WO2012057401A1 - 최적의 글루콘산 도입으로 향상된 생체 적용능을 확보한 글루콘산과 비고분자 생체 존재물질이 표면개질제로 도입된 산화철 나노입자 및 이를 포함한 암 진단 및 치료용 조성물 - Google Patents

최적의 글루콘산 도입으로 향상된 생체 적용능을 확보한 글루콘산과 비고분자 생체 존재물질이 표면개질제로 도입된 산화철 나노입자 및 이를 포함한 암 진단 및 치료용 조성물 Download PDF

Info

Publication number
WO2012057401A1
WO2012057401A1 PCT/KR2010/008636 KR2010008636W WO2012057401A1 WO 2012057401 A1 WO2012057401 A1 WO 2012057401A1 KR 2010008636 W KR2010008636 W KR 2010008636W WO 2012057401 A1 WO2012057401 A1 WO 2012057401A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
cancer
nanoparticles
gluconic acid
oxide nanoparticles
Prior art date
Application number
PCT/KR2010/008636
Other languages
English (en)
French (fr)
Inventor
이창문
정환정
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2012057401A1 publication Critical patent/WO2012057401A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • A61K51/1244Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/20Magnetic particle immunoreagent carriers the magnetic material being present in the particle core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/80Magnetic particle immunoreagent carriers characterised by the agent used to coat the magnetic particles, e.g. lipids

Definitions

  • the present invention is iron oxide-based core particles; Shells coated with a water-soluble material selected from the group consisting of ATP, NAD, ADP, AMP and NADP; And iron oxide-based nanoparticles comprising gluconic acid, a method of preparing the same, and a contrast agent and a composition for diagnosing and treating cancer, which include the amount of binding and the conditions for securing the optimum bio-application on the surface of the shell. It is about.
  • Magnetic nanoparicles have the advantage of being able to detect small amounts of target materials because they have the characteristics of general nanoparticles, that is, they have a large surface area per unit volume. It has the advantage of excellent stability and position control by magnetic field when used as a bioprobe.
  • iron oxide nanoparticles have a magnetizing property and thus have a very high biomedical value.
  • superparamagnetic iron oxide nanoparticles SPION
  • MRI magnetic resonance imaging
  • SPION can exhibit higher contrast in MRI than conventional paramagnetic Gd-based contrast agents.
  • the iron oxide nanoparticles In order to use the iron oxide nanoparticles as a contrast agent in vivo, it must be well dispersed in water and have a uniform and small particle size. However, even if these prerequisites are met, most of the iron oxide nanoparticles injected in vivo are rapidly detected by the reticulum endothelial system such as lung, liver, and spleen, and are removed from blood and accumulated in these organs, thereby preventing them from functioning as contrast agents.
  • the reticulum endothelial system such as lung, liver, and spleen
  • the present inventors have made efforts to use low molecules present in cells and blood in vivo without introducing a polymer to modify the surface of iron oxide nanoparticles.
  • a polymer to modify the surface of iron oxide nanoparticles.
  • iron oxide nanoparticles were coated with ATP and then surface modified with gluconic acid.
  • the synthesis conditions of ATP and gluconic acid were improved to obtain the optimum amount and synthesis conditions.
  • the amount of the two substances to avoid the intake by the reticulum endothelial system was confirmed that there is an effect that can be diagnosed and treated at the same time the cancer was completed.
  • An object of the present invention is iron oxide-based core particles; Shells coated with a water-soluble material selected from the group consisting of ATP, NAD, ADP, AMP and NADP; And it provides a iron oxide-based nanoparticles comprising gluconic acid bound to the shell surface.
  • Another object of the present invention is to provide a nanoparticle for cancer diagnosis and treatment, characterized in that the antibody or peptide for cancer cell target is further coupled to the shell surface of the nanoparticle.
  • Another object of the present invention to provide a contrast agent or composition for cancer diagnosis and treatment comprising the iron oxide-based nanoparticles.
  • Another object of the present invention to provide a method for producing the iron oxide-based nanoparticles.
  • the present invention is iron oxide-based core particles; Shells coated with a water-soluble material selected from the group consisting of ATP, NAD, ADP, AMP and NADP; And it provides iron oxide-based nanoparticles comprising gluconic acid bound to the shell surface.
  • iron oxide-based core particle means superparamagnetic iron-oxide (SPIO), ferro- or ferrimagnetic compound, for example, magnetite, Fe 3 O 4 , manganese ferrite, cobalt ferrite and nickel ferrite.
  • SPIO superparamagnetic iron-oxide
  • ferro- or ferrimagnetic compound for example, magnetite, Fe 3 O 4 , manganese ferrite, cobalt ferrite and nickel ferrite.
  • the iron oxide-based core particles are Fe 3 O 4 .
  • water-soluble substance refers to a substance having a phosphate group and an amine group capable of binding to a target ligand, and may be selected from the group consisting of ATP, NAD, ADP, AMP, and NADP.
  • the water soluble material is ATP.
  • the water-soluble material may coat the iron oxide-based core particles, and the water-soluble material may bind to the iron oxide-based core particles by having a phosphate group, and may bind to an antibody or the like by having an amine group.
  • the iron oxide-based core particles coated with the water-soluble material may be modified by the surface of the water-soluble monosaccharide gluconic acid.
  • gluconic acid and the surface-coated nanoparticles are 0.1: 1 to 3 It is combined by the weight ratio of: 1, Preferably it is 0.3: 1-1: 1.
  • gluconic acid was conjugated and injected into the mouse, the amount of gluconic acid increased within the range of the gluconic acid of the present invention. It was confirmed that the intake is significantly reduced (see FIG. 2). Through this, it was found that the behavior in vivo can be controlled by avoiding the ingestion of the iron oxide nanoparticles by the reticuloendothelial system according to the amount of gluconic acid. This increase in avoidance for the reticuloendothelial system can improve delivery to target organs or lesions.
  • reticuloendothelial system is a generic term for vascular endothelial cells in specific organs such as lymphoid, spleen, bone marrow, and special organs such as liver and adrenal gland, and abbreviated as RES.
  • the reticuloendothelial system is formed by monocytes that span bone marrow, peripheral blood, and tissues with advanced intracellular uptake (liver, bone marrow, lymph nodes, etc., alveolar epithelium, subcutaneous tissue, spleen, etc.) It becomes a specialized macrophage cell and plays a role in defending the living body through the action of phagocytosis or inflammatory product phagocytosis, activation of the immune system by antigen presentation, and movement of polymorphonuclear leukocytes.
  • the fluorescent probe can be further bonded to the shell surface of the modified iron oxide nanoparticles.
  • Fluorescent dyes that can be used as the fluorescent probe is IRDye, Cy2 (trade name), Cy3 (trade name), Cy3.5 (trade name), Cy5 (trade name), Cy5.5 (trade name), Cy-chrome, phycoerythrin, PerCP (Peridinine Chlorophyll-a Protein), PerCP-Cy5.5, Alexa Fluor (trade name) 350, Alexa Floor (trade name) 430, Alexa floor (trade name) 488, Alexa floor (trade name) 532, Alexa floor (trade name) ) 546, Alexa Floor (trade name) 568, Alexa Floor (trade name) 594, Alexa Floor (trade name) 633, Alexa Floor (trade name) 647, Alexa floor (trade name) 660, Alexa floor (trade name) 680, It is not limited.
  • chlorotoxin Cy5.5 TM was used as the fluorescent probe.
  • the average diameter of the surface-modified iron oxide nanoparticles may be 5 to 300 nm.
  • the present invention provides iron oxide nanoparticles for cancer diagnosis and treatment, characterized in that the antibody or peptide for cancer cell targeting is further bound to the shell surface of the iron oxide nanoparticles whose surface is modified with gluconic acid. do.
  • the antibody for cancer cell targeting is not limited as long as it has an antibody having cancer cell targeting activity, and includes a part of an antibody having a target function, but is preferably an anti-VEGF antibody.
  • a linker capable of binding an antibody may be further bound to the surface of the ATP-iron oxide nanoparticles.
  • the monoclonal rat anti-mouse VEGFR-2 antibody may be mouse Flk-.
  • the size of the cancer after intravenous injection of the nanoparticles to the cancer animal model MDA-MB231 mouse As a result, it was confirmed that cancer growth was significantly reduced compared to the cancer animal model injected with PBS (see FIG. 8).
  • the cancer cell targeting peptide is not limited as long as it is a cancer targeting ligand.
  • a peptide (c-Met binding peptide) that binds to c-Met was used.
  • the iron oxide nanoparticles of the present invention has an effect of reducing intake in macrophage cells.
  • the radioisotope selected from the group consisting of Tc-99m, I-123, I-131, F-18, Ga-67, In-111, and Cu-64 in the iron oxide nanoparticles for diagnosis and treatment of cancer is Can be further combined.
  • the present invention provides a contrast agent for diagnosing and treating cancer comprising iron oxide-based nanoparticles in which an antibody or peptide for cancer cell targeting is bound to the shell surface of the iron oxide-based nanoparticles whose surface is modified with gluconic acid. .
  • the term "contrast agent” is a substance that is used to make an image of the contrast of artificially made for the purpose of diagnosis.
  • the most important reason for using contrast agents is to determine the overall extent of the more accurate characterizing lesions for all lesions.
  • the contrast agent (1) to form an appropriate contrast with the surrounding tissue, (2) harmless and irritating to the human body and have no unpleasant taste, smell, color, (3) biochemically stable substance (4) to obtain the concentration necessary for the imaging in small amounts as long as possible and to have adequate persistence, (5) to be able to be introduced quickly and easily in the target organ, and (6) to have consistency suitable for the imaging of the target organ. (7) It must be equipped with conditions such as substance which is easy to be excreted or controlled in vitro promptly after inspection.
  • the contrast agent according to the present invention is surface-modified with gluconic acid and by selecting the optimal amount of gluconic acid, it can be rapidly introduced into the target organ or lesion due to the avoidance of ingestion by the reticulum endothelial system during circulating in vivo, which has a favorable effect for diagnosis. It is characterized by having a therapeutic effect by allowing a large amount to be reached.
  • the monoclonal rat anti-mouse VEGFR-2 antibody was conjugated to iron oxide nanoparticles of DC 101, which is a mouse Flk-1 antibody, it was confirmed that there was a diagnostic and therapeutic effect (FIG. 8). Reference).
  • the contrast agent of the present invention may include a fluorescent probe, and thus may have a dual function that can be used for both optical and magnetic resonance images.
  • the iron oxide-based nanoparticles may be more easily regulated in vivo when peptides are bound to the surface of the iron oxide-based nanoparticles whose surface is modified with gluconic acid than when the antibody for cancer cell targeting is bound to the surface.
  • the monomolecular peptide may be dependent on the behavior of the iron oxide nanoparticles because the size of the antibody is the same as or larger than that of the iron oxide nanoparticles.
  • the present invention provides a composition for diagnosing and treating cancer comprising iron oxide-based nanoparticles in which an antibody or peptide for cancer cell targeting is bound to the surface of the iron oxide-based nanoparticles whose surface is modified with gluconic acid.
  • diagnosis of cancer means identifying the presence or characteristic of a pathological condition.
  • diagnosis is to determine whether cancer has developed through a contrast agent.
  • treatment of cancer refers to any action that improves or advantageously alters the symptoms of cancer by administering a composition comprising iron oxide-based nanoparticles of the present invention.
  • Cancers or carcinomas that can be treated with the compositions of the present invention are not particularly limited and include solid and hematological cancers.
  • the cancer diagnosis and treatment composition of the present invention may further comprise a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier In the case of oral administration, binders, suspending agents, disintegrating agents, excipients, solubilizers, dispersants, stabilizers, suspending agents, pigments, fragrances and the like can be used, and in the case of injections, buffers, preservatives, analgesics, solubilizers, isotonic agents , Stabilizers and the like can be mixed and used, and for topical administration, bases, excipients, lubricants, preservatives and the like can be used.
  • the formulation of the cancer diagnosis and treatment composition of the present invention can be prepared in various ways by mixing with the pharmaceutically acceptable carrier as described above.
  • the pharmaceutically acceptable carrier for example, in the case of oral administration, it may be prepared in the form of tablets, troches, capsules, elesir, suspensions, syrups, wafers, etc., and in the case of injections, may be prepared in unit dosage ampoules or multiple dosage forms.
  • the composition may typically include a surfactant that facilitates movement across the membrane.
  • Such surfactants are steroid derived or cationic lipids such as N- [1- (2,3-dioleoyl) propyl-N, N, N-trimethylammonium chloride (DOTMA), or cholesterol hemisuccinate And various compounds such as phosphatidyl glycerol.
  • the present invention comprises the steps of (a) coating the surface of the iron oxide-based core particles with a water-soluble material selected from the group consisting of ATP, NAD, ADP, AMP and NADP to form a shell; And (b) provides a method for producing iron oxide-based nanoparticles comprising the step of modifying the surface by combining gluconic acid on the shell surface.
  • the water-soluble substance of step (a) may be preferably ATP.
  • the iron oxide-based nanoparticles can be prepared using a commonly known coprecipitation method, sol-gel method, pyrolysis method or emulsion method, without limitation, but should be prepared including ATP, coprecipitation method considering the relatively unstable ATP to heat It is preferable to select and manufacture.
  • FeCl 3 and FeCl 2 dissolved in distilled water purged with nitrogen in a nitrogen environment and then uniformly dissolved by adding ATP and ammonium solution, separated by a magnet, washed with distilled water and dried Through ATP-iron oxide nanoparticles were obtained.
  • the gluconic acid and the surface-coated nanoparticles in order to enable binding of fluorescent probes or antibodies, it is preferable to bind the gluconic acid and the surface-coated nanoparticles in a weight ratio of 0.1: 1 to 3: 1, and bind in a weight ratio of 0.9: 1. Most preferably.
  • step (c) of introducing a fluorescent probe on the surface-modified shell surface of step (b) may be further combined.
  • the fluorescent probe is preferably introduced into the nanoparticles by reacting by adding a molar ratio of 1: 1 to 2 to the nanoparticles modified with a water-soluble monosaccharide.
  • the fluorescent dye used as the fluorescent probe is as described above, and in one embodiment of the present invention, ATP-iron oxide nanoparticles modified with gluconic acid are added to a borate buffer, followed by addition of Cy5.5 NHS ester. Was reacted for 12 hours to introduce Cy5.5, a fluorescent probe.
  • the present invention may further comprise the step (d) of binding the antibody or peptide for cancer cell target to the surface-modified shell surface.
  • a method of manufacturing iron oxide nanoparticles which is an embodiment of the present invention, is schematically shown in FIG. 1.
  • sulfosuccinimidyl 6- [3 '(2-pyridyldithio) -propionamido] (SPDP) having two functional groups is used to modify ATP-iron oxide nanoparticles modified with gluconic acid and bonded to Cy5.5.
  • SPDP buffer solution After the addition to the SPDP buffer solution, the reaction was carried out for 6 hours after the addition of SPDP, washed with a buffer solution and the antibody was added by reacting for 12 hours by adding the antibody.
  • the radioisotope selected from the group consisting of Tc-99m, I-123, I-131, F-18, Ga-67, In-111, and Cu-64 on the iron oxide nanoparticles of the present invention may further comprise step (e).
  • the iron oxide-based nanoparticles surface-modified with gluconic acid of the present invention reduce the degree of phagocytosis and removal by the reticuloendothelial system, thereby improving the delivery to a desired organ or lesion, as well as imaging and treatment for simultaneous treatment as well as imaging. Has the effect of being used as a contrast agent.
  • FIG. 1 is a schematic diagram showing a process in which the iron oxide nanoparticles of one embodiment of the present invention avoids phagocytosis by macrophage cells and that iron oxide nanoparticles without gluconic acid coating are phagocytic by macrophage cells.
  • Figure 2 is a Prussian blue staining picture of macrophage cells (RAW cells) after treatment with ATP-iron oxide nanoparticles conjugated to gluconic acid (GA).
  • FIG. 3 is an in vivo optical image (A) and an in vivo distribution graph (T) after Tc-99m labeling of mice at 1 hour after injection of GTP conjugated ATP-iron oxide nanoparticles.
  • FIG. 4 is a Prussian blue staining picture of major organs 1 hour after injection of mice with GTP conjugated ATP-iron oxide nanoparticles.
  • FIG. 4 is a Prussian blue staining picture of major organs 1 hour after injection of mice with GTP conjugated ATP-iron oxide nanoparticles.
  • FIG. 5 is an optical image obtained by intravenous injection of Cy5.5 antibody-gluconic acid-ATP-iron oxide nanoparticles of Example 3 of the present invention into a U87MG mouse animal model.
  • FIG. 6 is a graph showing magnetic resonance images obtained by intravenous injection of Cy5.5 antibody-gluconic acid-ATP-iron oxide nanoparticles according to Example 3 of the present invention into a U87MG mouse animal model and the degree of change of magnetic resonance signals in cancerous regions.
  • FIG. 7 is a micrograph obtained by intravenous injection of Cy5.5 antibody-gluconic acid-ATP-iron oxide nanoparticles according to Example 3 of the present invention into a U87MG mouse animal model, followed by procedural blue staining.
  • Figure 8 is a graph measuring the volume of cancer and the weight change of the mouse after intravenous injection of Cy5.5 antibody-gluconic acid-ATP-iron oxide nanoparticles of Example 3 of the present invention into a U87MG mouse animal model .
  • Figure 9 shows the results of analyzing (AD) confocal microscopy, (E) optical images and images obtained by treating Cy5.5 peptide-gluconic acid-ATP-iron oxide nanoparticles of Example 4 of the present invention to U87MG cells Is shown as (F) graph.
  • FIG. 10 is an optical image obtained by injecting Cy5.5 peptide-gluconic acid-ATP-iron oxide nanoparticles of Example 4 of the present invention into a U87MG mouse model.
  • FIG. 10 is an optical image obtained by injecting Cy5.5 peptide-gluconic acid-ATP-iron oxide nanoparticles of Example 4 of the present invention into a U87MG mouse model.
  • FIG. 11 shows gamma and SPECT / CT fusion images obtained by intravenously injecting I-125-peptite-gluconic acid-ATP-iron oxide nanoparticles according to Example 4 of the present invention into a U87MG mouse animal model. .
  • ATP-iron oxide nanoparticles to which gluconic acid was introduced in 1-2 were added to 5 ml of borate buffer (pH 8.3), dispersed, and then dissolved by adding 10 ⁇ g of Cy5.5 NHS ester in DMSO for 12 hours. Reacted for a while.
  • SPDP was first bound, followed by binding to an antibody or peptide.
  • various target ligands can be linked that target cancer, including chemical target ligands.
  • SPDP was dissolved in DMSO and added to the PBS buffer solution for SPDP in which iron oxide nanoparticles were dispersed, it was reacted for 6 hours, washed, and then reacted for 12 hours by adding 2 mg of antibody or 500 ⁇ g of peptide. After washing, stored in the refrigerator was used for the next experiment.
  • chloramines chloramines T
  • chloramines T chloramines
  • the uptake of ATP-iron oxide nanoparticles by macrophage cells was assessed according to the amount of gluconic acid conjugation. 100 ⁇ g of each of the gluconic acid-ATP-iron oxide nanoparticles was treated on the RAW cell medium, and after 1 hour, the medium was removed and washed with PBS. Prussian blue staining was performed to evaluate the intake of iron oxide nanoparticles. As the amount of gluconic acid increased, it was confirmed that the intake by the macrophage cells was significantly reduced (see FIG. 2).
  • the gluconic acid synthesized in Experimental Example 1 was conjugated to several cancer target ligands conjugated to the conjugated ATP-iron oxide nanoparticles to determine whether imaging was possible.
  • cancer imaging was performed by conjugating an antibody (DC101) that targets a receptor for growth factor involved in cancer angiogenesis.
  • the iron oxide nanoparticles synthesized in Experimental Example 1 were injected into an animal mouse model (U87MG tumor model) to obtain an optical image. Synthetic iron oxide nanoparticles were injected into the mouse tail vein, and images were taken up to 24 hours.
  • the contrast agent prepared in Experimental Example 1 was injected, cancer tissues were extracted, treated with a fixative solution, a block was prepared, and tissue sections were prussian blue stained under a microscope. Observed.
  • the therapeutic effect was confirmed by intravenous injection of the nanoparticles into a cancer animal model MDA-MB231 mouse and then examining the size change of the cancer. After 10 days of injection of cancer cell MDA-MB231 into the mouse, the nanoparticles were injected 6 times at 3 day intervals, and then the weight of the mouse and the volume of the cancer were measured. Compared to the cancer animal model injected with PBS, the growth of cancer was significantly reduced and no difference in body weight was observed (see FIG. 8).
  • the gluconic acid synthesized in Experimental Example 1 was conjugated to the conjugated ATP-iron oxide nanoparticles to analyze various cancer target ligands to confirm that imaging is possible. Cancer imaging was performed by conjugating a peptide that binds to c-Met involved in cancer cell growth.
  • cMBP-gluconic acid-ATP-iron oxide nanoparticles were injected into animal mouse models (U87MG tumor model) to obtain optical images. After injecting the synthesized iron oxide nanoparticles into the mouse tail vein image was acquired up to 5 hours.
  • the cMBP-gluconic acid-ATP-iron oxide nanoparticles were labeled with I-125 and then injected into a U87MG mouse cancer animal model to capture cancer target SPECT / CT images.
  • the cancer tissue looks a little bright before the injection of the nanoparticles, but after the injection of the nanoparticles of the cancer tissue is confirmed to be significantly darker than before injection Can be.
  • cancer tissue was extracted, treated with a fixative solution, and then a block was prepared, and tissue sections were prussian blue stained and observed under a microscope.
  • the present invention improves delivery to a desired organ or lesion by reducing the extent to which the iron oxide nanoparticles are detected and removed by the reticuloendothelial system after surface modification. Is available.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 산화철계 중심입자; 비고분자인 ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 수용성 물질에 의해 코팅된 껍질; 및 상기 껍질 표면에 최적의 생체 적용능을 확보할 수 있도록 결합량과 결합조건을 확보한 글루콘산을 포함하는 산화철계 나노입자, 이의 제조방법, 및 이를 포함하는 조영제 및 암 진단 및 치료용 조성물에 관한 것이다. 본 발명의 글루콘산으로 표면 개질된 산화철계 나노입자는 세망내피계에 의해 탐식되어 제거되는 정도를 감소시켜서 목적하는 장기 또는 병변으로의 전달을 향상시키고 영상화뿐만 아니라 치료를 동시에 할 수 있는 진단 및 치료용 조영제로서 사용되는 효과를 갖는다.

Description

최적의 글루콘산 도입으로 향상된 생체 적용능을 확보한 글루콘산과 비고분자 생체 존재물질이 표면개질제로 도입된 산화철 나노입자 및 이를 포함한 암 진단 및 치료용 조성물
본 발명은 산화철계 중심입자; ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 수용성 물질에 의해 코팅된 껍질; 및 상기 껍질 표면에 최적의 생체 적용능을 확보할 수 있도록 결합량과 결합조건을 확보한 글루콘산을 포함하는 산화철계 나노입자, 이의 제조방법, 및 이를 포함하는 조영제 및 암 진단 및 치료용 조성물에 관한 것이다.
현대사회에서 삶의 질의 문제가 중요하게 부각되면서, 바이오-메디컬 분야의 기술 개발에 대한 요구가 끊임없이 증대되고 있다. 한편, 나노기술은 바이오-메디컬 분야의 현안들을 극복할 수 있는 중요한 도구로 인식되고 있다.
최근에는 여러 기능을 동시에 갖는 나노소자소재의 개발로 연구의 초점이 모아지면서, 나노구조를 기능성 소자로 만드는 방법과 나노구조로 만들어진 기능성 소자의 위치를 제어하고, 물리적 화학적 생물학적 특성을 조절하는 나노-바이오 공학에 대한 관심이 높아지고 있다. 특히 자성나노입자(magnetic nanoparicles)는 기본적으로 일반적인 나노입자가 갖고 있는 특징들, 즉, 단위부피 당 표면적이 넓어서 소량의 대상 물질도 감지할 수 있다는 장점을 갖고 있는 것 외에, 다른 나노입자에 비해 화학적 안정성이 우수하고 바이오프로브로 사용될 때 자기장에 의해 위치 조작이 가능하다는 장점이 있다.
이 중 산화철 나노입자는 자화되는 특성을 가지고 있어서 생의학적으로 매우 큰 활용가치를 가지고 있다. 특히, 초상자성 산화철 나노입자(superparamagnetic iron oxide nanoparticles: SPION)은, 자기공명영상(MRI) 진단, 약물 운반 및 치료와 같은 생물의학 분야에서 최근에 각광을 받고 있다. SPION은 그의 초상자성 특성 때문에, 종래의 상자성 Gd-계열의 조영제보다 MRI에서 높은 조영능력을 발휘할 수 있다.
이처럼 산화철 나노입자를 생체 내 조영제로 사용하기 위해서는 물에 잘 분산되고 균일하면서도 작은 입자크기를 가지고 있어야 한다. 그러나 이러한 전제 조건을 충족한다 하더라도 생체 내 주입된 산화철 나노입자는 대부분 폐, 간, 비장 등의 세망내피계에 의해 빠르게 탐식되어 혈액으로부터 제거되어 이들 기관에 축적됨으로써 조영제로서 기능을 하지 못하게 된다.
따라서, 산화철 나노입자가 상기 세망내피계에 의해 탐식되어 제거되는 정도를 감소시키기 위해서는 나노입자의 크기 조절뿐만 아니라 입자표면의 개질 또한 중요한 인자라 할 수 있다. 현재 산화철 나노입자를 수용성 고분자로 코팅함으로써 체내 혈액순환시간을 증가시키기 위한 연구들이 많이 보고되고 있다. 폴리비닐피롤리돈으로 코팅된 수용성 산화철 나노입자 (대한민국특허 등록번호 10-0746312), 폴리숙신이미드계 고분자를 이용한 조영제 (대한민국특허 등록번호 10-0635026), 폴리에틸렌글리콜이 코팅된 산화철 나노입자, 실리콘이 코팅된 산화철 나노입자, 덱스트란이 코팅된 산화철 나노입자 등 이외에도 많은 연구들이 보고되었다.
그러나 종래 대부분의 수용성 산화철 나노입자는 생체 내 특정 장기나 질환을 진단하기 위해서 화학적으로 고분자를 수정하여 리간드 도입 사이트를 제시해야 단계를 거쳐야 한다는 단점이 있다. 특히, 상기와 같은 고분자를 이용하여 표면 처리한 경우 여전히 간과 비장 등에 산화철 나노입자가 섭취되어 목적하는 부위에 전달되지 않거나 전달되더라도 소량에 불과하였다. 뿐만 아니라, 종래의 산화철 나노입자를 이용한 조영제의 경우 진단 용도에 국한되어 사용되었을 뿐, 치료를 동시에 할 수 있을 정도로 많은 양을 표적세포에 도달시킬 수 있는 산화철 나노입자를 이용하여 개발된 조영제는 찾아보기가 매우 어렵다. 또한 고분자를 이용한 산화철 나노입자의 표면개질의 또 하나의 문제는 표면개질된 산화철 나노입자의 생체내에서의 운명이 어떻게 되는가 하는 것이다. 표면개질에 이용된 고분자 자체에 대한 생체내 운명 및 독성에 대한 연구가 진행되기 어려운 점이 있어 이에 대한 연구가 일부 PEG에 대한 연구를 제외하고는 전무한 상태이다. 또한, 표면개질에 이용한 고분자가 산화철 나노입자에 그대로 컨쥬게인션되어 존재하는지 아니면 컨쥬게이션된 고분자가 생체내에서 해리되어 독자적인 생체내 분포를 가지는지에 대한 정확한 분석이 되어있지 않기 때문에 고분자가 적용된 산화철 나노입자의 생체 적합성에 대한 평가가 어렵다고 할 수 있다.
이에, 본 발명자들은 산화철 나노입자의 표면을 개질하는데 고분자를 도입하지 않고 생체내의 세포 및 혈액 등에 존재하는 저분자를 이용하려는 노력을 하였다. 이를 이용한 산화철 나노입자의 표면개질 후 세망내피계에 의해 탐식되어 제거되는 정도를 감소시켜서 목적하는 장기 또는 병변으로의 전달을 향상시키고 영상화뿐만 아니라 치료를 동시에 할 수 있는 진단 및 치료용 조영제를 개발하기 위해 예의 노력을 한 결과, 산화철 나노입자를 ATP로 코팅한 후 글루콘산으로 표면개질하였다. 세망내피계를 회피하고 표적이 되는 장기 및 병변에 주입한 산화철 나노입자의 최적의 분포 능력을 확보하기 위해 ATP와 글루코산의 합성조건을 개선하여 최적의 양과 합성조건을 확보하였다. 또한, 두 물질의 양을 조절할 경우 세망내피계에 의한 섭취를 회피하게 되어 암 진단 및 치료를 동시에 할 수 있는 효과가 있음을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 산화철계 중심입자; ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 수용성 물질에 의해 코팅된 껍질; 및 상기 껍질 표면에 결합된 글루콘산을 포함하는 산화철계 나노입자를 제공하는 것이다.
본 발명의 다른 목적은 상기 나노입자의 껍질 표면에 암세포 표적용 항체 또는 펩타이드가 더 결합된 것을 특징으로 하는 암 진단 및 치료용 나노입자를 제공하는 것이다.
본 발명의 다른 목적은 상기 산화철계 나노입자를 포함하는 암 진단 및 치료용 조영제 또는 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 산화철계 나노입자를 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 산화철계 중심입자; ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 수용성 물질에 의해 코팅된 껍질; 및 상기 껍질 표면에 결합된 글루콘산을 포함하는 산화철계 나노입자를 제공한다.
본 발명에서 용어, "산화철계 중심입자"는 초상자성을 띠는 산화철(superparamagnetic iron-oxide: SPIO)을 의미하며, 페로(ferro-) 또는 페리마그네틱 화합물(ferrimagnetic compound), 예를 들면, 마그네타이트, Fe3O4, 망간 페라이트, 코발트 페라이트 및 니켈 페라이트를 포함한다. 바람직하게 상기 산화철계 중심입자는 Fe3O4이다.
본 발명에서 용어, "수용성 물질"은 타겟 리간드와 결합가능한 포스페이트 그룹 및 아민그룹을 가지는 물질을 의미하며, ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택될 수 있다. 바람직하게 상기 수용성 물질은 ATP이다. 상기 수용성 물질은 상기 산화철계 중심입자를 코팅하며, 상기 수용성물질은 포스페이트 그룹을 가짐으로써 상기 산화철계 중심입자와 결합할 수 있고, 아민 그룹을 가짐으로써 항체 등과 결합할 수 있다.
본 발명에서 상기 수용성 물질로 코팅된 산화철계 중심입자는 수용성 단당류인 글루콘산에 의해 표면이 개질될 수 있다. 이러한 수용성 단당류에 의해 산화철계 나노입자의 크기가 증가함으로써 대식세포에 의한 산화철계 나노입자의 섭취를 감소시켜 혈액순환시간을 증가시킬 수 있다. 그러나, 너무 과량으로 처리하면 형광프로브 또는 항체 등을 결합시킬 수 없는 사이트가 없어지거나 극히 소량 결합되는 문제점이 있을 수 있으므로, 바람직하게는 상기 글루콘산과 상기 표면코팅된 나노입자는 0.1:1~3:1 의 중량비로 결합시키며, 바람직하게는 0.3:1 ~ 1:1 이다.
본 발명의 구체적 실시예에서는 산화철 나노입자에 ATP를 코팅한 후 글루콘산을 컨쥬게이션하여 마우스에 주사한 결과, 본 발명의 글루콘산 양의 범위내에서 글루콘산의 양이 증가함에 따라 마크로파지 세포에 의한 섭취가 현저하게 감소함을 확인할 수 있었다 (도 2 참조). 이를 통해, 글루콘산 양에 따라 산화철 나노입자의 세망내피계에 의한 섭취를 회피하여 생체 내 거동을 조절할 수 있음을 알 수 있었다. 이와 같은 세망내피계에 대한 회피의 증가는 표적 장기 또는 병변으로의 전달을 향상시킬 수 있다.
본 발명에서 용어 "세망내피계(reticuloendothelial system)"는 림프절·지라·골수 등 속의 세망세포나 간·부신(副腎) 등 특별한 기관 내부의 혈관 내피세포 등의 총칭하는 것으로 RES로 약기한다. 상기 세망내피계는 골수, 말초혈 및 세포내 섭취기능이 발달한 조직(간, 골수, 림프절 등의 유동(類洞) , 폐포상피, 피하조직, 비장 등)에 걸치는 단핵구계에 의해 형성되며, 특징화한 대식세포가 되어 병원체나 염증산물의 탐식, 항원제시에 의한 면역계의 부활(賦活), 다형핵 백혈구의 운동 등의 작용을 통해 생체를 방어하는 역할을 한다.
본 발명에 있어서, 상기 개질된 산화철계 나노입자의 껍질 표면에 형광 프로브를 더 결합시킬 수 있다. 상기 형광 프로브로 사용될 수 있는 형광염료는 IRDye, Cy2(상표명), Cy3(상표명), Cy3.5(상표명), Cy5(상표명), Cy5.5(상표명), Cy-크롬, 피코에리트린, PerCP(페리디닌 클로로필-a 단백질), PerCP-Cy5.5, 알렉사 플로어(Alexa Fluor, 상표명) 350, 알렉사 플로어(상표명) 430, 알렉사 플로어(상표명) 488, 알렉사 플로어(상표명) 532, 알렉사 플로어(상표명) 546, 알렉사 플로어(상표명) 568, 알렉사 플로어(상표명) 594, 알렉사 플로어(상표명) 633, 알렉사 플로어(상표명) 647, 알렉사 플로어(상표명) 660, 알렉사 플로어(상표명) 680 을 들 수 있으나, 이에 제한되지 않는다. 본 발명의 일 실시예에서는 형광 프로브로서 클로로톡신인 Cy5.5TM를 사용하였다.
본 발명에 있어서, 상기 표면이 개질된 산화철 나노입자의 평균 직경은 5 - 300 nm 일 수 있다.
다른 하나의 양태로서 본 발명은 상기 글루콘산으로 표면이 개질된 산화철계 나노입자의 상기 껍질 표면에 암세포 표적용 항체 또는 펩타이드가 더 결합된 것을 특징으로 하는 암 진단 및 치료용 산화철계 나노입자를 제공한다.
본 발명에서 상기 암세포 표적용 항체는 암세포 표적 활성을 가지는 항체이면 제한이 없으며 표적 기능을 갖는 항체의 일부를 포함하나, 바람직하게 항-VEGF 항체이다. 또한, 바람직하게는 항체를 결합할 수 있는 링커를 상기 ATP-산화철 나노입자의 표면에 더 결합시킬 수 있다.본 발명의 일 실시예에서는 상기 단일클론 래트 항-마우스 VEGFR-2 항체를 마우스 Flk-1 항체인 DC 101를 사용하여 산화철 나노입자에 컨쥬게이트하여 암 영상화를 시행한 결과, 본 발명의 산화철 나노입자가 암 부위에 분포하고 시간이 지남에 따라 암으로 섭취되는 입자가 증가함을 확인할 수 있었다(도 5 참조). 또한, 본 발명의 일 실시예에서는 상기 항체-글루콘산-ATP-산화철 나노입자의 암 치료효과를 평가하기 위하여, 암 동물모델 MDA-MB231 마우스에 상기 나노입자를 정맥 주사한 후 암의 크기 변화를 조사한 결과, PBS를 주사한 암 동물 모델에 비해 암의 성장이 현저하게 감소한 것을 확인할 수 있었다(도 8 참조).
본 발명에서 상기 암세포 표적용 펩타이드는 암 타겟 리간드이면 제한이 없으나 본 발명의 일 실시예에서는 c-Met에 결합하는 펩타이드(c-Met binding peptide)를 사용하였다. 본 발명의 일 실시예에 따르면, 암세포의 성장에 관여하는 c-Met에 결합하는 펩타이드를 산화철 나노입자에 컨쥬게이트하여 암 영상화를 시행한 결과, 암 세포에 섭취되는 양이 증가함을 확인할 수 있었다 (도 9 참조). 이러한 결과를 통해, 본 발명의 산화철 나노입자가 마크로파지 세포에서의 섭취 감소 효과를 가짐을 알 수 있었다.
또한, 상기 암 진단 및 치료용 산화철 나노입자에 Tc-99m, I-123, I-131, F-18, Ga-67, In-111, 및 Cu-64로 이루어진 군에서 선택되는 방사성동위원소가 더 결합될 수 있다.
다른 하나의 양태로서, 본 발명은 상기 글루콘산으로 표면이 개질된 산화철계 나노입자의 상기 껍질 표면에 암세포 표적용 항체 또는 펩타이드를 결합한 산화철계 나노입자를 포함하는 암 진단 및 치료용 조영제를 제공한다.
본 발명에서 용어, "조영제"란 진단을 목적으로 하여 인위적으로 대조도의 차를 만들어 영상으로 나타낼 수 있도록 하기 위해 사용되어지는 물질이다. 조영제를 사용하는 가장 중요 이유는 모든 병변에 대하여 보다 정확한 특성화 병변의 전반적인 범위를 파악하기 위해서이다. 상기 조영제의 바람직한 일 예로서 (1) 주위 조직과의 적절한 대조도를 형성할 것, (2) 인체에 무해 및 무자극이며 불쾌한 맛, 냄새, 빛깔이 없을 것, (3) 생화적으로 안정된 물질일 것, (4) 되도록 소량으로 조영에 필요한 농도를 얻을 수 있고 적절한 지속성을 가질 것, (5) 목적 장기에 신속하고 쉽게 도입될 수 있을 것, (6) 목적장기의 조영에 적절한 점조도를 가질 것, (7) 검사 후 신속히 체외로 배설 또는 제어되기 쉬운 물질일 것 등의 구비조건을 갖추어야 한다.
본 발명에 따른 조영제는 글루콘산으로 표면 개질되고 최적의 글루콘산 양을 선택함으로써 생체 내 순환시 세망내피계에 의한 섭취의 회피로 인해 목적 장기 또는 병변에 신속하게 도입될 수 있어 진단에 유리한 효과를 가지며, 많은 양이 도달할 수 있게 함으로써 치료효과를 동시에 갖는 특징을 갖는다. 본 발명의 구체적 실시예에서는 상기 단일클론 래트 항-마우스 VEGFR-2 항체를 마우스 Flk-1 항체인 DC 101를 산화철 나노입자에 컨쥬게이트한 결과, 진단 및 치료효과가 있음을 확인할 수 있었다(도 8 참조). 이러한 결과는 본 발명의 산화철 나노입자가 목적 장기 또는 병변에 많은 양이 도달함을 시사하는 것이다.
본 발명의 상기 조영제는 형광프로브를 포함할 수 있으며, 이로 인해 광학영상 또는 자기공명영상에 모두 사용될 수 있는 듀얼 기능을 가질 수 있다.
한편, 상기 글루콘산으로 표면이 개질된 산화철계 나노입자의 상기 표면에 암세포 표적용 항체를 결합한 경우보다 펩타이드를 결합한 경우에 산화철계 나노입자의 생체 내 거동의 조절이 더욱 용이할 것으로 사료된다. 이는 항체의 크기가 산화철 나노입자의 크기와 비교해볼 때 같거나 크기 때문에 단분자인 펩타이드의 경우가 산화철 나노입자의 거동에 좌우될 수 있기 때문이다.
다른 하나의 양태로서, 본 발명은 상기 글루콘산으로 표면이 개질된 산화철계 나노입자의 상기 표면에 암세포 표적용 항체 또는 펩타이드를 결합한 산화철계 나노입자를 포함하는 암 진단 및 치료용 조성물을 제공한다.
본 발명에서 용어, 암의 "진단"이란 병리 상태의 존재 또는 특징을 확인하는 것을 의미한다. 본 발명의 목적상, 진단은 조영제를 통해 암 발병 여부를 확인하는 것이다.
본 발명에서 용어, 암의 "치료"란 본 발명의 산화철계 나노입자를 포함하는 조성물을 체 내에 투여하여 암의 증세가 호전되거나 이롭게 변경하는 모든 행위를 의미한다.
본 발명의 조성물로 치료할 수 있는 암 또는 암종은 특별히 제한되지 않으며, 고형암 및 혈액암을 포함한다. 바람직하게 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 대장암, 결장암, 이자암, 자궁경부암, 뇌암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암, 신장암, 식도암, 담도암, 고환암, 직장암, 두경부암, 경추암, 요관암, 골육종, 신경세포아종, 흑색종, 섬유육종, 횡문근육종, 성상세포종, 신경모세포종 또는 신경교종 등을 포함한다.
본 발명의 상기 암 진단 및 치료용 조성물은 약학적으로 허용되는 담체를 추가로 포함할 수 있다. 경구 투여시에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소 투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다.
본 발명의 상기 암 진단 및 치료용 조성물의 제형은 상술한 바와 같은 약학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여시에는 정제, 트로키, 캡슐, 엘릴시르, 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 또한, 상기 조성물은 전형적으로 막을 통과한 이동을 용이하게 하는 계면활성제를 포함할 수 있다. 이러한 계면활성제는 스테로이드에서 유도된 것이거나 N-[1-(2,3-디올레오일)프로필-N,N,N-트리메틸암모늄클로라이드(DOTMA) 등의 양이온성 지질, 또는 콜레스테롤 헤미숙시네이트, 포스파티딜 글리세롤 등의 각종 화합물 등이 있다.
다른 하나의 양태로서, 본 발명은 (a) 산화철계 중심입자의 표면을 ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 수용성 물질로 코팅하여 껍질을 형성시키는 단계; 및 (b) 상기 껍질 표면에 글루콘산을 결합시켜 표면을 개질시키는 단계를 포함하는 산화철계 나노입자의 제조방법을 제공한다.
상기 (a)단계의 수용성 물질은 바람직하게 ATP일 수 있다.
상기 산화철계 나노입자는 일반적으로 알려져 있는 공침법, 졸-겔법, 열분해법 또는 에멀젼법 등을 제한 없이 사용하여 제조할 수 있으나, ATP를 포함하여 제조해야 하므로, 열에 비교적 불안정한 ATP를 고려하여 공침법을 선택하여 제조하는 것이 바람직하다. 본 발명의 일 실시예에서는, 질소 환경에서 질소로 퍼지된 증류수에 FeCl3와 FeCl2를 용해한 후 ATP를 첨가하여 균일하게 용해하고 암모늄 용액을 첨가한 후, 자석으로 분리하여 증류수로 세척하였으며 건조를 통해 ATP-산화철 나노입자를 얻었다.
본 발명에 있어서, 형광프로브 또는 항체 등의 결합을 가능하게 하기 위하여 상기 글루콘산과 상기 표면코팅된 나노입자를 0.1:1 ~ 3:1의 중량비 결합시키는 것이 바람직하며, 0.9:1 의 중량비로 결합시키는 것이 가장 바람직하다.
또한, 본 발명에 있어서 상기 (b) 단계의 표면개질된 껍질 표면에 형광 프로브를 도입시키는 (c)단계를 더 결합시킬 수 있다. 이 때 상기 형광 프로브는 수용성 단당류로 개질된 나노입자에 1:1~2의 몰비로 첨가하여 반응시킴으로써 나노입자에 도입하는 것이 바람직하다.
상기 형광 프로브로 사용되는 형광염료는 상기에서 개시한 바와 같으며, 본 발명의 일 실시예에서는 글루콘산으로 개질된 ATP-산화철 나노입자를 borate 완충용액에 첨가한 후, Cy5.5 NHS ester를 첨가하여 12시간 동안 반응함으로써 형광프로브인 Cy5.5 를 도입하였다.
본 발명은 상기 표면개질된 껍질 표면에 암세포 표적용 항체 또는 펩타이드를 결합시키는 (d) 단계를 더 포함할 수 있다. 본 발명의 일 실시형태인 산화철 나노입자의 제조방법 과정을 도 1에 개략적으로 나타내었다. 본 발명의 일 실시예에서는 두가지 기능적 그룹을 가진 sulfosuccinimidyl 6-[3'(2-pyridyldithio)-propionamido] (SPDP)를 이용하여, 글루콘산으로 개질되고 Cy5.5가 결합된 ATP-산화철 나노입자를 SPDP용 완충용액에 첨가한 후, SPDP를 첨가한 후 6시간 동안 반응한 다음 완충용액으로 세척하고 항체를 첨가하여 12시간 동안 반응시킴으로써 항체를 결합시켰다.
또한, 상기 본 발명의 산화철 나노입자에 Tc-99m, I-123, I-131, F-18, Ga-67, In-111, 및 Cu-64로 이루어진 군에서 선택되는 방사성동위원소를 표지하는 (e) 단계를 더 포함할 수 있다.
본 발명의 글루콘산으로 표면 개질된 산화철계 나노입자는 세망내피계에 의해 탐식되어 제거되는 정도를 감소시켜서 목적하는 장기 또는 병변으로의 전달을 향상시키고 영상화뿐만 아니라 치료를 동시에 할 수 있는 진단 및 치료용 조영제로서 사용되는 효과를 갖는다.
도 1은 본 발명의 일 실시형태인 산화철 나노입자가 마크로파지 세포에 의한 탐식 작용이 회피되고 글루콘산 코팅이 없는 산화철 나노입자는 마크로파지 세포에 의해 탐식되는 과정을 나타낸 개략도이다.
도 2는 글루콘산 (GA)이 컨쥬게이션된 ATP-산화철나노입자 처리 후 마크로파지 세포 (RAW 세포)의 프루시안블루 (Prussian blue) 염색 사진이다.
도 3은 글루콘산이 컨쥬게이션된 ATP-산화철나노입자 주사 후 1 시간에 마우스의 Ex vivo 광학영상 (A)과 Tc-99m 표지 후 생체 내 분포 그래프 (B) 이다.
도 4는 글루콘산이 컨쥬게이션된 ATP-산화철나노입자를 마우스에 주사한 후 1시간에 주요 장기의 프루시안블루 (Prussian blue) 염색 사진이다.
도 5는 본 발명의 실시예 3형태의 Cy5.5 항체-글루콘산-ATP-산화철 나노입자를 U87MG 마우스 동물 모델에 정맥 주사하여 얻은 광학 영상이다.
도 6은 본 발명의 실시예 3형태의 Cy5.5 항체-글루콘산-ATP-산화철 나노입자를 U87MG 마우스 동물 모델에 정맥 주사하여 얻은 자기공명영상과 암 부위의 자기공명신호 변화 정도를 나타낸 그래프이다.
도 7은 본 발명의 실시예 3형태의 Cy5.5 항체-글루콘산-ATP-산화철 나노입자를 U87MG 마우스 동물 모델에 정맥 주사한 후 암 조직을 적출하여 프로시안 블루 염색을 하여 얻은 현미경 사진이다.
도 8은 본 발명의 실시예 3형태의 Cy5.5 항체-글루콘산-ATP-산화철 나노입자를 U87MG 마우스 동물 모델에 정맥 주사한 후 암의 볼륨을 측정한 그래프와 마우스의 체중변화를 나타낸 그래프이다.
도 9는 본 발명의 실시예 4형태의 Cy5.5 펩타이드-글루콘산-ATP-산화철 나노입자를 U87MG 세포에 처리하여 얻은 (A-D)공초점현미경사진, (E)광학영상과 영상을 분석한 결과를 (F)그래프로 나타낸 것이다.
도 10은 본 발명의 실시예 4형태의 Cy5.5 펩타이드-글루콘산-ATP-산화철 나노입자를 U87MG 마우스 모델에 주사하여 얻은 광학영상이다.
도 11은 본 발명의 실시예 4형태의 I-125-펩타이트-글루콘산-ATP-산화철 나노입자를 U87MG 마우스 동물 모델에 정맥 주사형 얻은 감마 영상과 스펙트/씨티 (SPECT/CT) 퓨젼 영상이다.
도 12는 Cy5.5 펩타이드-글루콘산-ATP-산화철 나노입자를 U87MG 마우스 동물 모델에 정맥 주사하기 (A) 전과 (B) 후의 자기공명영상과 종양 조직의 (C) 프루시안블루염색 사진이다.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실험예 1> 진단용 조영제의 제조
1-1. ATP가 코팅된 산화철 나노입자의 합성
FeCl36H2O와 FeCl24H2O를 각각 250 mg과 92 mg을 라운드 플라스크에 넣고 질소로 퍼지된 증류수를 넣은 후 ATP 100 mg 및 200 mg을 첨가한 다음 질소로 퍼지(purge)하여 상기 플라스크 내 공기를 제거한다. 완전히 용해한 다음으로, 암모늄 용액 7 ml을 첨가한 다음 30분 동안 반응시켰다. 이때, 반응이 진행되면 용액의 색이 검정색으로 바뀌고, 반응종료 후 자석을 이용하여 입자를 수집하였다. 이후, 수집된 산화철 나노입자를 증류수로 세척하였으며 동결 건조를 통해 나노입자를 얻었다. ATP 100 mg을 사용한 경우에는 동결 건조 후 ATP-산화철 나노입자는 물에서 침전되는 현상을 보이는 반면, ATP 200 mg을 사용한 경우는 동결 건조 후 물에서 완전히 분산되었다.
1-2. 글루콘산의 도입
ATP-산화철 나노입자에 글루콘산을 컨쥬게이션하고 마우스에 주사한 후 생체 내 분포를 평가하였다. 너무 과량으로 처리하면 형광프로브 또는 항체 등을 결합시킬 수 없거나 극히 소량 결합되는 문제점이 있을 수 있으므로, 바람직한 컨쥬게이션 양을 확인하는 것이 중요하다. 상기 단계 1에서 제조된 ATP 산화철 나노입자에 글루콘산을 도입하기 위해 ATP-산화철 나노입자 50 mg을 20 ml 바이알에 넣고 0.1 M MES (2-[N-morpholino] ethane sulfonic acid)에 녹인 다음 0.025, 0.25 또는 1.26 μmol의 글루콘산을 첨가하여 용해한다. 하이드록시숙신이미드(N-hydroxyl- succinimide, NHS)와 1-에틸-3(3-다이메틸아미노프로필-카보디미드(1-ethyl- 3(3-dimethyl-aminopropyl)-carbodimide, EDC)를 글루콘산의 2배 몰수로 첨가하여 3시간 동안 반응시켜 글루콘산이 도입된 산화철 나노입자를 제조하였다.
1-3. 형광 프로브의 결합
상기 1-2에서 글루콘산이 도입된 ATP-산화철 나노입자 50 mg을 borate buffer (pH 8.3) 5 ㎖에 첨가시키고, 분산시킨 후 Cy5.5 NHS ester 10 μg을 DMSO에 용해하여 첨가한 다음 12시간 동안 반응시켰다.
1-4. 암 표적을 위한 항체 또는 펩타이드 도입
상기 단계 3에서 합성된 산화철 나노입자에 펩타이드를 도입하기 위해 먼저 SPDP를 결합한 후 항체 또는 펩타이드를 결합시켰다. 항체 또는 펩타이드 이외에도 화학적 표적 리간드를 포함한 암을 표적하는 다양한 표적 리간드를 결합시킬 수 있다. 산화철 나노입자가 분산된 SPDP용 PBS 완충용액에 SPDP를 DMSO에 용해하여 첨가한 후 6시간 동안 반응시키고, 세척한 다음 항체 2 mg 또는 펩타이드 500 μg을 첨가하여 12시간 동안 반응시켰다. 세척한 다음 냉장고에 보관하여 다음 실험에 사용하였다.
1-5. 방사성동위원소 표지
상기 단계에서 1-4에서 합성한 산화철나노입자에 핵의학 영상을 위해 방사성동위원소 I-125를 표지하기 위해 클로라민 티 (chloramines T)을 사용하였다. 표지 효율은 티엘씨(TLC; thin-layer chromatography)를 이용하여 확인하였다.
<실험예 2> 글루콘산-ATP-산화철 나노입자의 마크로파지 세포 섭취 및 생체 내 분포 평가
2-1. 마크로파지 세포 섭취
글루콘산 컨쥬게이션 양에 따라 마크로파지 세포 (RAW 세포)에 의한 ATP-산화철 나노입자의 섭취를 평가하였다. RAW 세포 배지 위에 글루콘산-ATP-산화철 나노입자를 각각 100 μg 처리하고 1시간 후에 배지를 제거하고 PBS로 세척하였다. 산화철 나노입자의 섭취를 평가하기 위해 Prussian blue staining을 시행하였다. 글루콘산의 양이 증가함에 따라 마크로파지 세포에 의한 섭취가 현저하게 감소되는 것을 확인할 수 있었다 (도 2 참조).
2-2. 마우스 정맥 주사 후 생체 내 분포 변화
실험예 1에서 합성한 글루콘산-ATP-산화철 나노입자의 글루콘산 양에 따라 생체 내 분포 변화를 평가하였다. 산화철나노입자에 광학 염료 (Cy5.5) 또는 방사성동위원소를 표지하여 마우스에 주사 후 1시간에 간과 비장 등 주요 장기들에서의 산화철 나노입자의 축적을 평가하였다. 방사성동위원소 표지를 위해 DTPA를 컨쥬게이션하고 Tc-99m를 표지하여 실험에 사용하였다. 도 3과 같이 글루콘산의 양이 증가함에 따라 간과 비장으로의 축적이 줄었다.
또한, 각 장기에 축적된 산화철나노입자를 확인하기 위해 프루시안블루 염색을 시행한 결과 글루콘산 컨쥬게이션 양이 증가함에 따라 간과 비장에서 염색된 산화철 나노입자가 줄어들었다 (도 3 참조).
<실험예 3> 항체를 포함한 글루콘산-ATP-산화철나노입자의 암 진단 및 치료 분석
실험예 1에서 합성한 클루콘산이 컨쥬게이션된 ATP-산화철 나노입자에 여러 암 타겟 리간드를 컨쥬게이션하여 영상화가 가능한지 여부를 확인하기 위해 실험하였다. 먼저, 암의 혈관생성에 관여하는 성장인자의 수용체를 타겟하는 항체(DC101)를 컨쥬게이션하여 암 영상화를 시행하였다.
3-1. 광학영상 획득
실험예 1에서 합성한 산화철 나노입자를 동물 마우스 모델 (U87MG 종양 모델)에 주사하여 광학영상을 획득하였다. 합성한 산화철 나노입자를 마우스 꼬리 정맥에 주사한 후 24시간까지 영상을 획득하였다.
그 결과, 도 5에 나타낸 바와 같이 주사한 후 나노입자가 암 부위에 분포되어 있는 것을 확인할 수 있었다. 시간에 지남에 따라 암으로 섭취되는 산화철 나노입자가 증가하는 것을 확인할 수 있었다.
3-2. 자기공명영상 획득
암 표적 MR 영상을 촬영하기 위하여, 실험예 1에서 합성한 산화철 나노입자 주사 전(a), 후(b) 마우스의 암 중반부 영상을 촬영하였다. 또한 T2 감쇄효과를 정량적으로 평가하기 위해 간 조직 내의 신호세기(signal intensity, SI)를 나노입자 주입 전과 후 동일한 부위를 선택하여 ROI(regions of interest)와 등근육의 신호세기를 측정하여 하기 수학식 1에 의해 암 조직 T2 감쇄효과를 계산하였다.
그 결과, 도 6에 나타낸 바와 같이 실험예 1의 주사 전에는 암 조직이 다소 밝게 보이지만, 나노입자 주사 후 암 조직의 영상이 주입 전과는 달리 현저하게 어둡게 변하는 것을 확인할 수 있다. 또한, 수학식 1에 의하여, 간 질환 부위가 실험예 1의 주사 전 신호세기에 비해 약 22.1%가 감소한 것을 확인하여 간 질환 부위를 확인하였다.
[수학식 1]
Figure PCTKR2010008636-appb-I000001
3-3. 암 조직내 조영제 검출
체내 주입된 산화철 나노입자의 존재를 확인하기 위하여, 실험예 1을 통해 제조한 조영제를 주입한 후, 암 조직을 적출하여 고정액으로 처리한 다음 블록을 제조하여 조직 섹션을 프루시안 블루 염색하여 현미경으로 관찰하였다.
그 결과, 도 7에 나타낸 바와 같이 암 조직 안에 파란색으로 염색된 상기 실험예 1의 조영제가 관찰되었으며, 이를 통해 암 조직 내에 조영제가 존재하는 것을 확인하였다.
3-4. 암 치료효과 평가
상기 항체-글루콘산-ATP-산화철 나노입자의 암 치료효과를 평가하기 위하여, 암 동물모델 MDA-MB231 마우스에 상기 나노입자를 정맥 주사한 후 암의 크기 변화를 조사함으로써 치료효과를 확인하였다. 암 세포 MDA-MB231를 마우스에 주사한 후 10일 후에 상기 나노입자를 3일 간격으로 6차례 주사한 후 마우스의 체중과 암의 볼륨을 측정하였다. PBS를 주사한 암 동물모델에 비해 암의 성장이 현저하게 감소하였고 체중 변화의 차이는 관찰되지 않았다 (도 8 참조).
<실험예 4> cMBP를 포함한 글루콘산-ATP-산화철나노입자의 암 진단 분석
실험예 1에서 합성한 클루콘산이 컨쥬게이션된 ATP-산화철 나노입자에 여러 암 타겟 리간드를 컨쥬게이션하여 영상화가 가능함을 확인하기 위한 분석을 하였다. 암세포의 성장에 관여하는 c-Met에 결합하는 펩타이드를 컨쥬게이션하여 암 영상화를 시행하였다.
4-1. 특이적 암세포 섭취 평가
실험예 1에서 합성한 산화철 나노입자에 c-Met에 결합하는 펩타이드 (c-Met binding peptide, cMBP)를 표면에 결합시키고 암세포 U87MG에 30, 60, 90 μg 처리하여 섭취되는 정도를 공초점형광현미경과 광학영상을 이용하여 평가하였다. 상기 나노입자의 양이 증가함에 따라 세포에 섭취되는 양이 증가하였고, 섭취 저해 실험에서는 나노입자의 섭취가 현저하게 감소되었다 (도 9 참조).
4-2. 광학영상 획득
cMBP-글루콘산-ATP-산화철 나노입자를 동물 마우스 모델 (U87MG 종양 모델)에 주사하여 광학영상을 획득하였다. 합성한 산화철 나노입자를 마우스 꼬리 정맥에 주사한 후 5시간까지 영상을 획득하였다.
그 결과, 도 10에 나타낸 바와 같이 주사한 후 나노입자가 암 부위에 분포되어 있는 것을 확인할 수 있었다. 시간에 따라 암으로 섭취되는 산화철 나노입자가 증가하는 것을 확인할 수 있었다.
4-3. SPECT/CT영상 획득
상기 cMBP-글루콘산-ATP-산화철 나노입자에 I-125를 표지한 후 U87MG 마우스 암 동물 모델에 주사하여 암 표적 SPECT/CT 영상을 촬영하였다.
그 결과, 도 11에 나타낸 바와 같이 암 부위에 섭취되는 것을 알 수 있고, 주사 후 3시간째 3.5%ID/g 섭취되었음을 확인하였다.
4-4. 자기공명영상 획득 및 암 조직에서의 조영제 검출
암 표적 MR 영상을 촬영하기 위하여, 상기 cMBP-글루콘산-ATP-산화철 나노입자 주사 전(A), 후(B) 마우스의 암 중반부 영상을 촬영하였다. 또한 T2 감쇄효과를 정량적으로 평가하기 위해 간 조직 내의 신호세기(signal intensity, SI)를 나노입자 주입 전과 후 동일한 부위를 선택하여 ROI(regions of interest)와 등근육의 신호세기를 측정하여 상기 수학식 1에 의해 암 조직 T2 감쇄효과를 계산하였다.
그 결과, 도 12(A), 도 12(B)에 나타낸 바와 같이 상기 나노입자의 주사 전에는 암 조직이 다소 밝게 보이지만, 나노입자 주사 후 암 조직의 영상이 주입 전과는 달리 현저하게 어둡게 변하는 것을 확인할 수 있다.
또한, 암 조직에 섭취된 산화철 나노입자의 존재를 확인하기 위하여, 암 조직을 적출하여 고정액으로 처리한 다음 블록을 제조하여 조직 섹션을 프루시안 블루 염색하여 현미경으로 관찰하였다.
그 결과, 도 12(C)에 나타낸 바와 같이 암 조직 안에 파란색으로 염색된 상기 나노입자가 관찰되었으며, 이를 통해 암 조직 내에 조영제가 존재하는 것을 확인하였다.
본 발명은 산화철 나노입자의 표면개질 후 세망내피계에 의해 탐식되어 제거되는 정도를 감소시켜서 목적하는 장기 또는 병변으로의 전달을 향상시키고 영상화뿐만 아니라 치료를 동시에 할 수 있는 진단 및 치료용 조영제로서 산업상 이용가능하다.

Claims (11)

  1. 산화철계 중심입자; ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 수용성 물질에 의해 코팅된 껍질; 및 상기 껍질 표면에 결합된 글루콘산을 포함하는 산화철계 나노입자.
  2. 제1항에 있어서, 상기 나노입자의 표면에 형광 프로브가 더 결합된 것인 산화철계 나노입자.
  3. 제1항에 있어서, 상기 나노입자의 직경은 5 - 300 nm 인 산화철계 나노입자.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 산화철계 나노입자의 상기 껍질 표면에 암세포 표적용 항체 또는 펩타이드, 화학적 리간드를 포함한 암표적용 리간드가 더 결합된 것을 특징으로 하는 암 진단 및 치료용 산화철계 나노입자.
  5. 제4항에 있어서, 상기 산화철계 나노입자의 상기 껍질 표면에 Tc-99m, I-123, I-131, F-18, Ga-67, In-111, 및 Cu-64로 이루어진 군에서 선택되는 방사성동위원소가 더 결합된 것을 특징으로 하는 암 진단 및 치료용 산화철계 나노입자.
  6. 제4항에 따른 산화철계 나노입자를 포함하는 암 진단 및 치료용 조영제.
  7. 제4항에 따른 산화철계 나노입자를 포함하는 암 진단 및 치료용 조성물.
  8. (a) 산화철계 중심입자의 표면을 ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 수용성 물질로 코팅하여 껍질을 형성시키는 단계; 및
    (b) 상기 껍질 표면에 글루콘산을 결합시켜 표면을 개질시키는 단계를 포함하는 산화철계 나노입자의 제조방법.
  9. 제8항에 있어서, 상기 (b) 단계의 표면개질된 껍질 표면에 형광 프로브를 도입시키는 (c) 단계를 더 포함하는 제조방법.
  10. 제8항에 있어서, 상기 표면개질된 껍질 표면에 암세포 표적용 항체 또는 펩타이드를 결합시키는 (d) 단계를 더 포함하는 제조방법.
  11. 제21항에 있어서, 상기 산화철계 나노입자의 껍질 표면에 Tc-99m, I-123, I-131, F-18, Ga-67, In-111, 및 Cu-64로 이루어진 군에서 선택되는 방사성동위원소를 표지하는 (e) 단계를 더 포함하는 제조방법.
PCT/KR2010/008636 2010-10-31 2010-12-03 최적의 글루콘산 도입으로 향상된 생체 적용능을 확보한 글루콘산과 비고분자 생체 존재물질이 표면개질제로 도입된 산화철 나노입자 및 이를 포함한 암 진단 및 치료용 조성물 WO2012057401A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100107382A KR101386715B1 (ko) 2010-10-31 2010-10-31 최적의 글루콘산 도입으로 향상된 생체 적용능을 확보한 글루콘산과 비고분자 생체 존재물질이 표면개질제로 도입된 산화철 나노입자 및 이를 포함한 암 진단 및 치료용 조성물
KR10-2010-0107382 2010-10-31

Publications (1)

Publication Number Publication Date
WO2012057401A1 true WO2012057401A1 (ko) 2012-05-03

Family

ID=45994093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008636 WO2012057401A1 (ko) 2010-10-31 2010-12-03 최적의 글루콘산 도입으로 향상된 생체 적용능을 확보한 글루콘산과 비고분자 생체 존재물질이 표면개질제로 도입된 산화철 나노입자 및 이를 포함한 암 진단 및 치료용 조성물

Country Status (2)

Country Link
KR (1) KR101386715B1 (ko)
WO (1) WO2012057401A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076760A3 (ru) * 2014-11-11 2016-07-14 Петр Иванович НИКИТИН Субстанция и способ применения упомянутой субстанции для модуляции активности агента в организме
EP4306208A1 (en) * 2022-07-13 2024-01-17 Achille Cester Process for making active carriers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502572A (ja) * 2002-10-09 2006-01-19 フェロファーマ ゲーエムベーハー フォルシュングスラボア 安定化超常磁性粒子
KR20100031885A (ko) * 2008-09-16 2010-03-25 전북대학교산학협력단 다기능성 산화철 나노입자 및 이를 이용한 진단 조영제

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060140871A1 (en) 2004-11-30 2006-06-29 Sillerud Laurel O Magnetic resonance imaging of prostate cancer
KR100713745B1 (ko) 2006-02-27 2007-05-07 연세대학교 산학협력단 상전이 리간드로 코팅된 수용성 자성 또는 금속 산화물나노입자 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502572A (ja) * 2002-10-09 2006-01-19 フェロファーマ ゲーエムベーハー フォルシュングスラボア 安定化超常磁性粒子
KR20100031885A (ko) * 2008-09-16 2010-03-25 전북대학교산학협력단 다기능성 산화철 나노입자 및 이를 이용한 진단 조영제

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076760A3 (ru) * 2014-11-11 2016-07-14 Петр Иванович НИКИТИН Субстанция и способ применения упомянутой субстанции для модуляции активности агента в организме
RU2683020C2 (ru) * 2014-11-11 2019-03-26 Петр Иванович Никитин Субстанция и способ для модуляции активности агента в организме
EP4306208A1 (en) * 2022-07-13 2024-01-17 Achille Cester Process for making active carriers

Also Published As

Publication number Publication date
KR20120045690A (ko) 2012-05-09
KR101386715B1 (ko) 2014-04-21

Similar Documents

Publication Publication Date Title
Yang et al. Affibody modified and radiolabeled gold–iron oxide hetero-nanostructures for tumor PET, optical and MR imaging
Yang et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging
Xie et al. PET/NIRF/MRI triple functional iron oxide nanoparticles
US8557607B2 (en) Magnetic nanoparticles
Jain et al. Diagnostic nanocarriers for sentinel lymph node imaging
US5260050A (en) Methods and compositions for magnetic resonance imaging comprising superparamagnetic ferromagnetically coupled chromium complexes
US5059415A (en) Method for diagnostically imaging lesions in the brain inside a blood-brain barrier
KR101050401B1 (ko) 이중 방식 pet/mr 조영제
EP1960002B1 (de) Wässrige dispersion von superparamagnetischen eindomänenteilchen, deren herstellung und verwendung zur diagnose und therapie
Liu et al. ScFv-conjugated superparamagnetic iron oxide nanoparticles for MRI-based diagnosis in transgenic mouse models of Parkinson’s and Huntington’s diseases
KR101142152B1 (ko) 긴 소수성 사슬이 도입된 리간드로 코팅된 나노입자 및 이의 제조방법
Zhang et al. The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI
Gallo et al. RGD-targeted MnO nanoparticles as T 1 contrast agents for cancer imaging–the effect of PEG length in vivo
Bae et al. Bimodal perfluorocarbon nanoemulsions for nasopharyngeal carcinoma targeting
US20180117188A1 (en) Radiolabeled active targeting pharmaceutical composition and the use thereof
BR112019023725A2 (pt) Partícula de derivado de bilirrubina, uso da mesma, composição, e, método para preparar uma partícula de derivado de bilirrubina
KR101485389B1 (ko) 조영제 조성물 및 이를 이용한 바이오 영상화 방법
WO2010060212A1 (en) Single-domain antibody targeted formulations with superparamagnetic nanoparticles
WO2005067982A2 (en) Methods for imaging the lymphatic system using dendrimer-based contrast agents
WO2012057401A1 (ko) 최적의 글루콘산 도입으로 향상된 생체 적용능을 확보한 글루콘산과 비고분자 생체 존재물질이 표면개질제로 도입된 산화철 나노입자 및 이를 포함한 암 진단 및 치료용 조성물
KR101042399B1 (ko) 다기능성 산화철 나노입자 및 이를 이용한 진단 조영제
CN112426539A (zh) 用于检测早期肝细胞癌的磁共振分子探针
KR100974082B1 (ko) 간질환 진단용 조영제 및 이의 제조방법
Li et al. Single-protein-based theranostic nanosystem within sub-10 nm scale for tumor imaging and therapy
Chauhan et al. Evaluation of biotinylated magnetic nanoparticles for tumour imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859015

Country of ref document: EP

Kind code of ref document: A1