WO2012057241A1 - Hydraulic pressure circuit control method - Google Patents

Hydraulic pressure circuit control method Download PDF

Info

Publication number
WO2012057241A1
WO2012057241A1 PCT/JP2011/074745 JP2011074745W WO2012057241A1 WO 2012057241 A1 WO2012057241 A1 WO 2012057241A1 JP 2011074745 W JP2011074745 W JP 2011074745W WO 2012057241 A1 WO2012057241 A1 WO 2012057241A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
variable displacement
pump
discharge pressure
discharge
Prior art date
Application number
PCT/JP2011/074745
Other languages
French (fr)
Japanese (ja)
Inventor
憲平 山路
Original Assignee
ボッシュ・レックスロス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ・レックスロス株式会社 filed Critical ボッシュ・レックスロス株式会社
Publication of WO2012057241A1 publication Critical patent/WO2012057241A1/en
Priority to US13/865,821 priority Critical patent/US9429152B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram

Definitions

  • the present invention relates to a hydraulic circuit control method applied to a machine such as a construction machine that uses a bleed-off hydraulic system.
  • Patent Documents 1 and 2 disclose a method of controlling the variable displacement pump by electrical calculation so that the actuators are connected via the respective valves, and the closed center type directional control valve is replaced with a center bypass type directional control valve. Proposed in
  • An operation amount for operating the actuator is input to the controller including the calculation means.
  • the controller calculates the virtual pump discharge pressure command P idea by calculating the bleed-off characteristic of the closed center type directional control valve using the virtual pump discharge amount Q idea , the pump discharge amount estimated value and the operation amount as parameters, and the closed-loop pressure control
  • the pump discharge command Q pc is transmitted to the variable displacement pump by calculation.
  • the actual discharge amount Q real is calculated, and the difference between this discharge amount Q real and the actuator flow rate Q a is multiplied by the coefficient (1 / Cp) of the actual pump piping system and further integrated.
  • the actual pump discharge pressure P real is obtained.
  • the horsepower calculation in the controller is based on a characteristic curve that defines the relationship between the discharge pressure and the discharge flow rate of the virtual pump based on the actual pump discharge pressure P real when calculating the discharge amount Q idea of the virtual pump. Making a decision.
  • control is normally performed such that the discharge flow rate is constant up to a predetermined pressure P1, and the product of the pressure and the flow rate is constant when the pressure P1 is exceeded.
  • the characteristic calculation is divided into cases where the pressure P is less than P1 and exceeds P1. There is a need to do.
  • the present invention can determine the bleed-off characteristic of the directional control valve without affecting the bleed-off characteristic of each actuator without being affected by the calculation of the horsepower characteristic of the pump, and effectively uses the horsepower of the pump. It is an object of the present invention to provide a hydraulic circuit control method that can be used.
  • the hydraulic circuit control method according to the present invention includes a plurality of closed center type directional control valves in a variable displacement pump driven by an engine and having an adjustable pump discharge amount from the outside.
  • a hydraulic circuit control method for controlling the variable displacement pump so that the closed center type directional control valve is substituted for a center bypass type directional control valve in a hydraulic circuit having an actuator connected thereto The variable displacement pump detects the actual discharge amount, the actual discharge pressure, and the operation amount of each directional control valve, and based on the characteristic curve that defines the relationship between the discharge pressure and the discharge amount of the variable displacement pump, the variable The first virtual discharge pressure is determined from the actual discharge amount of the capacity pump, the actual pump discharge amount is set as an actuator flow rate required for the actuator, and the operation is performed.
  • the bleed-off area of the closed center type directional control valve is determined according to the bleed-off flow, and the bleed-off flow is determined based on the bleed-off area.
  • the second virtual discharge pressure of the variable displacement pump is determined on the basis of the value obtained by subtracting, and the smaller one of the first and second virtual discharge pressures is determined. Based on this, the variable displacement pump is controlled.
  • a plurality of the variable displacement pumps are connected to the engine, and a plurality of the variable displacement pumps are connected to the plurality of variable displacement pumps.
  • the actuator is connected via a closed center type directional control valve, a ratio of horsepower distributed to the variable displacement pumps of the engine is determined according to the operation amount of each actuator, and the distributed each The first virtual discharge pressure is determined from the horsepower and the actual discharge amount of the variable displacement pump.
  • the characteristic curve has a constant discharge amount up to a predetermined discharge pressure region, and a region exceeding the predetermined pressure. Is characterized in that the product of the discharge pressure and the discharge flow rate is constant.
  • the first virtual discharge pressure is a discharge pressure of the variable displacement pump required for each actuator.
  • the horsepower of the variable displacement pump that is calculated as a sum and distributed to the actuators is determined in advance, and for each of the actuators, the actual discharge amount from the distributed horsepower to the actuators, and the first or By subtracting the value obtained by integrating the smaller one of the second virtual discharge pressures, the surplus horsepower for each actuator is calculated, and the horsepower of one actuator is The sum of the surplus horsepower of the remaining actuators is added to the horsepower distributed to the actuators.
  • the first virtual discharge pressure is variable in accordance with an operation amount of each directional control valve. It is characterized by.
  • the virtual pump discharge amount is used when calculating the bleed-off flow rate, so that the control of the bleed-off flow rate is not affected by the actual horsepower calculation of the pump. Even in the horsepower calculation area, the pump horsepower can be effectively utilized even when the actual pump discharge amount is small and the actual load on the actuator is small.
  • FIG. 1 is a hydraulic circuit diagram for explaining a control method for a variable displacement pump according to an embodiment of the present invention.
  • Block diagram for explaining the control of FIG. Explanatory drawing of the part enclosed with the dotted line A of FIG.
  • Block diagram for explaining another embodiment of the present invention Block diagram for explaining another embodiment of the present invention
  • Block diagram for explaining conventional bleed-off characteristic calculation Block diagram for explaining conventional bleed-off characteristic calculation
  • FIG. 1 shows a hydraulic circuit applied to a hydraulic excavator or the like for controlling the operation of a plurality of hydraulic actuators 1, which are closed to a discharge circuit 3 of a variable displacement pump 2 driven by a drive motor PM. It is connected via the center closed center type directional control valves 4, 4.
  • the variable displacement pump 2 is a known one such as an axial piston pump having a pump displacement control mechanism such as a swash plate.
  • the term “closed center type directional control valve” refers to a valve configured not to bypass oil to the tank when the spool is in the neutral position. Refers to a valve configured to bypass the oil to the tank when the spool is in the neutral position.
  • the pump pressure control device 6 includes a control valve 6b and a negative electromagnetic proportional valve 6c.
  • the actual pump discharge pressure P real of the pump 2 and the elastic force of the spring 6d are negative at both ends of the spool of the control valve 6b.
  • type electromagnetic proportional valve 6c pressure signal P 'c is controlled such by, but on both ends of the spool are suitable Naru area difference is given, the control valve 6b is accordingly, they are controlled by their balance.
  • Negative solenoid proportional valve 6c the pressure signal P 'c, and the controller 12, the signal P' of the input side facing the spring and to the proportional solenoid 6a is that in proportion to the control current input based idea is variable Controlled by balance with generated force.
  • the virtual pump discharge pressure command P idea obtained from the bleed-off characteristic calculation is subtracted from the maximum discharge pressure of the pump in order to perform negative control.
  • the inverted signal P ′ idea is transmitted to the proportional solenoid 6c of the negative electromagnetic proportional valve.
  • the virtual pump discharge pressure command P idea is inverted to the negative type, and then the proportional solenoid 6a of the pump pressure control device 6 is excited through the solenoid drive amplifier 5, and the excitation is performed through the negative type electromagnetic proportional valve.
  • the control valve 6b is operated in inverse proportion to the size of the valve (and therefore in proportion to the virtual pump discharge pressure command P idea ).
  • the control piston 7 moves the pump displacement control mechanism, and the pump displacement, that is, the pump discharge. Control the amount large or small.
  • the “negative type” means that the output value gradually decreases with respect to the input value.
