WO2012057505A2 - Natural gas liquefaction process - Google Patents

Natural gas liquefaction process Download PDF

Info

Publication number
WO2012057505A2
WO2012057505A2 PCT/KR2011/007994 KR2011007994W WO2012057505A2 WO 2012057505 A2 WO2012057505 A2 WO 2012057505A2 KR 2011007994 W KR2011007994 W KR 2011007994W WO 2012057505 A2 WO2012057505 A2 WO 2012057505A2
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
natural gas
cooling
heat exchange
cycle
Prior art date
Application number
PCT/KR2011/007994
Other languages
French (fr)
Korean (ko)
Other versions
WO2012057505A3 (en
Inventor
이상규
최건형
차규상
박창원
이영범
조용범
이철구
장호명
Original Assignee
한국가스공사연구개발원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사연구개발원 filed Critical 한국가스공사연구개발원
Priority to CA2816047A priority Critical patent/CA2816047C/en
Priority to US13/881,588 priority patent/US20130263623A1/en
Priority to AU2011321145A priority patent/AU2011321145B2/en
Publication of WO2012057505A2 publication Critical patent/WO2012057505A2/en
Publication of WO2012057505A3 publication Critical patent/WO2012057505A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0085Ethane; Ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/009Hydrocarbons with four or more carbon atoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air

Definitions

  • the present invention relates to a natural gas liquefaction process, and more particularly, to configure the pre-cooling cycle to take advantage of both the pure refrigerant cycle and the mixed refrigerant cycle, the efficiency of the liquefaction process, while the equipment of the liquefaction system is small and the structure is simple
  • the present invention relates to a natural gas liquefaction process that is easy to operate.
  • C3 / MR Process One of the most popular liquefaction processes in operation is the 'Propane Pre-cooled Mixed Refrigerant Process' (or C3 / MR Process).
  • the basic structure of the C3 / MR process is as shown in FIG.
  • 'C3' represents a propane refrigerant cycle
  • 'MR' represents a mixed refrigerant cycle.
  • 'C' represents a compressor
  • 'AC' represents an after-cooler
  • 'V' represents a valve
  • 'HX' represents a heat exchanger.
  • the feed gas is pre-cooled to approximately 240 K by a multi-stage propane (C3) refrigerant cycle.
  • the precooled feed gas is condensed and sub-cooled to approximately 113 K by a mixed refrigerant cycle, ie through heat exchange with the mixed refrigerant (MR) in a heat exchanger.
  • MR mixed refrigerant
  • the general characteristics of the pure refrigerant cycle and the mixed refrigerant cycle are maintained. That is, pure refrigerant cycles are simple in structure and easy to operate, but require a large number of refrigeration stages.
  • Mixed refrigerant cycles are complex and difficult to operate, but can achieve high efficiency with only a few components. Each cycle features the same characteristics in the C3 / MR process.
  • the mixed refrigerant cycle of the C3 / MR process for liquefying (and subcooling) the pre-cooled feed gas is usually a mixture consisting of nitrogen, methane, ethane, and propane.
  • Use refrigerant By appropriately selecting the composition of these components, and depending on the difference in boiling points of the components, the mixed refrigerant is suitably separated from the gaseous refrigerant portion and the liquid refrigerant portion, and then liquefied natural gas through each refrigerant portion.
  • the mixed refrigerant cycle of the / MR process only a small number of facilities can show high efficiency.
  • the pure refrigerant cycle of the C3 / MR process for precooling the feed gas uses a pure refrigerant called propane refrigerant, which is simple in structure and easy to operate, but usually requires three or four pressure stages. Is required.
  • propane refrigerant a pure refrigerant
  • the focus is on simplicity in the precooling cycle (large number of installations, but the structure itself is simple), and efficiency in liquefaction cycles (the number of installations, but the structure itself is complex and efficient). It can be seen that.
  • the liquefaction (supercooling) cycle of the DMR process is basically the same as the liquefaction (supercooling) cycle of the C3 / MR process, that is, the mixed refrigerant cycle.
  • the liquefaction cycle of the DMR process unlike the C3 / MR process, another mixed refrigerant cycle is used to precool the feed gas.
  • the precooling cycle in the DMR process unlike the liquefaction cycle in the DMR process, usually does not have a gas-liquid separator.
  • the DMR process focuses on efficiency in both precooling and liquefaction cycles. However, it is known that the efficiency of the actual DMR process is substantially lower than that of the C3 / MR process.
  • the mixed refrigerant cycle is known to be more efficient than the pure refrigerant cycle.
  • the structure itself is that the mixed refrigerant cycle is more complicated than the pure refrigerant cycle.
  • many proposals have been made to improve the efficiency of the entire liquefaction process by applying mixed refrigerant cycles to refrigeration cycles for liquefying (supercooling) the pre-cooled natural gas. Therefore, there is a great need for research on pre-cooling cycles having a simple structure and excellent efficiency.
  • the present invention has been made to solve the above problems, the object of the present invention is to configure the pre-cooling cycle to take advantage of both the pure refrigerant cycle and the mixed refrigerant cycle, the efficiency of the liquefaction process, while the equipment of the liquefaction system It provides a natural gas liquefaction process that is low in cost, simple in structure, and easy to operate.
  • a closed loop pre-cooling cycle to pre-cool the natural gas and a closed loop liquefying cycle
  • the first and second precooling cycles for precooling the natural gas supplied together in the same first heat exchange region through respective pure refrigerants are performed.
  • the closed circuit liquefaction cycle includes at least one liquefaction cycle for liquefying natural gas precooled through the mixed refrigerant, and the first and second precooling cycles are closed circuit refrigeration cycles.
  • the pure refrigerant of the first precooling cycle may be ethane (C2) refrigerant
  • the pure refrigerant of the second precooling cycle may be butane (C4) refrigerant.
  • the first and second precooling cycles may include compressing the pure refrigerant, cooling the compressed refrigerant, additionally cooling the cooled refrigerant in the first heat exchange area, and expanding the additionally cooled refrigerant. It may include a step.
  • the closed circuit liquefaction cycle may include: compressing the mixed refrigerant, cooling the compressed refrigerant, additionally cooling the cooled refrigerant in the first heat exchange area to partially condense, and boiling the partially condensed refrigerant. Separating the liquid refrigerant portion and the gaseous refrigerant portion according to the difference of, cooling the natural gas pre-cooled in the second heat exchange region by using the liquid refrigerant portion, and using the gaseous refrigerant portion by a third And secondarily cooling the naturally cooled natural gas in the heat exchange zone.
  • the primary cooling may include: a first step of cooling the liquid refrigerant part through heat exchange in the second heat exchange region, a second step of expanding the cooled refrigerant part through the first step, and the And a third step of cooling the natural gas by exchanging the refrigerant portion expanded through the second step with the natural gas in the second heat exchange region.
  • the secondary cooling may include a cooling step of cooling the gaseous refrigerant part through heat exchange in the second heat exchange area, and a heat exchange of the refrigerant part cooled through the cooling step in the third heat exchange area.
  • Natural gas liquefaction process according to the present invention has the effect that the pre-cooling cycle can be configured with a relatively small number of facilities because the pre-cooling cycle pre-cools the natural gas in only one pressure step.
  • the natural gas liquefaction process according to the present invention has the effect that the structure itself is simple and easy operation of the liquefaction system because each pre-cooling cycle uses a pure refrigerant.
  • the natural gas liquefaction process according to the present invention has the effect that the efficiency of the liquefaction process is very excellent because two pre-cooling cycles are arranged in parallel to pre-cool the natural gas in the same heat exchange zone.
  • FIG. 1 is a flowchart illustrating a natural gas liquefaction process according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the temperature profile in the precooling region of a conventional C3-MR process.
  • FIG. 4 is a graph illustrating a temperature profile in a precooling region of a liquefaction process according to an embodiment of the present invention.
  • FIG. 5 is a temperature-entropy diagram of ethane and propane cycles in a liquefaction process in accordance with one embodiment of the present invention.
  • 6 to 8 are graphs showing exergy use and irreversibility of the conventional CR / MR process, the conventional DMR process, and the precooling step of the liquefaction process according to an embodiment of the present invention, respectively.
  • FIG. 9 is a flow chart illustrating a conventional C3 / MR process.
  • FIG. 10 is a flowchart conceptually illustrating a conventional DMR process.
  • FIG. 1 is a flowchart illustrating a natural gas liquefaction process according to an embodiment of the present invention.
  • the natural gas is precooled using a closed loop pre-cooling cycle, and a closed loop liquefying cycle is used. It can be applied to the natural gas liquefaction process to liquefy the pre-cooled natural gas.
  • the liquefaction process according to the present embodiment may further include a refrigeration cycle for cooling the mixed refrigerant or further cooling the natural gas.
  • the liquefaction process according to this embodiment includes a closed loop refrigeration cycle for precooling the supplied natural gas and a closed loop refrigeration cycle for liquefying (or liquefying and subcooling) the precooled natural gas. Since the refrigeration cycles according to the present embodiment are all closed loop cycles, each cycle undergoes one closed cycle while independently undergoing the steps of compression-condensation-expansion-evaporation.
  • the closed circuit refrigeration cycle that is, the closed circuit precooling cycle for precooling the supplied natural gas, includes two different precooling cycles. These two precooling cycles are of course also closed circuit refrigeration cycles.
  • the natural gas supplied as shown in FIG. 1 is precooled by the first precooling cycle and the second precooling cycle in the first heat exchange region 110 (described later).
  • the first precooling cycle is a ethane (C2) refrigerant cycle
  • the second precooling cycle is a butane (C4) refrigerant cycle). That is, the supplied natural gas is precooled by the pure refrigerant of the first precooling cycle and the pure refrigerant of the second precooling cycle in the same heat exchange region of the first heat exchange region 110.
  • the first precooling cycle and the second precooling cycle are each compressed, condensed, expanded, and evaporated.
  • the pure refrigerant first flows into the compressors 151 and 161 through the conduits 201 and 401 and is compressed. Pure refrigerant then enters and cools the coolers 152 and 162 through conduits 202 and 402.
  • This compression and cooling process can be made in multiple stages as shown in FIG. That is, a plurality of compressors and coolers can be connected in series. In this case, the cooled pure refrigerant flows back into the compressors 153 and 163 through the conduits 203 and 403, and the compressed pure refrigerant is again cooled through the conduits 204 and 404. It may be introduced into and cooled. As such, when the compressor is configured in multiple stages and the pure refrigerant is compressed in multiple stages, the required power of the compressor can be reduced.
  • the pure refrigerant compressed and cooled as described above may be further cooled through heat exchange with the refrigerant flowing into the conduits 205 and 405 and the first heat exchange region 110, and through this process, the pure refrigerant may be condensed. have. However, as described below, depending on the boiling point of the pure refrigerant, the pure refrigerant may be condensed by cooling by the cooler described above. In this case, in the condensed state, the pure refrigerant may flow into the first heat exchange region 110 to be further cooled. Cooling of the refrigerant in the first heat exchange region 110 may be performed by the refrigerant flowing back into the first heat exchange region 110 through the conduits 207 and 407.
  • the pure refrigerant cooled through the heat exchange in the first heat exchange region 110 as described above is introduced into the expansion valves 155 and 165 through the conduits 206 and 406, expanded and cooled, and then the conduits 207 and 407. Into the first heat exchange region 110 again through) can cool the natural gas and the refrigerant.
  • the first precooling cycle and the second precooling cycle are arranged in parallel to form a closed circuit cycle to precool the natural gas complementarily supplied in the first heat exchange region 110.
  • the most important feature in the liquefaction process according to the present embodiment is that two closed loop refrigeration cycles employing pure refrigerant are arranged in parallel to precool the natural gas supplied in the same heat exchange zone.
  • ethane (C2) refrigerant and butane (C4) refrigerant are used as the pure refrigerant of the first and second precooling cycles.
  • C3 / MR process a pure refrigerant composed of propane (C3) is used for precooling of natural gas, and in the aforementioned DMR process, 45.5 mole% of ethane (C2) and propane (C3) 4.9 for precooling of natural gas.
  • a mixed refrigerant consisting of mole% and butane (C4) 49.6 mole% is used.
  • the liquefaction process according to the present embodiment is arranged in parallel as described above to take advantage of the advantages of the two basic structures as described above, that is, the use of pure refrigerant and the use of mixed refrigerant for precooling. Two pure refrigerant cycles are used. In addition, the efficiency of the overall liquefaction process can be optimized by constituting two pure refrigerant cycles with an ethane cycle and a butane cycle.
  • the mixed refrigerant in the pre-cooling step of the above-described DMR process is composed of ethane, propane and butane components, but contains very little propane components. In the liquefaction process according to the present embodiment, the precooling effect due to the above propane components is used. It can be said that it is replacing by the effect of the cycle.
  • Natural gas precooled through the two pure refrigerant cycles as described above is liquefied (or liquefied and supercooled) through the mixed refrigerant cycle.
  • the mixed refrigerant partially condensed through the heat exchange in the first heat exchange region 110 is introduced into the gas-liquid separator 171 through the conduit 301, and according to the difference in boiling point, The second coolant part is separated into a lower boiling point than the coolant part. That is, the partially condensed mixed refrigerant may be divided into a first refrigerant portion separated into the liquid refrigerant portion due to the high boiling point through the gas-liquid separator 171 and a second refrigerant portion separated into the gaseous refrigerant portion due to the low boiling point. have.
  • the first refrigerant portion thus separated is introduced into the second heat exchange region 120 through the conduit 302 and cooled. Cooling of this refrigerant portion may be through heat exchange with the refrigerant entering the second heat exchange region 120 through the conduit 304.
  • the cooled refrigerant portion enters and expands into expansion valve 172 through conduit 303.
  • the expanded refrigerant portion may be mixed with the second refrigerant portion, which will be described later, and then introduced back into the second heat exchange region 120 through conduit 304 to cool other refrigerants and liquefy natural gas. Then, the mixed refrigerant may be cooled through a ethane cycle and a butane cycle together with the natural gas supplied to the first heat exchange region 110 after being subjected to a series of compression and cooling processes.
  • the separated second refrigerant portion then enters the second heat exchange zone 120 through the conduit 306 and is cooled. Cooling of this refrigerant portion may be through heat exchange with the refrigerant entering the second heat exchange region 120 through the conduit 304. The cooled refrigerant portion enters and condenses the third heat exchange region 130 through conduit 307. Condensation of this refrigerant portion may be accomplished through heat exchange with the refrigerant entering the third heat exchange region 130 through the conduit 309. The condensed refrigerant portion enters and expands into expansion valve 173 through conduit 308.
  • the expanded refrigerant portion enters the third heat exchange region 130 again through the conduit 309 to condense the refrigerant introduced into the third heat exchange region 130 through heat exchange and liquefy or supercool the natural gas.
  • the liquefied natural gas may be expanded by the expansion valve 181 and then introduced into the storage tank.
  • the refrigerant part which has completed the heat exchange in the third heat exchange area 130 may be mixed with the aforementioned first refrigerant part and flowed back into the second heat exchange area 120.
  • the three heat exchange regions 110, 120, and 130 described above may be provided together in one heat exchange means as shown in FIG. 1, or may be provided in three heat exchange means, respectively.
  • the heat exchange means may also be a conventional heat exchanger.
  • 2 and 3 show the temperature distribution in the precooling region of the above-described C3-MR process and DMR process, respectively.
  • Propane (C3) in the C3-MR process is a pure refrigerant and passes through several stages of pressure steps, so that the temperature distribution appears in a stepped manner as shown in FIG.
  • the temperature distribution in the precooling zone of the DMR process changes gradually, with a minimum difference (3K) in the middle of the heat exchange zone.
  • 4 and 5 show the temperature distribution in the precooling region of the liquefaction process according to the present embodiment and the temperature-entropy diagrams of the ethane and butane cycles in the liquefaction process according to the present embodiment, respectively.
  • the cold stream temperature is ethane refrigerant and butane.
  • the butane refrigerant after pre-cooling the natural gas is condensed during the multi-stage compression and cooling process through the compressor and the cooler, and then flows back into the heat exchange area into the liquid phase (see reference numeral 5 of FIGS. 4 and 5).
  • the temperature of the hot stream has only one horizontal region (see 6-7 in FIG. 4) in response to the condensation of the ethane refrigerant.
  • Exergy efficiency defined as the ratio of increase of exergy to power input, is 34.3%, 30.5%, and 31.5% in each liquefaction process, as shown in FIGS. appear.
  • C3 / MR process a plurality of pressure stages are required and a large number of equipments are required.
  • each pre-cooling cycle pre-cools the natural gas with only one pressure step
  • the pre-cooling cycle can be configured with a relatively small number of facilities, and each pre-cooling cycle uses pure refrigerant. Since the structure itself is simple and the operation of the liquefaction system is easy, the liquefaction process is very excellent because the ethane refrigerant cycle and the butane refrigerant cycle are arranged in parallel to precool the natural gas in the same heat exchange area.
  • the liquefaction process according to the present embodiment has both the advantages of the structure of pre-cooling natural gas by using pure refrigerant and the structure of pre-cooling natural gas by employing mixed refrigerant, and have very high efficiency (liquefaction known to date).
  • the efficiency of the liquefaction process according to this embodiment is very good considering that the C3 / MR process is one of the very high efficiency processes.
  • the irreversibility in the precooling step of each liquefaction process is represented by dividing into four groups of valve (V), aftercooler (AC), compressor (C), heat exchanger (HX), as shown in Figs. Can be.
  • V valve
  • AC aftercooler
  • C compressor
  • HX heat exchanger
  • the C3 / MR process is relatively irreversible by the valve compared to the liquefaction process according to this embodiment.
  • the DMR process is relatively irreversible by the cooler compared to the liquefaction process according to the present embodiment.
  • the liquefaction process according to the present embodiment has a lower irreversibility by the valve and the cooler than the two liquefaction processes described above, while the irreversibility by the heat exchanger is high.
  • the pre-cooling cycle pre-cools the natural gas in only one pressure step
  • the pre-cooling cycle can be constituted by a relatively small number of facilities, and the structure of each pre-cooling cycle uses pure refrigerant. It is a natural gas liquefaction process that has a very high efficiency of the liquefaction process because it is simple and easy to operate the liquefaction system, and two precooling cycles are arranged in parallel to precool the natural gas in the same heat exchange area. There is a possibility.

Abstract

The present invention relates to a natural gas liquefaction process, which involves pre-cooling natural gas using a closed-loop pre-cooling cycle, and liquefying the pre-cooled natural gas using a closed-loop liquefying cycle. The closed-loop pre-cooling cycle includes first and second pre-cooling cycles, which cooperate with one another to pre-cool the supplied natural gas in the same first heat exchange region using pure refrigerants with which said pre-cooling cycles are respectively provided. The closed-loop liquefying cycle includes at least one liquefying cycle for liquefying the pre-cooled natural gas using a mixed refrigerant. The first and second pre-cooling cycles are closed-loop refrigerating cycles.

Description

천연가스 액화공정Natural Gas Liquefaction Process
본 발명은 천연가스 액화공정에 관한 것으로서, 보다 자세하게는 순수 냉매 사이클과 혼합 냉매 사이클의 장점을 모두 살릴 수 있도록 예냉 사이클을 구성하여 액화공정의 효율이 우수하면서도 액화시스템의 설비가 적고 구조가 단순하며 운전이 용이한 천연가스 액화공정에 관한 것이다.The present invention relates to a natural gas liquefaction process, and more particularly, to configure the pre-cooling cycle to take advantage of both the pure refrigerant cycle and the mixed refrigerant cycle, the efficiency of the liquefaction process, while the equipment of the liquefaction system is small and the structure is simple The present invention relates to a natural gas liquefaction process that is easy to operate.
천연가스를 액화시켜 액화천연가스(LNG)를 생산하는 열역학적 프로세스는 보다 높은 효율, 보다 큰 용량, 그리고 보다 간단한 설비 등에 대한 요구를 만족시키기 위해 1970년대부터 개발되어 왔다. 이러한 요구들을 만족시키기 위해 서로 다른 냉매를 사용하거나, 또는 서로 다른 사이클을 사용하여 천연가스를 액화시키는 다양한 시도들이 현재까지 지속적으로 이루어지고 있으나 현재 실용적으로 사용되고 있는 액화공정의 수는 매우 적다. Thermodynamic processes for liquefying natural gas to produce liquefied natural gas (LNG) have been developed since the 1970s to meet the demand for higher efficiency, greater capacity, and simpler equipment. Various attempts have been made to liquefy natural gas by using different refrigerants or using different cycles to satisfy these requirements, but the number of liquefaction processes that are practically used is very small.
작동 중에 있으면서도 가장 널리 보급된 액화공정 중의 하나는 'Propane Pre-cooled Mixed Refrigerant Process(또는 C3/MR Process)'이다. C3/MR 공정의 기본적인 구조는 도 9에서 도시하고 있는 것과 같다. 참고로, 도 9 등에서 'C3'는 프로판 냉매 사이클을 나타내고, 'MR'은 혼합 냉매 사이클을 나타낸다. 그리고 도 9 등에서 'C'는 압축기(compressor)를, 'AC'는 후냉각기(after-cooler)를, 'V'는 밸브(valve)를, 'HX'는 열교환기(heat exchanger)를 나타낸다. One of the most popular liquefaction processes in operation is the 'Propane Pre-cooled Mixed Refrigerant Process' (or C3 / MR Process). The basic structure of the C3 / MR process is as shown in FIG. For reference, in FIG. 9, 'C3' represents a propane refrigerant cycle, and 'MR' represents a mixed refrigerant cycle. In FIG. 9, 'C' represents a compressor, 'AC' represents an after-cooler, 'V' represents a valve, and 'HX' represents a heat exchanger.
도 9에서 도시하고 있는 것과 같이 공급가스는 다단(multi-stage)의 프로판(C3) 냉매 사이클에 의해 대략 240 K까지 예냉(pre-cooled)된다. 예냉된 공급가스는 혼합 냉매 사이클에 의해, 즉 열교환기에서 혼합 냉매(mixed refrigerant, MR)와의 열교환을 통해 대략 113 K까지 응축(condensed)되고 과냉(sub-cooled)된다. 이러한 C3/MR 공정에서도 순수 냉매 사이클과 혼합 냉매 사이클의 일반적인 특성이 그대로 나타난다. 즉, 순수 냉매 사이클은 그 구조가 단순하고 작동이 용이하지만 많은 수의 냉각 단(refrigeration stage)이 요구되고, 혼합 냉매 사이클은 구조가 복잡하고 작동이 어렵지만 적은 수의 구성요소들만으로 높은 효율을 얻을 수 있으며, 이러한 각 사이클의 특징은 C3/MR 공정에서도 그대로 나타난다. As shown in FIG. 9, the feed gas is pre-cooled to approximately 240 K by a multi-stage propane (C3) refrigerant cycle. The precooled feed gas is condensed and sub-cooled to approximately 113 K by a mixed refrigerant cycle, ie through heat exchange with the mixed refrigerant (MR) in a heat exchanger. Even in such a C3 / MR process, the general characteristics of the pure refrigerant cycle and the mixed refrigerant cycle are maintained. That is, pure refrigerant cycles are simple in structure and easy to operate, but require a large number of refrigeration stages. Mixed refrigerant cycles are complex and difficult to operate, but can achieve high efficiency with only a few components. Each cycle features the same characteristics in the C3 / MR process.
이에 대해 상술하면, 예냉된 공급가스를 액화(그리고 과냉)시키는 C3/MR 공정의 혼합 냉매 사이클은 통상 질소(nitrogen), 메탄(methane), 에탄(ethane), 및 프로판(propane)으로 구성되는 혼합 냉매를 사용한다. 이러한 성분들의 조성을 적절하게 선택하고, 각 성분들의 비등점의 차이에 따라 혼합 냉매를 적절하게 기체 상태의 냉매 부분과 액체 상태의 냉매 부분을 분리한 다음, 각 냉매 부분을 통해 천연가스를 액화함으로써, C3/MR 공정의 혼합 냉매 사이클에서는 적은 수의 설비만으로도 높은 효율을 나타낼 수 있다. 이에 반해 공급가스를 예냉시키는 C3/MR 공정의 순수 냉매 사이클은 프로판 냉매라는 순수 냉매를 사용하기 때문에 그 구조가 단순하고 작동이 용이하지만 통상 3개 또는 4개의 압력 단계가 필요하여 많은 수의 압축기 등이 요구된다. 결국, C3/MR 공정의 경우에는 예냉 사이클에서는 단순성(설비의 수는 많지만 그 구조 자체는 단순함)에, 액화 사이클에서는 효율성(설비의 수는 적지만 그 구조 자체는 복잡하고 효율이 우수함)에 초점을 두고 있다고 볼 수 있다. In detail, the mixed refrigerant cycle of the C3 / MR process for liquefying (and subcooling) the pre-cooled feed gas is usually a mixture consisting of nitrogen, methane, ethane, and propane. Use refrigerant. By appropriately selecting the composition of these components, and depending on the difference in boiling points of the components, the mixed refrigerant is suitably separated from the gaseous refrigerant portion and the liquid refrigerant portion, and then liquefied natural gas through each refrigerant portion. In the mixed refrigerant cycle of the / MR process, only a small number of facilities can show high efficiency. On the other hand, the pure refrigerant cycle of the C3 / MR process for precooling the feed gas uses a pure refrigerant called propane refrigerant, which is simple in structure and easy to operate, but usually requires three or four pressure stages. Is required. After all, in the case of C3 / MR processes, the focus is on simplicity in the precooling cycle (large number of installations, but the structure itself is simple), and efficiency in liquefaction cycles (the number of installations, but the structure itself is complex and efficient). It can be seen that.
작동 중에 있는 다른 성공적인 액화공정 중의 하나는 'Dual Mixed Refrigerant process(또는 DMR process)'이다. DMR 공정의 기본적인 구조는 도 10에서 도시하고 있는 것과 같다. 도 10에서 도시하고 있는 것과 같이 DMR 공정의 액화(과냉) 사이클은 기본적으로 C3/MR 공정의 액화(과냉) 사이클, 즉 혼합 냉매 사이클과 동일하다. 다만 DMR 공정에서는 C3/MR 공정에서와는 다르게 공급가스를 예냉시키기 위해 다른 혼합 냉매 사이클을 사용한다. DMR 공정에서의 예냉 사이클은 DMR 공정에서의 액화 사이클과는 다르게 통상 기액 분리기가 존재하지 않는다. 결국, DMR 공정의 경우에는 예냉 사이클과 액화 사이클 모두에서 효율성에 초점을 두고 있다고 볼 수 있다. 그러나 실제 DMR 공정의 효율은 실질적으로 C3/MR 공정의 효율보다 조금 낮은 것으로 알려져 있다. One other successful liquefaction process in operation is the 'Dual Mixed Refrigerant process' (or DMR process). The basic structure of the DMR process is as shown in FIG. As illustrated in FIG. 10, the liquefaction (supercooling) cycle of the DMR process is basically the same as the liquefaction (supercooling) cycle of the C3 / MR process, that is, the mixed refrigerant cycle. However, in the DMR process, unlike the C3 / MR process, another mixed refrigerant cycle is used to precool the feed gas. The precooling cycle in the DMR process, unlike the liquefaction cycle in the DMR process, usually does not have a gas-liquid separator. In the end, the DMR process focuses on efficiency in both precooling and liquefaction cycles. However, it is known that the efficiency of the actual DMR process is substantially lower than that of the C3 / MR process.
전술한 바와 같이 혼합 냉매 사이클은 순수 냉매 사이클보다 그 효율이 우수한 것으로 알려져 있다. 그러나 그 구조 자체는 혼합 냉매 사이클이 순수 냉매 사이클보다 복잡하다. 또한 예냉된 천연가스를 액화(과냉)시키는 냉동 사이클에 혼합 냉매 사이클을 적용하여 액화공정 전체의 효율을 높이는 방안들은 많이 제시되고 있으나, 공급된 천연가스를 예냉시키는 냉동 사이클에 대한 연구는 미미한 실정이며, 이에 따라 그 구조가 단순하면서도 효율이 우수한 예냉 사이클에 대한 연구가 많이 필요한 실정이다.As described above, the mixed refrigerant cycle is known to be more efficient than the pure refrigerant cycle. However, the structure itself is that the mixed refrigerant cycle is more complicated than the pure refrigerant cycle. In addition, many proposals have been made to improve the efficiency of the entire liquefaction process by applying mixed refrigerant cycles to refrigeration cycles for liquefying (supercooling) the pre-cooled natural gas. Therefore, there is a great need for research on pre-cooling cycles having a simple structure and excellent efficiency.
따라서 본 발명은 위와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 과제는 순수 냉매 사이클과 혼합 냉매 사이클의 장점을 모두 살릴 수 있도록 예냉 사이클을 구성하여 액화공정의 효율이 우수하면서도 액화시스템의 설비가 적고 구조가 단순하며 운전이 용이한 천연가스 액화공정을 제공하는 것이다. Therefore, the present invention has been made to solve the above problems, the object of the present invention is to configure the pre-cooling cycle to take advantage of both the pure refrigerant cycle and the mixed refrigerant cycle, the efficiency of the liquefaction process, while the equipment of the liquefaction system It provides a natural gas liquefaction process that is low in cost, simple in structure, and easy to operate.
상술한 본 발명의 과제들을 달성하기 위한 본 발명의 바람직한 실시예에 따르면, 밀폐회로 예냉 사이클(closed loop pre-cooling cycle)을 이용하여 천연가스를 예냉시키고 밀폐회로 액화 사이클(closed loop liquefying cycle)을 이용하여 예냉된 천연가스를 액화시키는 천연가스 액화공정에 있어서, 밀폐회로 예냉 사이클은 각각의 순수 냉매를 통해 동일한 제1 열교환 영역 내에서 공급된 천연가스를 함께 예냉시키는 제1 및 제2 예냉 사이클을 포함하고, 밀폐회로 액화 사이클은 혼합 냉매를 통해 예냉된 천연가스를 액화시키는 적어도 하나의 액화 사이클을 포함하며, 제1 및 제2 예냉 사이클은 밀폐회로 냉동 사이클인 것을 특징으로 한다. According to a preferred embodiment of the present invention for achieving the above object of the present invention, by using a closed loop pre-cooling cycle to pre-cool the natural gas and a closed loop liquefying cycle In a natural gas liquefaction process for liquefying precooled natural gas using a closed circuit precooling cycle, the first and second precooling cycles for precooling the natural gas supplied together in the same first heat exchange region through respective pure refrigerants are performed. The closed circuit liquefaction cycle includes at least one liquefaction cycle for liquefying natural gas precooled through the mixed refrigerant, and the first and second precooling cycles are closed circuit refrigeration cycles.
여기서 상기 제1 예냉 사이클의 순수 냉매는 에탄(C2) 냉매이고, 상기 제2 예냉 사이클의 순수 냉매는 부탄(C4) 냉매일 수 있다. 그리고 상기 제1 및 제2 예냉 사이클은, 순수 냉매를 압축하는 단계, 압축된 냉매를 냉각하는 단계, 냉각된 냉매를 상기 제1 열교환 영역 내에서 추가적으로 냉각하는 단계, 및 추가적으로 냉각된 냉매를 팽창하는 단계를 포함할 수 있다. Here, the pure refrigerant of the first precooling cycle may be ethane (C2) refrigerant, and the pure refrigerant of the second precooling cycle may be butane (C4) refrigerant. The first and second precooling cycles may include compressing the pure refrigerant, cooling the compressed refrigerant, additionally cooling the cooled refrigerant in the first heat exchange area, and expanding the additionally cooled refrigerant. It may include a step.
또한 상기 밀폐회로 액화 사이클은, 혼합 냉매를 압축하는 단계, 압축된 냉매를 냉각하는 단계, 냉각된 냉매를 상기 제1 열교환 영역 내에서 추가적으로 냉각하여 부분적으로 응축하는 단계, 부분적으로 응축된 냉매를 비등점의 차이에 따라 액상 냉매 부분과 기상 냉매 부분으로 분리하는 단계, 상기 액상 냉매 부분을 이용하여 제2 열교환 영역 내에서 예냉된 천연가스를 일차적으로 냉각하는 단계, 및 상기 기상 냉매 부분을 이용하여 제3 열교환 영역 내에서 일차적으로 냉각된 천연가스를 이차적으로 냉각하는 단계를 포함할 수 있다. The closed circuit liquefaction cycle may include: compressing the mixed refrigerant, cooling the compressed refrigerant, additionally cooling the cooled refrigerant in the first heat exchange area to partially condense, and boiling the partially condensed refrigerant. Separating the liquid refrigerant portion and the gaseous refrigerant portion according to the difference of, cooling the natural gas pre-cooled in the second heat exchange region by using the liquid refrigerant portion, and using the gaseous refrigerant portion by a third And secondarily cooling the naturally cooled natural gas in the heat exchange zone.
여기서 상기 일차적으로 냉각하는 단계는, 상기 액상 냉매 부분을 상기 제2 열교환 영역 내에서의 열교환을 통해 냉각하는 제1 단계, 상기 제1 단계를 통해 냉각된 냉매 부분을 팽창하는 제2 단계, 및 상기 제2 단계를 통해 팽창된 냉매 부분과 상기 천연가스를 상기 제2 열교환 영역 내에서 열교환시켜 상기 천연가스를 냉각하는 제3 단계를 포함할 수 있다. 그리고 상기 이차적으로 냉각하는 단계는, 상기 기상 냉매 부분을 상기 제2 열교환 영역 내에서의 열교환을 통해 냉각하는 냉각 단계, 상기 냉각 단계를 통해 냉각된 냉매 부분을 상기 제3 열교환 영역 내에서의 열교환을 통해 응축하는 응축 단계, 상기 응축 단계를 통해 응축된 냉매 부분을 팽창하는 팽창 단계, 및 상기 팽창 단계를 통해 팽창된 냉매 부분과 상기 천연가스를 상기 제3 열교환 영역 내에서 열교환시켜 상기 천연가스를 냉각하는 단계를 포함할 수 있다. Wherein the primary cooling may include: a first step of cooling the liquid refrigerant part through heat exchange in the second heat exchange region, a second step of expanding the cooled refrigerant part through the first step, and the And a third step of cooling the natural gas by exchanging the refrigerant portion expanded through the second step with the natural gas in the second heat exchange region. The secondary cooling may include a cooling step of cooling the gaseous refrigerant part through heat exchange in the second heat exchange area, and a heat exchange of the refrigerant part cooled through the cooling step in the third heat exchange area. A condensation step of condensing through, an expansion step of expanding the refrigerant part condensed through the condensation step, and cooling the natural gas by heat-exchanging the expanded refrigerant part and the natural gas in the third heat exchange region through the expansion step. It may include the step.
본 발명에 따른 천연가스 액화공정은 예냉 사이클이 오직 한 개의 압력 단계만으로 천연가스를 예냉시키기 때문에 상대적으로 적은 수의 설비만으로도 예냉 사이클을 구성할 수 있다는 효과가 있다.Natural gas liquefaction process according to the present invention has the effect that the pre-cooling cycle can be configured with a relatively small number of facilities because the pre-cooling cycle pre-cools the natural gas in only one pressure step.
또한 본 발명에 따른 천연가스 액화공정은 각각의 예냉 사이클이 순수 냉매를 사용하고 있기 때문에 그 구조 자체가 단순하고 액화시스템의 운전이 용이하다는 효과가 있다.In addition, the natural gas liquefaction process according to the present invention has the effect that the structure itself is simple and easy operation of the liquefaction system because each pre-cooling cycle uses a pure refrigerant.
더욱이 본 발명에 따른 천연가스 액화공정은 2개의 예냉 사이클이 병렬로 배치되어 동일한 열교환 영역 내에서 천연가스를 예냉하기 때문에 액화공정의 효율이 매우 우수하다는 효과가 있다.Furthermore, the natural gas liquefaction process according to the present invention has the effect that the efficiency of the liquefaction process is very excellent because two pre-cooling cycles are arranged in parallel to pre-cool the natural gas in the same heat exchange zone.
도 1은 본 발명의 일 실시예에 따른 천연가스 액화공정을 도시하고 있는 흐름도1 is a flowchart illustrating a natural gas liquefaction process according to an embodiment of the present invention.
도 2는 종래의 C3-MR 공정의 예냉 영역에서의 온도 프로파일을 도시하고 있는 그래프2 is a graph showing the temperature profile in the precooling region of a conventional C3-MR process.
도 3은 종래의 DMR 공정의 예냉 영역에서의 온도 프로파일을 도시하고 있는 그래프3 is a graph showing the temperature profile in the precooling region of a conventional DMR process
도 4는 본 발명의 일 실시예에 따른 액화공정의 예냉 영역에서의 온도 프로파일을 도시하고 있는 그래프4 is a graph illustrating a temperature profile in a precooling region of a liquefaction process according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 액화공정에서의 에탄과 프로판 사이클의 온도-엔트로피 선도5 is a temperature-entropy diagram of ethane and propane cycles in a liquefaction process in accordance with one embodiment of the present invention.
도 6 내지 도 8은 종래의 CR/MR 공정, 종래의 DMR 공정, 및 본 발명의 일 실시예에 따른 액화공정의 예냉 단계에서의 엑서지 이용과 비가역성을 각각 나타내고 있는 그래프6 to 8 are graphs showing exergy use and irreversibility of the conventional CR / MR process, the conventional DMR process, and the precooling step of the liquefaction process according to an embodiment of the present invention, respectively.
도 9는 종래의 C3/MR 공정을 도시하고 있는 흐름도9 is a flow chart illustrating a conventional C3 / MR process.
도 10은 종래의 DMR 공정을 개념적으로 도시하고 있는 흐름도10 is a flowchart conceptually illustrating a conventional DMR process.
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다. 참고로, 본 설명에서 동일한 번호는 실질적으로 동일한 요소를 지칭하며, 이러한 규칙하에서 다른 도면에 기재된 내용을 인용하여 설명할 수 있다. 그리고 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다고 판단되거나 반복되는 내용은 생략될 수 있다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited or limited by the embodiments. For reference, in the present description, the same numbers refer to substantially the same elements, and may be described by quoting contents described in other drawings under these rules. And it can be omitted that it is determined or repeated to those skilled in the art to which the present invention pertains.
도 1은 본 발명의 일 실시예에 따른 천연가스 액화공정을 도시하고 있는 흐름도이다. 본 실시예에 따른 액화공정은 도 1에서 도시하고 있는 것과 같이 밀폐회로 예냉 사이클(closed loop pre-cooling cycle)을 이용하여 천연가스를 예냉시키고, 밀폐회로 액화 사이클(closed loop liquefying cycle)을 이용하여 예냉된 천연가스를 액화시키는 천연가스 액화공정에 적용될 수 있다. 그리고 본 실시예에 따른 액화공정은 추가적으로 혼합 냉매를 냉각하거나 또는 천연가스를 더 냉각하는 냉동 사이클을 더 포함할 수도 있다. 1 is a flowchart illustrating a natural gas liquefaction process according to an embodiment of the present invention. In the liquefaction process according to the present embodiment, as shown in FIG. 1, the natural gas is precooled using a closed loop pre-cooling cycle, and a closed loop liquefying cycle is used. It can be applied to the natural gas liquefaction process to liquefy the pre-cooled natural gas. In addition, the liquefaction process according to the present embodiment may further include a refrigeration cycle for cooling the mixed refrigerant or further cooling the natural gas.
이하에서는 본 발명의 일 실시예에 따른 액화공정을 도 1을 참조하여 설명하도록 한다. 기본적으로 본 실시예에 따른 액화공정은 공급된 천연가스를 예냉시키는 폐 루프 냉동 사이클과 예냉된 천연가스를 액화시키는(또는 액화시키고 과냉시키는) 폐 루프 냉동 사이클을 포함한다. 본 실시예에 따른 냉동 사이클들은 모두 폐 루프 사이클이기 때문에 각각의 사이클들은 모두 독립적으로 압축-응축-팽창-증발의 단계를 거치면서 하나의 밀폐 사이클을 진행한다. 그리고 공급된 천연가스를 예냉시키는 밀폐회로 냉동 사이클, 즉 밀폐회로 예냉 사이클은 서로 다른 2개의 예냉 사이클을 포함한다. 이들 2개의 예냉 사이클도 물론 밀폐회로 냉동 사이클이다. Hereinafter, a liquefaction process according to an embodiment of the present invention will be described with reference to FIG. 1. Basically, the liquefaction process according to this embodiment includes a closed loop refrigeration cycle for precooling the supplied natural gas and a closed loop refrigeration cycle for liquefying (or liquefying and subcooling) the precooled natural gas. Since the refrigeration cycles according to the present embodiment are all closed loop cycles, each cycle undergoes one closed cycle while independently undergoing the steps of compression-condensation-expansion-evaporation. The closed circuit refrigeration cycle, that is, the closed circuit precooling cycle for precooling the supplied natural gas, includes two different precooling cycles. These two precooling cycles are of course also closed circuit refrigeration cycles.
본 실시예에 따른 액화공정을 보다 자세히 설명하면, 도 1에서 도시하고 있는 것과 같이 공급된 천연가스는 제1 열교환 영역(110) 내에서 제1 예냉 사이클과 제2 예냉 사이클에 의해 예냉된다(후술할 바와 같이 본 실시예에 따른 액화공정에 있어 제1 예냉 사이클은 에탄(C2) 냉매 사이클이고, 제2 예냉 사이클은 부탄(C4) 냉매 사이클이다). 즉, 공급된 천연가스는 제1 열교환 영역(110)이라는 동일한 열교환 영역 내에서 제1 예냉 사이클의 순수 냉매와 제2 예냉 사이클의 순수 냉매에 의해 예냉된다. 이를 위해 제1 예냉 사이클과 제2 예냉 사이클은 각각 냉매의 압축, 응축, 팽창, 및 증발의 단계를 거친다. Referring to the liquefaction process according to the present embodiment in more detail, the natural gas supplied as shown in FIG. 1 is precooled by the first precooling cycle and the second precooling cycle in the first heat exchange region 110 (described later). As described above, in the liquefaction process according to the present embodiment, the first precooling cycle is a ethane (C2) refrigerant cycle, and the second precooling cycle is a butane (C4) refrigerant cycle). That is, the supplied natural gas is precooled by the pure refrigerant of the first precooling cycle and the pure refrigerant of the second precooling cycle in the same heat exchange region of the first heat exchange region 110. To this end, the first precooling cycle and the second precooling cycle are each compressed, condensed, expanded, and evaporated.
위와 같은 제1 및 제2 예냉 사이클에서는 우선 순수 냉매가 도관(201, 401)을 통해 압축기(151, 161)로 유입되어 압축된다. 그런 다음 순수 냉매는 도관(202, 402)을 통해 냉각기(152, 162)로 유입되어 냉각된다. 이러한 압축과 냉각의 과정은 도 1에서 도시하고 있는 것과 같이 다단으로 이루어질 수 있다. 즉, 복수 개의 압축기와 냉각기를 직렬로 연결할 수 있다. 이러한 경우에는 냉각된 순수 냉매가 다시 도관(203, 403)을 통해 압축기(153, 163)로 유입되어 압축되고, 이렇게 압축된 순수 냉매가 다시 도관(204, 404)을 통해 냉각기(154, 164)로 유입되어 냉각될 수 있다. 이와 같이 압축기를 다단으로 구성하여 순수 냉매를 다단으로 압축하면 압축기의 소요동력을 감소시킬 수 있다. In the above first and second precooling cycles, the pure refrigerant first flows into the compressors 151 and 161 through the conduits 201 and 401 and is compressed. Pure refrigerant then enters and cools the coolers 152 and 162 through conduits 202 and 402. This compression and cooling process can be made in multiple stages as shown in FIG. That is, a plurality of compressors and coolers can be connected in series. In this case, the cooled pure refrigerant flows back into the compressors 153 and 163 through the conduits 203 and 403, and the compressed pure refrigerant is again cooled through the conduits 204 and 404. It may be introduced into and cooled. As such, when the compressor is configured in multiple stages and the pure refrigerant is compressed in multiple stages, the required power of the compressor can be reduced.
그리고 이와 같이 압축되고 냉각된 순수 냉매는 도관(205, 405) 제1 열교환 영역(110)으로 유입되어 환류되는 냉매와의 열교환을 통해 더 냉각될 수 있으며, 이러한 과정을 통해 순수 냉매는 응축될 수 있다. 다만 후술할 바와 같이 순수 냉매의 비등점에 따라서는 전술한 냉각기에 의한 냉각에 의해 순수 냉매가 응축될 수도 있다. 이러한 경우에는 응축된 상태에서 순수 냉매가 제1 열교환 영역(110)으로 유입되어 더 냉각될 수 있다. 이러한 제1 열교환 영역(110)에서의 냉매의 냉각은 도관(207, 407)을 통해 제1 열교환 영역(110)으로 다시 유입되는 냉매에 의해 이루어질 수 있다. 즉, 위와 같은 제1 열교환 영역(110)에서의 열교환을 통해 냉각된 순수 냉매는 도관(206, 406)을 통해 팽창 밸브(155, 165)로 유입되어 팽창되며 냉각된 다음, 도관(207, 407)을 통해 다시 제1 열교환 영역(110)으로 유입되어 천연가스와 냉매를 냉각시킬 수 있다. The pure refrigerant compressed and cooled as described above may be further cooled through heat exchange with the refrigerant flowing into the conduits 205 and 405 and the first heat exchange region 110, and through this process, the pure refrigerant may be condensed. have. However, as described below, depending on the boiling point of the pure refrigerant, the pure refrigerant may be condensed by cooling by the cooler described above. In this case, in the condensed state, the pure refrigerant may flow into the first heat exchange region 110 to be further cooled. Cooling of the refrigerant in the first heat exchange region 110 may be performed by the refrigerant flowing back into the first heat exchange region 110 through the conduits 207 and 407. That is, the pure refrigerant cooled through the heat exchange in the first heat exchange region 110 as described above is introduced into the expansion valves 155 and 165 through the conduits 206 and 406, expanded and cooled, and then the conduits 207 and 407. Into the first heat exchange region 110 again through) can cool the natural gas and the refrigerant.
위와 같은 과정들은 제1 예냉 사이클과 제2 예냉 사이클에서 동일하게 일어난다. 즉, 도 1에서 도시하고 있는 것과 같이 제1 예냉 사이클과 제2 예냉 사이클은 밀폐회로 사이클을 이루면서 평행하게 배치되어 제1 열교환 영역(110) 내에서 상보적으로 공급된 천연가스를 예냉시킨다. 후술할 바와 같이 본 실시예에 따른 액화공정에 있어 가장 중요한 특징은 이와 같이 순수 냉매를 채용한 두 개의 폐 루프 냉동 사이클을 평행하게 배치하여 동일한 열교환 영역 내에서 공급된 천연가스를 예냉시킨다는 점이다. The above processes are the same in the first precooling cycle and the second precooling cycle. That is, as shown in FIG. 1, the first precooling cycle and the second precooling cycle are arranged in parallel to form a closed circuit cycle to precool the natural gas complementarily supplied in the first heat exchange region 110. As will be described later, the most important feature in the liquefaction process according to the present embodiment is that two closed loop refrigeration cycles employing pure refrigerant are arranged in parallel to precool the natural gas supplied in the same heat exchange zone.
이러한 제1 및 제2 예냉 사이클의 순수 냉매로서 본 실시예에서는 에탄(C2) 냉매와 부탄(C4) 냉매를 사용한다. 전술한 C3/MR 공정에서는 천연가스의 예냉을 위해 프로판(C3)으로 구성되는 순수 냉매를 사용하고, 전술한 DMR 공정에서는 천연가스의 예냉을 위해 에탄(C2) 45.5 mole %, 프로판(C3) 4.9 mole %, 부탄(C4) 49.6 mole %로 구성되는 혼합 냉매를 사용한다. 즉, 전술한 C3/MR 공정에서는 하나의 순수 냉매를 사용하기 때문에 복수 개의 압력 레벨이 요구되어 많은 수의 설비가 요구되나 그 구조 자체는 단순하고 예냉 사이클의 운전이 용이한데 반해, 전술한 DMR 공정에서는 혼합 냉매를 사용하기 때문에 적은 수의 설비가 요구되나 그 구조 자체는 복잡하고 다는 예냉 사이클의 운전도 어렵다는 차이가 있다. In this embodiment, ethane (C2) refrigerant and butane (C4) refrigerant are used as the pure refrigerant of the first and second precooling cycles. In the above-described C3 / MR process, a pure refrigerant composed of propane (C3) is used for precooling of natural gas, and in the aforementioned DMR process, 45.5 mole% of ethane (C2) and propane (C3) 4.9 for precooling of natural gas. A mixed refrigerant consisting of mole% and butane (C4) 49.6 mole% is used. That is, in the above-described C3 / MR process, since a single pure refrigerant is used, a plurality of pressure levels are required and a large number of facilities are required. However, the structure itself is simple and the operation of the precooling cycle is easy. In the case of using a mixed refrigerant, a small number of facilities are required, but the structure itself is complicated, and there is a difference that it is difficult to operate a precooling cycle.
본 실시예에 따른 액화공정에서는 위와 같은 두 가지 기본 구조가 가지는 장점, 즉 예냉을 위해 순수 냉매를 사용하는 경우와 혼합 냉매를 사용하는 경우의 장점을 모두 살릴 수 있도록 전술한 바와 같이 평행하게 배치된 두 개의 순수 냉매 사이클을 사용한다. 그리고 두 개의 순수 냉매 사이클을 에탄 사이클과 부탄 사이클로 구성함으로써 전체적의 액화공정의 효율도 최적화시킬 수 있다. 전술한 DMR 공정의 예냉 단계에서의 혼합 냉매는 에탄, 프로판, 부탄 성분으로 구성되되 프로판 성분이 매우 적게 포함되어 있으며, 위 프로판 성분으로 인한 예냉 효과를 본 실시예에 따른 액화공정에서는 에탄 사이클과 부탄 사이클의 부합 효과에 의해 대체하고 있다고 볼 수도 있다. The liquefaction process according to the present embodiment is arranged in parallel as described above to take advantage of the advantages of the two basic structures as described above, that is, the use of pure refrigerant and the use of mixed refrigerant for precooling. Two pure refrigerant cycles are used. In addition, the efficiency of the overall liquefaction process can be optimized by constituting two pure refrigerant cycles with an ethane cycle and a butane cycle. The mixed refrigerant in the pre-cooling step of the above-described DMR process is composed of ethane, propane and butane components, but contains very little propane components. In the liquefaction process according to the present embodiment, the precooling effect due to the above propane components is used. It can be said that it is replacing by the effect of the cycle.
위와 같이 두 개의 순수 냉매 사이클을 통해 예냉된 천연가스는 혼합 냉매 사이클을 통해 액화된다(또는 액화되고 과냉된다). 이에 대해 상술하면 제1 열교환 영역(110)에서의 열교환을 통해 부분적으로 응축된 혼합 냉매는 도관(301)을 통해 기액 분리기(171)로 유입되어 비등점의 차이에 따라 제1 냉매 부분과, 제1 냉매 부분보다 비등점이 낮은 제2 냉매 부분으로 분리된다. 즉, 부분적으로 응축된 혼합 냉매는 기액 분리기(171)를 통해 비등점이 높기 때문에 액상 냉매 부분으로 분리되는 제1 냉매 부분과, 비등점이 낮기 때문에 기상 냉매 부분으로 분리되는 제2 냉매 부분으로 나뉘어질 수 있다.Natural gas precooled through the two pure refrigerant cycles as described above is liquefied (or liquefied and supercooled) through the mixed refrigerant cycle. In detail, the mixed refrigerant partially condensed through the heat exchange in the first heat exchange region 110 is introduced into the gas-liquid separator 171 through the conduit 301, and according to the difference in boiling point, The second coolant part is separated into a lower boiling point than the coolant part. That is, the partially condensed mixed refrigerant may be divided into a first refrigerant portion separated into the liquid refrigerant portion due to the high boiling point through the gas-liquid separator 171 and a second refrigerant portion separated into the gaseous refrigerant portion due to the low boiling point. have.
이렇게 분리된 제1 냉매 부분은 도관(302)을 통해 제2 열교환 영역(120)으로 유입되어 냉각된다. 이러한 냉매 부분의 냉각은 도관(304)을 통해 제2 열교환 영역(120)으로 유입되는 냉매와의 열교환을 통해 이루어질 수 있다. 냉각된 냉매 부분은 도관(303)을 통해 팽창 밸브(172)로 유입되어 팽창된다. 팽창된 냉매 부분은 후술할 제2 냉매 부분과 혼합된 다음, 도관(304)을 통해 다시 제2 열교환 영역(120)으로 유입되어 다른 냉매들을 냉각시키고 천연가스를 액화시킬 수 있다. 그런 다음 혼합 냉매는 일련의 압축 과정과 냉각 과정을 거친 후, 제1 열교환 영역(110)으로 유입되어 공급된 천연가스와 함께 에탄 사이클과 부탄 사이클을 통해 냉각될 수 있다. The first refrigerant portion thus separated is introduced into the second heat exchange region 120 through the conduit 302 and cooled. Cooling of this refrigerant portion may be through heat exchange with the refrigerant entering the second heat exchange region 120 through the conduit 304. The cooled refrigerant portion enters and expands into expansion valve 172 through conduit 303. The expanded refrigerant portion may be mixed with the second refrigerant portion, which will be described later, and then introduced back into the second heat exchange region 120 through conduit 304 to cool other refrigerants and liquefy natural gas. Then, the mixed refrigerant may be cooled through a ethane cycle and a butane cycle together with the natural gas supplied to the first heat exchange region 110 after being subjected to a series of compression and cooling processes.
그리고 분리된 제2 냉매 부분은 도관(306)을 통해 제2 열교환 영역(120)으로 유입되어 냉각된다. 이러한 냉매 부분의 냉각은 도관(304)을 통해 제2 열교환 영역(120)으로 유입되는 냉매와의 열교환을 통해 이루어질 수 있다. 냉각된 냉매 부분은 도관(307)을 통해 제3 열교환 영역(130)으로 유입되어 응축된다. 이러한 냉매 부분의 응축은 도관(309)을 통해 제3 열교환 영역(130)으로 유입되는 냉매와의 열교환을 통해 이루어질 수 있다. 응축된 냉매 부분은 도관(308)을 통해 팽창 밸브(173)로 유입되어 팽창된다. 팽창된 냉매 부분은 도관(309)을 통해 다시 제3 열교환 영역(130)으로 유입되어 열교환을 통해 제3 열교환 영역(130)으로 유입되는 냉매를 응축시키고 천연가스를 액화시키거나 과냉시킨다. 참고로 액화된 천연가스는 팽창 밸브(181)에 의해 팽창된 다음 저장 탱크 등으로 유입될 수 있다. The separated second refrigerant portion then enters the second heat exchange zone 120 through the conduit 306 and is cooled. Cooling of this refrigerant portion may be through heat exchange with the refrigerant entering the second heat exchange region 120 through the conduit 304. The cooled refrigerant portion enters and condenses the third heat exchange region 130 through conduit 307. Condensation of this refrigerant portion may be accomplished through heat exchange with the refrigerant entering the third heat exchange region 130 through the conduit 309. The condensed refrigerant portion enters and expands into expansion valve 173 through conduit 308. The expanded refrigerant portion enters the third heat exchange region 130 again through the conduit 309 to condense the refrigerant introduced into the third heat exchange region 130 through heat exchange and liquefy or supercool the natural gas. For reference, the liquefied natural gas may be expanded by the expansion valve 181 and then introduced into the storage tank.
제3 열교환 영역(130)에서의 열교환을 마친 냉매 부분은 전술한 제1 냉매 부분과 혼합되어 다시 제2 열교환 영역(120)으로 유입될 수 있다. 참고로 전술한 3개의 열교환 영역(110, 120, 130)은 도 1에서 도시하고 있는 것과 같이 하나의 열교환 수단 내에 함께 구비될 수도 있고, 또는 3개의 열교환 수단 내에 각각 구비될 수도 있다. 또한 상기 열교환 수단은 통상의 열교환기(heat exchanger)일 수 있다.The refrigerant part which has completed the heat exchange in the third heat exchange area 130 may be mixed with the aforementioned first refrigerant part and flowed back into the second heat exchange area 120. For reference, the three heat exchange regions 110, 120, and 130 described above may be provided together in one heat exchange means as shown in FIG. 1, or may be provided in three heat exchange means, respectively. The heat exchange means may also be a conventional heat exchanger.
위와 같은 구성을 가지는 본 실시예에 따른 액화공정의 효과를 도 2 내지 도 8을 참조하여 상술한다. 도 2와 도 3에서는 전술한 C3-MR 공정과 DMR 공정의 예냉 영역에서의 온도 분포를 각각 도시하고 있다. C3-MR 공정에서의 프로판(C3)은 순수 냉매이고 여러 단의 압력 단계를 거치기 때문에 도 2에서 도시하고 있는 것과 같이 계단 모양으로 온도 분포가 나타난다. 이에 반해 DMR 공정의 예냉 영역에서의 온도 분포는 열교환 영역의 중간에서 최소 차이(3K)를 나타내며 점차적으로 변화한다. 그리고 도 4와 도 5에서는 본 실시예에 따른 액화공정의 예냉 영역에서의 온도 분포와 본 실시예에 따른 액화공정에서의 에탄과 부탄 사이클의 온도-엔트로피 선도를 각각 나타내고 있다. Effects of the liquefaction process according to the present embodiment having the above configuration will be described in detail with reference to FIGS. 2 to 8. 2 and 3 show the temperature distribution in the precooling region of the above-described C3-MR process and DMR process, respectively. Propane (C3) in the C3-MR process is a pure refrigerant and passes through several stages of pressure steps, so that the temperature distribution appears in a stepped manner as shown in FIG. In contrast, the temperature distribution in the precooling zone of the DMR process changes gradually, with a minimum difference (3K) in the middle of the heat exchange zone. 4 and 5 show the temperature distribution in the precooling region of the liquefaction process according to the present embodiment and the temperature-entropy diagrams of the ethane and butane cycles in the liquefaction process according to the present embodiment, respectively.
본 실시예에 따른 액화공정의 예냉 단계에서 각각의 순수 냉매는 액상으로 열교환 영역으로 유입되기 때문에(도 4 및 도 5의 도면부호 9 참조), 차가운 유동(cold stream)의 온도는 에탄 냉매와 부탄 냉매의 기화에 대응하여 2개의 수평 영역(도 4의 도면부호 9~10, 11~12 참조)을 가진다. 이에 반해 천연가스를 예냉시킨 다음의 부탄 냉매는 압축기와 냉각기를 통한 다단의 압축 과정과 냉각 과정을 거치면서 응축되어 액상으로 다시 열교환 영역으로 유입되기 때문에(도 4 및 도 5의 도면부호 5 참조), 뜨거운 유동(hot stream)의 온도는 에탄 냉매의 응축에 대응하여 1개의 수평 영역(도 4의 도면부호 6~7 참조)만 가진다. In the precooling step of the liquefaction process according to the present embodiment, since each pure refrigerant flows into the heat exchange zone in the liquid phase (see reference numeral 9 of FIGS. 4 and 5), the cold stream temperature is ethane refrigerant and butane. Corresponding to the vaporization of the refrigerant has two horizontal regions (see reference numerals 9 to 10 and 11 to 12 of FIG. 4). On the contrary, the butane refrigerant after pre-cooling the natural gas is condensed during the multi-stage compression and cooling process through the compressor and the cooler, and then flows back into the heat exchange area into the liquid phase (see reference numeral 5 of FIGS. 4 and 5). The temperature of the hot stream has only one horizontal region (see 6-7 in FIG. 4) in response to the condensation of the ethane refrigerant.
도 6 내지 도 8에서는 전술한 3개의 공정, 즉 CR/MR 공정, DMR 공정, 그리고 본 실시예에 따른 액화공정의 예냉 단계에서의 유용 엑서지(exergy utilization)와 비가역성(irreversibility)을 나타내고 있다. 동력 입력(power input)에 대한 엑서지 증가의 비로서 정의되는 엑서지 효율(exergy efficiency)은 도 6 내지 도 8에서 도시하고 있는 것과 같이 각 액화공정에서 각각 34.3%, 30.5%, 그리고 31.5%로 나타났다. 전술한 바와 같이 C3/MR 공정의 경우에는 복수 개의 압력 단계가 요구되어 많은 수의 설비가 요구된다는 단점이 있고, DMR 공정의 경우에는 혼합 냉매를 사용하기 때문에 그 구조 자체가 복잡하고 액화시스템의 운전이 어렵다는 단점이 있다는 점을 고려할 때, 본 실시예에 따른 액화공정의 효과는 매우 우수하다는 점을 확인할 수 있다. 6 to 8 illustrate the exergy utilization and irreversibility of the three processes described above, namely, the CR / MR process, the DMR process, and the precooling step of the liquefaction process according to the present embodiment. Exergy efficiency, defined as the ratio of increase of exergy to power input, is 34.3%, 30.5%, and 31.5% in each liquefaction process, as shown in FIGS. appear. As described above, in the case of the C3 / MR process, a plurality of pressure stages are required and a large number of equipments are required. In the case of the DMR process, since the mixed refrigerant is used, the structure itself is complicated and operation of the liquefaction system In view of the difficulty of this difficulty, it can be seen that the effect of the liquefaction process according to the present embodiment is very excellent.
즉, 본 실시예에 따른 액화공정은 각각의 예냉 사이클이 오직 한 개의 압력 단계만으로 천연가스를 예냉시키기 때문에 상대적으로 적은 수의 설비만으로도 예냉 사이클을 구성할 수 있고, 각각의 예냉 사이클이 순수 냉매를 채용하고 있기 때문에 그 구조 자체가 단순하고 액화시스템의 운전이 용이하면서도, 에탄 냉매 사이클과 부탄 냉매 사이클을 병렬로 배치하여 동일한 열교환 영역 내에서 천연가스를 예냉하기 때문에 액화공정의 효율도 매우 우수하다. 결국, 본 실시예에 따른 액화공정은 순수 냉매를 채용하여 천연가스를 예냉시키는 구조와 혼합 냉매를 채용하여 천연가스를 예냉시키는 구조의 장점을 모두 가지고 있으면서도 매우 높은 효율을 가지고 있다(현재까지 알려진 액화공정 중에 C3/MR 공정이 효율이 매우 높은 공정 중의 하나라는 점을 고려할 때 본 실시예에 따른 액화공정의 효율은 매우 우수한 것이다). That is, in the liquefaction process according to the present embodiment, since each pre-cooling cycle pre-cools the natural gas with only one pressure step, the pre-cooling cycle can be configured with a relatively small number of facilities, and each pre-cooling cycle uses pure refrigerant. Since the structure itself is simple and the operation of the liquefaction system is easy, the liquefaction process is very excellent because the ethane refrigerant cycle and the butane refrigerant cycle are arranged in parallel to precool the natural gas in the same heat exchange area. As a result, the liquefaction process according to the present embodiment has both the advantages of the structure of pre-cooling natural gas by using pure refrigerant and the structure of pre-cooling natural gas by employing mixed refrigerant, and have very high efficiency (liquefaction known to date). The efficiency of the liquefaction process according to this embodiment is very good considering that the C3 / MR process is one of the very high efficiency processes.
그리고 각 액화공정의 예냉 단계에서의 비가역성은 도 6 내지 도 8에서 도시하고 있는 것과 같이, 밸브(V), 후냉각기(AC), 압축기(C), 열교환기(HX)의 4 그룹으로 나누어 나타낼 수 있다. 본 실시예에 따른 액화공정과 C3/MR 공정을 대비하여 보면, C3/MR 공정은 본 실시예에 따른 액화공정에 비해 상대적으로 밸브에 의한 비가역성이 큰 것을 확인할 수 있다. 그리고 본 실시예에 따른 액화공정과 DMR 공정을 대비하여 보면, DMR 공정은 본 실시예에 따른 액화공정에 비해 상대적으로 냉각기에 의한 비가역성이 큰 것을 확인할 수 있다. 결국, 본 실시예에 따른 액화공정은 전술한 2개의 액화공정에 비해 밸브와 냉각기에 의한 비가역성은 낮은데 반해, 열교환기에 의한 비가역성은 높은 것을 확인할 수 있다. In addition, the irreversibility in the precooling step of each liquefaction process is represented by dividing into four groups of valve (V), aftercooler (AC), compressor (C), heat exchanger (HX), as shown in Figs. Can be. In comparison with the liquefaction process according to the present embodiment and the C3 / MR process, it can be seen that the C3 / MR process is relatively irreversible by the valve compared to the liquefaction process according to this embodiment. In comparison with the liquefaction process and the DMR process according to the present embodiment, it can be seen that the DMR process is relatively irreversible by the cooler compared to the liquefaction process according to the present embodiment. As a result, the liquefaction process according to the present embodiment has a lower irreversibility by the valve and the cooler than the two liquefaction processes described above, while the irreversibility by the heat exchanger is high.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 본 발명을 설명하였지만 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서 본 발명 사상은 아래에 기재된 특허청구범위에 의해서 파악되어야 하고, 이의 균등 또는 등가적 변형 모두가 본 발명 사상의 범주에 속한다고 할 것이다.As described above, the present invention has been described with reference to preferred embodiments of the present invention, but a person of ordinary skill in the art does not depart from the spirit and scope of the present invention as set forth in the claims below. It will be understood that various modifications and variations can be made in the present invention. Therefore, the spirit of the present invention should be understood by the claims described below, and all equivalent or equivalent modifications thereof will belong to the scope of the present invention.
본 발명은, 예냉 사이클이 오직 한 개의 압력 단계만으로 천연가스를 예냉시키기 때문에 상대적으로 적은 수의 설비만으로도 예냉 사이클을 구성할 수 있을 뿐만 아니라, 각각의 예냉 사이클이 순수 냉매를 사용하고 있기 때문에 그 구조 자체가 단순하고 액화시스템의 운전이 용이하며, 2개의 예냉 사이클이 병렬로 배치되어 동일한 열교환 영역 내에서 천연가스를 예냉하기 때문에 액화공정의 효율이 매우 우수한 천연가스 액화공정에 관한 것으로서, 산업상 이용가능성이 있다.In the present invention, since the pre-cooling cycle pre-cools the natural gas in only one pressure step, the pre-cooling cycle can be constituted by a relatively small number of facilities, and the structure of each pre-cooling cycle uses pure refrigerant. It is a natural gas liquefaction process that has a very high efficiency of the liquefaction process because it is simple and easy to operate the liquefaction system, and two precooling cycles are arranged in parallel to precool the natural gas in the same heat exchange area. There is a possibility.

Claims (6)

  1. 밀폐회로 예냉 사이클(closed loop pre-cooling cycle)을 이용하여 천연가스를 예냉시키고 밀폐회로 액화 사이클(closed loop liquefying cycle)을 이용하여 예냉된 천연가스를 액화시키는 천연가스 액화공정에 있어서,In a natural gas liquefaction process of pre-cooling natural gas using a closed loop pre-cooling cycle and liquefying the pre-cooled natural gas using a closed loop liquefying cycle,
    상기 폐 루프 예냉 사이클은 각각의 순수 냉매를 통해 동일한 제1 열교환 영역 내에서 공급된 천연가스를 함께 예냉시키는 제1 및 제2 예냉 사이클을 포함하고, 상기 밀폐회로 액화 사이클은 혼합 냉매를 통해 예냉된 천연가스를 액화시키는 적어도 하나의 액화 사이클을 포함하며, 상기 제1 및 제2 예냉 사이클은 밀폐회로 냉동 사이클인 것을 특징으로 하는 천연가스 액화공정.The closed loop precooling cycle includes first and second precooling cycles for precooling together natural gas supplied in the same first heat exchange region through respective pure refrigerants, and the closed circuit liquefaction cycle is precooled through the mixed refrigerant. And at least one liquefaction cycle for liquefying natural gas, wherein the first and second precooling cycles are closed circuit refrigeration cycles.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 예냉 사이클의 순수 냉매는 에탄(C2) 냉매이고, 상기 제2 예냉 사이클의 순수 냉매는 부탄(C4) 냉매인 것을 특징으로 하는 천연가스 액화공정.The pure refrigerant of the first precooling cycle is an ethane (C2) refrigerant, the pure refrigerant of the second precooling cycle is a butane (C4) refrigerant.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 및 제2 예냉 사이클은, 순수 냉매를 압축하는 단계, 압축된 냉매를 냉각하는 단계, 냉각된 냉매를 상기 제1 열교환 영역 내에서 추가적으로 냉각하는 단계, 및 추가적으로 냉각된 냉매를 팽창하는 단계를 포함하는 것을 특징으로 하는 천연가스 액화공정.The first and second precooling cycles may include: compressing the pure refrigerant, cooling the compressed refrigerant, further cooling the cooled refrigerant in the first heat exchange zone, and expanding the additionally cooled refrigerant. Natural gas liquefaction process comprising a.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 폐 루프 액화 사이클은, 혼합 냉매를 압축하는 단계, 압축된 냉매를 냉각하는 단계, 냉각된 냉매를 상기 제1 열교환 영역 내에서 추가적으로 냉각하여 부분적으로 응축하는 단계, 부분적으로 응축된 냉매를 비등점의 차이에 따라 액상 냉매 부분과 기상 냉매 부분으로 분리하는 단계, 상기 액상 냉매 부분을 이용하여 제2 열교환 영역 내에서 예냉된 천연가스를 일차적으로 냉각하는 단계, 및 상기 기상 냉매 부분을 이용하여 제3 열교환 영역 내에서 일차적으로 냉각된 천연가스를 이차적으로 냉각하는 단계를 포함하는 것을 특징으로 하는 천연가스 액화공정.The closed loop liquefaction cycle includes: compressing a mixed refrigerant, cooling the compressed refrigerant, additionally cooling the cooled refrigerant in the first heat exchange zone to partially condense, and partially boiling the partially condensed refrigerant to a boiling point. Separating the liquid refrigerant portion and the gaseous refrigerant portion according to the difference, first cooling the natural gas pre-cooled in the second heat exchange region using the liquid refrigerant portion, and using the gaseous refrigerant portion to perform a third heat exchange. Natural gas liquefaction process comprising the step of secondarily cooling the naturally cooled natural gas in the region.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 일차적으로 냉각하는 단계는, 상기 액상 냉매 부분을 상기 제2 열교환 영역 내에서의 열교환을 통해 냉각하는 제1 단계, 상기 제1 단계를 통해 냉각된 냉매 부분을 팽창하는 제2 단계, 및 상기 제2 단계를 통해 팽창된 냉매 부분과 상기 천연가스를 상기 제2 열교환 영역 내에서 열교환시켜 상기 천연가스를 냉각하는 제3 단계를 포함하는 것을 특징으로 하는 천연가스 액화공정.The primary cooling may include a first step of cooling the liquid refrigerant part through heat exchange in the second heat exchange region, a second step of expanding the cooled refrigerant part through the first step, and the first step. And a third step of cooling the natural gas by exchanging the refrigerant portion expanded through the two steps with the natural gas in the second heat exchange region.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 이차적으로 냉각하는 단계는, 상기 기상 냉매 부분을 상기 제2 열교환 영역 내에서의 열교환을 통해 냉각하는 냉각 단계, 상기 냉각 단계를 통해 냉각된 냉매 부분을 상기 제3 열교환 영역 내에서의 열교환을 통해 응축하는 응축 단계, 상기 응축 단계를 통해 응축된 냉매 부분을 팽창하는 팽창 단계, 및 상기 팽창 단계를 통해 팽창된 냉매 부분과 상기 천연가스를 상기 제3 열교환 영역 내에서 열교환시켜 상기 천연가스를 냉각하는 단계를 포함하는 것을 특징으로 하는 천연가스 액화공정.The secondary cooling may include a cooling step of cooling the gaseous refrigerant part through heat exchange in the second heat exchange region, and a refrigerant part cooled through the cooling step through heat exchange in the third heat exchange region. A condensation step of condensing, an expansion step of expanding the refrigerant part condensed through the condensation step, and cooling the natural gas by heat-exchanging the expanded refrigerant part and the natural gas in the third heat exchange area through the expansion step. Natural gas liquefaction process comprising the step.
PCT/KR2011/007994 2010-10-26 2011-10-25 Natural gas liquefaction process WO2012057505A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2816047A CA2816047C (en) 2010-10-26 2011-10-25 Natural gas liquefaction process
US13/881,588 US20130263623A1 (en) 2010-10-26 2011-10-25 Natural gas liquefaction process
AU2011321145A AU2011321145B2 (en) 2010-10-26 2011-10-25 Natural gas liquefaction process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100104618A KR101037226B1 (en) 2010-10-26 2010-10-26 Natural gas liquefaction process
KR10-2010-0104618 2010-10-26

Publications (2)

Publication Number Publication Date
WO2012057505A2 true WO2012057505A2 (en) 2012-05-03
WO2012057505A3 WO2012057505A3 (en) 2012-08-30

Family

ID=44366646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007994 WO2012057505A2 (en) 2010-10-26 2011-10-25 Natural gas liquefaction process

Country Status (5)

Country Link
US (1) US20130263623A1 (en)
KR (1) KR101037226B1 (en)
AU (1) AU2011321145B2 (en)
CA (1) CA2816047C (en)
WO (1) WO2012057505A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396921B1 (en) * 2013-04-24 2014-05-19 상 욱 김 Constant temperatur maintaining control type cooling apparatus for cryogenic environment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160109177A1 (en) 2014-10-16 2016-04-21 General Electric Company System and method for natural gas liquefaction
WO2016094168A1 (en) 2014-12-12 2016-06-16 Dresser-Rand Company System and method for liquefaction of natural gas
CN106440656B (en) * 2016-11-02 2022-02-15 中国寰球工程有限公司 Carbon dioxide precooling two-stage nitrogen expansion natural gas liquefaction system
US11585608B2 (en) * 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050110026A (en) * 2003-03-18 2005-11-22 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Integrated multiple-loop refrigeration process for gas liquefaction
US7127914B2 (en) * 2003-09-17 2006-10-31 Air Products And Chemicals, Inc. Hybrid gas liquefaction cycle with multiple expanders
US20080141711A1 (en) * 2006-12-18 2008-06-19 Mark Julian Roberts Hybrid cycle liquefaction of natural gas with propane pre-cooling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791160A (en) * 1997-07-24 1998-08-11 Air Products And Chemicals, Inc. Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility
US6412302B1 (en) * 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
MXPA05009889A (en) * 2003-03-18 2005-12-05 Air Prod & Chem Integrated multiple-loop refrigeration process for gas liquefaction.
RU2406949C2 (en) * 2005-08-09 2010-12-20 Эксонмобил Апстрим Рисерч Компани Method of liquefying natural gas
US20100147024A1 (en) * 2008-12-12 2010-06-17 Air Products And Chemicals, Inc. Alternative pre-cooling arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050110026A (en) * 2003-03-18 2005-11-22 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Integrated multiple-loop refrigeration process for gas liquefaction
US7086251B2 (en) * 2003-03-18 2006-08-08 Air Products And Chemicals, Inc. Integrated multiple-loop refrigeration process for gas liquefaction
US7127914B2 (en) * 2003-09-17 2006-10-31 Air Products And Chemicals, Inc. Hybrid gas liquefaction cycle with multiple expanders
US20080141711A1 (en) * 2006-12-18 2008-06-19 Mark Julian Roberts Hybrid cycle liquefaction of natural gas with propane pre-cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396921B1 (en) * 2013-04-24 2014-05-19 상 욱 김 Constant temperatur maintaining control type cooling apparatus for cryogenic environment

Also Published As

Publication number Publication date
US20130263623A1 (en) 2013-10-10
AU2011321145B2 (en) 2015-03-05
KR101037226B1 (en) 2011-05-25
AU2011321145A1 (en) 2013-05-30
CA2816047C (en) 2016-01-19
CA2816047A1 (en) 2012-05-03
WO2012057505A3 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
WO2012057505A2 (en) Natural gas liquefaction process
WO2011136544A2 (en) Natural gas liquefaction process with refrigerant separation
WO2011136543A2 (en) Natural gas liquefaction process
KR101281914B1 (en) Natural gas liquefaction process
GB1590891A (en) Refrigeration method and apparatus
WO2012023752A2 (en) Natural gas liquefaction process
AU2017203215B2 (en) Liquefaction method and system
KR20180034251A (en) Mixed refrigerant cooling process and system
KR101392750B1 (en) Natural gas liquefaction system and method using the same
KR101037249B1 (en) Natural gas liquefaction process
AU2017202953A1 (en) Natural gas liquefaction process
KR101107437B1 (en) Natural gas liquefaction process
RU2556731C2 (en) Method to liquefy natural gas by cooling mixtures, containing at least one non-saturated hydrocarbon
KR100991859B1 (en) A fluid cooling system and a method for cooling a fluid using the same
KR101037277B1 (en) Natural gas liquefaction process
KR20120016568A (en) Natural gas liquefaction process and system using the same
KR101123977B1 (en) Natural gas liquefaction process and system using the same
KR101616626B1 (en) Natural gas liquefaction process
KR101464433B1 (en) Natural gas liquefaction process
KR101153100B1 (en) Natural gas liquefaction process
KR101620182B1 (en) Natural gas liquefaction process
KR101615444B1 (en) Natural gas liquefaction process
KR20110081497A (en) Natural gas liquefaction process and system using the same
KR101620183B1 (en) Natural gas liquefaction process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836597

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2816047

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011321145

Country of ref document: AU

Date of ref document: 20111025

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13881588

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11836597

Country of ref document: EP

Kind code of ref document: A2