WO2012060083A1 - Illumination device, exposure device, program, and illumination method - Google Patents

Illumination device, exposure device, program, and illumination method Download PDF

Info

Publication number
WO2012060083A1
WO2012060083A1 PCT/JP2011/006080 JP2011006080W WO2012060083A1 WO 2012060083 A1 WO2012060083 A1 WO 2012060083A1 JP 2011006080 W JP2011006080 W JP 2011006080W WO 2012060083 A1 WO2012060083 A1 WO 2012060083A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination
reflection
reflecting
reflection angle
Prior art date
Application number
PCT/JP2011/006080
Other languages
French (fr)
Japanese (ja)
Inventor
尚憲 北
嘉彦 藤村
正康 澤田
則之 松尾
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2012060083A1 publication Critical patent/WO2012060083A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams

Definitions

  • the present invention relates to an illumination apparatus, an exposure apparatus, a program, and an illumination method.
  • Patent Document 1 JP 2002-353105 A
  • the illumination pattern formed may include an illuminance distribution that cannot be expected only by the concept of geometrical reflection by the mirror.
  • the illumination device illuminates the irradiated surface with light from the light source, and the plurality of reflections that reflect the incident light source light at individually set reflection angles and emit a plurality of reflected lights
  • a spatial light modulation element having a mirror and projecting a plurality of reflected lights onto a projection surface to form an illumination pattern; and a plurality of reflected lights forming a lighting pattern under a condition for reducing interference between the reflected lights.
  • an illuminating device including a calculating unit that calculates a reflection angle of each reflecting mirror, and a driving unit that drives a plurality of reflecting mirrors and sets the reflection angles calculated by the calculating unit to each of the reflecting mirrors.
  • an exposure apparatus provided with the said illuminating device is provided.
  • the illumination apparatus includes the plurality of reflecting mirrors that reflect the incident light source light at individually set reflection angles and emit a plurality of reflected lights, and projects the plurality of reflected lights onto the projection surface to illuminate.
  • a spatial light modulation element that forms a pattern
  • a calculation unit that calculates a reflection angle set for each of the plurality of reflection mirrors
  • a plurality of reflection mirrors that drive the reflection angles calculated by the calculation units.
  • a control program for controlling an illuminating device including a driving unit set to each of the plurality of reflecting mirrors under a condition for reducing interference between a plurality of reflected lights forming an illumination pattern.
  • a program for calculating is provided.
  • the calculation stage for calculating the reflection angle of each of the plurality of reflecting mirrors, and the plurality of reflecting mirrors Driving and setting the reflection angle calculated in the calculation step to each of the plurality of reflecting mirrors, reflecting the incident light source light at the reflection angle set individually, and emitting a plurality of reflected lights, And a forming step of forming an illumination pattern by projecting the reflected light on the projection surface.
  • the illumination device illuminates the irradiated surface with light from the light source, and a plurality of reflected light beams are emitted by reflecting incident light source light at individually set reflection angles.
  • a spatial light modulator that projects a plurality of reflected light onto a projection surface to form an illumination pattern, and evaluates the interference between the plurality of reflected lights that form the illumination pattern.
  • a calculation unit that calculates a reflection angle of each of the plurality of reflection mirrors so that interference between the plurality of reflected lights is reduced, and a plurality of reflection mirrors are driven to obtain the reflection angles calculated by the calculation unit.
  • An illuminating device provided with the drive part set to each of these is provided.
  • an exposure apparatus provided with the said illuminating device is provided.
  • the light source includes a plurality of reflecting mirrors that reflect the incident light source light at individually set reflection angles and emit a plurality of reflected lights, and project the plurality of reflected lights onto the projection surface.
  • a spatial light modulation element that forms an illumination pattern
  • a calculation unit that calculates a reflection angle set for each of the plurality of reflection mirrors
  • a plurality of reflection mirrors that drive the reflection angles calculated by the calculation unit.
  • a control program for controlling an illuminating device including a drive unit set for each of the mirrors. The control program evaluates interference between a plurality of reflected lights forming an illumination pattern.
  • a program is provided for calculating the reflection angle of each of the plurality of reflecting mirrors so that interference is reduced.
  • the interference between the plurality of reflected lights forming the illumination pattern is evaluated, and each of the plurality of reflecting mirrors is reduced so that the interference between the plurality of reflected lights is reduced based on the evaluation result.
  • a calculation stage for calculating a reflection angle, a driving stage for driving a plurality of reflecting mirrors and setting the reflection angle calculated in the calculation stage for each of the plurality of reflecting mirrors, and a reflection in which incident light source light is individually set There is provided an illumination method including: forming a plurality of reflected lights by reflecting at an angle; and forming a lighting pattern by projecting the plurality of reflected lights onto a projection surface.
  • the projection object is illuminated using the illumination method, and light from the illuminated projection object is passed through the projection optical system to form an image of the projection object on the object.
  • An exposure method is provided.
  • the exposure method is used to form a pattern on the object; the object on which the pattern is formed is developed, and a mask layer having a shape corresponding to the pattern is formed on the object. Forming a surface of the object; and processing the surface of the object through the mask layer.
  • FIG. 1 is a schematic diagram showing the overall structure of an exposure apparatus 100.
  • FIG. 3 is a cross-sectional view schematically showing an individual structure of a reflecting mirror 222.
  • FIG. 3 is a schematic perspective view of a spatial light modulator 220.
  • FIG. 6 is a diagram illustrating the operation of the spatial light modulator 220. It is a figure which shows the function of the light source part 200 typically.
  • FIG. 3 is a diagram schematically illustrating a function of a spatial light modulator 220.
  • 5 is a graph showing an incident angle distribution of light source light in the spatial light modulator 220. It is a graph which shows the relationship between a reflective mirror space
  • FIG. It is a graph which shows the influence of the interference with respect to the area of an illumination pattern. It is a flowchart which shows the setting angle calculation procedure on condition of suppression of interference. It is a figure which shows typically the relationship between the reflective mirror 222 and the light patterns P, Q, and R.
  • FIG. It is a figure which shows typically the method of determining the coordinate of spotlight. It is a figure which shows typically the procedure of the method of determining the coordinate of spotlight. It is a figure which shows typically the other procedure of the method of determining the coordinate of spot light. It is a flowchart which shows the manufacturing process of a microdevice. It is a flowchart which shows the content of a board
  • FIG. 1 is a schematic diagram showing the overall structure of the exposure apparatus 100.
  • the exposure apparatus 100 includes a light source unit 200, an illumination optical system 300, and a projection optical system 400.
  • the light source unit 200 includes a light source 110, a control unit 210, a spatial light modulator 220, a prism 230, an imaging optical system 240, a beam splitter 250, and a measurement unit 260.
  • the light source 110 generates illumination light L.
  • the illumination light L generated by the light source 110 has an illuminance distribution according to the characteristics of the light emitting mechanism of the light source 110. For this reason, the illumination light L has the original image I 1 in a cross section orthogonal to the optical path of the illumination light L.
  • the illumination light L emitted from the light source 110 enters the prism 230.
  • the prism 230 guides the illumination light L to the spatial light modulator 220 and then emits the light again to the outside.
  • the control unit 210 includes a drive unit 212 and a calculation unit 214.
  • the calculation unit 214 calculates a setting angle, which will be described later, set in the spatial light modulator 220.
  • the drive unit 212 sets the set angle calculated by the calculation unit 214 in the spatial light modulator 220.
  • the operation of the control unit 210 will be described later. Note that the control unit 210 can load its new operation procedure by mounting the medium 216.
  • the spatial light modulator 220 modulates the illumination light L incident under the control of the control unit 210.
  • the structure and operation of the spatial light modulator 220 will be described later with reference to other drawings.
  • the illumination light L emitted from the prism 230 via the spatial light modulator 220 is incident on the illumination optical system 300 at the subsequent stage via the imaging optical system 240.
  • the imaging optical system 240 forms an illumination light image I 3 on the incident surface 312 of the illumination optical system 300.
  • the beam splitter 250 is disposed on the optical path of the illumination light L between the imaging optical system 240 and the illumination optical system.
  • the beam splitter 250 separates a part of the illumination light L before entering the illumination optical system 300 and guides it to the measurement unit 260.
  • the measurement unit 260 measures the image of the illumination light L at a position optically conjugate with the incident surface 312 of the illumination optical system 300. Thereby, the measurement unit 260 measures the same image as the illumination light image I 3 incident on the illumination optical system 300. Therefore, the control unit 210 can perform feedback control of the spatial light modulator 220 via the drive unit 212 with reference to the illumination light image I 3 measured by the measurement unit 260.
  • the measurement unit 260 For details of the configuration and operation of the measurement unit 260, reference can be made to, for example, US Patent Application Publication No. 2008/0030707.
  • the illumination optical system 300 includes a fly-eye lens 310, a condenser optical system 320, a field stop 330, and an imaging optical system 340.
  • a mask stage 420 holding an exposure mask 410 is disposed at the exit end of the illumination optical system 300.
  • the fly-eye lens 310 includes a large number of lens elements arranged densely in parallel, and forms a secondary light source including illumination light images I 3 as many as the number of lens elements on the rear focal plane.
  • the condenser optical system 320 condenses the illumination light L emitted from the fly-eye lens 310 and illuminates the field stop 330 in a superimposed manner.
  • the fly eye lens 310 for example, a cylindrical micro fly eye lens disclosed in US Pat. No. 6,913,373 can be used as the fly eye lens 310.
  • the illumination light L that has passed through the field stop 330 forms an irradiation light image I 4 that is an image of the opening of the field stop 330 on the pattern surface of the exposure mask 410 by the imaging optical system 340.
  • the pattern surface of the exposure mask 410 is optically Fourier-transformed with respect to the exit surface of the fly-eye lens 310. Accordingly, the illumination optical system 300, the pattern surface of the exposure mask 410 disposed at its exit end, Koehler illuminated by illumination light image I 4.
  • the illuminance distribution formed at the entrance end of the fly-eye lens 310 that is also the entrance surface 312 of the illumination optical system 300 is higher than the overall illuminance distribution of the entire secondary light source formed at the exit end of the fly-eye lens 310. Show correlation. Therefore, the illumination light image I 3 that the light source unit 200 enters the illumination optical system 300 is also reflected in the illumination light image I 4 that is the illuminance distribution of the illumination light L that the illumination optical system 300 irradiates the exposure mask 410.
  • the projection optical system 400 is disposed immediately after the mask stage 420 and includes an aperture stop 430.
  • the aperture stop 430 is disposed at a position optically conjugate with the emission end of the fly-eye lens 310 of the illumination optical system 300.
  • a substrate stage 520 that holds a substrate 510 coated with a photosensitive material is disposed at the exit end of the projection optical system 400.
  • the aperture stop 430 of the projection optical system 400 is a position optically conjugate with the position where the secondary light source is formed in the illumination optical system 300.
  • the position where the secondary light source is formed in the illumination optical system 300 can be referred to as the illumination pupil plane of the illumination optical system.
  • the exposure mask 410 held on the mask stage 420 has a mask pattern composed of a region that reflects or transmits the illumination light L irradiated by the illumination optical system 300 and a region that absorbs it. Therefore, by irradiating the illumination light image I 4 to the exposure mask 410, the projection light image I 5 produced by the interaction of the illuminance distribution of the illumination light image I 4 itself as a mask pattern of an exposure mask 410.
  • the projected light image I 5 is projected onto the photosensitive material of the substrate 510 to form a resist layer having the required pattern on the surface of the substrate 510.
  • FIG. 1 the optical path of the illumination light L is drawn in a straight line, but the exposure apparatus 100 is miniaturized by bending the optical path of the illumination light L.
  • FIG. 1 depicts the illumination light L so that it passes through the exposure mask 410, a reflective exposure mask 410 may be used.
  • FIG. 2 is a diagram for explaining the structure of the spatial light modulator 220, and shows a part of the spatial light modulator 220 in an enlarged manner.
  • the spatial light modulator 220 includes a reflecting mirror 222, a substrate 224, a flexure 226, and electrodes 223 and 225.
  • the reflecting mirror 222 is suspended from the lower surface of the substrate 224 via the flexure 226.
  • the flexure 226 is formed of a material that can be easily deformed. Therefore, the reflecting mirror 222 is supported so as to be swingable with respect to the substrate 224.
  • One electrode 223 is disposed on the back surface of the reflecting mirror 222 so as to face the substrate 224.
  • the other electrode 225 is disposed on the surface of the substrate 224 so as to face the back surface of the reflecting mirror 222.
  • the electrode 225 disposed on the substrate 224 is divided into a plurality of parts, and a voltage can be applied individually. With such a structure, a voltage can be applied to any of the electrodes 225 on the substrate 224 to cause an electrostatic force to act between the electrodes 223 of the reflecting mirror 222 and to give the required tilt to the reflecting mirror 222. .
  • FIG. 3 is a schematic perspective view of the spatial light modulator 220.
  • the spatial light modulator 220 is formed by arranging a large number of structures including the reflecting mirror 222 and the electrodes 223 and 225 as described above on a single substrate 224.
  • the plurality of reflecting mirrors 222 individually swing according to the control of the control unit 210.
  • the detailed configuration of the spatial light modulator similar to the spatial light modulator 220 is disclosed in, for example, US Patent Application Publication No. 2009/0097094.
  • FIG. 3 shows a spatial light modulator 220 including 16 reflecting mirrors 222.
  • the spatial light modulator 220 mounted on the exposure apparatus 100 includes a large number of reflecting mirrors 222 according to the accuracy of the pattern to be formed.
  • FIG. 4 is a partially enlarged view of the light source unit 200 and shows the operation of the light source unit 200 including the spatial light modulator 220.
  • the prism 230 has a pair of reflecting surfaces 232 and 234.
  • the illumination light L incident on the prism 230 is irradiated toward the spatial light modulator 220 by the one reflecting surface 232.
  • the spatial light modulator 220 has a plurality of reflecting mirrors 222 that can be individually swung. Therefore, the control unit 210 controls the spatial light modulator 220 can be formed of any light source image I 2 corresponding to the request.
  • the light source image I 2 emitted from the spatial light modulator 220 is emitted from the prism 230 by the other reflecting surface 234 of the prism 230.
  • the light source image I 2 emitted from the prism 230 forms an illumination light image I 3 on the incident surface 312 of the illumination optical system 300 by the imaging optical system 240.
  • the projection surface of the spatial light modulator 220 is a surface that is optically Fourier-transformed with respect to the arrangement surface of the reflecting mirrors 222, and is the incident surface of the fly-eye lens 310.
  • This is a pupil plane of the illumination optical system 300 that is optically conjugate with the above. Therefore, a light intensity distribution similar to the illumination pattern formed on the projection surface is formed on the incident surface of the fly-eye lens 310.
  • the pattern surface of the exposure mask 410 is Koehler illuminated using the secondary light source formed in the illumination optical system 300 as a light source.
  • the exit surface of the fly-eye lens 310 has a Fourier transform relationship with respect to the entrance surface, the projection surface and the pattern surface of the exposure mask 410 appear to be conjugate.
  • the wavefront division number of the fly-eye lens 310 is large, the overall light intensity distribution formed on the entrance surface of the fly-eye lens and the overall light intensity distribution (pupil intensity) of the entire secondary light source formed on the exit surface. Distribution) shows a high correlation. Therefore, the entrance surface 312 of the fly-eye lens 310 and a surface that is closer to the light source 110 than the entrance surface and is optically conjugate with the entrance surface can also be referred to as an illumination pupil plane.
  • FIG. 5 is a diagram schematically illustrating the function of the light source unit 200.
  • the curve drawn on the left side of the spatial light modulator 220 shows an example of the intensity distribution of the light source light incident on the spatial light modulator 220.
  • the light source light incident on the spatial light modulator 220 has a constant intensity distribution. However, since this intensity distribution depends on the specifications of the light source 110, it is known in advance.
  • the rectangular curve described on the right side of the incident surface 312 indicates the intensity distribution of the light patterns P, Q, and R required as the illumination pattern.
  • Each of the light patterns P, Q, and R has a unique intensity and width.
  • FIG. 6 is a diagram schematically showing the function of the reflecting mirror 222 in the spatial light modulator 220.
  • the spatial light modulator 220 can individually set the reflection angle for each of the plurality of reflecting mirrors 222.
  • Each of the reflected lights emitted from the individual reflecting mirrors 222 is projected onto the incident surface 312 as spot light.
  • a sub-peak as a Fraunhofer diffraction image appears around each spot light, but it can be ignored because the level is lower than the original peak of the spot light.
  • the spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312 according to the size and illuminance of each light pattern.
  • two spot lights are arranged in each of the light patterns P and R, and six spot lights are arranged in the light pattern Q.
  • FIG. 6 is a schematic diagram only, and the spatial light modulator 220 includes a large number of reflecting mirrors 222 ranging from several hundred thousand to several million. Thereby, the light source part 200 can form the light pattern which has arbitrary intensity distribution as intended.
  • an unintended intensity distribution may appear.
  • Such an unintentional intensity distribution reduces the accuracy of the illumination pattern on the incident surface 312.
  • One of the causes of such an unintended intensity distribution is an interference effect caused by a plurality of spot lights emitted from the spatial light modulator 220 toward the incident surface 312.
  • FIG. 7 is a graph showing the relationship between the angular distribution of the light source light incident on the spatial light modulator 220 from the light source 110 and the incident angle on the reflecting mirror 222 of the spatial light modulator 220.