  • a proportional relief valve is used as the negative electromagnetic proportional valve 6c.
  • an electromagnetic proportional pressure reducing valve is used in the present invention.
  • the system means that the pump can be moved at a predetermined pressure or the like when a signal is not obtained, and the output value gradually decreases when a signal is input.
  • the closed center type directional control valve 4 includes a proportional solenoid 8 for moving the spool.
  • the solenoid drive amplifier 13 is operated by the electric joystick 9 via the controller 12, the closed directional control valve 4 is in accordance with the inclination angle of the electric joystick 9.
  • the proportional solenoid 8 is excited, the spool of the closed center type directional control valve 4 is moved to a desired position, and the actuator ports 10 and 10 are controlled to the opening areas Ac1 and Ac2 according to the moving distance.
  • a command amount such as an inclination angle of an operation lever for operating each closed center type directional control valve 4 or a movement amount of a spool of each closed center type directional control valve 4 is electrically detected by a sensor, and the command amount or movement is detected.
  • the operation amount signal S based on the operation amount of each closed center type directional control valve 4 is set as the operation amount, and in the example of FIG. 1, the command electric signal from the electric joystick 9 to the solenoid drive amplifier 13 via the controller 12 is the operation amount. Used as a signal.
  • the actuator flow rate Q a is closed because de center type directional control valve 4 is actually a Allport closed valve without bleed-off channel, ignoring the slight leakage of the circuit, the actual output of the pump 2
  • the quantity Q real can be substituted for the actuator flow rate Q a .
  • the actuator flow rate Q a is obtained by providing the variable displacement pump 2 with a discharge amount detection sensor 11 and multiplying the tilt amount detected by the discharge amount detection sensor 11 by the rotation speed of the pump 2. and to calculate the actuator flow rate Q a.
  • the discharge amount detection sensor for example, when the variable displacement pump 2 is a swash plate type variable displacement pump or a radial pump, a potentiometer or the like can be used.
  • a controller 12 including an A / D converter 12a, a calculator 12b, and a D / A converter 12c.
  • the calculator 12b automatically performs the calculation shown in the block diagram of FIG. Run in a controlled manner.
  • the variable displacement pump 2 is controlled based on the minimum value obtained by comparing either the discharge pressure or the second virtual discharge pressure obtained based on the operation amount.
  • the reason why the maximum discharge pressure of the variable displacement pump 2 is compared is to prevent a discharge pressure higher than the maximum discharge pressure of the variable displacement pump 2 from being indicated as the discharge pressure of the variable displacement pump 2.
  • the maximum discharge pressure is not always necessary as long as the present invention is implemented.
  • the actual discharge amount of the variable displacement pump 2 is converted into a first virtual discharge pressure by a characteristic curve as shown.
  • the characteristic curve is such that the discharge amount is constant with respect to the discharge pressure up to a predetermined pressure P1, and the product of the discharge pressure and the discharge amount is constant in a region exceeding P1. preferable.
  • the second virtual discharge pressure is obtained from the discharge amount of the variable displacement pump 2 by a process indicated by a dotted line A in FIG.
  • FIG. 3 receives an input of an operation amount S k of the plurality of closed center directional control valve 4, their sum S 1 + S 2 + ⁇ take S n, the operation amount of the total Let it be signal S. At this time, each input may be weighted or an appropriate calculation process may be performed.
  • the opening area Ab of the bleed-off flow path of the closed center type directional control valve corresponding to the planned bleed-off characteristic is obtained from the manipulated variable signal S, and the bleed-off characteristic value Xb is obtained by multiplying it by Kq (flow coefficient).
  • the actual closed center type directional control valve 4 is a closed center without a bleed-off flow path, and this opening area Ab is a value in calculation.
  • the bleed-off characteristic is determined by determining in advance the relationship between the opening area Ab and the operation amount S.
  • the virtual discharge amount Q idea of the variable displacement pump 2 is set to a predetermined value. At this time, since the maximum discharge amount of the variable displacement pump 2 is a known number, this value can also be used.
  • the actuator flow rate as described above, for example, from inputted as a flow rate signal from the actual pump discharge quantity Q real, flow rate value Xa calculated by subtracting the actual pump discharge quantity Q real virtual pump discharge quantity Q idea bleed Corresponds to off flow rate.
  • the virtual pump discharge pressure command P idea is calculated by dividing this Xa by Xb and calculating the value to the nth power (n is an integer of 3 or more). Then, based on the virtual pump discharge pressure command P idea , the discharge pressure is closed-loop controlled.
  • the solenoid drive amplifier 5 receives the control signal based on the virtual pump discharge pressure command P idea and increases or decreases the excitation of the electromagnetic proportional valve 6a, and subtracts the subtraction between the virtual pump discharge pressure P idea and the actual pump discharge pressure P real.
  • the control piston 7 controls the pump discharge amount in accordance with a command from the control valve 6b, using the negative electromagnetic proportional valve 6c and the control valve 6b.
  • the closed center type directional control valve 4 When the electric joystick 9 is not operated, the closed center type directional control valve 4 is in the neutral position, and zero is input to the controller 12 as the operation amount signal S. In this case, the opening area of the bleed-off passage which is calculated by the controller 12 because maximized, virtual pump discharge pressure P idea becomes a small value.
  • the opening area of the bleed-off flow path calculated by the controller 12 becomes small, and the virtual pump discharge pressure P idea is once
  • the total pump discharge amount is set to a value when returning from the narrowed bleed-off flow path to the tank with a small area. Since the pump discharge pressure is closed-loop controlled, the actual pump discharge pressure P real is substantially equal to the value of the virtual pump discharge pressure P idea . If the actual pump discharge pressure P real is higher than the load pressure, the actuator 1 is accelerated and the oil begins to flow. Therefore, the pump discharge amount is increased to keep the actual pump discharge pressure P real at the virtual pump discharge pressure P idea.
  • the bleed-off flow rate decreases, so the virtual pump discharge pressure P idea and consequently the actual pump discharge pressure P real decreases, the actuator acceleration decreases, and the actuator speed gradually matches the operating amount. It converges and balances the pump discharge amount and discharge pressure to be maintained.
  • the bleed-off operation is performed only by calculation within the controller, and the actual pump discharge amount Q real is limited to the amount supplied to the actuator 1 if the leakage on the circuit is ignored. Therefore, there is no waste of energy because the bleed-off flow rate does not flow, and since the bleed-off flow path is not required for the closed center type directional control valve, the configuration is simple and inexpensive, and the operability is improved.
  • FIG. 4 shows a modified example of the horsepower calculation in the block diagram of FIG.
  • the number of actuators 1 connected to the variable displacement pump 2 is two, and the horsepower of the variable displacement pump 2 is distributed to each actuator 1 at a ratio of 0.5 in advance.
  • the first virtual discharge pressure is calculated as the total discharge pressure of the variable displacement pump 2 required for each actuator 1.
  • Each actuator 1 is obtained by integrating the actual discharge amount to each actuator 1 and the smaller one of the first and second virtual discharge pressures from the distributed horsepower.
  • the surplus horsepower for each actuator 1 is calculated by subtracting the obtained value.
  • the horsepower of one actuator 1 is set to a value obtained by adding the total horsepower of the remaining actuators to the horsepower distributed to the actuator 1. According to this configuration, surplus horsepower distributed to each actuator can be effectively utilized.
  • the operation of the controller 12 is performed according to the block diagram shown in FIG. 5 with the same hydraulic circuit configuration as in FIG.
  • input of operation amounts S1, S2,..., Sk,..., Sn of the plurality of closed center type directional control valves 4 is received.
  • the opening area Ab of the bleed-off flow path of the closed center type directional control valve corresponding to the planned bleed-off characteristic is obtained by the following equation. In the formula, Abk corresponds to Sk.
  • variable displacement pump is controlled by the above configuration, operability in accordance with the required characteristics of each actuator can be obtained.
  • the first virtual discharge pressure is made variable according to the operation amount of each directional control valve (for example, the flow rate of the pump is increased in a quadratic function according to the operation amount)
  • Solving the single operation reduces the resistance at the meter-in throttle, avoids energy loss, enhances the shunt control effect at meter-in during combined operation, and allows combined operation of actuators with different loads.

Abstract

Provided is a control method of a variable capacity pump with which it is possible to control according to a bleed-off characteristic of each actuator with a high degree of freedom. [Solution] An actual discharge volume and an actual discharge pressure of a variable capacity pump, and a degree of operation of each directional control valve, are detected. A first virtual discharge pressure is determined from the actual discharge volume of the variable capacity pump on the basis of a characteristic curve which establishes a relation between the discharge pressure and the discharge volume of the variable capacity pump. The actual pump discharge volume is treated as an actuator flow which is necessary for the actuator. A bleed-off area of a closed-center directional control valve is determined according to the degree of operation. A bleed-off flow is determined on the basis of the bleed-off area. A second virtual discharge pressure of the variable capacity pump is determined on the basis of a value obtained by subtracting the actuator flow and the bleed-off flow from the actual discharge volume of the variable capacity pump. The variable capacity pump is controlled on the basis of the smaller of either the first or second virtual discharge pressure.

Description

油圧回路の制御方法Control method of hydraulic circuit
 本発明は、ブリードオフ油圧システムを利用している建設機械等の機械に適用される油圧回路の制御方法に関する。 The present invention relates to a hydraulic circuit control method applied to a machine such as a construction machine that uses a bleed-off hydraulic system.
 本出願人は、油圧ショベルなどの建設機械の分野において使用される油圧回路について、エンジンで駆動され、且つ、外部からポンプ吐出量の調整可能な可変容量ポンプに、複数のクローズドセンター型方向制御弁を介してそれぞれアクチュエータを接続し、前記クローズドセンター型方向制御弁が、センターバイパス型の方向制御弁の代わりとなるように、電気的演算により前記可変容量ポンプを制御する方法を特許文献1及び2において提案している。 The applicant of the present invention relates to a hydraulic circuit used in the field of construction machinery such as a hydraulic excavator and a plurality of closed center type directional control valves in a variable displacement pump driven by an engine and adjustable in pump discharge amount from the outside. Patent Documents 1 and 2 disclose a method of controlling the variable displacement pump by electrical calculation so that the actuators are connected via the respective valves, and the closed center type directional control valve is replaced with a center bypass type directional control valve. Proposed in
 特許文献2に示される回路の動作について、図6及び図7を用いて簡単に説明すると、演算手段を備えたコントローラには、アクチュエータを操作するための操作量が入力される。コントローラでは、仮想ポンプの吐出量Qidea、ポンプ吐出量推定値及び操作量をパラメータとして、クローズドセンター型方向制御弁のブリードオフ特性演算により、仮想ポンプ吐出圧指令Pideaを算出し、閉ループ圧力制御演算によりポンプ吐出量指令Qpcを、可変容量ポンプに伝える。可変容量ポンプでは、実際の吐出量Qrealが算出され、この吐出量Qrealと、アクチュエータ流量Qaとの差が、実際のポンプ配管系の係数(1/Cp)に乗算され、更に積分されることにより、実際のポンプ吐出圧Prealが得られる。 The operation of the circuit disclosed in Patent Document 2 will be briefly described with reference to FIGS. 6 and 7. An operation amount for operating the actuator is input to the controller including the calculation means. The controller calculates the virtual pump discharge pressure command P idea by calculating the bleed-off characteristic of the closed center type directional control valve using the virtual pump discharge amount Q idea , the pump discharge amount estimated value and the operation amount as parameters, and the closed-loop pressure control The pump discharge command Q pc is transmitted to the variable displacement pump by calculation. In the variable displacement pump, the actual discharge amount Q real is calculated, and the difference between this discharge amount Q real and the actuator flow rate Q a is multiplied by the coefficient (1 / Cp) of the actual pump piping system and further integrated. Thus, the actual pump discharge pressure P real is obtained.
特許第3471638号公報Japanese Patent No. 3471638 特許第3745038号公報Japanese Patent No. 3745038
 上記コントローラにおける馬力演算は、仮想ポンプの吐出量Qideaを演算する際に、実際のポンプの吐出圧Prealに基づいて、仮想ポンプの吐出圧力と吐出流量の関係を定義した特性曲線に基づいて決定をしている。この特性曲線は、所定の圧力P1までは吐出流量を一定とし、圧力P1を超えると圧力と流量の積が一定となるような制御を通常行うようにしている。
 しかしながら、圧力P1を超えた場合に、仮想ポンプの吐出量Qideaが減少するために、その後に続くブリードオフ演算の過程において、圧力PがP1以下とP1を超える場合とを分けて特性演算を行う必要がある。また、P1を超える領域においては、実際のポンプの吐出量Qrealが小さい場合に、アクチュエータの負荷が小さいにもかかわらず、実際のポンプの吐出圧Prealに基づいて馬力の演算が行われるために、定格の馬力に達したとして実際のポンプの吐出量Qrealを下げるような演算結果が得られることになり、有効にポンプの馬力を活用することができなかった。
The horsepower calculation in the controller is based on a characteristic curve that defines the relationship between the discharge pressure and the discharge flow rate of the virtual pump based on the actual pump discharge pressure P real when calculating the discharge amount Q idea of the virtual pump. Making a decision. In this characteristic curve, control is normally performed such that the discharge flow rate is constant up to a predetermined pressure P1, and the product of the pressure and the flow rate is constant when the pressure P1 is exceeded.
However, since the discharge amount Q idea of the virtual pump decreases when the pressure P1 is exceeded, in the subsequent bleed-off calculation process, the characteristic calculation is divided into cases where the pressure P is less than P1 and exceeds P1. There is a need to do. In the region exceeding P1, when the actual pump discharge amount Qreal is small, the horsepower is calculated based on the actual pump discharge pressure Preal even though the actuator load is small. In addition, if the rated horsepower is reached, a calculation result that lowers the actual pump discharge amount Qreal is obtained, and the horsepower of the pump cannot be used effectively.
 そこで、本発明は、各アクチュエータ毎のブリードオフ特性をポンプの馬力特性の演算に影響されることなく、方向制御弁のブリードオフ特性を決定することができ、しかも、ポンプの馬力を有効に活用することができる油圧回路の制御方法を提供することを目的とするものである。 Therefore, the present invention can determine the bleed-off characteristic of the directional control valve without affecting the bleed-off characteristic of each actuator without being affected by the calculation of the horsepower characteristic of the pump, and effectively uses the horsepower of the pump. It is an object of the present invention to provide a hydraulic circuit control method that can be used.
 上記課題を解決すべく、下記の通り解決手段を見いだした。
 即ち、本発明の油圧回路の制御方法は、請求項1に記載の通り、エンジンで駆動され、且つ、外部からポンプ吐出量の調整可能な可変容量ポンプに、複数のクローズドセンター型方向制御弁を介してアクチュエータを接続した油圧回路において、前記クローズドセンター型方向制御弁が、センターバイパス型の方向制御弁の代わりとなるように、前記可変容量ポンプを制御する油圧回路の制御方法であって、前記可変容量ポンプの現実の吐出量、現実の吐出圧及び前記各方向制御弁の操作量を検出し、前記可変容量ポンプの吐出圧と吐出量との関係を定めた特性曲線に基づいて、前記可変容量ポンプの現実の吐出量から第1の仮想の吐出圧を決定し、前記現実のポンプ吐出量を前記アクチュエータに必要なアクチュエータ流量とし、前記操作量に応じてクローズドセンター型方向制御弁のブリードオフ面積を決定し、前記ブリードオフ面積に基づいてブリードオフ流量を決定し、前記可変容量ポンプの現実の吐出量から、前記アクチュエータ流量及び前記ブリードオフ流量を減算することにより得られた値に基づいて、前記可変容量ポンプの第2の仮想の吐出圧を決定し、前記第1又は第2の仮想の吐出圧の何れかの小さい方の吐出圧に基づいて、前記可変容量ポンプを制御することを特徴とする。
 また、請求項2に記載の本発明は、請求項1に記載の油圧回路の制御方法において、前記エンジンに、前記可変容量ポンプを複数台接続し、前記可変容量ポンプのそれぞれに、複数の前記クローズドセンター型方向制御弁を介して前記アクチュエータを接続し、前記アクチュエータ毎の前記操作量に応じて、前記エンジンの前記各可変容量ポンプへ分配される馬力の比率を決定し、前記分配された各馬力と前記可変容量ポンプの現実の吐出量から第1の仮想の吐出圧を決定することを特徴とする。
 また、請求項3に記載の本発明は、請求項1に記載の油圧回路の制御方法において、前記特性曲線は、所定の吐出圧の領域までは一定の吐出量とし、前記所定圧を超える領域は、吐出圧と吐出流量との積が一定となるものであることを特徴とする。
 また、請求項4に記載の本発明は、請求項1に記載の油圧回路の制御方法において、前記第1の仮想の吐出圧は、前記各アクチュエータ毎に必要な前記可変容量ポンプの吐出圧の合計として算出され、前記各アクチュエータに分配される前記可変容量ポンプの馬力を予め定め、前記各アクチュエータ毎に、前記分配された馬力から、前記各アクチュエータへの現実の吐出量と、前記第1又は第2の仮想の吐出圧の何れか小さい方の吐出圧とを積算して得られた値を減算して、前記各アクチュエータ毎の余剰の馬力を算出し、1つの前記アクチュエータの馬力を、該アクチュエータに分配された馬力に、残りのアクチュエータの前記余剰の馬力の合計を加算した値とすることを特徴とする。
 また、請求項5に記載の本発明は、請求項1に記載の油圧回路の制御方法において、前記第1の仮想の吐出圧を、前記各方向制御弁の操作量に応じて可変とすることを特徴とする。
In order to solve the above problems, the inventors have found a solution as follows.
In other words, the hydraulic circuit control method according to the present invention includes a plurality of closed center type directional control valves in a variable displacement pump driven by an engine and having an adjustable pump discharge amount from the outside. A hydraulic circuit control method for controlling the variable displacement pump so that the closed center type directional control valve is substituted for a center bypass type directional control valve in a hydraulic circuit having an actuator connected thereto, The variable displacement pump detects the actual discharge amount, the actual discharge pressure, and the operation amount of each directional control valve, and based on the characteristic curve that defines the relationship between the discharge pressure and the discharge amount of the variable displacement pump, the variable The first virtual discharge pressure is determined from the actual discharge amount of the capacity pump, the actual pump discharge amount is set as an actuator flow rate required for the actuator, and the operation is performed. The bleed-off area of the closed center type directional control valve is determined according to the bleed-off flow, and the bleed-off flow is determined based on the bleed-off area. The second virtual discharge pressure of the variable displacement pump is determined on the basis of the value obtained by subtracting, and the smaller one of the first and second virtual discharge pressures is determined. Based on this, the variable displacement pump is controlled.
