film thickness can be increased. As a result, the specific surface area of the metal oxide semiconductor electrode increases and more sensitizing dyes can be adsorbed, so that the photoelectric conversion efficiency can be increased.
 本願の開示は、2010年11月5日に出願された特願2010-247994号に記載の主題と関連しており、それらのすべての開示内容は引用によりここに援用される。
 既に述べられたもの以外に、本発明の新規かつ有利な特徴から外れることなく、上記の実施形態に様々な修正や変更を加えてもよいことに注意すべきである。したがって、そのような全ての修正や変更は、添付の請求の範囲に含まれることが意図されている。
The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2010-247994 filed on Nov. 5, 2010, the entire disclosure of which is incorporated herein by reference.
It should be noted that various modifications and changes may be made to the above-described embodiments without departing from the novel and advantageous features of the present invention other than those already described. Accordingly, all such modifications and changes are intended to be included within the scope of the appended claims.

Claims (12)

  1.  アミン化合物と、アルコキシ基およびジケトナート基のうちの少なくとも一つを有する有機チタネートと、溶剤とを含む金属酸化物半導体粒子分散体。 A metal oxide semiconductor particle dispersion comprising an amine compound, an organic titanate having at least one of an alkoxy group and a diketonate group, and a solvent.
  2.  アミン化合物が、下記一般式(2)で示される化合物である、請求項1記載の金属酸化物半導体粒子分散体。
     一般式(2)
    Figure JPOXMLDOC01-appb-C000001


     〔式中、R~Rは、それぞれ独立に、水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアリール基、無置換もしくは置換基を有するアルキルカルボニル基を表す。〕
    The metal oxide semiconductor particle dispersion according to claim 1, wherein the amine compound is a compound represented by the following general formula (2).
    General formula (2)
    Figure JPOXMLDOC01-appb-C000001


    [Wherein R 4 to R 6 are each independently a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted aryl group, or unsubstituted. Alternatively, it represents an alkylcarbonyl group having a substituent. ]
  3.  R~Rのうち少なくとも一つはヒドロキシ基で置換されたアルキル基である、請求項2記載の金属酸化物半導体粒子分散体。 The metal oxide semiconductor particle dispersion according to claim 2, wherein at least one of R 4 to R 6 is an alkyl group substituted with a hydroxy group.
  4.  アミン化合物が、一般式(3)で示される化合物である、請求項2記載の金属酸化物半導体粒子分散体。
     一般式(3)
    Figure JPOXMLDOC01-appb-C000002


     〔式中、RおよびRは、それぞれ独立に水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアリール基、無置換もしくは置換基を有するアルキルカルボニル基を表す。〕
    The metal oxide semiconductor particle dispersion according to claim 2, wherein the amine compound is a compound represented by the general formula (3).
    General formula (3)
    Figure JPOXMLDOC01-appb-C000002


    [Wherein, R 7 and R 8 each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted aryl group, or an unsubstituted or substituted alkylcarbonyl group. ]
  5.  R及びRがメチル基である、請求項4記載の金属酸化物半導体粒子分散体。 The metal oxide semiconductor particle dispersion according to claim 4, wherein R 7 and R 8 are methyl groups.
  6.  R及びRがヒドロキシエチル基である、請求項4記載の金属酸化物半導体粒子分散体。 The metal oxide semiconductor particle dispersion according to claim 4, wherein R 7 and R 8 are hydroxyethyl groups.
  7.  アミン化合物が、置換基を有しても良い含窒素芳香族複素環化合物である、請求項1記載の金属酸化物半導体粒子分散体。 The metal oxide semiconductor particle dispersion according to claim 1, wherein the amine compound is a nitrogen-containing aromatic heterocyclic compound which may have a substituent.
  8.  アミン化合物が、一般式(4)で示される化合物である、請求項7記載の金属酸化物半導体粒子分散体。
     一般式(4)
    Figure JPOXMLDOC01-appb-C000003


     (式中、R~R13は、それぞれ独立に、水素原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアルキルアミノ基、無置換もしくは置換基を有するアリール基、無置換もしくは置換基を有するアルキルカルボニル基、アミノ基、ヒドロキシ基、N-アルキルカルバモイル基、アルコキシカルボニル基を表す。)
    The metal oxide semiconductor particle dispersion according to claim 7, wherein the amine compound is a compound represented by the general formula (4).
    General formula (4)
    Figure JPOXMLDOC01-appb-C000003