  • the light source light incident on the spatial light modulator 220 is not completely parallel light. For this reason, as shown in the figure, incident angle distribution is inevitably generated, and the spot light formed by one mirror in the spatial light modulator 220 is also thickened accordingly.
  • FIG. 8 is a graph showing the relationship between the spacing between the reflecting mirrors 222 and the spatial coherence (magnitude of interference) generated between the reflected lights of the reflecting mirrors 222 in the spatial light modulator 220. As shown in the figure, when the distance between a pair of reflecting mirrors 222 is narrow, it means that a significantly large interference occurs.
  • each reflecting mirror 222 is 50 ⁇ m square, strong interference does not occur if the reflecting mirrors 222 are separated by two.
  • FIG. 9 is a diagram schematically showing the interference generation conditions shown in FIG. 7 and FIG.
  • the spatial light modulator 220 and the fly-eye lens 310 are arranged facing each other.
  • the illumination light that has entered the spatial light modulator 220 is reflected by the reflecting mirror 222 and enters the incident surface 312 of the fly-eye lens 310.
  • individual reflecting mirrors 222 are indicated by reference signs A to D and 1 to 4 attached to the side surface of the spatial light modulator 220.
  • the coordinates a to d and 1 to 4 attached to the side surface of the fly-eye lens 310 represent coordinates indicating a specific area on the incident surface 312.
  • the coordinates of the specific area are referred to as “pupil plane coordinates”.
  • the reflected lights 302 and 304 emitted from the reflecting mirrors D-1 and C-1 are applied to the regions d-1 and c-4 on the incident surface.
  • the reflecting mirrors D-1 and C-1 are adjacent to each other, but the regions d-1 and c-4 are separated from each other. Therefore, the interference generated in the reflected lights 302 and 304 is small and can be ignored.
  • Reflected lights 306 and 302 emitted from the reflecting mirrors A-3 and D-1 are applied to the areas a-3 and d-1.
  • the optical paths of the reflected lights 306 and 302 are substantially parallel to each other, but are separated from the reflecting mirrors A-3 and D-1 and the areas a-3 and d-1. Therefore, the interference generated in the reflected lights 306 and 302 is small and can be ignored.
  • the reflected lights 304 and 305 emitted from the reflecting mirrors C-1 and C-4 are applied to the same region c-4. However, since the reflecting mirrors C-1 and C-4 are separated from each other, interference generated in the reflected lights 304 and 305 is small and can be ignored.
  • Reflected lights 303 and 305 emitted from the reflecting mirrors C-4 and D-4 are applied to the regions c-4 and d-3 connected in the diagonal direction. Since the reflecting mirrors C-1 and C-4 are also adjacent, the reflected lights 303 and 305 cause interference 301 that cannot be ignored.
  • the calculation unit in the exposure apparatus 100 calculates the set angle set for each of the reflecting mirrors 222 so that the arrangement of the reflected light emitted from the reflecting mirror 222 satisfies the above-described conditions.
  • a light source mask optimization method (SMO method: Source and Mask Optimization) that optimizes a mask pattern (reticle pattern) and a light source image together and exposes a fine pattern with high accuracy.
  • the illumination pattern may include a plurality of light patterns separated from each other. For this reason, the area of each light pattern becomes small.
  • Equation 1 When the number of occurrences of interference is expressed as N coh , and the number of spot lights forming a light pattern (proportional to the area of the light pattern) is expressed as N p , the relationship between both can be expressed as in Equation 1 below.
  • FIG. 10 is a graph showing the influence of interference on the area of the illumination pattern as described above. As shown in the figure, when the area of the light pattern is reduced, the occurrence of non-negligible interference is significantly increased. Therefore, in the SMO method, the spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312 while suppressing the occurrence of interference, in other words, the mutual interference of a plurality of reflected lights emitted from the reflecting mirror 222. It is required that the spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312 under the condition of making the size smaller.
  • the mutual interference between the plurality of reflected lights emitted from the reflecting mirror 222 is made smaller in consideration of interference generated on the incident surface 312 when spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312.
  • the state in which interference generated on the incident surface 312 is suppressed as compared with the case where spot light is arranged without performing this operation can be pointed out.
  • FIG. 11 is a flowchart showing a set angle calculation procedure under the condition that interference is suppressed.
  • the calculation unit 214 forms an order in descending order of the intensity of the light source light incident on the reflecting mirror 222 (S201). Subsequently, the reflecting mirror 222 having a high intensity of incident light source light is selected as an object to be processed according to the formed order (S202).
  • the light source light incident on the spatial light modulator 220 has an intensity distribution. Therefore, the intensity of the spot light reflected and emitted from the reflecting mirror 222 is also individually different.
  • the intensity of the spot light is high, the influence on the illumination pattern is large when interference occurs.
  • the calculation unit 214 sequentially calculates the reflection angle from the reflecting mirrors 222 from which the light source light with higher illuminance is incident among the plurality of reflecting mirrors 222.
  • the calculation unit 214 determines the arrangement of the spot light emitted from the selected reflecting mirror 222 on the incident surface 312 (S203). In this determination, first, a position on the entrance surface 312, that is, pupil plane coordinates are assigned for the purpose of forming the obtained light pattern. Subsequently, the interference generated when the spot light is projected onto the assigned pupil plane coordinates is examined (S204).
  • the calculation unit 214 calculates the set angle of the reflecting mirror 222 so that the spot light is projected at the position (S206). ). Thereby, a setting angle is determined for the reflecting mirror 222. Subsequently, the calculation unit 214 checks whether there is another reflecting mirror 222 whose setting angle is not yet determined (S207).
  • the calculation unit 214 ends the setting angle calculation process, and the driving unit 212 sets the calculated setting angle to each of the reflecting mirrors 222. Set to. If there is still a reflecting mirror 222 for which the setting angle has not been determined (S207: YES), the process returns to step S202 again, and the setting angles are sequentially determined from the reflecting mirror 222 having a high incident intensity of illumination light.
  • step 205 If it is found in step 205 that interference that cannot be ignored occurs (S205: YES), the calculation unit 214 assigns other coordinates to the spot light generated by the reflector 222 (S203). Hereinafter, by repeating the step (S204) of examining the interference generated by the spot light of the reflecting mirror 222, it is possible to form an illumination pattern while suppressing the occurrence of interference.
  • FIG. 12 is a diagram schematically showing the relationship between the spatial light modulator 220 in which the setting angle of the reflecting mirror 222 is set by the above-described procedure and the light patterns P, Q, and R on the incident surface 312. Circled numbers in the figure indicate the order in which incident light source light intensity is high, that is, the order in which pupil plane coordinates are determined.
  • the arrangement of the spot lights 1 to 8 has already been determined.
  • the determined spot lights are spaced apart from each other on the reflecting mirror 222 side and on the incident surface 312 side, and non-negligible interference does not occur.
  • the ninth and tenth spot lights can be arranged avoiding the condition that causes interference when they are arranged on the incident surface 312 as a part of the light pattern Q (indicated by a one-dot chain line in the drawing). There are no pupil plane coordinates. In such a case, the calculation unit 214 may introduce an additional calculation procedure for the reflector 222 that cannot determine the arrangement of the spot light.
  • FIG. 13 is a diagram schematically showing a procedure for determining a position (pupil plane coordinates) on the incident surface 312 where the spot light is arranged in the above case.
  • the pupil plane coordinates of the third spot light from the higher incident light source light intensity are determined.
  • the calculation unit 214 calculates the light source light intensity as shown in (2).
  • the third reflecting mirror 222 and the fourth reflecting mirror 222 are interchanged, and the arrangement of the spot light is determined again. As described above, the arrangement of the spot light may be found by changing the reflection mirror 222 to be processed.
  • the calculation unit 214 replaces the third spot light with a spot light emitted by a different reflecting mirror 222 as shown in (3).
  • the process of arranging the spot light is repeated. As described above, an illumination pattern with less interference can be formed.
  • FIG. 14 is a diagram schematically showing the flow of the method as described above.
  • the calculation unit 214 searches for the arrangement of the spot light in descending order of the incident light source light intensity, and spot light (indicated by a white star) that cannot find an arrangement that does not cause interference is more The arrangement is searched by substituting the lower spot light. Thereafter, the replacement is repeated until the lowest spot light, and if it is still impossible to find an arrangement that does not cause interference, it is determined that interference cannot be avoided.
  • the calculation unit 214 may arrange the spot light when the generated interference becomes weak according to the accuracy calculated for the light source unit 200. This effectively suppresses the influence of interference.
  • FIG. 15 is a diagram schematically showing a further additional procedure when spot light is arranged. As already explained, if you can't find an arrangement that does not cause interference with the spot light (indicated by a white star) that is being processed for the arrangement search, first search for the arrangement by substituting the lower spot light. May find an arrangement with less interference.
  • the calculation unit 214 interferes with the case where the spotlight being processed is arranged in the arrangement of the higher-order spotlight (indicated by a black star). Check to see if this occurs. In this case, it is checked whether or not interference occurs when a predetermined spot light is arranged at a position where the spot light being processed is to be arranged.
  • the calculation unit 214 determines the arrangement by exchanging the order of the spot lights.
  • the spot light being processed cannot be arranged due to interference, the same processing is attempted for the spot light whose arrangement is predetermined at a higher level.
  • the spot light can be arranged without causing interference by repeating the replacement and the search for the arrangement up to the highest-order spot light.
  • the calculation unit 214 may consider that there is no longer a position where the spot light can be arranged when excessive processing time is required for the spot light arrangement. In such a case, the spot light may be discarded by calculating a reflection angle at which the spot light is projected outside the range of the illumination pattern. Thereby, it is possible to prevent the processing time of the calculation unit 214 from becoming extremely long.
  • the outside of the range of the illumination pattern may be a region where no optical component is arranged in the imaging optical system 240 of the light source unit 200, for example, the inner surface of a lens barrel that supports the optical component.
  • the spot light to be discarded uniformly or randomly may be distributed over the entire range of the illumination pattern so that the discarded spot light does not form a significant pattern.
  • the interference state on the incident surface is evaluated when determining the arrangement of the spot light to be disposed on the incident surface, and based on the evaluation, the reflection mirrors are arranged so that the interference becomes smaller. Each angle is calculated, and it is possible to reduce the occurrence of an unexpected illuminance distribution in the formed illumination pattern.
  • the evaluation of the interference state may be indirect or direct (evaluation of the interference state itself on the incident surface) as described above, and the observation result may be based on simulation. It may be based on.
  • a series of calculation methods and calculation procedures as described above may be implemented in the calculation unit 214 in advance, or when a part or all of the calculation unit 214 is a general-purpose information processing device,
  • the program for executing the method and procedure may be implemented via some medium or communication line.
  • the calculation unit 214 forms an order in descending order of the intensity of the light source light incident on the reflecting mirror 222 (S201), and the reflection with the high intensity of the incident light source light is performed according to the formed order.
  • the mirror 222 has been selected as a processing target (S202), the method is not limited to this. For example, a method of randomly selecting the reflecting mirror 222 may be used.
  • the measurement unit 260 receives the illumination light branched on the spatial light modulator 220 side from the fly-eye lens 310 as an optical integrator, and measures the illumination light image I 3.
  • the configuration may be such that the illumination light image I 4 or the projection light image I 5 of the illumination light L that has passed through the fly-eye lens 310 is measured.
  • the spatial light modulator that independently controls the tilt of the mirror elements arranged two-dimensionally is employed.
  • a spatial light modulator for example, European Patent Application No. 779530 is disclosed. , U.S. Pat. No. 6,900,915, U.S. Pat. No. 7,095,546, and the like.
  • a spatial light modulator that independently controls the height of the mirror element as the spatial light modulator.
  • a spatial light modulator for example, the spatial light modulator disclosed in US Pat. No. 5,312,513 and US Pat. No. 6,885,493 can be employed.
  • the above-described spatial light modulator can be modified in accordance with the disclosure of, for example, US Pat. No. 6,891,655 or US Patent Application Publication No. 2005/0095749.
  • the present invention is not limited to this, and the present invention may be applied to a stationary exposure apparatus such as a stepper.
  • the present invention can also be applied to a step-and-stitch reduction projection exposure apparatus that synthesizes a shot area and a shot area.
  • a plurality of wafers can also be applied to a multi-stage type exposure apparatus provided with a stage.
  • the present invention can also be applied to an apparatus.
  • the exposure apparatus 100 is a dry-type exposure apparatus that exposes the wafer W without using liquid (water) has been described.
  • an immersion optical path including illumination light path between the projection optical system and the wafer As disclosed in US Pat. No. 1,420,298, WO 2004/055803, US Pat. No. 6,952,253, and the like, an immersion optical path including illumination light path between the projection optical system and the wafer.
  • the present invention can also be applied to an exposure apparatus that forms a space and exposes the wafer with illumination light through the liquid in the projection optical system and the immersion space.
  • the projection optical system of the exposure apparatus according to the present invention including the exposure apparatus of the above-described embodiment may be any of a reduction system as well as an equal magnification and an enlargement system, and the projection optical system is not only a refraction system but also a reflection system and Either a catadioptric system may be used, and the projected image may be an inverted image or an erect image.
  • the light source of the exposure apparatus is not limited to the ArF excimer laser, but is a KrF excimer laser (output wavelength 248 nm), F 2 laser (output wavelength 157 nm), Ar 2 laser (output wavelength 126 nm), Kr 2 laser (output wavelength 146 nm). It is also possible to use a pulse laser light source such as a super high pressure mercury lamp that emits bright lines such as g-line (wavelength 436 nm) and i-line (wavelength 365 nm). A harmonic generator of a YAG laser or the like can also be used. In addition, as disclosed in, for example, US Pat. No.
  • a single wavelength laser beam in an infrared region or a visible region oscillated from a DFB semiconductor laser or a fiber laser is used as vacuum ultraviolet light.
  • a harmonic that is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
  • two reticle patterns are synthesized on a wafer via a projection optical system, and 1 on the wafer by one scan exposure.
  • An exposure apparatus that double exposes two shot areas almost simultaneously can be employed as the exposure apparatus 100.
  • FIG. 16 is a flowchart showing a manufacturing process of a microdevice to which the above generation method can be applied.
  • microdevices include semiconductor devices such as integrated circuits and large-scale integrated circuits, liquid crystal display panels, image sensors such as CCDs and C-MOSs, thin film magnetic heads, micromachines, and the like.
  • step S101 design step
  • step S102 mask production step
  • step S103 substrate manufacturing step
  • the circuit board is manufactured by processing the substrate manufactured in the substrate manufacturing step using the mask manufactured in the mask manufacturing step (step S104: substrate processing step). Furthermore, a device is assembled using the substrate processed in the substrate processing step (step S105: device assembly step).
  • the device assembly step includes processes such as dicing, bonding, and packaging (chip encapsulation) as required.
  • step S106 inspection step.
  • the microdevice thus inspected is shipped as a product.
  • FIG. 17 is a flowchart showing the contents of the substrate processing step. That is, FIG. 17 shows details of step S104 shown in FIG. In the substrate processing step, a circuit is formed on the substrate by lithography, for example.
  • Steps S111 to S114 described below form a pretreatment process of the substrate processing step.
  • the processing in each step is not necessarily essential, and is appropriately selected according to the specifications of the microdevice to be manufactured.
  • step S111 the surface of the substrate is oxidized to form an oxide film
  • step S112 CVD step
  • electrodes are formed by vapor deposition (step S113: electrode formation step), and ions are also implanted into the substrate (step S114: ion implantation step).
  • a post-processing step in the substrate processing step is executed.
  • a photosensitive material is applied to the substrate (step S115: resist formation step).
  • the photosensitive material is exposed by the exposure apparatus 100 with an exposure pattern corresponding to the target pattern (step S116: exposure step).
  • the exposed photosensitive material is developed to form a mask layer having a pattern on the surface of the substrate (step S117: development step).
  • step S118 etching step
  • step S119 resist removal step
  • the object on which the pattern is to be formed is not limited to the wafer, but may be another object such as a glass plate, a ceramic substrate, a film member, or a mask blank. good.
  • 100 exposure apparatus 110 light source, 200 light source unit, 210 control unit, 212 drive unit, 214 calculation unit, 216 medium, 220 spatial light modulator, 222 reflector, 223, 225 electrode, 224 substrate, 226 flexure, 230 prism, 232, 234, reflective surface, 240, 340, imaging optical system, 250 beam splitter, 260 measuring unit, 300 illumination optical system, 312 entrance surface, 310 fly-eye lens, 320 condenser optical system, 330 field stop, 400 projection optical system, 410 exposure mask, 420 mask stage, 430 aperture stop, 510 substrate, 520 substrate stage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The present invention accurately generates a desired illumination pattern. An illumination device for illuminating a surface to be irradiated by light from a light source comprises: a spatial light modulation element for projecting a plurality of reflected light beams onto a projection surface and forming an illumination pattern, the spatial light modulation element having a plurality of reflecting mirrors for reflecting incident light from a light source at individually set angles of reflection to emit the reflected light beams; a calculation unit for calculating the respective angles of reflection of the reflecting mirrors under the condition of further reducing mutual interference among the reflected light beams for forming the illumination pattern; and a drive unit for driving the reflecting mirrors and setting, for each of the reflecting mirrors, the angles of reflection calculated by the calculation unit.

Description

照明装置、露光装置、プログラムおよび照明方法Illumination apparatus, exposure apparatus, program, and illumination method
 本発明は、照明装置、露光装置、プログラムおよび照明方法に関する。 The present invention relates to an illumination apparatus, an exposure apparatus, a program, and an illumination method.
 任意の強度分布を有する照明パターンを形成できる露光装置がある(特許文献1参照)。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2002-353105号公報
There is an exposure apparatus that can form an illumination pattern having an arbitrary intensity distribution (see Patent Document 1).
[Prior art documents]
[Patent Literature]
[Patent Document 1] JP 2002-353105 A
 可動マルチミラー等の空間光変調器を用いると、形成された照明パターンにミラーによって幾何光学的に反射するという考え方だけでは予期出来ない照度分布が含まれる場合がある。 When a spatial light modulator such as a movable multi-mirror is used, the illumination pattern formed may include an illuminance distribution that cannot be expected only by the concept of geometrical reflection by the mirror.
 第一態様によれば、光源からの光で被照射面を照明する照明装置であって、入射した光源光を個別に設定された反射角度で反射して複数の反射光を射出する複数の反射鏡を有し、複数の反射光を投射面に投射して照明パターンを形成する空間光変調素子と、照明パターンを形成する複数の反射光相互の干渉をより小さくする条件の下に、複数の反射鏡それぞれの反射角度を算出する算出部と、複数の反射鏡を駆動して、算出部が算出した反射角度を複数の反射鏡のそれぞれに設定する駆動部とを備える照明装置が提供される。また、第二態様によれば、上記照明装置を備える露光装置が提供される。 According to the first aspect, the illumination device illuminates the irradiated surface with light from the light source, and the plurality of reflections that reflect the incident light source light at individually set reflection angles and emit a plurality of reflected lights A spatial light modulation element having a mirror and projecting a plurality of reflected lights onto a projection surface to form an illumination pattern; and a plurality of reflected lights forming a lighting pattern under a condition for reducing interference between the reflected lights. Provided is an illuminating device including a calculating unit that calculates a reflection angle of each reflecting mirror, and a driving unit that drives a plurality of reflecting mirrors and sets the reflection angles calculated by the calculating unit to each of the reflecting mirrors. . Moreover, according to a 2nd aspect, an exposure apparatus provided with the said illuminating device is provided.
 第三態様によれば、入射した光源光を個別に設定された反射角度で反射して複数の反射光を射出する複数の反射鏡を有し、複数の反射光を投射面に投射して照明パターンを形成する空間光変調素子と、複数の反射鏡のそれぞれに設定する反射角度を算出する算出部と、複数の反射鏡を駆動して、算出部が算出した反射角度を複数の反射鏡のそれぞれに設定する駆動部とを備える照明装置を制御する制御プログラムであって、照明パターンを形成する複数の反射光相互の干渉をより小さくする条件の下に、複数の反射鏡それぞれの反射角度を算出するプログラムが提供される。 According to the third aspect, the illumination apparatus includes the plurality of reflecting mirrors that reflect the incident light source light at individually set reflection angles and emit a plurality of reflected lights, and projects the plurality of reflected lights onto the projection surface to illuminate. A spatial light modulation element that forms a pattern, a calculation unit that calculates a reflection angle set for each of the plurality of reflection mirrors, and a plurality of reflection mirrors that drive the reflection angles calculated by the calculation units. A control program for controlling an illuminating device including a driving unit set to each of the plurality of reflecting mirrors under a condition for reducing interference between a plurality of reflected lights forming an illumination pattern. A program for calculating is provided.
 また、第四態様によれば、照明パターンを形成する複数の反射光相互の干渉をより小さくする条件の下に、複数の反射鏡それぞれの反射角度を算出する算出段階と、複数の反射鏡を駆動して、算出段階で算出した反射角度を複数の反射鏡のそれぞれに設定する駆動段階と、入射した光源光を個別に設定された反射角度で反射して複数の反射光を射出し、複数の反射光を投射面に投射して照明パターンを形成する形成段階とを備える照明方法が提供される。 Further, according to the fourth aspect, under the condition that the interference between the plurality of reflected lights forming the illumination pattern is made smaller, the calculation stage for calculating the reflection angle of each of the plurality of reflecting mirrors, and the plurality of reflecting mirrors, Driving and setting the reflection angle calculated in the calculation step to each of the plurality of reflecting mirrors, reflecting the incident light source light at the reflection angle set individually, and emitting a plurality of reflected lights, And a forming step of forming an illumination pattern by projecting the reflected light on the projection surface.
 また、第五態様によれば、光源からの光で被照射面を照明する照明装置であって、入射した光源光を個別に設定された反射角度で反射して複数の反射光を射出する複数の反射鏡を有し、複数の反射光を投射面に投射して照明パターンを形成する空間光変調素子と、照明パターンを形成する複数の反射光相互の干渉を評価して、その評価結果に基づき複数の反射光相互の干渉が低減されるように複数の反射鏡それぞれの反射角度を算出する算出部と、複数の反射鏡を駆動して、算出部が算出した反射角度を複数の反射鏡のそれぞれに設定する駆動部とを備える照明装置が提供される。また、第六態様によれば、上記照明装置を備える露光装置が提供される。 Further, according to the fifth aspect, the illumination device illuminates the irradiated surface with light from the light source, and a plurality of reflected light beams are emitted by reflecting incident light source light at individually set reflection angles. A spatial light modulator that projects a plurality of reflected light onto a projection surface to form an illumination pattern, and evaluates the interference between the plurality of reflected lights that form the illumination pattern. A calculation unit that calculates a reflection angle of each of the plurality of reflection mirrors so that interference between the plurality of reflected lights is reduced, and a plurality of reflection mirrors are driven to obtain the reflection angles calculated by the calculation unit. An illuminating device provided with the drive part set to each of these is provided. Moreover, according to the 6th aspect, an exposure apparatus provided with the said illuminating device is provided.
 また、第七態様によれば、入射した光源光を個別に設定された反射角度で反射して複数の反射光を射出する複数の反射鏡を有し、複数の反射光を投射面に投射して照明パターンを形成する空間光変調素子と、複数の反射鏡のそれぞれに設定する反射角度を算出する算出部と、複数の反射鏡を駆動して、算出部が算出した反射角度を複数の反射鏡のそれぞれに設定する駆動部とを備える照明装置を制御する制御プログラムであって、照明パターンを形成する複数の反射光相互の干渉を評価して、その評価結果に基づき複数の反射光相互の干渉が低減されるように複数の反射鏡それぞれの反射角度を算出するプログラムが提供される。 In addition, according to the seventh aspect, the light source includes a plurality of reflecting mirrors that reflect the incident light source light at individually set reflection angles and emit a plurality of reflected lights, and project the plurality of reflected lights onto the projection surface. A spatial light modulation element that forms an illumination pattern, a calculation unit that calculates a reflection angle set for each of the plurality of reflection mirrors, and a plurality of reflection mirrors that drive the reflection angles calculated by the calculation unit. A control program for controlling an illuminating device including a drive unit set for each of the mirrors. The control program evaluates interference between a plurality of reflected lights forming an illumination pattern. A program is provided for calculating the reflection angle of each of the plurality of reflecting mirrors so that interference is reduced.
 また、第八態様によれば、照明パターンを形成する複数の反射光相互の干渉を評価して、その評価結果に基づき複数の反射光相互の干渉が低減されるように複数の反射鏡それぞれの反射角度を算出する算出段階と、複数の反射鏡を駆動して、算出段階で算出した反射角度を複数の反射鏡のそれぞれに設定する駆動段階と、入射した光源光を個別に設定された反射角度で反射して複数の反射光を射出し、複数の反射光を投射面に投射して照明パターンを形成する形成段階とを備える照明方法が提供される。 Further, according to the eighth aspect, the interference between the plurality of reflected lights forming the illumination pattern is evaluated, and each of the plurality of reflecting mirrors is reduced so that the interference between the plurality of reflected lights is reduced based on the evaluation result. A calculation stage for calculating a reflection angle, a driving stage for driving a plurality of reflecting mirrors and setting the reflection angle calculated in the calculation stage for each of the plurality of reflecting mirrors, and a reflection in which incident light source light is individually set There is provided an illumination method including: forming a plurality of reflected lights by reflecting at an angle; and forming a lighting pattern by projecting the plurality of reflected lights onto a projection surface.
 また、第九態様によれば、上記照明方法を用いて被投影物体を照明し、照明された被投影物体からの光を投影光学系に通して前記物体上に前記被投影物体の像を形成する露光方法が提供される。 According to the ninth aspect, the projection object is illuminated using the illumination method, and light from the illuminated projection object is passed through the projection optical system to form an image of the projection object on the object. An exposure method is provided.
 また、第十態様によれば、上記露光方法を用いて、物体上にパターンを形成することと;前記パターンが形成された前記物体を現像し、前記パターンに対応する形状のマスク層を前記物体の表面に形成することと;前記マスク層を介して前記物体の表面を加工することと;を含むデバイス製造方法が提供される。 According to the tenth aspect, the exposure method is used to form a pattern on the object; the object on which the pattern is formed is developed, and a mask layer having a shape corresponding to the pattern is formed on the object. Forming a surface of the object; and processing the surface of the object through the mask layer.
 上記発明の概要は、本発明の必要な特徴の全てを列挙したものではない。これら特徴群のサブコンビネーションもまた発明となり得る。 The above summary of the invention does not enumerate all necessary features of the present invention. A sub-combination of these feature groups can also be an invention.
露光装置100全体の構造を示す模式図である。1 is a schematic diagram showing the overall structure of an exposure apparatus 100. FIG. 反射鏡222の個別の構造を模式的に示す断面図である。3 is a cross-sectional view schematically showing an individual structure of a reflecting mirror 222. FIG. 空間光変調器220の模式的な斜視図である。3 is a schematic perspective view of a spatial light modulator 220. FIG. 空間光変調器220の動作を示す図である。FIG. 6 is a diagram illustrating the operation of the spatial light modulator 220. 光源部200の機能を模式的に示す図である。It is a figure which shows the function of the light source part 200 typically. 空間光変調器220の機能を模式的に示す図である。FIG. 3 is a diagram schematically illustrating a function of a spatial light modulator 220. 空間光変調器220における光源光の入射角度分布を示すグラフである。5 is a graph showing an incident angle distribution of light source light in the spatial light modulator 220. 反射鏡間隔と干渉の大きさとの関係を示すグラフである。It is a graph which shows the relationship between a reflective mirror space | interval and the magnitude | size of interference. 干渉発生条件を模式的に示す図である。It is a figure which shows an interference generation condition typically. 照明パターンの面積に対する干渉の影響を示すグラフである。It is a graph which shows the influence of the interference with respect to the area of an illumination pattern. 干渉の抑制を条件とする設定角度算出手順を示す流れ図である。It is a flowchart which shows the setting angle calculation procedure on condition of suppression of interference. 反射鏡222と光パターンP、Q、Rとの関係を模式的に示す図である。It is a figure which shows typically the relationship between the reflective mirror 222 and the light patterns P, Q, and R. FIG. スポット光の座標を決定する方法を模式的に示す図である。It is a figure which shows typically the method of determining the coordinate of spotlight. スポット光の座標を決定する方法の手順を模式的に示す図である。It is a figure which shows typically the procedure of the method of determining the coordinate of spotlight. スポット光の座標を決定する方法の他の手順を模式的に示す図である。It is a figure which shows typically the other procedure of the method of determining the coordinate of spot light. マイクロデバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a microdevice. 基板処理ステップの内容を示すフローチャートである。It is a flowchart which shows the content of a board | substrate process step.
 以下、発明の実施の形態を通じて本発明を説明する。以下の実施形態は請求の範囲に係る発明を限定しない。実施の形態において説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. The following embodiments do not limit the invention according to the claims. Not all combinations of features described in the embodiments are essential for the solution of the invention.
 図1は、露光装置100全体の構造を示す模式図である。露光装置100は、光源部200、照明光学系300および投影光学系400を備える。 FIG. 1 is a schematic diagram showing the overall structure of the exposure apparatus 100. The exposure apparatus 100 includes a light source unit 200, an illumination optical system 300, and a projection optical system 400.
 光源部200は、光源110、制御部210、空間光変調器220、プリズム230、結像光学系240、ビームスプリッタ250および計測部260を含む。光源110は、照明光Lを発生する。光源110が発生した照明光Lは、光源110の発光機構の特性に応じた照度分布を有する。このため、照明光Lは、照明光Lの光路と直交する断面において原画像Iを有する。 The light source unit 200 includes a light source 110, a control unit 210, a spatial light modulator 220, a prism 230, an imaging optical system 240, a beam splitter 250, and a measurement unit 260. The light source 110 generates illumination light L. The illumination light L generated by the light source 110 has an illuminance distribution according to the characteristics of the light emitting mechanism of the light source 110. For this reason, the illumination light L has the original image I 1 in a cross section orthogonal to the optical path of the illumination light L.
 光源110から出射された照明光Lは、プリズム230に入射する。プリズム230は、照明光Lを空間光変調器220に導いた後、再び外部に出射させる。 The illumination light L emitted from the light source 110 enters the prism 230. The prism 230 guides the illumination light L to the spatial light modulator 220 and then emits the light again to the outside.
 制御部210は、駆動部212および算出部214を含む。算出部214は、空間光変調器220に設定する後述する設定角度を算出する。駆動部212は、算出部214が算出した設定角度を空間光変調器220に設定する。これら制御部210の動作については改めて後述する。なお、制御部210は、媒体216をマウントすることにより、自身の新たな動作手順をロードすることもできる。 The control unit 210 includes a drive unit 212 and a calculation unit 214. The calculation unit 214 calculates a setting angle, which will be described later, set in the spatial light modulator 220. The drive unit 212 sets the set angle calculated by the calculation unit 214 in the spatial light modulator 220. The operation of the control unit 210 will be described later. Note that the control unit 210 can load its new operation procedure by mounting the medium 216.
 空間光変調器220は、制御部210の制御の下に入射した照明光Lを変調する。空間光変調器220の構造と動作については、他の図を参照して後述する。 The spatial light modulator 220 modulates the illumination light L incident under the control of the control unit 210. The structure and operation of the spatial light modulator 220 will be described later with reference to other drawings.
 空間光変調器220を経てプリズム230から出射された照明光Lは、結像光学系240を経て、後段の照明光学系300に入射される。結像光学系240は、照明光学系300の入射面312に照明光画像Iを形成する。 The illumination light L emitted from the prism 230 via the spatial light modulator 220 is incident on the illumination optical system 300 at the subsequent stage via the imaging optical system 240. The imaging optical system 240 forms an illumination light image I 3 on the incident surface 312 of the illumination optical system 300.
 ビームスプリッタ250は、結像光学系240および照明光学系の間において、照明光Lの光路上に配される。ビームスプリッタ250は、照明光学系300に入射する前の照明光Lの一部を分離して計測部260に導く。 The beam splitter 250 is disposed on the optical path of the illumination light L between the imaging optical system 240 and the illumination optical system. The beam splitter 250 separates a part of the illumination light L before entering the illumination optical system 300 and guides it to the measurement unit 260.
 計測部260は、照明光学系300の入射面312と光学的に共役な位置で照明光Lの画像を計測する。これにより、計測部260は、照明光学系300に入射する照明光画像Iと同じ画像を計測する。よって、制御部210は、計測部260により計測される照明光画像Iを参照して、駆動部212を介して空間光変調器220を帰還制御できる。計測部260の詳細な構成および作用については、例えば米国特許出願公開第2008/0030707号明細書を参照することができる。 The measurement unit 260 measures the image of the illumination light L at a position optically conjugate with the incident surface 312 of the illumination optical system 300. Thereby, the measurement unit 260 measures the same image as the illumination light image I 3 incident on the illumination optical system 300. Therefore, the control unit 210 can perform feedback control of the spatial light modulator 220 via the drive unit 212 with reference to the illumination light image I 3 measured by the measurement unit 260. For details of the configuration and operation of the measurement unit 260, reference can be made to, for example, US Patent Application Publication No. 2008/0030707.
 照明光学系300は、フライアイレンズ310、コンデンサ光学系320、視野絞り330および結像光学系340を含む。照明光学系300の出射端には、露光マスク410を保持したマスクステージ420が配される。 The illumination optical system 300 includes a fly-eye lens 310, a condenser optical system 320, a field stop 330, and an imaging optical system 340. A mask stage 420 holding an exposure mask 410 is disposed at the exit end of the illumination optical system 300.
 フライアイレンズ310は、並列的に緻密に配された多数のレンズ素子を備え、後側焦点面にレンズ素子の数と同数の照明光画像Iを含む2次光源を形成する。コンデンサ光学系320は、フライアイレンズ310から出射された照明光Lを集光して視野絞り330を重畳的に照明する。本実施形態では、フライアイレンズ310として、例えば米国特許第6,913,373号明細書に開示されているシリンドリカルマイクロフライアイレンズを用いることができる。 The fly-eye lens 310 includes a large number of lens elements arranged densely in parallel, and forms a secondary light source including illumination light images I 3 as many as the number of lens elements on the rear focal plane. The condenser optical system 320 condenses the illumination light L emitted from the fly-eye lens 310 and illuminates the field stop 330 in a superimposed manner. In the present embodiment, as the fly eye lens 310, for example, a cylindrical micro fly eye lens disclosed in US Pat. No. 6,913,373 can be used.
 視野絞り330を経た照明光Lは、結像光学系340により、露光マスク410のパターン面に、視野絞り330の開口部の像である照射光画像Iを形成する。露光マスク410のパターン面は、フライアイレンズ310の射出面に対して光学的にフーリエ変換の関係となる。よって、照明光学系300は、その出射端に配された露光マスク410のパターン面を、照射光画像Iによりケーラー照明する。 The illumination light L that has passed through the field stop 330 forms an irradiation light image I 4 that is an image of the opening of the field stop 330 on the pattern surface of the exposure mask 410 by the imaging optical system 340. The pattern surface of the exposure mask 410 is optically Fourier-transformed with respect to the exit surface of the fly-eye lens 310. Accordingly, the illumination optical system 300, the pattern surface of the exposure mask 410 disposed at its exit end, Koehler illuminated by illumination light image I 4.
 なお、照明光学系300の入射面312でもあるフライアイレンズ310の入射端に形成される照度分布は、フライアイレンズ310の出射端に形成される2次光源全体の大局的な照度分布と高い相関を示す。よって、光源部200が照明光学系300に入射させる照明光画像Iは、照明光学系300が露光マスク410に照射する照明光Lの照度分布である照射光画像Iにも反映される。 Note that the illuminance distribution formed at the entrance end of the fly-eye lens 310 that is also the entrance surface 312 of the illumination optical system 300 is higher than the overall illuminance distribution of the entire secondary light source formed at the exit end of the fly-eye lens 310. Show correlation. Therefore, the illumination light image I 3 that the light source unit 200 enters the illumination optical system 300 is also reflected in the illumination light image I 4 that is the illuminance distribution of the illumination light L that the illumination optical system 300 irradiates the exposure mask 410.
 投影光学系400はマスクステージ420の直後に配され、開口絞り430を備える。開口絞り430は、照明光学系300のフライアイレンズ310の出射端と光学的に共役な位置に配される。投影光学系400の出射端には、感光性材料を塗布された基板510を保持する基板ステージ520が配される。なお、投影光学系400の開口絞り430は、照明光学系300において二次光源が形成される位置と光学的に共役な位置となる。これより、照明光学系300において二次光源が形成される位置を照明光学系の照明瞳面と称することができる。 The projection optical system 400 is disposed immediately after the mask stage 420 and includes an aperture stop 430. The aperture stop 430 is disposed at a position optically conjugate with the emission end of the fly-eye lens 310 of the illumination optical system 300. A substrate stage 520 that holds a substrate 510 coated with a photosensitive material is disposed at the exit end of the projection optical system 400. The aperture stop 430 of the projection optical system 400 is a position optically conjugate with the position where the secondary light source is formed in the illumination optical system 300. Thus, the position where the secondary light source is formed in the illumination optical system 300 can be referred to as the illumination pupil plane of the illumination optical system.
 マスクステージ420に保持された露光マスク410は、照明光学系300により照射された照明光Lを反射または透過する領域と吸収する領域とからなるマスクパターンを有する。よって、露光マスク410に照明光画像Iを照射することにより、露光マスク410のマスクパターンと照明光画像I自体の照度分布との相互作用により投影光画像Iが生成される。投影光画像Iは、基板510の感光性材料に投影されて、要求されたパターンを有するレジスト層を基板510の表面に形成する。 The exposure mask 410 held on the mask stage 420 has a mask pattern composed of a region that reflects or transmits the illumination light L irradiated by the illumination optical system 300 and a region that absorbs it. Therefore, by irradiating the illumination light image I 4 to the exposure mask 410, the projection light image I 5 produced by the interaction of the illuminance distribution of the illumination light image I 4 itself as a mask pattern of an exposure mask 410. The projected light image I 5 is projected onto the photosensitive material of the substrate 510 to form a resist layer having the required pattern on the surface of the substrate 510.
 なお、図1では照明光Lの光路を直線状に描いているが、照明光Lの光路を屈曲させることにより露光装置100は小型化されている。また、図1は、照明光Lが露光マスク410を透過するように描いているが、反射型の露光マスク410が用いられる場合もある。 In FIG. 1, the optical path of the illumination light L is drawn in a straight line, but the exposure apparatus 100 is miniaturized by bending the optical path of the illumination light L. Although FIG. 1 depicts the illumination light L so that it passes through the exposure mask 410, a reflective exposure mask 410 may be used.
 図2は、空間光変調器220の構造を説明する図であり、空間光変調器220の一部を拡大して示す。空間光変調器220は、反射鏡222、基板224、フレクチャ226および電極223、225を有する。反射鏡222は、基板224の下面に、フレクチャ226を介して吊り下げられる。フレクチャ226は変形容易な材料により形成される。よって、反射鏡222は、基板224に対して揺動自在に支持される。 FIG. 2 is a diagram for explaining the structure of the spatial light modulator 220, and shows a part of the spatial light modulator 220 in an enlarged manner. The spatial light modulator 220 includes a reflecting mirror 222, a substrate 224, a flexure 226, and electrodes 223 and 225. The reflecting mirror 222 is suspended from the lower surface of the substrate 224 via the flexure 226. The flexure 226 is formed of a material that can be easily deformed. Therefore, the reflecting mirror 222 is supported so as to be swingable with respect to the substrate 224.
 一方の電極223は、基板224に対向して、反射鏡222の裏面に配される。他方の電極225は、反射鏡222の裏面に対向して、基板224の表面に配される。基板224に配された電極225は複数に分割されており、個別に電圧を印加できる。このような構造により、基板224上の電極225のいずれかに電圧を印加して反射鏡222の電極223との間で静電力を作用させ、反射鏡222に要求された傾きを与えることができる。 One electrode 223 is disposed on the back surface of the reflecting mirror 222 so as to face the substrate 224. The other electrode 225 is disposed on the surface of the substrate 224 so as to face the back surface of the reflecting mirror 222. The electrode 225 disposed on the substrate 224 is divided into a plurality of parts, and a voltage can be applied individually. With such a structure, a voltage can be applied to any of the electrodes 225 on the substrate 224 to cause an electrostatic force to act between the electrodes 223 of the reflecting mirror 222 and to give the required tilt to the reflecting mirror 222. .
 図3は、空間光変調器220の模式的な斜視図である。図示のように、空間光変調器220は、上記のような反射鏡222および電極223、225を備えた構造物を、一枚の基板224に多数配置して形成される。複数の反射鏡222は、制御部210の制御に応じて個別に揺動する。空間光変調器220と同様の空間光変調器についての詳細構成等は、例えば、米国特許出願公開第2009/0097094号明細書に開示されている。 FIG. 3 is a schematic perspective view of the spatial light modulator 220. As shown in the figure, the spatial light modulator 220 is formed by arranging a large number of structures including the reflecting mirror 222 and the electrodes 223 and 225 as described above on a single substrate 224. The plurality of reflecting mirrors 222 individually swing according to the control of the control unit 210. The detailed configuration of the spatial light modulator similar to the spatial light modulator 220 is disclosed in, for example, US Patent Application Publication No. 2009/0097094.
 なお、図面を明瞭にする目的で、図3には、16枚の反射鏡222を備えた空間光変調器220を示した。しかしながら、露光装置100に実装される空間光変調器220は、形成するパターンの精度に応じて非常に多数の反射鏡222を備えている。 For the purpose of clarifying the drawing, FIG. 3 shows a spatial light modulator 220 including 16 reflecting mirrors 222. However, the spatial light modulator 220 mounted on the exposure apparatus 100 includes a large number of reflecting mirrors 222 according to the accuracy of the pattern to be formed.
 図4は、光源部200の部分拡大図であって、空間光変調器220を含む光源部200の動作を示す。プリズム230は、一対の反射面232、234を有する。プリズム230に入射した照明光Lは、一方の反射面232により、空間光変調器220に向かって照射される。 FIG. 4 is a partially enlarged view of the light source unit 200 and shows the operation of the light source unit 200 including the spatial light modulator 220. The prism 230 has a pair of reflecting surfaces 232 and 234. The illumination light L incident on the prism 230 is irradiated toward the spatial light modulator 220 by the one reflecting surface 232.
 既に説明した通り、空間光変調器220は、個別に揺動させることができる複数の反射鏡222を有する。よって、制御部210が空間光変調器220を制御することにより、要求に応じた任意の光源画像Iを形成できる。 As already described, the spatial light modulator 220 has a plurality of reflecting mirrors 222 that can be individually swung. Therefore, the control unit 210 controls the spatial light modulator 220 can be formed of any light source image I 2 corresponding to the request.
 空間光変調器220から出射された光源画像Iは、プリズム230の他方の反射面234によりプリズム230から出射される。プリズム230から出射された光源画像Iは、結像光学系240により、照明光学系300の入射面312に照明光画像Iを形成する。 The light source image I 2 emitted from the spatial light modulator 220 is emitted from the prism 230 by the other reflecting surface 234 of the prism 230. The light source image I 2 emitted from the prism 230 forms an illumination light image I 3 on the incident surface 312 of the illumination optical system 300 by the imaging optical system 240.
 ここで、再び図1を参照すると、空間光変調器220の投射面は、反射鏡222の配列面に対して光学的にフーリエ変換の関係にある面であって、フライアイレンズ310の入射面と光学的に共役な、照明光学系300の瞳面となる。よって、フライアイレンズ310の入射面には、投射面に形成される照明パターンと相似の光強度分布が形成される。 Here, referring again to FIG. 1, the projection surface of the spatial light modulator 220 is a surface that is optically Fourier-transformed with respect to the arrangement surface of the reflecting mirrors 222, and is the incident surface of the fly-eye lens 310. This is a pupil plane of the illumination optical system 300 that is optically conjugate with the above. Therefore, a light intensity distribution similar to the illumination pattern formed on the projection surface is formed on the incident surface of the fly-eye lens 310.
 フライアイレンズ310による波面分割数が十分に大きい場合、例えば1万分割以上である場合は、フライアイレンズ310の射出面に、照明パターンと高い相関を示す光強度分布を持つ二次光源が形成される。よって、露光マスク410のパターン面は、照明光学系300に形成された二次光源を光源としてケーラー照明される。 When the number of wavefront divisions by the fly-eye lens 310 is sufficiently large, for example, 10,000 divisions or more, a secondary light source having a light intensity distribution showing a high correlation with the illumination pattern is formed on the exit surface of the fly-eye lens 310. Is done. Therefore, the pattern surface of the exposure mask 410 is Koehler illuminated using the secondary light source formed in the illumination optical system 300 as a light source.
 なお、フライアイレンズ310の入射面に対してその射出面はフーリエ変換の関係にあるので、投射面と露光マスク410のパターン面とが共役であるように見える。フライアイレンズ310の波面分割数が大きい場合、フライアイレンズの入射面に形成される大局的な光強度分布と、射出面に形成される二次光源全体の大局的な光強度分布(瞳強度分布)とは高い相関を示す。よって、フライアイレンズ310の入射面312、および、当該入射面よりも光源110側であって入射面と光学的に共役な面も照明瞳面と称することができる。 It should be noted that since the exit surface of the fly-eye lens 310 has a Fourier transform relationship with respect to the entrance surface, the projection surface and the pattern surface of the exposure mask 410 appear to be conjugate. When the wavefront division number of the fly-eye lens 310 is large, the overall light intensity distribution formed on the entrance surface of the fly-eye lens and the overall light intensity distribution (pupil intensity) of the entire secondary light source formed on the exit surface. Distribution) shows a high correlation. Therefore, the entrance surface 312 of the fly-eye lens 310 and a surface that is closer to the light source 110 than the entrance surface and is optically conjugate with the entrance surface can also be referred to as an illumination pupil plane.
 図5は、光源部200の機能を模式的に示す図である。図中、空間光変調器220の左側に描かれた曲線は、空間光変調器220に入射する光源光の強度分布の一例を示す。図示のように、空間光変調器220に入射する光源光は一定の強度分布を有する。ただし、この強度分布は、光源110の仕様に依存するので予め判明している。 FIG. 5 is a diagram schematically illustrating the function of the light source unit 200. In the drawing, the curve drawn on the left side of the spatial light modulator 220 shows an example of the intensity distribution of the light source light incident on the spatial light modulator 220. As illustrated, the light source light incident on the spatial light modulator 220 has a constant intensity distribution. However, since this intensity distribution depends on the specifications of the light source 110, it is known in advance.
 入射面312の右側に記載された矩形の曲線は、照明パターンとして求められる光パターンP、Q、Rの強度分布を示す。光パターンP、Q、Rは、各々固有の強度および広さを有する。 The rectangular curve described on the right side of the incident surface 312 indicates the intensity distribution of the light patterns P, Q, and R required as the illumination pattern. Each of the light patterns P, Q, and R has a unique intensity and width.
 図6は、空間光変調器220における反射鏡222の機能を模式的に示す図である。既に説明した通り、空間光変調器220は、複数の反射鏡222の各々に個別に反射角度を設定できる。個々の反射鏡222から射出された反射光は、それぞれがスポット光として入射面312に投射される。なお、個々のスポット光の周辺には、フラウンホーファ回折像としてのサブピークが現れるが、スポット光本来のピークに対してはレベルが低いので無視できる。 FIG. 6 is a diagram schematically showing the function of the reflecting mirror 222 in the spatial light modulator 220. As already described, the spatial light modulator 220 can individually set the reflection angle for each of the plurality of reflecting mirrors 222. Each of the reflected lights emitted from the individual reflecting mirrors 222 is projected onto the incident surface 312 as spot light. A sub-peak as a Fraunhofer diffraction image appears around each spot light, but it can be ignored because the level is lower than the original peak of the spot light.
 例えば図5に示した光パターンP、Q、Rを形成する場合には、それぞれの光パターンの大きさと照度に応じて、反射鏡222から射出されたスポット光を入射面312上に配置する。図示の例では、光パターンP、Rにはそれぞれ2つのスポット光が、光パターンQには6つのスポット光が配置される。 For example, when the light patterns P, Q, and R shown in FIG. 5 are formed, the spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312 according to the size and illuminance of each light pattern. In the illustrated example, two spot lights are arranged in each of the light patterns P and R, and six spot lights are arranged in the light pattern Q.
 なお、図6はあくまでも模式図であり、空間光変調器220は数十万から数百万に及ぶ数の多数の反射鏡222を備える。これにより、光源部200は、任意の強度分布を有する光パターンを意図した通りに形成できる。 Note that FIG. 6 is a schematic diagram only, and the spatial light modulator 220 includes a large number of reflecting mirrors 222 ranging from several hundred thousand to several million. Thereby, the light source part 200 can form the light pattern which has arbitrary intensity distribution as intended.
 しかしながら、多数のスポット光により照明パターンのパターンを形成した場合に、意図しない強度分布が現れる場合がある。このような意図しない強度分布は入射面312における照明パターンの精度を低下させる。このような意図しない強度分布の発生原因のひとつとして、空間光変調器220から入射面312に向かって射出される複数のスポット光同士によって生じる干渉効果がある。 However, when an illumination pattern is formed by a large number of spot lights, an unintended intensity distribution may appear. Such an unintentional intensity distribution reduces the accuracy of the illumination pattern on the incident surface 312. One of the causes of such an unintended intensity distribution is an interference effect caused by a plurality of spot lights emitted from the spatial light modulator 220 toward the incident surface 312.
 図7は、光源110から空間光変調器220へ入射する光源光の角度分布と、空間光変調器220の反射鏡222への入射角度との関係を示すグラフである。空間光変調器220に入射される光源光は完全な平行光ではない。このため、図示のように、不可避に入射角度分布が生じ、空間光変調器220における1枚のミラーによって形成されるスポット光もその分だけ太る事を意味する。 FIG. 7 is a graph showing the relationship between the angular distribution of the light source light incident on the spatial light modulator 220 from the light source 110 and the incident angle on the reflecting mirror 222 of the spatial light modulator 220. The light source light incident on the spatial light modulator 220 is not completely parallel light. For this reason, as shown in the figure, incident angle distribution is inevitably generated, and the spot light formed by one mirror in the spatial light modulator 220 is also thickened accordingly.
 図8は、空間光変調器220における、反射鏡222相互の間隔と、それら反射鏡222の反射光の間で生じる空間的コヒーレンス(干渉の大きさ)との関係を示すグラフである。図示のように、ある一対の反射鏡222の間隔が狭い場合は、著しく大きな干渉が生じる事を意味する。 FIG. 8 is a graph showing the relationship between the spacing between the reflecting mirrors 222 and the spatial coherence (magnitude of interference) generated between the reflected lights of the reflecting mirrors 222 in the spatial light modulator 220. As shown in the figure, when the distance between a pair of reflecting mirrors 222 is narrow, it means that a significantly large interference occurs.
 換言すれば、反射光を射出する反射鏡222の間隔が離れている関係の2枚のミラー同士であれば、それらの角度がほぼ同じであるがためにほぼ同じ位置に形成されるスポット光について、お互いの干渉効果がなく単純な強度和に一致するという事が言える。図示の例では、例えば、個々の反射鏡222の寸法が50μm平方であるとすると、2枚おいて離れた反射鏡222であれば強い干渉は生じない。 In other words, if two mirrors are in a relationship in which the distance between the reflecting mirrors 222 that emit the reflected light is separated, the angles thereof are substantially the same, and therefore the spot light formed at substantially the same position. It can be said that there is no mutual interference effect, and that it corresponds to a simple sum of intensity. In the illustrated example, for example, if the size of each reflecting mirror 222 is 50 μm square, strong interference does not occur if the reflecting mirrors 222 are separated by two.
 なお、反射鏡222の間隔が広い場合であっても、厳密には干渉が生じている。しかしながら、光源部200に求められる精度に対して生じた干渉の強さが無視し得る大きさである場合は、便宜上「干渉が生じない」と考えることができる。 Even when the interval between the reflecting mirrors 222 is wide, strictly speaking, interference occurs. However, when the intensity of interference generated with respect to the accuracy required for the light source unit 200 is negligible, it can be considered that “no interference occurs” for convenience.
 図9は、図7および図8に示した干渉の発生条件を模式的に示す図である。図中には、空間光変調器220およびフライアイレンズ310が対向して配される。これにより、空間光変調器220に入射した照明光が、反射鏡222に反射されてフライアイレンズ310の入射面312に入射する。 FIG. 9 is a diagram schematically showing the interference generation conditions shown in FIG. 7 and FIG. In the figure, the spatial light modulator 220 and the fly-eye lens 310 are arranged facing each other. As a result, the illumination light that has entered the spatial light modulator 220 is reflected by the reflecting mirror 222 and enters the incident surface 312 of the fly-eye lens 310.
