WO2012058973A1 - 薄膜型风压传感器及相应的无线传感网络 - Google Patents

薄膜型风压传感器及相应的无线传感网络 Download PDF

Info

Publication number
WO2012058973A1
WO2012058973A1 PCT/CN2011/078738 CN2011078738W WO2012058973A1 WO 2012058973 A1 WO2012058973 A1 WO 2012058973A1 CN 2011078738 W CN2011078738 W CN 2011078738W WO 2012058973 A1 WO2012058973 A1 WO 2012058973A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind pressure
film
pressure sensor
type wind
film type
Prior art date
Application number
PCT/CN2011/078738
Other languages
English (en)
French (fr)
Inventor
陶肖明
朱波
华涛
王杨勇
舒琳
孙少敏
Original Assignee
香港纺织及成衣研发中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心 filed Critical 香港纺织及成衣研发中心
Publication of WO2012058973A1 publication Critical patent/WO2012058973A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress

Definitions

  • This invention relates to the field of pressure and, more particularly, to a fabric-based large deformation, open environment, and high sensitivity film type wind pressure sensor and corresponding wireless sensor network. Background technique
  • the technical problem to be solved by the present invention is to provide a flexible material as a sensitive component, which is suitable for large deformation, in view of the defects of the prior art wind pressure sensor with low inspiration, unsuitable for open environment and wind pressure test in any direction.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing a film type wind pressure sensor, comprising a top cover, a cavity and a chassis, wherein the film type wind pressure sensor further comprises a circular airtight film, a hermetic film is sandwiched between the top cover and the cavity, and a conductive fabric strain sensor is disposed on the airtight film, and the conductive fabric strain sensor is connected to an external resistance measuring circuit in the present invention.
  • the airtight film is an elastic film including silica gel and/or polyurethane.
  • the airtight film is a transparent silica film, and the airtight film is provided with a room temperature vulcanized rutile-type titanium dioxide-rich silica gel coating.
  • the airtight film is sandwiched between the top cover and the cavity, and gives a radial pretension tension.
  • three conductive fabric strain sensors are disposed on a central portion of the airtight film, and the three conductive fabric strain sensors are attached to the radial direction at an angle of 120°.
  • the inner surface of the airtight film is described.
  • the top cover and the cavity are screwed, the cavity and the chassis are screwed, and the chassis is provided with a signal for taking out the conductive fabric strain sensor.
  • the through hole of the line is provided.
  • the present invention also contemplates a wireless sensor network, wherein the wireless sensor network includes a data acquisition system for collecting pressure information, a remote monitoring system for displaying and analyzing the pressure information, and a wind pressure for measuring pressure field distribution a sensor array, the wind pressure sensor array comprising a plurality of film type wind pressure sensors according to any one of claims 1 to 6, the wind pressure sensor array being connected to the data acquisition system, the data acquisition system Wirelessly connected to the remote monitoring system.
  • the data acquisition system includes a matrix addressing module for selecting the film type wind pressure sensor, an acquisition module for collecting signals of the film type wind pressure sensor, and Converting the signal collected by the acquisition module into a conversion module of the pressure information.
  • the wind pressure sensor array employs a foldable structure of vertical louvers.
  • the implementation of the thin film wind pressure sensor and the corresponding wireless sensor network of the invention has the following beneficial effects:
  • the flexible material is used as a sensitive component, and is suitable for high-sensitivity fluid pressure monitoring in a large deformation, open environment and in any direction.
  • the use of the elastic film makes the film type wind pressure sensor have a large deformation amount and high detection sensitivity.
  • the coating arrangement not only blocks most of the UV radiation, but also reduces the mechanical hysteresis of the airtight film.
  • the deformation sensitivity of the airtight film is adjusted by the setting of the pretension tension.
  • the determination of the direction of the wind pressure is achieved by the arrangement of three conductive fabric strain sensors.
  • the connection of the top cover, the cavity and the chassis facilitates the disassembly between them and the extraction of the signal wires connecting the conductive fabric strain sensors.
  • the pressure sensor array and the corresponding data acquisition system enable measurement of the pressure field distribution.
  • the wind pressure sensor array has a simple structure and is convenient to install.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a film type wind pressure sensor of the present invention
  • FIG. 2 is a perspective view showing a preferred embodiment of a film type wind pressure sensor of the present invention
  • FIG. 3 is a film type wind pressure sensor of the present invention
  • FIG. 4A is a schematic structural view of a side view of a preferred embodiment of a wireless sensor network according to the present invention.
  • FIG. 4B is a schematic structural view of a front side of a preferred embodiment of the wireless sensor network of the present invention.
  • the film type wind pressure sensor includes a top cover 1, a cavity 2, a chassis 3, and a circular airtight.
  • the airtight film 4 is sandwiched between the top cover 1 and the cavity 2, and a conductive fabric strain sensor 41 is disposed on the airtight film 4, and the conductive fabric strain sensor 41 is connected to an external resistance measuring circuit.
  • the film type wind pressure sensor When the film type wind pressure sensor is used, since the edge of the airtight film 4 is fixed between the top cover 1 and the cavity 2, the airtight film 4 is recessed inward under the action of fluid pressure of any size and direction, resulting in The anisotropic stretching in the radial direction causes the conductive fabric strain sensor 41 to obtain tensile strain, and the resistance output of the conductive fabric strain sensor 41 is obtained by an external resistance measuring circuit, and the fluid pressure is calculated by the correspondence relationship between the resistance and the pressure. .
  • the film type wind pressure sensor uses a flexible material as a sensitive component, and is suitable for high-sensitivity fluid pressure monitoring in a large deformation, open environment, and in any direction.
  • the airtight film 4 is an elastic film including silica gel and/or polyurethane.
  • the hermetic film 4 is a transparent silica film, and the hermetic film 4 is provided with a room temperature vulcanized rutile-type titanium dioxide-rich silica gel coating.
  • the airtight film 4 is sandwiched between the top cover 1 and the cavity 2 and gives a radial pretension tension. Film-type wind pressure using elastic film
  • the sensor has a large amount of deformation and high sensitivity for detection. Adjustable airtight film by pre-tensioning setting
  • a transparent silica gel film is preferably selected as the airtight film for carrying 4 .
  • the silica gel has superior UV resistance than other similar materials.
  • a room temperature vulcanized rutile-type titanium dioxide-rich silica gel is applied to the transparent silica surface coating technology. Cooling of the titanium dioxide-rich silica gel not only blocks most of the UV radiation, but also reduces the mechanical hysteresis of the film.
  • the surface-coated silicone is the best choice for hermetic film 4.
  • three conductive fabric strain sensors 41 are disposed on the central portion of the airtight film 4. 41 is attached to the inner surface of the airtight film 4 in the radial direction of the angle of 120°. Three conductive fabric strain sensors 41 serve as sensitive elements for measuring tensile strain. Under the action of fluid pressure of any size and orientation, the airtight film 4 is inwardly recessed, causing anisotropic stretching in the radial direction, giving the three sensitive elements different tensile strains.
  • the response of its input and output can be as follows
  • the fluid density is the fluid density. If the flow direction is not perpendicular to the surface of the film, the flow rate can be decomposed into normal and tangential components, corresponding to the normal and tangential pressures, respectively. Thus, the judgment of the direction and magnitude of the wind pressure is achieved by the arrangement of the three conductive fabric strain sensors 41.
  • the top cover 1 and the cavity 2 are screwed, the cavity 2 and the chassis 3 are screwed, and the chassis 3 is provided with a signal for taking out the conductive fabric strain sensor 41.
  • the resistance signal of the conductive fabric strain sensor 41 is collected by an external resistance measuring circuit, and the top cover 1 and the cavity 2 are screwed to facilitate the removal and replacement of the airtight film 4; the surface of the chassis 3 and the cavity 2 is threaded, which facilitates The conductive fabric strain sensor 41 and the attachment and detachment of the chassis 3 and the cavity 2 are attached.
  • a through hole is provided in the chassis 3 to lead a signal line connected to the external resistance measuring circuit.
  • the present invention also relates to a wireless sensor network as a preferred embodiment of the wireless sensor network of the present invention, the wireless sensor network including a data acquisition system, a remote monitoring system, and a wind pressure sensor array, a wind pressure sensor array and data
  • the acquisition system is connected, and the data acquisition system is wirelessly connected to the remote monitoring system.
  • the data acquisition system is used to collect pressure information, and the remote monitoring system is used to display and analyze pressure information.
  • the wind pressure sensor array includes a plurality of film type wind pressure sensors for measuring the pressure field distribution.
  • the data acquisition system includes a matrix addressing module for selecting a film type wind pressure sensor, an acquisition module for acquiring signals of the film type wind pressure sensor, and a conversion module for converting a signal collected by the acquisition module into the pressure information.
  • a plurality of single pressure sensors are arranged and wired to form a wind pressure sensor array, and the sensing network can be implemented to measure the spatial distribution of the pressure field.
  • the conversion module, acquisition module and matrix addressing module form a data acquisition system.
  • the function of the matrix addressing module is to make the current only select one of the pressure sensors at a certain time.
  • the voltage signal of the sensor is collected by the acquisition module, converted into digital information by the conversion module, and then passed through the parameters and inputs of the bridge circuit.
  • the output relationship is converted to the resistance value and the pressure to be measured.
  • the data acquisition system wirelessly transmits the measured pressure information to a remote monitoring system via a wireless device such as a Bluetooth device for display and analysis in real time.
  • the wind pressure sensor array and the corresponding data acquisition system realize the measurement of the pressure field distribution, and the remote monitoring system realizes the remote monitoring and analysis of the pressure field distribution.
  • the wind pressure sensor array employs a foldable structure of vertical louvers. It can be used in one-time assembly and is easy to operate, ensuring its performance.
  • the invention discloses a film type wind pressure sensor and a corresponding wireless sensor network for measuring fluid pressure and direction through any surface.
  • the invention has the following innovations and advantages: simple and light structure, adaptability, easy to fix, install and maintain; lower material and production cost; flexible sensitive component, can be used Large deformation; high sensitivity; simultaneous measurement flow
  • the thin film wind pressure sensor and the corresponding wireless sensor network of the invention develop a quantitative two-dimensional pressure remote sensing network without distance limitation and environmental limitation, and the system has lower performance than the traditional resistance type sensing network.
  • Crosstalk error and higher dynamic pressure measurement range suitable for industrial measurement, scientific research and daily life, especially in the open environment of building maintenance, sports venues, mine ventilation, public places ventilation, climate measurement, etc. Pressure measurement.
  • the potential applications, including all fluids, are merely examples of the invention, and are not intended to limit the scope of the invention, the equivalent structural transformations made by the description of the invention and the drawings, or directly or indirectly The technical field is equally included in the scope of patent protection of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

提供一种薄膜型风压传感器,这种风压传感器包括顶盖(1)、腔体(2)以及底盘(3),其中薄膜型风压传感器还包括圆形的气密性薄膜(4),气密性薄膜(4)夹于顶盖(1)和腔体(2)之间,在气密性薄膜上设置有导电织物应变传感器(41),导电织物应变传感器(41)与外部电阻测量电路连接。在气密性薄膜的中心区域上设置有三个导电织物应变传感器(41),三个导电织物应变传感器沿120°的夹角方向粘贴于气密性薄膜的内表面。提供一种无限传感网络。薄膜型风压传感器及相应的无限传感网络以柔性材料为敏感元件,适用于大变形、开放环境和任意方向的高灵敏度流体压强监测。

Description

薄膜型风压传感器及相应的无线传感网络 技术领域
本发明涉及压力领域, 更具体地说, 涉及一种基于织物的大变形、 开放环 境以及高敏感度的薄膜型风压传感器及相应的无线传感网络。 背景技术
目前已有的风压传感器大部分都以传统的金属作为敏感元件,采用应变片 技术测量其微小变形, 其灵敏度有很大的局限。风力转动叶片也多被用于测量 管道内的风压。 而压电薄膜技术对于恒稳的静态压强的测量效果欠佳。 另外, 大部分已有的传感技术只是测量固定方向的风压。综上所述, 目前尚未有传感 网络能够实现以柔性材料为敏感元件, 适用于大变形、开放环境和任意方向的 高灵敏度流体压强的监测。 发明内容
本发明要解决的技术问题在于,针对现有技术的风压传感器灵感度低、不 适合开放环境和任意方向的风压测试的缺陷, 提供一种以柔性材料为敏感元 件, 适用于大变形、开放环境和任意方向的高灵敏度流体压强监测的薄膜型风 压传感器及相应的无线传感网络。
本发明解决其技术问题所采用的技术方案是: 构造一种薄膜型风压传感 器, 包括顶盖、 腔体以及底盘, 其中所述薄膜型风压传感器还包括圆形的气密 性薄膜,所述气密性薄膜夹于所述顶盖和所述腔体之间,在所述气密性薄膜上 设置有导电织物应变传感器,所述导电织物应变传感器与外部电阻测量电路连 在本发明的薄膜型风压传感器中, 所述气密性薄膜为包括硅胶和 /或聚氨 酯的弹性薄膜。
在本发明的薄膜型风压传感器中,所述气密性薄膜为透明的硅胶薄膜,所 述气密性薄膜上设置有经过室温硫化的富含金红石型二氧化钛的硅胶涂层。 在本发明的薄膜型风压传感器中,所述气密性薄膜夹于所述顶盖和所述腔 体之间, 并给予径向的预拉张力。
在本发明的薄膜型风压传感器中,在所述气密性薄膜的中心区域上设置有 三个导电织物应变传感器, 三个所述导电织物应变传感器沿 120°夹角的径向 方向粘贴于所述气密性薄膜的内表面。
在本发明的薄膜型风压传感器中,所述顶盖和所述腔体螺接,所述腔体和 所述底盘螺接,所述底盘上设置有用于引出所述导电织物应变传感器的信号线 的通孔。
本发明还构造一种无线传感网络,其中无线传感网络包括用于采集压力信 息的数据采集系统、用于显示和分析所述压力信息的远程监控系统以及用于测 量压力场分布的风压传感器阵列, 所述风压传感器阵列包括多个如权利要求 1-6中任一项所述的薄膜型风压传感器, 所述风压传感器阵列与所述数据采集 系统连接, 所述数据采集系统与所述远程监控系统无线连接。
在本发明的无线传感网络中,所述数据采集系统包括用于选择所述薄膜型 风压传感器的矩阵寻址模块、用于采集所述薄膜型风压传感器的信号的采集模 块以及用于将所述采集模块采集的信号转换为所述压力信息的转换模块。
在本发明的无线传感网络中,所述风压传感器阵列采用垂直百叶窗的可折 叠式结构。
实施本发明的薄膜型风压传感器及相应的无线传感网络,具有以下有益效 果: 以柔性材料为敏感元件, 适用于大变形、 开放环境和任意方向的高灵敏度 流体压强监测。
采用弹性薄膜使得薄膜型风压传感器的变形量大,探测的灵敏度高。涂层 的设置不仅阻挡了大部分的紫外线辐射,而且同时减小了气密性薄膜的力学滞 后。通过预拉张力的设置调整气密性薄膜的变形灵敏度。通过三个导电织物应 变传感器的设置实现了风压方向的判断。顶盖、腔体以及底盘的连接方式便于 它们之间的拆卸以及连接导电织物应变传感器的信号线的引出。风压传感器阵 列以及相应的数据采集系统实现了压力场分布的测量。风压传感器阵列的结构 简单、 安装方便。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1为本发明的薄膜型风压传感器的优选实施例的结构示意图; 图 2为本发明的薄膜型风压传感器的优选实施例的立体结构示意图; 图 3 为本发明的薄膜型风压传感器的优选实施例的气密性薄膜的结构示 意图;
图 4A为本发明的无线传感网络的优选实施例的侧面的结构示意图; 图 4B为本发明的无线传感网络的优选实施例的正面的结构示意图。 具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
如图 1、 2所示的本发明的薄膜型风压传感器的优选实施例的结构示意图 中, 所述薄膜型风压传感器, 包括顶盖 1、 腔体 2、 底盘 3以及圆形的气密性 薄膜 4, 气密性薄膜 4夹于顶盖 1和腔体 2之间, 在气密性薄膜 4上设置有导 电织物应变传感器 41, 导电织物应变传感器 41与外部电阻测量电路连接。 本 薄膜型风压传感器使用时, 由于气密性薄膜 4 的边缘固定在顶盖 1 和腔体 2 之间, 在任意大小和方向的流体压力作用下, 气密性薄膜 4向内凹陷, 造成沿 径向的各向异性的拉伸, 使导电织物应变传感器 41获得拉伸应变, 通过外部 电阻测量电路得到导电织物应变传感器 41的电阻输出, 通过电阻和压力的对 应关系计算出流体压力的大小。 本薄膜型风压传感器以柔性材料为敏感元件, 适用于大变形、 开放环境和任意方向的高灵敏度流体压强监测。
作为本发明的薄膜型风压传感器的优选实施例,气密性薄膜 4为包括硅胶 和 /或聚氨酯的弹性薄膜。 气密性薄膜 4为透明的硅胶薄膜, 气密性薄膜 4上 设置有经过室温硫化的富含金红石型二氧化钛的硅胶涂层。气密性薄膜 4夹于 顶盖 1和腔体 2之间, 并给予径向的预拉张力。采用弹性薄膜使得薄膜型风压 传感器的变形量大,探测的灵敏度高。通过预拉张力的设置可调整气密性薄膜
4的灵敏度。 为了在室外的环境中使用时不受紫外线的损坏和影响, 优化选择 了透明的硅胶薄膜作为承载用的气密性薄膜 4。该硅胶具有比其他同类材料更 优良的抗紫外线能力。为了减少紫外线穿透该硅胶损害敏感元件,采用了经过 室温硫化的富含金红石型二氧化钛的硅胶在透明硅胶表面涂层技术。富含二氧 化钛的硅胶冷却后不仅阻挡了大部分的紫外线辐射,而且同时减小了薄膜的力 学滞后。 经过表面涂层处理的硅胶是气密性薄膜 4的最佳选择。
如图 1、 3所示的本发明的薄膜型风压传感器的优选实施例的结构示意图 中, 在气密性薄膜 4的中心区域上设置有三个导电织物应变传感器 41, 三个 导电织物应变传感器 41沿 120°夹角的径向方向粘贴于气密性薄膜 4的内表面。 三个导电织物应变传感器 41作为测量拉伸应变的敏感元件。 在任意大小和方 向的流体压力作用下,气密性薄膜 4向内凹陷,造成沿径向的各向异性的拉伸, 使三个敏感元件获得各不相同的拉伸应变。其输入和输出的响应可由下述方程
Figure imgf000006_0001
其中, Px、 和/ ¾为压力沿空间 3个正交方向的分量, 、 7¾和 7δ分别为三 个织物应变传感器的电阻输出。求其反函数, 可通过测得的 3个独立的电阻输 出信号逆向得到待测的 3个压力输入分量。最后将 3个压力分量叠加, 即得到 合外力的大小和方向。另一方面, 流体的压强 和对应方向上的流速 有如下 的关系:
其中, 为流体密度。 若流动方向不垂直于薄膜表面, 则可将流速分解为法向 和切向的分量, 分别对应于法向和切向的压强。这样通过三个导电织物应变传 感器 41的设置实现了风压方向和大小的判断。
作为本发明的薄膜型风压传感器的优选实施例, 顶盖 1和腔体 2螺接, 腔 体 2和底盘 3螺接, 底盘 3上设置有用于引出导电织物应变传感器 41的信号 线的通孔。 导电织物应变传感器 41的电阻信号通过外部电阻测量电路采集, 顶盖 1和腔体 2采用螺钉连接, 便于拆卸更换气密性薄膜 4; 在底盘 3和腔体 2连接的表面采用螺纹, 便于在粘贴导电织物应变传感器 41和连接导线时底 盘 3和腔体 2的装卸。在底盘 3上设置有通孔, 以便引出连接外部电阻测量电 路的信号线。
本发明还涉及一种无线传感网络,作为本发明的无线传感网络的优选实施 例,所述无线传感网络包括数据采集系统、远程监控系统以及风压传感器阵列, 风压传感器阵列与数据采集系统连接, 数据采集系统与远程监控系统无线连 接。数据采集系统用于采集压力信息,远程监控系统用于显示和分析压力信息, 风压传感器阵列包括多个薄膜型风压传感器, 用于测量压力场分布。数据采集 系统包括用于选择薄膜型风压传感器的矩阵寻址模块、用于采集薄膜型风压传 感器的信号的采集模块以及用于将采集模块采集的信号转换为所述压力信息 的转换模块。本无线传感网络使用时,对若干单一的压力传感器进行行列布置 和导线连接形成风压传感器阵列, 可以实现传感网络以测量压力场的空间分 布。转换模块、采集模块和矩阵寻址模块组成了一个数据采集系统。矩阵寻址 模块的功能是使电流在某一时刻仅选择通过其中一个压力传感器,该传感器的 电压信号由采集模块采集, 并通过转换模块转换为数字信息, 再依次通过电桥 电路的参数和输入输出关系转化为电阻值和待测的压力。该数据采集系统通过 蓝牙设备等无线设备将测得的压力信息无线传输到远程监控系统,实时地显示 和分析。 风压传感器阵列以及相应的数据采集系统实现了压力场分布的测量, 远程监控系统实现了压力场分布的远程监控和分析。
如图 4A和 4B所示的本发明的无线传感网络的优选实施例的结构示意图 中, 风压传感器阵列采用垂直百叶窗的可折叠式结构。通过一次性组装便可使 用, 操作方便, 保证了其使用性能。
本发明公开了一种薄膜型风压传感器及相应的无线传感网络,用于测量通 过任意表面的流体压强和方向。与已有的其他风压传感器相比, 本发明具有以 下方面的创新和优势: 结构简单轻巧, 适应性强, 便于固定、 安装和维护; 较 低的材料和生产成本; 柔性敏感元件, 可用于大变形; 高灵敏度; 同时测量流 体压强的大小和方向; 敏感元件位于腔体 2内部, 不易受外界环境的干扰和损 害, 从而增加其可靠性、 稳定性和使用寿命; 适用于开放环境下风压或其他流 体压强的直接测量; 二氧化钛硅胶涂层技术保证其抗紫外线能力;通过多个单 一薄膜型风压传感器的组装和无线数据传输系统, 实现了任意面积、实时显示 的无线传感网络技术。
本发明的薄膜型风压传感器及相应的无线传感网络开发了一个没有距离 限制和环境局限的定量的二维压力遥感网络, 与传统的电阻型传感网络相比, 该系统具有更低的串扰误差和更高的动态压强测量范围, 适用工业测量、科学 研究以及日常生活的各个领域,尤其是建筑物维护、体育运动场馆、矿场通风、 公共场所通风、气候测量等开放式环境的风压测量。其潜在应用包括所有流体 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围,凡是利 用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相 关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求
1、 一种薄膜型风压传感器, 包括顶盖 (1 )、 腔体 (2 ) 以及底盘(3 ), 其 特征在于, 所述薄膜型风压传感器还包括圆形的气密性薄膜(4), 所述气密性 薄膜 (4) 夹于所述顶盖 (1 ) 和所述腔体 (2 ) 之间, 在所述气密性薄膜 (4) 上设置有导电织物应变传感器 (41 ), 所述导电织物应变传感器 (41 ) 与外部 电阻测量电路连接。
2、 根据权利要求 1所述的薄膜型风压传感器, 其特征在于, 所述气密性 薄膜 (4) 为包括硅胶和 /或聚氨酯的弹性薄膜。
3、 根据权利要求 2所述的薄膜型风压传感器, 其特征在于, 所述气密性 薄膜(4)为透明的硅胶薄膜, 所述气密性薄膜(4)上设置有经过室温硫化的 富含金红石型二氧化钛的硅胶涂层。
4、 根据权利要求 1所述的薄膜型风压传感器, 其特征在于, 所述气密性 薄膜 (4)夹于所述顶盖 (1 ) 和所述腔体(2 ) 之间, 并给予径向的预拉张力。
5、 根据权利要求 1所述的薄膜型风压传感器, 其特征在于, 在所述气密 性薄膜(4) 的中心区域上设置有三个导电织物应变传感器(41 ), 三个所述导 电织物应变传感器 (41 ) 沿 120°夹角的径向方向粘贴于所述气密性薄膜 (4) 的内表面。
6、根据权利要求 1所述的薄膜型风压传感器,其特征在于,所述顶盖(1 ) 和所述腔体 (2 ) 螺接, 所述腔体 (2 ) 和所述底盘 (3) 螺接, 所述底盘 (3) 上设置有引出所述导电织物应变传感器 (41 ) 的信号线的通孔。
7、 一种无线传感网络, 其特征在于, 所述无线传感网络包括用于采集压 力信息的数据采集系统、用于显示和分析所述压力信息的远程监控系统以及用 于测量压力场分布的风压传感器阵列,所述风压传感器阵列包括多个如权利要 求 1-6中任一项所述的薄膜型风压传感器,所述风压传感器阵列与所述数据采 集系统连接, 所述数据采集系统与所述远程监控系统无线连接。
8、 根据权利要求 7所述的无线传感网络, 其特征在于, 所述数据采集系 统包括用于选择所述薄膜型风压传感器的矩阵寻址模块、用于采集所述薄膜型 风压传感器的信号的采集模块以及用于将所述采集模块采集的信号转换为所
PCT/CN2011/078738 2010-11-01 2011-08-23 薄膜型风压传感器及相应的无线传感网络 WO2012058973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010528303.2A CN102455234B (zh) 2010-11-01 2010-11-01 薄膜型风压传感器及相应的无线传感网络
CN201010528303.2 2010-11-01

Publications (1)

Publication Number Publication Date
WO2012058973A1 true WO2012058973A1 (zh) 2012-05-10

Family

ID=46023991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078738 WO2012058973A1 (zh) 2010-11-01 2011-08-23 薄膜型风压传感器及相应的无线传感网络

Country Status (2)

Country Link
CN (1) CN102455234B (zh)
WO (1) WO2012058973A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013106045A1 (de) * 2013-06-11 2014-12-11 Endress + Hauser Gmbh + Co. Kg Kapazitive, keramische Druckmesszelle und Verfahren zu ihrer Herstellung
CN105806541B (zh) * 2016-04-13 2018-08-14 新昌县羽林街道全顺机械厂 一种阵列式硅压力全天候风力传感器
CN111829715B (zh) * 2019-04-22 2022-02-25 王久钰 基于电桥的压强传感器,压强测量系统以及压强测量方法
CN112197227A (zh) * 2020-10-12 2021-01-08 王秀兰 一种防挡光型太阳能草坪灯

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183378C (zh) * 2001-06-19 2005-01-05 欧姆龙株式会社 压力传感器和压力测定装置
CN1916413A (zh) * 2006-09-05 2007-02-21 西安交通大学 抽油机网络测控节能系统
CN1938677A (zh) * 2004-03-31 2007-03-28 皇家飞利浦电子股份有限公司 织物结构接触传感器
EP1837638A1 (en) * 2006-03-21 2007-09-26 Radi Medical Systems Ab Pressure sensor
US20070220970A1 (en) * 2004-04-30 2007-09-27 Markus Gruber Measuring Cell as Well as Constructing Methods for a Measuring Cell and Measuring Apparatus with a Mount for Such a Measuring Cell
CN101393058A (zh) * 2008-11-03 2009-03-25 东华大学 一种具有机织结构的柔性电阻式压力传感器及其应用
CN101470034A (zh) * 2007-12-25 2009-07-01 昆山双桥传感器测控技术有限公司 风载荷压力传感器
CN101497255A (zh) * 2007-12-14 2009-08-05 Kba-美创力公司 对网框中的丝网织物的丝网张力进行测量的装置和方法
CN101598529A (zh) * 2008-05-19 2009-12-09 香港理工大学 制备织物应变传感器的方法
CN101817352A (zh) * 2009-09-23 2010-09-01 兰州理工大学 基于无线通讯的智能止轮器系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29714647U1 (de) * 1997-08-16 1997-12-11 Hutzenlaub Jens Dehnungsmeßstreifen zur Erkennung der Membranendlagen in pneumatisch betriebenen Membranpumpen, vorzugsweise Membranblutpumpen
JP2004297318A (ja) * 2003-03-26 2004-10-21 Star Micronics Co Ltd 電気音響変換器
US7544627B2 (en) * 2005-05-12 2009-06-09 The Hong Kong Polytechnic University Pressure sensing fabric
CN100484469C (zh) * 2006-12-14 2009-05-06 东华大学 一种用于电子织物的应变式柔性呼吸传感器及其应用
CN201242482Y (zh) * 2008-08-07 2009-05-20 赵昕 基于Zigbee无线传感器网络的风压测量装置
CN201449304U (zh) * 2009-07-07 2010-05-05 广东万和新电气股份有限公司 燃气具用风压传感器
CN101692097A (zh) * 2009-07-24 2010-04-07 南京航空航天大学 风速风向仪

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183378C (zh) * 2001-06-19 2005-01-05 欧姆龙株式会社 压力传感器和压力测定装置
CN1938677A (zh) * 2004-03-31 2007-03-28 皇家飞利浦电子股份有限公司 织物结构接触传感器
US20070220970A1 (en) * 2004-04-30 2007-09-27 Markus Gruber Measuring Cell as Well as Constructing Methods for a Measuring Cell and Measuring Apparatus with a Mount for Such a Measuring Cell
EP1837638A1 (en) * 2006-03-21 2007-09-26 Radi Medical Systems Ab Pressure sensor
CN1916413A (zh) * 2006-09-05 2007-02-21 西安交通大学 抽油机网络测控节能系统
CN101497255A (zh) * 2007-12-14 2009-08-05 Kba-美创力公司 对网框中的丝网织物的丝网张力进行测量的装置和方法
CN101470034A (zh) * 2007-12-25 2009-07-01 昆山双桥传感器测控技术有限公司 风载荷压力传感器
CN101598529A (zh) * 2008-05-19 2009-12-09 香港理工大学 制备织物应变传感器的方法
CN101393058A (zh) * 2008-11-03 2009-03-25 东华大学 一种具有机织结构的柔性电阻式压力传感器及其应用
CN101817352A (zh) * 2009-09-23 2010-09-01 兰州理工大学 基于无线通讯的智能止轮器系统

Also Published As

Publication number Publication date
CN102455234B (zh) 2014-04-30
CN102455234A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
US9846092B2 (en) Mechanical strain-based weather sensor
CA3156595C (en) Disdrometer having acoustic transducer and methods thereof
WO2012058973A1 (zh) 薄膜型风压传感器及相应的无线传感网络
CN103529239A (zh) 一种垂吊型三维风速风向传感器结构
CN107342707B (zh) 一种自供电风向仪
CN109238245A (zh) 一种新型仿生侧线传感器
JP6893678B2 (ja) 風計測装置
CN105588636B (zh) 风扇异音检测系统
CN109061219A (zh) 台风环境下提供参考静压、风速和风向的实测装置及方法
CN104977430B (zh) 一种无风洞虚拟热风速传感器测试装置
US8544320B2 (en) Integrated micromachined wind and gas velocity profiler
US9395338B2 (en) Sensor system for environmental impact monitoring
CN204287522U (zh) 一体式气象传感器
CN102072801A (zh) 建筑幕墙物理性能现场智能检测设备
CN216090484U (zh) 一种具有膝关节压力检测功能的间隙板
US4170899A (en) Method and apparatus for measuring gas flow speed
CN113576456A (zh) 一种具有膝关节压力检测功能的间隙板
CN105628255A (zh) 一种微温脉动仪以及一种微温脉动仪的测试方法
CN207946159U (zh) 环境监测装置
CN108318088A (zh) 一种便于安装的扬尘监测设备
KR20190109368A (ko) 미기상 정보수집용 종합환경계측기
CN104111472B (zh) 一种用于安装地震仪的除湿密封装置
CN212808334U (zh) 一种热敏型风速实时显示监测装置
CN108931663A (zh) 传感器及利用该传感器测量风速风向的方法
CN202661649U (zh) 集成型超声波气象站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837499

Country of ref document: EP

Kind code of ref document: A1