    (Wherein R 9 to R 13 are each independently a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkoxy group, an unsubstituted or substituted alkylamino group, (Represents a substituted or substituted aryl group, unsubstituted or substituted alkylcarbonyl group, amino group, hydroxy group, N-alkylcarbamoyl group, and alkoxycarbonyl group.)
  9.  R~R13が、全て水素原子である、請求項8に記載の金属酸化物半導体粒子分散体。 The metal oxide semiconductor particle dispersion according to claim 8, wherein R 9 to R 13 are all hydrogen atoms.
  10.  前記有機チタネートが、下記一般式(1b)で示される化合物である、請求項1記載の金属酸化物半導体粒子分散体。
     一般式(1b)
    Figure JPOXMLDOC01-appb-C000004

     (式中、R1~R3は、それぞれ独立に水素原子又は1価の置換基を示す。矢印は酸素原子からTiへの配位結合またはイオン結合を示す。破線はジケトナート化合物構造中の非局在結合を示す。nは0~4の整数であり、ジケトナート化合物の配位数を示す。Rは、アルコキシ基を示す。pは、0~4の整数を示す。Oは、酸素原子を示す。qは、0または1の整数を示す。qが0の場合、p+n=4である。qが1の場合、p+n=2である。)
    The metal oxide semiconductor particle dispersion according to claim 1, wherein the organic titanate is a compound represented by the following general formula (1b).
    General formula (1b)
    Figure JPOXMLDOC01-appb-C000004

    (In the formula, R 1 to R 3 each independently represents a hydrogen atom or a monovalent substituent. An arrow represents a coordinate bond or an ionic bond from an oxygen atom to Ti. N represents an integer of 0 to 4 and represents the coordination number of the diketonate compound, R represents an alkoxy group, p represents an integer of 0 to 4, and O represents an oxygen atom. Q represents an integer of 0 or 1. When q is 0, p + n = 4. When q is 1, p + n = 2.)
  11.  導電性基材と、
     請求項1~10のいずれか1項に記載の金属酸化物半導体粒子分散体を用いて該導電性基材上に形成された膜と、
     を備える金属酸化物半導体電極。
    A conductive substrate;
    A film formed on the conductive substrate using the metal oxide semiconductor particle dispersion according to any one of claims 1 to 10,
    A metal oxide semiconductor electrode comprising:
  12.  請求項11に記載の金属酸化物半導体電極、増感色素、電解質、及び導電性対極を具備する光電変換素子。 A photoelectric conversion device comprising the metal oxide semiconductor electrode according to claim 11, a sensitizing dye, an electrolyte, and a conductive counter electrode.
PCT/JP2011/074852 2010-11-05 2011-10-27 Metal oxide semiconductor particle dispersion WO2012060280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-247994 2010-11-05
JP2010247994A JP2014017050A (en) 2010-11-05 2010-11-05 Processing metal oxide semiconductor particle dispersion body

Publications (1)

Publication Number Publication Date
WO2012060280A1 true WO2012060280A1 (en) 2012-05-10

Family

ID=46024395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074852 WO2012060280A1 (en) 2010-11-05 2011-10-27 Metal oxide semiconductor particle dispersion

Country Status (2)