 なお、説明の便宜を図る目的で、空間光変調器220の側面に付した符号A~D、1~4により、個別の反射鏡222を示す。また、フライアイレンズ310の側面に付した符号a~d、1~4により、入射面312上の特定領域を示す座標を表す。以下、この特定領域の座標を「瞳面座標」と記載する。 For convenience of explanation, individual reflecting mirrors 222 are indicated by reference signs A to D and 1 to 4 attached to the side surface of the spatial light modulator 220. The coordinates a to d and 1 to 4 attached to the side surface of the fly-eye lens 310 represent coordinates indicating a specific area on the incident surface 312. Hereinafter, the coordinates of the specific area are referred to as “pupil plane coordinates”.
 反射鏡D-1およびC-1から射出される反射光302、304は、入射面上の領域d-1、c-4に照射される。反射鏡D-1およびC-1は隣接しているが、領域d-1、c-4は互いに離れている。よって、反射光302、304に生じる干渉は小さいので無視できる。 The reflected lights 302 and 304 emitted from the reflecting mirrors D-1 and C-1 are applied to the regions d-1 and c-4 on the incident surface. The reflecting mirrors D-1 and C-1 are adjacent to each other, but the regions d-1 and c-4 are separated from each other. Therefore, the interference generated in the reflected lights 302 and 304 is small and can be ignored.
 反射鏡A-3およびD-1から射出される反射光306、302は、領域a-3、d-1に照射される。反射光306、302の光路は互いに略平行ではあるが、反射鏡A-3、D-1および領域a-3、d-1といずれも離れている。よって、反射光306、302に生じる干渉は小さいので無視できる。 Reflected lights 306 and 302 emitted from the reflecting mirrors A-3 and D-1 are applied to the areas a-3 and d-1. The optical paths of the reflected lights 306 and 302 are substantially parallel to each other, but are separated from the reflecting mirrors A-3 and D-1 and the areas a-3 and d-1. Therefore, the interference generated in the reflected lights 306 and 302 is small and can be ignored.
 反射鏡C-1およびC-4から射出される反射光304、305は、同じ領域c-4に照射される。しかしながら、反射鏡C-1、C-4は互いに離れているので、反射光304、305に生じる干渉は小さいので無視できる。 The reflected lights 304 and 305 emitted from the reflecting mirrors C-1 and C-4 are applied to the same region c-4. However, since the reflecting mirrors C-1 and C-4 are separated from each other, interference generated in the reflected lights 304 and 305 is small and can be ignored.
 反射鏡C-4およびD-4から射出される反射光303、305は、対角線方向に連接した領域c-4、d-3に照射される。反射鏡C-1、C-4も隣接するので、反射光303、305は無視できない干渉301を生じる。 Reflected lights 303 and 305 emitted from the reflecting mirrors C-4 and D-4 are applied to the regions c-4 and d-3 connected in the diagonal direction. Since the reflecting mirrors C-1 and C-4 are also adjacent, the reflected lights 303 and 305 cause interference 301 that cannot be ignored.
 このように、間隔が狭い一対の反射鏡222が、入射面312上の近接した領域を照射した場合に、無視できない大きさの干渉が生じる。換言すれば、図6で示したように反射鏡222が射出したスポット光を入射面312に配置する場合に、干渉が生じない条件を前提とすることにより、干渉の影響を受けることなく光パターンを形成できる。よって、露光装置100における算出部は、反射鏡222が出射する反射光の配置が上記条件を満たすように、反射鏡222の各々に設定する設定角度を算出する。 As described above, when the pair of reflecting mirrors 222 having a narrow interval irradiate the adjacent region on the incident surface 312, interference with a magnitude that cannot be ignored occurs. In other words, when the spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312 as shown in FIG. 6, the light pattern is not affected by the interference by assuming that no interference occurs. Can be formed. Therefore, the calculation unit in the exposure apparatus 100 calculates the set angle set for each of the reflecting mirrors 222 so that the arrangement of the reflected light emitted from the reflecting mirror 222 satisfies the above-described conditions.
 ところで、露光装置100の使用方法のひとつとして、マスクパターン(レチクルパターン)と光源画像とを併せて最適化し、微細なパターンを精度よく露光する光源マスク最適化法(SMO法:Source and Mask Optimization)がある。SMO法においては、照明パターンに、互いに離間した複数の光パターンが含まれる場合がある。このため、個々の光パターンの面積は小さくなる。 Incidentally, as one method of using the exposure apparatus 100, a light source mask optimization method (SMO method: Source and Mask Optimization) that optimizes a mask pattern (reticle pattern) and a light source image together and exposes a fine pattern with high accuracy. There is. In the SMO method, the illumination pattern may include a plurality of light patterns separated from each other. For this reason, the area of each light pattern becomes small.
 干渉は発生件数をNcoh、光パターンを形成するスポット光の数(光パターンの面積に比例する)をNと表した場合、両者の関係は下記の数式1のように表せる。
Figure JPOXMLDOC01-appb-M000001
When the number of occurrences of interference is expressed as N coh , and the number of spot lights forming a light pattern (proportional to the area of the light pattern) is expressed as N p , the relationship between both can be expressed as in Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
 図10は、上記のような照明パターンの面積に対する干渉の影響を示すグラフである。図示の通り、光パターンの面積が小さくなると、無視できない干渉の発生が著しく大きくなる。そこで、SMO法においては、干渉の発生を抑制しつつ、反射鏡222が射出するスポット光を入射面312に配置すること、換言すると、反射鏡222から射出される複数の反射光の相互の干渉をより小さくする条件の下に、反射鏡222が射出するスポット光を入射面312に配置することが求められる。 FIG. 10 is a graph showing the influence of interference on the area of the illumination pattern as described above. As shown in the figure, when the area of the light pattern is reduced, the occurrence of non-negligible interference is significantly increased. Therefore, in the SMO method, the spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312 while suppressing the occurrence of interference, in other words, the mutual interference of a plurality of reflected lights emitted from the reflecting mirror 222. It is required that the spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312 under the condition of making the size smaller.
 なお、反射鏡222から射出される複数の反射光の相互の干渉をより小さくするとは、反射鏡222が射出するスポット光を入射面312に配置する場合に、入射面312で発生する干渉を考慮せずにスポット光を配置するときと比べて、入射面312で発生する干渉が抑制されている状態を指すことができる。 Note that the mutual interference between the plurality of reflected lights emitted from the reflecting mirror 222 is made smaller in consideration of interference generated on the incident surface 312 when spot light emitted from the reflecting mirror 222 is arranged on the incident surface 312. The state in which interference generated on the incident surface 312 is suppressed as compared with the case where spot light is arranged without performing this operation can be pointed out.
 図11は、干渉の抑制を条件とする設定角度算出手順を示す流れ図である。図示のように、算出部214は、反射鏡222に入射する光源光の強度が高い方から順に序列を形成する(S201)。続いて、形成された序列に従って、入射する光源光の強度が高い反射鏡222を、処理の対象として選択する(S202)。 FIG. 11 is a flowchart showing a set angle calculation procedure under the condition that interference is suppressed. As illustrated, the calculation unit 214 forms an order in descending order of the intensity of the light source light incident on the reflecting mirror 222 (S201). Subsequently, the reflecting mirror 222 having a high intensity of incident light source light is selected as an object to be processed according to the formed order (S202).
 その理由は、図5に示したように、空間光変調器220に入射する光源光には強度分布がある。よって、反射鏡222が反射して射出するスポット光の強度も個々に異なる。ここで、スポット光の強度が高いと干渉が生じた場合に照明パターンに与える影響も大きい。また、後述するように、既に配置が決まったスポット光が多くある場合は、新たなスポット光の配置に制約が生じる。そこで、露光装置100において、算出部214は、複数の反射鏡222のうち、より照度の高い光源光が入射する反射鏡222から順次、反射角度を算出する。 The reason is that, as shown in FIG. 5, the light source light incident on the spatial light modulator 220 has an intensity distribution. Therefore, the intensity of the spot light reflected and emitted from the reflecting mirror 222 is also individually different. Here, when the intensity of the spot light is high, the influence on the illumination pattern is large when interference occurs. Further, as will be described later, when there are many spot lights whose arrangement has already been determined, there are restrictions on the arrangement of new spot lights. Therefore, in the exposure apparatus 100, the calculation unit 214 sequentially calculates the reflection angle from the reflecting mirrors 222 from which the light source light with higher illuminance is incident among the plurality of reflecting mirrors 222.
 次に、算出部214は、選択した反射鏡222が射出するスポット光について、入射面312上における配置を決定する(S203)。この決定は、まず、求められた光パターンを形成することを目的として、入射面312上の位置、即ち、瞳面座標が割り当てられる。続いて、割り当てられた瞳面座標に当該スポット光を投射した場合に生じる干渉について調べる(S204)。 Next, the calculation unit 214 determines the arrangement of the spot light emitted from the selected reflecting mirror 222 on the incident surface 312 (S203). In this determination, first, a position on the entrance surface 312, that is, pupil plane coordinates are assigned for the purpose of forming the obtained light pattern. Subsequently, the interference generated when the spot light is projected onto the assigned pupil plane coordinates is examined (S204).
 この位置において無視し得ない干渉は生じないことが判った場合(S205:NO)、算出部214は、スポット光が当該位置に投射されるように当該反射鏡222の設定角度を算出する(S206)。これにより、当該反射鏡222については設定角度が確定する。続いて、算出部214は、設定角度が未決定の他の反射鏡222があるか否かを調べる(S207)。 When it is found that interference that cannot be ignored occurs at this position (S205: NO), the calculation unit 214 calculates the set angle of the reflecting mirror 222 so that the spot light is projected at the position (S206). ). Thereby, a setting angle is determined for the reflecting mirror 222. Subsequently, the calculation unit 214 checks whether there is another reflecting mirror 222 whose setting angle is not yet determined (S207).
 設定角度が決定されていない反射鏡222がもはや無い場合(S207:NO)、算出部214は、設定角度算出の処理を終了し、駆動部212が、算出された設定角度を反射鏡222の各々に設定する。設定角度が決定されていない反射鏡222がまだある場合(S207:YES)は、再びステップS202に戻って、照明光の入射強度が高い反射鏡222から順次設定角度を決定する。 When there is no more reflecting mirror 222 for which the setting angle has not been determined (S207: NO), the calculation unit 214 ends the setting angle calculation process, and the driving unit 212 sets the calculated setting angle to each of the reflecting mirrors 222. Set to. If there is still a reflecting mirror 222 for which the setting angle has not been determined (S207: YES), the process returns to step S202 again, and the setting angles are sequentially determined from the reflecting mirror 222 having a high incident intensity of illumination light.
 ステップ205において、無視し得ない干渉が生じることが判った場合(S205:YES)、算出部214は、当該反射鏡222が発生するスポット光について、他の座標を割り当てる(S203)。以下、当該反射鏡222のスポット光が生じる干渉を調べるステップ(S204)を繰り返すことにより、干渉の発生を抑制しつつ、照明パターンを形成できる。 If it is found in step 205 that interference that cannot be ignored occurs (S205: YES), the calculation unit 214 assigns other coordinates to the spot light generated by the reflector 222 (S203). Hereinafter, by repeating the step (S204) of examining the interference generated by the spot light of the reflecting mirror 222, it is possible to form an illumination pattern while suppressing the occurrence of interference.
 図12は、上記のような手順により反射鏡222の設定角度を設定された空間光変調器220と入射面312における光パターンP、Q、Rとの関係を模式的に示す図である。図中の丸付き数字は、入射する光源光強度の高い順、即ち、瞳面座標を決定する順序を示す。 FIG. 12 is a diagram schematically showing the relationship between the spatial light modulator 220 in which the setting angle of the reflecting mirror 222 is set by the above-described procedure and the light patterns P, Q, and R on the incident surface 312. Circled numbers in the figure indicate the order in which incident light source light intensity is high, that is, the order in which pupil plane coordinates are determined.
 図示のように、10本あるスポット光のうちスポット光1~8までは、既に配置が決定されている。これら決定されたスポット光の各々は、反射鏡222側においても、入射面312側においてもそれぞれ間隔が離れており、無視できない干渉は生じていない。 As shown in the figure, among the ten spot lights, the arrangement of the spot lights 1 to 8 has already been determined. The determined spot lights are spaced apart from each other on the reflecting mirror 222 side and on the incident surface 312 side, and non-negligible interference does not occur.
 しかしながら、9本目および10本目のスポット光については、光パターンQの一部として入射面312上で配置しようとした場合(図中に一点鎖線により示す)に、干渉を生じる条件を避けて配置できる瞳面座標がない。このような場合に、算出部214は、スポット光の配置を決定できない反射鏡222について、付加的な算出手順を導入してもよい。 However, the ninth and tenth spot lights can be arranged avoiding the condition that causes interference when they are arranged on the incident surface 312 as a part of the light pattern Q (indicated by a one-dot chain line in the drawing). There are no pupil plane coordinates. In such a case, the calculation unit 214 may introduce an additional calculation procedure for the reflector 222 that cannot determine the arrangement of the spot light.
 図13は、上記のような場合に、スポット光を配置する入射面312上の位置(瞳面座標)を決定する手順を模式的に示す図である。図示の例では、入射した光源光強度が高い方から3番目のスポット光の瞳面座標を決定する。 FIG. 13 is a diagram schematically showing a procedure for determining a position (pupil plane coordinates) on the incident surface 312 where the spot light is arranged in the above case. In the illustrated example, the pupil plane coordinates of the third spot light from the higher incident light source light intensity are determined.
 ここで、(1)に示す複数のスポット光のうちの三番目のスポット光の瞳面座標を見出すことができなかった場合、算出部214は、(2)に示すように、光源光強度の序列において、三番目の反射鏡222と四番目の反射鏡222とを入れ換えた上で、改めてスポット光の配置を決定する。このように、処理対象の反射鏡222を変更することにより、スポット光の配置を見出すことができる場合がある。 Here, when the pupil plane coordinates of the third spot light among the plurality of spot lights shown in (1) cannot be found, the calculation unit 214 calculates the light source light intensity as shown in (2). In the order, the third reflecting mirror 222 and the fourth reflecting mirror 222 are interchanged, and the arrangement of the spot light is determined again. As described above, the arrangement of the spot light may be found by changing the reflection mirror 222 to be processed.
 更に、それでもスポット光の配置を見出すことができない場合、算出部214は、(3)に示すように、三番目のスポット光を、更に異なる反射鏡222が射出するスポット光と入れ換える。以下、スポット光を配置する処理を繰り返す。上記のようにして、より干渉が少ない照明パターンを形成できる。 Furthermore, if the spot light arrangement cannot still be found, the calculation unit 214 replaces the third spot light with a spot light emitted by a different reflecting mirror 222 as shown in (3). Hereinafter, the process of arranging the spot light is repeated. As described above, an illumination pattern with less interference can be formed.
 図14は、上記のような方法の流れを模式的に示す図である。図示のように、算出部214は、入射する光源光強度が高いものから順にスポット光の配置を検索し、干渉を生じない配置を見出すことができないスポット光(白い星印により示す)は、より下位のスポット光と入れ換えて配置を検索する。以下、最下位のスポット光まで入れ換えを繰り返し、それでも干渉を生じない配置を見出すことができなかった場合は、干渉を回避できないと判断する。 FIG. 14 is a diagram schematically showing the flow of the method as described above. As shown in the figure, the calculation unit 214 searches for the arrangement of the spot light in descending order of the incident light source light intensity, and spot light (indicated by a white star) that cannot find an arrangement that does not cause interference is more The arrangement is searched by substituting the lower spot light. Thereafter, the replacement is repeated until the lowest spot light, and if it is still impossible to find an arrangement that does not cause interference, it is determined that interference cannot be avoided.
 しかしながら、より下位のスポット光は強度が低いので生じる干渉も弱い。よって、算出部214は、光源部200に求められた精度に応じて、生じる干渉が弱くなった時点で、当該スポット光を配置してもよい。これにより、実効的には、干渉の影響を抑制できる。 However, the lower spot light has a low intensity, so the interference generated is weak. Therefore, the calculation unit 214 may arrange the spot light when the generated interference becomes weak according to the accuracy calculated for the light source unit 200. This effectively suppresses the influence of interference.
 図15は、スポット光を配置する場合の、更に付加的な手順を模式的に示す図である。既に説明した通り、配置検索を処理中のスポット光(白い星印により示す)について干渉を生じることがない配置を見出せなかった場合は、まず、より下位のスポット光と入れ換えて配置を検索することにより、干渉の少ない配置を見出すことができる場合がある。 FIG. 15 is a diagram schematically showing a further additional procedure when spot light is arranged. As already explained, if you can't find an arrangement that does not cause interference with the spot light (indicated by a white star) that is being processed for the arrangement search, first search for the arrangement by substituting the lower spot light. May find an arrangement with less interference.
 しかしながら、それでも配置を決定できなかった場合、算出部214は、より上位であり、既に決定されているスポット光(黒い星印により示す)の配置に、処理中のスポット光を配置した場合について干渉が生じるか否かを調べる。また、その場合に、処理中のスポット光を配置しようとした位置に、既定のスポット光を配置した場合に干渉が生じるか否かを調べる。 However, if the arrangement cannot be determined, the calculation unit 214 interferes with the case where the spotlight being processed is arranged in the arrangement of the higher-order spotlight (indicated by a black star). Check to see if this occurs. In this case, it is checked whether or not interference occurs when a predetermined spot light is arranged at a position where the spot light being processed is to be arranged.
 これにより、双方のスポット光について干渉が生じない場合、算出部214は、スポット光の序列を入れ換えて配置を決定する。また、干渉が生じて処理中のスポット光を配置できなかった場合は、更に上位で、配置が既定のスポット光について、同様の処理を試みる。以下、最上位のスポット光まで、入れ換えと配置の検索を繰り返すことにより、干渉を生じることなくスポット光を配置できる場合がある。 Thus, when interference does not occur for both spot lights, the calculation unit 214 determines the arrangement by exchanging the order of the spot lights. In addition, when the spot light being processed cannot be arranged due to interference, the same processing is attempted for the spot light whose arrangement is predetermined at a higher level. Hereinafter, there is a case where the spot light can be arranged without causing interference by repeating the replacement and the search for the arrangement up to the highest-order spot light.
 なお、既に説明した通り、既に配置が決定されたスポット光が多くなるにつれて、新たなスポット光の配置が制約される。算出部214は、スポット光の配置に過剰な処理時間がかかる場合に、当該スポット光に対して、もはや配置できる位置がないと見做してもよい。そのような場合は、当該スポット光を照明パターンの範囲外に向けて投射させる反射角度を算出して、当該スポット光を破棄してもよい。これにより、算出部214の処理時間が著しく長くなることを防止できる。 As already described, as the number of spot lights whose arrangement has already been determined increases, the arrangement of new spot lights is restricted. The calculation unit 214 may consider that there is no longer a position where the spot light can be arranged when excessive processing time is required for the spot light arrangement. In such a case, the spot light may be discarded by calculating a reflection angle at which the spot light is projected outside the range of the illumination pattern. Thereby, it is possible to prevent the processing time of the calculation unit 214 from becoming extremely long.
 ここで、照明パターンの範囲外とは、光源部200の結像光学系240において、光学部品が配されていない領域、例えば、光学部品を支持する鏡筒の内面等であってもよい。また、破棄するスポット光が複数ある場合は、照明パターンの範囲全体に均一またはランダムに破棄するスポット光を分布させ、破棄するスポット光が有意なパターンを形成しないようにしてもよい。 Here, the outside of the range of the illumination pattern may be a region where no optical component is arranged in the imaging optical system 240 of the light source unit 200, for example, the inner surface of a lens barrel that supports the optical component. Further, when there are a plurality of spot lights to be discarded, the spot light to be discarded uniformly or randomly may be distributed over the entire range of the illumination pattern so that the discarded spot light does not form a significant pattern.
 このように上述の手順では、入射面に配置されるスポット光の配置を決定するに際して入射面での干渉状態を評価し、その評価に基づいて、干渉がより小さくなるように複数の反射鏡のそれぞれの角度を算出しており、形成された照明パターンに予期しない照度分布が発生することを低減できる。なお、干渉状態の評価は上述したように間接的なものであっても直接的なもの(入射面での干渉状態そのものの評価)であっても良く、シミュレーションに基づくものであっても観測結果に基づくものであっても良い。 As described above, in the above-described procedure, the interference state on the incident surface is evaluated when determining the arrangement of the spot light to be disposed on the incident surface, and based on the evaluation, the reflection mirrors are arranged so that the interference becomes smaller. Each angle is calculated, and it is possible to reduce the occurrence of an unexpected illuminance distribution in the formed illumination pattern. The evaluation of the interference state may be indirect or direct (evaluation of the interference state itself on the incident surface) as described above, and the observation result may be based on simulation. It may be based on.
 上記のような一連の算出方法および算出手順は、算出部214に予め実装してもよいし、算出部214の一部または全部が汎用情報処理装置である場合に、当該汎用情報処理装置に上記方法および手順を実行させるプログラムとして、何らかの媒体あるいは通信回線を介して実装してもよい。 A series of calculation methods and calculation procedures as described above may be implemented in the calculation unit 214 in advance, or when a part or all of the calculation unit 214 is a general-purpose information processing device, The program for executing the method and procedure may be implemented via some medium or communication line.
 なお、上述の説明では、算出部214は、反射鏡222に入射する光源光の強度が高い方から順に序列を形成し(S201)、形成された序列に従って、入射する光源光の強度が高い反射鏡222を、処理の対象として選択(S202)していたが、この手法には限定されない。例えば、反射鏡222をランダムに選択する手法を用いても良い。 In the above description, the calculation unit 214 forms an order in descending order of the intensity of the light source light incident on the reflecting mirror 222 (S201), and the reflection with the high intensity of the incident light source light is performed according to the formed order. Although the mirror 222 has been selected as a processing target (S202), the method is not limited to this. For example, a method of randomly selecting the reflecting mirror 222 may be used.
 また、上述の説明では、計測部260がオプティカルインテグレータとしてのフライアイレンズ310よりも空間光変調器220側で分岐された照明光を受光して照明光画像Iを計測する構成であったが、フライアイレンズ310を経由した照明光Lの照明光画像Iや投影光画像Iを計測する構成であっても良い。 In the above description, the measurement unit 260 receives the illumination light branched on the spatial light modulator 220 side from the fly-eye lens 310 as an optical integrator, and measures the illumination light image I 3. The configuration may be such that the illumination light image I 4 or the projection light image I 5 of the illumination light L that has passed through the fly-eye lens 310 is measured.
 また、上記実施形態では、二次元的に配列されたミラー要素の傾斜を独立に制御する空間光変調器を採用したが、そのような空間光変調器として、例えば欧州特許出願公開第779530号明細書、米国特許第6,900,915号明細書、並びに米国特許第7,095,546号明細書等に開示される空間光変調器を採用することができる。 In the above embodiment, the spatial light modulator that independently controls the tilt of the mirror elements arranged two-dimensionally is employed. As such a spatial light modulator, for example, European Patent Application No. 779530 is disclosed. , U.S. Pat. No. 6,900,915, U.S. Pat. No. 7,095,546, and the like.
 また、空間光変調器として、さらにミラー要素の高さを独立に制御する空間光変調器を採用することも可能である。そのような空間光変調器として、例えば米国特許第5,312,513号明細書、並びに米国特許第6,885,493号明細書に開示される空間光変調器を採用することができる。さらに、上述の空間光変調器を、例えば米国特許第6,891,655号明細書、あるいは米国特許出願公開第2005/0095749号明細書の開示に従って変形することも可能である。 It is also possible to employ a spatial light modulator that independently controls the height of the mirror element as the spatial light modulator. As such a spatial light modulator, for example, the spatial light modulator disclosed in US Pat. No. 5,312,513 and US Pat. No. 6,885,493 can be employed. Furthermore, the above-described spatial light modulator can be modified in accordance with the disclosure of, for example, US Pat. No. 6,891,655 or US Patent Application Publication No. 2005/0095749.
 また、上記実施形態では、スキャニング・ステッパに本発明が適用された場合について説明したが、これに限らず、ステッパなどの静止型露光装置に本発明を適用しても良い。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置にも本発明は適用することができる。 In the above embodiment, the case where the present invention is applied to the scanning stepper has been described. However, the present invention is not limited to this, and the present invention may be applied to a stationary exposure apparatus such as a stepper. The present invention can also be applied to a step-and-stitch reduction projection exposure apparatus that synthesizes a shot area and a shot area.
 また、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも本発明を適用できる。また、例えば米国特許第7,589,822号明細書などに開示されているように、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置にも本発明は適用が可能である。 In addition, as disclosed in, for example, US Pat. No. 6,590,634, US Pat. No. 5,969,441, US Pat. No. 6,208,407, a plurality of wafers. The present invention can also be applied to a multi-stage type exposure apparatus provided with a stage. Further, as disclosed in, for example, US Pat. No. 7,589,822, an exposure including a measurement stage including a measurement member (for example, a reference mark and / or a sensor) separately from the wafer stage. The present invention can also be applied to an apparatus.
 また、上記実施形態では、露光装置100が、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置である場合について説明したが、これに限らず、例えば欧州特許出願公開第1420298号明細書、国際公開第2004/055803号、米国特許第6,952,253号明細書などに開示されているように、投影光学系とウエハとの間に照明光の光路を含む液浸空間を形成し、投影光学系及び液浸空間の液体を介して照明光でウエハを露光する露光装置にも本発明を適用することができる。 In the above embodiment, the case where the exposure apparatus 100 is a dry-type exposure apparatus that exposes the wafer W without using liquid (water) has been described. As disclosed in US Pat. No. 1,420,298, WO 2004/055803, US Pat. No. 6,952,253, and the like, an immersion optical path including illumination light path between the projection optical system and the wafer. The present invention can also be applied to an exposure apparatus that forms a space and exposes the wafer with illumination light through the liquid in the projection optical system and the immersion space.
 また、上記実施形態の露光装置を含み本発明に係る露光装置の投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系は屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、この投影像は倒立像及び正立像のいずれでも良い。 The projection optical system of the exposure apparatus according to the present invention including the exposure apparatus of the above-described embodiment may be any of a reduction system as well as an equal magnification and an enlargement system, and the projection optical system is not only a refraction system but also a reflection system and Either a catadioptric system may be used, and the projected image may be an inverted image or an erect image.
 また、上記実施形において、米国特許出願公開第2006/0170901号明細書や米国特許出願公開第2007/0146676号明細書に開示される、いわゆる偏光照明方法を適用することも可能である。 Further, in the above embodiment, it is also possible to apply a so-called polarization illumination method disclosed in US Patent Application Publication No. 2006/0170901 and US Patent Application Publication No. 2007/0146676.
 また、露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。 The light source of the exposure apparatus is not limited to the ArF excimer laser, but is a KrF excimer laser (output wavelength 248 nm), F 2 laser (output wavelength 157 nm), Ar 2 laser (output wavelength 126 nm), Kr 2 laser (output wavelength 146 nm). It is also possible to use a pulse laser light source such as a super high pressure mercury lamp that emits bright lines such as g-line (wavelength 436 nm) and i-line (wavelength 365 nm). A harmonic generator of a YAG laser or the like can also be used. In addition, as disclosed in, for example, US Pat. No. 7,023,610, a single wavelength laser beam in an infrared region or a visible region oscillated from a DFB semiconductor laser or a fiber laser is used as vacuum ultraviolet light. For example, a harmonic that is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
 さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを、投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置を、露光装置100として採用することができる。 Further, as disclosed in, for example, US Pat. No. 6,611,316, two reticle patterns are synthesized on a wafer via a projection optical system, and 1 on the wafer by one scan exposure. An exposure apparatus that double exposes two shot areas almost simultaneously can be employed as the exposure apparatus 100.
 図16は、上記生成方法を適用し得るマイクロデバイスの製造工程を示すフローチャートである。なお、マイクロデバイスとは、集積回路、大規模集積回路等の半導体装置、液晶表示パネル、CCD、C-MOS等のイメージセンサ、薄膜磁気ヘッド、マイクロマシン等を含む。 FIG. 16 is a flowchart showing a manufacturing process of a microdevice to which the above generation method can be applied. Note that microdevices include semiconductor devices such as integrated circuits and large-scale integrated circuits, liquid crystal display panels, image sensors such as CCDs and C-MOSs, thin film magnetic heads, micromachines, and the like.
 まず、目的とするマイクロデバイスの機能および性能が策定され、当該機能および性能を実現する構造が設計される(例えば、半導体デバイスの回路設計)。また、半導体基板等に形成されるパターンの設計も含まれる(ステップS101:設計ステップ)。 First, the function and performance of the target microdevice are determined, and a structure that realizes the function and performance is designed (for example, circuit design of a semiconductor device). Moreover, the design of the pattern formed in a semiconductor substrate etc. is also included (step S101: design step).
 次に、上記設計ステップで設計された回路パターンを形成するマスクが作製される(ステップS102:マスク製作ステップ)。また、シリコン、化合物半導体、ガラス、セラミックス等の材料を用いて基板が製造される(ステップS103:基板製造ステップ)。 Next, a mask for forming the circuit pattern designed in the above design step is produced (step S102: mask production step). Further, a substrate is manufactured using a material such as silicon, compound semiconductor, glass, ceramics (step S103: substrate manufacturing step).
 続いて、基板製造ステップで製造された基板を、マスク作製ステップで作製されたマスクを用いて加工することにより回路基板が製造される(ステップS104:基板処理ステップ)。更に、基板処理ステップで処理された基板を用いてデバイスが組み立てられる(ステップS105:デバイス組立ステップ)。デバイス組立ステップには、ダイシング、ボンティングおよびパッケージング(チップ封入)等の処理が要求に応じて含まれる。 Subsequently, the circuit board is manufactured by processing the substrate manufactured in the substrate manufacturing step using the mask manufactured in the mask manufacturing step (step S104: substrate processing step). Furthermore, a device is assembled using the substrate processed in the substrate processing step (step S105: device assembly step). The device assembly step includes processes such as dicing, bonding, and packaging (chip encapsulation) as required.
 上記のようにして組み立てられたデバイスは、動作確認テスト、耐久性テスト等の検査を実行される(ステップS106:検査ステップ)。こうして検品されたマイクロデバイスが製品として出荷される。 The device assembled as described above is subjected to inspections such as an operation confirmation test and a durability test (step S106: inspection step). The microdevice thus inspected is shipped as a product.
 図17は、基板処理ステップの内容を示すフローチャートである。即ち、図16に示したステップS104の詳細を示す図である。基板処理ステップにおいては、例えば、リソグラフィ技術によって、回路が基板上に形成される。 FIG. 17 is a flowchart showing the contents of the substrate processing step. That is, FIG. 17 shows details of step S104 shown in FIG. In the substrate processing step, a circuit is formed on the substrate by lithography, for example.
 以下に説明するステップS111~ステップS114は、基板処理ステップの前処理工程を形成する。各ステップにおける処理は必須とは限らず、製造するマイクロデバイスの仕様に応じて適宜選択される。 Steps S111 to S114 described below form a pretreatment process of the substrate processing step. The processing in each step is not necessarily essential, and is appropriately selected according to the specifications of the microdevice to be manufactured.
 前処理工程においては、まず、基板の表面が酸化されて酸化膜が形成される(ステップS111:酸化ステップ)。次に、基板の表面に絶縁膜が形成される(ステップS112:CVDステップ)。以下、例えば蒸着により電極が形成され(ステップS113:電極形成ステップ)、基板へのイオンの打ち込みも実施される(ステップS114:イオン打込みステップ)。 In the pretreatment process, first, the surface of the substrate is oxidized to form an oxide film (step S111: oxidation step). Next, an insulating film is formed on the surface of the substrate (step S112: CVD step). Hereinafter, for example, electrodes are formed by vapor deposition (step S113: electrode formation step), and ions are also implanted into the substrate (step S114: ion implantation step).
 次いで、基板処理ステップにおける後処理工程が実行される。後処理工程においては、まず、感光性材料が基板に塗布される(ステップS115:レジスト形成ステップ)。次に、露光装置100により、目的とするパターンに応じた露光パターンで感光性材料が露光される(ステップS116:露光ステップ)。次いで、露光された感光性材料を現像して、基板の表面に、パターンを有するマスク層を形成する(ステップS117:現像ステップ)。 Next, a post-processing step in the substrate processing step is executed. In the post-processing step, first, a photosensitive material is applied to the substrate (step S115: resist formation step). Next, the photosensitive material is exposed by the exposure apparatus 100 with an exposure pattern corresponding to the target pattern (step S116: exposure step). Next, the exposed photosensitive material is developed to form a mask layer having a pattern on the surface of the substrate (step S117: development step).
 次に、エッチングにより、マスク層から露出した領域を除去する(ステップS118:エッチングステップ)。更に、既に使用したマスク層を除去する(ステップS119:レジスト除去ステップ)。こうして、基板の表面に回路が形成されるが、上記前処理工程および上記後処理工程は繰り返し実行され、基板上には重層的な回路が形成される。 Next, the region exposed from the mask layer is removed by etching (step S118: etching step). Further, the already used mask layer is removed (step S119: resist removal step). In this way, a circuit is formed on the surface of the substrate, but the pre-processing step and the post-processing step are repeatedly executed, and a multi-layered circuit is formed on the substrate.
 なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものでなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体でも良い。 In the above embodiment, the object on which the pattern is to be formed (the object to be exposed to which the energy beam is irradiated) is not limited to the wafer, but may be another object such as a glass plate, a ceramic substrate, a film member, or a mask blank. good.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 なお、請求の範囲、明細書、および図面中において示した装置の動作および方法における手順、ステップおよび段階等の実行順序は、「より前に」、「先立って」等と明示している場合、あるいは、前段の出力を後段で用いる場合を除いて任意の順序で実現し得る。請求の範囲、明細書および図面において便宜上「まず」、「次に」等を用いていたとしても、この順序による実行が必須であることを意味するとは限らない。 It should be noted that the order of execution of procedures, steps, stages, etc. in the operation and method of the apparatus shown in the claims, the specification, and the drawings is clearly indicated as `` before '', `` prior '', etc. Alternatively, it can be realized in any order except when the output of the previous stage is used in the subsequent stage. Even if “first”, “next”, and the like are used for convenience in the claims, the description, and the drawings, it does not necessarily mean that execution in this order is essential.
100 露光装置、110 光源、200 光源部、210 制御部、212 駆動部、214 算出部、216 媒体、220 空間光変調器、222 反射鏡、223、225 電極、224 基板、226 フレクチャ、230 プリズム、232、234 反射面、240、340 結像光学系、250 ビームスプリッタ、260 計測部、300 照明光学系、312 入射面、310 フライアイレンズ、320 コンデンサ光学系、330 視野絞り、400 投影光学系、410 露光マスク、420 マスクステージ、430 開口絞り、510 基板、520 基板ステージ 100 exposure apparatus, 110 light source, 200 light source unit, 210 control unit, 212 drive unit, 214 calculation unit, 216 medium, 220 spatial light modulator, 222 reflector, 223, 225 electrode, 224 substrate, 226 flexure, 230 prism, 232, 234, reflective surface, 240, 340, imaging optical system, 250 beam splitter, 260 measuring unit, 300 illumination optical system, 312 entrance surface, 310 fly-eye lens, 320 condenser optical system, 330 field stop, 400 projection optical system, 410 exposure mask, 420 mask stage, 430 aperture stop, 510 substrate, 520 substrate stage

Claims (14)

  1.  光源から入射した光源光で被照射面を照明する照明装置であって、
     個別に設定された反射角度で前記光源光を反射して複数の反射光を射出する複数の反射鏡を有し、前記複数の反射光を投射面に投射して照明パターンを形成する空間光変調素子と、
     前記複数の反射光の相互の干渉をより小さくする条件の下に、前記複数の反射鏡それぞれの前記反射角度を算出する算出部と、
     前記複数の反射鏡を駆動して、前記算出部が算出した前記反射角度を前記複数の反射鏡のそれぞれに設定する駆動部と
     を備える照明装置。
    An illumination device that illuminates an illuminated surface with light source light incident from a light source,
    Spatial light modulation that has a plurality of reflecting mirrors that reflect the light source light at individually set reflection angles and emit a plurality of reflected lights, and project the plurality of reflected lights onto a projection surface to form an illumination pattern Elements,
    Under the condition of making the mutual interference of the plurality of reflected lights smaller, a calculation unit that calculates the reflection angle of each of the plurality of reflecting mirrors;
    A driving unit configured to drive the plurality of reflecting mirrors and set the reflection angle calculated by the calculating unit to each of the plurality of reflecting mirrors.
  2.  前記算出部は、
     前記光源光の有する可干渉性に基づいて、
     前記複数の反射光が相互に干渉する反射鏡相互の干渉発生距離、および、前記投射面上における前記複数の反射光の相互の間の干渉発生間隔と、
     前記干渉発生距離よりも近い距離を有する前記複数の反射鏡の反射光が、前記投射面上において干渉発生間隔よりも離れた領域に投射される前記反射角度と
     を算出する請求項1に記載の照明装置。
    The calculation unit includes:
    Based on the coherence of the light source light,
    The interference generation distance between the reflectors where the plurality of reflected lights interfere with each other, and the interference generation interval between the plurality of reflected lights on the projection surface,
    2. The reflection angle at which the reflected light of the plurality of reflecting mirrors having a distance shorter than the interference generation distance is projected on a region separated from the interference generation interval on the projection surface is calculated. Lighting device.
  3.  前記算出部は、前記複数の反射鏡のそれぞれについて前記反射角度を順次算出し、一の反射鏡について前記反射角度を算出できない場合に、前記一の反射鏡に設定する反射角度を算出する他の条件を備える請求項1または請求項2に記載の照明装置。 The calculation unit sequentially calculates the reflection angle for each of the plurality of reflecting mirrors, and calculates the reflection angle set for the one reflecting mirror when the reflecting angle cannot be calculated for one reflecting mirror. The lighting device according to claim 1 or 2, comprising a condition.
  4.  前記算出部は、前記複数の反射鏡のひとつについて前記反射角度の算出にかかる処理時間が所与の閾値を越えた場合に、前記反射角度を算出できないと見做す請求項1から請求項3までのいずれか1項に記載の照明装置。 The said calculating part considers that the said reflection angle cannot be calculated when the processing time concerning calculation of the said reflection angle about one of these reflective mirrors exceeds a predetermined threshold value. The lighting device according to any one of the above.
  5.  前記算出部は、前記複数の反射鏡のうちの一の反射鏡について前記反射角度を算出できない場合に、前記複数の反射鏡のうちの他の反射鏡について算出済みの前記反射角度を破棄し、前記一の反射鏡の反射光および前記他の反射鏡の反射光において生じる干渉が総合的に小さくなることを条件に、前記一の反射鏡および前記他の反射鏡の前記反射角度を算出する請求項1から請求項4までのいずれか1項に記載の照明装置。 The calculation unit, when the reflection angle cannot be calculated for one of the plurality of reflection mirrors, discards the calculated reflection angle for the other reflection mirror of the plurality of reflection mirrors, The reflection angle of the one reflecting mirror and the other reflecting mirror is calculated on the condition that interference generated in the reflected light of the one reflecting mirror and the reflected light of the other reflecting mirror is totally reduced. The lighting device according to any one of claims 1 to 4.
  6.  前記算出部は、前記複数の反射鏡のうちの一の反射鏡について前記反射角度を算出できない場合に、当該反射鏡について、前記投射面の有効範囲外に反射光を投射する反射角度を算出する請求項1から請求項5までのいずれか1項に記載の照明装置。 When the reflection angle cannot be calculated for one of the plurality of reflection mirrors, the calculation unit calculates a reflection angle for projecting reflected light outside the effective range of the projection surface for the reflection mirror. The lighting device according to any one of claims 1 to 5.
  7.  前記算出部は、前記複数の反射鏡のうち、より照度の高い光源光が入射する反射鏡から順次、前記反射角度を算出する請求項1から請求項6までのいずれか1項に記載の照明装置。 The illumination according to any one of claims 1 to 6, wherein the calculation unit sequentially calculates the reflection angle from a reflecting mirror into which light source light with higher illuminance is incident, among the plurality of reflecting mirrors. apparatus.
  8.  前記投射面は前記照明装置の照明瞳面であって、該照明瞳面に形成される照明パターンからの光で前記被照射面をケーラー照明することを特徴とする請求項1から請求項7までのいずれか1項に記載の照明装置。 The projection surface is an illumination pupil plane of the illumination device, and the irradiated surface is Koehler illuminated with light from an illumination pattern formed on the illumination pupil plane. The illumination device according to any one of the above.
  9.  請求項1から請求項8までのいずれか1項に記載の照明装置を備える露光装置。 An exposure apparatus comprising the illumination device according to any one of claims 1 to 8.
  10.  入射した光源光を個別に設定された反射角度で反射して複数の反射光を射出する複数の反射鏡を有し、前記複数の反射光を投射面に投射して照明パターンを形成する空間光変調素子と、
     前記複数の反射鏡のそれぞれに設定する反射角度を算出する算出部と、
     前記複数の反射鏡を駆動して、前記算出部が算出した前記反射角度を前記複数の反射鏡のそれぞれに設定する駆動部と
     を備える照明装置を制御する制御プログラムであって、
     前記照明パターンを形成する前記複数の反射光の相互の干渉をより小さくする条件の下に、前記複数の反射鏡それぞれの前記反射角度を算出するプログラム。
    Spatial light that has a plurality of reflecting mirrors that reflect incident light source light at individually set reflection angles and emit a plurality of reflected lights, and forms an illumination pattern by projecting the plurality of reflected lights onto a projection surface A modulation element;
    A calculation unit for calculating a reflection angle set for each of the plurality of reflecting mirrors;
    A control program that drives the plurality of reflecting mirrors and controls an illuminating device including a driving unit that sets the reflection angle calculated by the calculating unit to each of the plurality of reflecting mirrors,
    The program which calculates the said reflection angle of each of these reflective mirrors on the conditions which make mutual interference of these reflective lights which form the said illumination pattern smaller.
  11.  照明パターンを形成する複数の反射光相互の干渉をより小さくする条件の下に、複数の反射鏡それぞれの反射角度を算出する算出段階と、
     前記複数の反射鏡を駆動して、前記算出段階で算出した前記反射角度を前記複数の反射鏡のそれぞれに設定する駆動段階と、
     入射した光源光を個別に設定された前記反射角度で反射して複数の反射光を射出し、前記複数の反射光を投射面に投射して照明パターンを形成する形成段階と
     を備える照明方法。
    Under the condition that the interference between the plurality of reflected lights forming the illumination pattern is made smaller, a calculation stage for calculating the reflection angle of each of the plurality of reflecting mirrors;
    A driving step of driving the plurality of reflecting mirrors and setting the reflection angle calculated in the calculating step to each of the plurality of reflecting mirrors;
    An illumination method comprising: forming an illumination pattern by reflecting incident light source light at the reflection angles set individually to emit a plurality of reflected lights and projecting the plurality of reflected lights onto a projection surface.
  12.  請求項11に記載の照明方法を用いて被投影物体を照明し、照明された被投影物体からの光を投影光学系に通して前記物体上に前記被投影物体の像を形成する露光方法。 An exposure method for illuminating a projection object using the illumination method according to claim 11, and forming an image of the projection object on the object by passing light from the illuminated projection object through a projection optical system.
  13.  前記投射面は、前記投影光学系の開口絞りの位置と光学的に共役な位置または該共役な位置の近傍である請求項12に記載の露光方法。 13. The exposure method according to claim 12, wherein the projection surface is a position optically conjugate with a position of an aperture stop of the projection optical system or a vicinity of the conjugate position.
  14.  請求項12または13に記載の露光方法を用いて、物体上にパターンを形成することと;
     前記パターンが形成された前記物体を現像し、前記パターンに対応する形状のマスク層を前記物体の表面に形成することと;
     前記マスク層を介して前記物体の表面を加工することと;を含むデバイス製造方法。
    Forming a pattern on an object using the exposure method according to claim 12 or 13;
    Developing the object on which the pattern is formed, and forming a mask layer having a shape corresponding to the pattern on the surface of the object;
    Processing the surface of the object through the mask layer.
PCT/JP2011/006080 2010-11-05 2011-10-31 Illumination device, exposure device, program, and illumination method WO2012060083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-249155 2010-11-05
JP2010249155 2010-11-05

Publications (1)

Publication Number Publication Date
WO2012060083A1 true WO2012060083A1 (en) 2012-05-10

Family

ID=46024211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006080 WO2012060083A1 (en) 2010-11-05 2011-10-31 Illumination device, exposure device, program, and illumination method

Country Status (1)

Country Link
WO (1) WO2012060083A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036659A (en) * 2014-05-15 2017-04-03 메소 스케일 테크놀러지즈, 엘엘시 Improved assay methods
CN111511438A (en) * 2018-11-30 2020-08-07 首尔伟傲世有限公司 Light irradiation device for synthesis of functional substance in human body
CN113534614B (en) * 2021-06-28 2023-09-19 上海华力集成电路制造有限公司 Dynamic illumination method based on scanning type exposure machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105396A (en) * 2007-10-24 2009-05-14 Nikon Corp Optical unit, optical illumination device, exposure device, and method of manufacturing device
WO2009060744A1 (en) * 2007-11-06 2009-05-14 Nikon Corporation Illumination optical device and exposure device
WO2009078223A1 (en) * 2007-12-17 2009-06-25 Nikon Corporation Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105396A (en) * 2007-10-24 2009-05-14 Nikon Corp Optical unit, optical illumination device, exposure device, and method of manufacturing device
WO2009060744A1 (en) * 2007-11-06 2009-05-14 Nikon Corporation Illumination optical device and exposure device
WO2009078223A1 (en) * 2007-12-17 2009-06-25 Nikon Corporation Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036659A (en) * 2014-05-15 2017-04-03 메소 스케일 테크놀러지즈, 엘엘시 Improved assay methods
KR102497054B1 (en) 2014-05-15 2023-02-06 메소 스케일 테크놀러지즈, 엘엘시 Improved assay methods
CN111511438A (en) * 2018-11-30 2020-08-07 首尔伟傲世有限公司 Light irradiation device for synthesis of functional substance in human body
CN111511438B (en) * 2018-11-30 2024-01-09 首尔伟傲世有限公司 Light irradiation device for synthesizing functional substance in human body
CN113534614B (en) * 2021-06-28 2023-09-19 上海华力集成电路制造有限公司 Dynamic illumination method based on scanning type exposure machine

Similar Documents

Publication Publication Date Title
JP6525045B2 (en) Illumination optical apparatus, exposure apparatus and method of manufacturing device
US8823921B2 (en) Programmable illuminator for a photolithography system
JPWO2007138805A1 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN108107685B (en) Exposure apparatus, exposure method, device manufacturing method, and evaluation method
US8451430B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP3605047B2 (en) Illumination apparatus, exposure apparatus, device manufacturing method and device
JP2003233002A (en) Reflective projection optical system, exposure device, and method for manufacturing device
WO2012060083A1 (en) Illumination device, exposure device, program, and illumination method
US8947635B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JPWO2009022506A1 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2002203763A (en) Optical characteristic measuring method and device, signal sensitivity setting method, exposure unit and device manufacturing method
JP3958122B2 (en) Illumination apparatus, exposure apparatus using the same, and device manufacturing method
JP5390577B2 (en) Lithographic apparatus and method
JP3870118B2 (en) Imaging optical system, exposure apparatus having the optical system, and aberration reduction method
JP2002217083A (en) Illumination system and aligner
KR101999553B1 (en) Illumination optical device, exposure apparatus, and method of manufacturing article
JP2002350620A (en) Optical member, and illuminator and exposure device using the optical member
US6833905B2 (en) Illumination apparatus, projection exposure apparatus, and device fabricating method
JP2004022945A (en) Aligner and aligning method
JP2012099686A (en) Light source forming method, exposure method, and device manufacturing method
JP4819419B2 (en) Imaging optical system, exposure apparatus, and device manufacturing method
JP7087268B2 (en) Inspection equipment and inspection method, exposure equipment and exposure method, and device manufacturing method
JP2011040618A (en) Diffraction optical element, illumination optical system, exposure apparatus, method of manufacturing device, and method of designing diffraction optical element
JP5570225B2 (en) Illumination optical system, exposure apparatus using the same, and device manufacturing method
JP5532620B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP