WO2012060024A1 - Illumination shape optimization method, mask shape optimization method, and pattern formation method - Google Patents

Illumination shape optimization method, mask shape optimization method, and pattern formation method Download PDF

Info

Publication number
WO2012060024A1
WO2012060024A1 PCT/JP2011/002216 JP2011002216W WO2012060024A1 WO 2012060024 A1 WO2012060024 A1 WO 2012060024A1 JP 2011002216 W JP2011002216 W JP 2011002216W WO 2012060024 A1 WO2012060024 A1 WO 2012060024A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shape
photomask
mask
exposure light
Prior art date
Application number
PCT/JP2011/002216
Other languages
French (fr)
Japanese (ja)
Inventor
清水但美
三坂章夫
笹子勝
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012060024A1 publication Critical patent/WO2012060024A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions

Definitions

  • the present invention relates to an illumination shape optimization method, a mask shape optimization method, and a pattern formation method.
  • Patent Document 1 A method for obtaining an optimal illumination shape and mask shape for solving such problems is proposed in Patent Document 1.
  • an image is formed by providing illumination from a single illumination source to a plurality of illumination points 1400 and a predetermined mask pattern, and by providing illumination to the predetermined mask pattern. Select the fragmentation point in the image plane.
  • Fig.20 (a) shows an Abbe image.
  • the bright areas represent image brightness that increases the normalized image log slope, and the illumination intensity is such that these normalized image log slopes are maximized for each pattern.
  • the illumination shape and mask shape can be optimized by changing the brightness and shape and the magnitude and phase of the diffraction order of the mask.
  • the most ideal photomask to be optimized in the method disclosed in Patent Document 1 is a CPL (Chromeless Phase Lithography) mask.
  • the method disclosed in Patent Document 1 is applied to a photomask having a plurality of phase differences and a plurality of transmittances (for example, an enhancer mask (a photomask having a translucent part, a semi-shielding part, and a phase shift part)).
  • an enhancer mask a photomask having a translucent part, a semi-shielding part, and a phase shift part
  • an object of the present invention is to enable optimization of an illumination shape and a photomask shape, respectively, even when a photomask having a plurality of phase differences and a plurality of transmittances is used.
  • an illumination shape optimization method includes a translucent part that transmits exposure light, a semi-light-shielding part that has a lower transmittance of the exposure light than the translucent part, A method for optimizing the illumination shape of the exposure light in exposure using a photomask having at least a phase shift portion that transmits the exposure light in a phase different from that of the light transmitting portion, the pupil plane of the projection optical system being A light intensity distribution of the exposure light transmitted through the photomask is obtained at each of a plurality of divided points, and the illumination shape is set based on the light intensity distribution.
  • the mask shape optimization method includes a translucent part that transmits exposure light, and a semi-light-shielding part that has a lower transmittance of the exposure light than the translucent part. And a method for optimizing the mask shape of a photomask having at least a phase shift unit that transmits the exposure light at a phase different from that of the light transmitting unit, and a plurality of pupil planes of the projection optical system are divided. At each of the dividing points, the light intensity distribution of the exposure light transmitted through the photomask is obtained, and each of the light transmitting part, the semi-light-shielding part, and the phase shift part is provided so that the contrast of the light intensity distribution is improved. Set the shape.
  • the illumination shape and the mask shape can be optimized.
  • the illumination shape and the mask shape can be optimized, respectively, so that they are formed by exposure using a projection optical system.
  • the resolution of the obtained pattern can be improved, and the process window for obtaining a desired pattern can be expanded by exposure using the projection optical system, thereby improving the yield.
  • FIG. 1 is a diagram showing a schematic configuration of an example of an exposure apparatus that is an application target of an illumination shape optimization method, a mask shape optimization method, and a pattern formation method according to an embodiment.
  • FIG. 2 is a diagram illustrating a pupil plane of the projection lens divided in the illumination shape optimization method and the mask shape optimization method according to the embodiment.
  • FIGS. 3A and 3B are diagrams showing the structure of an enhancer mask used in the illumination shape optimization method, mask shape optimization method, and pattern formation method according to one embodiment. ) Is a plan view, and FIG. 3B is a cross-sectional view taken along the line II ′ in FIG.
  • FIGS. 4 (a) to 4 (f) show exposure light beams transmitted through an enhancer mask at each source position on the pupil plane of the projection lens in the illumination shape optimization method and mask shape optimization method according to an embodiment. It is a figure which shows the result of having calculated
  • FIGS. 5A and 5B are diagrams illustrating illumination shapes optimized by the illumination shape optimization method according to the embodiment.
  • FIGS. 6A and 6B show how the optical contrast of the light intensity distribution at each source position is improved by changing the mask shape in the mask shape optimization method according to one embodiment.
  • FIG. FIG. 7 is a plan view of an enhancer mask having a mask shape optimized by a mask shape optimization method according to an embodiment.
  • FIG. 8A is a diagram illustrating a target pattern to be formed by a photomask that is an application target of the mask shape optimization method according to the embodiment
  • FIG. 8B is a diagram according to the embodiment. It is a figure which shows the mask pattern to which the mask shape was optimized by the mask shape optimization method, and the assist pattern was added.
  • FIGS. 9A and 9B are diagrams showing the structure of an enhancer mask including a light-shielding portion used in the illumination shape optimization method, mask shape optimization method, and pattern formation method according to an embodiment.
  • 9A is a plan view
  • FIG. 9B is a cross-sectional view taken along line IV-IV ′ in FIG. 9A.
  • FIG. 10A to 10D are cross-sectional views showing respective steps of the pattern forming method according to the embodiment.
  • FIG. 11A is a plan view of an enhancer mask used in the pattern forming method according to the embodiment
  • FIG. 11B is a plan view of a resist pattern formed by the pattern forming method according to the embodiment.
  • FIG. 12A is a plan view showing one layer having a block made up of a logic part and a block made up of an SRAM part (static random access memory) to be formed by the pattern forming method according to the embodiment.
  • 12B is a plan view of the target pattern of the logic part
  • FIG. 12C is a plan view of the target pattern of the SRAM part
  • FIG. 12D is an optimization of the logic part.
  • FIG. 12A is a plan view of an enhancer mask used in the pattern forming method according to the embodiment
  • FIG. 11B is a plan view of a resist pattern formed by the pattern forming method according to the embodiment.
  • FIG. 12A is a plan
  • FIG. 12E is a plan view of the optimized mask shape of the SRAM unit.
  • FIG. 13A is a plan view of a photomask corresponding to one block obtained by dividing the mask shape of the same layer in the pattern forming method according to one embodiment
  • FIG. 13B is one embodiment. It is a top view of the photomask corresponding to the other block by which the mask shape of the same layer is divided
  • FIG. 14A is a diagram illustrating a state in which exposure is performed using a photomask corresponding to one block obtained by dividing the mask shape of the same layer in the pattern forming method according to the embodiment.
  • FIG. 14A is a diagram illustrating a state in which exposure is performed using a photomask corresponding to one block obtained by dividing the mask shape of the same layer in the pattern forming method according to the embodiment.
  • FIG. 14B is a diagram illustrating a state in which exposure is performed using a photomask corresponding to another block obtained by dividing the mask shape of the same layer in the pattern forming method according to the embodiment.
  • FIG. 15 is a flowchart of a pattern forming method according to an embodiment.
  • FIG. 16 is a flowchart illustrating an example of a procedure performed by combining an illumination shape optimization method and a mask shape optimization method according to an embodiment.
  • FIG. 17 is a flowchart illustrating another example of a procedure performed by combining an illumination shape optimization method and a mask shape optimization method according to an embodiment.
  • FIG. 18 is a flowchart illustrating another example of a procedure performed by combining an illumination shape optimization method and a mask shape optimization method according to an embodiment.
  • FIG. 19 is a diagram showing a schematic configuration of an example of an EUV exposure apparatus to which the present invention is applied.
  • FIGS. 20A to 20D are diagrams for explaining a conventional illumination shape and mask shape optimization method.
  • illumination shape optimization method a mask shape optimization method, and a pattern formation method according to an embodiment will be described with reference to the drawings.
  • the illumination shape optimization method and the mask shape optimization method according to the present embodiment are implemented as information processing by software on a computer, for example.
  • FIG. 1 shows a schematic configuration of an example of an exposure apparatus to which the present embodiment is applied.
  • the exposure light 17 emitted from the light source 10 sequentially passes through a stop 11 that adjusts the shape of the exposure light 17, an illumination lens 12, a photomask 13, and a projection lens 14, and is mounted on a stage 16.
  • the placed wafer 15 is irradiated.
  • the illumination optical system 18 is configured by the diaphragm 11 and the illumination lens 12
  • the projection optical system 19 is configured by the projection lens 14.
  • the illumination optical system 18 and the projection optical system 19 are included. It goes without saying that the configuration (for example, the number of lenses, etc.) is not limited to this.
  • the pupil plane 100 of the projection lens is finely divided in a virtual XY coordinate system.
  • 101 is a source position obtained by subdividing the pupil plane 100
  • 102 to “104” are specific source positions.
  • the photomask 200 used in the present embodiment is a photomask having a plurality of transmittances and a plurality of phase differences, specifically, an enhancer mask.
  • FIGS. 3A and 3B are views showing the structure of an enhancer mask used in the present embodiment, FIG. 3A is a plan view, and FIG. 3B is an I in FIG. 3A.
  • FIG. 3A is a plan view
  • FIG. 3B is an I in FIG. 3A.
  • the enhancer mask 200 includes a semi-light-shielding portion 202 having a light-shielding property for exposure light and a semi-light-shielding portion 202 on a transparent substrate 201 that transmits the exposure light. And an enclosed phase shift unit 203.
  • a portion of the transparent substrate 201 where the semi-light-shielding portion 202 and the phase shift portion 203 are not formed is a translucent portion 204, and the transmittance of the semi-light-shielding portion 202 with respect to exposure light is smaller than that of the translucent portion 204.
  • the semi-light-shielding part 202 and the translucent part 204 transmit the exposure light in the same phase.
  • the phase shift unit 203 transmits the exposure light in the opposite phase with the semi-light-shielding unit 202 and the translucent unit 204 as a reference.
  • the phase shift unit 203 may be formed by digging up the transparent substrate 201 so that a phase difference of 180 degrees is generated in the exposure light. Instead of digging down, a phase shift film may be formed.
  • FIG. 4A shows the light intensity distribution of the exposure light transmitted through the II-II line including the point A in the enhancer mask 200 shown in FIG.
  • FIG. 4B shows the light intensity distribution of the exposure light transmitted through the II-II ′ line including the point A in the enhancer mask 200 shown in FIG. 3A.
  • 4 is a result obtained at the source position 103 (coordinate (0, 7)) of FIG. 2
  • FIG. 4C is an exposure through which the II-II line including the point A in the enhancer mask 200 shown in FIG.
  • FIG. 4D shows the light intensity distribution of the exposure light transmitted through the line III-III ′ including the point B in the enhancer mask 200 shown in FIG. 4 (e) shows the light intensity distribution of the exposure light transmitted through the III-III 'line including the point B in the enhancer mask 200 shown in FIG. 3 (a).
  • FIG. 4F shows the result obtained at the source position 103 (coordinates (0, 7)).
  • FIG. 4F shows the exposure light transmitted through the III-III ′ line including the point B in the enhancer mask 200 shown in FIG.
  • the light intensity distribution is obtained at the source position 104 (coordinate (7, 0)) in FIG. 4A to 4F, the higher the peak 300 of the light intensity distribution, or the greater the difference between the peak 301 and the minimum light intensity 302 in the light intensity distribution, the higher the light contrast.
  • the exposure light transmitted through the point A of the enhancer mask 200 has a high contrast at any of the source positions 102 to 104.
  • the exposure light transmitted through the point B of the enhancer mask 200 has a high contrast only at the source position 103. Therefore, in order to obtain a high contrast for both the points A and B of the enhancer mask 200, the source position 103 is selected from the source positions 102 to 104.
  • a source position that provides high optical contrast is selected from source positions obtained by subdividing the pupil plane 100 of the projection lens, a photo having a plurality of transmittances and a plurality of phase differences is selected.
  • an optimized illumination shape as shown in FIG. 5A can be obtained.
  • “400” is the pupil plane with the optimized illumination shape
  • “401” is the selected source position
  • “402” is the unselected source position. It is.
  • FIG. 5A shows the illumination shape optimized for the first quadrant of the XY coordinate system, and therefore, considering the symmetry, the optimized illumination shape used for actual exposure is As shown in FIG.
  • Such an optimized illumination shape can be realized, for example, by adjusting the diaphragm 11 in the exposure apparatus shown in FIG.
  • FIGS. 6A and 6B the light contrast of the light intensity distribution obtained at each source position selected as described above is obtained.
  • the mask shape of the photomask is changed so as to further improve (that is, the optical contrast is further increased).
  • FIG. 6A shows the light intensity distribution of the exposure light transmitted through the II-II ′ line including the point A in the enhancer mask 200 obtained at the source position 103 (coordinates (0, 7)) of FIG.
  • FIG. 6B shows a state in which the optical contrast of the enhancer mask 200 obtained at the source position 103 (coordinates (0, 7) in FIG. 2 is included.
  • FIGS. 6A and 6B “500” indicates the light intensity distribution before the mask shape is changed, and “501” indicates the light intensity distribution after the mask shape is changed. Show. As shown in FIGS. 6A and 6B, the optical contrast is clearly improved after the mask shape is changed by the mask shape optimization method according to the present embodiment.
  • FIG. 7 changes the mask shape of the enhancer mask 200 shown in FIG. 3A so that the optical contrast of the selected source position is improved by using the mask shape optimization method according to the present embodiment.
  • the planar structure of the enhancer mask 600 obtained by this is shown.
  • “601” is a transparent substrate
  • “602” is a semi-light-shielding portion obtained by deforming the semi-light-shielding portion 202
  • “603” is a phase shift portion obtained by modifying the phase-shifting portion 203
  • “604” is a translucent part formed by deforming the translucent part 204.
  • each part of the photomask in this embodiment, the semi-light-shielding part, the phase shift part, and the light-transmitting part
  • a plurality of parts can be obtained.
  • An optimized mask shape of a photomask having transmittance and a plurality of phase differences can be obtained.
  • FIG. 8A shows a desired pattern (target pattern) to be formed by the mask pattern shown in FIG.
  • the inter-line end space portion for example, point A of the enhancer mask 200
  • the line width center portion for example, the enhancer.
  • a photomask having a plurality of transmittances and a plurality of phase differences As a photomask having a plurality of transmittances and a plurality of phase differences, a semi-light-shielding portion, a phase shift portion, and a light-transmitting portion
  • a photomask provided with a light-shielding portion that does not transmit exposure light on a transparent substrate may be used.
  • FIG. 9 (a) is a plan view
  • FIG. 9 (b) is an IV-IV in FIG. 9 (a). It is sectional drawing of a line.
  • a photomask (enhancer mask) 620 includes a semi-light-shielding portion 622 having a light-shielding property with respect to exposure light on a transparent substrate 621 that transmits exposure light, and a half-mask.
  • a phase shift unit 623 surrounded by the light shielding unit 622 and a light shielding unit 625 that does not transmit exposure light are provided.
  • a portion where the semi-light-shielding portion 622, the phase shift portion 623, and the light-shielding portion 625 are not formed is a light-transmitting portion 624. small.
  • the semi-light-shielding part 622 and the translucent part 624 transmit the exposure light in the same phase.
  • the phase shift unit 623 transmits the exposure light in the opposite phase with the semi-shielding unit 622 and the translucent unit 624 as a reference.
  • the phase shift unit 623 may be formed by digging up the transparent substrate 621 so that the exposure light has a phase difference of 180 degrees.
  • the film that becomes the light-transmitting portion 624 may be formed on the film that becomes the semi-light-shielding portion 622.
  • the light intensity distribution of the exposure light that has passed through the light shielding part line width eg, point C of the photomask 620
  • a source position that provides a high light contrast may be selected based on the thus obtained light intensity distribution.
  • the mask shape may be changed so that the light contrast of the light intensity distribution obtained at each source position selected as described above is further improved. Also in this case, it is preferable to carry out the optimization of the shape of the phase shift portion.
  • the illumination shape is optimized and then the mask shape is optimized.
  • the mask shape is optimized and then the illumination shape is optimized. May be.
  • only one of illumination shape optimization and mask shape optimization may be performed.
  • known OPC optical proximity correction
  • the pattern forming method according to the present embodiment specifically, the pattern forming method using the illumination shape and the mask shape optimized as described above will be described with reference to the drawings.
  • 10 (a) to 10 (d) are cross-sectional views showing respective steps of the pattern forming method according to the present embodiment.
  • a film to be processed 701 such as a metal film or an insulating film is formed on the substrate 700, and then, as shown in FIG.
  • a positive resist film 702 is formed.
  • the resist film 702 is coated by forming a top coat 703 on the resist film 702 on the premise of immersion exposure.
  • the illumination shape is changed by the method of this embodiment using, for example, an ArF excimer laser as a light source.
  • the optimized exposure light 704 is irradiated.
  • FIG. 11 (a) shows a planar configuration of the enhancer mask 600 shown in FIG. 10 (c).
  • the enhancer mask 600 includes a semi-light-shielding portion 602 having a light-shielding property with respect to the exposure light 704, and a semi-light-shielding portion 602 on the transparent substrate 601 that transmits the exposure light 704. And a phase shift unit 603 surrounded by a light shielding unit 602.
  • a portion where the semi-light-shielding portion 602 and the phase shift portion 603 are not formed in the transparent substrate 601 is a light-transmitting portion 604, and the transmittance of the semi-light-shielding portion 602 with respect to the exposure light 704 is smaller than that of the light-transmitting portion 604. Moreover, the semi-light-shielding part 602 and the translucent part 604 transmit the exposure light 704 in the same phase.
  • the phase shift unit 603 transmits the exposure light 704 in the opposite phase with the semi-shielding unit 602 and the translucent unit 604 as a reference.
  • the phase shift unit 603 may be formed by digging up the transparent substrate 601 so that the exposure light 704 has a phase difference of 180 degrees, or instead of digging up the transparent substrate 601, a phase shift film is formed. May be.
  • the resist film 702 is exposed to the exposure light 704 (transmitted light 706) transmitted through the light transmitting portion 604, and a latent image portion 702a is formed. Further, the exposure light 704 (transmitted light 705) transmitted through the semi-shielding portion 602 and the exposure light 704 transmitted through the phase shift portion 603 (transmitted light 707 (having the opposite phase of the transmitted light 705 and 706)) are resists. The film 702 is not exposed.
  • top coat 703 and the resist film 702 are developed to remove the latent image portion 702a, thereby forming a resist pattern 708 as shown in FIG.
  • FIG. 11B shows a planar configuration of the resist pattern 708 after the development shown in FIG.
  • the dimension of the space 800 between the opposing patterns in FIG. 11B is (k ⁇ ⁇ / NA) or less (where k is a constant determined by a process technique such as mask resolution and illumination conditions, and ⁇ is exposure light)
  • NA is the numerical aperture of the reduction projection optical system of the exposure apparatus.
  • the actual dimension to be transferred is 50 nm or less.
  • the mask shape of one layer shown in FIG. 12A is divided into, for example, a block 901 composed of a logic unit and a block 902 composed of an SRAM unit.
  • FIGS. 13A and 13B show a planar configuration of two photomasks corresponding to each of the divided blocks 901 and 902.
  • a photomask 910 shown in FIG. 13A a block 901 including a logic portion is arranged on a transparent substrate 911.
  • a block 902 including an SRAM portion is disposed on the transparent substrate 921.
  • the illumination shape in the exposure using the photomask 910 and the photomask 920 obtained by dividing the mask shape of the same layer is optimized by the method of this embodiment described above.
  • FIG. 12B shows a planar configuration of a desired pattern (target pattern) of the logic portion to be formed by the photomask 910
  • FIG. 12C is to be formed by the photomask 920.
  • the plane structure of the target pattern of the SRAM section is shown.
  • FIG. 12D shows a planar configuration of the optimized mask shape of the block (logic unit) 901 arranged on the photomask 910 shown in FIG. 13A.
  • FIG. FIG. 13 shows a plan configuration of an optimized mask shape of a block (SRAM unit) 902 arranged on the photomask 920 shown in FIG.
  • “903” is a semi-shielding portion
  • “904” is a phase shift portion
  • “905” is a translucent portion.
  • the illumination shape is optimized by the method of the present embodiment, whereby the block (logic unit) 901 is transferred onto the wafer 1000 as shown in FIG.
  • the illumination shape is optimized by the method of the present embodiment, whereby the block (SRAM portion) 902 is transferred onto the wafer 1000 as shown in FIG.
  • a pattern of one layer composed of the block (logic unit) 901 and the block (SRAM unit) 902 can be formed.
  • the illumination shape is optimized for each photomask and each photo
  • a finer pattern can be formed.
  • both the illumination shape and the mask shape are optimized by the method of this embodiment. Instead, only one of the illumination shape and the mask shape is optimized by the method of this embodiment. May be used.
  • the mask shape of the same layer was divided into two to produce two photomasks. Instead, the mask shape of the same layer was divided into three or more to produce three or more photomasks. May be.
  • the mask shape of one layer is divided into a block composed of a logic part (that is, a logic circuit) and a block composed of an SRAM part (that is, a memory), but the type of block to be divided is appropriately set according to the layer. It goes without saying that it is done.
  • FIG. 15 is a flowchart of the above-described pattern forming method using a plurality of photomasks corresponding to each of a plurality of blocks obtained by dividing the mask shape of the same layer.
  • step S11 a photomask A (for example, photomask 910 shown in FIG. 13A) corresponding to one block obtained by dividing the mask shape of the same layer is set in the exposure apparatus. Is done.
  • step S12 a wafer coated with a resist or the like is set in the exposure apparatus.
  • step S13 alignment and leveling between the photomask A and the wafer, focusing, and the like are performed, and then exposure using the photomask A is performed in step S14 (see FIG. 14A).
  • step S15 the photomask A is removed from the exposure apparatus, and subsequently, the photomask B corresponding to another block in which the mask shape of the same layer is divided (for example, FIG. A photomask 920) shown in 13 (b) is set in the exposure apparatus.
  • the photomask A is removed from the exposure apparatus, and subsequently, the photomask B corresponding to another block in which the mask shape of the same layer is divided (for example, FIG. A photomask 920) shown in 13 (b) is set in the exposure apparatus.
  • step S16 alignment and leveling between the photomask B and the wafer, focusing, and the like are performed, and then exposure using the photomask B is performed in step S17 (see FIG. 14B).
  • step S18 the resist applied to the wafer is developed, thereby completing the pattern formation.
  • a semi-light-shielding photomask having a plurality of transmittances and a plurality of phase differences is used.
  • a photomask having a light-shielding portion that does not transmit exposure light may be targeted.
  • step S21 the design (initial value) of the target pattern is determined.
  • step S22 the light intensity distribution of the exposure light transmitted through the target photomask is obtained at each source position obtained by finely dividing the pupil plane of the projection optical system (for example, a projection lens).
  • step S23 the illumination shape is optimized by selecting a source position having a relatively high light contrast in the light intensity distribution from each source position.
  • step S24 the light intensity distribution of the selected source position is changed by changing the shape of each of the constituent parts (for example, the light shielding part, the semi-light shielding part, the phase shift part, and the light transmitting part) of the photomask. Adjust the light contrast.
  • the mask shape is optimized so that the light contrast of the light intensity distribution at the selected source position is improved.
  • step S26 as a lithography performance evaluation, a process window such as a depth of focus or an exposure margin is enlarged or a mask error factor value is minimized, and the process window is enlarged and a mask error factor value is minimized.
  • the optimization is performed again for only one of the illumination shape and the mask shape. May be.
  • the flowchart of FIG. 17 shows a procedure for only optimizing the illumination shape when the standard cannot be achieved in the performance evaluation of step S26.
  • the flowchart of FIG. 18 shows a procedure for performing only mask shape optimization when the standard cannot be achieved in the performance evaluation in step S26.
  • 16 to 18 show a case where the mask shape optimization method according to this embodiment is executed after the illumination shape optimization method according to this embodiment is executed. Instead, after the mask shape optimizing method according to the present embodiment is performed, the illumination shape optimizing method according to the present embodiment may be performed.
  • the illumination shape optimization method and the mask shape optimization method according to the present embodiment even when a photomask having a plurality of phase differences and a plurality of transmittances is used, illumination is performed.
  • Each shape and mask shape can be optimized. For this reason, the resolution of the pattern formed by exposure using the projection optical system can be improved, and the process window for obtaining a desired pattern by the exposure using the projection optical system is expanded, thereby improving the yield. Can be improved.
  • an exposure apparatus having an optical system such as an illumination lens and a projection lens
  • an exposure apparatus (EUV (extreme ultraviolet) exposure, etc.) having a reflection mirror optical system is used.
  • EUV extreme ultraviolet
  • the present invention can also be applied.
  • “transmittance” is “reflectance”
  • “translucent part” is “reflective part”
  • “semi-shielding part” is “semi-reflective part”
  • shieldding part” By replacing each with “non-reflective portion”, the illumination shape and mask shape can be optimized even when a photomask having a plurality of phase differences and a plurality of reflectances is used.
  • FIG. 19 shows a schematic configuration of an example of an EUV exposure apparatus having a reflecting mirror optical system.
  • the EUV 26 exiting the EUV generation apparatus 20 is sequentially reflected on the reflection mirror 21A, the reflection mirror 21B, the reflection type photomask 22, the reflection mirror 23A, the reflection mirror 23B, the reflection mirror 23C, and the reflection mirror 23D.
  • the wafer 24 placed on the stage 25 is irradiated.
  • the illumination optical system 27 is configured by the reflection mirrors 21A and 21B
  • the projection optical system 28 is configured by the reflection mirrors 23A, 23B, 23C, and 23D.
  • the configuration of the projection optical system 28 (for example, the number of mirrors) is not limited to this.
  • the light intensity distribution of the EUV 26 that has passed through the reflective photomask 22 is obtained at each of a plurality of division points obtained by dividing the pupil plane of the projection optical system 28. Based on the light intensity distribution, the illumination shape can be optimized. In addition, the shape of each component (for example, a reflection portion, a semi-reflection portion, a non-reflection portion, and a phase shift portion) of the reflective photomask 22 can be optimized so that the contrast of the light intensity distribution is improved.
  • the present invention is useful for an illumination shape and mask shape optimization method in exposure performed in a semiconductor manufacturing process or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

When exposure is performed using a photomask having at least a light-transmitting part that transmits exposure light, a partial-light-blocking part having a lower transmissivity for the exposure light than the light-transmitting part, and a phase-shift part that transmits the exposure light with a different phase than the light-transmitting part, the optical intensity distribution for the exposure light that has passed through the photomask is obtained for each of multiple divided points formed by dividing the pupil plane (100) of the projection optical system, and the illumination shape of the exposure light is set on the basis of the optical intensity distribution.

Description

照明形状の最適化方法、マスク形状の最適化方法及びパターン形成方法Illumination shape optimization method, mask shape optimization method, and pattern formation method
 本発明は、照明形状の最適化方法、マスク形状の最適化方法及びパターン形成方法に関する。 The present invention relates to an illumination shape optimization method, a mask shape optimization method, and a pattern formation method.
 近年、半導体を用いて実現する大規模集積回路装置(以下、LSIと称する)の高集積化のために、回路パターンの微細化がますます必要となってきている。その結果、回路を構成するラインパターンの細線化、又は絶縁層を介して多層化された配線同士をつなぐコンタクトホールパターンの微細化が非常に重要となってきているので、リソグラフィーで露光できる限界よりも微細なパターンを形成することが必要となってきている。この課題を解決するために、露光装置の照明形状及びフォトマスクのマスク形状を最適化してプロセスウィンドウを拡大させる技術が提案されている。 In recent years, miniaturization of circuit patterns has become more and more necessary for high integration of large scale integrated circuit devices (hereinafter referred to as LSIs) realized using semiconductors. As a result, it has become very important to reduce the line pattern that composes the circuit, or to refine the contact hole pattern that connects multiple layers of wiring via an insulating layer. However, it is necessary to form a fine pattern. In order to solve this problem, a technique for optimizing the illumination shape of the exposure apparatus and the mask shape of the photomask to enlarge the process window has been proposed.
 しかしながら、従来の照明形状やマスク形状の最適化においては多数の変数を使用する必要があるため、多大な計算時間を要するという問題もあった。 However, there is a problem that it takes a lot of calculation time because it is necessary to use many variables in the optimization of the conventional illumination shape and mask shape.
 そのような問題点を解決するための最適な照明形状及びマスク形状を得る方法が特許文献1に提案されている。 A method for obtaining an optimal illumination shape and mask shape for solving such problems is proposed in Patent Document 1.
 以下、図20を参照しながら、特許文献1に開示されている、照明形状及びマスク形状の最適化方法について説明する。 Hereinafter, the method for optimizing the illumination shape and the mask shape disclosed in Patent Document 1 will be described with reference to FIG.
 まず、図20(a)に示すように、一つの照明源から複数の照明ポイント1400及び所定のマスクパターンに対して照明を提供すると共に、所定のマスクパターンに提供された照明によって形成されるイメージのイメージ面で断片化ポイントを選択する。ここで、図20(a)は、アッベ描像を示す。 First, as shown in FIG. 20A, an image is formed by providing illumination from a single illumination source to a plurality of illumination points 1400 and a predetermined mask pattern, and by providing illumination to the predetermined mask pattern. Select the fragmentation point in the image plane. Here, Fig.20 (a) shows an Abbe image.
 次に、各断片化ポイントで照明の輝度及びイメージログ傾斜を決定し、同時に、照明源の輝度及び形状並びにマスクの回折次数の大きさ及び位相を変化させて、断片化ポイントでの最小イメージログ傾斜を最大にしながら、断片化ポイントにおける輝度を所定の範囲内にするイメージをイメージ面に形成する。 Next, determine the illumination intensity and image log slope at each fragmentation point, and at the same time change the illumination source brightness and shape and the mask diffraction order magnitude and phase to minimize the image log at the fragmentation point. An image is formed on the image plane so that the luminance at the fragmentation point falls within a predetermined range while maximizing the inclination.
 図20(b)及び(c)は、図20(d)に示すマスク上のDRAMパターンを照明することにより生じたイメージの一部を示している。図20(b)及び(c)において、明るい領域は、正規化したイメージログ傾斜を増大させるイメージ輝度を表しており、これら正規化したイメージログ傾斜が各パターンについて最大となるように、照明の輝度及び形状並びにマスクの回折次数の大きさ及び位相を変化させることにより、照明形状及びマスク形状を最適化することができる。 20B and 20C show part of an image generated by illuminating the DRAM pattern on the mask shown in FIG. In FIGS. 20 (b) and (c), the bright areas represent image brightness that increases the normalized image log slope, and the illumination intensity is such that these normalized image log slopes are maximized for each pattern. The illumination shape and mask shape can be optimized by changing the brightness and shape and the magnitude and phase of the diffraction order of the mask.
特開2004-312027号公報JP 2004-312027 A
 しかしながら、特許文献1に開示されている方法において最適化対象となる最も理想的なフォトマスクは、CPL(Chromeless Phase Lithography)マスクである。言い換えると、特許文献1に開示されている方法は、複数の位相差及び複数の透過率を有するフォトマスク(例えばエンハンサマスク(透光部、半遮光部及び位相シフト部を有するフォトマスク))には対応していないので、このようなフォトマスクを対象とした照明形状及びマスク形状の最適化を行うことができない。 However, the most ideal photomask to be optimized in the method disclosed in Patent Document 1 is a CPL (Chromeless Phase Lithography) mask. In other words, the method disclosed in Patent Document 1 is applied to a photomask having a plurality of phase differences and a plurality of transmittances (for example, an enhancer mask (a photomask having a translucent part, a semi-shielding part, and a phase shift part)). Are not compatible, and it is impossible to optimize the illumination shape and mask shape for such a photomask.
 前記に鑑み、本発明は、複数の位相差及び複数の透過率を有するフォトマスクを用いる場合であっても、照明形状及びフォトマスク形状をそれぞれ最適化できるようにすることを目的とする。 In view of the above, an object of the present invention is to enable optimization of an illumination shape and a photomask shape, respectively, even when a photomask having a plurality of phase differences and a plurality of transmittances is used.
 前記の目的を達成するために、本発明に係る照明形状の最適化方法は、露光光を透過させる透光部と、前記透光部よりも前記露光光の透過率が低い半遮光部と、前記露光光を前記透光部と異なる位相で透過させる位相シフト部とを少なくとも有するフォトマスクを用いた露光において前記露光光の照明形状を最適化する方法であって、投影光学系の瞳面を分割してなる複数の分割点のそれぞれにおいて、前記フォトマスクを透過した前記露光光の光強度分布を求め、当該光強度分布に基づいて、前記照明形状を設定する。 In order to achieve the above object, an illumination shape optimization method according to the present invention includes a translucent part that transmits exposure light, a semi-light-shielding part that has a lower transmittance of the exposure light than the translucent part, A method for optimizing the illumination shape of the exposure light in exposure using a photomask having at least a phase shift portion that transmits the exposure light in a phase different from that of the light transmitting portion, the pupil plane of the projection optical system being A light intensity distribution of the exposure light transmitted through the photomask is obtained at each of a plurality of divided points, and the illumination shape is set based on the light intensity distribution.
 また、前記の目的を達成するために、本発明に係るマスク形状の最適化方法は、露光光を透過させる透光部と、前記透光部よりも前記露光光の透過率が低い半遮光部と、前記露光光を前記透光部と異なる位相で透過させる位相シフト部とを少なくとも有するフォトマスクのマスク形状を最適化する方法であって、投影光学系の瞳面を分割してなる複数の分割点のそれぞれにおいて、前記フォトマスクを透過した前記露光光の光強度分布を求め、当該光強度分布のコントラストが向上するように、前記透光部、前記半遮光部及び前記位相シフト部のそれぞれの形状を設定する。 In order to achieve the above object, the mask shape optimization method according to the present invention includes a translucent part that transmits exposure light, and a semi-light-shielding part that has a lower transmittance of the exposure light than the translucent part. And a method for optimizing the mask shape of a photomask having at least a phase shift unit that transmits the exposure light at a phase different from that of the light transmitting unit, and a plurality of pupil planes of the projection optical system are divided. At each of the dividing points, the light intensity distribution of the exposure light transmitted through the photomask is obtained, and each of the light transmitting part, the semi-light-shielding part, and the phase shift part is provided so that the contrast of the light intensity distribution is improved. Set the shape.
 本発明によると、複数の位相差及び複数の透過率を有するフォトマスクを用いる場合であっても、照明形状及びマスク形状をそれぞれ最適化することができる。 According to the present invention, even when a photomask having a plurality of phase differences and a plurality of transmittances is used, the illumination shape and the mask shape can be optimized.
 また、本発明によると、複数の位相差及び複数の透過率を有するフォトマスクを用いる場合であっても、照明形状及びマスク形状をそれぞれ最適化できるため、投影光学系を用いた露光により形成されたパターンの解像度を向上させることができると共に、投影光学系を用いた露光により所望のパターンを得るためのプロセスウィンドウを拡大し、それにより、歩留まりを向上させることができる。 In addition, according to the present invention, even when a photomask having a plurality of phase differences and a plurality of transmittances is used, the illumination shape and the mask shape can be optimized, respectively, so that they are formed by exposure using a projection optical system. The resolution of the obtained pattern can be improved, and the process window for obtaining a desired pattern can be expanded by exposure using the projection optical system, thereby improving the yield.
図1は、一実施形態に係る照明形状の最適化方法、マスク形状の最適化方法及びパターン形成方法の適用対象となる露光装置の一例の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an example of an exposure apparatus that is an application target of an illumination shape optimization method, a mask shape optimization method, and a pattern formation method according to an embodiment. 図2は、一実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法において分割される投影レンズの瞳面を示す図である。FIG. 2 is a diagram illustrating a pupil plane of the projection lens divided in the illumination shape optimization method and the mask shape optimization method according to the embodiment. 図3(a)及び(b)は、一実施形態に係る照明形状の最適化方法、マスク形状の最適化方法及びパターン形成方法で用いられるエンハンサマスクの構造を示す図であり、図3(a)は平面図であり、図3(b)は図3(a)におけるI-I’線の断面図である。FIGS. 3A and 3B are diagrams showing the structure of an enhancer mask used in the illumination shape optimization method, mask shape optimization method, and pattern formation method according to one embodiment. ) Is a plan view, and FIG. 3B is a cross-sectional view taken along the line II ′ in FIG. 図4(a)~(f)は、一実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法において、投影レンズの瞳面の各ソースポジションにおけるエンハンサマスクを透過した露光光の光強度分布を求めた結果を示す図である。4 (a) to 4 (f) show exposure light beams transmitted through an enhancer mask at each source position on the pupil plane of the projection lens in the illumination shape optimization method and mask shape optimization method according to an embodiment. It is a figure which shows the result of having calculated | required intensity distribution. 図5(a)及び(b)は、一実施形態に係る照明形状の最適化方法によって最適化された照明形状を示す図である。FIGS. 5A and 5B are diagrams illustrating illumination shapes optimized by the illumination shape optimization method according to the embodiment. 図6(a)及び(b)は、一実施形態に係るマスク形状の最適化方法において、マスク形状を変化させることにより、各ソースポジションにおける光強度分布の光コントラストを改善させている様子を示す図である。FIGS. 6A and 6B show how the optical contrast of the light intensity distribution at each source position is improved by changing the mask shape in the mask shape optimization method according to one embodiment. FIG. 図7は、一実施形態に係るマスク形状の最適化方法によってマスク形状が最適化されたエンハンサマスクの平面図である。FIG. 7 is a plan view of an enhancer mask having a mask shape optimized by a mask shape optimization method according to an embodiment. 図8(a)は、一実施形態に係るマスク形状の最適化方法の適用対象となるフォトマスクによって形成しようとするターゲットパターンを示す図であり、図8(b)は、一実施形態に係るマスク形状の最適化方法によってマスク形状が最適化されると共にアシストパターンが付加されたマスクパターンを示す図である。FIG. 8A is a diagram illustrating a target pattern to be formed by a photomask that is an application target of the mask shape optimization method according to the embodiment, and FIG. 8B is a diagram according to the embodiment. It is a figure which shows the mask pattern to which the mask shape was optimized by the mask shape optimization method, and the assist pattern was added. 図9(a)及び(b)は、一実施形態に係る照明形状の最適化方法、マスク形状の最適化方法及びパターン形成方法で用いられる、遮光部を含むエンハンサマスクの構造を示す図であり、図9(a)は平面図であり、図9(b)は図9(a)におけるIV-IV’線の断面図である。FIGS. 9A and 9B are diagrams showing the structure of an enhancer mask including a light-shielding portion used in the illumination shape optimization method, mask shape optimization method, and pattern formation method according to an embodiment. 9A is a plan view, and FIG. 9B is a cross-sectional view taken along line IV-IV ′ in FIG. 9A. 図10(a)~(d)は、一実施形態に係るパターン形成方法の各工程を示す断面図である。FIGS. 10A to 10D are cross-sectional views showing respective steps of the pattern forming method according to the embodiment. 図11(a)は、一実施形態に係るパターン形成方法に用いられるエンハンサマスクの平面図であり、図11(b)は、一実施形態に係るパターン形成方法によって形成されたレジストパターンの平面図である。FIG. 11A is a plan view of an enhancer mask used in the pattern forming method according to the embodiment, and FIG. 11B is a plan view of a resist pattern formed by the pattern forming method according to the embodiment. It is. 図12(a)は、一実施形態に係るパターン形成方法によって形成しようとする、ロジック部からなるブロックとSRAM部(static random access memory )からなるブロックとを有する1つのレイヤを示す平面図であり、図12(b)は、ロジック部のターゲットパターンの平面図であり、図12(c)は、SRAM部のターゲットパターンの平面図であり、図12(d)は、ロジック部の最適化されたマスク形状の平面図であり、図12(e)は、SRAM部の最適化されたマスク形状の平面図である。FIG. 12A is a plan view showing one layer having a block made up of a logic part and a block made up of an SRAM part (static random access memory) to be formed by the pattern forming method according to the embodiment. 12B is a plan view of the target pattern of the logic part, FIG. 12C is a plan view of the target pattern of the SRAM part, and FIG. 12D is an optimization of the logic part. FIG. 12E is a plan view of the optimized mask shape of the SRAM unit. 図13(a)は、一実施形態に係るパターン形成方法において同一レイヤのマスク形状が分割されてなる一のブロックと対応するフォトマスクの平面図であり、図13(b)は、一実施形態に係るパターン形成方法において同一レイヤのマスク形状が分割されてなる他のブロックと対応するフォトマスクの平面図である。FIG. 13A is a plan view of a photomask corresponding to one block obtained by dividing the mask shape of the same layer in the pattern forming method according to one embodiment, and FIG. 13B is one embodiment. It is a top view of the photomask corresponding to the other block by which the mask shape of the same layer is divided | segmented in the pattern formation method which concerns on. 図14(a)は、一実施形態に係るパターン形成方法において同一レイヤのマスク形状が分割されてなる一のブロックと対応するフォトマスクを用いて露光を行っている様子を示す図であり、図14(b)は、一実施形態に係るパターン形成方法において同一レイヤのマスク形状が分割されてなる他のブロックと対応するフォトマスクを用いて露光を行っている様子を示す図である。FIG. 14A is a diagram illustrating a state in which exposure is performed using a photomask corresponding to one block obtained by dividing the mask shape of the same layer in the pattern forming method according to the embodiment. FIG. 14B is a diagram illustrating a state in which exposure is performed using a photomask corresponding to another block obtained by dividing the mask shape of the same layer in the pattern forming method according to the embodiment. 図15は、一実施形態に係るパターン形成方法のフローチャートである。FIG. 15 is a flowchart of a pattern forming method according to an embodiment. 図16は、一実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法を組み合わせて実施する手順の一例を示すフローチャートである。FIG. 16 is a flowchart illustrating an example of a procedure performed by combining an illumination shape optimization method and a mask shape optimization method according to an embodiment. 図17は、一実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法を組み合わせて実施する手順の他例を示すフローチャートである。FIG. 17 is a flowchart illustrating another example of a procedure performed by combining an illumination shape optimization method and a mask shape optimization method according to an embodiment. 図18は、一実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法を組み合わせて実施する手順の他例を示すフローチャートである。FIG. 18 is a flowchart illustrating another example of a procedure performed by combining an illumination shape optimization method and a mask shape optimization method according to an embodiment. 図19は、本発明の適用対象となるEUV露光装置の一例の概略構成を示す図である。FIG. 19 is a diagram showing a schematic configuration of an example of an EUV exposure apparatus to which the present invention is applied. 図20(a)~(d)は、従来の照明形状及びマスク形状の最適化方法を説明する図である。FIGS. 20A to 20D are diagrams for explaining a conventional illumination shape and mask shape optimization method.
 (実施形態)
 以下、一実施形態に係る照明形状の最適化方法、マスク形状の最適化方法及びパターン形成方法について、図面を参照しながら説明する。尚、本実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法は、例えば、コンピュータ上においてソフトウェアによる情報処理として実施される。
(Embodiment)
Hereinafter, an illumination shape optimization method, a mask shape optimization method, and a pattern formation method according to an embodiment will be described with reference to the drawings. The illumination shape optimization method and the mask shape optimization method according to the present embodiment are implemented as information processing by software on a computer, for example.
 図1は、本実施形態の適用対象となる露光装置の一例の概略構成を示している。図1に示す露光装置において、光源10を出た露光光17は、露光光17の形状を調節する絞り11、照明レンズ12、フォトマスク13、投影レンズ14を順次通って、ステージ16上に載置されたウェハ15に照射される。尚、図1に示す露光装置においては、絞り11及び照明レンズ12によって照明光学系18が構成され、投影レンズ14によって投影光学系19が構成されているが、照明光学系18及び投影光学系19の構成(例えばレンズ枚数等)はこれに限られないことは言うまでもない。 FIG. 1 shows a schematic configuration of an example of an exposure apparatus to which the present embodiment is applied. In the exposure apparatus shown in FIG. 1, the exposure light 17 emitted from the light source 10 sequentially passes through a stop 11 that adjusts the shape of the exposure light 17, an illumination lens 12, a photomask 13, and a projection lens 14, and is mounted on a stage 16. The placed wafer 15 is irradiated. In the exposure apparatus shown in FIG. 1, the illumination optical system 18 is configured by the diaphragm 11 and the illumination lens 12, and the projection optical system 19 is configured by the projection lens 14. However, the illumination optical system 18 and the projection optical system 19 are included. It goes without saying that the configuration (for example, the number of lenses, etc.) is not limited to this.
 最初に、本実施形態に係る照明形状の最適化方法について説明する。 First, an illumination shape optimization method according to this embodiment will be described.
 本実施形態に係る照明形状の最適化方法においては、まず、図2に示すように、投影レンズの瞳面100を仮想的なX-Y座標系において細かく分割する。ここで、「101」は、瞳面100が細分割されてなるソースポジションであり、「102」~「104」はそれぞれ、特定のソースポジションである。 In the illumination shape optimization method according to this embodiment, first, as shown in FIG. 2, the pupil plane 100 of the projection lens is finely divided in a virtual XY coordinate system. Here, “101” is a source position obtained by subdividing the pupil plane 100, and “102” to “104” are specific source positions.
 次に、図2に示す各ソースポジション101において、例えば図3(a)に示すフォトマスク200を透過した露光光の光強度分布を求める。本実施形態で用いるフォトマスク200は、複数の透過率と複数の位相差とを有するフォトマスク、具体的には、エンハンサマスクである。 Next, at each source position 101 shown in FIG. 2, for example, the light intensity distribution of the exposure light transmitted through the photomask 200 shown in FIG. The photomask 200 used in the present embodiment is a photomask having a plurality of transmittances and a plurality of phase differences, specifically, an enhancer mask.
 図3(a)及び(b)は、本実施形態で用いるエンハンサマスクの構造を示す図であり、図3(a)は平面図であり、図3(b)は図3(a)におけるI-I’線の断面図である。 FIGS. 3A and 3B are views showing the structure of an enhancer mask used in the present embodiment, FIG. 3A is a plan view, and FIG. 3B is an I in FIG. 3A. FIG.
 図3(a)及び(b)に示すように、エンハンサマスク200は、露光光を透過させる透明基板201上に、露光光に対して遮光性を有する半遮光部202と、半遮光部202により囲まれた位相シフト部203とを備えている。尚、透明基板201における半遮光部202及び位相シフト部203が形成されていない部分は透光部204であり、露光光に対する半遮光部202の透過率は透光部204よりも小さい。また、半遮光部202及び透光部204は、露光光を互いに同位相で透過させる。また、位相シフト部203は、半遮光部202及び透光部204を基準として露光光を反対位相で透過させる。位相シフト部203は、例えば図3(b)に示すように、露光光に180度の位相差が生じるように透明基板201を掘り下げることによって形成されていてもよいし、或いは、透明基板201の掘り下げに代えて、位相シフト膜を形成してもよい。 As shown in FIGS. 3A and 3B, the enhancer mask 200 includes a semi-light-shielding portion 202 having a light-shielding property for exposure light and a semi-light-shielding portion 202 on a transparent substrate 201 that transmits the exposure light. And an enclosed phase shift unit 203. A portion of the transparent substrate 201 where the semi-light-shielding portion 202 and the phase shift portion 203 are not formed is a translucent portion 204, and the transmittance of the semi-light-shielding portion 202 with respect to exposure light is smaller than that of the translucent portion 204. Moreover, the semi-light-shielding part 202 and the translucent part 204 transmit the exposure light in the same phase. The phase shift unit 203 transmits the exposure light in the opposite phase with the semi-light-shielding unit 202 and the translucent unit 204 as a reference. For example, as illustrated in FIG. 3B, the phase shift unit 203 may be formed by digging up the transparent substrate 201 so that a phase difference of 180 degrees is generated in the exposure light. Instead of digging down, a phase shift film may be formed.
 図4(a)~(f)は、コンピュータを用いたシミュレーションによって、図2の各ソースポジションにおけるエンハンサマスク200を透過した露光光の光強度分布を求めた結果を示している。具体的には、図4(a)は、図3(a)に示すエンハンサマスク200における点Aを含むII-II線を透過した露光光の光強度分布を図2のソースポジション102(座標(0,0))で求めた結果であり、図4(b)は、図3(a)に示すエンハンサマスク200における点Aを含むII-II’線を透過した露光光の光強度分布を図2のソースポジション103(座標(0,7))で求めた結果であり、図4(c)は、図3(a)に示すエンハンサマスク200における点Aを含むII-II線を透過した露光光の光強度分布を図2のソースポジション104(座標(7,0))で求めた結果である。また、図4(d)は、図3(a)に示すエンハンサマスク200における点Bを含むIII-III’線を透過した露光光の光強度分布を図2のソースポジション102(座標(0,0))で求めた結果であり、図4(e)は、図3(a)に示すエンハンサマスク200における点Bを含むIII-III’線を透過した露光光の光強度分布を図2のソースポジション103(座標(0,7))で求めた結果であり、図4(f)は、図3(a)に示すエンハンサマスク200における点Bを含むIII-III’線を透過した露光光の光強度分布を図2のソースポジション104(座標(7,0))で求めた結果である。尚、図4(a)~(f)において、光強度分布のピーク300が高い程、或いは、光強度分布におけるピーク301と最低光強度302との差分が大きい程、光コントラストが高い。 4 (a) to 4 (f) show the results of obtaining the light intensity distribution of the exposure light transmitted through the enhancer mask 200 at each source position in FIG. 2 by simulation using a computer. Specifically, FIG. 4A shows the light intensity distribution of the exposure light transmitted through the II-II line including the point A in the enhancer mask 200 shown in FIG. FIG. 4B shows the light intensity distribution of the exposure light transmitted through the II-II ′ line including the point A in the enhancer mask 200 shown in FIG. 3A. 4 is a result obtained at the source position 103 (coordinate (0, 7)) of FIG. 2, and FIG. 4C is an exposure through which the II-II line including the point A in the enhancer mask 200 shown in FIG. It is the result of calculating | requiring the light intensity distribution of light in the source position 104 (coordinate (7, 0)) of FIG. FIG. 4D shows the light intensity distribution of the exposure light transmitted through the line III-III ′ including the point B in the enhancer mask 200 shown in FIG. 4 (e) shows the light intensity distribution of the exposure light transmitted through the III-III 'line including the point B in the enhancer mask 200 shown in FIG. 3 (a). FIG. 4F shows the result obtained at the source position 103 (coordinates (0, 7)). FIG. 4F shows the exposure light transmitted through the III-III ′ line including the point B in the enhancer mask 200 shown in FIG. The light intensity distribution is obtained at the source position 104 (coordinate (7, 0)) in FIG. 4A to 4F, the higher the peak 300 of the light intensity distribution, or the greater the difference between the peak 301 and the minimum light intensity 302 in the light intensity distribution, the higher the light contrast.
 図4(a)~(c)に示すように、エンハンサマスク200の点Aを透過した露光光については、ソースポジション102~104のいずれにおいても高いコントラストが得られている。それに対して、図4(d)~(f)に示すように、エンハンサマスク200の点Bを透過した露光光については、ソースポジション103においてのみ高いコントラストが得られている。従って、エンハンサマスク200の点A及び点Bのいずれについても高いコントラストを得るために、ソースポジション102~104の中からソースポジション103を選択する。同様に、投影レンズの瞳面100が細分割されてなる各ソースポジションの中から、高い光コントラストが得られるソースポジションを選択していくと、複数の透過率と複数の位相差とを有するフォトマスクに対して、例えば図5(a)に示すような最適化された照明形状を得ることができる。尚、図5(a)において、「400」は、照明形状が最適化された瞳面であり、「401」は、選択されたソースポジションであり、「402」は、選択されなかったソースポジションである。また、図5(a)は、X-Y座標系の第1象限について最適化された照明形状を示しているので、対称性を考慮すると、実際の露光に用いられる最適化された照明形状は、図5(b)のようになる。このような最適化された照明形状は、例えば図1に示す露光装置においては、絞り11の調節等により実現することができる。 As shown in FIGS. 4A to 4C, the exposure light transmitted through the point A of the enhancer mask 200 has a high contrast at any of the source positions 102 to 104. On the other hand, as shown in FIGS. 4D to 4F, the exposure light transmitted through the point B of the enhancer mask 200 has a high contrast only at the source position 103. Therefore, in order to obtain a high contrast for both the points A and B of the enhancer mask 200, the source position 103 is selected from the source positions 102 to 104. Similarly, when a source position that provides high optical contrast is selected from source positions obtained by subdividing the pupil plane 100 of the projection lens, a photo having a plurality of transmittances and a plurality of phase differences is selected. For the mask, for example, an optimized illumination shape as shown in FIG. 5A can be obtained. In FIG. 5A, “400” is the pupil plane with the optimized illumination shape, “401” is the selected source position, and “402” is the unselected source position. It is. Further, FIG. 5A shows the illumination shape optimized for the first quadrant of the XY coordinate system, and therefore, considering the symmetry, the optimized illumination shape used for actual exposure is As shown in FIG. Such an optimized illumination shape can be realized, for example, by adjusting the diaphragm 11 in the exposure apparatus shown in FIG.
 続いて、本実施形態に係るマスク形状の最適化方法について説明する。 Subsequently, a mask shape optimization method according to the present embodiment will be described.
 本実施形態に係るマスク形状の最適化方法においては、例えば図6(a)及び(b)に示すように、前述のように選択された各ソースポジションで求められた光強度分布の光コントラストがさらに改善するように(つまり、光コントラストがさらに高くなるように)、フォトマスクのマスク形状を変化させる。ここで、図6(a)は、図2のソースポジション103(座標(0,7))で得られる、エンハンサマスク200における点Aを含むII-II’線を透過した露光光の光強度分布の光コントラストを改善している様子を示しており、図6(b)は、図2のソースポジション103(座標(0,7))で得られる、エンハンサマスク200における点Bを含むIII-III’線を透過した露光光の光強度分布の光コントラストを改善している様子を示している。また、図6(a)及び(b)において、「500」は、マスク形状を変化させる前の光強度分布を示しており、「501」は、マスク形状を変化させた後の光強度分布を示している。図6(a)及び(b)に示すように、本実施形態に係るマスク形状の最適化方法によってマスク形状を変化させた後、光コントラストは明らかに改善されている。 In the mask shape optimization method according to the present embodiment, for example, as shown in FIGS. 6A and 6B, the light contrast of the light intensity distribution obtained at each source position selected as described above is obtained. The mask shape of the photomask is changed so as to further improve (that is, the optical contrast is further increased). Here, FIG. 6A shows the light intensity distribution of the exposure light transmitted through the II-II ′ line including the point A in the enhancer mask 200 obtained at the source position 103 (coordinates (0, 7)) of FIG. FIG. 6B shows a state in which the optical contrast of the enhancer mask 200 obtained at the source position 103 (coordinates (0, 7) in FIG. 2 is included. 'Indicates how the optical contrast of the light intensity distribution of the exposure light transmitted through the line is improved. In FIGS. 6A and 6B, “500” indicates the light intensity distribution before the mask shape is changed, and “501” indicates the light intensity distribution after the mask shape is changed. Show. As shown in FIGS. 6A and 6B, the optical contrast is clearly improved after the mask shape is changed by the mask shape optimization method according to the present embodiment.
 図7は、本実施形態に係るマスク形状の最適化方法を用いて、選択されたソースポジションの光コントラストが改善されるように、図3(a)に示すエンハンサマスク200のマスク形状を変化させることによって得られたエンハンサマスク600の平面構成を示している。ここで、「601」は透明基板であり、「602」は、半遮光部202を変形させてなる半遮光部であり、「603」は、位相シフト部203を変形させてなる位相シフト部であり、「604」は、透光部204を変形させてなる透光部である。このように、選択されたソースポジションの光コントラストを改善するように、フォトマスクの各部(本実施形態では半遮光部、位相シフト部及び透光部)の形状をそれぞれ変化させることにより、複数の透過率と複数の位相差とを有するフォトマスクの最適化されたマスク形状を得ることができる。 7 changes the mask shape of the enhancer mask 200 shown in FIG. 3A so that the optical contrast of the selected source position is improved by using the mask shape optimization method according to the present embodiment. The planar structure of the enhancer mask 600 obtained by this is shown. Here, “601” is a transparent substrate, “602” is a semi-light-shielding portion obtained by deforming the semi-light-shielding portion 202, and “603” is a phase shift portion obtained by modifying the phase-shifting portion 203. “604” is a translucent part formed by deforming the translucent part 204. In this way, by changing the shape of each part of the photomask (in this embodiment, the semi-light-shielding part, the phase shift part, and the light-transmitting part) so as to improve the light contrast of the selected source position, a plurality of parts can be obtained. An optimized mask shape of a photomask having transmittance and a plurality of phase differences can be obtained.
 ここで、マスク形状の最適化は、光コントラストに最も影響を与える位相シフト部の形状から行い、続いて、半遮光部の形状及び透光部の形状を順次最適化していくことが最も効率的であるが、位相シフト部以外の部分の形状の最適化を先に行うことも可能である。 Here, it is most efficient to optimize the mask shape based on the shape of the phase shift portion that most affects the optical contrast, and then sequentially optimize the shape of the semi-light-shielding portion and the shape of the light-transmitting portion. However, it is also possible to optimize the shape of the portion other than the phase shift portion first.
 また、マスク形状の最適化においては、前述のように、フォトマスクの各部分の形状を変化させるのみならず、例えば図8(b)に示すように、位相シフト部611及び半遮光部612からなるマスクパターンの周辺に、露光によって転写されないアシストパターン613を付加してもよい。尚、図8(a)は、図8(b)に示すマスクパターンによって形成しようとする所望のパターン(ターゲットパターン)を示している。 Further, in the optimization of the mask shape, as described above, not only the shape of each part of the photomask is changed, but also from the phase shift unit 611 and the semi-light-shielding unit 612 as shown in FIG. 8B, for example. An assist pattern 613 that is not transferred by exposure may be added around the mask pattern. FIG. 8A shows a desired pattern (target pattern) to be formed by the mask pattern shown in FIG.
 尚、以上に述べた、本実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法においては、ラインエンド間スペース部(例えばエンハンサマスク200の点A)及びライン幅中心部(例えばエンハンサマスク200の点B)のそれぞれを透過した露光光の光強度分布を求めたが、実際には光強度分布の算出対象をさらに増やして照明形状やマスク形状の最適化を行ってもよい。 In the illumination shape optimization method and mask shape optimization method according to the present embodiment described above, the inter-line end space portion (for example, point A of the enhancer mask 200) and the line width center portion (for example, the enhancer). Although the light intensity distribution of the exposure light transmitted through each of the points B) of the mask 200 is obtained, in practice, the illumination shape and the mask shape may be optimized by further increasing the calculation target of the light intensity distribution.
 また、本実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法においては、複数の透過率と複数の位相差とを有するフォトマスクとして、半遮光部、位相シフト部及び透光部を有するエンハンサマスクを対象とした。しかし、これに代えて、半遮光部、位相シフト部及び透光部に加えて、露光光を透過させない遮光部を透明基板上に備えたフォトマスクを対象としてもよい。図9(a)及び(b)は、このようなフォトマスクの構造を示す図であり、図9(a)は平面図であり、図9(b)は図9(a)におけるIV-IV’線の断面図である。 Further, in the illumination shape optimization method and the mask shape optimization method according to the present embodiment, as a photomask having a plurality of transmittances and a plurality of phase differences, a semi-light-shielding portion, a phase shift portion, and a light-transmitting portion An enhancer mask having However, instead of this, in addition to the semi-light-shielding portion, the phase shift portion, and the light-transmitting portion, a photomask provided with a light-shielding portion that does not transmit exposure light on a transparent substrate may be used. 9 (a) and 9 (b) are diagrams showing the structure of such a photomask, FIG. 9 (a) is a plan view, and FIG. 9 (b) is an IV-IV in FIG. 9 (a). It is sectional drawing of a line.
 図9(a)及び(b)に示すように、フォトマスク(エンハンサマスク)620は、露光光を透過させる透明基板621上に、露光光に対して遮光性を有する半遮光部622と、半遮光部622により囲まれた位相シフト部623と、露光光を透過させない遮光部625とを備えている。尚、透明基板621における半遮光部622、位相シフト部623及び遮光部625が形成されていない部分は透光部624であり、露光光に対する半遮光部622の透過率は透光部624よりも小さい。また、半遮光部622及び透光部624は、露光光を互いに同位相で透過させる。また、位相シフト部623は、半遮光部622及び透光部624を基準として露光光を反対位相で透過させる。位相シフト部623は、例えば図9(b)に示すように、露光光に180度の位相差が生じるように透明基板621を掘り下げることによって形成されていてもよい。また、例えば図9(b)に示すように、透光部624となる膜は、半遮光部622となる膜上に形成されていてもよい。 As shown in FIGS. 9A and 9B, a photomask (enhancer mask) 620 includes a semi-light-shielding portion 622 having a light-shielding property with respect to exposure light on a transparent substrate 621 that transmits exposure light, and a half-mask. A phase shift unit 623 surrounded by the light shielding unit 622 and a light shielding unit 625 that does not transmit exposure light are provided. In the transparent substrate 621, a portion where the semi-light-shielding portion 622, the phase shift portion 623, and the light-shielding portion 625 are not formed is a light-transmitting portion 624. small. Moreover, the semi-light-shielding part 622 and the translucent part 624 transmit the exposure light in the same phase. The phase shift unit 623 transmits the exposure light in the opposite phase with the semi-shielding unit 622 and the translucent unit 624 as a reference. For example, as illustrated in FIG. 9B, the phase shift unit 623 may be formed by digging up the transparent substrate 621 so that the exposure light has a phase difference of 180 degrees. For example, as illustrated in FIG. 9B, the film that becomes the light-transmitting portion 624 may be formed on the film that becomes the semi-light-shielding portion 622.
 遮光部を有するフォトマスクを対象とする場合、照明形状やマスク形状の最適化に際して、ラインエンド間スペース部(例えばフォトマスク620の点A)及びライン幅中心部(例えばフォトマスク620の点B)に加えて、遮光部ライン幅(例えばフォトマスク620の点C)を透過した露光光の光強度分布を求めてもよい。具体的には、照明形状の最適化に際しては、このように求めた光強度分布に基づいて、高い光コントラストが得られるソースポジションを選択していけばよい。また、マスク形状の最適化に際しては、前述のように選択された各ソースポジションで求められた光強度分布の光コントラストがさらに改善するように、マスク形状を変化させていけばよい。この場合も、位相シフト部の形状の最適化から行うことが好ましい。 When a photomask having a light-shielding portion is a target, a space portion between line ends (for example, point A of the photomask 620) and a center portion of the line width (for example, point B of the photomask 620) when optimizing the illumination shape and the mask shape. In addition, the light intensity distribution of the exposure light that has passed through the light shielding part line width (eg, point C of the photomask 620) may be obtained. Specifically, when optimizing the illumination shape, a source position that provides a high light contrast may be selected based on the thus obtained light intensity distribution. Further, when optimizing the mask shape, the mask shape may be changed so that the light contrast of the light intensity distribution obtained at each source position selected as described above is further improved. Also in this case, it is preferable to carry out the optimization of the shape of the phase shift portion.
 尚、本実施形態においては、照明形状の最適化を行ってから、マスク形状の最適化を行ったが、これに代えて、マスク形状の最適化を行ってから、照明形状の最適化を行ってもよい。或いは、照明形状の最適化及びマスク形状の最適化のいずれか一方のみを行ってもよい。また、マスク形状の最適化を行った後に、公知のOPC(光近接補正)を行ってもよい。 In this embodiment, the illumination shape is optimized and then the mask shape is optimized. Instead, the mask shape is optimized and then the illumination shape is optimized. May be. Alternatively, only one of illumination shape optimization and mask shape optimization may be performed. Moreover, after optimizing the mask shape, known OPC (optical proximity correction) may be performed.
 続いて、本実施形態に係るパターン形成方法、具体的には、前述のように最適化された照明形状及びマスク形状を用いたパターン形成方法について、図面を参照しながら説明する。 Subsequently, the pattern forming method according to the present embodiment, specifically, the pattern forming method using the illumination shape and the mask shape optimized as described above will be described with reference to the drawings.
 図10(a)~(d)は、本実施形態に係るパターン形成方法の各工程を示す断面図である。 10 (a) to 10 (d) are cross-sectional views showing respective steps of the pattern forming method according to the present embodiment.
 まず、図10(a)に示すように、基板700の上に、金属膜又は絶縁膜等の被加工膜701を形成した後、図10(b)に示すように、被加工膜701の上に、例えばポジ型のレジスト膜702を形成する。さらに、本実施形態では、液浸露光を前提として、レジスト膜702の上にトップコート703を形成することにより、レジスト膜702をコーティングする。 First, as shown in FIG. 10A, a film to be processed 701 such as a metal film or an insulating film is formed on the substrate 700, and then, as shown in FIG. For example, a positive resist film 702 is formed. Furthermore, in this embodiment, the resist film 702 is coated by forming a top coat 703 on the resist film 702 on the premise of immersion exposure.
 次に、図10(c)に示すように、本実施形態の方法によりマスク形状が最適化されたエンハンサマスク600に対して、例えばArFエキシマレーザーを光源として、本実施形態の方法により照明形状が最適化された露光光704を照射する。 Next, as shown in FIG. 10C, for the enhancer mask 600 whose mask shape is optimized by the method of this embodiment, the illumination shape is changed by the method of this embodiment using, for example, an ArF excimer laser as a light source. The optimized exposure light 704 is irradiated.
 図11(a)は、図10(c)に示すエンハンサマスク600の平面構成を示している。図10(c)及び図11(a)に示すように、エンハンサマスク600は、露光光704を透過させる透明基板601上に、露光光704に対して遮光性を有する半遮光部602と、半遮光部602により囲まれた位相シフト部603とを備えている。尚、透明基板601における半遮光部602及び位相シフト部603が形成されていない部分は透光部604であり、露光光704に対する半遮光部602の透過率は透光部604よりも小さい。また、半遮光部602及び透光部604は、露光光704を互いに同位相で透過させる。また、位相シフト部603は、半遮光部602及び透光部604を基準として露光光704を反対位相で透過させる。位相シフト部603は、露光光704に180度の位相差が生じるように透明基板601を掘り下げることによって形成されていてもよいし、或いは、透明基板601の掘り下げに代えて、位相シフト膜を形成してもよい。 FIG. 11 (a) shows a planar configuration of the enhancer mask 600 shown in FIG. 10 (c). As shown in FIGS. 10C and 11A, the enhancer mask 600 includes a semi-light-shielding portion 602 having a light-shielding property with respect to the exposure light 704, and a semi-light-shielding portion 602 on the transparent substrate 601 that transmits the exposure light 704. And a phase shift unit 603 surrounded by a light shielding unit 602. A portion where the semi-light-shielding portion 602 and the phase shift portion 603 are not formed in the transparent substrate 601 is a light-transmitting portion 604, and the transmittance of the semi-light-shielding portion 602 with respect to the exposure light 704 is smaller than that of the light-transmitting portion 604. Moreover, the semi-light-shielding part 602 and the translucent part 604 transmit the exposure light 704 in the same phase. The phase shift unit 603 transmits the exposure light 704 in the opposite phase with the semi-shielding unit 602 and the translucent unit 604 as a reference. The phase shift unit 603 may be formed by digging up the transparent substrate 601 so that the exposure light 704 has a phase difference of 180 degrees, or instead of digging up the transparent substrate 601, a phase shift film is formed. May be.
 図10(c)に示す露光においては、透光部604を透過してきた露光光704(透過光706)によってレジスト膜702が感光し、潜像部分702aが形成される。また、半遮光部602を透過してきた露光光704(透過光705)、及び位相シフト部603を透過してきた露光光704(透過光707(透過光705、706の反対位相を持つ))はレジスト膜702を感光させない。 In the exposure shown in FIG. 10C, the resist film 702 is exposed to the exposure light 704 (transmitted light 706) transmitted through the light transmitting portion 604, and a latent image portion 702a is formed. Further, the exposure light 704 (transmitted light 705) transmitted through the semi-shielding portion 602 and the exposure light 704 transmitted through the phase shift portion 603 (transmitted light 707 (having the opposite phase of the transmitted light 705 and 706)) are resists. The film 702 is not exposed.
 次に、トップコート703及びレジスト膜702に対して現像を行って潜像部分702aを除去することにより、図10(d)に示すように、レジストパターン708を形成する。 Next, the top coat 703 and the resist film 702 are developed to remove the latent image portion 702a, thereby forming a resist pattern 708 as shown in FIG.
 図11(b)は、図10(d)に示す現像を行った後のレジストパターン708の平面構成を示している。ここで、図11(b)における対向パターン間スペース800の寸法は、(k×λ/NA)以下である(但し、kはマスク解像度や照明条件などのプロセス技術により決まる定数、λは露光光の波長、NAは露光装置の縮小投影光学系の開口数)。例えば、波長λが193nmのArFエキシマレーザーを光源とした場合、転写される実際の寸法(対向パターン間スペース800の寸法)は50nm以下である。 FIG. 11B shows a planar configuration of the resist pattern 708 after the development shown in FIG. Here, the dimension of the space 800 between the opposing patterns in FIG. 11B is (k × λ / NA) or less (where k is a constant determined by a process technique such as mask resolution and illumination conditions, and λ is exposure light) Where NA is the numerical aperture of the reduction projection optical system of the exposure apparatus). For example, when an ArF excimer laser having a wavelength λ of 193 nm is used as a light source, the actual dimension to be transferred (the dimension of the space 800 between the opposing patterns) is 50 nm or less.
 ここまで、露光に用いられるフォトマスクに対して、1種類の最適化された照明形状を適用する場合について説明してきたが、続いて、同一レイヤのマスク形状が分割されてなる複数のブロックのそれぞれと対応する複数のフォトマスクを用いたパターン形成方法に前述の本実施形態に係る照明形状の最適化方法を適用する場合について、図面を参照しながら説明する。尚、1つのレイヤと対応するフォトマスクの露光領域内には、複数のパターンレイアウトが存在しているのが一般的である。本願発明者らは、各パターンレイアウトにそれぞれ適した照明形状が存在することに着目して、各パターンレイアウト(ブロック)毎にフォトマスクを別々に作製し、当該各フォトマスクのそれぞれについて照明形状を最適化することに想到した。これにより、パターンの解像度をさらに向上させることが可能となる。 Up to this point, the case where one type of optimized illumination shape is applied to the photomask used for exposure has been described. Subsequently, each of a plurality of blocks obtained by dividing the mask shape of the same layer A case where the illumination shape optimization method according to this embodiment described above is applied to a pattern formation method using a plurality of photomasks corresponding to the above will be described with reference to the drawings. In general, a plurality of pattern layouts exist in an exposure area of a photomask corresponding to one layer. The inventors of the present application pay attention to the fact that there is an illumination shape suitable for each pattern layout, and separately produce a photomask for each pattern layout (block), and set the illumination shape for each of the photomasks. I came up with an optimization. As a result, the resolution of the pattern can be further improved.
 具体的には、まず、図12(a)に示す1つのレイヤのマスク形状を、例えば、ロジック部からなるブロック901と、SRAM部からなるブロック902とに分割する。図13(a)及び(b)は、分割された各ブロック901、902と対応する2枚のフォトマスクの平面構成を示している。図13(a)に示すフォトマスク910においては、透明基板911上に、ロジック部からなるブロック901が配置されている。また、図13(b)に示すフォトマスク920においては、透明基板921上に、SRAM部からなるブロック902が配置されている。ここで、同一レイヤのマスク形状が分割されてなるフォトマスク910及びフォトマスク920を用いた露光における照明形状はそれぞれ、前述の本実施形態の方法により最適化される。 Specifically, first, the mask shape of one layer shown in FIG. 12A is divided into, for example, a block 901 composed of a logic unit and a block 902 composed of an SRAM unit. FIGS. 13A and 13B show a planar configuration of two photomasks corresponding to each of the divided blocks 901 and 902. In a photomask 910 shown in FIG. 13A, a block 901 including a logic portion is arranged on a transparent substrate 911. Further, in the photomask 920 shown in FIG. 13B, a block 902 including an SRAM portion is disposed on the transparent substrate 921. Here, the illumination shape in the exposure using the photomask 910 and the photomask 920 obtained by dividing the mask shape of the same layer is optimized by the method of this embodiment described above.
 尚、図12(b)は、フォトマスク910によって形成しようとするロジック部の所望のパターン(ターゲットパターン)の平面構成を示しており、図12(c)は、フォトマスク920によって形成しようとするSRAM部のターゲットパターンの平面構成を示している。 FIG. 12B shows a planar configuration of a desired pattern (target pattern) of the logic portion to be formed by the photomask 910, and FIG. 12C is to be formed by the photomask 920. The plane structure of the target pattern of the SRAM section is shown.
 また、図12(d)は、図13(a)に示すフォトマスク910に配置されるブロック(ロジック部)901の最適化されたマスク形状の平面構成を示しており、図12(e)は、図13(b)に示すフォトマスク920に配置されるブロック(SRAM部)902の最適化されたマスク形状の平面構成を示している。尚、図12(d)及び(e)において、「903」は半遮光部であり、「904」は位相シフト部であり、「905」は透光部である。 FIG. 12D shows a planar configuration of the optimized mask shape of the block (logic unit) 901 arranged on the photomask 910 shown in FIG. 13A. FIG. FIG. 13 shows a plan configuration of an optimized mask shape of a block (SRAM unit) 902 arranged on the photomask 920 shown in FIG. In FIGS. 12D and 12E, “903” is a semi-shielding portion, “904” is a phase shift portion, and “905” is a translucent portion.
 次に、フォトマスク910を用いた露光において本実施形態の方法によって照明形状を最適化することによって、図14(a)に示すように、ウェハ1000上にブロック(ロジック部)901を転写する。続いて、フォトマスク920を用いた露光において本実施形態の方法によって照明形状を最適化することによって、図14(b)に示すように、ウェハ1000上にブロック(SRAM部)902を転写する。これにより、ブロック(ロジック部)901とブロック(SRAM部)902とからなる1つのレイヤのパターンを形成することができる。 Next, in the exposure using the photomask 910, the illumination shape is optimized by the method of the present embodiment, whereby the block (logic unit) 901 is transferred onto the wafer 1000 as shown in FIG. Subsequently, in the exposure using the photomask 920, the illumination shape is optimized by the method of the present embodiment, whereby the block (SRAM portion) 902 is transferred onto the wafer 1000 as shown in FIG. Thereby, a pattern of one layer composed of the block (logic unit) 901 and the block (SRAM unit) 902 can be formed.
 以上に説明したように、同一レイヤのマスク形状が分割されてなる複数のブロックのそれぞれと対応する複数のフォトマスクを用いた露光において、各フォトマスクのそれぞれについて照明形状を最適化すると共に各フォトマスクのマスク形状を最適化することにより、さらに微細なパターン形成が可能となる。 As described above, in exposure using a plurality of photomasks corresponding to each of a plurality of blocks obtained by dividing the mask shape of the same layer, the illumination shape is optimized for each photomask and each photo By optimizing the mask shape of the mask, a finer pattern can be formed.
 尚、以上の説明においては、照明形状及びマスク形状の両方を本実施形態の方法により最適化したが、これに代えて、照明形状及びマスク形状のいずれか一方のみを本実施形態の方法により最適化してもよい。また、同一レイヤのマスク形状を2つに分割して2枚のフォトマスクを作製したが、これに代えて、同一レイヤのマスク形状を3つ以上に分割して3枚以上のフォトマスクを作製してもよい。また、1つのレイヤのマスク形状を、ロジック部(つまり論理回路)からなるブロックと、SRAM部(つまりメモリ)からなるブロックとに分割したが、分割対象のブロックの種類がレイヤに応じて適宜設定されることは言うまでもない。 In the above description, both the illumination shape and the mask shape are optimized by the method of this embodiment. Instead, only one of the illumination shape and the mask shape is optimized by the method of this embodiment. May be used. In addition, the mask shape of the same layer was divided into two to produce two photomasks. Instead, the mask shape of the same layer was divided into three or more to produce three or more photomasks. May be. In addition, the mask shape of one layer is divided into a block composed of a logic part (that is, a logic circuit) and a block composed of an SRAM part (that is, a memory), but the type of block to be divided is appropriately set according to the layer. It goes without saying that it is done.
 図15は、同一レイヤのマスク形状が分割されてなる複数のブロックのそれぞれと対応する複数のフォトマスクを用いた前述のパターン形成方法のフローチャートである。 FIG. 15 is a flowchart of the above-described pattern forming method using a plurality of photomasks corresponding to each of a plurality of blocks obtained by dividing the mask shape of the same layer.
 図15に示すように、まず、ステップS11において、同一レイヤのマスク形状が分割されてなる一のブロックと対応するフォトマスクA(例えば図13(a)に示すフォトマスク910)が露光装置にセットされる。また、ステップS11と並行して、ステップS12において、レジストなどを塗布したウェハが露光装置にセットされる。 As shown in FIG. 15, first, in step S11, a photomask A (for example, photomask 910 shown in FIG. 13A) corresponding to one block obtained by dividing the mask shape of the same layer is set in the exposure apparatus. Is done. In parallel with step S11, in step S12, a wafer coated with a resist or the like is set in the exposure apparatus.
 次に、ステップS13において、フォトマスクAとウェハとのアライメント及びレベリング、並びにフォーカシングなどが行われた後、ステップS14において、フォトマスクAを用いた露光が行われる(図14(a)参照)。 Next, in step S13, alignment and leveling between the photomask A and the wafer, focusing, and the like are performed, and then exposure using the photomask A is performed in step S14 (see FIG. 14A).
 フォトマスクAを用いた露光が完了したら、ステップS15において、フォトマスクAが露光装置から取り外され、続いて、同一レイヤのマスク形状が分割されてなる他のブロックと対応するフォトマスクB(例えば図13(b)に示すフォトマスク920)が露光装置にセットされる。 When the exposure using the photomask A is completed, in step S15, the photomask A is removed from the exposure apparatus, and subsequently, the photomask B corresponding to another block in which the mask shape of the same layer is divided (for example, FIG. A photomask 920) shown in 13 (b) is set in the exposure apparatus.
 次に、ステップS16において、フォトマスクBとウェハとのアライメント及びレベリング、並びにフォーカシングなどが行われた後、ステップS17において、フォトマスクBを用いた露光が行われる(図14(b)参照)。 Next, in step S16, alignment and leveling between the photomask B and the wafer, focusing, and the like are performed, and then exposure using the photomask B is performed in step S17 (see FIG. 14B).
 最後に、ステップS18において、ウェハに塗布されたレジストなどに対して現像が行われ、それによって、パターン形成が完了する。 Finally, in step S18, the resist applied to the wafer is developed, thereby completing the pattern formation.
 尚、以上に述べてきた本実施形態に係る照明形状の最適化方法、マスク形状の最適化方法及びパターン形成方法においては、複数の透過率と複数の位相差とを有するフォトマスクとして、半遮光部、位相シフト部及び透光部を有するエンハンサマスクを対象としてきたが、半遮光部、位相シフト部及び透光部に加えて、露光光を透過させない遮光部を有するフォトマスクを対象としてもよい。また、エンハンサマスクとは異なるフォトマスクを対象として、本実施形態に係る照明形状の最適化方法、マスク形状の最適化方法及びパターン形成方法を適用できることも言うまでもない。 In the illumination shape optimization method, mask shape optimization method, and pattern formation method according to the present embodiment described above, a semi-light-shielding photomask having a plurality of transmittances and a plurality of phase differences is used. However, in addition to the semi-light-shielding portion, the phase-shifting portion, and the light-transmitting portion, a photomask having a light-shielding portion that does not transmit exposure light may be targeted. . It goes without saying that the illumination shape optimization method, mask shape optimization method, and pattern formation method according to this embodiment can be applied to a photomask different from the enhancer mask.
 以下、本実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法を組み合わせて実施する手順について、図16のフローチャートを参照しながら説明する。 Hereinafter, a procedure performed by combining the illumination shape optimization method and the mask shape optimization method according to the present embodiment will be described with reference to the flowchart of FIG.
 まず、ステップS21において、ターゲットパターンのデザイン(初期値)を決定する。次に、ステップS22において、投影光学系(例えば投影レンズ)の瞳面を細かく分割してなる各ソースポジションにおいて、対象となるフォトマスクを透過した露光光の光強度分布を取得する。次に、ステップS23において、各ソースポジションの中から、光強度分布の光コントラストが相対的に高いソースポジションを選択することによって、照明形状を最適化する。 First, in step S21, the design (initial value) of the target pattern is determined. Next, in step S22, the light intensity distribution of the exposure light transmitted through the target photomask is obtained at each source position obtained by finely dividing the pupil plane of the projection optical system (for example, a projection lens). Next, in step S23, the illumination shape is optimized by selecting a source position having a relatively high light contrast in the light intensity distribution from each source position.
 次に、ステップS24において、フォトマスクの各構成部分(例えば遮光部、半遮光部、位相シフト部、透光部)のそれぞれの形状を変化させることにより、選択されたソースポジションの光強度分布の光コントラストを調整する。これにより、ステップS25において、選択されたソースポジションの光強度分布の光コントラストが改善されるように、マスク形状の最適化が行われる。 Next, in step S24, the light intensity distribution of the selected source position is changed by changing the shape of each of the constituent parts (for example, the light shielding part, the semi-light shielding part, the phase shift part, and the light transmitting part) of the photomask. Adjust the light contrast. Thus, in step S25, the mask shape is optimized so that the light contrast of the light intensity distribution at the selected source position is improved.
 次に、ステップS26において、リソグラフィ性能評価として、焦点深度若しくは露光余裕度等のプロセスウィンドウの拡大、又はマスクエラーファクタ値の最小化等を行い、プロセスウィンドウの拡大やマスクエラーファクタ値の最小化等が、予め設定されているプロセスウィンドウの規格やマスクエラーファクタ値の規格を満たしているかどうかを評価する。そして、規格を満たしている場合(規格達成)には、ステップS27において、照明形状及びマスク形状をステップS23及びS25で最適化された形状に決定する。すなわち、照明形状及びマスク形状の最適化を完了する。一方、規格を満たしていない場合(規格未達)には、再度、照明形状及びマスク形状の最適化を行う。この場合、常に照明形状及びマスク形状の両方の最適化を行う必要は無く、ステップS26の性能評価で規格を達成できるのであれば、照明形状及びマスク形状のいずれか一方のみについて最適化を再度行ってもよい。図17のフローチャートは、ステップS26の性能評価で規格が達成できなかった場合に、照明形状の最適化のみを行う手順を示している。また、図18のフローチャートは、ステップS26の性能評価で規格が達成できなかった場合に、マスク形状の最適化のみを行う手順を示している。 Next, in step S26, as a lithography performance evaluation, a process window such as a depth of focus or an exposure margin is enlarged or a mask error factor value is minimized, and the process window is enlarged and a mask error factor value is minimized. Evaluate whether or not the process window standard and the mask error factor value standard set in advance are satisfied. If the standard is satisfied (achievement of the standard), the illumination shape and the mask shape are determined to be the shapes optimized in steps S23 and S25 in step S27. That is, the optimization of the illumination shape and the mask shape is completed. On the other hand, when the standard is not satisfied (standard not achieved), the illumination shape and the mask shape are optimized again. In this case, it is not always necessary to optimize both the illumination shape and the mask shape. If the standard can be achieved by the performance evaluation in step S26, the optimization is performed again for only one of the illumination shape and the mask shape. May be. The flowchart of FIG. 17 shows a procedure for only optimizing the illumination shape when the standard cannot be achieved in the performance evaluation of step S26. Further, the flowchart of FIG. 18 shows a procedure for performing only mask shape optimization when the standard cannot be achieved in the performance evaluation in step S26.
 尚、図16~図18のフローチャートにおいては、本実施形態に係る照明形状の最適化方法を実施した後に、本実施形態に係るマスク形状の最適化方法を実施する場合を示しているが、これに代えて、本実施形態に係るマスク形状の最適化方法を実施した後に、本実施形態に係る照明形状の最適化方法を実施してもよい。 16 to 18 show a case where the mask shape optimization method according to this embodiment is executed after the illumination shape optimization method according to this embodiment is executed. Instead, after the mask shape optimizing method according to the present embodiment is performed, the illumination shape optimizing method according to the present embodiment may be performed.
 以上に説明したように、本実施形態に係る照明形状の最適化方法及びマスク形状の最適化方法によると、複数の位相差及び複数の透過率を有するフォトマスクを用いる場合であっても、照明形状及びマスク形状をそれぞれ最適化することができる。このため、投影光学系を用いた露光により形成されたパターンの解像度を向上させることができると共に、投影光学系を用いた露光により所望のパターンを得るためのプロセスウィンドウを拡大し、それにより、歩留まりを向上させることができる。 As described above, according to the illumination shape optimization method and the mask shape optimization method according to the present embodiment, even when a photomask having a plurality of phase differences and a plurality of transmittances is used, illumination is performed. Each shape and mask shape can be optimized. For this reason, the resolution of the pattern formed by exposure using the projection optical system can be improved, and the process window for obtaining a desired pattern by the exposure using the projection optical system is expanded, thereby improving the yield. Can be improved.
 尚、以上の説明においては、照明レンズや投影レンズ等の光学系を有する露光装置の使用を前提としてきたが、これに代えて、反射ミラー光学系を有する露光装置(EUV(極紫外線)露光などに用いられる)においても、本発明は適用可能である。具体的には、本実施形態において、「透過率」を「反射率」に、「透光部」を「反射部」に、「半遮光部」を「半反射部」に、「遮光部」を「非反射部」にそれぞれ置き換えることによって、複数の位相差及び複数の反射率を有するフォトマスクを用いる場合であっても、照明形状及びマスク形状をそれぞれ最適化することができる。 In the above description, it is assumed that an exposure apparatus having an optical system such as an illumination lens and a projection lens is used. Instead, an exposure apparatus (EUV (extreme ultraviolet) exposure, etc.) having a reflection mirror optical system is used. The present invention can also be applied. Specifically, in this embodiment, “transmittance” is “reflectance”, “translucent part” is “reflective part”, “semi-shielding part” is “semi-reflective part”, and “shielding part” By replacing each with “non-reflective portion”, the illumination shape and mask shape can be optimized even when a photomask having a plurality of phase differences and a plurality of reflectances is used.
 図19は、反射ミラー光学系を有するEUV露光装置の一例の概略構成を示している。図19に示す露光装置において、EUV発生装置20を出たEUV26は、反射ミラー21A、反射ミラー21B、反射型フォトマスク22、反射ミラー23A、反射ミラー23B、反射ミラー23C、反射ミラー23Dに順次反射された後、ステージ25上に載置されたウェハ24に照射される。尚、図19に示す露光装置においては、反射ミラー21A及び21Bによって照明光学系27が構成され、反射ミラー23A、23B、23C及び23Dによって投影光学系28が構成されているが、照明光学系27及び投影光学系28の構成(例えばミラー枚数等)はこれに限られないことは言うまでもない。 FIG. 19 shows a schematic configuration of an example of an EUV exposure apparatus having a reflecting mirror optical system. In the exposure apparatus shown in FIG. 19, the EUV 26 exiting the EUV generation apparatus 20 is sequentially reflected on the reflection mirror 21A, the reflection mirror 21B, the reflection type photomask 22, the reflection mirror 23A, the reflection mirror 23B, the reflection mirror 23C, and the reflection mirror 23D. After that, the wafer 24 placed on the stage 25 is irradiated. In the exposure apparatus shown in FIG. 19, the illumination optical system 27 is configured by the reflection mirrors 21A and 21B, and the projection optical system 28 is configured by the reflection mirrors 23A, 23B, 23C, and 23D. Needless to say, the configuration of the projection optical system 28 (for example, the number of mirrors) is not limited to this.
 図19に示す露光装置を使用する場合にも、投影光学系28の瞳面を分割してなる複数の分割点のそれぞれにおいて、反射型フォトマスク22を透過したEUV26の光強度分布を求め、当該光強度分布に基づいて、照明形状を最適化することができる。また、当該光強度分布のコントラストが向上するように、反射型フォトマスク22の各構成部分(例えば反射部、半反射部、非反射部、位相シフト部)の形状を最適化することができる。 Even when the exposure apparatus shown in FIG. 19 is used, the light intensity distribution of the EUV 26 that has passed through the reflective photomask 22 is obtained at each of a plurality of division points obtained by dividing the pupil plane of the projection optical system 28. Based on the light intensity distribution, the illumination shape can be optimized. In addition, the shape of each component (for example, a reflection portion, a semi-reflection portion, a non-reflection portion, and a phase shift portion) of the reflective photomask 22 can be optimized so that the contrast of the light intensity distribution is improved.
 以上に説明したように、本発明は、半導体製造プロセス等で行われる露光における照明形状やマスク形状の最適化方法等に有用である。 As described above, the present invention is useful for an illumination shape and mask shape optimization method in exposure performed in a semiconductor manufacturing process or the like.
   10  光源
   11  絞り
   12  照明レンズ
   13  フォトマスク
   14  投影レンズ
   15、24  ウェハ
   16、25  ステージ
   17  露光光
   18、27  照明光学系
   19、28  投影光学系19
   20  EUV発生装置
   21A、21B、23A、23B、23C、23D  反射ミラー
   22  反射型フォトマスク
  100  瞳面
  101、102、103、104  ソースポジション
  200、600、620  エンハンサマスク
  201、601、621、911、921  透明基板
  202、602、612、622、903  半遮光部
  203、603、611、623、904  位相シフト部
  204、604、624、905  透光部
  300、301  ピーク
  302  最低光強度
  400  照明形状が最適化された瞳面
  401  選択されたソースポジション
  402  選択されなかったソースポジション
  500  マスク形状を変更させる前の光強度分布
  501  マスク形状を変更させた後の光強度分布
  613  アシストパターン
  625  遮光部
  700  半導体基板
  701  被加工膜
  702  レジスト膜
  702a  潜像部
  703  トップコート
  704  露光光
  705  半遮光部を透過した光
  706  透光部を透過した光
  707  位相シフト部を透過した光
  708  レジストパターン
  800  対向パターン間スペース
  901  ロジック部からなるブロック
  902  SRAM部からなるブロック
  910、920  フォトマスク
 1000 ウェハ
DESCRIPTION OF SYMBOLS 10 Light source 11 Aperture 12 Illumination lens 13 Photomask 14 Projection lens 15, 24 Wafer 16, 25 Stage 17 Exposure light 18, 27 Illumination optical system 19, 28 Projection optical system 19
20 EUV generator 21A, 21B, 23A, 23B, 23C, 23D Reflective mirror 22 Reflective photomask 100 Pupil plane 101, 102, 103, 104 Source position 200, 600, 620 Enhancer mask 201, 601, 621, 911, 921 Transparent substrate 202, 602, 612, 622, 903 Semi-shielding part 203, 603, 611, 623, 904 Phase shift part 204, 604, 624, 905 Translucent part 300, 301 Peak 302 Minimum light intensity 400 Optimum illumination shape Selected pupil surface 401 Selected source position 402 Unselected source position 500 Light intensity distribution before changing mask shape 501 Light intensity distribution after changing mask shape 613 Assist pattern 62 Light shielding portion 700 Semiconductor substrate 701 Work film 702 Resist film 702a Latent image portion 703 Top coat 704 Exposure light 705 Light transmitted through semi-light shielding portion 706 Light transmitted through light transmission portion 707 Light transmitted through phase shift portion 708 Resist pattern 800 Space between opposing patterns 901 Block made up of logic portion 902 Block made up of SRAM portion 910, 920 Photomask 1000 Wafer

Claims (13)

  1.  露光光を透過させる透光部と、前記透光部よりも前記露光光の透過率が低い半遮光部と、前記露光光を前記透光部と異なる位相で透過させる位相シフト部とを少なくとも有するフォトマスクを用いた露光において前記露光光の照明形状を最適化する方法であって、
     投影光学系の瞳面を分割してなる複数の分割点のそれぞれにおいて、前記フォトマスクを透過した前記露光光の光強度分布を求め、当該光強度分布に基づいて、前記照明形状を設定することを特徴とする照明形状の最適化方法。
    A translucent part that transmits exposure light; a semi-light-shielding part having a lower transmittance of the exposure light than the translucent part; and a phase shift part that transmits the exposure light in a phase different from that of the translucent part. A method of optimizing the illumination shape of the exposure light in exposure using a photomask,
    Obtaining a light intensity distribution of the exposure light transmitted through the photomask at each of a plurality of dividing points obtained by dividing the pupil plane of the projection optical system, and setting the illumination shape based on the light intensity distribution Lighting shape optimization method characterized by
  2.  請求項1に記載の照明形状の最適化方法において、
     前記複数の分割点のうち前記光強度分布における光強度の差分が相対的に大きい分割点を選択することによって、前記照明形状を設定することを特徴とする照明形状の最適化方法。
    The method of optimizing an illumination shape according to claim 1,
    The illumination shape optimization method, wherein the illumination shape is set by selecting a division point having a relatively large difference in light intensity in the light intensity distribution among the plurality of division points.
  3.  請求項1又は2に記載の照明形状の最適化方法において、
     前記瞳面は、投影レンズの瞳面であることを特徴とする照明形状の最適化方法。
    In the optimization method of the illumination shape of Claim 1 or 2,
    The method of optimizing an illumination shape, wherein the pupil plane is a pupil plane of a projection lens.
  4.  請求項1~3のいずれか1項に記載の照明形状の最適化方法において、
     前記フォトマスクは、前記露光光を実質的に透過させない遮光部をさらに有することを特徴とする照明形状の最適化方法。
    The method for optimizing an illumination shape according to any one of claims 1 to 3,
    The method for optimizing an illumination shape, wherein the photomask further includes a light shielding portion that does not substantially transmit the exposure light.
  5.  露光光を透過させる透光部と、前記透光部よりも前記露光光の透過率が低い半遮光部と、前記露光光を前記透光部と異なる位相で透過させる位相シフト部とを少なくとも有するフォトマスクのマスク形状を最適化する方法であって、
     投影光学系の瞳面を分割してなる複数の分割点のそれぞれにおいて、前記フォトマスクを透過した前記露光光の光強度分布を求め、当該光強度分布のコントラストが向上するように、前記透光部、前記半遮光部及び前記位相シフト部のそれぞれの形状を設定することを特徴とするマスク形状の最適化方法。
    A translucent part that transmits exposure light; a semi-light-shielding part having a lower transmittance of the exposure light than the translucent part; and a phase shift part that transmits the exposure light in a phase different from that of the translucent part. A method for optimizing the mask shape of a photomask,
    At each of a plurality of division points obtained by dividing the pupil plane of the projection optical system, a light intensity distribution of the exposure light transmitted through the photomask is obtained, and the light transmission is improved so that the contrast of the light intensity distribution is improved. A mask shape optimization method, wherein the shape of each of the first and second semi-shielding portions and the phase shift portion is set.
  6.  請求項5に記載のマスク形状の最適化方法において、
     前記複数の分割点のうち前記光強度分布における光強度の差分が相対的に大きい分割点を選択し、当該選択された分割点での前記光強度分布のコントラストが向上するように、前記透光部、前記半遮光部及び前記位相シフト部のそれぞれの形状を設定することを特徴とするマスク形状の最適化方法。
    The method of optimizing a mask shape according to claim 5,
    The transmission point is selected such that a division point having a relatively large difference in light intensity in the light intensity distribution is selected from the plurality of division points, and the contrast of the light intensity distribution at the selected division point is improved. A mask shape optimization method, wherein the shape of each of the first and second semi-shielding portions and the phase shift portion is set.
  7.  請求項5又は6に記載のマスク形状の最適化方法において、
     前記位相シフト部の形状を最適化した後、前記半遮光部の形状を最適化し、その後、前記透光部の形状を最適化することを特徴とするマスク形状の最適化方法。
    The method for optimizing a mask shape according to claim 5 or 6,
    A method for optimizing a mask shape, comprising optimizing the shape of the semi-light-shielding portion after optimizing the shape of the phase shift portion, and then optimizing the shape of the translucent portion.
  8.  請求項5~7のいずれか1項に記載のマスク形状の最適化方法において、
     前記瞳面は、投影レンズの瞳面であることを特徴とするマスク形状の最適化方法。
    The method for optimizing a mask shape according to any one of claims 5 to 7,
    The method for optimizing a mask shape, wherein the pupil plane is a pupil plane of a projection lens.
  9.  請求項5~8のいずれか1項に記載のマスク形状の最適化方法において、
     前記フォトマスクは、前記露光光を実質的に透過させない遮光部をさらに有することを特徴とするマスク形状の最適化方法。
    The method for optimizing a mask shape according to any one of claims 5 to 8,
    The method of optimizing a mask shape, wherein the photomask further includes a light shielding portion that does not substantially transmit the exposure light.
  10.  露光光を透過させる透光部と、前記透光部よりも前記露光光の透過率が低い半遮光部と、前記露光光を前記透光部と異なる位相で透過させる位相シフト部とを少なくとも有するフォトマスクを用いたパターン形成方法であって、
     投影光学系の瞳面を分割してなる複数の分割点のそれぞれにおいて求められた、前記フォトマスクを透過した前記露光光の光強度分布に基づいて、前記露光光の照明形状が設定されていると共に、前記光強度分布のコントラストが向上するように、前記透光部、前記半遮光部及び前記位相シフト部のそれぞれの形状が設定されていることを特徴とするパターン形成方法。
    A translucent part that transmits exposure light; a semi-light-shielding part having a lower transmittance of the exposure light than the translucent part; and a phase shift part that transmits the exposure light in a phase different from that of the translucent part. A pattern forming method using a photomask,
    The illumination shape of the exposure light is set based on the light intensity distribution of the exposure light transmitted through the photomask obtained at each of a plurality of division points obtained by dividing the pupil plane of the projection optical system. In addition, the pattern forming method is characterized in that the shapes of the translucent part, the semi-light-shielding part and the phase shift part are set so that the contrast of the light intensity distribution is improved.
  11.  同一レイヤのマスク形状が分割されてなる複数のブロックのそれぞれと対応する複数のフォトマスクを用いたパターン形成方法であって、
     前記複数のフォトマスクのうちの少なくとも1つのフォトマスクは、露光光を透過させる透光部と、前記透光部よりも前記露光光の透過率が低い半遮光部と、前記露光光を前記透光部と異なる位相で透過させる位相シフト部とを少なくとも有しており、
     前記少なくとも1つのフォトマスクを用いた露光における前記露光光の照明形状は、投影光学系の瞳面を分割してなる複数の分割点のそれぞれにおいて求められた、前記少なくとも1つのフォトマスクを透過した前記露光光の光強度分布に基づいて設定されていることを特徴とするパターン形成方法。
    A pattern formation method using a plurality of photomasks corresponding to each of a plurality of blocks obtained by dividing a mask shape of the same layer,
    At least one photomask of the plurality of photomasks includes a translucent part that transmits exposure light, a semi-shielding part having a lower transmittance of the exposure light than the translucent part, and the transmissive part of the exposure light. It has at least a phase shift part that transmits with a phase different from the optical part,
    The illumination shape of the exposure light in the exposure using the at least one photomask passes through the at least one photomask obtained at each of a plurality of division points obtained by dividing the pupil plane of the projection optical system. The pattern forming method is set based on a light intensity distribution of the exposure light.
  12.  請求項11に記載のパターン形成方法において、
     前記透光部、前記半遮光部及び前記位相シフト部のそれぞれの形状は、前記光強度分布のコントラストが向上するように設定されていることを特徴とするパターン形成方法。
    In the pattern formation method of Claim 11,
    The shape of each of the said light transmission part, the said semi-light-shielding part, and the said phase shift part is set so that the contrast of the said light intensity distribution may improve, The pattern formation method characterized by the above-mentioned.
  13.  請求項11又は12に記載のパターン形成方法において、
     前記複数のブロックは、メモリブロック及び論理回路ブロックを含むことを特徴とするパターン形成方法。
    In the pattern formation method of Claim 11 or 12,
    The pattern forming method, wherein the plurality of blocks include a memory block and a logic circuit block.
PCT/JP2011/002216 2010-11-01 2011-04-14 Illumination shape optimization method, mask shape optimization method, and pattern formation method WO2012060024A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010245134A JP2012099596A (en) 2010-11-01 2010-11-01 Optimization method of lighting shape, optimization method of mask shape, and pattern formation method
JP2010-245134 2010-11-01

Publications (1)

Publication Number Publication Date
WO2012060024A1 true WO2012060024A1 (en) 2012-05-10

Family

ID=46024153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002216 WO2012060024A1 (en) 2010-11-01 2011-04-14 Illumination shape optimization method, mask shape optimization method, and pattern formation method

Country Status (2)

Country Link
JP (1) JP2012099596A (en)
WO (1) WO2012060024A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042044A1 (en) * 2012-09-11 2014-03-20 株式会社ニコン Method for setting pupil luminance distribution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108693B2 (en) 2012-06-08 2017-04-05 キヤノン株式会社 Pattern creation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335552A (en) * 1995-06-06 1996-12-17 Internatl Business Mach Corp <Ibm> Method of optimizing illumination and projective image formation device
JP2002261004A (en) * 2001-01-29 2002-09-13 Internatl Business Mach Corp <Ibm> System and method for minimizing shape distortion of printing line by optimizing illumination and reticle
JP2005183938A (en) * 2003-12-19 2005-07-07 Asml Masktools Bv Optimized polarized illumination
JP2008166777A (en) * 2006-12-28 2008-07-17 Asml Netherlands Bv Lithographic device and method of manufacturing device
JP2009031320A (en) * 2007-07-24 2009-02-12 Canon Inc Original data creation method, original creation method, exposure method, and original data creation program
JP2010039287A (en) * 2008-08-06 2010-02-18 Canon Inc Original data generation program, original data generation method, original generation method, exposure method and device manufacturing method
JP2010113352A (en) * 2008-11-10 2010-05-20 Brion Technologies Inc Scanner model representation with transmission cross coefficients
JP2010160442A (en) * 2009-01-09 2010-07-22 Canon Inc Program and method for creating original data

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335552A (en) * 1995-06-06 1996-12-17 Internatl Business Mach Corp <Ibm> Method of optimizing illumination and projective image formation device
JP2002261004A (en) * 2001-01-29 2002-09-13 Internatl Business Mach Corp <Ibm> System and method for minimizing shape distortion of printing line by optimizing illumination and reticle
JP2005183938A (en) * 2003-12-19 2005-07-07 Asml Masktools Bv Optimized polarized illumination
JP2008166777A (en) * 2006-12-28 2008-07-17 Asml Netherlands Bv Lithographic device and method of manufacturing device
JP2009031320A (en) * 2007-07-24 2009-02-12 Canon Inc Original data creation method, original creation method, exposure method, and original data creation program
JP2010039287A (en) * 2008-08-06 2010-02-18 Canon Inc Original data generation program, original data generation method, original generation method, exposure method and device manufacturing method
JP2010113352A (en) * 2008-11-10 2010-05-20 Brion Technologies Inc Scanner model representation with transmission cross coefficients
JP2010160442A (en) * 2009-01-09 2010-07-22 Canon Inc Program and method for creating original data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042044A1 (en) * 2012-09-11 2014-03-20 株式会社ニコン Method for setting pupil luminance distribution
JP5920610B2 (en) * 2012-09-11 2016-05-18 株式会社ニコン Pupil intensity distribution setting method, illumination optical system and adjustment method thereof, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JP2012099596A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
KR100614651B1 (en) Apparatus And Method For Pattern Exposure, Photomask Used Therefor, Design Method For The Photomask, Illuminating System Therefor and Implementing Method For The Illuminating System
KR100593128B1 (en) Photomask, pattern formation method using photomask and mask data creation method
KR100576896B1 (en) Pattern forming method
US7214453B2 (en) Mask and its manufacturing method, exposure, and device fabrication method
JP4528580B2 (en) Illumination light source design method, mask pattern design method, photomask manufacturing method, semiconductor device manufacturing method, and program
JP3708875B2 (en) Photomask and method for producing the same
JP4754636B2 (en) How to create mask data
JP3368265B2 (en) Exposure method, exposure apparatus, and device manufacturing method
US7300746B2 (en) Photomask for forming small contact hole array and methods of fabricating and using the same
US5190836A (en) Reflection type photomask with phase shifter
KR100285006B1 (en) Photomask for use in exposure and method for producing the same
JP2004272228A (en) Mask, its manufacturing method, apparatus and method for exposure, and method for manufacturing device
JP2001272764A (en) Photomask for projection exposure and for projection exposure method using the photomask
WO2012060024A1 (en) Illumination shape optimization method, mask shape optimization method, and pattern formation method
JP2007018005A (en) Photomask
JP3759138B2 (en) Photo mask
JP3967359B2 (en) Pattern formation method
JP4314285B2 (en) Photo mask
JP2003302739A (en) Photomask
JP4009301B2 (en) How to create mask data
JP4314286B2 (en) Photo mask
US20070097347A1 (en) Method for forming a circuit pattern by using two photo-masks
CN111324016A (en) Exposure apparatus, exposure method, and method for manufacturing article
JP2008089924A (en) Optical module and method for manufacturing the same
KR20090032897A (en) Photo mask, method for manufacturing the photo mask and method for manufacturing the semiconductor device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837681

Country of ref document: EP

Kind code of ref document: A1