Country Link
JP (1) JP2014017050A (en)
WO (1) WO2012060280A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132076A1 (en) * 2013-03-01 2014-09-04 Isis Innovation Limited Semiconducting layer production process
WO2016052561A1 (en) * 2014-09-30 2016-04-07 住友大阪セメント株式会社 Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film and dye-sensitized solar cell
JPWO2015049841A1 (en) * 2013-10-04 2017-03-09 旭化成株式会社 SOLAR CELL, ITS MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT, AND ITS MANUFACTURING METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231326A (en) * 2001-02-06 2002-08-16 Nec Corp Photoelectric conversion element and manufacturing method therefor
JP2007044657A (en) * 2005-08-11 2007-02-22 Mie Prefecture Manufacturing method of titania paste, manufacturing method of titania porous layer, and photocatalyst layer
JP2009065216A (en) * 2008-12-22 2009-03-26 Seiko Epson Corp Photoelectric conversion element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231326A (en) * 2001-02-06 2002-08-16 Nec Corp Photoelectric conversion element and manufacturing method therefor
JP2007044657A (en) * 2005-08-11 2007-02-22 Mie Prefecture Manufacturing method of titania paste, manufacturing method of titania porous layer, and photocatalyst layer
JP2009065216A (en) * 2008-12-22 2009-03-26 Seiko Epson Corp Photoelectric conversion element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132076A1 (en) * 2013-03-01 2014-09-04 Isis Innovation Limited Semiconducting layer production process
JPWO2015049841A1 (en) * 2013-10-04 2017-03-09 旭化成株式会社 SOLAR CELL, ITS MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT, AND ITS MANUFACTURING METHOD
US10109429B2 (en) 2013-10-04 2018-10-23 Asahi Kasei Kabushiki Kaisha Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor
US10566144B2 (en) 2013-10-04 2020-02-18 Asahi Kasei Kabushiki Kaisha Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor
WO2016052561A1 (en) * 2014-09-30 2016-04-07 住友大阪セメント株式会社 Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film and dye-sensitized solar cell
JPWO2016052561A1 (en) * 2014-09-30 2017-07-13 住友大阪セメント株式会社 Method for producing titanium oxide particles, titanium oxide particles, dispersion of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell
US20170221640A1 (en) * 2014-09-30 2017-08-03 Sumitomo Osaka Cement Co., Ltd. Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell
CN107074581A (en) * 2014-09-30 2017-08-18 住友大阪水泥股份有限公司 Manufacture method, Titanium particles, the dispersion soln of Titanium particles, titania slurry, oxidation titanium film and the DSSC of Titanium particles
US20190371532A1 (en) * 2014-09-30 2019-12-05 Sumitomo Osaka Cement Co., Ltd. Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell
CN107074581B (en) * 2014-09-30 2020-01-10 住友大阪水泥股份有限公司 Method for producing titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide slurry, titanium oxide film, and dye-sensitized solar cell
JP2020074467A (en) * 2014-09-30 2020-05-14 住友大阪セメント株式会社 Manufacturing method of titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell
US10892107B2 (en) 2014-09-30 2021-01-12 Sumitomo Osaka Cement Co., Ltd. Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2014017050A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
Kinoshita et al. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells
Kroon et al. Nanocrystalline dye‐sensitized solar cells having maximum performance
Isah et al. Betalain pigments as natural photosensitizers for dye-sensitized solar cells: the effect of dye pH on the photoelectric parameters
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
Lee et al. Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells
JP4449731B2 (en) Treated metal oxide semiconductor paste, method of manufacturing metal oxide semiconductor electrode using the paste, and method of manufacturing cell
Tekerek et al. Dye-sensitized solar cells fabricated with black raspberry, black carrot and rosella juice
EP1981118A1 (en) Dye sensitization photoelectric converter
Lee et al. Zinc oxide-based dye-sensitized solar cells with a ruthenium dye containing an alkyl bithiophene group
JP2010529226A (en) Novel organic dye and method for producing the same
Dragonetti et al. A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar cells: Beneficial effects of substitution on the cyclometallated ligand
JP4338981B2 (en) Dye-sensitized photoelectric conversion element
JP5681716B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
EP1892792A1 (en) Dye-sensitized photoelectric conversion device
JP5869481B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
Bendoni et al. Role of water in TiO2 screen-printing inks for dye-sensitized solar cells
WO2012060280A1 (en) Metal oxide semiconductor particle dispersion
JP2012043662A (en) Metal oxide semiconductor electrode manufacturing method
Kathiravan et al. Protoporphyrin IX on TiO2 electrode: A spectroscopic and photovoltaic investigation
JP2007042534A (en) Metal oxide semiconductor particle dispersion body, manufacturing method of metal oxide semiconductor electrode, and photoelectric transfer cell
JP4314782B2 (en) Sensitizing dye for photoelectric conversion and use thereof
Shinde et al. Experimental and theoretical study of 1, 4-naphthoquinone based dye in dye-sensitized solar cells using ZnO photoanode
JP2012207209A (en) Metal complex pigment composition, photoelectric conversion element, photoelectrochemical cell, and method for producing metal complex pigment
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
Ozawa et al. Effects of the alkyl chain length of imidazolium iodide in the electrolyte solution on the performance of black-dye-based dye-sensitized solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP