WO2012057597A1 - Method for obtaining free amino acids from protein hydrolysates - Google Patents

Method for obtaining free amino acids from protein hydrolysates Download PDF

Info

Publication number
WO2012057597A1
WO2012057597A1 PCT/MX2011/000016 MX2011000016W WO2012057597A1 WO 2012057597 A1 WO2012057597 A1 WO 2012057597A1 MX 2011000016 W MX2011000016 W MX 2011000016W WO 2012057597 A1 WO2012057597 A1 WO 2012057597A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acids
tryptophan
tyrosine
sample
analysis
Prior art date
Application number
PCT/MX2011/000016
Other languages
Spanish (es)
French (fr)
Inventor
Jaime LÓPEZ CERVANTES
Dalia Isabel SÁNCHEZ MACHADO
Karl Reiner Fick Rochin
Original Assignee
Lopez Cervantes Jaime
Sanchez Machado Dalia Isabel
Karl Reiner Fick Rochin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lopez Cervantes Jaime, Sanchez Machado Dalia Isabel, Karl Reiner Fick Rochin filed Critical Lopez Cervantes Jaime
Publication of WO2012057597A1 publication Critical patent/WO2012057597A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/175Amino acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/32Bonded phase chromatography
    • B01D15/325Reversed phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/143Preparation by elimination of some components selective absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the present invention has its technical field in chemistry, since it is a novel method to obtain free amino acids from protein hydrolysates and the mixture used.
  • Proteins are complex macromolecules that can represent more than 50% of the dry weight of cells, in whose structure and function they play a fundamental role. There are many that have been isolated and purified. Its molecular weight ranges from 5000 to many millions of Daltons. These biopolymers are composed of carbon, hydrogen, oxygen, nitrogen and usually, sulfur. Some also contain iron, copper, phosphorus or zinc. The total hydrolysis (acidic, alkaline or enzymatic) of the proteins yields L-shaped amino acids, which differ from each other by the nature of their side chains. The amino acids of most proteins belong to a small group, consisting of twenty of these compounds.
  • Proteins can be classified into two groups: homoproteins consisting only of amino acids, and heteroproteins, which in addition to amino acids contain several non-protein compounds, collectively referred to as prosthetic groups.
  • nucleoproteins such as those present in ribosomes and viruses
  • lipoproteins such as gamma globulin
  • phosphoproteins such as caseins
  • hemoproteins such as hemoglobin and cytochrome C
  • catalase and myoglobin can be distinguished, catalase and myoglobin
  • metalloproteins such as alcohol dehydrogenase and carbonic anhydrase
  • Amino acids share common aspects in their chemical structure. Almost all amino acids are derived from ⁇ -amino carboxylic acid, in which there is an additional substitution in carbon a. Of the amino acids from proteins, only tryptophan, tyrosine and phenylalanine absorb ultraviolet radiation and have a maximum absorbance at 278, 274.5 and 269 nm respectively. Cystine absorbs slightly at 238 nm and all amino acids do so at wavelengths close to 210 nm. Tryptophan, tyrosine and phenylalanine are the only amino acids that show natural fluorescence.
  • the protein content of marine products is very variable, ranges from 12 to 23% (on a wet basis) and is distributed in: 70 to 80% globulins, 10 to 20% are albumin and 2 to 4% are keratins and collagen. These contain very little amount of connective tissue and a high lysine content.
  • Figure 2 Amount of tryptophan and tyrosine obtained with 3 ml of 4.2M NaOH at 4, 8, 12 and 16 hours of hydrolysis.
  • Figure 3 Amount of tryptophan and tyrosine obtained with 6 ml of 4.2M NaOH at 4, 8, 12 and 16 hours of hydrolysis.
  • Figure 4 Amount of tryptophan and tyrosine obtained with 9 ml of 4.2M NaOH at 4, 8, 12 and 16 hours of hydrolysis.
  • L-tryptophan and L-tyrosine were obtained from Sigma (St. Louis, MO, USA), the solutions were prepared with ultrapurified water with a NANO Diamond UV puree system (Branstead International, Dubuque, lowa, USA).
  • HPLC grade methanol was obtained from AMD CHOMASOLV (Steinheim, Germany). Glacial acetic acid, boric acid, hydrochloric acid, sodium hydroxide and anhydrous sodium acetate, all analytical grade, were obtained from Monterrey Chemical Products (Monterrey, Nuevo León, Mexico).
  • the amino acid standards were diluted in 0.1 M HCI at different concentrations and calculated for calibration.
  • the acidic water used in the free amino acid analysis consisted of acidified Milli-Q water at pH 6.3 with 1 M HCI.
  • the 4.2M NaOH used in the total amino acid hydrolysis was prepared by dissolving 41.99 g of NaOH beads in 250 ml of Milli-Q water in a volumetric flask.
  • the borate buffer used in the dilution of the hydrolyzed samples consisted of a 250 mM boric acid solution: 1,743 g of boric acid was diluted in 90 ml of Milli-Q water, pH 9 was adjusted with 1 M NaOH and it was adjusted 100 ml with Milli-Q water.
  • the chromatographic conditions for the simultaneous separation of tryptophan and tyrosine are indicated in Table 1.
  • the fluorescence detector program started at the optimum wavelengths for the tyrosine for 5.8 min, and was subsequently automatically changed to the optimal wavelengths for Tryptophan The total time between injections was 20 minutes.
  • Moisture analysis The moisture content of the dried and lyophilized shrimp waste samples was determined in duplicate directly in a vacuum oven at 60 ° C for 5 hours. This in order to express the results on a dry basis.
  • Tryptophan and tyrosine free extraction The amino acids were extracted from the dried samples with acidic water. Specifically, 25 mg of dry or lyophilized finely powdered sample was dissolved in a 50 ml volumetric flask, titrated with acidified water at pH 6.3 with 0.1 M HCI, to obtain a concentration of 0.5 mg / ml. Subsequently, the samples were sonified (BRONSON, USA, model 1510) for 2 minutes for complete dissolution and subsequently analyzed by HPLC. Extraction of tryptophan and protein tyrosine.
  • Tryptophan and tyrosine were identified in the chromatographic column by their retention times by a comparison with the original reference standards of each separately.
  • the wavelengths selected for fluorescence detection are for Tryptophan: Excitation 280 nm and Emission 248 nm, and for Tyrosine: Excitation 274 nm and Emission 304 nm.
  • the retention times obtained were 4,248 min for tyrosine and 8,327 min for tryptophan, which were obtained by calculating the average retention times of 10 trials with 2 injections each.
  • tryptophan and tyrosine were extracted from the sample.
  • HPLC analysis it was found that the peaks of the amino acids of independent injections had the same retention time, thus determining the presence of tryptophan and tyrosine in the sample.
  • tests with different wavelengths were made to try to eliminate the unknown peaks that interfere with the desired peaks, and that is observed between the tyrosine peak and the tryptophan peak.
  • the previously selected tryptophan and tyrosine wavelengths were not altered, but those that They present the unwanted peak.
  • wavelengths above the optimum for garbage were programmed in the time interval in which the unwanted peak is observed. Table 5 shows the time and wavelength program to remove the waste from the chromatograms.
  • Figure 8 shows the chromatogram that presents the unwanted peaks and to which the conditions to disappear were modified.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Indole Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a method for obtaining free amino acids from protein hydrolysates derived from shrimp by-products. The method was used to quantify the amino acids present in the liquor obtained as final product in lactic fermentation. It was found that the linearity, precision and recovery of the method are suitable for the quantification of the amino acids selected.

Description

Método para obtener aminoácidos libres a partir de hidrolizados proteicos  Method to obtain free amino acids from protein hydrolysates
CAMPO TÉCNICO TECHNICAL FIELD
La presente invención tiene su campo técnico dentro de la química, dado que trata de un novedoso método para obtener aminoácidos libres a partir de hidrolizados proteicos y la mezcla que se emplea. The present invention has its technical field in chemistry, since it is a novel method to obtain free amino acids from protein hydrolysates and the mixture used.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Las proteínas son macromoléculas complejas que pueden representar más del 50% del peso seco de las células, en cuya estructura y función juegan un papel fundamental. Son múltiples las que se han aislado y purificado. Su peso molecular oscila entre 5000 y muchos millones de daltons. Estos biopolímeros están compuestos de carbono, hidrógeno, oxígeno, nitrógeno y habitualmente, azufre. Algunas contienen también hierro, cobre, fósforo o zinc. La hidrólisis total (ácida, alcalina o enzimática) de las proteínas rinde aminoácidos de configuración L, que se diferencian entre sí por la naturaleza de sus cadenas laterales. Los aminoácidos de la mayor parte de las proteínas pertenecen a un grupo reducido, constituido por veinte de estos compuestos. Los aminoácidos se unen para formar a las proteínas mediante enlaces amida llamados enlaces peptídicos, formando cadenas polipeptídicas que contienen hasta varios cientos de unidades (Cheflel, et. al; 1993). Las proteínas pueden clasificarse en dos grupos: homoproteínas que constan sólo de aminoácidos, y heteroproteínas, que además de aminoácidos contifenen varios compuestos no proteicos, denominados colectivamente grupos prostéticos. De acuerdo con la naturaleza química del grupo prostético, se pueden distinguir nucleoproteínas (como las presentes en los ribosomas y los virus), lipoproteínas (como la gammaglobulina), fosfoproteínas (como las caseínas), hemoproteínas (como la hemoglobina y el citocromo C, la catalasa y la mioglobina) y metaloproteínas (como el alcohol deshidrogenasa y la carbónico anhidrasa), (Cheflel, et. al; 1993). Proteins are complex macromolecules that can represent more than 50% of the dry weight of cells, in whose structure and function they play a fundamental role. There are many that have been isolated and purified. Its molecular weight ranges from 5000 to many millions of Daltons. These biopolymers are composed of carbon, hydrogen, oxygen, nitrogen and usually, sulfur. Some also contain iron, copper, phosphorus or zinc. The total hydrolysis (acidic, alkaline or enzymatic) of the proteins yields L-shaped amino acids, which differ from each other by the nature of their side chains. The amino acids of most proteins belong to a small group, consisting of twenty of these compounds. Amino acids bind to form proteins through amide bonds called peptide bonds, forming polypeptide chains containing up to several hundred units (Cheflel, et. Al; 1993). Proteins can be classified into two groups: homoproteins consisting only of amino acids, and heteroproteins, which in addition to amino acids contain several non-protein compounds, collectively referred to as prosthetic groups. According to the chemical nature of the prosthetic group, nucleoproteins (such as those present in ribosomes and viruses), lipoproteins (such as gamma globulin), phosphoproteins (such as caseins), hemoproteins (such as hemoglobin and cytochrome C, can be distinguished, catalase and myoglobin) and metalloproteins (such as alcohol dehydrogenase and carbonic anhydrase), (Cheflel, et. al; 1993).
Los aminoácidos comparten aspectos comunes en su estructura química. Casi todos los aminoácidos son derivados del ácido α-amino carboxílico, en el cual hay una sustitución adicional en el carbono a. de los aminoácidos procedentes de las proteínas, sólo el triptófano, la tirosina y la fenilalanina absorben radiaciones ultravioletas y tienen un máximo de absorbancia a 278, 274.5 y 269 nm respectivamente. La cistina absorbe ligeramente a 238 nm y todos los aminoácidos lo hacen a longitudes de onda próximas a 210 nm. El triptófano, la tirosina y la fenilalanina son los únicos aminoácidos que muestran fluorescencia natural. La fluorescencia del triptófano persiste incluyendo cuando el aminoácido está formando parte de una proteína (excitación a 287 nm; máximo de fluorescencia a 348 nm) (Cheflel, et. al; 1993). Según Badui (1999), el contenido de las proteínas de los productos marinos es muy variable, va del 12 a 23% (en base húmeda) y están distribuidas en: 70 a 80% globulinas, de 10 al 20% son albúminas y de 2 a 4% son queratinas y colágena. Estos contienen muy poca cantidad de tejido conectivo y un alto contenido de lisina. Amino acids share common aspects in their chemical structure. Almost all amino acids are derived from α-amino carboxylic acid, in which there is an additional substitution in carbon a. Of the amino acids from proteins, only tryptophan, tyrosine and phenylalanine absorb ultraviolet radiation and have a maximum absorbance at 278, 274.5 and 269 nm respectively. Cystine absorbs slightly at 238 nm and all amino acids do so at wavelengths close to 210 nm. Tryptophan, tyrosine and phenylalanine are the only amino acids that show natural fluorescence. Tryptophan fluorescence persists including when the amino acid is part of a protein (excitation at 287 nm; maximum fluorescence at 348 nm) (Cheflel, et. Al; 1993). According to Badui (1999), the protein content of marine products is very variable, ranges from 12 to 23% (on a wet basis) and is distributed in: 70 to 80% globulins, 10 to 20% are albumin and 2 to 4% are keratins and collagen. These contain very little amount of connective tissue and a high lysine content.
DESCRIPCION DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Los detalles característicos de esta novedosa mezcla y método para obtener aminoácidos libres a partir de hidrolizados proteicos se describen claramente en la siguiente descripción y en las figuras que se acompañan y siguiendo los mismos signos de referencia para indicar las partes yiiguras mostradas.  The characteristic details of this novel mixture and method to obtain free amino acids from protein hydrolysates are clearly described in the following description and in the accompanying figures and following the same reference signs to indicate the parts and figures shown.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Metodología seguida en el experimento.  Figure 1. Methodology followed in the experiment.
Figura 2. Cantidad de triptófano y tirosina obtenidos con 3 mi de NaOH 4.2M a 4, 8, 12 y 16 horas de hidrólisis.  Figure 2. Amount of tryptophan and tyrosine obtained with 3 ml of 4.2M NaOH at 4, 8, 12 and 16 hours of hydrolysis.
Figura 3. Cantidad de triptófano y tirosina obtenidos con 6 mi de NaOH 4.2M a 4, 8, 12 y 16 horas de hidrólisis.  Figure 3. Amount of tryptophan and tyrosine obtained with 6 ml of 4.2M NaOH at 4, 8, 12 and 16 hours of hydrolysis.
Figura 4. Cantidad de triptófano y tirosina obtenidos con 9 mi de NaOH 4.2M a 4, 8, 12 y 16 horas de hidrólisis.  Figure 4. Amount of tryptophan and tyrosine obtained with 9 ml of 4.2M NaOH at 4, 8, 12 and 16 hours of hydrolysis.
Figura 5. Cromatogramas de patrón de triptófano y tirosina. A) Detección ultravioleta B) Detección por fluorescencia.  Figure 5. Tryptophan and tyrosine pattern chromatograms. A) Ultraviolet detection B) Fluorescence detection.
Figura 6. Cromatogramas de manipulación de longitud de onda. A)  Figure 6. Wavelength manipulation chromatograms. TO)
Cromatograma en las condiciones originales donde se observan los picos no deseados. B) Cromatograma con las longitudes de onda modificadas para eliminar los picos no deseados. Chromatogram in the original conditions where the peaks are observed not wanted. B) Chromatogram with modified wavelengths to eliminate unwanted peaks.
El experimento se ha realizado en el laboratorio LV-712 del Instituto Tecnológico de Sonora, unidad Obregón-Náinari en Cd. Obregón, Sonora, México.  The experiment was carried out in the LV-712 laboratory of the Technological Institute of Sonora, Obregón-Náinari unit in Cd. Obregón, Sonora, Mexico.
Los estándares empleados L-triptófano y L-tirosina fueron obtenidos de Sigma (St. Louis, MO, EUA), las soluciones fueron preparadas con agua ultrapurificada con un sistema NANO puré Diamond UV (Branstead International, Dubuque, lowa, EUA). El metanol grado HPLC fue obtenido de AMD CHOMASOLV (Steinheim, Alemania). El ácido acético glacial, ácido bórico, ácido clorhídrico, hidróxido de sodio y acetato de sodio anhidro, todos grado analítico, fueron obtenidos de Productos Químicos Monterrey (Monterrey, Nuevo León, México).  The standards used L-tryptophan and L-tyrosine were obtained from Sigma (St. Louis, MO, USA), the solutions were prepared with ultrapurified water with a NANO Diamond UV puree system (Branstead International, Dubuque, lowa, USA). HPLC grade methanol was obtained from AMD CHOMASOLV (Steinheim, Germany). Glacial acetic acid, boric acid, hydrochloric acid, sodium hydroxide and anhydrous sodium acetate, all analytical grade, were obtained from Monterrey Chemical Products (Monterrey, Nuevo León, Mexico).
Los estándares de aminoácidos fueron diluidos en HCI 0.1 M a diferentes concentraciones y calculados para su calibración. El agua ácida utilizada en el análisis de los aminoácidos libres consistió en agua Milli-Q acidificada a pH 6.3 con HCI 1 M. El NaOH 4.2M utilizado en la hidrólisis de aminoácidos totales se preparó disolviendo 41.99 g de perlas de NaOH en 250 mi de agua Milli-Q en un matraz volumétrico. El buffer de boratos utilizado en la dilución de las muestras hidrolizadas consistió de una solución de ácido bórico 250 mM: se diluyeron 1.743 g de ácido bórico en 90 mi de agua Milli-Q, se ajustó el pH 9 con NaOH 1 M y se aforó a 100 mi con agua Milli-Q.  The amino acid standards were diluted in 0.1 M HCI at different concentrations and calculated for calibration. The acidic water used in the free amino acid analysis consisted of acidified Milli-Q water at pH 6.3 with 1 M HCI. The 4.2M NaOH used in the total amino acid hydrolysis was prepared by dissolving 41.99 g of NaOH beads in 250 ml of Milli-Q water in a volumetric flask. The borate buffer used in the dilution of the hydrolyzed samples consisted of a 250 mM boric acid solution: 1,743 g of boric acid was diluted in 90 ml of Milli-Q water, pH 9 was adjusted with 1 M NaOH and it was adjusted 100 ml with Milli-Q water.
Para el análisis cromatográfico se utilizó un sistema HPLC (GBC, Dandenong, Australia) equipado con un autoinyector LC1650, un desgasificador de solventes LC1460, un sistema WinChrom de análisis de datos cromatográficos, una bomba cuaternaria LC1 150 y un detector de fluorescencia LC 255S.  For the chromatographic analysis an HPLC system (GBC, Dandenong, Australia) equipped with an LC1650 autoinjector, an LC1460 solvent degasser, a WinChrom chromatographic data analysis system, an LC1 150 quaternary pump and an LC 255S fluorescence detector was used.
Las condiciones cromatográficas para la separación simultánea de triptófano y tirosina se indican en la tabla 1. El programa de detector de fluorescencia inició a las longitudes de onda óptimas para la tirosina por 5.8 min, y posteriormente fueron cambiadas automáticamente por las longitudes de onda óptimas para el triptófano. El tiempo total entre inyecciones fue de 20 minutos. The chromatographic conditions for the simultaneous separation of tryptophan and tyrosine are indicated in Table 1. The fluorescence detector program started at the optimum wavelengths for the tyrosine for 5.8 min, and was subsequently automatically changed to the optimal wavelengths for Tryptophan The total time between injections was 20 minutes.
Tabla 1  Table 1
I Parámetro Condiciones I Columna 4.6 mm SS Exil ODS 250 mm, 5μιη I Parameter Conditions I 4.6 mm SS Exil ODS 250 mm, 5μιη column
Fase móvil Sistema ¡socrático: Buffer de acetato de sodio  Mobile phase Socratic system: Sodium acetate buffer
40mM ajustado a pH 4.5 con solución de acido acético glacial/agua (1 :4), con 20% de metanol 40mM adjusted to pH 4.5 with glacial acetic acid / water solution (1: 4), with 20% methanol
Velocidad de flujo 0.8 ml/min Flow rate 0.8 ml / min
Detección Fluorescencia  Fluorescence Detection
Triptófano: Ex: 280 nm Em: 348 nm  Tryptophan: Ex: 280 nm Em: 348 nm
Tirosina: Ex: 274 nm Em: 304 nm  Tyrosine: Ex: 274 nm Em: 304 nm
Temperatura 26° C  Temperature 26 ° C
Tratamiento de las muestras Sample treatment
500 g de muestra son colocadas en un recipiente, se agrega inoculo de Lactobacillus sp. (50% v/p), azúcar de caña (6.66% p/p), ácido cítrico al 25 % con la finalidad de disminuir el pH a 4.5, y finalmente se incuba a 30° C por 24 horas en una incubadora (HOTPOINT) (Figura 5). El fermentado fue separado en una centrifuga refrigerada (SOL-BAT S.A., modelo C-600), a 6° C, 6000 rpm por 15 minutos, para la obtención una fracción rica en quitina insoluble (sedimento), un líquido rico en proteínas (licor) y una fracción de lípidos (astaxantina). Una fracción de las muestras de licor fueron secadas en un liofilizador (LABCONCO, USA, modelo Freezone 4.5) a -40° C y 130 bar de presión. Otra parte de las muestras se secó en un horno a vacío (NATIONAL, USA, modelo 5831 ) a 60° C por 3 días. Posteriormente, las muestras se conservaron en un desecador y en la oscuridad hasta su análisis. La metodología seguida se muestra en la figura 1.  500 g of sample are placed in a container, inoculum of Lactobacillus sp. (50% v / p), cane sugar (6.66% p / p), 25% citric acid in order to lower the pH to 4.5, and finally incubate at 30 ° C for 24 hours in an incubator (HOTPOINT ) (Figure 5). The fermented was separated in a refrigerated centrifuge (SOL-BAT SA, model C-600), at 6 ° C, 6000 rpm for 15 minutes, to obtain a fraction rich in insoluble chitin (sediment), a protein-rich liquid ( liquor) and a lipid fraction (astaxanthin). A fraction of the liquor samples were dried in a lyophilizer (LABCONCO, USA, Freezone 4.5 model) at -40 ° C and 130 bar pressure. Another part of the samples was dried in a vacuum oven (NATIONAL, USA, model 5831) at 60 ° C for 3 days. Subsequently, the samples were stored in a desiccator and in the dark until analysis. The methodology followed is shown in Figure 1.
Análisis de humedad. El contenido de humedad de las muestras de desecho de camarón secas y liofilizadas se determinó por duplicado directamente en una estufa de vacío a 60° C por 5 horas. Esto con la finalidad de expresar los resultados en base seca.  Moisture analysis The moisture content of the dried and lyophilized shrimp waste samples was determined in duplicate directly in a vacuum oven at 60 ° C for 5 hours. This in order to express the results on a dry basis.
Extracción de triptófano y tirosina libres. Los aminoácidos fueron extraídos de las muestras secas con agua ácida. Específicamente, 25 mg de muestra seca o liofilizada finamente pulverizada fueron disueltos en un matraz volumétrico de 50 mi, aforados con agua acidificada a pH 6.3 con HCI 0.1 M, para obtener una concentración de 0.5 mg/ml. Posteriormente, las muestras fueron sonificadas (BRONSON, USA, modelo 1510) por 2 minutos para su completa disolución y posteriormente analizadas por HPLC. Extracción de triptófano y tirosina proteicos. Para la extracción de triptófano y tirosina proteicos se llevó a cabo una hidrólisis alcalina: 25 mg de muestra fueron disueltas en tubos de vidrio con 3 mi de NaOH 4.2 M y sonificadas por 2 minutos, los tubos fueron sellados bajo atmósfera de nitrógeno e incubadas a 120° C por 4 horas. Los hidrolizados se enfriaron primero a temperatura ambiente y después aproximadamente a 4o C en un baño de hielo. Se filtraron a través de filtro Wathman No. 2 y se diluyeron a 50 mi con buffer de boratos pH 9.0 en un matraz volumétrico. Finalmente alícuotas de esta solución fueron filtradas a través de membrana Millipore 0.45 μιη antes del análisis cromatográfico. Tryptophan and tyrosine free extraction. The amino acids were extracted from the dried samples with acidic water. Specifically, 25 mg of dry or lyophilized finely powdered sample was dissolved in a 50 ml volumetric flask, titrated with acidified water at pH 6.3 with 0.1 M HCI, to obtain a concentration of 0.5 mg / ml. Subsequently, the samples were sonified (BRONSON, USA, model 1510) for 2 minutes for complete dissolution and subsequently analyzed by HPLC. Extraction of tryptophan and protein tyrosine. For the extraction of tryptophan and protein tyrosine an alkaline hydrolysis was carried out: 25 mg of sample were dissolved in glass tubes with 3 ml of 4.2 M NaOH and sonified for 2 minutes, the tubes were sealed under nitrogen atmosphere and incubated at 120 ° C for 4 hours. The hydrolysates were first cooled to room temperature and after about 4 o C in an ice bath. They were filtered through Wathman filter No. 2 and diluted to 50 ml with borate buffer pH 9.0 in a volumetric flask. Finally aliquots of this solution were filtered through 0.45 μιη Millipore membrane before chromatographic analysis.
Tratamiento de la muestra. Para determinar las condiciones de tratamiento de muestra primeramente se llevaron a cabo ensayos para especificar la cantidad de muestra a utilizar, posteriormente se realizaron pruebas para determinar las condiciones de hidrólisis (cantidad de álcali y tiempo de hidrólisis)  Sample treatment. To determine the conditions of sample treatment, tests were first carried out to specify the amount of sample to be used, then tests were performed to determine the hydrolysis conditions (alkali amount and hydrolysis time)
Determinación de la cantidad de muestra a analizar. Para la extracción de triptófano y tirosina totales se llevó a cabo un ensayo de determinación de la cantidad de muestra a hidrolizar. El experimento consistió, en primer lugar en realizar una hidrólisis utilizando 25, 50 y 75 mg de muestra con 3 y 6 mi de HCI a 120° C, analizados por duplicado. Para el análisis cromatográfico las muestras de 50 y 75 mg se diluyeron 1 :2 y 1 :4, respectivamente, en agua acidificada a pH 6.3; evitando la saturación en el cromatograma. Después de analizar los valores de triptófano y tirosina obtenidos de cada una de las pruebas se observó que con 25 mg de muestra se tienen mejores resultados debido a que la cantidad cuantificada de los dos aminoácidos es mayor. La tabla 2 muestra los resultados, promedio de dos repeticiones, del análisis.  Determination of the amount of sample to be analyzed. For the extraction of tryptophan and total tyrosine, an assay was carried out to determine the amount of sample to be hydrolyzed. The experiment consisted, first of all, of performing a hydrolysis using 25, 50 and 75 mg of sample with 3 and 6 ml of HCI at 120 ° C, analyzed in duplicate. For chromatographic analysis the 50 and 75 mg samples were diluted 1: 2 and 1: 4, respectively, in acidified water at pH 6.3; avoiding saturation in the chromatogram. After analyzing the tryptophan and tyrosine values obtained from each of the tests, it was observed that with 25 mg of sample, better results are obtained because the quantified amount of the two amino acids is greater. Table 2 shows the results, average of two repetitions, of the analysis.
Tabla 2.  Table 2.
Figure imgf000007_0001
Determinación de las condiciones de hidrólisis. Para definir la cantidad de NaOH 4.2 M y el tiempo utilizados para la hidrólisis se realizó otro ensayo en el que se probaron tres cantidades de álcali (3, 6 y 9 mi) y cuatro diferentes tiempos (4, 8, 12 y 16 horas), siendo un total de 12 ensayos por duplicado. Al realizar los análisis cromatográficos de cada uno de los ensayos se obtuvo que con 9 mi de NaOH y en un tiempo de 16 horas se cuantificaron, como se observa en la tabla 3, mayores cantidades de triptófano y tirosina. Según Spies y Chambers (1949) a mayor tiempo de hidrólisis mayor es la cantidad de aminoácido recuperado. A una conclusión similar llegaron Wu y Tanoue (2001 ), quienes realizaron pruebas de hidrólisis de proteínas para la obtención de triptófano total, donde el tiempo hidrólisis fue de 12 y 16 horas, teniendo mayores o iguales resultados en la recuperación de triptófano a las 16 horas (Tabla 7). En la figuras 5, 6 y 7 se muestran los resultados obtenidos utilizando 3, 6 y 9 mi de NaOH 4.2M, respectivamente.
Figure imgf000007_0001
Determination of hydrolysis conditions. To define the amount of 4.2 M NaOH and the time used for hydrolysis, another test was performed in which three quantities of alkali (3, 6 and 9 ml) and four different times (4, 8, 12 and 16 hours) were tested. , being a total of 12 trials in duplicate. When performing the chromatographic analyzes of each of the tests, it was obtained that with 9 ml of NaOH and in a time of 16 hours, greater amounts of tryptophan and tyrosine were quantified, as observed in table 3. According to Spies and Chambers (1949) the longer the hydrolysis time, the greater the amount of amino acid recovered. A similar conclusion was reached by Wu and Tanoue (2001), who performed protein hydrolysis tests to obtain total tryptophan, where the hydrolysis time was 12 and 16 hours, having greater or equal results in the recovery of tryptophan at 16 hours (Table 7). The results obtained using 3, 6 and 9 ml of 4.2M NaOH, respectively, are shown in Figures 5, 6 and 7.
Identificación. Al analizar los cromatogramas de los patrones de aminoácidos se han observado más definidos y más grandes en el detector de fluorescencia (figura 7). Triptófano y tirosina fueron identificados en la columna cromatográfica por sus tiempos de retención mediante una comparación con los patrones de referencia originales de cada uno por separado. Las longitudes de onda seleccionadas para la detección por fluorescencia son para el Triptófano: Excitación 280 nm y Emisión 248 nm, y para la Tirosina: Excitación 274 nm y Emisión 304 nm. Los tiempos de retención obtenidos fueron de 4.248 min para tirosina y de 8.327 min para triptófano, los cuales se obtuvieron calculando el promedio de los tiempos de retención de 10 ensayos con 2 inyecciones cada una. ID. When analyzing the chromatograms of the amino acid patterns, they have been more defined and larger in the fluorescence detector (Figure 7). Tryptophan and tyrosine were identified in the chromatographic column by their retention times by a comparison with the original reference standards of each separately. The wavelengths selected for fluorescence detection are for Tryptophan: Excitation 280 nm and Emission 248 nm, and for Tyrosine: Excitation 274 nm and Emission 304 nm. The retention times obtained were 4,248 min for tyrosine and 8,327 min for tryptophan, which were obtained by calculating the average retention times of 10 trials with 2 injections each.
Posteriormente se procedió a la extracción de triptófano y tirosina de la muestra. Realizando el análisis HPLC se encontró que, los picos de los aminoácidos de inyecciones independientes, tuvieron el mismo tiempo de retención determinando así la presencia de triptófano y tirosina en la muestra. Durante la optimización de las condiciones cromatográficas se hicieron pruebas con diferentes longitudes de onda para tratar de eliminar los picos desconocidos que interfieren con los picos deseados, y que se observa entre el pico de tirosina y el de triptófano. Para esto, no se alteraron las longitudes de onda de triptófano y tirosina seleccionadas con anterioridad, pero si las que presentan el pico no deseado. Para esto se programaron longitudes de onda por encima de las óptimas para la basura en el intervalo de tiempo en el que se observa el pico no deseado. En la tabla 5 se muestran el programa de tiempos y longitudes de onda para eliminar la basura de los cromatogramas. Subsequently, tryptophan and tyrosine were extracted from the sample. Performing the HPLC analysis, it was found that the peaks of the amino acids of independent injections had the same retention time, thus determining the presence of tryptophan and tyrosine in the sample. During the optimization of the chromatographic conditions, tests with different wavelengths were made to try to eliminate the unknown peaks that interfere with the desired peaks, and that is observed between the tyrosine peak and the tryptophan peak. For this, the previously selected tryptophan and tyrosine wavelengths were not altered, but those that They present the unwanted peak. For this, wavelengths above the optimum for garbage were programmed in the time interval in which the unwanted peak is observed. Table 5 shows the time and wavelength program to remove the waste from the chromatograms.
Tabla 5.  Table 5.
Tiempo Longitud de onda  Wavelength Time
6.4-6.5 min Excitación: 280 nm  6.4-6.5 min Excitation: 280 nm
Emisión: 390 nm  Emission: 390 nm
9.7-9.8 min Excitación: 280 nm  9.7-9.8 min Excitation: 280 nm
Emisión: 348 nm  Emission: 348 nm
En la figura 8 se observa el cromatograma que presenta los picos no deseados y al que se le modificaron las condiciones para desaparecerla. Figure 8 shows the chromatogram that presents the unwanted peaks and to which the conditions to disappear were modified.
Se ha determinado el método para la preparación de muestras de hidrolizado proteico obtenido de fermentación láctica de cabeza de camarón, para la determinación simultánea de triptófano y tirosina libres y totales.  The method for the preparation of samples of protein hydrolyzate obtained from lactic fermentation of shrimp head has been determined, for the simultaneous determination of free and total tryptophan and tyrosine.
Por otro lado se llegaron a las condiciones cromatográficas óptimas para la determinación de estos dos aminoácidos. Una fase móvil de acetato de sodio 40 mM:metanol (80:20 v/v), a 0.8 ml/min de velocidad de flujo, en una columna C-ie de fase reversa a 26° C, permitieron la separación más satisfactoria de ambos aminoácidos utilizando un detector de fluorescencia a diferentes longitudes de onda. On the other hand, optimal chromatographic conditions were reached for the determination of these two amino acids. A mobile phase of 40 mM sodium acetate: methanol (80:20 v / v), at 0.8 ml / min flow rate, on a reverse phase C-ie column at 26 ° C, allowed for the most satisfactory separation of both amino acids using a fluorescence detector at different wavelengths.

Claims

REIVINDICACIONES
Habiendo descrito suficientemente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas: Having sufficiently described my invention, I consider as a novelty and therefore claim as my exclusive property, what is contained in the following clauses:
Un método para obtener aminoácidos libres a partir de hidrolizados proteicos en fermentados de camarón caracterizado porque comprende las siguientes fases: a. Tratamiento de las muestras: donde 500 g de muestra son colocadas en un recipiente, agregándosele inoculo de Lactobacillus sp. (50% v/p), azúcar de caña (6.66% p/p), ácido cítrico al 25 % para disminuir el pH a 4.5, y finalmente se incuba a 30° C por 24 horas en una incubadora, se separa el fermentado en una centrifuga refrigerada a 6o C, 6000 rpm por 15 minutos, obteniendo una fracción rica en quitina insoluble (sedimento), un líquido rico en proteínas (licor) y una fracción de lípidos (astaxantina), donde la fracción de las muestras de licor son secadas en un liofilizadór a -40° C y 130 bar de presión y otra parte de las muestras se seca en un horno a vacío a 60° C por 3 días para posteriormente conservarlas en un desecador y en la oscuridad hasta su análisis. b. Análisis de humedad: el contenido de humedad de las muestras de desecho de camarón secas y liofilizadas se determina por duplicado directamente en una estufa de vacío a 60° C por 5 horas para la expresión de los resultados en base seca. c. Extracción de triptófano y tirosina libres: Los aminoácidos son extraídos de las muestras secas con agua ácida, que específicamente, por cada 25 mg de muestra seca o liofilizada finamente pulverizada son disueltos en un matraz volumétrico de 50 mi, aforados con agua acidificada a pH 6.3 con HCI 0.1 M, para obtener una concentración de 0.5 mg/ml, para posteriormente sonificar las muestras por 2 minutos hasta su completa disolución. d. Análisis: Identificación de la muestra, condiciones de hidrólisis e identificación. A method for obtaining free amino acids from protein hydrolysates in shrimp ferments characterized in that it comprises the following phases: a. Treatment of the samples: where 500 g of sample are placed in a container, adding inoculum of Lactobacillus sp. (50% v / p), cane sugar (6.66% p / p), 25% citric acid to lower the pH to 4.5, and finally incubated at 30 ° C for 24 hours in an incubator, the fermented is separated in a centrifuge refrigerated at 6 o C, 6000 rpm for 15 minutes, obtaining a fraction rich in insoluble chitin (sediment), a protein-rich liquid (liquor) and a lipid fraction (astaxanthin), where the fraction of the samples of Liquor is dried in a lyophilizer at -40 ° C and 130 bar pressure and another part of the samples is dried in a vacuum oven at 60 ° C for 3 days and then stored in a desiccator and in the dark until analysis. b. Moisture analysis: The moisture content of dried and lyophilized shrimp waste samples is determined in duplicate directly in a vacuum oven at 60 ° C for 5 hours for the expression of the results on a dry basis. C. Extraction of tryptophan and free tyrosine: Amino acids are extracted from dried samples with acidic water, which specifically, for every 25 mg of dry or lyophilized finely powdered sample are dissolved in a 50 ml volumetric flask, titrated with acidified water at pH 6.3 with 0.1 M HCI, to obtain a concentration of 0.5 mg / ml, to subsequently sonify the samples for 2 minutes until completely dissolved. d. Analysis: Sample identification, hydrolysis conditions and identification.
2. Un método para obtener aminoácidos libres a partir de hidrolizados proteicos en fermentados de camarón como el descrito en la reivindicación 1 donde las fases a y b son las mismas y una fase c caracterizada porque trata de Extracción de triptófano y tirosina proteicos mediante una hidrólisis alcalina que comprende disolver, por cada 25 mg de muestra en tubos de vidrio, con 3 mi de NaOH 4.2 M y sonificar por 2 minutos, para posteriormente sellar los tubos bajo atmósfera de nitrógeno e incubar a 120° C por 4 horas. Los hidrolizados se enfriaron primero a temperatura ambiente y después aproximadamente a 4o C en un baño de hielo. Se filtraron a través de filtro Wathman No. 2 y se diluyeron a 50 mi con buffer de boratos pH 9.0 en un matraz volumétrico. Finalmente alícuotas de esta solución fueron filtradas a través de membrana Millipore 0.45 μιτι antes del análisis cromatográfico. 2. A method for obtaining free amino acids from protein hydrolysates in shrimp ferments as described in claim 1 wherein the phases a and b are the same and a phase c characterized in that it deals with extraction of protein tryptophan and tyrosine by an alkaline hydrolysis that It comprises dissolving, for every 25 mg of sample in glass tubes, with 3 ml of 4.2 M NaOH and sonifying for 2 minutes, to subsequently seal the tubes under nitrogen atmosphere and incubate at 120 ° C for 4 hours. The hydrolysates were first cooled to room temperature and after about 4 o C in an ice bath. They were filtered through Wathman filter No. 2 and diluted to 50 ml with borate buffer pH 9.0 in a volumetric flask. Finally aliquots of this solution were filtered through 0.45 μιτι Millipore membrane before chromatographic analysis.
3. Un método para obtener aminoácidos libres a partir de hidrolizados proteicos como el descrito en las reivindicaciones anteriores donde el proceso de análisis se compone de las siguientes etapas: a. Tratamiento de la muestra, etapa donde se llevan a cabo ensayos para especificar la cantidad de muestra a utilizar para posteriormente realizarle pruebas para determinar las condiciones de hidrólisis como cantidad de álcali y tiempo de hidrólisis. 3. A method for obtaining free amino acids from protein hydrolysates as described in the preceding claims wherein the analysis process is composed of the following steps: a. Sample treatment, stage where tests are carried out to specify the amount of sample to be used for later testing to determine hydrolysis conditions such as alkali amount and hydrolysis time.
i. Determinación de la cantidad de muestra a analizar, mediante una hidrólisis utilizando 25 mg de muestra con 3 y 6 mi de HCI a 120° C, analizados por duplicado diluyendo en agua acidificada a un pH 6.3 evitando la saturación en el cromatograma. i. Determination of the amount of sample to be analyzed, by hydrolysis using 25 mg of sample with 3 and 6 ml of HCI at 120 ° C, analyzed in duplicate diluting in acidified water at pH 6.3 avoiding saturation in the chromatogram.
ii. Determinación de las condiciones de hidrólisis, donde se emplean 9 mi NaOH 4.2 M en un tiempo de 16 horas permitiendo observar mayores cantidades de triptófano y tirosina. b. Identificación, el análisis de los cromatogramas de los patrones de aminoácidos se observan en un detector de fluorescencia mediante una columna cromatográfica para el Triptófano: Excitación 280 nm y Emisión 248 nm, y para la Tirosina: Excitación 274 nm y Emisión 304 nm.  ii. Determination of the hydrolysis conditions, where 9 ml 4.2 M NaOH is used in a time of 16 hours allowing to observe greater amounts of tryptophan and tyrosine. b. Identification, the analysis of the chromatograms of the amino acid patterns are observed in a fluorescence detector by means of a chromatographic column for Tryptophan: Excitation 280 nm and Emission 248 nm, and for Tyrosine: Excitation 274 nm and Emission 304 nm.
Un método para obtener aminoácidos libres a partir de hidrolizados proteicos como el descrito en las reivindicaciones anteriores caracterizado porque los tiempos de retención son de 4.248 min para tirosina y de 8.327 min para triptófano. A method for obtaining free amino acids from protein hydrolysates as described in the preceding claims characterized in that the retention times are 4,248 min for tyrosine and 8,327 min for tryptophan.
Un método para obtener aminoácidos libres a partir de hidrolizados proteicos como el descrito en las reivindicaciones 3 y 4 caracterizado porque el programa de tiempo y sus longitudes de onda empleadas para la eliminación de picos no deseados son : A method for obtaining free amino acids from protein hydrolysates as described in claims 3 and 4 characterized in that the time program and its wavelengths used for the elimination of unwanted peaks are:
a. 4-6.5 min Excitación: 280 nm Emisión: 390 nm, y  to. 4-6.5 min Excitation: 280 nm Emission: 390 nm, and
b. 7-9.8 min Excitación: 280 nm Emisión: 348 nm.  b. 7-9.8 min Excitation: 280 nm Emission: 348 nm.
Un método para obtener aminoácidos libres a partir de hidrolizados proteicos como el descrito en las reivindicaciones anteriores es caracterizado porque en la fase de análisis las condiciones cromatográficas óptimas para la determinación de triptófano y tirosina constan de una fase móvil de acetato de sodio 40 mM:metanol (80:20 v/v), a 0.8 ml/min de velocidad de flujo, en una columna Ci8 de fase reversa a 26° C separando ambos aminoácidos utilizando un detector de fluorescencia a diferentes longitudes de onda. A method for obtaining free amino acids from protein hydrolysates as described in the preceding claims is characterized in that in the analysis phase the optimal chromatographic conditions for the determination of tryptophan and tyrosine consist of a mobile phase of 40 mM sodium acetate: methanol (80:20 v / v), at 0.8 ml / min flow rate, in a reverse phase Ci 8 column at 26 ° C separating both amino acids using a fluorescence detector at different wavelengths.
PCT/MX2011/000016 2010-10-29 2011-02-04 Method for obtaining free amino acids from protein hydrolysates WO2012057597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2010011898A MX2010011898A (en) 2010-10-29 2010-10-29 Mixture and method for obtaining free amino acids from protein hydrolysates.
MXMX/A/2010/011898 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057597A1 true WO2012057597A1 (en) 2012-05-03

Family

ID=45994128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2011/000016 WO2012057597A1 (en) 2010-10-29 2011-02-04 Method for obtaining free amino acids from protein hydrolysates

Country Status (2)

Country Link
MX (1) MX2010011898A (en)
WO (1) WO2012057597A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787939A (en) * 2014-03-12 2014-05-14 广州博采生物科技有限公司 Method and device of separating and extracting amino acid products from protein hydrolysates
RU2554994C2 (en) * 2013-10-11 2015-07-10 Федеральное государственное бюджетное научное учреждение "Тихоокеанский научно-исследовательский рыбохозяйственный центр" (ФГБНУ "ТИНРО-Центр") Shrimp food protein product manufacture method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. BUENO-SOLANO ET AL.: "Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products", FOOD CHEMISTRY, vol. 112, no. 3, 1 February 2009 (2009-02-01), pages 671 - 675, XP023905387, DOI: doi:10.1016/j.foodchem.2008.06.029 *
D.I. SANCHEZ-MACHADO ET AL.: "High-performance liquid chromatography with fluorescence detection for quantitation of tryptophan and tyrosine in a shrimp waste protein concentrate", JOURNAL OF CHROMATOGRAPHY B, vol. 863, no. 1, 15 February 2008 (2008-02-15), pages 88 - 93, XP022477528, DOI: doi:10.1016/j.jchromb.2008.01.011 *
J. LOPEZ-CERVANTES ET AL.: "Analysis of free amino acids in fermented shrimp waste by high-performance liquid chromatography", JOURNAL OF CHROMATOGRAPHY A, vol. 1105, no. 1-2, 10 February 2006 (2006-02-10), pages 106 - 110, XP024968238, DOI: doi:10.1016/j.chroma.2005.08.040 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554994C2 (en) * 2013-10-11 2015-07-10 Федеральное государственное бюджетное научное учреждение "Тихоокеанский научно-исследовательский рыбохозяйственный центр" (ФГБНУ "ТИНРО-Центр") Shrimp food protein product manufacture method
CN103787939A (en) * 2014-03-12 2014-05-14 广州博采生物科技有限公司 Method and device of separating and extracting amino acid products from protein hydrolysates
CN103787939B (en) * 2014-03-12 2016-03-30 广州博采生物科技有限公司 A kind of method of separation and Extraction amino acid products from protein hydrolyzate and equipment thereof

Also Published As

Publication number Publication date
MX2010011898A (en) 2012-04-30

Similar Documents

Publication Publication Date Title
Chen et al. Rapid isolation of high purity pepsin-soluble type I collagen from scales of red drum fish (Sciaenops ocellatus)
Hermanto et al. Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis
CN104710511B (en) Iron chelating peptide derived from hairtail fish protein and preparation method and application thereof
CN105755078B (en) Preparation method and application of medical-grade fish skin collagen
CN105017412B (en) Method for separating high-purity bovine serum albumin from bovine serum
Lauceri et al. Purification of phycocyanin from Arthrospira platensis by hydrophobic interaction membrane chromatography
Fekrat et al. Optimization of chitosan/activated charcoal-based purification of Arthrospira platensis phycocyanin using response surface methodology
CN104250285A (en) Pseudosciaena crocea flesh antioxidative peptide and preparation method and use thereof
WO2012057598A1 (en) Method for quantifying amino acids using high-performance liquid chromatography (hplc) from lactic fermentation
CN105777865B (en) Fish digestion-resistant peptide with antioxidant function, and preparation method and application thereof
WO2012057597A1 (en) Method for obtaining free amino acids from protein hydrolysates
CN104250286A (en) Navodon septentrionalis fish-skin antioxidant collagen peptide and preparation method and use thereof
CN108743446A (en) A kind of ultrafiltration membrane preparation method of cocoon sericin protein and its application
ES2906120T3 (en) Peptide oligosaccharide purification procedure
CN102796193A (en) Method for extracting ovotransferrin from egg white
CN109211805B (en) Verification analysis method for traceability of mussel carotenoid extract
CN107082796B (en) Method for purifying small molecular polypeptide in protein zymolyte
CN102372765A (en) Ruditapes philippinarum enzymatic polypeptide and preparation method thereof
CN115109117B (en) Multifucus phycoerythrin angiotensin converting enzyme inhibitory peptide and preparation method and application thereof
CN108048518B (en) Chicken blood cell antioxidant peptide and enzymolysis preparation method thereof
JP2023003418A (en) Method of analyzing proteoglycans
CN103275180B (en) Navodon septentrionalos fish head protein antioxidant peptide as well as preparation method and application thereof
Jiang et al. Recovery of emulsifying and gelling protein from waste chicken exudate by using a sustainable pH-shifting treatment
CN115057916A (en) Pinctada martensii meat antioxidant polypeptide and preparation method and application thereof
JP5650356B2 (en) Red pigment and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02-09-2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11836688

Country of ref document: EP

Kind code of ref document: A1