According to a second aspect of the present invention, in the hydraulic circuit control method according to the first aspect, a plurality of the variable displacement pumps are connected to the engine, and a plurality of the variable displacement pumps are connected to the plurality of variable displacement pumps. The actuator is connected via a closed center type directional control valve, a ratio of horsepower distributed to the variable displacement pumps of the engine is determined according to the operation amount of each actuator, and the distributed each The first virtual discharge pressure is determined from the horsepower and the actual discharge amount of the variable displacement pump.
According to a third aspect of the present invention, in the method of controlling a hydraulic circuit according to the first aspect, the characteristic curve has a constant discharge amount up to a predetermined discharge pressure region, and a region exceeding the predetermined pressure. Is characterized in that the product of the discharge pressure and the discharge flow rate is constant.
According to a fourth aspect of the present invention, in the method for controlling a hydraulic circuit according to the first aspect, the first virtual discharge pressure is a discharge pressure of the variable displacement pump required for each actuator. The horsepower of the variable displacement pump that is calculated as a sum and distributed to the actuators is determined in advance, and for each of the actuators, the actual discharge amount from the distributed horsepower to the actuators, and the first or By subtracting the value obtained by integrating the smaller one of the second virtual discharge pressures, the surplus horsepower for each actuator is calculated, and the horsepower of one actuator is The sum of the surplus horsepower of the remaining actuators is added to the horsepower distributed to the actuators.
According to a fifth aspect of the present invention, in the hydraulic circuit control method according to the first aspect, the first virtual discharge pressure is variable in accordance with an operation amount of each directional control valve. It is characterized by.
 以上のように本発明によるときは、ブリードオフ流量を演算する際に、仮想のポンプ吐出量を使用するため、ブリードオフ流量の制御が、実際のポンプの馬力演算に影響されることがない。また、馬力演算領域にある場合でも、実際のポンプの吐出量が小さく、アクチュエータの実際の負荷が小さい時でも、有効にポンプの馬力を活用することができる。 As described above, according to the present invention, the virtual pump discharge amount is used when calculating the bleed-off flow rate, so that the control of the bleed-off flow rate is not affected by the actual horsepower calculation of the pump. Even in the horsepower calculation area, the pump horsepower can be effectively utilized even when the actual pump discharge amount is small and the actual load on the actuator is small.
本発明の一実施の形態の可変容量ポンプの制御方法を説明するための油圧回路図FIG. 1 is a hydraulic circuit diagram for explaining a control method for a variable displacement pump according to an embodiment of the present invention. 図1の制御を説明するためのブロック図Block diagram for explaining the control of FIG. 図2の点線Aで囲まれた部分の説明図Explanatory drawing of the part enclosed with the dotted line A of FIG. 本発明の他の実施の形態を説明するためのブロック図Block diagram for explaining another embodiment of the present invention 本発明の他の実施の形態を説明するためのブロック図Block diagram for explaining another embodiment of the present invention 従来のブリードオフ特性演算を説明するためのブロック図Block diagram for explaining conventional bleed-off characteristic calculation 従来のブリードオフ特性演算を説明するためのブロック図Block diagram for explaining conventional bleed-off characteristic calculation
 本発明の一実施の形態を図1及び図2に基づき説明する。
 図1は、複数の油圧アクチュエータ1、1の作動を制御する油圧ショベル等に適用される油圧回路を示し、これらのアクチュエータ1は駆動モータPMにより駆動される可変容量ポンプ2の吐出回路3にクローズドセンターのクローズドセンター型方向制御弁4、4を介して接続されている。
 尚、可変容量ポンプ2は斜板等のポンプ容量制御機構を備えたアキシャルピストンポンプ等の公知のものである。
 尚、本明細書において、「クローズドセンター型の方向制御弁」とは、スプールがニュートラルポジションにおいてタンクにオイルをバイパスしないように構成された弁をいうものとし、「センターバイパス型の方向制御弁」とは、スプールがニュートラルポジションにおいてタンクにオイルをバイパスするように構成された弁をいうものとする。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a hydraulic circuit applied to a hydraulic excavator or the like for controlling the operation of a plurality of hydraulic actuators 1, which are closed to a discharge circuit 3 of a variable displacement pump 2 driven by a drive motor PM. It is connected via the center closed center type directional control valves 4, 4.
The variable displacement pump 2 is a known one such as an axial piston pump having a pump displacement control mechanism such as a swash plate.
In the present specification, the term “closed center type directional control valve” refers to a valve configured not to bypass oil to the tank when the spool is in the neutral position. Refers to a valve configured to bypass the oil to the tank when the spool is in the neutral position.
 ポンプ圧力制御装置6の入力側には、指令入力としてのソレノイド駆動アンプ5の出力とフィードバック入力としてのポンプ2の吐出側圧力が接続され、ポンプ圧力制御装置6の出力側には、コントロールピストン7が接続される。
 ポンプ圧力制御装置6は、コントロールバルブ6bと、ネガティブ型電磁比例弁6cとを備え、コントロールバルブ6bのスプールの両端にはポンプ2の実ポンプ吐出圧Prealと、バネ6dの弾性力と、ネガティブ型電磁比例弁6cにより制御される圧力信号Pcがかかるが、スプールの両端には適当なる面積差が与えられており、コントロールバルブ6bは然るべく、それらのバランスにより制御されている。
 ネガティブ型電磁比例弁6cは、バネとこれに対向する入力側の圧力信号Pc、及びコントローラ12において、信号P'idea基いて入力される制御電流に比例して可変される比例ソレノイド6aが発生する力とのバランスで制御される。
 尚、本実施の形態では、図2にブロック図を示すようにブリードオフ特性演算から得られた仮想ポンプ吐出圧指令Pideaは、ネガティブ型の制御をするために、ポンプの最大吐出圧から減算して反転させた信号P'ideaとしてネガティブ型電磁比例弁の比例ソレノイド6cに伝達するようにしている。
 上記構成により、仮想ポンプ吐出圧指令Pideaは、ネガティブ型に反転された後、ソレノイド駆動アンプ5介してポンプ圧力制御装置6の比例ソレノイド6aを励磁し、ネガティブ型電磁比例弁を介してその励磁の大きさに反比例して(従って、仮想ポンプ吐出圧指令Pideaに比例的に)コントロールバルブ6bを操作し、その結果、コントロールピストン7がポンプ容量制御機構を動かし、ポンプ容量、即ち、ポンプ吐出量を大小に制御する。
 尚、本明細書において、「ネガティブ型」とは、入力値に対して出力値が漸次減少するものをいう。
An output of the solenoid drive amplifier 5 as a command input and a discharge side pressure of the pump 2 as a feedback input are connected to the input side of the pump pressure control device 6, and a control piston 7 is connected to the output side of the pump pressure control device 6. Is connected.
The pump pressure control device 6 includes a control valve 6b and a negative electromagnetic proportional valve 6c. The actual pump discharge pressure P real of the pump 2 and the elastic force of the spring 6d are negative at both ends of the spool of the control valve 6b. type electromagnetic proportional valve 6c pressure signal P 'c is controlled such by, but on both ends of the spool are suitable Naru area difference is given, the control valve 6b is accordingly, they are controlled by their balance.
Negative solenoid proportional valve 6c the pressure signal P 'c, and the controller 12, the signal P' of the input side facing the spring and to the proportional solenoid 6a is that in proportion to the control current input based idea is variable Controlled by balance with generated force.
In this embodiment, as shown in the block diagram of FIG. 2, the virtual pump discharge pressure command P idea obtained from the bleed-off characteristic calculation is subtracted from the maximum discharge pressure of the pump in order to perform negative control. The inverted signal P ′ idea is transmitted to the proportional solenoid 6c of the negative electromagnetic proportional valve.
With the above configuration, the virtual pump discharge pressure command P idea is inverted to the negative type, and then the proportional solenoid 6a of the pump pressure control device 6 is excited through the solenoid drive amplifier 5, and the excitation is performed through the negative type electromagnetic proportional valve. The control valve 6b is operated in inverse proportion to the size of the valve (and therefore in proportion to the virtual pump discharge pressure command P idea ). As a result, the control piston 7 moves the pump displacement control mechanism, and the pump displacement, that is, the pump discharge. Control the amount large or small.
In the present specification, the “negative type” means that the output value gradually decreases with respect to the input value.
 説明した例では、ネガティブ型の電磁比例弁6cとして、比例リリーフ弁を使用したが、ポンプの吐出圧からの減算を省略することにより、電磁比例減圧弁尚、本発明において、ネガティブ型傾転駆動系とは、信号が得られない時に最大圧等の所定でポンプを可動することができ、信号が入力されると出力値が漸次減少するものをいう。 In the example described, a proportional relief valve is used as the negative electromagnetic proportional valve 6c. However, by subtracting from the pump discharge pressure, an electromagnetic proportional pressure reducing valve is used in the present invention. The system means that the pump can be moved at a predetermined pressure or the like when a signal is not obtained, and the output value gradually decreases when a signal is input.
 前記クローズドセンター型方向制御弁4は、スプールを移動させる比例ソレノイド8を備えたもので、電気ジョイスティック9により、コントローラ12を介してソレノイド駆動アンプ13を作動させると、電気ジョイスティック9の傾角に応じて比例ソレノイド8が励磁され、所望の位置にクローズドセンター型方向制御弁4のスプールが移動し、アクチュエータポート10、10をその移動距離に応じた開口面積Ac1、Ac2に制御する。 The closed center type directional control valve 4 includes a proportional solenoid 8 for moving the spool. When the solenoid drive amplifier 13 is operated by the electric joystick 9 via the controller 12, the closed directional control valve 4 is in accordance with the inclination angle of the electric joystick 9. The proportional solenoid 8 is excited, the spool of the closed center type directional control valve 4 is moved to a desired position, and the actuator ports 10 and 10 are controlled to the opening areas Ac1 and Ac2 according to the moving distance.
 各クローズドセンター型方向制御弁4を操作するための操作レバーの傾角などの指令量又は各クローズドセンター型方向制御弁4のスプールの移動量は、センサーで電気的に検出され、その指令量又は移動量を各クローズドセンター型方向制御弁4の操作量に基づく操作量信号Sとし、図1の例では、電気ジョイスティック9から、コントローラ12を介して、ソレノイド駆動アンプ13への指令電気信号を操作量信号として使用するようにした。 A command amount such as an inclination angle of an operation lever for operating each closed center type directional control valve 4 or a movement amount of a spool of each closed center type directional control valve 4 is electrically detected by a sensor, and the command amount or movement is detected. The operation amount signal S based on the operation amount of each closed center type directional control valve 4 is set as the operation amount, and in the example of FIG. 1, the command electric signal from the electric joystick 9 to the solenoid drive amplifier 13 via the controller 12 is the operation amount. Used as a signal.
 アクチュエータ流量Qaは、クローズドセンター型方向制御弁4が実際にはブリードオフ流路のないオールポートクローズドのバルブであるから、回路上のわずかな漏れを無視すれば、可変容量ポンプ2の実吐出量Qrealをアクチュエータ流量Qaと代替することができる。
 このアクチュエータ流量Qaを、本実施の形態では、可変容量ポンプ2に、吐出量検出センサ11を設け、吐出量検出センサ11で検出した傾転量にポンプ2の回転数を乗ずることにより、前記アクチュエータ流量Qaを算出するようにしている。
 尚、前記吐出量検出センサとしては、例えば、可変容量ポンプ2が斜板式可変容量ポンプやラジアルポンプである場合には、ポテンショメータ等を使用することができる。
The actuator flow rate Q a is closed because de center type directional control valve 4 is actually a Allport closed valve without bleed-off channel, ignoring the slight leakage of the circuit, the actual output of the pump 2 The quantity Q real can be substituted for the actuator flow rate Q a .
In this embodiment, the actuator flow rate Q a is obtained by providing the variable displacement pump 2 with a discharge amount detection sensor 11 and multiplying the tilt amount detected by the discharge amount detection sensor 11 by the rotation speed of the pump 2. and to calculate the actuator flow rate Q a.
As the discharge amount detection sensor, for example, when the variable displacement pump 2 is a swash plate type variable displacement pump or a radial pump, a potentiometer or the like can be used.
 これら電気信号は、A/D変換器12a、演算器12b、D/A変換器12cで構成されたコントローラ12に於いて演算され、演算器12bは、図2のブロック線図に示す演算を自動制御的に実行する。 These electric signals are calculated by a controller 12 including an A / D converter 12a, a calculator 12b, and a D / A converter 12c. The calculator 12b automatically performs the calculation shown in the block diagram of FIG. Run in a controlled manner.
 コントローラ12に於いては、本実施の形態においては、可変容量ポンプ2の最大吐出圧と、可変容量ポンプ2の吐出圧と吐出流量との関係を規定した特性曲線から求められた第1の仮想吐出圧と、操作量に基づいて求められた第2の仮想吐出圧との何れかを比較して得られた最小値に基づいて、可変容量ポンプ2を制御している。尚、可変容量ポンプ2の最大吐出圧を比較対象としたのは、可変容量ポンプ2の最大吐出圧以上の吐出圧が、可変容量ポンプ2の吐出圧として指示されないようにするためのものであり、この最大吐出圧は、本発明を実施する限りにおいては必ずしも必要なものではない。
 上記可変容量ポンプ2の現実の吐出量は、図示されるように特性曲線により、第1の仮想の吐出圧に変換される。尚、特性曲線は、所定の圧力P1までは、吐出圧に対して一定の吐出量となるようにし、P1を超えた領域において、吐出圧と吐出量の積が一定となるものとすることが好ましい。
 一方、可変容量ポンプ2の吐出量を、前記特性曲線とは別のプロセスから、図2の点線A内で示される処理により、第2の仮想吐出圧が得られる。
In the present embodiment, in the controller 12, the first virtual pressure obtained from the maximum discharge pressure of the variable displacement pump 2 and the characteristic curve that defines the relationship between the discharge pressure of the variable displacement pump 2 and the discharge flow rate. The variable displacement pump 2 is controlled based on the minimum value obtained by comparing either the discharge pressure or the second virtual discharge pressure obtained based on the operation amount. The reason why the maximum discharge pressure of the variable displacement pump 2 is compared is to prevent a discharge pressure higher than the maximum discharge pressure of the variable displacement pump 2 from being indicated as the discharge pressure of the variable displacement pump 2. The maximum discharge pressure is not always necessary as long as the present invention is implemented.
The actual discharge amount of the variable displacement pump 2 is converted into a first virtual discharge pressure by a characteristic curve as shown. The characteristic curve is such that the discharge amount is constant with respect to the discharge pressure up to a predetermined pressure P1, and the product of the discharge pressure and the discharge amount is constant in a region exceeding P1. preferable.
On the other hand, the second virtual discharge pressure is obtained from the discharge amount of the variable displacement pump 2 by a process indicated by a dotted line A in FIG.
 尚、上記した図2の点線A内の処理を図3を参照して以下に説明する。
 まず、図3に示すように、複数のクローズドセンター型方向制御弁4の操作量Skの入力を受け付け、それらの総和S1+S2+・・・Snをとり、その合計の操作量信号Sとする。この際、個々の入力に重み付けを行ったり、適当な計算処理も行っても良い。次いで操作量信号Sより予定のブリードオフ特性に相当するクローズドセンター型方向制御弁のブリードオフ流路の開口面積Abを求めると共にこれにKq(流量係数)を乗じてブリードオフ特性値Xbを求める。勿論、実際のクローズドセンター型方向制御弁4はブリードオフ流路のないクローズドセンターのものであり、この開口面積Abは演算上の値である。ブリードオフ特性は、開口面積Abと操作量Sとの関係を予め決定しておくことにより定められる。
The processing within the dotted line A in FIG. 2 will be described below with reference to FIG.
First, as shown in FIG. 3 receives an input of an operation amount S k of the plurality of closed center directional control valve 4, their sum S 1 + S 2 + ··· take S n, the operation amount of the total Let it be signal S. At this time, each input may be weighted or an appropriate calculation process may be performed. Next, the opening area Ab of the bleed-off flow path of the closed center type directional control valve corresponding to the planned bleed-off characteristic is obtained from the manipulated variable signal S, and the bleed-off characteristic value Xb is obtained by multiplying it by Kq (flow coefficient). Of course, the actual closed center type directional control valve 4 is a closed center without a bleed-off flow path, and this opening area Ab is a value in calculation. The bleed-off characteristic is determined by determining in advance the relationship between the opening area Ab and the operation amount S.
 また、可変容量ポンプ2の仮想吐出量Qideaは、所定値に定められる。
 この際、可変容量ポンプ2の最大吐出量は既知数であるので、この値を使用することもできる。
Further, the virtual discharge amount Q idea of the variable displacement pump 2 is set to a predetermined value.
At this time, since the maximum discharge amount of the variable displacement pump 2 is a known number, this value can also be used.
 アクチュエータ流量は、前記のように、例えば、実ポンプ吐出量Qrealから流量信号として入力されるから、仮想ポンプ吐出量Qideaから実ポンプ吐出量Qrealを減算して求めた流量値Xaはブリードオフ流量に相当する。このXaをXbで除し、その値をn乗(nは3以上の整数)する演算を行い、仮想ポンプ吐出圧指令Pideaを算出する。そして、この仮想ポンプ吐出圧指令Pideaに基づき、吐出圧をクローズドループ制御する。即ち、ソレノイド駆動アンプ5は仮想ポンプ吐出圧指令Pideaに基づく制御信号を受けて電磁比例弁6aの励磁を強弱し、仮想ポンプ吐出圧Pideaと実ポンプ吐出圧Prealとのつき合わせ減算をネガティブ型電磁比例弁6cとコントロールバルブ6bとで行って、コントロールピストン7がポンプ吐出量をコントロールバルブ6bの指令に従って制御する。 The actuator flow rate, as described above, for example, from inputted as a flow rate signal from the actual pump discharge quantity Q real, flow rate value Xa calculated by subtracting the actual pump discharge quantity Q real virtual pump discharge quantity Q idea bleed Corresponds to off flow rate. The virtual pump discharge pressure command P idea is calculated by dividing this Xa by Xb and calculating the value to the nth power (n is an integer of 3 or more). Then, based on the virtual pump discharge pressure command P idea , the discharge pressure is closed-loop controlled. That is, the solenoid drive amplifier 5 receives the control signal based on the virtual pump discharge pressure command P idea and increases or decreases the excitation of the electromagnetic proportional valve 6a, and subtracts the subtraction between the virtual pump discharge pressure P idea and the actual pump discharge pressure P real. The control piston 7 controls the pump discharge amount in accordance with a command from the control valve 6b, using the negative electromagnetic proportional valve 6c and the control valve 6b.
 電気ジョイスティック9が操作されていないときは、クローズドセンター型方向制御弁4は中立位置にあり、コントローラ12には操作量信号Sとしてゼロが入力される。この場合、コントローラ12で計算されるブリードオフ流路の開口面積は最大になるから、仮想ポンプ吐出圧Pideaは小さな値になる。仮想ポンプ吐出圧Pideaに基づきポンプ2は吐出を行なうが、ポンプ配管系の吐出回路の実ポンプ吐出圧Prealを仮想ポンプ吐出圧Pideaにまで圧縮し、昇圧させたのちは、実際のポンプ吐出量は回路のわずかな漏れ分しか必要とせず、アクチュエータ速度、即ち、アクチュエータ流量は殆どゼロと入力され、このときXa=Qmaxで仮想ポンプ吐出圧Pidea=(Qmax/(Kq×Ab))nとなっている。 When the electric joystick 9 is not operated, the closed center type directional control valve 4 is in the neutral position, and zero is input to the controller 12 as the operation amount signal S. In this case, the opening area of the bleed-off passage which is calculated by the controller 12 because maximized, virtual pump discharge pressure P idea becomes a small value. Pump 2 based on the virtual pump discharge pressure P idea do discharge, but compresses the actual pump discharge pressure P real discharge circuit of the pump piping system to a virtual pump discharge pressure P idea, After boosts the actual pump The discharge amount requires only a small amount of leakage in the circuit, and the actuator speed, that is, the actuator flow rate is almost zero, and at this time, Xa = Q max and the virtual pump discharge pressure P idea = (Q max / (Kq × Ab )) n .
 電気ジョイスティック9が操作されてクローズドセンター型方向制御弁4が切換位置方向に操作されると、コントローラ12で計算されるブリードオフ流路の開口面積は小さくなり、仮想ポンプ吐出圧Pideaは、一旦、ポンプ吐出量の全量が面積の狭い絞られたブリードオフ流路からタンクへ戻るときの値に設定される。ポンプ吐出圧は、クローズドループ制御されているから実ポンプ吐出圧Prealは仮想ポンプ吐出圧Pideaの値に略等しくなる。もし、実ポンプ吐出圧Prealが負荷圧よりも高ければ、アクチュエータ1を加速し、油が流れ始めるので、実ポンプ吐出圧Prealを仮想ポンプ吐出圧Pideaに保持すべくポンプ吐出量が増大し、アクチュエータ速度が増すため、ブリードオフ流量は小さくなり、そのため、仮想ポンプ吐出圧Pideaひいては実ポンプ吐出圧Prealが下がってアクチュエータの加速度が低下し、徐々に操作量に見合ったアクチュエータ速度を維持するポンプ吐出量、吐出圧に収束し、平衡する。この間、ブリードオフ動作は、コントローラ内で計算のみでなされ、実ポンプ吐出量Qrealは、回路上の漏れを無視すれば、アクチュエータ1に供給された分に限られる。従って、ブリードオフ流量が流れないからエネルギーの無駄がなく、クローズドセンター型方向制御弁にブリードオフ流路が不要であるからその構成も簡単で安価になり、操作性も良くなる。 When the electric joystick 9 is operated and the closed center type directional control valve 4 is operated in the switching position direction, the opening area of the bleed-off flow path calculated by the controller 12 becomes small, and the virtual pump discharge pressure P idea is once The total pump discharge amount is set to a value when returning from the narrowed bleed-off flow path to the tank with a small area. Since the pump discharge pressure is closed-loop controlled, the actual pump discharge pressure P real is substantially equal to the value of the virtual pump discharge pressure P idea . If the actual pump discharge pressure P real is higher than the load pressure, the actuator 1 is accelerated and the oil begins to flow. Therefore, the pump discharge amount is increased to keep the actual pump discharge pressure P real at the virtual pump discharge pressure P idea. However, as the actuator speed increases, the bleed-off flow rate decreases, so the virtual pump discharge pressure P idea and consequently the actual pump discharge pressure P real decreases, the actuator acceleration decreases, and the actuator speed gradually matches the operating amount. It converges and balances the pump discharge amount and discharge pressure to be maintained. During this time, the bleed-off operation is performed only by calculation within the controller, and the actual pump discharge amount Q real is limited to the amount supplied to the actuator 1 if the leakage on the circuit is ignored. Therefore, there is no waste of energy because the bleed-off flow rate does not flow, and since the bleed-off flow path is not required for the closed center type directional control valve, the configuration is simple and inexpensive, and the operability is improved.
 次に、図4を使用して、本発明の他の実施の形態について説明する。
 図4は、図2のブロック図中における馬力演算の変形例を示したものである。
 図示したものでは、可変容量ポンプ2に接続されるアクチュエータ1の数を2個とし、各アクチュエータ1に、予め可変容量ポンプ2の馬力を0.5ずつの比率で配分するようにしている。そして、第1の仮想の吐出圧は、各アクチュエータ1毎に必要な可変容量ポンプ2の吐出圧の合計として算出されるようにしている。
 各アクチュエータ1には、それぞれ、分配された馬力から、各アクチュエータ1への現実の吐出量と、第1又は第2の仮想の吐出圧の何れか小さい方の吐出圧とを積算して得られた値を減算して、各アクチュエータ1毎の余剰の馬力を算出する。
 そして、1つのアクチュエータ1の馬力を、該アクチュエータ1に分配された馬力に、残りのアクチュエータの余剰の馬力の合計を加算した値としている。
 この構成によれば、各アクチュエータに分配された馬力の余剰分を、有効に活用することができる。
Next, another embodiment of the present invention will be described with reference to FIG.
FIG. 4 shows a modified example of the horsepower calculation in the block diagram of FIG.
In the illustrated example, the number of actuators 1 connected to the variable displacement pump 2 is two, and the horsepower of the variable displacement pump 2 is distributed to each actuator 1 at a ratio of 0.5 in advance. The first virtual discharge pressure is calculated as the total discharge pressure of the variable displacement pump 2 required for each actuator 1.
Each actuator 1 is obtained by integrating the actual discharge amount to each actuator 1 and the smaller one of the first and second virtual discharge pressures from the distributed horsepower. The surplus horsepower for each actuator 1 is calculated by subtracting the obtained value.
The horsepower of one actuator 1 is set to a value obtained by adding the total horsepower of the remaining actuators to the horsepower distributed to the actuator 1.
According to this configuration, surplus horsepower distributed to each actuator can be effectively utilized.
 次に、図5のブロック線図を使用して、本発明の他の実施の形態について説明する。
 本実施の形態では、図1と同じ油圧回路の構成で、コントローラ12における演算を、図5に示すブロック図にしたがって行うものである。
 図示されるものでは、複数のクローズドセンター型方向制御弁4の操作量S1,S2,・・・,Sk,・・・,Snの入力を受け付ける。それらについて、予定のブリードオフ特性に相当するクローズドセンター型方向制御弁のブリードオフ流路の開口面積Abを下記式により求める。尚、式中Abkは、Skに対応する。
Figure JPOXMLDOC01-appb-M000001
Next, another embodiment of the present invention will be described using the block diagram of FIG.
In the present embodiment, the operation of the controller 12 is performed according to the block diagram shown in FIG. 5 with the same hydraulic circuit configuration as in FIG.
In the illustrated example, input of operation amounts S1, S2,..., Sk,..., Sn of the plurality of closed center type directional control valves 4 is received. For these, the opening area Ab of the bleed-off flow path of the closed center type directional control valve corresponding to the planned bleed-off characteristic is obtained by the following equation. In the formula, Abk corresponds to Sk.
Figure JPOXMLDOC01-appb-M000001
 上記構成により可変容量ポンプの制御を行えば、個別のアクチュエータの要求特性に合わせた操作性を得ることができる。 If the variable displacement pump is controlled by the above configuration, operability in accordance with the required characteristics of each actuator can be obtained.
 また、第1の仮想の吐出圧を、各方向制御弁の操作量に応じて可変とする(例えば、ポンプのフローレートを操作量に応じて二次関数的に増大させる)ようにすれば、単独操作の解くはメータイン絞り部での抵抗を減少させ、エネルギー損失を回避し、複合操作時はメータインでの分流制御効果を高め、負荷の異なるアクチュエータの複合操作が可能となる。 Further, if the first virtual discharge pressure is made variable according to the operation amount of each directional control valve (for example, the flow rate of the pump is increased in a quadratic function according to the operation amount), Solving the single operation reduces the resistance at the meter-in throttle, avoids energy loss, enhances the shunt control effect at meter-in during combined operation, and allows combined operation of actuators with different loads.

Claims (5)

  1.  エンジンで駆動され、且つ、外部からポンプ吐出量の調整可能な可変容量ポンプに、複数のクローズドセンター型方向制御弁を介してアクチュエータを接続した油圧回路において、前記クローズドセンター型方向制御弁が、センターバイパス型の方向制御弁の代わりとなるように、前記可変容量ポンプを制御する油圧回路の制御方法であって、
     前記可変容量ポンプの現実の吐出量、現実の吐出圧及び前記各方向制御弁の操作量を検出し、
     前記可変容量ポンプの吐出圧と吐出量との関係を定めた特性曲線に基づいて、前記可変容量ポンプの現実の吐出量から第1の仮想の吐出圧を決定し、
     前記可変容量ポンプの現実の吐出量を前記アクチュエータに必要なアクチュエータ流量とし、
     前記操作量に応じてクローズドセンター型方向制御弁のブリードオフ面積を決定し、
     前記ブリードオフ面積に基づいてブリードオフ流量を決定し、
     前記可変容量ポンプの現実の吐出量から、前記アクチュエータ流量及び前記ブリードオフ流量を減算することにより得られた値に基づいて、前記可変容量ポンプの第2の仮想の吐出圧を決定し、
     前記第1又は第2の仮想の吐出圧の何れかの小さい方の吐出圧に基づいて、前記可変容量ポンプを制御することを特徴とする油圧回路の制御方法。
    In a hydraulic circuit in which an actuator is connected to a variable displacement pump that is driven by an engine and the pump discharge amount can be adjusted from the outside through a plurality of closed center directional control valves, the closed center directional control valve has a center A hydraulic circuit control method for controlling the variable displacement pump so as to replace a bypass type directional control valve,
    Detect the actual discharge amount of the variable displacement pump, the actual discharge pressure and the operation amount of each directional control valve,
    Based on a characteristic curve that defines the relationship between the discharge pressure and the discharge amount of the variable displacement pump, a first virtual discharge pressure is determined from the actual discharge amount of the variable displacement pump,
    The actual discharge amount of the variable displacement pump is the actuator flow rate required for the actuator,
    Determine the bleed-off area of the closed center type directional control valve according to the operation amount,
    Determining the bleed-off flow rate based on the bleed-off area;
    Determining a second virtual discharge pressure of the variable displacement pump based on a value obtained by subtracting the actuator flow rate and the bleed-off flow rate from an actual discharge amount of the variable displacement pump;
    A control method for a hydraulic circuit, wherein the variable displacement pump is controlled based on a smaller one of the first and second virtual discharge pressures.
  2.  前記エンジンに、前記可変容量ポンプを複数台接続し、前記可変容量ポンプのそれぞれに、複数の前記クローズドセンター型方向制御弁を介して前記アクチュエータを接続し、
     前記アクチュエータ毎の前記操作量に応じて、前記エンジンの前記各可変容量ポンプへ分配される馬力の比率を決定し、
     前記分配された各馬力と前記可変容量ポンプの現実の吐出量から第1の仮想の吐出圧を決定することを特徴とする請求項1に記載の油圧回路の制御方法。
    A plurality of the variable displacement pumps are connected to the engine, and the actuator is connected to each of the variable displacement pumps via the plurality of closed center directional control valves,
    According to the operation amount for each actuator, determine the ratio of horsepower distributed to each variable displacement pump of the engine,
    2. The hydraulic circuit control method according to claim 1, wherein a first virtual discharge pressure is determined from each of the distributed horsepower and an actual discharge amount of the variable displacement pump.
  3.  前記特性曲線は、所定の吐出圧の領域までは一定の吐出量とし、前記所定圧を超える領域は、吐出圧と吐出流量との積が一定となるものであることを特徴とする請求項1に記載の油圧回路の制御方法。 2. The characteristic curve according to claim 1, wherein a discharge amount is constant up to a predetermined discharge pressure region, and a product of discharge pressure and discharge flow rate is constant in a region exceeding the predetermined pressure. The control method of the hydraulic circuit as described in.
  4.  前記第1の仮想の吐出圧は、前記各アクチュエータ毎に必要な前記可変容量ポンプの吐出圧の合計として算出され、
     前記各アクチュエータに分配される前記可変容量ポンプの馬力を予め定め、
     前記各アクチュエータ毎に、前記分配された馬力から、前記各アクチュエータへの現実の吐出量と、前記第1又は第2の仮想の吐出圧の何れか小さい方の吐出圧とを積算して得られた値を減算して、前記各アクチュエータ毎の余剰の馬力を算出し、
     1つの前記アクチュエータの馬力を、該アクチュエータに分配された馬力に、残りのアクチュエータの前記余剰の馬力の合計を加算した値とすることを特徴とする請求項1に記載の油圧回路の制御方法。
    The first virtual discharge pressure is calculated as the sum of the discharge pressures of the variable capacity pump required for each actuator,
    Predetermining the horsepower of the variable displacement pump distributed to each actuator,
    For each actuator, it is obtained by integrating the actual discharge amount to each actuator and the smaller one of the first and second virtual discharge pressures from the distributed horsepower. To calculate the surplus horsepower for each actuator,
    2. The hydraulic circuit control method according to claim 1, wherein the horsepower of one of the actuators is a value obtained by adding the total of the surplus horsepower of the remaining actuators to the horsepower distributed to the actuators.
  5.  前記第1の仮想の吐出圧を、前記各方向制御弁の操作量に応じて可変とすることを特徴とする請求項1に記載の油圧回路の制御方法。 2. The hydraulic circuit control method according to claim 1, wherein the first virtual discharge pressure is variable in accordance with an operation amount of each directional control valve.
PCT/JP2011/074745 2010-10-28 2011-10-27 Hydraulic pressure circuit control method WO2012057241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/865,821 US9429152B2 (en) 2010-10-28 2013-04-18 Method for controlling variable displacement pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-241917 2010-10-28
JP2010241917A JP2014015945A (en) 2010-10-28 2010-10-28 Control method of hydraulic circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055315 Continuation WO2013128622A1 (en) 2010-10-28 2012-03-02 Method for controlling variable displacement pump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/865,821 Continuation-In-Part US9429152B2 (en) 2010-10-28 2013-04-18 Method for controlling variable displacement pump

Publications (1)

Publication Number Publication Date
WO2012057241A1 true WO2012057241A1 (en) 2012-05-03

Family

ID=45993946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074745 WO2012057241A1 (en) 2010-10-28 2011-10-27 Hydraulic pressure circuit control method

Country Status (2)

Country Link
JP (1) JP2014015945A (en)
WO (1) WO2012057241A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148808A1 (en) * 2013-03-19 2014-09-25 두산인프라코어 주식회사 Construction equipment hydraulic system and control method therefor
EP2759713A4 (en) * 2011-09-21 2015-11-04 Sumitomo Heavy Industries Hydraulic control device and hydraulic control method
US11913477B2 (en) 2021-10-29 2024-02-27 Danfoss Scotland Limited Controller and method for hydraulic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145711A (en) * 1998-11-10 2000-05-26 Uchida Hydraulics Co Ltd Method and device for controlling turning system hydraulic device
JP3471638B2 (en) * 1998-12-01 2003-12-02 内田油圧機器工業株式会社 Bleed-off control method using variable displacement pump
JP2006052673A (en) * 2004-08-11 2006-02-23 Komatsu Ltd Load control device for engine of working vehicle
JP2007205464A (en) * 2006-02-01 2007-08-16 Bosch Rexroth Corp Control method of variable displacement pump
JP2011094687A (en) * 2009-10-29 2011-05-12 Kobelco Contstruction Machinery Ltd Pump control apparatus for construction machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145711A (en) * 1998-11-10 2000-05-26 Uchida Hydraulics Co Ltd Method and device for controlling turning system hydraulic device
JP3471638B2 (en) * 1998-12-01 2003-12-02 内田油圧機器工業株式会社 Bleed-off control method using variable displacement pump
JP2006052673A (en) * 2004-08-11 2006-02-23 Komatsu Ltd Load control device for engine of working vehicle
JP2007205464A (en) * 2006-02-01 2007-08-16 Bosch Rexroth Corp Control method of variable displacement pump
JP2011094687A (en) * 2009-10-29 2011-05-12 Kobelco Contstruction Machinery Ltd Pump control apparatus for construction machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759713A4 (en) * 2011-09-21 2015-11-04 Sumitomo Heavy Industries Hydraulic control device and hydraulic control method
US9784368B2 (en) 2011-09-21 2017-10-10 Sumitomo Heavy Industries, Ltd. Hydraulic control apparatus and method
US10393260B2 (en) 2011-09-21 2019-08-27 Sumitomo Heavy Industries, Ltd. Hydraulic control apparatus and method
WO2014148808A1 (en) * 2013-03-19 2014-09-25 두산인프라코어 주식회사 Construction equipment hydraulic system and control method therefor
KR20140116003A (en) * 2013-03-19 2014-10-01 두산인프라코어 주식회사 Hydraulic system for construction machine and control method thereof
CN105143686A (en) * 2013-03-19 2015-12-09 斗山英维高株式会社 Construction equipment hydraulic system and control method therefor
EP2977621A1 (en) * 2013-03-19 2016-01-27 Doosan Infracore Co., Ltd. Construction equipment hydraulic system and control method therefor
EP2977621A4 (en) * 2013-03-19 2017-03-29 Doosan Infracore Co., Ltd. Construction equipment hydraulic system and control method therefor
CN105143686B (en) * 2013-03-19 2017-06-06 斗山英维高株式会社 Building machinery oil hydraulic system and its control method
US9841037B2 (en) 2013-03-19 2017-12-12 Doosan Infracore Co., Ltd. Construction equipment hydraulic system and control method therefor
KR102171981B1 (en) * 2013-03-19 2020-10-30 두산인프라코어 주식회사 Hydraulic system for construction machine and control method thereof
US11913477B2 (en) 2021-10-29 2024-02-27 Danfoss Scotland Limited Controller and method for hydraulic apparatus

Also Published As

Publication number Publication date
JP2014015945A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
US9429152B2 (en) Method for controlling variable displacement pump
KR101638339B1 (en) Method for controlling variable displacement pump
JP5336558B2 (en) Control method of variable displacement pump
JP3434514B2 (en) Hydraulic drive of hydraulic working machine
KR101015771B1 (en) Torque controller of three pump system for construction machinery
US9181684B2 (en) Pump control unit for hydraulic system
US8006491B2 (en) Pump control apparatus for construction machine
US10393260B2 (en) Hydraulic control apparatus and method
JP5537734B2 (en) Construction machinery hydraulic pump flow control system
JP2007205464A (en) Control method of variable displacement pump
US11105348B2 (en) System for controlling construction machinery and method for controlling construction machinery
WO2012057241A1 (en) Hydraulic pressure circuit control method
JP4726684B2 (en) Control method of variable displacement pump
US6772590B2 (en) Hydraulic driving device
JP2016075303A (en) Control device of hydraulic circuit and control method of hydraulic circuit
KR20180024695A (en) Contorl system for construction machinery and control method for construction machinery
JPH09189302A (en) Speed control device of hydraulic actuator
JP6367677B2 (en) Hydraulic circuit control device and hydraulic circuit control method
JP2009030709A (en) Series hydraulic circuit for crane winch
JP3705886B2 (en) Hydraulic drive control device
JP7184725B2 (en) working machine
JP5974114B2 (en) Hydraulic control device for work machine
JP2022170467A (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP