WO2012056501A1 - Step-down chopper device - Google Patents

Step-down chopper device Download PDF

Info

Publication number
WO2012056501A1
WO2012056501A1 PCT/JP2010/006411 JP2010006411W WO2012056501A1 WO 2012056501 A1 WO2012056501 A1 WO 2012056501A1 JP 2010006411 W JP2010006411 W JP 2010006411W WO 2012056501 A1 WO2012056501 A1 WO 2012056501A1
Authority
WO
WIPO (PCT)
Prior art keywords
turn
current
switching
current value
switching element
Prior art date
Application number
PCT/JP2010/006411
Other languages
French (fr)
Japanese (ja)
Inventor
村田一大
崎村紘子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/006411 priority Critical patent/WO2012056501A1/en
Priority to TW100124991A priority patent/TW201232807A/en
Publication of WO2012056501A1 publication Critical patent/WO2012056501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • This invention relates to a step-down chopper device.
  • a step-down chopper device that controls a load current flowing through a load element by controlling on / off of the switching element.
  • the time variation gradient of the inductor current flowing through the inductor (inductor) due to variations in the input voltage of the step-down chopper device, the voltage between the terminals of the load element, and the inductance value of the inductor connected in series with the load element.
  • the current value rises or falls) varies.
  • the average current value of the inductor current may fluctuate due to variations in the time-varying gradient of the inductor current. In this case, the current value of the load current also varies.
  • the maximum current value (current value at turn-off) and / or the minimum current value (current at turn-on) due to variations in the time variation gradient of the inductor current Value) fluctuates, and as a result, the average current value of the inductor current fluctuates.
  • Patent Document 1 describes the following step-down chopper device. That is, the step-down chopper device described in Patent Document 1 switches the switching element from OFF to ON when the current value of the inductor current reaches “0”, and the current value of the inductor current reaches a predetermined maximum current value. Then, the switching element is switched from on to off. As described above, when the step-down chopper device operates in the critical mode, the average current value of the inductor current can be maintained at a desired value regardless of variations in the gradient of the inductor current over time.
  • the average current value of the inductor current cannot be set to a current value higher than 1 ⁇ 2 of the maximum current value of the inductor current. . That is, when the step-down chopper device operates in the critical mode, the minimum current value of the inductor current is “0”, so the average current value of the inductor current (the average value of the maximum current value and the minimum current value) is the inductor current. 1/2 of the maximum current value. For this reason, it is difficult to increase the average current value of the inductor current.
  • the step-down chopper device described in Patent Document 1 can only operate in the critical mode, the conduction loss of the switching element (for example, power loss due to on-resistance) is larger than that in the case of operating in the continuous mode. That is, when the average current value of the inductor current is the same, the power loss in the switching element is higher when operating in the critical mode than when operating in the continuous mode. Therefore, it is difficult to reduce power loss in the switching element.
  • the conduction loss of the switching element for example, power loss due to on-resistance
  • an object of the present invention is to provide a step-down chopper device that can suppress fluctuations in the average current value of the inductor current due to variations in the time-varying gradient of the inductor current and can operate not only in the critical mode but also in the continuous mode. To do.
  • a step-down chopper device is a step-down chopper device that controls a load current flowing through a load element, and includes a first input node and a second input node to which an input voltage is applied.
  • a switching element provided in a first current path between the first input node and the intermediate node; and a load element in a second current path between the intermediate node and the second input node;
  • the second and third current paths are provided in a third current path between the inductor provided in series and the intermediate node and the second input node, and the switching element is in an off state.
  • the target current value instantaneous current value is a predetermined switching current flowing through the switching element when the time becomes ratio, and a control circuit for controlling the on / off the switching element.
  • the average current value of the inductor current can be brought close to a desired value by bringing the instantaneous current value of the switching element close to the target current value.
  • the instantaneous current value of the switching current (when the elapsed time from the turn-on of the switching element becomes the first time ratio with respect to the duration from the turn-on to the turn-off of the switching element) with respect to the variation in the time change gradient of the inductor current Current value of the switching current) can be made difficult to fluctuate, so that fluctuations in the average current value of the inductor current due to variations in the time-varying gradient of the inductor current can be suppressed.
  • the average current value of the inductor current can be increased as compared with the case of operating only in the critical mode, and the power loss in the switching element can be reduced.
  • the control circuit detects the instantaneous current value of the switching current when the elapsed time from the turn-on of the switching element becomes the first time ratio with respect to the duration from the turn-on to turn-off of the switching element. Then, the turn-on cycle of the switching element may be controlled according to the difference between the instantaneous current value of the switching current and the target current value.
  • the control circuit detects a switching current detection unit that detects a current value of the switching current and a turn-on elapsed time corresponding to an elapsed time from the turn-on of the switching element.
  • the current of the switching current detected by the switching current detector when the time has reached a first time ratio with respect to a predetermined on-duration that defines the duration from the turn-on to the turn-off of the switching element A turn-on cycle adjusting unit that detects a value as an instantaneous current value of the switching current and adjusts a turn-on cycle of the switching element according to a difference between the instantaneous current value of the switching current and the target current value; and the turn-on cycle adjustment Turn-on lap adjusted by the department
  • the switching element is turned on, turn the elapsed time detected by the turn-on cycle adjusting unit may include a switching controller to turn off the switching element when it reaches to the ON duration based on.
  • the step-down chopper device In the step-down chopper device, it is not necessary to detect the inductor current (or load current) in order to perform feedback control of the average current value of the inductor current, so that the power loss accompanying the detection of the inductor current (or load current) is reduced. Does not occur. Therefore, the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element is controlled based on the detection result of the inductor current (or load current). Further, since the turn-on cycle becomes longer as the input voltage becomes higher, the number of times of switching per unit time of the switching element is reduced. Therefore, it is possible to suppress an increase in switching loss (power loss that occurs during switching) due to an increase in input voltage.
  • the control circuit detects a current value of the switching current and a turn-on elapsed time corresponding to an elapsed time from the turn-on of the switching element, and the switching element Detected by the switching current detection unit when the turn-on elapsed time corresponding to the turn-on to turn-off time is equal to the first time ratio with respect to the turn-on elapsed time.
  • a turn-on cycle adjusting unit that detects a current value of the switching current as an instantaneous current value of the switching current and adjusts a turn-on cycle of the switching element according to a difference between the instantaneous current value of the switching current and the target current value; Adjusted by the turn-on cycle adjuster Switching control for turning on the switching element based on the turn-on cycle and turning off the switching element when the current value of the switching current detected by the switching current detection unit reaches a predetermined maximum current value. May be included.
  • the step-down chopper device In the step-down chopper device, it is not necessary to detect the inductor current (or load current) in order to perform feedback control of the average current value of the inductor current, so that the power loss accompanying the detection of the inductor current (or load current) is reduced. Does not occur. Therefore, the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element is controlled based on the detection result of the inductor current (or load current). In addition, since the current value of the switching current is controlled so as not to exceed the predetermined maximum current value, the maximum current value of the switching current is limited so that the current value of the switching current does not exceed the rated current value of the switching element. it can. Thereby, selection of a switching element can be made easy.
  • the control circuit has a current value of the return current flowing through the second and third current paths lower than a predetermined current value during a period from the turn-off to the turn-on of the switching element.
  • the turn-on cycle adjusting unit further includes a discontinuous state detecting unit that detects a discontinuous state, and the turn-on period adjusting unit continues the turn-on elapsed time when the discontinuous state is not detected by the discontinuous state detecting unit.
  • the turn-on cycle of the switching element is adjusted according to the difference between the instantaneous current value of the switching current and the target current value when the first time ratio with respect to time is reached, and the discontinuous state detection unit
  • the turn-on period of the switching element is set to the turn-on time of the switching element.
  • the time ratio obtained by dividing by the current continuous time corresponding to the elapsed time until detection by the discontinuous state detecting unit becomes the first time ratio with respect to the turn-on elapsed time with respect to the ON duration time.
  • the turn-on period of the switching element may be adjusted so as to approach the current ratio obtained by dividing the instantaneous current value of the switching current at that time by the target current value.
  • the average current value of the inductor current can be maintained at a desired value not only in the critical mode and the continuous mode but also in the discontinuous mode.
  • the control circuit continues from the turn-on of the switching element to the turn-off after the switching element is turned on until the current value of the switching current reaches the target current value. You may control the continuation time from the turn-on of the said switching element to the turn-off so that it may become the said 1st time ratio with respect to time.
  • the current value of the switching current when the elapsed time from the turn-on of the switching element becomes the first time ratio with respect to the duration from the turn-on to the turn-off of the switching element is brought close to the target current value. become.
  • the control circuit includes a switching current detection unit that detects a current value of the switching current, and a current of the switching current that is detected by the switching current detection unit after the switching element is turned on.
  • the ON duration time is set so that the arrival time until the value reaches the target current value becomes the first time ratio with respect to the ON duration time that defines the duration time from the turn-on to the turn-off of the switching element.
  • the ON duration adjusting unit to adjust, and the switching element is turned on based on a predetermined turn-on period, and the ON duration time adjusted by the ON duration adjusting unit elapses after the switching element is turned on.
  • Switching to turn off the switching element It may include a control unit.
  • the step-down chopper device it is not necessary to detect the inductor current (or load current) in order to perform feedback control of the average current value of the inductor current, so that the power loss accompanying the detection of the inductor current (or load current) is reduced. Does not occur. Therefore, the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element is controlled based on the detection result of the inductor current (or load current).
  • the control circuit has a current value of a return current flowing through the second and third current paths lower than a predetermined current value during a period from the turn-off to the turn-on of the switching element.
  • the switching control unit may further include a discontinuous state detecting unit that detects a discontinuous state, and the switching control unit may turn on the switching element when the discontinuous state is detected by the discontinuous state detecting unit.
  • the above step-down chopper device can prevent the transition from the continuous mode to the discontinuous mode.
  • the control circuit includes a switching current detection unit that detects a current value of the switching current, an inductor current detection unit that detects a current value of an inductor current flowing in the inductor, and the switching element.
  • the time required for the switching current detected by the switching current detector to reach the target current value after the turn-on is determined to be an ON duration that defines the duration from the turn-on to the turn-off of the switching element.
  • An on-duration adjusting unit that adjusts the on-duration so as to be the first time ratio, and a current value of the inductor current detected by the inductor current detecting unit after the switching element is turned off.
  • An off duration adjusting unit for adjusting the off duration so that the interval is a second time ratio with respect to an off duration defining a duration from turn-off to turn-on of the switching element; After the turn-on, the switching element is turned off when the on-duration adjusted by the on-duration adjusting unit has elapsed, and the off-adjusted by the off-duration adjusting unit after the switching element is turned off. And a switching control unit that turns on the switching element when the duration time elapses.
  • the transition from the continuous mode to the discontinuous mode can be prevented by adjusting the OFF duration.
  • the first time ratio is 1 / 2.22 or more and may be 1 / 1.82 or less.
  • the second time ratio is 1 / 2.22 or more and may be 1 / 1.82 or less.
  • the average current value of the inductor current can be increased and the power loss in the switching element can be reduced as compared with the case of operating only in the critical mode.
  • FIG. 3 is a diagram illustrating a configuration example of a step-down chopper device according to the first embodiment.
  • voltage fall chopper apparatus shown in FIG. The timing chart for demonstrating the case where the raise gradient of an inductor electric current becomes steep in the pressure
  • FIG. 1 The figure which shows the structural example of the turn-on period adjustment part shown in FIG.
  • voltage fall chopper apparatus shown in FIG.
  • FIG. 8 is a timing chart for explaining a case where the rising gradient of the inductor current becomes steep in the step-down chopper device shown in FIG. 7.
  • FIG. 6 is a diagram illustrating a configuration example of a step-down chopper device according to a third embodiment.
  • FIG. 14 is a diagram illustrating a configuration example of a switching control unit illustrated in FIG. 13.
  • 14 is a timing chart for explaining the operation (continuous mode) by the step-down chopper device shown in FIG. 13.
  • voltage fall chopper apparatus shown in FIG. The figure which shows the structural example of the turn-on period adjustment part shown in FIG.
  • FIG. 13 is a diagram illustrating a configuration example of a switching control unit illustrated in FIG. 13.
  • 14 is a timing chart for explaining the operation (continuous mode) by the step-down chopper device shown in FIG. 13.
  • FIG. 10 is a diagram illustrating a configuration example of a step-down chopper device according to a fourth embodiment.
  • voltage fall chopper apparatus shown in FIG. The timing chart for demonstrating the case where the raise gradient of an inductor electric current becomes steep in the pressure
  • FIG. 10 is a diagram illustrating a configuration example of a step-down chopper device according to a fifth embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a step-down chopper device according to a sixth embodiment.
  • the timing chart for demonstrating the case where the rising gradient of an inductor current becomes steep in the step-down chopper device shown in FIG. The timing chart for demonstrating the case where the fall gradient of an inductor current becomes steep in the pressure
  • FIG. 1 shows a configuration example of a step-down chopper device 1 according to a first embodiment.
  • the step-down chopper device 1 controls a load current iRD flowing through the load element RD, and includes a switching element SW, an inductor L1, a freewheeling diode D1 (freewheeling element), and a control circuit 11.
  • the switching element SW is provided in a current path (first current path) between the input node Nin1 and the intermediate node N1, and switches on / off in response to the switching control signal SWG.
  • An input voltage Vin is applied between the input nodes Nin1 and Nin2.
  • Inductor L1 is provided in series with load element RD in the current path (second current path) between intermediate node N1 and input node Nin2.
  • the free-wheeling diode D1 is provided in a current path (third current path) between the intermediate node N1 and the input node Nin2.
  • the freewheeling diode D1 recirculates the current to the second and third current paths (a closed circuit path constituted by the inductor L1, the load element RD, and the freewheeling diode) during a period in which the switching element SW is in the off state.
  • a capacitor CC is connected in parallel to the load element RD. That is, the load current iRD is a direct current corresponding to the average current value of the inductor current iL flowing through the inductor L1. Note that the capacitor CC may not be connected in parallel to the load element RD. In this case, the load current iRD is the same current as the inductor current iL.
  • the control circuit 11 switches the switching current flowing in the switching element SW when the elapsed time from the turn-on of the switching element SW becomes the first time ratio (1 / a) with respect to the duration from the turn-on to the turn-off of the switching element SW.
  • the switching element SW is turned on / off so that the instantaneous current value of iSW approaches a predetermined target current value iTG.
  • the control circuit 11 determines the switching current iSW when the elapsed time from the turn-on of the switching element SW becomes the first time ratio (1 / a) with respect to the duration from the turn-on to the turn-off of the switching element SW.
  • the instantaneous current value is detected, and the turn-on cycle of the switching element SW is controlled according to the difference between the instantaneous current value of the switching current iSW and the target current value iTG.
  • the control circuit 11 may include a switching current detection unit 101, a turn-on cycle adjustment unit 102, a switching control unit 103, an on duration setting unit 104, and a target current value setting unit 105.
  • the ON duration setting unit 104 sets an ON duration TCon (here, a voltage corresponding to the ON duration TCon) that defines the duration from the turn-on to the turn-off of the switching element SW.
  • the on duration setting unit 104 may change the on duration TCon in response to external control. That is, the ON duration time TCon may be a predetermined fixed value or a variable value that can be changed by external control.
  • the target current value setting unit 105 sets a target current value iTG (here, a voltage corresponding to the target current value iTG). The higher the target current value iTG, the higher the voltage corresponding to the target current value iTG.
  • the target current value iTG is equal to the first time with respect to the duration from the turn-on of the switching element SW to the turn-off. This corresponds to the current value of switching current iSW at the time ratio (1 / a) (ideal value of instantaneous current value).
  • the target current value iTG corresponds to a desired value of the average current value of the inductor current.
  • the target current value setting unit 105 may change the target current value iTG in response to external control. That is, the target current value iTG may be a predetermined fixed value or a variable value that can be changed by external control.
  • the switching current detection unit 101 detects a current value (switching current value idSW) of the switching current iSW.
  • the switching current detection unit 101 detects a voltage (for example, the drain voltage of the switching element SW) corresponding to the switching current value idSW. The higher the switching current value idSW, the higher the voltage corresponding to the switching current value idSW.
  • the turn-on cycle adjusting unit 102 detects a turn-on elapsed time TEon (here, a voltage corresponding to the turn-on elapsed time TEon) corresponding to the elapsed time from the turn-on of the switching element SW.
  • a turn-on elapsed time TEon here, a voltage corresponding to the turn-on elapsed time TEon
  • the turn-on cycle adjusting unit 102 is a switching current detecting unit when the turn-on elapsed time TEon becomes the first time ratio (1 / a) with respect to the on-duration time TCon set by the on-duration setting unit 104.
  • the switching current value idSW detected by 101 is detected as the instantaneous current value of the switching current iSW.
  • the turn-on cycle adjusting unit 102 detects a voltage corresponding to the instantaneous current value of the switching current iSW. The higher the instantaneous current value of the switching current iSW, the higher the voltage corresponding to the instantaneous current value of the switching current iSW.
  • the turn-on cycle adjusting unit 102 is a cycle control voltage that defines the turn-on cycle of the switching element SW according to the difference between the instantaneous current value of the switching current iSW and the target current value iTG set by the target current value setting unit 105. The turn-on cycle of the switching element SW is adjusted by raising or lowering CNT.
  • the switching control unit 103 changes the signal level of the switching control signal SWG from the low level to the high level based on the turn-on cycle (turn-on cycle corresponding to the cycle control voltage CNT) adjusted by the turn-on cycle adjusting unit 102.
  • the switching element SW is turned on (the switching element SW is changed from the off state to the on state). Further, the switching control unit 103 sets the signal level of the switching control signal SWG when the turn-on elapsed time TEon detected by the turn-on period adjusting unit 102 reaches the on-duration time TCon set by the on-duration setting unit 104.
  • the switching element SW is turned off by changing from the high level to the low level (the switching element SW is changed from the on state to the off state).
  • the turn-on cycle adjustment unit 102 may include a turn-on elapsed time detection unit 111, a time ratio detection unit 112, an instantaneous current value detection unit 113, and a cycle control unit 114.
  • the turn-on elapsed time detector 111 detects the turn-on elapsed time TEon.
  • the turn-on elapsed time detector 111 may include a capacitor C1, a current source CS1, switching elements SW1 and SW2, and an inverter INV1.
  • One end of the capacitor C1 is connected to a ground node (a node to which the ground voltage GND is applied).
  • Current source CS1 and switching element SW1 are connected in series between a power supply node (a node to which power supply voltage VDD is applied) and the other end of capacitor C1.
  • Switching element SW2 is connected between the other end of capacitor C1 and the ground node.
  • the inverter INV1 inverts the switching control signal SWG.
  • the switching elements SW1 and SW2 are turned on / off in response to the switching control signal SWG and the output signal of the inverter INV1, respectively.
  • the switching element SW1 When the signal level of the switching control signal SWG changes from the low level to the high level, the switching element SW1 is turned on and the switching element SW2 is turned off. Thereby, charging of the capacitor C1 by the current source CS1 is started, and the voltage of the capacitor C1 (voltage corresponding to the turn-on elapsed time TEon) gradually increases.
  • the switching element SW1 When the signal level of the switching control signal SWG changes from the high level to the low level, the switching element SW1 is turned off and the switching element SW2 is turned on. Thereby, discharging of the capacitor C1 is started, and the voltage of the capacitor C1 is reset to an initial value (for example, 0V).
  • the time ratio detection unit 112 detects that the turn-on elapsed time TEon has reached the first time ratio (1 / a) with respect to the ON duration time TCon.
  • the time ratio detection unit 112 may include a time voltage generation unit VG1 and a comparator CMP1.
  • the time voltage generation unit VG1 multiplies the voltage corresponding to the ON duration time TCon by 1 / a and outputs it as a voltage corresponding to the comparison time TXon (a time corresponding to 1 / a of the ON duration time TCon).
  • the time voltage generation unit VG1 may be a resistance divider circuit that multiplies the voltage corresponding to the ON duration time TCon by 1 / a.
  • the comparator CMP1 compares the voltage corresponding to the comparison time TXon with the voltage corresponding to the turn-on elapsed time TEon.
  • the signal level of the output signal (timing signal TMG) of the comparator CMP1 changes from the high level to the low level.
  • the instantaneous current value detection unit 113 uses the switching current value idSW detected by the switching current detection unit 101 as a first value for the turn-on elapsed time TEon with respect to the ON duration TCon. It is detected as an instantaneous current value (instantaneous current value iDET) of the switching current iSW at the time ratio (1 / a).
  • the instantaneous current value detection unit 113 may include a sample / hold circuit (S / H) SH1.
  • the sample / hold circuit SH1 samples the voltage corresponding to the switching current value idSW in synchronization with the transition edge (here, the falling edge) of the timing signal TMG, and the sampled voltage corresponds to the instantaneous current value iDET. Hold as.
  • the cycle control unit 114 increases or decreases the cycle control voltage CNT for controlling the turn-on cycle of the switching element SW according to the difference between the instantaneous current value iDET and the target current value iTG.
  • the periodic control voltage CNT decreases as the instantaneous current value iDET increases with respect to the target current value iTG.
  • the cycle control unit 124 may include a comparator CMP2 and a resistance element R1.
  • the comparator CMP2 compares the voltage corresponding to the instantaneous current value iDET with the voltage corresponding to the target current value iTG.
  • the resistance element R1 feeds back the output signal of the comparator CMP2 to the inverting input terminal of the comparator CMP2.
  • the switching control unit 103 may include an oscillator 115, a comparator 116, a pulse generator 117, and an SR latch 118.
  • the oscillator 115 periodically outputs a turn-on pulse Pon based on the turn-on period corresponding to the cycle control voltage CNT.
  • the comparator 116 compares the voltage corresponding to the turn-on elapsed time TEon with the voltage corresponding to the on-duration time TCon.
  • the signal level of the output signal of the comparator 116 changes from the high level to the low level.
  • the pulse generator 117 outputs a turn-off pulse Poff in synchronization with the output change of the comparator 116 (here, the falling edge of the output signal of the comparator 116).
  • the SR latch 118 changes the signal level of the switching control signal SWG from the low level to the high level in response to the turn-on pulse Pon from the oscillator 115. In addition, the SR latch 118 changes the signal level of the switching control signal SWG from the high level to the low level in response to the turn-off pulse Poff from the pulse generator 117.
  • the SR latch 118 changes the signal level of the switching control signal SWG from the low level to the high level. Let Thereby, the switching element SW is turned on, and the inductor current iL (switching current value iSW) gradually increases.
  • the time ratio detecting unit 112 The signal level of the signal TMG is changed from a high level to a low level.
  • the instantaneous current value detection unit 113 detects the switching current value idSW as the instantaneous current value iDET in response to the falling edge of the timing signal TMG.
  • the cycle control unit 114 increases or decreases the cycle control voltage CNT according to the difference between the instantaneous current value iDET and the target current value iTG.
  • the switching control unit 103 adjusts the output period of the turn-on pulse Pon in the oscillator 115 (that is, the turn-on period T of the switching element SW).
  • the signal level of the output signal of the comparator 116 is high in the switching control unit 103.
  • the pulse generator 117 outputs a turn-off pulse Poff.
  • the SR latch 118 changes the signal level of the switching control signal SWG from the high level to the low level in response to the turn-off pulse Poff. As a result, the switching element SW is turned off, and the inductor current iL gradually decreases.
  • the switching control unit 103 causes the oscillator 115 to switch the n + 1-th turn-on pulse Pon. Is output.
  • the turn-on period T of the switching element SW is adjusted according to the difference value (iDET ⁇ iTG) between the instantaneous current value iDET of the switching current and the target current value iTG.
  • the difference value (iDET ⁇ iTG) from the value iTG is larger than in the case of FIG. 4, and the cycle control voltage CNT is lower than in the case of FIG.
  • the turn-on period T of the switching element SW becomes longer than in the case of FIG.
  • the instantaneous current value iDET of the switching current and the target current value The difference value from iTG (iDET ⁇ iTG) is smaller than that in FIG. 4, and the cycle control voltage CNT is higher than that in FIG.
  • the turn-on period T of the switching element SW is shorter than in the case of FIG.
  • the average current value iAVE of the inductor current can be brought close to a desired value.
  • the difference value between the instantaneous current value iDET of the switching current and the target current value iTG becomes closer to “0”. That is, the instantaneous current value iDET of the switching current can be brought close to the target current value iTG.
  • the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is assumed to be “0”. Further, since the amount of change in the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is minute relative to the amount of change in the turn-on cycle T of the switching element SW, FIG. 5 and FIG. For simplification, it is assumed that the amount of change in the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is “0”.
  • the current value of the inductor current iL (switching current iSW) at that elapsed time becomes the inductor value. It becomes difficult for the current iL to fluctuate with respect to the variation of the time change gradient. That is, the switching current when the turn-on elapsed time TEon becomes the first time ratio (1 / a) with respect to the ON duration time TCon as the first time ratio (1 / a) becomes closer to “1/2”.
  • the instantaneous current value iDET is less likely to fluctuate with respect to the variation in the time change gradient of the inductor current iL.
  • the instantaneous current value iDET of the switching current can be made difficult to fluctuate with respect to the variation in the time variation gradient of the inductor current iL, the average of the inductor current caused by the variation in the time variation gradient of the inductor current iL. Variations in the current value iAVE can be suppressed.
  • the average current value iAVE of the inductor current corresponds to the average value ((iP + iS) / 2) of the maximum current value iP and the minimum current value iS of the inductor current.
  • the minimum current value iS of the inductor current is “0” when operating in the critical mode, and is higher than “0” when operating in the continuous mode. Therefore, assuming that the maximum current value iP of the inductor current is the same value, the average current value iAVE of the inductor current is higher when operating in the continuous mode than when operating in the critical mode. That is, since the step-down chopper device 1 shown in FIG. 1 can operate not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be made higher than when operating only in the critical mode. .
  • the power loss in the switching element SW is lower when operating in the continuous mode than when operating in the critical mode. That is, since the step-down chopper device 1 shown in FIG. 1 can operate not only in the critical mode but also in the continuous mode, the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode.
  • the inductor current (or load current) is detected using a resistance element, and the average current value of the inductor current is controlled based on the detection result. (Feedback control) can be considered.
  • power loss occurs when detecting the inductor current (or load current).
  • the inductor current iL or load current iRD
  • the inductor current iL does not have to be detected in order to feedback control the average current value iAVE of the inductor current.
  • No power loss due to detection of the load current iRD occurs. Therefore, power loss in the step-down chopper device can be reduced as compared with the case where on / off of switching element SW is controlled based on the detection result of inductor current iL (or load current iRD).
  • the higher the input voltage Vin the greater the switching loss (power loss generated during switching) per switching in the switching element SW.
  • the higher the input voltage Vin the longer the turn-on cycle T of the switching element SW, and the lower the number of switching times per unit time of the switching element SW. Therefore, an increase in switching loss accompanying an increase in the input voltage Vin can be suppressed.
  • FIG. 7 shows a configuration example of the step-down chopper device 2 according to the second embodiment.
  • the step-down chopper device 2 includes a control circuit 21 instead of the control circuit 11 shown in FIG.
  • the control circuit 21 replaces the turn-on cycle adjusting unit 102, the switching control unit 103, and the on duration setting unit 104 shown in FIG. 1 with a turn-on cycle adjusting unit 202, a switching control unit 203, and a maximum current value setting unit. 204.
  • Other configurations may be the same as those in FIG.
  • the maximum current value setting unit 204 sets a maximum current value iMAX (here, a voltage corresponding to the maximum current value iMAX) that defines the maximum current value of the inductor current iL (switching current iSW). As the maximum current value iMAX increases, the voltage corresponding to the maximum current value iMAX increases.
  • the maximum current value setting unit 204 may change the maximum current value iMAX in response to external control. That is, the maximum current value iMAX may be a predetermined fixed value or a variable value that can be changed by external control.
  • the turn-on cycle adjusting unit 202 detects a turn-on elapsed time TEon (here, a voltage corresponding to the turn-on elapsed time TEon) corresponding to the elapsed time from the turn-on of the switching element SW. Further, the turn-on cycle adjusting unit 202 detects an on duration TCon (here, a voltage corresponding to the on duration TCon) corresponding to the duration from the turn-on to the turn-off of the switching element SW.
  • TEon a voltage corresponding to the turn-on elapsed time TEon
  • TCon an on duration
  • the turn-on cycle adjusting unit 202 detects the current of the switching current iSW detected by the switching current detecting unit 101 when the turn-on elapsed time TEon becomes the first time ratio (1 / a) with respect to the on-continuation time TCon.
  • the value (switching current value idSW) is detected as the instantaneous current value (instantaneous current value iDET) of the switching current.
  • the turn-on cycle adjusting unit 202 increases the cycle control voltage CNT that defines the turn-on cycle of the switching element SW according to the difference between the instantaneous current value iDET and the target current value iTG set by the target current value setting unit 105. Alternatively, the turn-on cycle of the switching element SW is adjusted by lowering.
  • the switching control unit 203 changes the signal level of the switching control signal SWG from the low level to the high level based on the turn-on cycle (turn-on cycle corresponding to the cycle control voltage CNT) adjusted by the turn-on cycle adjusting unit 202.
  • the switching element SW is turned on. Further, the switching control unit 203, when the current value of the switching current iSW detected by the switching current detection unit 101 (switching current value idSW) reaches the maximum current value iMAX set by the maximum current value setting unit 204, The switching element SW is turned off by changing the signal level of the switching control signal SWG from the high level to the low level.
  • the turn-on cycle adjusting unit 202 may include an on-duration detecting unit 211 in addition to the configuration example of the turn-on cycle adjusting unit 102 shown in FIG. 2. Based on the turn-on elapsed time TEon, the on-duration detection unit 211 detects an on-duration TCon corresponding to the duration from the turn-on of the switching element SW to the turn-off.
  • the ON duration detection unit 211 may include a peak / hold circuit (P / H) PH1, capacitors C2 and C3, switching elements SW3 and SW4, and an inverter INV2.
  • the peak / hold circuit PH1 detects and holds the maximum value of the voltage corresponding to the turn-on elapsed time TEon.
  • One ends of the capacitors C2 and C3 are connected to the ground node.
  • the switching element SW3 is connected between the peak / hold circuit PH1 and the other end of the capacitor C2.
  • Switching element SW4 is connected between the other end of capacitor C2 and the other end of capacitor C3.
  • the inverter INV2 inverts the switching control signal SWG. Switching elements SW3 and SW4 are turned on / off in response to the output signal of inverter INV2 and switching control signal SWG, respectively.
  • the turn-on elapsed time detector 111 resets the voltage corresponding to the turn-on elapsed time TEon. Therefore, the voltage held in the peak / hold circuit PH1 can be said to be a voltage corresponding to the duration (n-th on-time) from the n-th turn-on of the switching element SW to the n-th turn-off.
  • the switching element SW3 is turned on and the switching element SW4 is turned off.
  • the voltage held in the peak / hold circuit PH1 (that is, the voltage corresponding to the n-th on-time) is held in the capacitor C2.
  • the voltage held in the capacitor C3 can be said to be a voltage corresponding to the time corresponding to the first to n-th on times (for example, the average time of the first to n-th on times).
  • the voltage held in the capacitor C3 is supplied as a voltage corresponding to the ON duration TCon (ON duration detected by the ON duration detector 211).
  • the ON duration detection unit 211 may further include a voltage correction circuit that corrects fluctuations in voltage corresponding to the ON duration TCon (voltage drop in the switching elements SW2 and SW3, etc.).
  • the switching control unit 203 may include a comparator 216 instead of the comparator 116 illustrated in FIG. 3.
  • the comparator 216 compares the voltage corresponding to the switching current value idSW with the voltage corresponding to the maximum current value iMAX.
  • the signal level of the output signal of the comparator 216 changes from the high level to the low level.
  • the pulse generator 117 outputs a turn-off pulse Poff in synchronization with the output change (here, falling edge) of the comparator 216.
  • the SR latch 118 changes the signal level of the switching control signal SWG from the low level to the high level. Thereby, the switching element SW is turned on, and the inductor current iL (switching current value iSW) gradually increases.
  • the turn-on cycle adjusting unit 202 when the turn-on elapsed time TEon reaches the comparison time TXon (1/2 of the on-duration time TCon detected by the on-duration detection unit 211), in the turn-on cycle adjusting unit 202, the time ratio detection unit 112 The signal level of the signal TMG is changed from a high level to a low level.
  • the instantaneous current value detection unit 113 detects the switching current value idSW as the instantaneous current value iDET in response to the falling edge of the timing signal TMG.
  • the cycle control unit 114 increases or decreases the cycle control voltage CNT according to the difference between the instantaneous current value iDET and the target current value iTG.
  • the switching control unit 203 adjusts the output period of the turn-on pulse Pon in the oscillator 115 (that is, the turn-on period T of the switching element SW).
  • the switching control unit 203 when the switching current value idSW reaches the maximum current value iMAX, in the switching control unit 203, the signal level of the output signal of the comparator 216 changes from high level to low level, and the pulse generator 117 turns off the turn-off pulse Poff. Is output.
  • the SR latch 118 changes the signal level of the switching control signal SWG from the high level to the low level in response to the turn-off pulse Poff. As a result, the switching element SW is turned off, and the inductor current iL gradually decreases.
  • the on-duration detection unit 211 detects the on-duration time TCon based on the turn-on elapsed time TEon.
  • the switching control unit 103 causes the oscillator 115 to switch the n + 1-th turn-on pulse Pon. Is output.
  • the turn-on period T of the switching element SW is adjusted according to the difference value (iDET ⁇ iTG) between the instantaneous current value iDET of the switching current and the target current value iTG.
  • the difference value (iDET ⁇ iTG) between the instantaneous current value iDET of the switching current and the target current value iTG. ) Is smaller than in the case of FIG. 10, and the cycle control voltage CNT is lower than in the case of FIG.
  • the turn-on period T of the switching element SW becomes shorter than that in the case of FIG.
  • the average current value iAVE of the inductor current can be brought close to a desired value.
  • the amount of change in the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is very small with respect to the amount of change in the turn-on cycle T of the switching element SW.
  • the amount of change in the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is “0”.
  • the turn-on elapsed time TEon is the first time ratio with respect to the on-continuation time TCon as the first time ratio (1 / a) is closer to “1/2”. It can be seen that the instantaneous current value iDET of the switching current at (1 / a) is less likely to fluctuate with respect to the variation in the time change gradient of the inductor current iL.
  • the instantaneous current value iDET of the switching current can be made difficult to fluctuate with respect to the variation in the time variation gradient of the inductor current iL, the average of the inductor current caused by the variation in the time variation gradient of the inductor current iL. Variations in the current value iAVE can be suppressed. Further, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode. .
  • the inductor current iL (or load current iRD) in order to perform feedback control of the average current value iAVE of the inductor current, it is based on the detection result of the inductor current iL (or load current iRD).
  • the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element SW is controlled.
  • the maximum switching current is set so that the current value of the switching current iSW does not exceed the rated current value of the switching element SW.
  • the current value iP can be limited. Thereby, selection of switching element SW can be made easy.
  • FIG. 13 shows a configuration example of the step-down chopper device 3 according to the third embodiment.
  • the step-down chopper device 3 includes a control circuit 31 instead of the control circuit 11 shown in FIG.
  • the control circuit 31 includes a discontinuous state detection unit 301, a turn-on cycle adjustment unit 302, and a switching control unit 303 instead of the turn-on cycle adjustment unit 102 and the switching control unit 103 shown in FIG.
  • Other configurations may be the same as those in FIG.
  • the discontinuous state detection unit 301 detects that a discontinuous state has occurred.
  • the discontinuous state is a return current flowing through the second and third current paths (a closed circuit path formed by the inductor L1, the load element RD, and the return diode D1) during the period from the turn-off to the turn-on of the switching element SW. Is a state where the current value becomes lower than a predetermined current value (for example, around 0 A).
  • the discontinuous state detection unit 301 detects that a discontinuous state has occurred based on the difference between the voltages across the inductor L1 (the node voltage V1 at the intermediate node N1 and the node voltage V2 at the intermediate node N3).
  • the turn-on period adjusting unit 302 determines the turn-on period T (() of the switching element SW according to the difference between the instantaneous current value iDET of the switching current and the target current value iTG. (Turn-on period corresponding to continuous mode or critical mode).
  • the turn-on period adjusting unit 302 sets the turn-on period T of the switching element SW to the current continuous time (from the turn-on of the switching element SW to the discontinuous state detecting unit 301.
  • the time ratio (T / TDon) obtained by dividing by the elapsed time until the detection) is an instantaneous current value iDET of the switching current (the turn-on elapsed time TEon is equal to the first time ratio (1 / a) corresponding to the turn-on period T (discontinuous mode) of the switching element SW so as to approach the current ratio (iDET / iTG) obtained by dividing the switching current value idSW) at the time of a) by the target current value iTG. Adjust the turn-on cycle.
  • the switching control unit 303 turns on the switching element SW based on the turn-on cycle T adjusted by the turn-on cycle adjusting unit 302, and the turn-on elapsed time TEon is on duration.
  • TCon the turn-on elapsed time TEon is on duration.
  • the discontinuous state detection unit 301 may include a comparator CMP3 and a logic circuit (LGC) LGC1.
  • the comparator CMP3 compares the voltage across the inductor L1 (node voltages V1, V2).
  • the signal level of the output signal of the comparator CMP3 changes from the high level to the low level.
  • the logic circuit LCG1 has the signal level of the discontinuous detection signal S301 (the output signal of the logic circuit LCG1). Is changed from the high level to the low level, and the signal level of the switching control signal SWG changes from the low level to the high level, the signal level of the discontinuous detection signal S301 is changed to the high level.
  • the switching element SW When the signal level of the switching control signal SWG is low level, the switching element SW is turned off, so that the return current is inducted in the closed circuit path constituted by the inductor L1, the load element RD, and the return diode D1. It will flow as iL. In this case, the node voltage V1 is lower than the node voltage V2. Therefore, the output signal of the comparator CMP3 is maintained at a high level, and the logic circuit LGC1 maintains the signal level of the discontinuous detection signal S301 at a high level.
  • the current value of the return current reaches a predetermined current value (for example, 0 V)
  • the node voltage V1 becomes equal to the node voltage V2.
  • the signal level of the output signal of the comparator CMP3 changes from the high level to the low level.
  • the logic circuit LGC1 changes the signal level of the discontinuous detection signal S301 from the high level to the low level.
  • the signal level of the discontinuous detection signal S301 changes from a high level to a low level.
  • the logic circuit LGC1 changes the signal level of the discontinuous detection signal S301 from the low level to the high level.
  • the logic circuit LGC1 causes the switching control signal SWG to change from the low level after the signal level of the output signal of the comparator CMP3 changes from the high level to the low level. Until the signal level becomes high, the signal level of the discontinuous detection signal S301 is kept low.
  • the signal level of the discontinuous detection signal S301 can be maintained at a low level (non-contiguous). Accurately detect that a continuous condition has occurred).
  • the turn-on period adjusting unit 302 may include a turn-on elapsed time detecting unit 311 and a pulse control unit 312 instead of the turn-on elapsed time detecting unit 111 illustrated in FIG. 2.
  • Other configurations may be the same as those in FIG.
  • the turn-on elapsed time detector 311 detects the turn-on elapsed time TEon.
  • the turn-on elapsed time detector 311 includes a capacitor C4, current sources CS2 and CS3, switching elements SW5, SW6, and SW7, a differential amplifier (AMP) AMP1, a logic circuit (LGC) LGC2, and an inverter INV3. May be included.
  • the differential amplifier AMP1 outputs a differential voltage between the voltage corresponding to the instantaneous current value iDET and the voltage corresponding to the target current value iTG.
  • the current value of the current source CS3 changes according to the differential voltage (voltage corresponding to the difference between the instantaneous current value iDET and the target current value iTG) from the differential amplifier AMP1.
  • the current value of the current source CS2 is “iCHG” and the current value of the current source CS3 is “iDCH”
  • Adjusted to Current source CS3 and switching element SW7 are connected in series between the other end of capacitor C4 and the ground node.
  • the logic circuit LGC2 turns on the switching element SW6 in synchronization with the rising edge of the switching control signal SWG.
  • the voltage of the capacitor C4 voltage corresponding to the turn-on elapsed time TEon
  • an initial value for example, 0 V
  • the inverter INV3 inverts the discontinuous detection signal S301.
  • the switching elements SW5, SW6, and SW7 are turned on / off in response to the discontinuous detection signal S301, the output signal of the logic circuit LGC2, and the output signal of the inverter INV3, respectively.
  • the switching element SW5 When the signal level of the discontinuous detection signal S301 is high, the switching element SW5 is maintained in the on state, and the switching element SW7 is maintained in the off state. In this case, when the signal level of the switching control signal SWG changes from the low level to the high level, the switching element SW6 is turned on. As a result, the capacitor C4 is discharged, and the voltage of the capacitor C4 (voltage corresponding to the turn-on elapsed time TEon) is reset to an initial value (for example, 0 V). When the voltage of the capacitor C4 reaches the initial value, the switching element SW6 is turned off. Thereby, charging of the capacitor C4 by the current source CS2 is started, and the voltage of the capacitor C4 gradually increases. As described above, the voltage of the capacitor C4 increases as the turn-on elapsed time TEon increases.
  • the switching element SW5 is turned off and the switching element SW7 is turned on.
  • the voltage rise time (charge time of the capacitor C4) corresponding to the turn-on elapsed time TEon corresponds to the elapsed time (current continuous time) from the turn-on of the switching element SW to the detection by the discontinuous state detection unit 301.
  • the pulse control unit 312 outputs a control signal P302 when the turn-on elapsed time TEon detected by the turn-on elapsed time detection unit 311 reaches the turn-on period T in the discontinuous mode.
  • the pulse control unit 312 may include a pulse generator PG1 and a logic circuit (LGC) LGC3.
  • LGC logic circuit
  • the logic circuit LGC3 allows the control pulse from the pulse generator PG1 to pass as the control pulse P302 during the period when the signal level of the switching control signal SWG is low, and during the period when the signal level of the switching control signal SWG is high.
  • the control pulse from the pulse generator PG1 is not passed. That is, the voltage rise time corresponding to the turn-on elapsed time TEon and the total time of the fall time (discharge time of the capacitor C4) (the voltage corresponding to the turn-on elapsed time TEon rises from the initial value and then drops to the initial value again. (Elapsed time until) corresponds to the turn-on period T in the discontinuous mode of the switching element SW.
  • the switching control unit 303 may include a selection unit 313 in addition to the configuration example of the switching control unit 103 illustrated in FIG. 3.
  • the selection unit 313 turns on the control pulse P302 from the turn-on cycle adjustment unit 302. Select as P303.
  • the selection unit 313 generates a turn-on pulse Pon from the oscillator 115 when the signal level of the discontinuous detection signal S301 is maintained high during the period in which the signal level of the switching control signal SWG is low.
  • the turn-on pulse P303 is selected.
  • the SR latch 118 changes the signal level of the switching control signal SWG from the low level to the high level in response to the turn-on pulse P303 from the selection unit 313.
  • the switching control unit 303 when the discontinuous state does not occur, the signal level of the discontinuous detection signal S301 is maintained at the high level, and the control pulse P302 is not generated. Therefore, in the switching control unit 303, the oscillator 115 outputs the turn-on pulse Pon based on the turn-on cycle (cycle according to the cycle control voltage CNT) adjusted by the turn-on cycle adjusting unit 302, and the selection unit 313 Is selected as the turn-on pulse P303 supplied to the SR latch 118. That is, the switching control unit 303 turns on the switching element SW based on the turn-on cycle T corresponding to the continuous mode.
  • the discontinuous state detecting unit 301 detects the signal level of the discontinuous detection signal S301. Is changed from high level to low level.
  • the turn-on elapsed time detecting unit 311 of the turn-on period adjusting unit 302 the discharge of the capacitor C4 by the current source CS3 is started, and the voltage corresponding to the turn-on elapsed time TEon gradually decreases.
  • the pulse control unit 312 of the turn-on period adjusting unit 302 outputs a control pulse P302.
  • the selection unit 313 selects the control pulse P302 as the turn-on pulse P303. That is, the switching control unit 303 turns on the switching element SW based on the turn-on period T corresponding to the discontinuous mode.
  • the current value of the current source CS2 is “iCHG” and the current value of the current source CS3 is “iDCH”, the current value of the current source CS3 is Is adjusted to hold.
  • a time ratio (T / TDon) obtained by dividing the turn-on period T by the current continuous time TDon is a current ratio (iDET / D) obtained by dividing the instantaneous current value iDET by the target current value iTG.
  • the turn-on period T is adjusted so as to approach iTG).
  • the instantaneous current value iDET of the switching current can be made difficult to fluctuate with respect to the variation in the time variation gradient of the inductor current iL, the average of the inductor current caused by the variation in the time variation gradient of the inductor current iL. Variations in the current value iAVE can be suppressed. Further, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode. .
  • the inductor current iL (or load current iRD) in order to perform feedback control of the average current value iAVE of the inductor current, it is based on the detection result of the inductor current iL (or load current iRD).
  • the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element SW is controlled.
  • the average current value iAVE of the inductor current can be maintained at a desired value not only in the critical mode and the continuous mode but also in the discontinuous mode.
  • FIG. 19 shows a configuration example of a step-down chopper device 3a according to a modification of the third embodiment.
  • the step-down chopper device 3a includes a control circuit 31a instead of the control circuit 31 shown in FIG.
  • the control circuit 31a replaces the ON duration setting unit 104, the turn-on cycle adjusting unit 302, and the switching control unit 303 shown in FIG. 13 with a maximum current value setting unit 204, a turn-on cycle adjusting unit 302a, and a switching control unit 303a. including.
  • Other configurations are the same as those in FIG. As shown in FIG. As shown in FIG.
  • the turn-on cycle adjusting unit 302a includes a turn-on elapsed time detecting unit 111 and an on-duration detecting unit 211 shown in FIG. 8 in addition to the configuration example of the turn-on cycle adjusting unit 302 shown in FIG. .
  • the switching control unit 303a includes a comparator 216 shown in FIG. 9 instead of the comparator 116 shown in FIG.
  • Other configurations are the same as those in FIG. Even in such a configuration, the average current value of the inductor current can be maintained at a desired value not only in the critical mode and the continuous mode but also in the discontinuous mode.
  • the turn-on cycle adjusting units 103, 203, 303, and 303a may include the cycle control unit 114a illustrated in FIG. 22 instead of the cycle control unit 114.
  • the cycle control unit 114a includes a sample / hold circuit SH2 and a differential amplifier AMP2 in addition to the configuration example of the cycle control unit 114 shown in FIG.
  • the sample / hold circuit SH2 samples the cycle control voltage CNT (output signal of the comparator CMP2) in synchronization with the falling edge of the timing signal TMG and holds it as the cycle control voltage CNTp.
  • the differential amplifier AMP2 increases or decreases the cycle control voltage CNTa according to the difference between the cycle control voltage CNT (ie, the current cycle control voltage) and the cycle control voltage CNTp (ie, the previous cycle control voltage). For example, as the cycle control voltage CNT becomes higher than the cycle control voltage CNTp, the cycle control voltage CNTa increases.
  • the cycle control unit may be an error amplification type or a state machine type.
  • control circuits 31 and 31a may include the discontinuous state detection unit 301a illustrated in FIG. 23 instead of the discontinuous state detection unit 301.
  • the discontinuous state detection unit 301a may include a resistance element R2, a differential amplifier AMP3, and a comparator CMP4. Resistance element R2 is inserted in the current path between intermediate node N1 and inductor L1.
  • the differential amplifier AMP3 outputs an output voltage corresponding to the difference between the both-end voltages V4 and V5 of the resistance element R2.
  • the comparator CMP4 compares the output voltage of the differential amplifier AMP3 with the reference voltage REF0.
  • the reference voltage REF0 is a voltage for determining whether the output voltage of the differential amplifier AMP3 is 0 V or less (for example, a voltage in the vicinity of 0 V), and the one-end voltage V4 of the resistance element R2 is the voltage of the resistance element R2.
  • the signal level of the output signal of the comparator CMP4 (discontinuous detection signal S301a) becomes a low level.
  • the signal level of the output signal of the comparator CMP4 becomes a high level.
  • the return current is applied to the closed circuit path constituted by the inductor L1, the load element RD, and the return diode D1. It will flow as current iL.
  • the one voltage V4 of the resistance element R2 is higher than the other end voltage V5 of the resistance element R2. Therefore, the comparator CMP4 maintains the signal level of the discontinuous detection signal S301a at a high level.
  • the current value of the return current reaches a predetermined current value (for example, 0 V)
  • the one end voltage V4 and the other end voltage V5 of the resistance element R2 become equal to each other.
  • the comparator CMP3 changes the signal level of the discontinuous detection signal S301a from the high level to the low level. That is, when a discontinuous state occurs, the signal level of the discontinuous detection signal S301a changes from a high level to a low level.
  • the discontinuous state detection unit may detect that a discontinuous state has occurred based on the voltage between both ends of the resistance element R2 inserted between the intermediate node N1 and the inductor L1.
  • FIG. 24 shows a configuration example of the step-down chopper device 4 according to the fourth embodiment.
  • the step-down chopper device 4 includes a control circuit 41 instead of the control circuit 11 shown in FIG. Other configurations may be the same as those in FIG.
  • the control circuit 41 has a first time with respect to the duration from when the switching element SW is turned on to when the switching element SW is turned on until the current value of the switching current iSW reaches the target current value iTG. The duration from the turn-on to the turn-off of the switching element SW is controlled so that the ratio (1 / a) is obtained.
  • the control circuit 41 may include a switching current detection unit 101, a target current value setting unit 105, an ON duration adjustment unit 401, and a switching control unit 402.
  • the ON duration adjustment unit 401 is a target current in which the current value (switching current value idSW) of the switching current iSW detected by the switching current detection unit 101 after the switching element SW is turned on is set by the target current value setting unit 105.
  • the ON duration TCon so that the arrival time until reaching the value iTG is the first time ratio (1 / a) with respect to the ON duration TCon that defines the duration from the turn-on to the turn-off of the switching element SW. Adjust.
  • the switching control unit 402 turns on the switching element SW by changing the signal level of the switching control signal SWG from the low level to the high level based on a predetermined turn-on cycle determined in advance. Further, the switching control unit 402 changes the signal level of the switching control signal SWG from the high level to the low level when the ON duration time TCon adjusted by the ON duration duration adjustment unit 401 elapses after the switching element SW is turned on. By changing, the switching element SW is turned off.
  • the ON duration adjustment unit 401 may include an ON arrival time detection unit 411 and an ON duration setting unit 412.
  • the on-arrival time detector 411 corresponds to an on-arrival time TRon (here, corresponding to the on-arrival time TRon) corresponding to the arrival time from when the switching element SW is turned on until the switching current value idSW reaches the target current value iTG. Voltage).
  • the longer the on-arrival time TRon the longer the high level time of the voltage corresponding to the on-arrival time TRon.
  • the on arrival time detection unit 411 may include a pulse generator PG21, a comparator CMP21, and an SR latch SR21.
  • the pulse generator PG21 outputs a set pulse in synchronization with the rising edge (change from low level to high level) of the switching control signal SWG.
  • the comparator CMP21 compares the voltage corresponding to the switching current value idSW with the voltage corresponding to the target current value iTG.
  • the signal level of the output signal of the comparator CMP21 changes from the low level to the high level.
  • the SR latch SR21 changes the voltage level of the voltage corresponding to the ON arrival time TRon from the low level to the high level.
  • the SR latch SR21 changes the voltage level of the voltage corresponding to the ON arrival time TRon from the high level to the low level in response to the output change (here, the rising edge) of the comparator CMP21.
  • the ON duration setting unit 412 is a time obtained by multiplying the ON arrival time TRon detected by the ON arrival time detection unit 411 by the reciprocal of the first time ratio (1 / a) (that is, the ON duration time TCon).
  • the ON duration time TCon (here, the voltage corresponding to the ON duration time TCon) is set based on the ON arrival time TRon so as to be the on arrival time TRon.
  • the longer the ON duration time TCon the longer the voltage fluctuation time corresponding to the ON duration time TCon (the total time of the rise time and the fall time).
  • the ON duration setting unit 412 may include a capacitor C21, current sources CS21 and CS22, switching elements SW21 and SW22, and an inverter INV21.
  • One end of the capacitor C21 is connected to the ground node.
  • Current source CS21 and switching element SW21 are connected in series between the power supply node and the other end of capacitor C21.
  • Current source CS22 and switching element SW22 are connected in series between the other end of capacitor C21 and the ground node.
  • the inverter INV21 inverts the voltage corresponding to the on arrival time TRon. Switching elements SW21 and SW22 are turned on / off in response to the voltage corresponding to on-arrival time TRon and the output signal of inverter INV21, respectively.
  • the switching element SW21 When the voltage level of the voltage corresponding to the ON arrival time TRon changes from the low level to the high level, the switching element SW21 is turned on and the switching element SW22 is turned off. Thereby, charging of the capacitor C21 by the current source CS21 is started, and the voltage of the capacitor C21 (voltage corresponding to the ON duration TCon) gradually increases.
  • the switching element SW21 is turned off and the switching element SW22 is turned on. Thereby, discharging of the capacitor C21 by the current source CS22 is started, and the voltage of the capacitor C21 gradually decreases.
  • the current ratio between the current value of the current source CS21 (charge current value) and the current value of the current source CS22 (discharge current value) is set so that the ON duration TCon is a times the ON arrival time TRon. ing. For example, when the first time ratio (1 / a) is “1/2”, the current ratio between the current source CS21 and the current source CS22 is “1: 1”.
  • the switching control unit 402 may include a comparator 413, a pulse generator 414, a pulse generator 415, and an SR latch 416.
  • the comparator 413 compares the voltage corresponding to the ON duration time TCon with the reference voltage REFon.
  • the reference voltage REFon is a voltage (for example, a voltage in the vicinity of 0V) for determining the rise start and fall end of the voltage corresponding to the ON duration time TCon, and the voltage corresponding to the ON duration time TCon has increased.
  • the signal level of the output signal of the comparator 413 changes from the high level to the low level.
  • the pulse generator 414 outputs a turn-off pulse Poff in synchronization with the output change (here, falling edge) of the comparator 413. That is, the pulse generator 414 outputs the turn-off pulse Poff when the ON duration TCon elapses after the switching element SW is turned on.
  • the pulse generator 415 outputs a turn-on pulse Pon at a predetermined cycle.
  • the SR latch 416 changes the signal level of the switching control signal SWG from the low level to the high level in response to the turn-on pulse Pon from the pulse generator 415.
  • the SR latch 416 changes the signal level of the switching control signal SWG from the high level to the low level in response to the turn-off pulse Poff from the pulse generator 414.
  • the SR latch 416 changes the signal level of the switching control signal SWG from the low level to the high level.
  • the switching element SW is turned on, and the inductor current iL (switching current value idSW) gradually increases.
  • the ON arrival time detection unit 411 changes the voltage level of the voltage corresponding to the ON arrival time TRon from a low level to a high level, and the ON duration setting unit 412 The voltage corresponding to TCon is gradually increased.
  • the ON arrival time detection unit 411 changes the voltage level of the voltage corresponding to the ON arrival time TRon from the high level to the low level. Change. Thereby, the ON duration setting unit 412 gradually decreases the voltage corresponding to the ON duration TCon.
  • the pulse generator 414 outputs the nth turn-off pulse Poff. As a result, the switching element SW is turned off, and the inductor current iL gradually decreases.
  • the pulse generator 415 outputs the (n + 1) -th turn-on pulse Pon in the switching control unit 402. .
  • the ON duration TCon is the duration from when the switching element SW is turned on until the current value of the switching current iSW reaches the target current value iTG (ON arrival time TRon). It is adjusted so as to be the first time ratio (1 / a) with respect to (ON duration TCon). For example, as shown in FIG. 28, when the rising gradient of the inductor current iL (switching current iSW) becomes steeper than in the case of FIG. 27 (for example, when the input voltage Vin becomes high), as shown in FIG. Even when the descending gradient of the inductor current iL becomes steeper than in the case of FIG.
  • the current of the switching current iSW after the switching element SW is turned on. From the turn-on of the switching element SW so that the arrival time until the value reaches the target current value iTG is the first time ratio (1 / a) with respect to the duration Ton from the turn-on of the switching element SW to the turn-off. The duration Ton until turn-off is adjusted.
  • the ON duration time TCon so that the ON arrival time TRon becomes the first time ratio (1 / a) with respect to the ON duration time TCon, the elapsed time from the turn-on of the switching element SW is set. That is, the current value of the switching current iSW at the first time ratio (1 / a) with respect to the duration from the turn-on to the turn-off of the switching element SW is brought close to the target current value iTG. Thereby, the average current value iAVE of the inductor current can be brought close to a desired value.
  • the current value of the inductor current iL (switching current iSW) at the elapsed time becomes the inductor value. It becomes difficult for the current iL to fluctuate with respect to the variation of the time change gradient. That is, as the first time ratio (1 / a) is closer to “1/2”, the average current value iAVE of the inductor current is less likely to vary with respect to the variation in the time change gradient of the inductor current iL.
  • the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode.
  • the inductor current iL (or load current iRD) in order to perform feedback control of the average current value iAVE of the inductor current, it is based on the detection result of the inductor current iL (or load current iRD).
  • the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element SW is controlled.
  • FIG. 30 shows a configuration example of the step-down chopper device 5 according to the fifth embodiment.
  • the step-down chopper device 5 includes a control circuit 51 instead of the control circuit 41 shown in FIG.
  • the control circuit 51 may include a discontinuous state detection unit 501 and a switching control unit 502 instead of the switching control unit 402 shown in FIG.
  • Other configurations may be the same as those in FIG.
  • the discontinuous state detection unit 501 is a discontinuous state (a state in which the current value of the return current flowing through the second and third current paths is lower than a predetermined current value during the period from the turn-off to the turn-on of the switching element SW). ) Is detected.
  • the switching control unit 502 turns on the switching element SW by changing the signal level of the switching control signal SWG from the low level to the high level based on a predetermined turn-on cycle. After the switching element SW is turned on, the switching control signal SWG is changed from the high level to the low level when the ON duration time TCon adjusted by the ON duration adjustment unit 401 elapses, thereby switching the switching element SW. To turn off. In addition, when the discontinuous state is detected by the discontinuous state detecting unit 501, the switching control unit 502 turns on the switching element SW by changing the signal level of the switching control signal SWG from the low level to the high level.
  • the discontinuous state detection unit 501 may include an inverter INV23 in addition to the comparator CMP3 and the logic circuit LGC1 illustrated in FIG.
  • the inverter INV23 inverts the output signal of the logic circuit LGC1 (corresponding to the discontinuous detection signal S301) and outputs it as a control pulse P501.
  • the signal level of the switching control signal SWG When the signal level of the switching control signal SWG is a low level, the signal level of the output signal of the logic circuit LGC1 is maintained at a high level, so that the signal level of the output signal of the inverter INV23 is maintained at a low level. (In other words, the control pulse P501 is not generated).
  • the current value of the return current reaches a predetermined current value (for example, 0 A)
  • the signal level of the output signal of the logic circuit LGC1 changes from the high level to the low level, so that the signal level of the output signal of the inverter INV23 Changes from a low level to a high level (that is, the control pulse P501 is generated).
  • the control pulse P501 when the discontinuous state occurs, the control pulse P501 is generated.
  • the discontinuous state detection unit 501 may include the resistor element R2, the differential amplifier AMP3, and the comparator CMP4 shown in FIG. 23 instead of the comparator CMP3 and the logic circuit LGC1 shown in FIG. .
  • the inverter INV23 inverts the output signal of the comparator CMP4 and outputs it as the control pulse P501.
  • the switching control unit 502 may include an oscillator 511 and a selection unit 512 instead of the pulse generator 415 illustrated in FIG. 26.
  • Other configurations may be the same as in FIG.
  • the oscillator 511 periodically outputs a control pulse P502 based on a predetermined turn-on cycle.
  • the oscillator 511 starts the periodic output of the control pulse P502 in synchronization with the turn-on pulse P503.
  • the selection unit 512 selects the control pulse P501 as the turn-on pulse P503 when the control pulse P501 is generated in a period in which the signal level of the switching control signal SWG is low.
  • the selection unit 512 selects the control pulse P502 from the oscillator 511 as the turn-on pulse P503 when the control pulse P501 is not generated during the period when the signal level of the switching control signal SWG is low.
  • the SR latch 416 changes the signal level of the switching control signal SWG from the low level to the high level in response to the turn-on pulse P503 from the selection unit 512.
  • the selection unit 512 selects the control pulse P502 from the oscillator 511 as the turn-on pulse P503. That is, the switching control unit 502 turns on the switching element SW based on a predetermined turn-on cycle T.
  • the discontinuous state detection unit 501 when a discontinuous state occurs, the voltage across the inductor L1 (node voltages V1, V2) becomes equal to each other, and therefore the discontinuous state detection unit 501 outputs a control pulse P501.
  • the selection unit 512 selects the control pulse P501 from the discontinuous state detection unit 501 as the turn-on pulse P503.
  • the oscillator 511 restarts the periodic output of the control pulse P502 in synchronization with the turn-on pulse P503 (in this case, the control pulse P501).
  • the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode.
  • the inductor current iL (or load current iRD) in order to perform feedback control of the average current value iAVE of the inductor current, it is based on the detection result of the inductor current iL (or load current iRD).
  • the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element SW is controlled.
  • the switching element SW is forcibly turned on, so that the transition from the continuous mode to the discontinuous mode can be prevented.
  • FIG. 35 shows a configuration example of the step-down chopper device 6 according to the sixth embodiment.
  • the step-down chopper device 6 includes a control circuit 61 instead of the control circuit 41 shown in FIG.
  • Other configurations may be the same as those in FIG.
  • the control circuit 61 may include an inductor current detection unit 601, an off duration adjustment unit 602, and a switching control unit 603 instead of the switching control unit 402 shown in FIG.
  • the inductor current detection unit 601 detects the current value of the inductor current iL flowing through the inductor L1 (inductor current value idL). Here, the inductor current detection unit 601 detects a voltage corresponding to the inductor current value idL. The higher the inductor current value idL, the higher the voltage corresponding to the inductor current value idL.
  • the off duration adjusting unit 602 is a target current in which the current value (inductor current value idL) of the inductor current iL detected by the inductor current detecting unit 601 after the switching element SW is turned off is set by the target current value setting unit 105.
  • the off duration TCoff is such that the arrival time until reaching the value iTG is a second time ratio (1 / b) with respect to the off duration TCoff that defines the duration from the turn-off of the switching element SW to the turn-on. Adjust.
  • the switching control unit 603 changes the signal level of the switching control signal SWG from the high level to the low level when the ON duration time TCon adjusted by the ON duration duration adjustment unit 401 elapses after the switching element SW is turned on. As a result, the switching element SW is turned off. Further, the switching control unit 603 changes the signal level of the switching control signal SWG from the low level to the high level when the ON duration time TCoff adjusted by the OFF duration adjusting unit 602 has elapsed after the switching element SW is turned off. By changing, the switching element SW is turned on.
  • the off duration adjustment unit 602 may include an off arrival time detection unit 611 and an off duration setting unit 612.
  • the off-arrival time detection unit 611 corresponds to an off-arrival time TRoff corresponding to the arrival time from when the switching element SW is turned off until the inductor current flow value idL reaches the target current value iTG (here, corresponding to the off-arrival time TRoff). Voltage). As the OFF arrival time TRoff increases, the high level time of the voltage corresponding to the OFF arrival time TRoff increases.
  • the off arrival time detection unit 611 may include a pulse generator PG22, a comparator CMP22, and an SR latch SR22.
  • the pulse generator PG22 outputs a set pulse in synchronization with the falling edge (change from high level to low level) of the switching control signal SWG.
  • the comparator CMP22 compares the voltage corresponding to the inductor current value idL with the voltage corresponding to the target current value iTG.
  • the signal level of the output signal of the comparator CMP22 changes from the low level to the high level.
  • the SR latch SR22 changes the voltage level of the voltage corresponding to the OFF arrival time TRoff from the low level to the high level.
  • the SR latch SR22 changes the voltage level of the voltage corresponding to the OFF arrival time TRoff from the high level to the low level in response to the output change (here, the rising edge) of the comparator CMP22.
  • the off duration setting unit 612 multiplies the off arrival time TRoff detected by the off arrival time detection unit 611 by the reciprocal of the second time ratio (1 / b) (that is, the off arrival time TRoff).
  • the OFF duration time TCoff (here, the voltage corresponding to the OFF duration time TCoff) is set based on the OFF arrival time TRoff. The longer the OFF duration time TCoff, the longer the voltage fluctuation time corresponding to the OFF duration time TCoff (the total time of the rise time and the fall time).
  • the off duration setting unit 612 may include a capacitor C22, current sources CS23 and CS24, switching elements SW23 and SW24, and an inverter INV22.
  • One end of the capacitor C22 is connected to the ground node.
  • Current source CS23 and switching element SW23 are connected in series between the power supply node and the other end of capacitor C22.
  • Current source CS24 and switching element SW24 are connected in series between the other end of capacitor C22 and the ground node.
  • the inverter INV22 inverts the voltage corresponding to the off arrival time TRoff.
  • the switching elements SW23 and SW24 are turned on / off in response to the voltage corresponding to the off-arrival time TRoff and the output signal of the inverter INV22.
  • the switching element SW23 When the voltage level of the voltage corresponding to the OFF arrival time TRoff changes from the low level to the high level, the switching element SW23 is turned on and the switching element SW24 is turned off. Thereby, charging of the capacitor C22 by the current source CS23 is started, and the voltage of the capacitor C22 (voltage corresponding to the off duration time TCoff) gradually increases.
  • the switching element SW23 is turned off and the switching element SW24 is turned on. Thereby, discharging of the capacitor C22 by the current source CS24 is started, and the voltage of the capacitor C22 gradually decreases.
  • the current ratio between the current value of the current source CS23 (charge current value) and the current value of the current source CS24 (discharge current value) is set so that the off duration time TCoff is b times the off arrival time TRoff. ing. For example, when the second time ratio (1 / b) is “1/2”, the current ratio between the current source CS23 and the current source CS24 is “1: 1”.
  • the switching control unit 603 may include a comparator 613 and a pulse generator 614 instead of the pulse generator 415 shown in FIG.
  • Other configurations may be the same as in FIG.
  • the comparator 613 compares the voltage corresponding to the off duration time TCoff with the reference voltage REFoff.
  • the reference voltage REFoff is a voltage (for example, a voltage in the vicinity of 0V) for determining the rise start and fall end of the voltage corresponding to the off duration TCoff, and the voltage corresponding to the off duration TCoff has increased.
  • the signal level of the output signal of the comparator 613 changes from the high level to the low level.
  • the pulse generator 614 outputs a turn-on pulse Pon in synchronization with a change in the output of the comparator 613 (here, a falling edge). That is, the pulse generator 614 outputs the turn-on pulse Pon when the OFF duration TCoff elapses after the switching element SW is turned off.
  • the SR latch 416 changes the signal level of the switching control signal SWG from the low level to the high level.
  • the switching element SW is turned on, and the inductor current iL (switching current value idSW) gradually increases.
  • the ON arrival time detection unit 411 changes the voltage level of the voltage corresponding to the ON arrival time TRon from a low level to a high level, and the ON duration setting unit 412 The voltage corresponding to TCon is gradually increased.
  • the ON arrival time detection unit 411 changes the voltage level of the voltage corresponding to the ON arrival time TRon from the high level to the low level. Change. Thereby, the ON duration setting unit 412 gradually decreases the voltage corresponding to the ON duration TCon.
  • the pulse generator 414 outputs the nth turn-off pulse Poff.
  • the switching element SW is turned off, and the inductor current iL gradually decreases.
  • the off duration adjustment unit 602 the off arrival time detection unit 611 changes the voltage level of the voltage corresponding to the off arrival time TRoff from the low level to the high level, and the off duration setting unit 612 The voltage corresponding to TCoff is gradually increased.
  • the off arrival time detection unit 611 changes the voltage level of the voltage corresponding to the off arrival time TRoff from the high level to the low level. Change. Thereby, the off duration setting unit 612 gradually decreases the voltage corresponding to the off duration TCoff.
  • the pulse generator 614 outputs the (n + 1) th turn-on pulse Pon.
  • the ON duration TCon is the duration from when the switching element SW is turned on until the current value of the switching current iSW reaches the target current value iTG (ON arrival time TRon). It is adjusted so as to be the first time ratio (1 / a) with respect to (ON duration TCon). For example, as shown in FIG. 39, even when the rising gradient of the inductor current iL (switching current iSW) becomes steeper than in FIG. 38 (for example, when the input voltage Vin becomes high), the switching element SW is turned on.
  • the time until the current value of the switching current iSW reaches the target current value iTG is set to the first time ratio (1 / a) with respect to the duration Ton from the turn-on to the turn-off of the switching element SW. Further, the duration Ton from the turn-on to the turn-off of the switching element SW is adjusted.
  • the ON duration time TCon so that the ON arrival time TRon becomes the first time ratio (1 / a) with respect to the ON duration time TCon, the elapsed time from the turn-on of the switching element SW is set. That is, the current value of the switching current iSW at the first time ratio (1 / a) with respect to the duration from the turn-on to the turn-off of the switching element SW is brought close to the target current value iTG. Thereby, the average current value iAVE of the inductor current can be brought close to a desired value.
  • the off duration time TCoff is the duration time from when the switching element SW is turned off until the current value of the inductor current iL reaches the target current value iTG (off arrival time TRoff). It is adjusted to be the second time ratio (1 / b) with respect to (off duration TCoff). For example, as shown in FIG. 40, even when the descending gradient of the inductor current iL is steeper than in FIG. 38 (for example, when the voltage across the terminals of the load element RD is increased), the switching element SW is turned off.
  • the arrival time until the current value of the inductor current iL reaches the target current value iTG is set to the second time ratio (1 / b) with respect to the duration Toff from the turn-off to the turn-on of the switching element SW.
  • the duration Toff from turn-off to turn-on of the switching element SW is adjusted.
  • the average current value iAVE of the inductor current is set to a desired value. Can be approached.
  • the current value of the inductor current iL (switching current iSW) at that elapsed time becomes the inductor value. It becomes difficult to fluctuate with respect to variations in the rising gradient of the current iL. That is, as the first time ratio (1 / a) is closer to “1/2”, the average current value iAVE of the inductor current is less likely to vary with respect to the variation in the rising gradient of the inductor current iL.
  • the elapsed time from the turn-off of the switching element SW is “1/2” with respect to the duration Toff from the turn-off of the switching element SW to the turn-on. ”.
  • the current value of the inductor current iL becomes the average current value iAVE of the inductor current.
  • the current value of the inductor current iL at the elapsed time becomes a descending gradient of the inductor current iL. It becomes difficult to fluctuate with respect to the variation of. That is, as the second time ratio (1 / b) is closer to “1/2”, the average current value iAVE of the inductor current is less likely to vary with respect to the variation in the descending gradient of the inductor current iL.
  • the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode.
  • the transition from the continuous mode to the non-continuous mode is prevented by adjusting the off duration time TCoff so that the off arrival time TRoff becomes the second time ratio (1 / b) with respect to the off duration time TCoff. it can.
  • the first time ratio (1 / a) may be a predetermined fixed value or a variable value that can be changed by external control.
  • the time voltage generation unit VG1 may change the voltage ratio (for example, resistance division ratio) of the comparison time TXon with respect to the ON duration time TCon in response to external control.
  • the current source CS21 (or current source CS22) may change the current value in response to external control.
  • the second time ratio may be a predetermined fixed value or a variable value that can be changed by external control.
  • FIG. 41 shows a correspondence relationship between the input voltage Vin and the fluctuation amount ( ⁇ i) of the average current value of the inductor current for each set value of the first time ratio (1 / a).
  • the fluctuation amount ( ⁇ i) of the average current value of the inductor current is expressed by the ratio of the assumed value (the average current value of the inductor current obtained by simulation) to the desired value of the average current value of the inductor current.
  • the target current value iTG is set to 0.976 times the desired value of the average current value of the inductor current.
  • the ratio (iP / iS) of the minimum current value iS to the maximum current value iP of the inductor current is set to be “0.6”.
  • the fluctuation amount of the average current value of the inductor current with respect to the fluctuation of the input voltage Vin is predetermined. Can be within the allowable range (about 5%).
  • the second time ratio (1 / b) is preferably 1 / 2.22 or more and preferably 1 / 1.82 or less.
  • the inductor L1 and the load element RD may be interchanged with each other.
  • a switching element that is turned off during a period in which the switching element SW is in an on state and turned on in a period in which the switching element SW is in an off state may be provided.
  • the step-down chopper devices 1, 2, 3, 3a, 4, 5, and 6 may be low-side step-down chopper devices.
  • the switching element SW is provided in a current path (first current path) between the input node Nin2 and the intermediate node N2.
  • Inductor L1 is provided in series with load element RD in the current path (second current path) between intermediate node N2 and input node Nin1.
  • the free-wheeling diode D1 is provided in a current path (third current path) between the intermediate node N2 and the input node Nin1.
  • the step-down chopper devices 1, 2, 3, 3a, 4, 5, and 6 may be mounted on the image display device as light source driving devices.
  • the image display device illustrated in FIG. 43 includes a light source device 7, a display unit 8, and a display control unit 9.
  • the light source device 7 includes light source driving devices 71R, 71G, 71B and light emitting elements 72R, 72G, 72B.
  • the light source driving devices 71R, 71G, 71B correspond to any of the step-down chopper devices 1, 2, 3, 3a, 4, 5, 6, and the light emitting elements 72R, 72G, 72B correspond to the load element RD.
  • the light source driving devices 71R, 71G, and 71B control the load current iRD that flows through the light emitting elements 72R, 72G, and 72B in response to the control by the display control unit 9, respectively.
  • the light emitting elements 72R, 72G, 72B emit light according to the load current iRD.
  • the display unit 8 includes a condenser tube 81, a lens 82, a light valve 83, a lens 84, and a screen 85.
  • Light emitted from the light emitting elements 72R, 72G, and 72B is transmitted to the condenser tube 81 through the optical fiber and is collected in the condenser tube 81.
  • the light condensed in the condenser tube 81 is applied to the light valve 83 through the lens 82.
  • the light valve 83 spatially modulates the light emitted from the condenser 81 through the lens 82 in response to control by the display control unit 9.
  • the light spatially modulated by the light valve 83 is projected onto the screen 85 via the lens 84.
  • the display control unit 9 controls the light source device 7 and the display unit 8 based on the video signal and the synchronization signal so that the video shown in the video signal is projected on the screen 85.
  • the display control unit 9 controls the drive timing of the light source driving devices 71R, 71G, 71B (light emission timing of the light emitting elements 72R, 72G, 72B), the spatial modulation processing in the light valve 83, and the like.
  • the above-described step-down chopper device can suppress the fluctuation of the average current value of the inductor current due to the variation of the time variation gradient of the inductor current and can operate not only in the critical mode but also in the continuous mode. It is useful as a constant current power source such as a driving device.
  • Step-down chopper device RD Load element SW Switching element L1 Inductor D1 Reflux diode (reflux element) 11, 21, 31, 31a, 41, 51, 61
  • Control circuit 101 Switching current detection unit 102, 202, 302, 302a Turn-on cycle adjustment unit 103, 203, 303, 303a
  • Switching control unit 301 Discontinuous state detection unit 401 On-continuation Time adjustment unit 402, 502, 603 Switching control unit 501 Discontinuous state detection unit 601 Inductor current detection unit 602 Off duration adjustment unit 7

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A switching element (SW) is disposed on a first current path between an input node (Nin1) and an intermediate node (N1). An inductor (L1) is disposed in series with a load element (RD) on a second current path between the intermediate node (N1) and an input node (N2). A reflux element (D1) is disposed on a third current path between the intermediate node (N1) and an input node (Nin2), and returns current to the second and third current paths in periods when the switching element (SW) is off. A control circuit (11) switches the switching element (SW) on and off in such a manner that the instantaneous current value of a switching current (iSW) approaches a target current value (iTG) when the time that elapses from when the switching element turns on equals a first time ratio with respect to the duration from when the switching element turns on to when the switching element turns off.

Description

降圧チョッパ装置Step-down chopper device
 この発明は、降圧チョッパ装置に関する。 This invention relates to a step-down chopper device.
 従来より、スイッチング素子のオン/オフを制御することによって負荷素子を流れる負荷電流を制御する降圧チョッパ装置が知られている。このような降圧チョッパ装置では、降圧チョッパ装置の入力電圧,負荷素子の端子間電圧,負荷素子に直列に接続されたインダクタのインダクタンス値のばらつきに伴い、インダクタを流れるインダクタ電流の時間変化勾配(インダクタ電流値の上昇速度または降下速度)がばらついてしまう。また、インダクタ電流の時間変化勾配のばらつきにより、インダクタ電流の平均電流値が変動してしまう場合がある。この場合、負荷電流の電流値も変動してしまうことになる。例えば、スイッチング素子のターンオン周期およびターンオフ周期が一定である場合、インダクタ電流の時間変化勾配のばらつきにより、インダクタ電流の最高電流値(ターンオフ時の電流値)および/または最低電流値(ターンオン時の電流値)が変動し、その結果、インダクタ電流の平均電流値が変動することになる。 Conventionally, there is known a step-down chopper device that controls a load current flowing through a load element by controlling on / off of the switching element. In such a step-down chopper device, the time variation gradient of the inductor current flowing through the inductor (inductor) due to variations in the input voltage of the step-down chopper device, the voltage between the terminals of the load element, and the inductance value of the inductor connected in series with the load element. The current value rises or falls) varies. In addition, the average current value of the inductor current may fluctuate due to variations in the time-varying gradient of the inductor current. In this case, the current value of the load current also varies. For example, when the turn-on period and the turn-off period of the switching element are constant, the maximum current value (current value at turn-off) and / or the minimum current value (current at turn-on) due to variations in the time variation gradient of the inductor current Value) fluctuates, and as a result, the average current value of the inductor current fluctuates.
 そこで、特許文献1には、次のような降圧チョッパ装置が記載されている。すなわち、特許文献1に記載された降圧チョッパ装置は、インダクタ電流の電流値が“0”に到達するとスイッチング素子をオフからオンに切り替え、インダクタ電流の電流値が予め定められた最高電流値に到達するとスイッチング素子をオンからオフに切り替える。このように、降圧チョッパ装置が臨界モードで動作することによって、インダクタ電流の時間変化勾配のばらつきに拘わらずインダクタ電流の平均電流値を所望値に維持できる。 Therefore, Patent Document 1 describes the following step-down chopper device. That is, the step-down chopper device described in Patent Document 1 switches the switching element from OFF to ON when the current value of the inductor current reaches “0”, and the current value of the inductor current reaches a predetermined maximum current value. Then, the switching element is switched from on to off. As described above, when the step-down chopper device operates in the critical mode, the average current value of the inductor current can be maintained at a desired value regardless of variations in the gradient of the inductor current over time.
特表2008-539565号公報Special table 2008-539565 gazette
 しかしながら、特許文献1に記載された降圧チョッパ装置は、臨界モードでしか動作できないので、インダクタ電流の平均電流値をインダクタ電流の最高電流値の1/2よりも高い電流値に設定することができない。すなわち、降圧チョッパ装置が臨界モードで動作する場合、インダクタ電流の最低電流値は“0”になるので、インダクタ電流の平均電流値(最高電流値と最低電流値との平均値)は、インダクタ電流の最高電流値の1/2となる。そのため、インダクタ電流の平均電流値を高くすることが困難である。 However, since the step-down chopper device described in Patent Document 1 can operate only in the critical mode, the average current value of the inductor current cannot be set to a current value higher than ½ of the maximum current value of the inductor current. . That is, when the step-down chopper device operates in the critical mode, the minimum current value of the inductor current is “0”, so the average current value of the inductor current (the average value of the maximum current value and the minimum current value) is the inductor current. 1/2 of the maximum current value. For this reason, it is difficult to increase the average current value of the inductor current.
 また、特許文献1に記載された降圧チョッパ装置は、臨界モードでしか動作できないので、連続モードで動作する場合よりもスイッチング素子の導通損失(例えば、オン抵抗による電力損失)が大きい。すなわち、インダクタ電流の平均電流値が同値である場合、スイッチング素子における電力損失は、連続モードで動作する場合よりも、臨界モードで動作する場合のほうが高い。そのため、スイッチング素子における電力損失を低減することが困難である。 Also, since the step-down chopper device described in Patent Document 1 can only operate in the critical mode, the conduction loss of the switching element (for example, power loss due to on-resistance) is larger than that in the case of operating in the continuous mode. That is, when the average current value of the inductor current is the same, the power loss in the switching element is higher when operating in the critical mode than when operating in the continuous mode. Therefore, it is difficult to reduce power loss in the switching element.
 そこで、この発明は、インダクタ電流の時間変化勾配のばらつきに起因するインダクタ電流の平均電流値の変動を抑制できるとともに臨界モードだけでなく連続モードでも動作可能な降圧チョッパ装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a step-down chopper device that can suppress fluctuations in the average current value of the inductor current due to variations in the time-varying gradient of the inductor current and can operate not only in the critical mode but also in the continuous mode. To do.
 この発明の1つの局面に従うと、降圧チョッパ装置は、負荷素子に流れる負荷電流を制御する降圧チョッパ装置であって、互いの間に入力電圧が印加される第1および第2の入力ノードのうち上記第1の入力ノードと中間ノードとの間の第1の電流経路に設けられたスイッチング素子と、上記中間ノードと上記第2の入力ノードとの間の第2の電流経路において上記負荷素子と直列に設けられたインダクタと、上記中間ノードと上記第2の入力ノードとの間の第3の電流経路に設けられ、上記スイッチング素子がオフ状態である期間において上記第2および第3の電流経路に電流を還流させる還流素子と、上記スイッチング素子のターンオンからの経過時間が上記スイッチング素子のターンオンからターンオフまでの継続時間に対して第1の時間割合になるときの上記スイッチング素子に流れるスイッチング電流の瞬時電流値が予め定められた目標電流値に近づくように、上記スイッチング素子のオン/オフを制御する制御回路とを備える。 According to one aspect of the present invention, a step-down chopper device is a step-down chopper device that controls a load current flowing through a load element, and includes a first input node and a second input node to which an input voltage is applied. A switching element provided in a first current path between the first input node and the intermediate node; and a load element in a second current path between the intermediate node and the second input node; The second and third current paths are provided in a third current path between the inductor provided in series and the intermediate node and the second input node, and the switching element is in an off state. A return element that circulates current to the switching element, and an elapsed time from turn-on of the switching element to a first duration with respect to a duration from turn-on to turn-off of the switching element. So as to approach the target current value instantaneous current value is a predetermined switching current flowing through the switching element when the time becomes ratio, and a control circuit for controlling the on / off the switching element.
 上記降圧チョッパ装置では、スイッチング素子の瞬時電流値を目標電流値に近づけることにより、インダクタ電流の平均電流値を所望値に近づけることができる。また、インダクタ電流の時間変化勾配のばらつきに対してスイッチング電流の瞬時電流値(スイッチング素子のターンオンからの経過時間がスイッチング素子のターンオンからターンオフまでの継続時間に対して第1の時間割合になるときのスイッチング電流の電流値)を変動させにくくすることができるので、インダクタ電流の時間変化勾配のばらつきに起因するインダクタ電流の平均電流値の変動を抑制できる。さらに、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりもインダクタ電流の平均電流値を高くすることができるとともに、スイッチング素子における電力損失を低減できる。 In the step-down chopper device, the average current value of the inductor current can be brought close to a desired value by bringing the instantaneous current value of the switching element close to the target current value. In addition, the instantaneous current value of the switching current (when the elapsed time from the turn-on of the switching element becomes the first time ratio with respect to the duration from the turn-on to the turn-off of the switching element) with respect to the variation in the time change gradient of the inductor current Current value of the switching current) can be made difficult to fluctuate, so that fluctuations in the average current value of the inductor current due to variations in the time-varying gradient of the inductor current can be suppressed. Furthermore, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value of the inductor current can be increased as compared with the case of operating only in the critical mode, and the power loss in the switching element can be reduced.
 なお、上記制御回路は、上記スイッチング素子のターンオンからの経過時間が上記スイッチング素子のターンオンからターンオフまでの継続時間に対して上記第1の時間割合になるときの上記スイッチング電流の瞬時電流値を検出し、当該スイッチング電流の瞬時電流値と上記目標電流値との差分に応じて上記スイッチング素子のターンオン周期を制御しても良い。 The control circuit detects the instantaneous current value of the switching current when the elapsed time from the turn-on of the switching element becomes the first time ratio with respect to the duration from the turn-on to turn-off of the switching element. Then, the turn-on cycle of the switching element may be controlled according to the difference between the instantaneous current value of the switching current and the target current value.
 また、上記降圧チョッパ装置において、上記制御回路は、上記スイッチング電流の電流値を検出するスイッチング電流検出部と、上記スイッチング素子のターンオンからの経過時間に相当するターンオン経過時間を検出し、上記ターンオン経過時間が上記スイッチング素子のターンオンからターンオフまでの継続時間を規定する予め定められたオン継続時間に対して第1の時間割合になったときに上記スイッチング電流検出部によって検出された上記スイッチング電流の電流値を上記スイッチング電流の瞬時電流値として検出し、当該スイッチング電流の瞬時電流値と上記目標電流値との差分に応じて上記スイッチング素子のターンオン周期を調整するターンオン周期調整部と、上記ターンオン周期調整部によって調整されたターンオン周期に基づいて上記スイッチング素子をターンオンし、上記ターンオン周期調整部によって検出されたターンオン経過時間が上記オン継続時間に到達したときに上記スイッチング素子をターンオフするスイッチング制御部とを含んでいても良い。 Further, in the step-down chopper device, the control circuit detects a switching current detection unit that detects a current value of the switching current and a turn-on elapsed time corresponding to an elapsed time from the turn-on of the switching element. The current of the switching current detected by the switching current detector when the time has reached a first time ratio with respect to a predetermined on-duration that defines the duration from the turn-on to the turn-off of the switching element A turn-on cycle adjusting unit that detects a value as an instantaneous current value of the switching current and adjusts a turn-on cycle of the switching element according to a difference between the instantaneous current value of the switching current and the target current value; and the turn-on cycle adjustment Turn-on lap adjusted by the department The switching element is turned on, turn the elapsed time detected by the turn-on cycle adjusting unit may include a switching controller to turn off the switching element when it reaches to the ON duration based on.
 上記降圧チョッパ装置では、インダクタ電流の平均電流値をフィードバック制御するためにインダクタ電流(または、負荷電流)を検出しなくても良いので、インダクタ電流(または、負荷電流)の検出に伴う電力損失が発生しない。そのため、インダクタ電流(または、負荷電流)の検出結果に基づいてスイッチング素子のオン/オフを制御する場合よりも、降圧チョッパ装置における電力損失を低減できる。また、入力電圧が高くなるほどターンオン周期が長くなるので、スイッチング素子の単位時間当たりのスイッチング回数が少なくなる。そのため、入力電圧の上昇に伴うスイッチング損失(スイッチングの際に発生する電力損失)の増大を抑制できる。 In the step-down chopper device, it is not necessary to detect the inductor current (or load current) in order to perform feedback control of the average current value of the inductor current, so that the power loss accompanying the detection of the inductor current (or load current) is reduced. Does not occur. Therefore, the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element is controlled based on the detection result of the inductor current (or load current). Further, since the turn-on cycle becomes longer as the input voltage becomes higher, the number of times of switching per unit time of the switching element is reduced. Therefore, it is possible to suppress an increase in switching loss (power loss that occurs during switching) due to an increase in input voltage.
 または、上記降圧チョッパ装置において、上記制御回路は、上記スイッチング電流の電流値を検出するスイッチング電流検出部と、上記スイッチング素子のターンオンからの経過時間に相当するターンオン経過時間を検出し、上記スイッチング素子のターンオンからターンオフまでの継続時間に相当するオン継続時間を検出し、上記ターンオン経過時間が上記オン継続時間に対して上記第1の時間割合になったときに上記スイッチング電流検出部によって検出された上記スイッチング電流の電流値を上記スイッチング電流の瞬時電流値として検出し、当該スイッチング電流の瞬時電流値と上記目標電流値との差分に応じて上記スイッチング素子のターンオン周期を調整するターンオン周期調整部と、上記ターンオン周期調整部によって調整されたターンオン周期に基づいて上記スイッチング素子をターンオンし、上記スイッチング電流検出部によって検出された上記スイッチング電流の電流値が予め定められた最高電流値に到達したときに上記スイッチング素子をターンオフするスイッチング制御部とを含んでいても良い。 Alternatively, in the step-down chopper device, the control circuit detects a current value of the switching current and a turn-on elapsed time corresponding to an elapsed time from the turn-on of the switching element, and the switching element Detected by the switching current detection unit when the turn-on elapsed time corresponding to the turn-on to turn-off time is equal to the first time ratio with respect to the turn-on elapsed time. A turn-on cycle adjusting unit that detects a current value of the switching current as an instantaneous current value of the switching current and adjusts a turn-on cycle of the switching element according to a difference between the instantaneous current value of the switching current and the target current value; Adjusted by the turn-on cycle adjuster Switching control for turning on the switching element based on the turn-on cycle and turning off the switching element when the current value of the switching current detected by the switching current detection unit reaches a predetermined maximum current value. May be included.
 上記降圧チョッパ装置では、インダクタ電流の平均電流値をフィードバック制御するためにインダクタ電流(または、負荷電流)を検出しなくても良いので、インダクタ電流(または、負荷電流)の検出に伴う電力損失が発生しない。そのため、インダクタ電流(または、負荷電流)の検出結果に基づいてスイッチング素子のオン/オフを制御する場合よりも、降圧チョッパ装置における電力損失を低減できる。また、スイッチング電流の電流値が予め定められた最高電流値を超えないように制御されるので、スイッチング電流の電流値がスイッチング素子の定格電流値を超えないようにスイッチング電流の最高電流値を制限できる。これにより、スイッチング素子の選定を容易にできる。 In the step-down chopper device, it is not necessary to detect the inductor current (or load current) in order to perform feedback control of the average current value of the inductor current, so that the power loss accompanying the detection of the inductor current (or load current) is reduced. Does not occur. Therefore, the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element is controlled based on the detection result of the inductor current (or load current). In addition, since the current value of the switching current is controlled so as not to exceed the predetermined maximum current value, the maximum current value of the switching current is limited so that the current value of the switching current does not exceed the rated current value of the switching element. it can. Thereby, selection of a switching element can be made easy.
 なお、上記降圧チョッパ装置において、上記制御回路は、上記スイッチング素子のターンオフからターンオンまでの期間中に上記第2および第3の電流経路に流れる還流電流の電流値が所定の電流値よりも低くなる非連続状態を検出する非連続状態検出部をさらに含み、上記ターンオン周期調整部は、上記非連続状態検出部によって上記非連続状態が検出されなかった場合には、上記ターンオン経過時間が上記オン継続時間に対して上記第1の時間割合になったときの上記スイッチング電流の瞬時電流値と上記目標電流値との差分に応じて上記スイッチング素子のターンオン周期を調整し、上記非連続状態検出部によって上記非連続状態が検出された場合には、上記スイッチング素子のターンオン周期を上記スイッチング素子のターンオンから上記非連続状態検出部による検出までの経過時間に相当する電流連続時間で除算して得られた時間割合が、上記ターンオン経過時間が上記オン継続時間に対して上記第1の時間割合になったときの上記スイッチング電流の瞬時電流値を上記目標電流値で除算して得られた電流割合に近づくように、上記スイッチング素子のターンオン周期を調整しても良い。 In the step-down chopper device, the control circuit has a current value of the return current flowing through the second and third current paths lower than a predetermined current value during a period from the turn-off to the turn-on of the switching element. The turn-on cycle adjusting unit further includes a discontinuous state detecting unit that detects a discontinuous state, and the turn-on period adjusting unit continues the turn-on elapsed time when the discontinuous state is not detected by the discontinuous state detecting unit. The turn-on cycle of the switching element is adjusted according to the difference between the instantaneous current value of the switching current and the target current value when the first time ratio with respect to time is reached, and the discontinuous state detection unit When the discontinuous state is detected, the turn-on period of the switching element is set to the turn-on time of the switching element. The time ratio obtained by dividing by the current continuous time corresponding to the elapsed time until detection by the discontinuous state detecting unit becomes the first time ratio with respect to the turn-on elapsed time with respect to the ON duration time. The turn-on period of the switching element may be adjusted so as to approach the current ratio obtained by dividing the instantaneous current value of the switching current at that time by the target current value.
 上記降圧チョッパ装置では、臨界モードおよび連続モードだけでなく非連続モードにおいてもインダクタ電流の平均電流値を所望値に維持できる。 In the step-down chopper device, the average current value of the inductor current can be maintained at a desired value not only in the critical mode and the continuous mode but also in the discontinuous mode.
 または、上記降圧チョッパ装置において、上記制御回路は、上記スイッチング素子がターンオンしてから上記スイッチング電流の電流値が上記目標電流値に到達するまでの到達時間が上記スイッチング素子のターンオンからターンオフまでの継続時間に対して上記第1の時間割合になるように、上記スイッチング素子のターンオンからターンオフまでの継続時間を制御しても良い。 Alternatively, in the step-down chopper device, the control circuit continues from the turn-on of the switching element to the turn-off after the switching element is turned on until the current value of the switching current reaches the target current value. You may control the continuation time from the turn-on of the said switching element to the turn-off so that it may become the said 1st time ratio with respect to time.
 上記降圧チョッパ装置では、スイッチング素子のターンオンからの経過時間がスイッチング素子のターンオンからターンオフまでの継続時間に対して第1の時間割合になるときのスイッチング電流の電流値を目標電流値に近づけたことになる。 In the step-down chopper device, the current value of the switching current when the elapsed time from the turn-on of the switching element becomes the first time ratio with respect to the duration from the turn-on to the turn-off of the switching element is brought close to the target current value. become.
 また、上記降圧チョッパ装置において、上記制御回路は、上記スイッチング電流の電流値を検出するスイッチング電流検出部と、上記スイッチング素子がターンオンしてから上記スイッチング電流検出部によって検出された上記スイッチング電流の電流値が上記目標電流値に到達するまでの到達時間が上記スイッチング素子のターンオンからターンオフまでの継続時間を規定するオン継続時間に対して上記第1の時間割合になるように、上記オン継続時間を調整するオン継続時間調整部と、所定のターンオン周期に基づいて上記スイッチング素子をターンオンし、上記スイッチング素子がターンオンした後に、上記オン継続時間調整部によって調整されたオン継続時間が経過したときに上記スイッチング素子をターンオフするスイッチング制御部とを含んでいても良い。 In the step-down chopper device, the control circuit includes a switching current detection unit that detects a current value of the switching current, and a current of the switching current that is detected by the switching current detection unit after the switching element is turned on. The ON duration time is set so that the arrival time until the value reaches the target current value becomes the first time ratio with respect to the ON duration time that defines the duration time from the turn-on to the turn-off of the switching element. The ON duration adjusting unit to adjust, and the switching element is turned on based on a predetermined turn-on period, and the ON duration time adjusted by the ON duration adjusting unit elapses after the switching element is turned on. Switching to turn off the switching element It may include a control unit.
 上記降圧チョッパ装置では、インダクタ電流の平均電流値をフィードバック制御するためにインダクタ電流(または、負荷電流)を検出しなくても良いので、インダクタ電流(または、負荷電流)の検出に伴う電力損失が発生しない。そのため、インダクタ電流(または、負荷電流)の検出結果に基づいてスイッチング素子のオン/オフを制御する場合よりも、降圧チョッパ装置における電力損失を低減できる。 In the step-down chopper device, it is not necessary to detect the inductor current (or load current) in order to perform feedback control of the average current value of the inductor current, so that the power loss accompanying the detection of the inductor current (or load current) is reduced. Does not occur. Therefore, the power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element is controlled based on the detection result of the inductor current (or load current).
 なお、上記降圧チョッパ装置において、上記制御回路は、上記スイッチング素子のターンオフからターンオンまでの期間中において上記第2および第3の電流経路に流れる還流電流の電流値が所定の電流値よりも低くなる非連続状態を検出する非連続状態検出部をさらに含み、上記スイッチング制御部は、上記非連続状態検出部によって上記非連続状態が検出されたときに、上記スイッチング素子をターンオンしても良い。 In the step-down chopper device, the control circuit has a current value of a return current flowing through the second and third current paths lower than a predetermined current value during a period from the turn-off to the turn-on of the switching element. The switching control unit may further include a discontinuous state detecting unit that detects a discontinuous state, and the switching control unit may turn on the switching element when the discontinuous state is detected by the discontinuous state detecting unit.
 上記降圧チョッパ装置では、連続モードから非連続モードへ遷移することを防止できる。 The above step-down chopper device can prevent the transition from the continuous mode to the discontinuous mode.
 または、上記降圧チョッパ装置において、上記制御回路は、上記スイッチング電流の電流値を検出するスイッチング電流検出部と、上記インダクタに流れるインダクタ電流の電流値を検出するインダクタ電流検出部と、上記スイッチング素子がターンオンしてから上記スイッチング電流検出部によって検出された上記スイッチング電流の電流値が上記目標電流値に到達するまでの到達時間が上記スイッチング素子のターンオンからターンオフまでの継続時間を規定するオン継続時間に対して上記第1の時間割合になるように、上記オン継続時間を調整するオン継続時間調整部と、上記スイッチング素子がターンオフしてから上記インダクタ電流検出部によって検出された上記インダクタ電流の電流値が上記目標電流値に到達するまでの到達時間が上記スイッチング素子のターンオフからターンオンまでの継続時間を規定するオフ継続時間に対して第2の時間割合になるように、上記オフ継続時間を調整するオフ継続時間調整部と、上記スイッチング素子がターンオンした後に、上記オン継続時間調整部によって調整された上記オン継続時間が経過したときに上記スイッチング素子をターンオフし、上記スイッチング素子がターンオフした後に、上記オフ継続時間調整部によって調整された上記オフ継続時間が経過したときに上記スイッチング素子をターンオンするスイッチング制御部とを含んでいても良い。 Alternatively, in the step-down chopper device, the control circuit includes a switching current detection unit that detects a current value of the switching current, an inductor current detection unit that detects a current value of an inductor current flowing in the inductor, and the switching element. The time required for the switching current detected by the switching current detector to reach the target current value after the turn-on is determined to be an ON duration that defines the duration from the turn-on to the turn-off of the switching element. An on-duration adjusting unit that adjusts the on-duration so as to be the first time ratio, and a current value of the inductor current detected by the inductor current detecting unit after the switching element is turned off. Reached until the target current value is reached An off duration adjusting unit for adjusting the off duration so that the interval is a second time ratio with respect to an off duration defining a duration from turn-off to turn-on of the switching element; After the turn-on, the switching element is turned off when the on-duration adjusted by the on-duration adjusting unit has elapsed, and the off-adjusted by the off-duration adjusting unit after the switching element is turned off. And a switching control unit that turns on the switching element when the duration time elapses.
 上記降圧チョッパ装置では、オフ継続時間を調整することによって、連続モードから非連続モードへ遷移することを防止できる。 In the above step-down chopper device, the transition from the continuous mode to the discontinuous mode can be prevented by adjusting the OFF duration.
 なお、上記第1の時間割合は、1/2.22以上であり、1/1.82以下であっても良い。このように設定することにより、入力電圧の変動に対するインダクタ電流の平均電流値の変動量を許容範囲内に収めることができる。 Note that the first time ratio is 1 / 2.22 or more and may be 1 / 1.82 or less. By setting in this way, the fluctuation amount of the average current value of the inductor current with respect to the fluctuation of the input voltage can be kept within the allowable range.
 また、上記第2の時間割合は、1/2.22以上であり、1/1.82以下であっても良い。このように設定することにより、入力電圧の変動に対するインダクタ電流の平均電流値の変動量を許容範囲内に収めることができる。 The second time ratio is 1 / 2.22 or more and may be 1 / 1.82 or less. By setting in this way, the fluctuation amount of the average current value of the inductor current with respect to the fluctuation of the input voltage can be kept within the allowable range.
 以上のように、インダクタ電流の時間変化勾配のばらつきに起因するインダクタ電流の平均電流値の変動を抑制できる。また、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりも、インダクタ電流の平均電流値を高くすることができるとともにスイッチング素子における電力損失を低減できる。 As described above, it is possible to suppress fluctuations in the average current value of the inductor current due to variations in the time change gradient of the inductor current. Further, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value of the inductor current can be increased and the power loss in the switching element can be reduced as compared with the case of operating only in the critical mode.
実施形態1による降圧チョッパ装置の構成例を示す図。FIG. 3 is a diagram illustrating a configuration example of a step-down chopper device according to the first embodiment. 図1に示したターンオン周期調整部の構成例を示す図。The figure which shows the structural example of the turn-on period adjustment part shown in FIG. 図1に示したスイッチング制御部の構成例を示す図。The figure which shows the structural example of the switching control part shown in FIG. 図1に示した降圧チョッパ装置による動作について説明するためのタイミングチャート。The timing chart for demonstrating the operation | movement by the pressure | voltage fall chopper apparatus shown in FIG. 図1に示した降圧チョッパ装置においてインダクタ電流の上昇勾配が急峻になった場合について説明するためのタイミングチャート。The timing chart for demonstrating the case where the raise gradient of an inductor electric current becomes steep in the pressure | voltage fall chopper apparatus shown in FIG. 図1に示した降圧チョッパ装置においてインダクタ電流の降下勾配が急峻になった場合について説明するためのタイミングチャート。The timing chart for demonstrating the case where the fall gradient of an inductor electric current becomes steep in the pressure | voltage fall chopper apparatus shown in FIG. 実施形態2による降圧チョッパ装置の構成例を示す図。The figure which shows the structural example of the pressure | voltage fall chopper apparatus by Embodiment 2. FIG. 図7に示したターンオン周期調整部の構成例を示す図。The figure which shows the structural example of the turn-on period adjustment part shown in FIG. 図7に示したスイッチング制御部の構成例を示す図。The figure which shows the structural example of the switching control part shown in FIG. 図7に示した降圧チョッパ装置による動作について説明するためのタイミングチャート。The timing chart for demonstrating the operation | movement by the pressure | voltage fall chopper apparatus shown in FIG. 図7に示した降圧チョッパ装置においてインダクタ電流の上昇勾配が急峻になった場合について説明するためのタイミングチャート。FIG. 8 is a timing chart for explaining a case where the rising gradient of the inductor current becomes steep in the step-down chopper device shown in FIG. 7. 図7に示した降圧チョッパ装置においてインダクタ電流の降下勾配が急峻になった場合について説明するためのタイミングチャート。The timing chart for demonstrating the case where the fall gradient of an inductor current becomes steep in the step-down chopper device shown in FIG. 実施形態3による降圧チョッパ装置の構成例を示す図。FIG. 6 is a diagram illustrating a configuration example of a step-down chopper device according to a third embodiment. 図13に示した非連続状態検出部の構成例を示す図。The figure which shows the structural example of the non-continuous state detection part shown in FIG. 図13に示したターンオン周期調整部の構成例を示す図。The figure which shows the structural example of the turn-on period adjustment part shown in FIG. 図13に示したスイッチング制御部の構成例を示す図。FIG. 14 is a diagram illustrating a configuration example of a switching control unit illustrated in FIG. 13. 図13に示した降圧チョッパ装置による動作(連続モード)について説明するためのタイミングチャート。14 is a timing chart for explaining the operation (continuous mode) by the step-down chopper device shown in FIG. 13. 図13に示した降圧チョッパ装置による動作(非連続モード)について説明するためのタイミングチャート。The timing chart for demonstrating the operation | movement (discontinuous mode) by the pressure | voltage fall chopper apparatus shown in FIG. 図13に示した降圧チョッパ装置の変形例を示す図。The figure which shows the modification of the pressure | voltage fall chopper apparatus shown in FIG. 図19に示したターンオン周期調整部の構成例を示す図。The figure which shows the structural example of the turn-on period adjustment part shown in FIG. 図19に示したスイッチング制御部の構成例を示す図。The figure which shows the structural example of the switching control part shown in FIG. 周期制御部の変形例を示す図。The figure which shows the modification of a period control part. 非連続状態検出部の変形例を示す図。The figure which shows the modification of a discontinuous state detection part. 実施形態4による降圧チョッパ装置の構成例を示す図。FIG. 10 is a diagram illustrating a configuration example of a step-down chopper device according to a fourth embodiment. 図24に示したオン継続時間調整部の構成例を示す図。The figure which shows the structural example of the ON continuation time adjustment part shown in FIG. 図24に示したスイッチング制御部の構成例を示す図。The figure which shows the structural example of the switching control part shown in FIG. 図24に示した降圧チョッパ装置による動作について説明するためのタイミングチャート。The timing chart for demonstrating the operation | movement by the pressure | voltage fall chopper apparatus shown in FIG. 図24に示した降圧チョッパ装置においてインダクタ電流の上昇勾配が急峻になった場合について説明するためのタイミングチャート。The timing chart for demonstrating the case where the raise gradient of an inductor electric current becomes steep in the pressure | voltage fall chopper apparatus shown in FIG. 図24に示した降圧チョッパ装置においてインダクタ電流の降下勾配が急峻になった場合について説明するためのタイミングチャート。The timing chart for demonstrating the case where the fall gradient of an inductor current becomes steep in the pressure | voltage fall chopper apparatus shown in FIG. 実施形態5による降圧チョッパ装置の構成例を示す図。FIG. 10 is a diagram illustrating a configuration example of a step-down chopper device according to a fifth embodiment. 図30に示した非連続状態検出部の構成例を示す図。The figure which shows the structural example of the discontinuous state detection part shown in FIG. 図30に示したスイッチング制御部の構成例を示す図。The figure which shows the structural example of the switching control part shown in FIG. 図30に示した降圧チョッパ装置による動作(連続モード)について説明するためのタイミングチャート。The timing chart for demonstrating the operation | movement (continuous mode) by the pressure | voltage fall chopper apparatus shown in FIG. 図30に示した降圧チョッパ装置による動作(非連続モード防止)について説明するためのタイミングチャート。The timing chart for demonstrating the operation | movement (discontinuous mode prevention) by the pressure | voltage fall chopper apparatus shown in FIG. 実施形態6による降圧チョッパ装置の構成例を示す図。FIG. 10 is a diagram illustrating a configuration example of a step-down chopper device according to a sixth embodiment. 図35に示したオフ継続時間調整部の構成例を示す図。The figure which shows the structural example of the OFF continuation time adjustment part shown in FIG. 図35に示したスイッチング制御部の構成例を示す図。The figure which shows the structural example of the switching control part shown in FIG. 図35に示した降圧チョッパ装置による動作について説明するためのタイミングチャート。The timing chart for demonstrating the operation | movement by the pressure | voltage fall chopper apparatus shown in FIG. 図35に示した降圧チョッパ装置においてインダクタ電流の上昇勾配が急峻になった場合について説明するためのタイミングチャート。The timing chart for demonstrating the case where the rising gradient of an inductor current becomes steep in the step-down chopper device shown in FIG. 図35に示した降圧チョッパ装置においてインダクタ電流の降下勾配が急峻になった場合について説明するためのタイミングチャート。The timing chart for demonstrating the case where the fall gradient of an inductor current becomes steep in the pressure | voltage fall chopper apparatus shown in FIG. 時間割合の設定範囲について説明するためのグラフ。The graph for demonstrating the setting range of a time ratio. 降圧チョッパ装置の変形例(ローサイド型)について説明するための図。The figure for demonstrating the modification (low side type) of a pressure | voltage fall chopper apparatus. 降圧チョッパ装置を光源駆動装置として備えた画像表示装置の構成例を示す図。The figure which shows the structural example of the image display apparatus provided with the pressure | voltage fall chopper apparatus as a light source drive device.
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施形態1)
 図1は、実施形態1による降圧チョッパ装置1の構成例を示す。降圧チョッパ装置1は、負荷素子RDに流れる負荷電流iRDを制御するものであり、スイッチング素子SWと、インダクタL1と、還流ダイオードD1(還流素子)と、制御回路11とを備える。
(Embodiment 1)
FIG. 1 shows a configuration example of a step-down chopper device 1 according to a first embodiment. The step-down chopper device 1 controls a load current iRD flowing through the load element RD, and includes a switching element SW, an inductor L1, a freewheeling diode D1 (freewheeling element), and a control circuit 11.
  〔スイッチング素子,インダクタ,還流ダイオード〕
 スイッチング素子SWは、入力ノードNin1と中間ノードN1との間の電流経路(第1の電流経路)に設けられ、スイッチング制御信号SWGに応答してオン/オフを切り替える。入力ノードNin1,Nin2の間には、入力電圧Vinが印加される。インダクタL1は、中間ノードN1と入力ノードNin2との間の電流経路(第2の電流経路)において負荷素子RDと直列に設けられる。還流ダイオードD1は、中間ノードN1と入力ノードNin2との間の電流経路(第3の電流経路)に設けられる。また、還流ダイオードD1は、スイッチング素子SWがオフ状態である期間において第2および第3の電流経路(インダクタL1,負荷素子RD,還流ダイオードによって構成される閉回路経路)に電流を還流させる。ここでは、負荷素子RDにキャパシタCCが並列に接続されている。すなわち、負荷電流iRDは、インダクタL1を流れるインダクタ電流iLの平均電流値に相当する直流電流である。なお、負荷素子RDにキャパシタCCが並列に接続されていなくても良い。この場合、負荷電流iRDは、インダクタ電流iLと同一の電流となる。
[Switching element, inductor, freewheeling diode]
The switching element SW is provided in a current path (first current path) between the input node Nin1 and the intermediate node N1, and switches on / off in response to the switching control signal SWG. An input voltage Vin is applied between the input nodes Nin1 and Nin2. Inductor L1 is provided in series with load element RD in the current path (second current path) between intermediate node N1 and input node Nin2. The free-wheeling diode D1 is provided in a current path (third current path) between the intermediate node N1 and the input node Nin2. Further, the freewheeling diode D1 recirculates the current to the second and third current paths (a closed circuit path constituted by the inductor L1, the load element RD, and the freewheeling diode) during a period in which the switching element SW is in the off state. Here, a capacitor CC is connected in parallel to the load element RD. That is, the load current iRD is a direct current corresponding to the average current value of the inductor current iL flowing through the inductor L1. Note that the capacitor CC may not be connected in parallel to the load element RD. In this case, the load current iRD is the same current as the inductor current iL.
  〔制御回路〕
 制御回路11は、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間に対して第1の時間割合(1/a)になるときのスイッチング素子SWに流れるスイッチング電流iSWの瞬時電流値が予め定められた目標電流値iTGに近づくように、スイッチング素子SWのオン/オフを制御する。ここでは、制御回路11は、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間に対して第1の時間割合(1/a)になるときのスイッチング電流iSWの瞬時電流値を検出し、スイッチング電流iSWの瞬時電流値と目標電流値iTGとの差分に応じてスイッチング素子SWのターンオン周期を制御する。制御回路11は、スイッチング電流検出部101と、ターンオン周期調整部102と、スイッチング制御部103と、オン継続時間設定部104と、目標電流値設定部105とを含んでいても良い。
[Control circuit]
The control circuit 11 switches the switching current flowing in the switching element SW when the elapsed time from the turn-on of the switching element SW becomes the first time ratio (1 / a) with respect to the duration from the turn-on to the turn-off of the switching element SW. The switching element SW is turned on / off so that the instantaneous current value of iSW approaches a predetermined target current value iTG. Here, the control circuit 11 determines the switching current iSW when the elapsed time from the turn-on of the switching element SW becomes the first time ratio (1 / a) with respect to the duration from the turn-on to the turn-off of the switching element SW. The instantaneous current value is detected, and the turn-on cycle of the switching element SW is controlled according to the difference between the instantaneous current value of the switching current iSW and the target current value iTG. The control circuit 11 may include a switching current detection unit 101, a turn-on cycle adjustment unit 102, a switching control unit 103, an on duration setting unit 104, and a target current value setting unit 105.
   《オン継続時間設定部》
 オン継続時間設定部104は、スイッチング素子SWのターンオンからターンオフまでの継続時間を規定するオン継続時間TCon(ここでは、オン継続時間TConに対応する電圧)を設定する。オン継続時間TConが長くなるほど、オン継続時間TConに対応する電圧が高くなる。なお、オン継続時間設定部104は、外部制御に応答してオン継続時間TConを変更するものであっても良い。すなわち、オン継続時間TConは、予め定められた固定値であっても良いし、外部制御により変更可能な可変値であっても良い。
<ON duration setting section>
The ON duration setting unit 104 sets an ON duration TCon (here, a voltage corresponding to the ON duration TCon) that defines the duration from the turn-on to the turn-off of the switching element SW. The longer the ON duration time TCon, the higher the voltage corresponding to the ON duration time TCon. Note that the on duration setting unit 104 may change the on duration TCon in response to external control. That is, the ON duration time TCon may be a predetermined fixed value or a variable value that can be changed by external control.
   《目標電流値設定部》
 目標電流値設定部105は、目標電流値iTG(ここでは、目標電流値iTGに対応する電圧)を設定する。目標電流値iTGが高くなるほど、目標電流値iTGに対応する電圧が高くなる。目標電流値iTGは、インダクタ電流iLの平均電流値が所望値に維持されている場合においてスイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間に対して第1の時間割合(1/a)になるときのスイッチング電流iSWの電流値(瞬時電流値の理想値)に相当する。例えば、第1の時間割合(1/a)が“1/2”である場合、目標電流値iTGは、インダクタ電流の平均電流値の所望値に相当する。なお、目標電流値設定部105は、外部制御に応答して目標電流値iTGを変更するものであっても良い。すなわち、目標電流値iTGは、予め定められた固定値であっても良いし、外部制御により変更可能な可変値であっても良い。
<Target current value setting section>
The target current value setting unit 105 sets a target current value iTG (here, a voltage corresponding to the target current value iTG). The higher the target current value iTG, the higher the voltage corresponding to the target current value iTG. When the average current value of the inductor current iL is maintained at a desired value, the target current value iTG is equal to the first time with respect to the duration from the turn-on of the switching element SW to the turn-off. This corresponds to the current value of switching current iSW at the time ratio (1 / a) (ideal value of instantaneous current value). For example, when the first time ratio (1 / a) is “1/2”, the target current value iTG corresponds to a desired value of the average current value of the inductor current. Note that the target current value setting unit 105 may change the target current value iTG in response to external control. That is, the target current value iTG may be a predetermined fixed value or a variable value that can be changed by external control.
   《スイッチング電流検出部》
 スイッチング電流検出部101は、スイッチング電流iSWの電流値(スイッチング電流値idSW)を検出する。ここでは、スイッチング電流検出部101は、スイッチング電流値idSWに対応する電圧(例えば、スイッチング素子SWのドレイン電圧)を検出する。スイッチング電流値idSWが高くなるほど、スイッチング電流値idSWに対応する電圧が高くなる。
<Switching current detector>
The switching current detection unit 101 detects a current value (switching current value idSW) of the switching current iSW. Here, the switching current detection unit 101 detects a voltage (for example, the drain voltage of the switching element SW) corresponding to the switching current value idSW. The higher the switching current value idSW, the higher the voltage corresponding to the switching current value idSW.
   《ターンオン周期調整部》
 ターンオン周期調整部102は、スイッチング素子SWのターンオンからの経過時間に相当するターンオン経過時間TEon(ここでは、ターンオン経過時間TEonに対応する電圧)を検出する。ターンオン経過時間TEonが長くなるほど、ターンオン経過時間TEonに対応する電圧が高くなる。また、ターンオン周期調整部102は、ターンオン経過時間TEonがオン継続時間設定部104によって設定されたオン継続時間TConに対して第1の時間割合(1/a)になったときにスイッチング電流検出部101によって検出されたスイッチング電流値idSWをスイッチング電流iSWの瞬時電流値として検出する。ここでは、ターンオン周期調整部102は、スイッチング電流iSWの瞬時電流値に対応する電圧を検出する。スイッチング電流iSWの瞬時電流値が高くなるほど、スイッチング電流iSWの瞬時電流値に対応する電圧が高くなる。さらに、ターンオン周期調整部102は、スイッチング電流iSWの瞬時電流値と目標電流値設定部105によって設定された目標電流値iTGとの差分に応じて、スイッチング素子SWのターンオン周期を規定する周期制御電圧CNTを上昇または降下させることによってスイッチング素子SWのターンオン周期を調整する。
<Turn-on cycle adjuster>
The turn-on cycle adjusting unit 102 detects a turn-on elapsed time TEon (here, a voltage corresponding to the turn-on elapsed time TEon) corresponding to the elapsed time from the turn-on of the switching element SW. The longer the turn-on elapsed time TEon, the higher the voltage corresponding to the turn-on elapsed time TEon. Further, the turn-on cycle adjusting unit 102 is a switching current detecting unit when the turn-on elapsed time TEon becomes the first time ratio (1 / a) with respect to the on-duration time TCon set by the on-duration setting unit 104. The switching current value idSW detected by 101 is detected as the instantaneous current value of the switching current iSW. Here, the turn-on cycle adjusting unit 102 detects a voltage corresponding to the instantaneous current value of the switching current iSW. The higher the instantaneous current value of the switching current iSW, the higher the voltage corresponding to the instantaneous current value of the switching current iSW. Further, the turn-on cycle adjusting unit 102 is a cycle control voltage that defines the turn-on cycle of the switching element SW according to the difference between the instantaneous current value of the switching current iSW and the target current value iTG set by the target current value setting unit 105. The turn-on cycle of the switching element SW is adjusted by raising or lowering CNT.
   《スイッチング制御部》
 スイッチング制御部103は、ターンオン周期調整部102によって調整されたターンオン周期(周期制御電圧CNTに応じたターンオン周期)に基づいて、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させることによってスイッチング素子SWをターンオンする(スイッチング素子SWをオフ状態からオン状態へ変化させる)。また、スイッチング制御部103は、ターンオン周期調整部102によって検出されたターンオン経過時間TEonがオン継続時間設定部104によって設定されたオン継続時間TConに到達したときに、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させることによってスイッチング素子SWをターンオフする(スイッチング素子SWをオン状態からオフ状態へ変化させる)。
《Switching control unit》
The switching control unit 103 changes the signal level of the switching control signal SWG from the low level to the high level based on the turn-on cycle (turn-on cycle corresponding to the cycle control voltage CNT) adjusted by the turn-on cycle adjusting unit 102. The switching element SW is turned on (the switching element SW is changed from the off state to the on state). Further, the switching control unit 103 sets the signal level of the switching control signal SWG when the turn-on elapsed time TEon detected by the turn-on period adjusting unit 102 reaches the on-duration time TCon set by the on-duration setting unit 104. The switching element SW is turned off by changing from the high level to the low level (the switching element SW is changed from the on state to the off state).
  〔ターンオン周期調整部の構成例〕
 図2のように、ターンオン周期調整部102は、ターンオン経過時間検出部111と、時間割合検出部112と、瞬時電流値検出部113と、周期制御部114とを含んでいても良い。
[Configuration example of turn-on cycle adjuster]
As shown in FIG. 2, the turn-on cycle adjustment unit 102 may include a turn-on elapsed time detection unit 111, a time ratio detection unit 112, an instantaneous current value detection unit 113, and a cycle control unit 114.
   《ターンオン経過時間検出部》
 ターンオン経過時間検出部111は、ターンオン経過時間TEonを検出する。例えば、ターンオン経過時間検出部111は、キャパシタC1と、電流源CS1と、スイッチング素子SW1,SW2と、インバータINV1とを含んでいても良い。キャパシタC1の一端は、接地ノード(接地電圧GNDが印加されるノード)に接続される。電流源CS1およびスイッチング素子SW1は、電源ノード(電源電圧VDDが印加されるノード)とキャパシタC1の他端との間に直列に接続される。スイッチング素子SW2は、キャパシタC1の他端と接地ノードとの間に接続される。インバータINV1は、スイッチング制御信号SWGを反転させる。スイッチング素子SW1,SW2は、それぞれ、スイッチング制御信号SWGおよびインバータINV1の出力信号に応答して、オン/オフを切り替える。
<Turn-on elapsed time detector>
The turn-on elapsed time detector 111 detects the turn-on elapsed time TEon. For example, the turn-on elapsed time detector 111 may include a capacitor C1, a current source CS1, switching elements SW1 and SW2, and an inverter INV1. One end of the capacitor C1 is connected to a ground node (a node to which the ground voltage GND is applied). Current source CS1 and switching element SW1 are connected in series between a power supply node (a node to which power supply voltage VDD is applied) and the other end of capacitor C1. Switching element SW2 is connected between the other end of capacitor C1 and the ground node. The inverter INV1 inverts the switching control signal SWG. The switching elements SW1 and SW2 are turned on / off in response to the switching control signal SWG and the output signal of the inverter INV1, respectively.
 スイッチング制御信号SWGの信号レベルがローレベルからハイレベルへ変化すると、スイッチング素子SW1がターンオンするとともにスイッチング素子SW2がターンオフする。これにより、電流源CS1によるキャパシタC1の充電が開始され、キャパシタC1の電圧(ターンオン経過時間TEonに対応する電圧)が徐々に上昇する。また、スイッチング制御信号SWGの信号レベルがハイレベルからローレベルへ変化すると、スイッチング素子SW1がターンオフするとともにスイッチング素子SW2がターンオンする。これにより、キャパシタC1の放電が開始され、キャパシタC1の電圧が初期値(例えば、0V)にリセットされる。 When the signal level of the switching control signal SWG changes from the low level to the high level, the switching element SW1 is turned on and the switching element SW2 is turned off. Thereby, charging of the capacitor C1 by the current source CS1 is started, and the voltage of the capacitor C1 (voltage corresponding to the turn-on elapsed time TEon) gradually increases. When the signal level of the switching control signal SWG changes from the high level to the low level, the switching element SW1 is turned off and the switching element SW2 is turned on. Thereby, discharging of the capacitor C1 is started, and the voltage of the capacitor C1 is reset to an initial value (for example, 0V).
 時間割合検出部112は、ターンオン経過時間TEonがオン継続時間TConに対して第1の時間割合(1/a)になったことを検出する。例えば、時間割合検出部112は、時間電圧生成部VG1と、比較器CMP1とを含んでいても良い。時間電圧生成部VG1は、オン継続時間TConに対応する電圧を1/a倍して比較時間TXon(オン継続時間TConの1/aに相当する時間)に対応する電圧として出力する。例えば、時間電圧生成部VG1は、オン継続時間TConに対応する電圧を1/a倍する抵抗分割回路であっても良い。比較器CMP1は、比較時間TXonに対応する電圧とターンオン経過時間TEonに対応する電圧とを比較する。ここでは、ターンオン経過時間TEonが比較時間TXonに到達すると、比較器CMP1の出力信号(タイミング信号TMG)の信号レベルがハイレベルからローレベルへ変化する。 The time ratio detection unit 112 detects that the turn-on elapsed time TEon has reached the first time ratio (1 / a) with respect to the ON duration time TCon. For example, the time ratio detection unit 112 may include a time voltage generation unit VG1 and a comparator CMP1. The time voltage generation unit VG1 multiplies the voltage corresponding to the ON duration time TCon by 1 / a and outputs it as a voltage corresponding to the comparison time TXon (a time corresponding to 1 / a of the ON duration time TCon). For example, the time voltage generation unit VG1 may be a resistance divider circuit that multiplies the voltage corresponding to the ON duration time TCon by 1 / a. The comparator CMP1 compares the voltage corresponding to the comparison time TXon with the voltage corresponding to the turn-on elapsed time TEon. Here, when the turn-on elapsed time TEon reaches the comparison time TXon, the signal level of the output signal (timing signal TMG) of the comparator CMP1 changes from the high level to the low level.
 瞬時電流値検出部113は、時間割合検出部112による検出に応答して、スイッチング電流検出部101によって検出されたスイッチング電流値idSWを、ターンオン経過時間TEonがオン継続時間TConに対して第1の時間割合(1/a)になったときのスイッチング電流iSWの瞬時電流値(瞬時電流値iDET)として検出する。例えば、瞬時電流値検出部113は、サンプル/ホールド回路(S/H)SH1を含んでいても良い。サンプル/ホールド回路SH1は、タイミング信号TMGの遷移エッジ(ここでは、立ち下がりエッジ)に同期して、スイッチング電流値idSWに対応する電圧をサンプリングし、サンプリングした電圧を瞬時電流値iDETに対応する電圧としてホールドする。 In response to the detection by the time ratio detection unit 112, the instantaneous current value detection unit 113 uses the switching current value idSW detected by the switching current detection unit 101 as a first value for the turn-on elapsed time TEon with respect to the ON duration TCon. It is detected as an instantaneous current value (instantaneous current value iDET) of the switching current iSW at the time ratio (1 / a). For example, the instantaneous current value detection unit 113 may include a sample / hold circuit (S / H) SH1. The sample / hold circuit SH1 samples the voltage corresponding to the switching current value idSW in synchronization with the transition edge (here, the falling edge) of the timing signal TMG, and the sampled voltage corresponds to the instantaneous current value iDET. Hold as.
 周期制御部114は、瞬時電流値iDETと目標電流値iTGとの差分に応じて、スイッチング素子SWのターンオン周期を制御するための周期制御電圧CNTを上昇または降下させる。ここでは、目標電流値iTGに対して瞬時電流値iDETが高くなるほど、周期制御電圧CNTが低くなる。例えば、周期制御部124は、比較器CMP2と、抵抗素子R1とを含んでいても良い。比較器CMP2は、瞬時電流値iDETに対応する電圧と目標電流値iTGに対応する電圧とを比較する。抵抗素子R1は、比較器CMP2の出力信号を比較器CMP2の反転入力端子にフィードバックする。 The cycle control unit 114 increases or decreases the cycle control voltage CNT for controlling the turn-on cycle of the switching element SW according to the difference between the instantaneous current value iDET and the target current value iTG. Here, the periodic control voltage CNT decreases as the instantaneous current value iDET increases with respect to the target current value iTG. For example, the cycle control unit 124 may include a comparator CMP2 and a resistance element R1. The comparator CMP2 compares the voltage corresponding to the instantaneous current value iDET with the voltage corresponding to the target current value iTG. The resistance element R1 feeds back the output signal of the comparator CMP2 to the inverting input terminal of the comparator CMP2.
  〔スイッチング制御部の構成例〕
 図3のように、スイッチング制御部103は、発振器115と、比較器116と、パルス発生器117と、SRラッチ118とを含んでいても良い。
[Configuration example of switching control unit]
As shown in FIG. 3, the switching control unit 103 may include an oscillator 115, a comparator 116, a pulse generator 117, and an SR latch 118.
 発振器115は、周期制御電圧CNTに応じたターンオン周期に基づいて、ターンオンパルスPonを周期的を出力する。ここでは、周期制御電圧CNTが低くなるほど、ターンオン周期が長くなる。比較器116は、ターンオン経過時間TEonに対応する電圧とオン継続時間TConに対応する電圧とを比較する。ここでは、ターンオン経過時間TEonがオン継続時間TConに到達すると、比較器116の出力信号の信号レベルがハイレベルからローレベルへ変化する。パルス発生器117は、比較器116の出力変化(ここでは、比較器116の出力信号の立ち下がりエッジ)に同期して、ターンオフパルスPoffを出力する。SRラッチ118は、発振器115からのターンオンパルスPonに応答して、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させる。また、SRラッチ118は、パルス発生器117からのターンオフパルスPoffに応答して、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させる。 The oscillator 115 periodically outputs a turn-on pulse Pon based on the turn-on period corresponding to the cycle control voltage CNT. Here, the lower the cycle control voltage CNT, the longer the turn-on cycle. The comparator 116 compares the voltage corresponding to the turn-on elapsed time TEon with the voltage corresponding to the on-duration time TCon. Here, when the turn-on elapsed time TEon reaches the ON duration TCon, the signal level of the output signal of the comparator 116 changes from the high level to the low level. The pulse generator 117 outputs a turn-off pulse Poff in synchronization with the output change of the comparator 116 (here, the falling edge of the output signal of the comparator 116). The SR latch 118 changes the signal level of the switching control signal SWG from the low level to the high level in response to the turn-on pulse Pon from the oscillator 115. In addition, the SR latch 118 changes the signal level of the switching control signal SWG from the high level to the low level in response to the turn-off pulse Poff from the pulse generator 117.
  〔動作〕
 次に、図4を参照して、降圧チョッパ装置1による動作について説明する。ここでは、第1の時間割合(1/a)は、“1/2”であるものとする。
[Operation]
Next, the operation of the step-down chopper device 1 will be described with reference to FIG. Here, it is assumed that the first time ratio (1 / a) is “1/2”.
 まず、スイッチング制御部103において、発振器115が第n回目(nは、任意の自然数)のターンオンパルスPonを出力すると、SRラッチ118は、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させる。これにより、スイッチング素子SWがターンオンし、インダクタ電流iL(スイッチング電流値iSW)が徐々に上昇する。 First, in the switching control unit 103, when the oscillator 115 outputs the nth turn-on pulse Pon (n is an arbitrary natural number), the SR latch 118 changes the signal level of the switching control signal SWG from the low level to the high level. Let Thereby, the switching element SW is turned on, and the inductor current iL (switching current value iSW) gradually increases.
 次に、ターンオン経過時間TEonが比較時間TXon(オン継続時間設定部104によって設定されたオン継続時間TConの1/2)に到達すると、ターンオン周期調整部102において、時間割合検出部112は、タイミング信号TMGの信号レベルをハイレベルからローレベルへ変化させる。瞬時電流値検出部113は、タイミング信号TMGの立ち下がりエッジに応答して、スイッチング電流値idSWを瞬時電流値iDETとして検出する。周期制御部114は、瞬時電流値iDETと目標電流値iTGとの差分に応じて周期制御電圧CNTを上昇または降下させる。これにより、スイッチング制御部103において、発振器115におけるターンオンパルスPonの出力周期(すなわち、スイッチング素子SWのターンオン周期T)が調整される。 Next, when the turn-on elapsed time TEon reaches the comparison time TXon (1/2 of the on-duration time TCon set by the on-duration time setting unit 104), in the turn-on period adjusting unit 102, the time ratio detecting unit 112 The signal level of the signal TMG is changed from a high level to a low level. The instantaneous current value detection unit 113 detects the switching current value idSW as the instantaneous current value iDET in response to the falling edge of the timing signal TMG. The cycle control unit 114 increases or decreases the cycle control voltage CNT according to the difference between the instantaneous current value iDET and the target current value iTG. As a result, the switching control unit 103 adjusts the output period of the turn-on pulse Pon in the oscillator 115 (that is, the turn-on period T of the switching element SW).
 次に、ターンオン経過時間TEonがオン継続時間TCon(オン継続時間設定部104によって設定されたオン継続時間TCon)に到達すると、スイッチング制御部103において、比較器116の出力信号の信号レベルがハイレベルからローレベルへ変化し、パルス発生器117は、ターンオフパルスPoffを出力する。SRラッチ118は、ターンオフパルスPoffに応答して、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させる。これにより、スイッチング素子SWがターンオフし、インダクタ電流iLが徐々に降下する。 Next, when the turn-on elapsed time TEon reaches the ON duration TCon (ON duration TCon set by the ON duration setting unit 104), the signal level of the output signal of the comparator 116 is high in the switching control unit 103. The pulse generator 117 outputs a turn-off pulse Poff. The SR latch 118 changes the signal level of the switching control signal SWG from the high level to the low level in response to the turn-off pulse Poff. As a result, the switching element SW is turned off, and the inductor current iL gradually decreases.
 次に、第n回目のターンオンパルスPonの発生からターンオン周期T(ターンオン周期調整部102によって調整されたターンオン周期)が経過すると、スイッチング制御部103において、発振器115は、第n+1回目のターンオンパルスPonを出力する。 Next, when a turn-on cycle T (turn-on cycle adjusted by the turn-on cycle adjusting unit 102) has elapsed since the generation of the n-th turn-on pulse Pon, the switching control unit 103 causes the oscillator 115 to switch the n + 1-th turn-on pulse Pon. Is output.
  〔ターンオン周期の調整〕
 スイッチング素子SWのターンオン周期Tは、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値(iDET-iTG)に応じて調整される。例えば、図5のように、インダクタ電流iL(スイッチング電流iSW)の上昇勾配が図4の場合よりも急峻になると(例えば、入力電圧Vinが高くなると)、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値(iDET-iTG)が図4の場合よりも大きくなり、周期制御電圧CNTが図4の場合よりも低くなる。その結果、スイッチング素子SWのターンオン周期Tは、図4の場合よりも長くなる。また、図6のように、インダクタ電流iLの降下勾配が図4の場合よりも急峻になると(例えば、負荷素子RDの端子間電圧が高くなると)、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値(iDET-iTG)が図4の場合よりも小さくなり、周期制御電圧CNTが図4の場合よりも高くなる。その結果、スイッチング素子SWのターンオン周期Tは、図4の場合よりも短くなる。
[Adjustment of turn-on cycle]
The turn-on period T of the switching element SW is adjusted according to the difference value (iDET−iTG) between the instantaneous current value iDET of the switching current and the target current value iTG. For example, as shown in FIG. 5, when the rising slope of the inductor current iL (switching current iSW) becomes steeper than in the case of FIG. 4 (for example, when the input voltage Vin increases), the instantaneous current value iDET of the switching current and the target current The difference value (iDET−iTG) from the value iTG is larger than in the case of FIG. 4, and the cycle control voltage CNT is lower than in the case of FIG. As a result, the turn-on period T of the switching element SW becomes longer than in the case of FIG. Further, as shown in FIG. 6, when the descending gradient of the inductor current iL becomes steeper than in the case of FIG. 4 (for example, when the voltage across the terminals of the load element RD becomes higher), the instantaneous current value iDET of the switching current and the target current value The difference value from iTG (iDET−iTG) is smaller than that in FIG. 4, and the cycle control voltage CNT is higher than that in FIG. As a result, the turn-on period T of the switching element SW is shorter than in the case of FIG.
 このように、スイッチング電流の瞬時電流値iDETが目標電流値iTGに近づくようにスイッチング素子SWのターンオン周期Tを調整することにより、インダクタ電流の平均電流値iAVEを所望値に近づけることができる。ここで、周期制御部114に含まれる比較器CMP2の増幅利得が高くなるほど、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値が“0”に近くなる。すなわち、スイッチング電流の瞬時電流値iDETを目標電流値iTGに近づけることができる。なお、図4では、図示の簡略化のために、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値は“0”であるものとしている。また、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値の変化量は、スイッチング素子SWのターンオン周期Tの変化量に対して微小であるので、図5および図6では、図示の簡略化のために、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値の変化量は“0”であるものとしている。 As described above, by adjusting the turn-on cycle T of the switching element SW so that the instantaneous current value iDET of the switching current approaches the target current value iTG, the average current value iAVE of the inductor current can be brought close to a desired value. Here, as the amplification gain of the comparator CMP2 included in the cycle control unit 114 increases, the difference value between the instantaneous current value iDET of the switching current and the target current value iTG becomes closer to “0”. That is, the instantaneous current value iDET of the switching current can be brought close to the target current value iTG. In FIG. 4, for the sake of simplification, the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is assumed to be “0”. Further, since the amount of change in the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is minute relative to the amount of change in the turn-on cycle T of the switching element SW, FIG. 5 and FIG. For simplification, it is assumed that the amount of change in the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is “0”.
  〔インダクタ電流の時間変化勾配のばらつき〕
 ここで、図4,図5,図6より、インダクタ電流iLの時間変化勾配が変動したとしても、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間Tonに対して“1/2”になるとき、インダクタ電流iL(スイッチング電流iSW)の電流値は、インダクタ電流の平均電流値iAVEになることがわかる。また、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの経過時間Tonの1/2に近いほど、その経過時間におけるインダクタ電流iL(スイッチング電流iSW)の電流値が、インダクタ電流iLの時間変化勾配のばらつきに対して変動しにくくなる。すなわち、第1の時間割合(1/a)が“1/2”に近くなるほど、ターンオン経過時間TEonがオン継続時間TConに対して第1の時間割合(1/a)になるときのスイッチング電流の瞬時電流値iDETが、インダクタ電流iLの時間変化勾配のばらつきに対して変動しにくくなる。
[Variation of time gradient of inductor current]
4, 5, and 6, even if the time change gradient of the inductor current iL varies, the elapsed time from the turn-on of the switching element SW to the duration Ton from the turn-on to the turn-off of the switching element SW When the current becomes “½”, the current value of the inductor current iL (switching current iSW) becomes the average current value iAVE of the inductor current. Further, as the elapsed time from the turn-on of the switching element SW is closer to ½ of the elapsed time Ton from the turn-on to the turn-off of the switching element SW, the current value of the inductor current iL (switching current iSW) at that elapsed time becomes the inductor value. It becomes difficult for the current iL to fluctuate with respect to the variation of the time change gradient. That is, the switching current when the turn-on elapsed time TEon becomes the first time ratio (1 / a) with respect to the ON duration time TCon as the first time ratio (1 / a) becomes closer to “1/2”. The instantaneous current value iDET is less likely to fluctuate with respect to the variation in the time change gradient of the inductor current iL.
 以上のように、インダクタ電流iLの時間変化勾配のばらつきに対してスイッチング電流の瞬時電流値iDETを変動させにくくすることができるので、インダクタ電流iLの時間変化勾配のばらつきに起因するインダクタ電流の平均電流値iAVEの変動を抑制できる。 As described above, since the instantaneous current value iDET of the switching current can be made difficult to fluctuate with respect to the variation in the time variation gradient of the inductor current iL, the average of the inductor current caused by the variation in the time variation gradient of the inductor current iL. Variations in the current value iAVE can be suppressed.
 また、連続モードおよび臨界モードで動作する場合、インダクタ電流の平均電流値iAVEは、インダクタ電流の最高電流値iPと最低電流値iSの平均値((iP+iS)/2)に相当する。ここで、インダクタ電流の最低電流値iSは、臨界モードで動作する場合には“0”となり、連続モードで動作する場合には“0”よりも高い電流値となる。したがって、インダクタ電流の最高電流値iPが同値であるとすると、インダクタ電流の平均電流値iAVEは、臨界モードで動作する場合よりも、連続モードで動作する場合のほうが高くなる。すなわち、図1に示した降圧チョッパ装置1は、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりも、インダクタ電流の平均電流値iAVEを高くすることができる。 When operating in the continuous mode and the critical mode, the average current value iAVE of the inductor current corresponds to the average value ((iP + iS) / 2) of the maximum current value iP and the minimum current value iS of the inductor current. Here, the minimum current value iS of the inductor current is “0” when operating in the critical mode, and is higher than “0” when operating in the continuous mode. Therefore, assuming that the maximum current value iP of the inductor current is the same value, the average current value iAVE of the inductor current is higher when operating in the continuous mode than when operating in the critical mode. That is, since the step-down chopper device 1 shown in FIG. 1 can operate not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be made higher than when operating only in the critical mode. .
 また、インダクタ電流の平均電流値が同値であるとすると、スイッチング素子SWにおける電力損失は、臨界モードで動作する場合よりも、連続モードで動作する場合のほうが低い。すなわち、図1に示した降圧チョッパ装置1は、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりも、スイッチング素子SWにおける電力損失を低減できる。 Also, assuming that the average current value of the inductor current is the same value, the power loss in the switching element SW is lower when operating in the continuous mode than when operating in the critical mode. That is, since the step-down chopper device 1 shown in FIG. 1 can operate not only in the critical mode but also in the continuous mode, the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode.
 また、インダクタ電流の平均電流値を所望値に維持するために、抵抗素子などを利用してインダクタ電流(または、負荷電流)を検出し、その検出結果に基づいてインダクタ電流の平均電流値を制御(フィードバック制御)することが考えられる。この手法では、インダクタ電流(または、負荷電流)の検出の際に電力損失が発生してしまう。一方、図1に示した降圧チョッパ装置1では、インダクタ電流の平均電流値iAVEをフィードバック制御するためにインダクタ電流iL(または、負荷電流iRD)を検出しなくても良いので、インダクタ電流iL(または、負荷電流iRD)の検出に伴う電力損失が発生しない。そのため、インダクタ電流iL(または、負荷電流iRD)の検出結果に基づいてスイッチング素子SWのオン/オフを制御する場合よりも、降圧チョッパ装置における電力損失を低減できる。 In addition, in order to maintain the average current value of the inductor current at a desired value, the inductor current (or load current) is detected using a resistance element, and the average current value of the inductor current is controlled based on the detection result. (Feedback control) can be considered. With this method, power loss occurs when detecting the inductor current (or load current). On the other hand, in the step-down chopper device 1 shown in FIG. 1, the inductor current iL (or load current iRD) does not have to be detected in order to feedback control the average current value iAVE of the inductor current. , No power loss due to detection of the load current iRD) occurs. Therefore, power loss in the step-down chopper device can be reduced as compared with the case where on / off of switching element SW is controlled based on the detection result of inductor current iL (or load current iRD).
 また、一般的に、入力電圧Vinが高くなるほど、スイッチング素子SWにおけるスイッチング1回当たりのスイッチング損失(スイッチングの際に発生する電力損失)が大きくなる。図1に示した降圧チョッパ装置1では、入力電圧Vinが高くなるほど、スイッチング素子SWのターンオン周期Tが長くなり、スイッチング素子SWの単位時間当たりのスイッチング回数が少なくなる。そのため、入力電圧Vinの上昇に伴うスイッチング損失の増大を抑制できる。 In general, the higher the input voltage Vin, the greater the switching loss (power loss generated during switching) per switching in the switching element SW. In the step-down chopper device 1 shown in FIG. 1, the higher the input voltage Vin, the longer the turn-on cycle T of the switching element SW, and the lower the number of switching times per unit time of the switching element SW. Therefore, an increase in switching loss accompanying an increase in the input voltage Vin can be suppressed.
 (実施形態2)
 図7は、実施形態2による降圧チョッパ装置2の構成例を示す。降圧チョッパ装置2は、図1に示した制御回路11に代えて、制御回路21を備える。制御回路21は、図1に示したターンオン周期調整部102,スイッチング制御部103,およびオン継続時間設定部104に代えて、ターンオン周期調整部202と、スイッチング制御部203と、最高電流値設定部204とを含む。その他の構成は、図1と同様であっても良い。
(Embodiment 2)
FIG. 7 shows a configuration example of the step-down chopper device 2 according to the second embodiment. The step-down chopper device 2 includes a control circuit 21 instead of the control circuit 11 shown in FIG. The control circuit 21 replaces the turn-on cycle adjusting unit 102, the switching control unit 103, and the on duration setting unit 104 shown in FIG. 1 with a turn-on cycle adjusting unit 202, a switching control unit 203, and a maximum current value setting unit. 204. Other configurations may be the same as those in FIG.
   《最高電流値設定部》
 最高電流値設定部204は、インダクタ電流iL(スイッチング電流iSW)の最高電流値を規定する最高電流値iMAX(ここでは、最高電流値iMAXに対応する電圧)を設定する。最高電流値iMAXが高くなるほど、最高電流値iMAXに対応する電圧が高くなる。なお、最高電流値設定部204は、外部制御に応答して最高電流値iMAXを変更するものであっても良い。すなわち、最高電流値iMAXは、予め定められた固定値であっても良いし、外部制御により変更可能な可変値であっても良い。
<Maximum current value setting section>
The maximum current value setting unit 204 sets a maximum current value iMAX (here, a voltage corresponding to the maximum current value iMAX) that defines the maximum current value of the inductor current iL (switching current iSW). As the maximum current value iMAX increases, the voltage corresponding to the maximum current value iMAX increases. The maximum current value setting unit 204 may change the maximum current value iMAX in response to external control. That is, the maximum current value iMAX may be a predetermined fixed value or a variable value that can be changed by external control.
   《ターンオン周期調整部》
 ターンオン周期調整部202は、スイッチング素子SWのターンオンからの経過時間に相当するターンオン経過時間TEon(ここでは、ターンオン経過時間TEonに対応する電圧)を検出する。また、ターンオン周期調整部202は、スイッチング素子SWのターンオンからターンオフまでの継続時間に相当するオン継続時間TCon(ここでは、オン継続時間TConに対応する電圧)を検出する。さらに、ターンオン周期調整部202は、ターンオン経過時間TEonがオン継続時間TConに対して第1の時間割合(1/a)になったときにスイッチング電流検出部101によって検出されたスイッチング電流iSWの電流値(スイッチング電流値idSW)をスイッチング電流の瞬時電流値(瞬時電流値iDET)として検出する。また、ターンオン周期調整部202は、瞬時電流値iDETと目標電流値設定部105によって設定された目標電流値iTGとの差分に応じて、スイッチング素子SWのターンオン周期を規定する周期制御電圧CNTを上昇または降下させることによってスイッチング素子SWのターンオン周期を調整する。
<Turn-on cycle adjuster>
The turn-on cycle adjusting unit 202 detects a turn-on elapsed time TEon (here, a voltage corresponding to the turn-on elapsed time TEon) corresponding to the elapsed time from the turn-on of the switching element SW. Further, the turn-on cycle adjusting unit 202 detects an on duration TCon (here, a voltage corresponding to the on duration TCon) corresponding to the duration from the turn-on to the turn-off of the switching element SW. Further, the turn-on cycle adjusting unit 202 detects the current of the switching current iSW detected by the switching current detecting unit 101 when the turn-on elapsed time TEon becomes the first time ratio (1 / a) with respect to the on-continuation time TCon. The value (switching current value idSW) is detected as the instantaneous current value (instantaneous current value iDET) of the switching current. Further, the turn-on cycle adjusting unit 202 increases the cycle control voltage CNT that defines the turn-on cycle of the switching element SW according to the difference between the instantaneous current value iDET and the target current value iTG set by the target current value setting unit 105. Alternatively, the turn-on cycle of the switching element SW is adjusted by lowering.
   《スイッチング制御部》
 スイッチング制御部203は、ターンオン周期調整部202によって調整されたターンオン周期(周期制御電圧CNTに応じたターンオン周期)に基づいて、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させることによってスイッチング素子SWをターンオンする。また、スイッチング制御部203は、スイッチング電流検出部101によって検出されたスイッチング電流iSWの電流値(スイッチング電流値idSW)が最高電流値設定部204によって設定された最高電流値iMAXに到達したときに、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させることによってスイッチング素子SWをターンオフする。
《Switching control unit》
The switching control unit 203 changes the signal level of the switching control signal SWG from the low level to the high level based on the turn-on cycle (turn-on cycle corresponding to the cycle control voltage CNT) adjusted by the turn-on cycle adjusting unit 202. The switching element SW is turned on. Further, the switching control unit 203, when the current value of the switching current iSW detected by the switching current detection unit 101 (switching current value idSW) reaches the maximum current value iMAX set by the maximum current value setting unit 204, The switching element SW is turned off by changing the signal level of the switching control signal SWG from the high level to the low level.
  〔ターンオン周期調整部の構成例〕
 図8のように、ターンオン周期調整部202は、図2に示したターンオン周期調整部102の構成例に加えて、オン継続時間検出部211を含んでいても良い。オン継続時間検出部211は、ターンオン経過時間TEonに基づいて、スイッチング素子SWのターンオンからターンオフまでの継続時間に相当するオン継続時間TConを検出する。例えば、オン継続時間検出部211は、ピーク/ホールド回路(P/H)PH1と、キャパシタC2,C3と、スイッチング素子SW3,SW4と、インバータINV2とを含んでいても良い。
[Configuration example of turn-on cycle adjuster]
As shown in FIG. 8, the turn-on cycle adjusting unit 202 may include an on-duration detecting unit 211 in addition to the configuration example of the turn-on cycle adjusting unit 102 shown in FIG. 2. Based on the turn-on elapsed time TEon, the on-duration detection unit 211 detects an on-duration TCon corresponding to the duration from the turn-on of the switching element SW to the turn-off. For example, the ON duration detection unit 211 may include a peak / hold circuit (P / H) PH1, capacitors C2 and C3, switching elements SW3 and SW4, and an inverter INV2.
 ピーク/ホールド回路PH1は、ターンオン経過時間TEonに対応する電圧の最高値を検出してホールドする。キャパシタC2,C3の一端は、接地ノードに接続される。スイッチング素子SW3は、ピーク/ホールド回路PH1とキャパシタC2の他端との間に接続される。スイッチング素子SW4は、キャパシタC2の他端とキャパシタC3の他端との間に接続される。インバータINV2は、スイッチング制御信号SWGを反転させる。スイッチング素子SW3,SW4は、それぞれ、インバータINV2の出力信号およびスイッチング制御信号SWGに応答してオン/オフを切り替える。 The peak / hold circuit PH1 detects and holds the maximum value of the voltage corresponding to the turn-on elapsed time TEon. One ends of the capacitors C2 and C3 are connected to the ground node. The switching element SW3 is connected between the peak / hold circuit PH1 and the other end of the capacitor C2. Switching element SW4 is connected between the other end of capacitor C2 and the other end of capacitor C3. The inverter INV2 inverts the switching control signal SWG. Switching elements SW3 and SW4 are turned on / off in response to the output signal of inverter INV2 and switching control signal SWG, respectively.
 スイッチング制御信号SWGの第n回目の立ち下がりエッジ(ハイレベルからローレベルへの変化)が発生すると、ターンオン経過時間検出部111において、ターンオン経過時間TEonに対応する電圧がリセットされる。したがって、ピーク/ホールド回路PH1にホールドされた電圧は、スイッチング素子SWの第n回目のターンオンから第n回目のターンオフまでの継続時間(第n回目のオン時間)に対応する電圧であるといえる。また、スイッチング制御信号SWGの立ち下がりエッジに応答して、スイッチング素子SW3がターンオンするとともにスイッチング素子SW4がターンオフする。これにより、ピーク/ホールド回路PH1にホールドされた電圧(すなわち、第n回目のオン時間に対応する電圧)がキャパシタC2にホールドされる。 When the nth falling edge (change from high level to low level) of the switching control signal SWG occurs, the turn-on elapsed time detector 111 resets the voltage corresponding to the turn-on elapsed time TEon. Therefore, the voltage held in the peak / hold circuit PH1 can be said to be a voltage corresponding to the duration (n-th on-time) from the n-th turn-on of the switching element SW to the n-th turn-off. In response to the falling edge of the switching control signal SWG, the switching element SW3 is turned on and the switching element SW4 is turned off. As a result, the voltage held in the peak / hold circuit PH1 (that is, the voltage corresponding to the n-th on-time) is held in the capacitor C2.
 次に、スイッチング制御信号SWGの第n+1回目の立ち上がりエッジ(ローレベルからハイレベルへの変化)が発生すると、ターンオン経過時間検出部111において、ターンオン経過時間TEonに対応する電圧が上昇し始め、ピーク/ホールド回路PH1にホールドされる電圧も徐々に上昇する。また、スイッチング制御信号SWGの立ち上がりエッジに応答して、スイッチング素子SW3がターンオフするとともにスイッチング素子SW4がターンオンする。これにより、キャパシタC2にホールドされた電圧TCn(第n回目のオン時間に対応する電圧)がキャパシタC3に印加される。したがって、キャパシタC3にホールドされた電圧は、第1回目~第n回目のオン時間に応じた時間(例えば、第1回目~第n回目のオン時間の平均時間)に対応する電圧であるといえる。また、キャパシタC3にホールドされた電圧は、オン継続時間TCon(オン継続時間検出部211によって検出されたオン継続時間)に対応する電圧として供給される。 Next, when the (n + 1) th rising edge (change from low level to high level) of the switching control signal SWG occurs, the voltage corresponding to the turn-on elapsed time TEon starts to rise in the turn-on elapsed time detection unit 111, and the peak The voltage held in the / hold circuit PH1 also gradually increases. In response to the rising edge of the switching control signal SWG, the switching element SW3 is turned off and the switching element SW4 is turned on. As a result, the voltage TCn held in the capacitor C2 (voltage corresponding to the n-th on-time) is applied to the capacitor C3. Therefore, the voltage held in the capacitor C3 can be said to be a voltage corresponding to the time corresponding to the first to n-th on times (for example, the average time of the first to n-th on times). . The voltage held in the capacitor C3 is supplied as a voltage corresponding to the ON duration TCon (ON duration detected by the ON duration detector 211).
 なお、オン継続時間検出部211は、オン継続時間TConに対応する電圧の変動(スイッチング素子SW2,SW3における電圧降下など)を補正する電圧補正回路をさらに含んでいても良い。 Note that the ON duration detection unit 211 may further include a voltage correction circuit that corrects fluctuations in voltage corresponding to the ON duration TCon (voltage drop in the switching elements SW2 and SW3, etc.).
  〔スイッチング制御部の構成例〕
 図9のように、スイッチング制御部203は、図3に示した比較器116に代えて、比較器216を含んでいても良い。その他の構成は、図3と同様であっても良い。比較器216は、スイッチング電流値idSWに対応する電圧と最高電流値iMAXに対応する電圧とを比較する。ここでは、スイッチング電流値idSWが最高電流値iMAXに到達すると、比較器216の出力信号の信号レベルがハイレベルからローレベルへ変化する。パルス発生器117は、比較器216の出力変化(ここでは、立ち下がりエッジ)に同期して、ターンオフパルスPoffを出力する。
[Configuration example of switching control unit]
As illustrated in FIG. 9, the switching control unit 203 may include a comparator 216 instead of the comparator 116 illustrated in FIG. 3. Other configurations may be the same as those in FIG. The comparator 216 compares the voltage corresponding to the switching current value idSW with the voltage corresponding to the maximum current value iMAX. Here, when the switching current value idSW reaches the maximum current value iMAX, the signal level of the output signal of the comparator 216 changes from the high level to the low level. The pulse generator 117 outputs a turn-off pulse Poff in synchronization with the output change (here, falling edge) of the comparator 216.
  〔動作〕
 次に、図10を参照して、降圧チョッパ装置2による動作について説明する。ここでは、第1の時間割合(1/a)は、“1/2”であるものとする。なお、図10では、図示の簡略化のために、瞬時電流値iDETと目標電流値iTGとの差分値は“0”であるものとしている。
[Operation]
Next, the operation of the step-down chopper device 2 will be described with reference to FIG. Here, it is assumed that the first time ratio (1 / a) is “1/2”. In FIG. 10, for the sake of simplification, the difference value between the instantaneous current value iDET and the target current value iTG is assumed to be “0”.
 まず、スイッチング制御部203において、発振器115が第n回目のターンオンパルスPonを出力すると、SRラッチ118は、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させる。これにより、スイッチング素子SWがターンオンし、インダクタ電流iL(スイッチング電流値iSW)が徐々に上昇する。 First, in the switching control unit 203, when the oscillator 115 outputs the nth turn-on pulse Pon, the SR latch 118 changes the signal level of the switching control signal SWG from the low level to the high level. Thereby, the switching element SW is turned on, and the inductor current iL (switching current value iSW) gradually increases.
 次に、ターンオン経過時間TEonが比較時間TXon(オン継続時間検出部211によって検出されたオン継続時間TConの1/2)に到達すると、ターンオン周期調整部202において、時間割合検出部112は、タイミング信号TMGの信号レベルをハイレベルからローレベルへ変化させる。瞬時電流値検出部113は、タイミング信号TMGの立ち下がりエッジに応答して、スイッチング電流値idSWを瞬時電流値iDETとして検出する。周期制御部114は、瞬時電流値iDETと目標電流値iTGとの差分に応じて周期制御電圧CNTを上昇または降下させる。これにより、スイッチング制御部203において、発振器115におけるターンオンパルスPonの出力周期(すなわち、スイッチング素子SWのターンオン周期T)が調整される。 Next, when the turn-on elapsed time TEon reaches the comparison time TXon (1/2 of the on-duration time TCon detected by the on-duration detection unit 211), in the turn-on cycle adjusting unit 202, the time ratio detection unit 112 The signal level of the signal TMG is changed from a high level to a low level. The instantaneous current value detection unit 113 detects the switching current value idSW as the instantaneous current value iDET in response to the falling edge of the timing signal TMG. The cycle control unit 114 increases or decreases the cycle control voltage CNT according to the difference between the instantaneous current value iDET and the target current value iTG. As a result, the switching control unit 203 adjusts the output period of the turn-on pulse Pon in the oscillator 115 (that is, the turn-on period T of the switching element SW).
 次に、スイッチング電流値idSWが最高電流値iMAXに到達すると、スイッチング制御部203において、比較器216の出力信号の信号レベルがハイレベルからローレベルへ変化し、パルス発生器117は、ターンオフパルスPoffを出力する。SRラッチ118は、ターンオフパルスPoffに応答して、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させる。これにより、スイッチング素子SWがターンオフし、インダクタ電流iLが徐々に降下する。また、ターンオン周期調整部202において、オン継続時間検出部211は、ターンオン経過時間TEonに基づいてオン継続時間TConを検出する。 Next, when the switching current value idSW reaches the maximum current value iMAX, in the switching control unit 203, the signal level of the output signal of the comparator 216 changes from high level to low level, and the pulse generator 117 turns off the turn-off pulse Poff. Is output. The SR latch 118 changes the signal level of the switching control signal SWG from the high level to the low level in response to the turn-off pulse Poff. As a result, the switching element SW is turned off, and the inductor current iL gradually decreases. Further, in the turn-on cycle adjusting unit 202, the on-duration detection unit 211 detects the on-duration time TCon based on the turn-on elapsed time TEon.
 次に、第n回目のターンオンパルスPonの発生からターンオン周期T(ターンオン周期調整部202によって調整されたターンオン周期)が経過すると、スイッチング制御部103において、発振器115は、第n+1回目のターンオンパルスPonを出力する。 Next, when a turn-on cycle T (turn-on cycle adjusted by the turn-on cycle adjusting unit 202) has elapsed since the generation of the n-th turn-on pulse Pon, the switching control unit 103 causes the oscillator 115 to switch the n + 1-th turn-on pulse Pon. Is output.
  〔ターンオン周期の調整〕
 スイッチング素子SWのターンオン周期Tは、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値(iDET-iTG)に応じて調整される。例えば、図11のように、インダクタ電流iL(スイッチング電流iSW)の上昇勾配が図10の場合よりも急峻になると、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値(iDET-iTG)が図10の場合よりも小さくなり、周期制御電圧CNTが図10の場合よりも低くなる。その結果、スイッチング素子SWのターンオン周期Tは、図10の場合よりも短くなる。また、図12のように、インダクタ電流iLの降下勾配が図10の場合よりも急峻になると、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値(iDET-iTG)が図10の場合よりも小さくなり、周期制御電圧CNTが図10の場合よりも高くなる。その結果、スイッチング素子SWのターンオン周期Tは、図10の場合よりも短くなる。
[Adjustment of turn-on cycle]
The turn-on period T of the switching element SW is adjusted according to the difference value (iDET−iTG) between the instantaneous current value iDET of the switching current and the target current value iTG. For example, as shown in FIG. 11, when the rising gradient of the inductor current iL (switching current iSW) becomes steeper than in FIG. 10, the difference value (iDET−iTG) between the instantaneous current value iDET of the switching current and the target current value iTG. ) Is smaller than in the case of FIG. 10, and the cycle control voltage CNT is lower than in the case of FIG. As a result, the turn-on period T of the switching element SW becomes shorter than that in the case of FIG. Also, as shown in FIG. 12, when the drop gradient of the inductor current iL becomes steeper than in the case of FIG. 10, the difference value (iDET−iTG) between the instantaneous current value iDET of the switching current and the target current value iTG is shown in FIG. The period control voltage CNT becomes higher than in the case of FIG. As a result, the turn-on period T of the switching element SW becomes shorter than that in the case of FIG.
 このように、スイッチング電流の瞬時電流値iDETが目標電流値iTGに近づくようにスイッチング素子SWのターンオン周期Tを調整することにより、インダクタ電流の平均電流値iAVEを所望値に近づけることができる。なお、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値の変化量は、スイッチング素子SWのターンオン周期Tの変化量に対して微小であるので、図11および図12では、図示の簡略化のために、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分値の変化量は“0”であるものとしている。 As described above, by adjusting the turn-on cycle T of the switching element SW so that the instantaneous current value iDET of the switching current approaches the target current value iTG, the average current value iAVE of the inductor current can be brought close to a desired value. Note that the amount of change in the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is very small with respect to the amount of change in the turn-on cycle T of the switching element SW. For simplification, it is assumed that the amount of change in the difference value between the instantaneous current value iDET of the switching current and the target current value iTG is “0”.
  〔インダクタ電流の時間変化勾配のばらつき〕
 ここで、図10,図11,図12より、第1の時間割合(1/a)が“1/2”に近くなるほど、ターンオン経過時間TEonがオン継続時間TConに対して第1の時間割合(1/a)になるときのスイッチング電流の瞬時電流値iDETが、インダクタ電流iLの時間変化勾配のばらつきに対して変動しにくくなることがわかる。
[Variation of time gradient of inductor current]
Here, from FIG. 10, FIG. 11, and FIG. 12, the turn-on elapsed time TEon is the first time ratio with respect to the on-continuation time TCon as the first time ratio (1 / a) is closer to “1/2”. It can be seen that the instantaneous current value iDET of the switching current at (1 / a) is less likely to fluctuate with respect to the variation in the time change gradient of the inductor current iL.
 以上のように、インダクタ電流iLの時間変化勾配のばらつきに対してスイッチング電流の瞬時電流値iDETを変動させにくくすることができるので、インダクタ電流iLの時間変化勾配のばらつきに起因するインダクタ電流の平均電流値iAVEの変動を抑制できる。また、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりも、インダクタ電流の平均電流値iAVEを高くすることができるとともに、スイッチング素子SWにおける電力損失を低減できる。 As described above, since the instantaneous current value iDET of the switching current can be made difficult to fluctuate with respect to the variation in the time variation gradient of the inductor current iL, the average of the inductor current caused by the variation in the time variation gradient of the inductor current iL. Variations in the current value iAVE can be suppressed. Further, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode. .
 さらに、インダクタ電流の平均電流値iAVEをフィードバック制御するためにインダクタ電流iL(または、負荷電流iRD)を検出しなくても良いので、インダクタ電流iL(または、負荷電流iRD)の検出結果に基づいてスイッチング素子SWのオン/オフを制御する場合よりも、降圧チョッパ装置における電力損失を低減できる。 Furthermore, since it is not necessary to detect the inductor current iL (or load current iRD) in order to perform feedback control of the average current value iAVE of the inductor current, it is based on the detection result of the inductor current iL (or load current iRD). The power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element SW is controlled.
 また、スイッチング電流iSWの電流値が予め定められた最高電流値iMAXを超えないように制御されるので、スイッチング電流iSWの電流値がスイッチング素子SWの定格電流値を超えないようにスイッチング電流の最高電流値iPを制限できる。これにより、スイッチング素子SWの選定を容易にできる。 Further, since the current value of the switching current iSW is controlled so as not to exceed the predetermined maximum current value iMAX, the maximum switching current is set so that the current value of the switching current iSW does not exceed the rated current value of the switching element SW. The current value iP can be limited. Thereby, selection of switching element SW can be made easy.
 (実施形態3)
 図13は、実施形態3による降圧チョッパ装置3の構成例を示す。降圧チョッパ装置3は、図1に示した制御回路11に代えて、制御回路31を備える。制御回路31は、図1に示したターンオン周期調整部102およびスイッチング制御部103に代えて、非連続状態検出部301と、ターンオン周期調整部302と、スイッチング制御部303とを含む。その他の構成は、図1と同様であっても良い。
(Embodiment 3)
FIG. 13 shows a configuration example of the step-down chopper device 3 according to the third embodiment. The step-down chopper device 3 includes a control circuit 31 instead of the control circuit 11 shown in FIG. The control circuit 31 includes a discontinuous state detection unit 301, a turn-on cycle adjustment unit 302, and a switching control unit 303 instead of the turn-on cycle adjustment unit 102 and the switching control unit 103 shown in FIG. Other configurations may be the same as those in FIG.
   《非連続状態検出部》
 非連続状態検出部301は、非連続状態が発生したことを検出する。非連続状態とは、スイッチング素子SWのターンオフからターンオンまでの期間において、第2および第3の電流経路(インダクタL1,負荷素子RD,および還流ダイオードD1によって構成される閉回路経路)に流れる還流電流の電流値が所定の電流値(例えば、0A付近)よりも低くなる状態のことである。ここでは、非連続状態検出部301は、インダクタL1の両端電圧(中間ノードN1におけるノード電圧V1と、中間ノードN3におけるノード電圧V2)の差分に基づいて、非連続状態が発生したことを検出する。
《Discontinuous state detector》
The discontinuous state detection unit 301 detects that a discontinuous state has occurred. The discontinuous state is a return current flowing through the second and third current paths (a closed circuit path formed by the inductor L1, the load element RD, and the return diode D1) during the period from the turn-off to the turn-on of the switching element SW. Is a state where the current value becomes lower than a predetermined current value (for example, around 0 A). Here, the discontinuous state detection unit 301 detects that a discontinuous state has occurred based on the difference between the voltages across the inductor L1 (the node voltage V1 at the intermediate node N1 and the node voltage V2 at the intermediate node N3). .
   《ターンオン周期調整部》
 非連続状態検出部301によって非連続状態が検出されなかった場合、ターンオン周期調整部302は、スイッチング電流の瞬時電流値iDETと目標電流値iTGとの差分に応じてスイッチング素子SWのターンオン周期T(連続モードまたは臨界モードに対応するターンオン周期)を調整する。一方、非連続状態検出部301によって非連続状態が検出された場合、ターンオン周期調整部302は、スイッチング素子SWのターンオン周期Tを電流連続時間(スイッチング素子SWのターンオンから非連続状態検出部301による検出までの経過時間)で除算して得られた時間割合(T/TDon)が、スイッチング電流の瞬時電流値iDET(ターンオン経過時間TEonがオン継続時間TConに対して第1の時間割合(1/a)になったときのスイッチング電流値idSW)を目標電流値iTGで除算して得られた電流割合(iDET/iTG)に近づくように、スイッチング素子SWのターンオン周期T(非連続モードに対応するターンオン周期)を調整する。
<Turn-on cycle adjuster>
When the discontinuous state detection unit 301 does not detect the discontinuous state, the turn-on period adjusting unit 302 determines the turn-on period T (() of the switching element SW according to the difference between the instantaneous current value iDET of the switching current and the target current value iTG. (Turn-on period corresponding to continuous mode or critical mode). On the other hand, when the discontinuous state is detected by the discontinuous state detecting unit 301, the turn-on period adjusting unit 302 sets the turn-on period T of the switching element SW to the current continuous time (from the turn-on of the switching element SW to the discontinuous state detecting unit 301. The time ratio (T / TDon) obtained by dividing by the elapsed time until the detection) is an instantaneous current value iDET of the switching current (the turn-on elapsed time TEon is equal to the first time ratio (1 / a) corresponding to the turn-on period T (discontinuous mode) of the switching element SW so as to approach the current ratio (iDET / iTG) obtained by dividing the switching current value idSW) at the time of a) by the target current value iTG. Adjust the turn-on cycle.
   《スイッチング制御部》
 スイッチング制御部303は、図1に示したスイッチング制御部103と同様に、ターンオン周期調整部302によって調整されたターンオン周期Tに基づいて、スイッチング素子SWをターンオンし、ターンオン経過時間TEonがオン継続時間TConに到達したときに、スイッチング素子SWをターンオフする。
《Switching control unit》
Similar to the switching control unit 103 shown in FIG. 1, the switching control unit 303 turns on the switching element SW based on the turn-on cycle T adjusted by the turn-on cycle adjusting unit 302, and the turn-on elapsed time TEon is on duration. When TCon is reached, the switching element SW is turned off.
  〔非連続状態検出部の構成例〕
 図14のように、非連続状態検出部301は、比較器CMP3と、論理回路(LGC)LGC1とを含んでいても良い。比較器CMP3は、インダクタL1の両端電圧(ノード電圧V1,V2)を比較する。ここでは、ノード電圧V1がノード電圧V2よりも高くなった場合およびノード電圧V1,V2が互いに等しくなった場合に、比較器CMP3の出力信号の信号レベルがハイレベルからローレベルへ変化する。論理回路LCG1は、スイッチング制御信号SWGがローレベルである期間において比較器CMP3の出力信号の信号レベルがハイレベルからローレベルへ変化すると非連続検出信号S301(論理回路LCG1の出力信号)の信号レベルをハイレベルからローレベルへ変化させ、スイッチング制御信号SWGの信号レベルがローレベルからハイレベルへ変化すると、非連続検出信号S301の信号レベルをハイレベルにする。
[Configuration example of non-continuous state detector]
As shown in FIG. 14, the discontinuous state detection unit 301 may include a comparator CMP3 and a logic circuit (LGC) LGC1. The comparator CMP3 compares the voltage across the inductor L1 (node voltages V1, V2). Here, when the node voltage V1 becomes higher than the node voltage V2 and when the node voltages V1 and V2 become equal to each other, the signal level of the output signal of the comparator CMP3 changes from the high level to the low level. When the signal level of the output signal of the comparator CMP3 changes from the high level to the low level during the period in which the switching control signal SWG is at the low level, the logic circuit LCG1 has the signal level of the discontinuous detection signal S301 (the output signal of the logic circuit LCG1). Is changed from the high level to the low level, and the signal level of the switching control signal SWG changes from the low level to the high level, the signal level of the discontinuous detection signal S301 is changed to the high level.
 スイッチング制御信号SWGの信号レベルがローレベルである場合、スイッチング素子SWがオフ状態となるので、インダクタL1,負荷素子RD,および還流ダイオードD1によって構成される閉回路経路には、還流電流がインダクタ電流iLとして流れることになる。この場合、ノード電圧V1は、ノード電圧V2よりも低い。したがって、比較器CMP3の出力信号は、ハイレベルのまま維持され、論理回路LGC1は、非連続検出信号S301の信号レベルをハイレベルのまま維持する。ここで、還流電流の電流値が所定の電流値(例えば、0V)に到達すると、ノード電圧V1は、ノード電圧V2と等しくなる。これにより、比較器CMP3の出力信号の信号レベルがハイレベルからローレベルへ変化する。その結果、論理回路LGC1は、非連続検出信号S301の信号レベルをハイレベルからローレベルへ変化させる。このように、非連続状態が発生すると、非連続検出信号S301の信号レベルがハイレベルからローレベルへ変化する。次に、スイッチング制御信号SWGの信号レベルがローレベルからハイレベルへ変化すると、論理回路LGC1は、非連続検出信号S301の信号レベルをローレベルからハイレベルへ変化させる。 When the signal level of the switching control signal SWG is low level, the switching element SW is turned off, so that the return current is inducted in the closed circuit path constituted by the inductor L1, the load element RD, and the return diode D1. It will flow as iL. In this case, the node voltage V1 is lower than the node voltage V2. Therefore, the output signal of the comparator CMP3 is maintained at a high level, and the logic circuit LGC1 maintains the signal level of the discontinuous detection signal S301 at a high level. Here, when the current value of the return current reaches a predetermined current value (for example, 0 V), the node voltage V1 becomes equal to the node voltage V2. As a result, the signal level of the output signal of the comparator CMP3 changes from the high level to the low level. As a result, the logic circuit LGC1 changes the signal level of the discontinuous detection signal S301 from the high level to the low level. Thus, when a discontinuous state occurs, the signal level of the discontinuous detection signal S301 changes from a high level to a low level. Next, when the signal level of the switching control signal SWG changes from the low level to the high level, the logic circuit LGC1 changes the signal level of the discontinuous detection signal S301 from the low level to the high level.
 また、非連続状態が発生した場合に、ノード電圧V1,V2の電圧差(V1-V2)が0V付近でリンギングする場合がある。この場合、比較器CMP3の出力信号の信号レベルがハイレベルとローレベルとの間を行き来することになる。なお、図14に示した非連続状態検出部301では、論理回路LGC1は、比較器CMP3の出力信号の信号レベルがハイレベルからローレベルになった後にスイッチング制御信号SWGの信号レベルがローレベルからハイレベルになるまでの間、非連続検出信号S301の信号レベルをローレベルのまま維持する。これにより、非連続状態が発生した場合にノード電圧V1,V2の電圧差(V1-V2)が0付近でリンギングしたとしても、非連続検出信号S301の信号レベルをローレベルのまま維持できる(非連続状態が発生したことを正確に検出できる)。 Also, when a discontinuous state occurs, the voltage difference (V1−V2) between the node voltages V1 and V2 may ring around 0V. In this case, the signal level of the output signal of the comparator CMP3 goes back and forth between the high level and the low level. In the discontinuous state detection unit 301 shown in FIG. 14, the logic circuit LGC1 causes the switching control signal SWG to change from the low level after the signal level of the output signal of the comparator CMP3 changes from the high level to the low level. Until the signal level becomes high, the signal level of the discontinuous detection signal S301 is kept low. As a result, even if the voltage difference (V1−V2) between the node voltages V1 and V2 rings around 0 when a discontinuous state occurs, the signal level of the discontinuous detection signal S301 can be maintained at a low level (non-contiguous). Accurately detect that a continuous condition has occurred).
  〔ターンオン周期調整部の構成例〕
 図15のように、ターンオン周期調整部302は、図2に示したターンオン経過時間検出部111に代えて、ターンオン経過時間検出部311と、パルス制御部312とを含んでいても良い。その他の構成は、図2と同様であっても良い。
[Configuration example of turn-on cycle adjuster]
As illustrated in FIG. 15, the turn-on period adjusting unit 302 may include a turn-on elapsed time detecting unit 311 and a pulse control unit 312 instead of the turn-on elapsed time detecting unit 111 illustrated in FIG. 2. Other configurations may be the same as those in FIG.
   《ターンオン経過時間検出部》
 ターンオン経過時間検出部311は、ターンオン経過時間TEonを検出する。例えば、ターンオン経過時間検出部311は、キャパシタC4と、電流源CS2,CS3と、スイッチング素子SW5,SW6,SW7と、差動増幅器(AMP)AMP1と、論理回路(LGC)LGC2と、インバータINV3とを含んでいても良い。
<Turn-on elapsed time detector>
The turn-on elapsed time detector 311 detects the turn-on elapsed time TEon. For example, the turn-on elapsed time detector 311 includes a capacitor C4, current sources CS2 and CS3, switching elements SW5, SW6, and SW7, a differential amplifier (AMP) AMP1, a logic circuit (LGC) LGC2, and an inverter INV3. May be included.
 キャパシタC4の一端は、接地ノードに接続される。電流源CS2およびスイッチング素子SW5は、電源ノードとキャパシタC4の他端との間に直列に接続される。スイッチング素子SW6は、キャパシタC4の他端と接地ノードとの間に接続される。差動増幅器AMP1は、瞬時電流値iDETに対応する電圧と目標電流値iTGに対応する電圧との差分電圧を出力する。電流源CS3の電流値は、差動増幅器AMP1からの差分電圧(瞬時電流値iDETと目標電流値iTGとの差分に対応する電圧)に応じて変化する。ここで、電流源CS2の電流値を“iCHG”とし、電流源CS3の電流値を“iDCH”とすると、電流源CS3の電流値は、iDCH=iCHG×iTG/(iDET-iTG)となるように調整される。電流源CS3およびスイッチング素子SW7は、キャパシタC4の他端と接地ノードとの間に直列に接続される。論理回路LGC2は、スイッチング制御信号SWGの立ち上がりエッジに同期してスイッチング素子SW6をターンオンし、キャパシタC4の電圧(ターンオン経過時間TEonに対応する電圧)が初期値(例えば、0V)になるとスイッチング素子SW6をターンオフする。インバータINV3は、非連続検出信号S301を反転させる。スイッチング素子SW5,SW6,SW7は、それぞれ、非連続検出信号S301,論理回路LGC2の出力信号,インバータINV3の出力信号に応答してオン/オフを切り替える。 One end of the capacitor C4 is connected to the ground node. Current source CS2 and switching element SW5 are connected in series between the power supply node and the other end of capacitor C4. Switching element SW6 is connected between the other end of capacitor C4 and the ground node. The differential amplifier AMP1 outputs a differential voltage between the voltage corresponding to the instantaneous current value iDET and the voltage corresponding to the target current value iTG. The current value of the current source CS3 changes according to the differential voltage (voltage corresponding to the difference between the instantaneous current value iDET and the target current value iTG) from the differential amplifier AMP1. Here, when the current value of the current source CS2 is “iCHG” and the current value of the current source CS3 is “iDCH”, the current value of the current source CS3 is iDCH = iCHG × iTG / (iDET−iTG). Adjusted to Current source CS3 and switching element SW7 are connected in series between the other end of capacitor C4 and the ground node. The logic circuit LGC2 turns on the switching element SW6 in synchronization with the rising edge of the switching control signal SWG. When the voltage of the capacitor C4 (voltage corresponding to the turn-on elapsed time TEon) reaches an initial value (for example, 0 V), the switching element SW6. To turn off. The inverter INV3 inverts the discontinuous detection signal S301. The switching elements SW5, SW6, and SW7 are turned on / off in response to the discontinuous detection signal S301, the output signal of the logic circuit LGC2, and the output signal of the inverter INV3, respectively.
 非連続検出信号S301の信号レベルがハイレベルである場合、スイッチング素子SW5は、オン状態のまま維持されるとともに、スイッチング素子SW7は、オフ状態のまま維持される。この場合、スイッチング制御信号SWGの信号レベルがローレベルからハイレベルへ変化すると、スイッチング素子SW6がターンオンする。これにより、キャパシタC4が放電され、キャパシタC4の電圧(ターンオン経過時間TEonに対応する電圧)が初期値(例えば、0V)にリセットされる。キャパシタC4の電圧が初期値になると、スイッチング素子SW6がターンオフする。これにより、電流源CS2によるキャパシタC4の充電が開始され、キャパシタC4の電圧が徐々に上昇する。このように、キャパシタC4の電圧は、ターンオン経過時間TEonの増加に伴って上昇する。 When the signal level of the discontinuous detection signal S301 is high, the switching element SW5 is maintained in the on state, and the switching element SW7 is maintained in the off state. In this case, when the signal level of the switching control signal SWG changes from the low level to the high level, the switching element SW6 is turned on. As a result, the capacitor C4 is discharged, and the voltage of the capacitor C4 (voltage corresponding to the turn-on elapsed time TEon) is reset to an initial value (for example, 0 V). When the voltage of the capacitor C4 reaches the initial value, the switching element SW6 is turned off. Thereby, charging of the capacitor C4 by the current source CS2 is started, and the voltage of the capacitor C4 gradually increases. As described above, the voltage of the capacitor C4 increases as the turn-on elapsed time TEon increases.
 ここで、非連続状態が発生して非連続検出信号S301の信号レベルがハイレベルからローレベルへ変化すると、スイッチング素子SW5がターンオフするとともにスイッチング素子SW7がターンオンする。これにより、電流源CS3によるキャパシタC4の放電が開始され、キャパシタC4の電圧が徐々に降下する。すなわち、ターンオン経過時間TEonに対応する電圧の上昇時間(キャパシタC4の充電時間)は、スイッチング素子SWのターンオンから非連続状態検出部301による検出までの経過時間(電流連続時間)に対応する。 Here, when the discontinuous state occurs and the signal level of the discontinuous detection signal S301 changes from the high level to the low level, the switching element SW5 is turned off and the switching element SW7 is turned on. Thereby, discharging of the capacitor C4 by the current source CS3 is started, and the voltage of the capacitor C4 gradually decreases. That is, the voltage rise time (charge time of the capacitor C4) corresponding to the turn-on elapsed time TEon corresponds to the elapsed time (current continuous time) from the turn-on of the switching element SW to the detection by the discontinuous state detection unit 301.
   《パルス制御部》
 パルス制御部312は、ターンオン経過時間検出部311によって検出されたターンオン経過時間TEonが非連続モードにおけるターンオン周期Tに到達したときに、制御信号P302を出力する。例えば、パルス制御部312は、パルス発生器PG1と、論理回路(LGC)LGC3とを含んでいても良い。パルス発生器PG1は、ターンオン経過時間TEonに対応する電圧が初期値(例えば、0V)に到達すると、制御パルスを出力する。論理回路LGC3は、スイッチング制御信号SWGの信号レベルがローレベルである期間では、パルス発生器PG1からの制御パルスを制御パルスP302として通過させ、スイッチング制御信号SWGの信号レベルがハイレベルである期間では、パルス発生器PG1からの制御パルスを通過させない。すなわち、ターンオン経過時間TEonに対応する電圧の上昇時間と降下時間(キャパシタC4の放電時間)との合計時間(ターンオン経過時間TEonに対応する電圧が初期値から上昇した後に降下して再び初期値となるまでの経過時間)は、スイッチング素子SWの非連続モードにおけるターンオン周期Tに対応する。
<Pulse control unit>
The pulse control unit 312 outputs a control signal P302 when the turn-on elapsed time TEon detected by the turn-on elapsed time detection unit 311 reaches the turn-on period T in the discontinuous mode. For example, the pulse control unit 312 may include a pulse generator PG1 and a logic circuit (LGC) LGC3. When the voltage corresponding to the turn-on elapsed time TEon reaches an initial value (for example, 0 V), the pulse generator PG1 outputs a control pulse. The logic circuit LGC3 allows the control pulse from the pulse generator PG1 to pass as the control pulse P302 during the period when the signal level of the switching control signal SWG is low, and during the period when the signal level of the switching control signal SWG is high. The control pulse from the pulse generator PG1 is not passed. That is, the voltage rise time corresponding to the turn-on elapsed time TEon and the total time of the fall time (discharge time of the capacitor C4) (the voltage corresponding to the turn-on elapsed time TEon rises from the initial value and then drops to the initial value again. (Elapsed time until) corresponds to the turn-on period T in the discontinuous mode of the switching element SW.
  〔スイッチング制御部の構成例〕
 図16のように、スイッチング制御部303は、図3に示したスイッチング制御部103の構成例に加えて、選択部313を含んでいても良い。選択部313は、スイッチング制御信号SWGの信号レベルがローレベルである期間において非連続検出信号S301の信号レベルがハイレベルからローレベルへ変化すると、ターンオン周期調整部302からの制御パルスP302をターンオンパルスP303として選択する。また、選択部313は、スイッチング制御信号SWGの信号レベルがローレベルである期間において非連続検出信号S301の信号レベルがハイレベルのまま維持されている場合には、発振器115からのターンオンパルスPonをターンオンパルスP303として選択する。SRラッチ118は、選択部313からのターンオンパルスP303に応答して、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させる。
[Configuration example of switching control unit]
As illustrated in FIG. 16, the switching control unit 303 may include a selection unit 313 in addition to the configuration example of the switching control unit 103 illustrated in FIG. 3. When the signal level of the discontinuous detection signal S301 changes from the high level to the low level during the period in which the signal level of the switching control signal SWG is low, the selection unit 313 turns on the control pulse P302 from the turn-on cycle adjustment unit 302. Select as P303. In addition, the selection unit 313 generates a turn-on pulse Pon from the oscillator 115 when the signal level of the discontinuous detection signal S301 is maintained high during the period in which the signal level of the switching control signal SWG is low. The turn-on pulse P303 is selected. The SR latch 118 changes the signal level of the switching control signal SWG from the low level to the high level in response to the turn-on pulse P303 from the selection unit 313.
  〔動作〕
 次に、図17および図18を参照して、降圧チョッパ装置3による動作について説明する。ここでは、第1の時間割合(1/a)は、“1/2”であるものとする。また、図17では、図示の簡略化のために、瞬時電流値iDETと目標電流値iTGとの差分値は“0”であるものとしている。
[Operation]
Next, the operation of the step-down chopper device 3 will be described with reference to FIGS. 17 and 18. Here, it is assumed that the first time ratio (1 / a) is “1/2”. In FIG. 17, for the sake of simplification, the difference value between the instantaneous current value iDET and the target current value iTG is assumed to be “0”.
 図17のように、非連続状態が発生しない場合、非連続検出信号S301の信号レベルはハイレベルのまま維持され、制御パルスP302は発生しない。したがって、スイッチング制御部303では、発振器115は、ターンオン周期調整部302によって調整されたターンオン周期(周期制御電圧CNTに応じた周期)に基づいてターンオンパルスPonを出力し、選択部313は、発振器115からのターンオンパルスPonをSRラッチ118に供給されるターンオンパルスP303として選択する。すなわち、スイッチング制御部303は、連続モードに対応するターンオン周期Tに基づいてスイッチング素子SWをターンオンする。 As shown in FIG. 17, when the discontinuous state does not occur, the signal level of the discontinuous detection signal S301 is maintained at the high level, and the control pulse P302 is not generated. Therefore, in the switching control unit 303, the oscillator 115 outputs the turn-on pulse Pon based on the turn-on cycle (cycle according to the cycle control voltage CNT) adjusted by the turn-on cycle adjusting unit 302, and the selection unit 313 Is selected as the turn-on pulse P303 supplied to the SR latch 118. That is, the switching control unit 303 turns on the switching element SW based on the turn-on cycle T corresponding to the continuous mode.
 一方、図18のように、非連続状態が発生した場合、インダクタL1の両端電圧(ノード電圧V1,V2)が互いに等しくなるので、非連続状態検出部301は、非連続検出信号S301の信号レベルをハイレベルからローレベルへ変化させる。ターンオン周期調整部302のターンオン経過時間検出部311では、電流源CS3によるキャパシタC4の放電が開始され、ターンオン経過時間TEonに対応する電圧が徐々に降下する。次に、ターンオン経過時間TEonに対応する電圧が初期値(例えば、0V)に到達すると、ターンオン周期調整部302のパルス制御部312は、制御パルスP302を出力する。スイッチング制御部303では、選択部313は、制御パルスP302をターンオンパルスP303として選択する。すなわち、スイッチング制御部303は、非連続モードに対応するターンオン周期Tに基づいてスイッチング素子SWをターンオンする。 On the other hand, as shown in FIG. 18, when the discontinuous state occurs, the voltages across the inductor L1 (node voltages V1 and V2) are equal to each other, so that the discontinuous state detecting unit 301 detects the signal level of the discontinuous detection signal S301. Is changed from high level to low level. In the turn-on elapsed time detecting unit 311 of the turn-on period adjusting unit 302, the discharge of the capacitor C4 by the current source CS3 is started, and the voltage corresponding to the turn-on elapsed time TEon gradually decreases. Next, when the voltage corresponding to the turn-on elapsed time TEon reaches an initial value (for example, 0 V), the pulse control unit 312 of the turn-on period adjusting unit 302 outputs a control pulse P302. In the switching control unit 303, the selection unit 313 selects the control pulse P302 as the turn-on pulse P303. That is, the switching control unit 303 turns on the switching element SW based on the turn-on period T corresponding to the discontinuous mode.
  〔時間割合と電流割合との対応関係〕
 次に、ターンオン周期Tを電流連続時間TDon(スイッチング素子SWのターンオンから非連続状態検出部301による検出までの経過時間)で除算して得られる時間割合(T/TDon)と、瞬時電流値iDETを目標電流値iTGで除算して得られる電流割合(iDET/iTG)との対応関係について説明する。
[Correspondence between time ratio and current ratio]
Next, the time ratio (T / TDon) obtained by dividing the turn-on period T by the current continuous time TDon (the elapsed time from the turn-on of the switching element SW to the detection by the discontinuous state detection unit 301) and the instantaneous current value iDET The correspondence relationship with the current ratio (iDET / iTG) obtained by dividing the current by the target current value iTG will be described.
 ターンオン周期調整部302のターンオン経過時間検出部311において、電流源CS2の電流値を“iCHG”とし、電流源CS3の電流値を“iDCH”とすると、電流源CS3の電流値は、次の式が成立するように調整される。 In the turn-on elapsed time detector 311 of the turn-on period adjuster 302, if the current value of the current source CS2 is “iCHG” and the current value of the current source CS3 is “iDCH”, the current value of the current source CS3 is Is adjusted to hold.
       iDCH=iCHG×iTG/(iDET-iTG)
  iDCH/iCHG=iTG/(iDET-iTG) … [式1]
 ターンオン経過時間TEonに対応する電圧は、電流連続時間TDonでは、電流源CS2の電流値(充電電流値)に応じて徐々に上昇し、電流連続時間TDonの経過後では、電流源CS3の電流値(放電電流値)に応じて徐々に降下する。したがって、次式のように表現できる。
iDCH = iCHG × iTG / (iDET-iTG)
iDCH / iCHG = iTG / (iDET-iTG) [Formula 1]
The voltage corresponding to the turn-on elapsed time TEon gradually increases according to the current value (charging current value) of the current source CS2 in the current continuous time TDon, and after the current continuous time TDon has elapsed, the current value of the current source CS3. Decreases gradually according to (discharge current value). Therefore, it can be expressed as:
      TDon×iCHG=(T-TDon)×iDCH
  (T-TDon)/TDon=iCHG/iDCH … [式2]
 [式2]に[式1]を代入すると、次の式のようになる。
TDon x iCHG = (T-TDon) x iDCH
(T-TDon) / TDon = iCHG / iDCH [Equation 2]
Substituting [Expression 1] into [Expression 2] yields the following expression.
  (T-TDon)/TDon=(iDET-iTG)/iTG
       T/TDon-1=iDET/iTG-1
         T/TDon=iDET/iTG … [式3]
 [式3]のように、ターンオン周期Tを電流連続時間TDonで除算して得られる時間割合(T/TDon)が瞬時電流値iDETを目標電流値iTGで除算して得られる電流割合(iDET/iTG)に近づくように、ターンオン周期Tが調整されたことになる。
(T-TDon) / TDon = (iDET-iTG) / iTG
T / TDon-1 = iDET / iTG-1
T / TDon = iDET / iTG [Formula 3]
As in [Equation 3], a time ratio (T / TDon) obtained by dividing the turn-on period T by the current continuous time TDon is a current ratio (iDET / D) obtained by dividing the instantaneous current value iDET by the target current value iTG. The turn-on period T is adjusted so as to approach iTG).
 以上のように、インダクタ電流iLの時間変化勾配のばらつきに対してスイッチング電流の瞬時電流値iDETを変動させにくくすることができるので、インダクタ電流iLの時間変化勾配のばらつきに起因するインダクタ電流の平均電流値iAVEの変動を抑制できる。また、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりも、インダクタ電流の平均電流値iAVEを高くすることができるとともに、スイッチング素子SWにおける電力損失を低減できる。 As described above, since the instantaneous current value iDET of the switching current can be made difficult to fluctuate with respect to the variation in the time variation gradient of the inductor current iL, the average of the inductor current caused by the variation in the time variation gradient of the inductor current iL. Variations in the current value iAVE can be suppressed. Further, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode. .
 さらに、インダクタ電流の平均電流値iAVEをフィードバック制御するためにインダクタ電流iL(または、負荷電流iRD)を検出しなくても良いので、インダクタ電流iL(または、負荷電流iRD)の検出結果に基づいてスイッチング素子SWのオン/オフを制御する場合よりも、降圧チョッパ装置における電力損失を低減できる。 Furthermore, since it is not necessary to detect the inductor current iL (or load current iRD) in order to perform feedback control of the average current value iAVE of the inductor current, it is based on the detection result of the inductor current iL (or load current iRD). The power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element SW is controlled.
 また、臨界モードおよび連続モードだけでなく非連続モードにおいてもインダクタ電流の平均電流値iAVEを所望値に維持できる。 Further, the average current value iAVE of the inductor current can be maintained at a desired value not only in the critical mode and the continuous mode but also in the discontinuous mode.
 (実施形態3の変形例)
 図19は、実施形態3の変形例による降圧チョッパ装置3aの構成例を示す。降圧チョッパ装置3aは、図13に示した制御回路31に代えて、制御回路31aを備える。制御回路31aは、図13に示したオン継続時間設定部104,ターンオン周期調整部302,およびスイッチング制御部303に代えて、最高電流値設定部204,ターンオン周期調整部302a,およびスイッチング制御部303aを含む。その他の構成は、図13と同様である。図20のように、ターンオン周期調整部302aは、図15に示したターンオン周期調整部302の構成例に加えて、図8に示したターンオン経過時間検出部111およびオン継続時間検出部211を含む。図21のように、スイッチング制御部303aは、図16に示した比較器116に代えて、図9に示した比較器216を含む。その他の構成は、図16と同様である。このように構成した場合も、臨界モードおよび連続モードだけでなく非連続モードにおいてもインダクタ電流の平均電流値を所望値に維持できる。
(Modification of Embodiment 3)
FIG. 19 shows a configuration example of a step-down chopper device 3a according to a modification of the third embodiment. The step-down chopper device 3a includes a control circuit 31a instead of the control circuit 31 shown in FIG. The control circuit 31a replaces the ON duration setting unit 104, the turn-on cycle adjusting unit 302, and the switching control unit 303 shown in FIG. 13 with a maximum current value setting unit 204, a turn-on cycle adjusting unit 302a, and a switching control unit 303a. including. Other configurations are the same as those in FIG. As shown in FIG. 20, the turn-on cycle adjusting unit 302a includes a turn-on elapsed time detecting unit 111 and an on-duration detecting unit 211 shown in FIG. 8 in addition to the configuration example of the turn-on cycle adjusting unit 302 shown in FIG. . As shown in FIG. 21, the switching control unit 303a includes a comparator 216 shown in FIG. 9 instead of the comparator 116 shown in FIG. Other configurations are the same as those in FIG. Even in such a configuration, the average current value of the inductor current can be maintained at a desired value not only in the critical mode and the continuous mode but also in the discontinuous mode.
 (周期制御部の変形例)
 なお、ターンオン周期調整部103,203,303,303aは、周期制御部114に代えて、図22に示した周期制御部114aを含んでいても良い。周期制御部114aは、図2に示した周期制御部114の構成例に加えて、サンプル/ホールド回路SH2と、差動増幅器AMP2とを含む。サンプル/ホールド回路SH2は、タイミング信号TMGの立ち下がりエッジに同期して、周期制御電圧CNT(比較器CMP2の出力信号)をサンプリングして周期制御電圧CNTpとしてホールドする。差動増幅器AMP2は、周期制御電圧CNT(すなわち、今回の周期制御電圧)と周期制御電圧CNTp(すなわち、前回の周期制御電圧)の差分に応じて周期制御電圧CNTaを上昇または降下させる。例えば、周期制御電圧CNTが周期制御電圧CNTpよりも高くなるほど、周期制御電圧CNTaが高くなる。このように、周期制御部は、誤差増幅型であっても良いし、ステートマシーン型であっても良い。
(Modification of cycle control unit)
Note that the turn-on cycle adjusting units 103, 203, 303, and 303a may include the cycle control unit 114a illustrated in FIG. 22 instead of the cycle control unit 114. The cycle control unit 114a includes a sample / hold circuit SH2 and a differential amplifier AMP2 in addition to the configuration example of the cycle control unit 114 shown in FIG. The sample / hold circuit SH2 samples the cycle control voltage CNT (output signal of the comparator CMP2) in synchronization with the falling edge of the timing signal TMG and holds it as the cycle control voltage CNTp. The differential amplifier AMP2 increases or decreases the cycle control voltage CNTa according to the difference between the cycle control voltage CNT (ie, the current cycle control voltage) and the cycle control voltage CNTp (ie, the previous cycle control voltage). For example, as the cycle control voltage CNT becomes higher than the cycle control voltage CNTp, the cycle control voltage CNTa increases. Thus, the cycle control unit may be an error amplification type or a state machine type.
 (非連続状態検出部の変形例)
 また、制御回路31,31aは、非連続状態検出部301に代えて、図23に示した非連続状態検出部301aを含んでいても良い。非連続状態検出部301aは、抵抗素子R2と、差動増幅器AMP3と、比較器CMP4とを含んでいても良い。抵抗素子R2は、中間ノードN1とインダクタL1との間の電流経路に挿入される。差動増幅器AMP3は、抵抗素子R2の両端電圧V4,V5の差分に対応する出力電圧を出力する。比較器CMP4は、差動増幅器AMP3の出力電圧と基準電圧REF0とを比較する。ここでは、基準電圧REF0は、差動増幅器AMP3の出力電圧が0V以下であるのかを判別するための電圧(例えば、0V近傍の電圧)であり、抵抗素子R2の一端電圧V4が抵抗素子R2の他端電圧V5よりも低い場合および抵抗素子R2の一端電圧V4および他端電圧V5が互いに等しい場合には、比較器CMP4の出力信号(非連続検出信号S301a)の信号レベルはローレベルになり、抵抗素子R2の一端電圧V4が抵抗素子R2の他端電圧V5よりも高い場合には、比較器CMP4の出力信号の信号レベルはハイレベルになる。
(Modification of discontinuous state detection unit)
Further, the control circuits 31 and 31a may include the discontinuous state detection unit 301a illustrated in FIG. 23 instead of the discontinuous state detection unit 301. The discontinuous state detection unit 301a may include a resistance element R2, a differential amplifier AMP3, and a comparator CMP4. Resistance element R2 is inserted in the current path between intermediate node N1 and inductor L1. The differential amplifier AMP3 outputs an output voltage corresponding to the difference between the both-end voltages V4 and V5 of the resistance element R2. The comparator CMP4 compares the output voltage of the differential amplifier AMP3 with the reference voltage REF0. Here, the reference voltage REF0 is a voltage for determining whether the output voltage of the differential amplifier AMP3 is 0 V or less (for example, a voltage in the vicinity of 0 V), and the one-end voltage V4 of the resistance element R2 is the voltage of the resistance element R2. When the voltage at the other end is lower than V5, and when the one end voltage V4 and the other end voltage V5 of the resistance element R2 are equal to each other, the signal level of the output signal of the comparator CMP4 (discontinuous detection signal S301a) becomes a low level. When the one end voltage V4 of the resistance element R2 is higher than the other end voltage V5 of the resistance element R2, the signal level of the output signal of the comparator CMP4 becomes a high level.
 スイッチング制御信号SWGの信号レベルがローレベルである場合(スイッチング素子SWがオフ状態である場合)、インダクタL1,負荷素子RD,および還流ダイオードD1によって構成される閉回路経路には、還流電流がインダクタ電流iLとして流れることになる。この場合、抵抗素子R2の一方電圧V4は、抵抗素子R2の他端電圧V5よりも高くなる。したがって、比較器CMP4は、非連続検出信号S301aの信号レベルをハイレベルのまま維持する。ここで、還流電流の電流値が所定の電流値(例えば、0V)に到達すると、抵抗素子R2の一端電圧V4および他端電圧V5が互いに等しくなる。これにより、比較器CMP3は、非連続検出信号S301aの信号レベルをハイレベルからローレベルへ変化させる。すなわち、非連続状態が発生すると、非連続検出信号S301aの信号レベルがハイレベルからローレベルへ変化する。このように、非連続状態検出部は、中間ノードN1とインダクタL1との間に挿入された抵抗素子R2の両端電圧に基づいて、非連続状態が発生したことを検出しても良い。 When the signal level of the switching control signal SWG is low (when the switching element SW is in an off state), the return current is applied to the closed circuit path constituted by the inductor L1, the load element RD, and the return diode D1. It will flow as current iL. In this case, the one voltage V4 of the resistance element R2 is higher than the other end voltage V5 of the resistance element R2. Therefore, the comparator CMP4 maintains the signal level of the discontinuous detection signal S301a at a high level. Here, when the current value of the return current reaches a predetermined current value (for example, 0 V), the one end voltage V4 and the other end voltage V5 of the resistance element R2 become equal to each other. Thereby, the comparator CMP3 changes the signal level of the discontinuous detection signal S301a from the high level to the low level. That is, when a discontinuous state occurs, the signal level of the discontinuous detection signal S301a changes from a high level to a low level. As described above, the discontinuous state detection unit may detect that a discontinuous state has occurred based on the voltage between both ends of the resistance element R2 inserted between the intermediate node N1 and the inductor L1.
 (実施形態4)
 図24は、実施形態4による降圧チョッパ装置4の構成例を示す。降圧チョッパ装置4は、図1に示した制御回路11に代えて、制御回路41を備える。その他の構成は、図1と同様であっても良い。制御回路41は、スイッチング素子SWがターンオンしてからスイッチング電流iSWの電流値が目標電流値iTGに到達するまでの到達時間がスイッチング素子SWのターンオンからターンオフまでの継続時間に対して第1の時間割合(1/a)になるように、スイッチング素子SWのターンオンからターンオフまでの継続時間を制御する。制御回路41は、スイッチング電流検出部101と、目標電流値設定部105と、オン継続時間調整部401と、スイッチング制御部402とを含んでいても良い。
(Embodiment 4)
FIG. 24 shows a configuration example of the step-down chopper device 4 according to the fourth embodiment. The step-down chopper device 4 includes a control circuit 41 instead of the control circuit 11 shown in FIG. Other configurations may be the same as those in FIG. The control circuit 41 has a first time with respect to the duration from when the switching element SW is turned on to when the switching element SW is turned on until the current value of the switching current iSW reaches the target current value iTG. The duration from the turn-on to the turn-off of the switching element SW is controlled so that the ratio (1 / a) is obtained. The control circuit 41 may include a switching current detection unit 101, a target current value setting unit 105, an ON duration adjustment unit 401, and a switching control unit 402.
   《オン継続時間調整部》
 オン継続時間調整部401は、スイッチング素子SWがターンオンしてからスイッチング電流検出部101によって検出されたスイッチング電流iSWの電流値(スイッチング電流値idSW)が目標電流値設定部105によって設定された目標電流値iTGに到達するまでの到達時間がスイッチング素子SWのターンオンからターンオフまでの継続時間を規定するオン継続時間TConに対して第1の時間割合(1/a)になるように、オン継続時間TConを調整する。
《On duration adjustment unit》
The ON duration adjustment unit 401 is a target current in which the current value (switching current value idSW) of the switching current iSW detected by the switching current detection unit 101 after the switching element SW is turned on is set by the target current value setting unit 105. The ON duration TCon so that the arrival time until reaching the value iTG is the first time ratio (1 / a) with respect to the ON duration TCon that defines the duration from the turn-on to the turn-off of the switching element SW. Adjust.
   《スイッチング制御部》
 スイッチング制御部402は、予め定められた所定のターンオン周期に基づいて、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させることによってスイッチング素子SWをターンオンする。また、スイッチング制御部402は、スイッチング素子SWがターンオンした後に、オン継続時間調整部401によって調整されたオン継続時間TConが経過したときに、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させることによってスイッチング素子SWをターンオフする。
《Switching control unit》
The switching control unit 402 turns on the switching element SW by changing the signal level of the switching control signal SWG from the low level to the high level based on a predetermined turn-on cycle determined in advance. Further, the switching control unit 402 changes the signal level of the switching control signal SWG from the high level to the low level when the ON duration time TCon adjusted by the ON duration duration adjustment unit 401 elapses after the switching element SW is turned on. By changing, the switching element SW is turned off.
  〔オン継続時間調整部の構成例〕
 図25のように、オン継続時間調整部401は、オン到達時間検出部411と、オン継続時間設定部412とを含んでいても良い。
[Configuration example of ON duration adjustment unit]
As shown in FIG. 25, the ON duration adjustment unit 401 may include an ON arrival time detection unit 411 and an ON duration setting unit 412.
   《オン到達時間検出部》
 オン到達時間検出部411は、スイッチング素子SWがターンオンしてからスイッチング電流値idSWが目標電流値iTGに到達するまでの到達時間に相当するオン到達時間TRon(ここでは、オン到達時間TRonに対応する電圧)を検出する。オン到達時間TRonが長くなるほど、オン到達時間TRonに対応する電圧のハイレベル時間が長くなる。例えば、オン到達時間検出部411は、パルス発生器PG21と、比較器CMP21と、SRラッチSR21とを含んでいても良い。
《On arrival time detection unit》
The on-arrival time detector 411 corresponds to an on-arrival time TRon (here, corresponding to the on-arrival time TRon) corresponding to the arrival time from when the switching element SW is turned on until the switching current value idSW reaches the target current value iTG. Voltage). The longer the on-arrival time TRon, the longer the high level time of the voltage corresponding to the on-arrival time TRon. For example, the on arrival time detection unit 411 may include a pulse generator PG21, a comparator CMP21, and an SR latch SR21.
 パルス発生器PG21は、スイッチング制御信号SWGの立ち上がりエッジ(ローレベルからハイレベルへの変化)に同期して、セットパルスを出力する。比較器CMP21は、スイッチング電流値idSWに対応する電圧と目標電流値iTGに対応する電圧とを比較する。ここでは、スイッチング電流値idSWが目標電流値iTGに到達すると、比較器CMP21の出力信号の信号レベルがローレベルからハイレベルへ変化する。SRラッチSR21は、パルス発生器PG21からのセットパルスに応答して、オン到達時間TRonに対応する電圧の電圧レベルをローレベルからハイレベルへ変化させる。また、SRラッチSR21は、比較器CMP21の出力変化(ここでは、立ち上がりエッジ)に応答して、オン到達時間TRonに対応する電圧の電圧レベルをハイレベルからローレベルへ変化させる。 The pulse generator PG21 outputs a set pulse in synchronization with the rising edge (change from low level to high level) of the switching control signal SWG. The comparator CMP21 compares the voltage corresponding to the switching current value idSW with the voltage corresponding to the target current value iTG. Here, when the switching current value idSW reaches the target current value iTG, the signal level of the output signal of the comparator CMP21 changes from the low level to the high level. In response to the set pulse from the pulse generator PG21, the SR latch SR21 changes the voltage level of the voltage corresponding to the ON arrival time TRon from the low level to the high level. In addition, the SR latch SR21 changes the voltage level of the voltage corresponding to the ON arrival time TRon from the high level to the low level in response to the output change (here, the rising edge) of the comparator CMP21.
   《オン継続時間設定部》
 オン継続時間設定部412は、オン継続時間TConがオン到達時間検出部411によって検出されたオン到達時間TRonに第1の時間割合(1/a)の逆数を乗算して得られる時間(すなわち、オン到達時間TRonのa倍)になるように、オン到達時間TRonに基づいてオン継続時間TCon(ここでは、オン継続時間TConに対応する電圧)を設定する。オン継続時間TConが長くなるほど、オン継続時間TConに対応する電圧の変動時間(上昇時間と降下時間との合計時間)が長くなる。例えば、オン継続時間設定部412は、キャパシタC21と、電流源CS21,CS22と、スイッチング素子SW21,SW22と、インバータINV21とを含んでいても良い。
<ON duration setting section>
The ON duration setting unit 412 is a time obtained by multiplying the ON arrival time TRon detected by the ON arrival time detection unit 411 by the reciprocal of the first time ratio (1 / a) (that is, the ON duration time TCon). The ON duration time TCon (here, the voltage corresponding to the ON duration time TCon) is set based on the ON arrival time TRon so as to be the on arrival time TRon. The longer the ON duration time TCon, the longer the voltage fluctuation time corresponding to the ON duration time TCon (the total time of the rise time and the fall time). For example, the ON duration setting unit 412 may include a capacitor C21, current sources CS21 and CS22, switching elements SW21 and SW22, and an inverter INV21.
 キャパシタC21の一端は、接地ノードに接続される。電流源CS21およびスイッチング素子SW21は、電源ノードとキャパシタC21の他端との間に直列に接続される。電流源CS22およびスイッチング素子SW22は、キャパシタC21の他端と接地ノードとの間に直列に接続される。インバータINV21は、オン到達時間TRonに対応する電圧を反転させる。スイッチング素子SW21,SW22は、それぞれ、オン到達時間TRonに対応する電圧およびインバータINV21の出力信号に応答して、オン/オフを切り替える。 One end of the capacitor C21 is connected to the ground node. Current source CS21 and switching element SW21 are connected in series between the power supply node and the other end of capacitor C21. Current source CS22 and switching element SW22 are connected in series between the other end of capacitor C21 and the ground node. The inverter INV21 inverts the voltage corresponding to the on arrival time TRon. Switching elements SW21 and SW22 are turned on / off in response to the voltage corresponding to on-arrival time TRon and the output signal of inverter INV21, respectively.
 オン到達時間TRonに対応する電圧の電圧レベルがローレベルからハイレベルへ変化すると、スイッチング素子SW21がターンオンするとともにスイッチング素子SW22がターンオフする。これにより、電流源CS21によるキャパシタC21の充電が開始され、キャパシタC21の電圧(オン継続時間TConに対応する電圧)が徐々に上昇する。次に、オン到達時間TRonに対応する電圧の電圧レベルがハイレベルからローレベルへ変化すると、スイッチング素子SW21がターンオフするとともにスイッチング素子SW22がターンオンする。これにより、電流源CS22によるキャパシタC21の放電が開始され、キャパシタC21の電圧が徐々に降下する。ここでは、電流源CS21の電流値(充電電流値)と電流源CS22の電流値(放電電流値)との電流比は、オン継続時間TConがオン到達時間TRonのa倍になるように設定されている。例えば、第1の時間割合(1/a)が“1/2”である場合、電流源CS21と電流源CS22との電流比は“1:1”である。 When the voltage level of the voltage corresponding to the ON arrival time TRon changes from the low level to the high level, the switching element SW21 is turned on and the switching element SW22 is turned off. Thereby, charging of the capacitor C21 by the current source CS21 is started, and the voltage of the capacitor C21 (voltage corresponding to the ON duration TCon) gradually increases. Next, when the voltage level of the voltage corresponding to the ON arrival time TRon changes from the high level to the low level, the switching element SW21 is turned off and the switching element SW22 is turned on. Thereby, discharging of the capacitor C21 by the current source CS22 is started, and the voltage of the capacitor C21 gradually decreases. Here, the current ratio between the current value of the current source CS21 (charge current value) and the current value of the current source CS22 (discharge current value) is set so that the ON duration TCon is a times the ON arrival time TRon. ing. For example, when the first time ratio (1 / a) is “1/2”, the current ratio between the current source CS21 and the current source CS22 is “1: 1”.
  〔スイッチング制御部の構成例〕
 図26のように、スイッチング制御部402は、比較器413と、パルス発生器414と、パルス発生器415と、SRラッチ416とを含んでいても良い。
[Configuration example of switching control unit]
As shown in FIG. 26, the switching control unit 402 may include a comparator 413, a pulse generator 414, a pulse generator 415, and an SR latch 416.
 比較器413は、オン継続時間TConに対応する電圧と基準電圧REFonとを比較する。ここでは、基準電圧REFonは、オン継続時間TConに対応する電圧の上昇開始および降下終了を判別するための電圧(例えば、0V近傍の電圧)であり、オン継続時間TConに対応する電圧が上昇した後に降下して基準電圧REFonに到達すると(すなわち、スイッチング素子SWがターンオンした後に、オン継続時間TConが経過すると)、比較器413の出力信号の信号レベルがハイレベルからローレベルへ変化する。パルス発生器414は、比較器413の出力変化(ここでは、立ち下がりエッジ)に同期して、ターンオフパルスPoffを出力する。すなわち、パルス発生器414は、スイッチング素子SWがターンオンした後にオン継続時間TConが経過したときに、ターンオフパルスPoffを出力する。 The comparator 413 compares the voltage corresponding to the ON duration time TCon with the reference voltage REFon. Here, the reference voltage REFon is a voltage (for example, a voltage in the vicinity of 0V) for determining the rise start and fall end of the voltage corresponding to the ON duration time TCon, and the voltage corresponding to the ON duration time TCon has increased. When the voltage drops later and reaches the reference voltage REFon (that is, when the ON duration TCon elapses after the switching element SW is turned on), the signal level of the output signal of the comparator 413 changes from the high level to the low level. The pulse generator 414 outputs a turn-off pulse Poff in synchronization with the output change (here, falling edge) of the comparator 413. That is, the pulse generator 414 outputs the turn-off pulse Poff when the ON duration TCon elapses after the switching element SW is turned on.
 パルス発生器415は、予め定められた周期でターンオンパルスPonを出力する。SRラッチ416は、パルス発生器415からのターンオンパルスPonに応答して、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させる。また、SRラッチ416は、パルス発生器414からのターンオフパルスPoffに応答して、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させる。 The pulse generator 415 outputs a turn-on pulse Pon at a predetermined cycle. The SR latch 416 changes the signal level of the switching control signal SWG from the low level to the high level in response to the turn-on pulse Pon from the pulse generator 415. The SR latch 416 changes the signal level of the switching control signal SWG from the high level to the low level in response to the turn-off pulse Poff from the pulse generator 414.
  〔動作〕
 次に、図27を参照して、降圧チョッパ装置4による動作について説明する。ここでは、第1の時間割合(1/a)は、“1/2”であるものとする。
[Operation]
Next, the operation of the step-down chopper device 4 will be described with reference to FIG. Here, it is assumed that the first time ratio (1 / a) is “1/2”.
 まず、スイッチング制御部402において、パルス発生器415が第n回目のターンオンパルスPonを出力すると、SRラッチ416は、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させる。これにより、スイッチング素子SWがターンオンし、インダクタ電流iL(スイッチング電流値idSW)が徐々に上昇する。また、オン継続時間調整部401において、オン到達時間検出部411は、オン到達時間TRonに対応する電圧の電圧レベルをローレベルからハイレベルへ変化させ、オン継続時間設定部412は、オン継続時間TConに対応する電圧を徐々に上昇させる。 First, in the switching control unit 402, when the pulse generator 415 outputs the n-th turn-on pulse Pon, the SR latch 416 changes the signal level of the switching control signal SWG from the low level to the high level. As a result, the switching element SW is turned on, and the inductor current iL (switching current value idSW) gradually increases. In the ON duration adjustment unit 401, the ON arrival time detection unit 411 changes the voltage level of the voltage corresponding to the ON arrival time TRon from a low level to a high level, and the ON duration setting unit 412 The voltage corresponding to TCon is gradually increased.
 次に、スイッチング電流値idSWが目標電流値iTGに到達すると、オン継続時間調整部401において、オン到達時間検出部411は、オン到達時間TRonに対応する電圧の電圧レベルをハイレベルからローレベルへ変化させる。これにより、オン継続時間設定部412は、オン継続時間TConに対応する電圧を徐々に降下させる。 Next, when the switching current value idSW reaches the target current value iTG, in the ON duration adjustment unit 401, the ON arrival time detection unit 411 changes the voltage level of the voltage corresponding to the ON arrival time TRon from the high level to the low level. Change. Thereby, the ON duration setting unit 412 gradually decreases the voltage corresponding to the ON duration TCon.
 次に、オン継続時間TConに対応する電圧が基準電圧REFonに到達すると、スイッチング素子SWがターンオンしてからオン継続時間TConが経過したことになる。このとき、パルス発生器414は、第n回目のターンオフパルスPoffを出力する。これにより、スイッチング素子SWがターンオフし、インダクタ電流iLが徐々に降下する。 Next, when the voltage corresponding to the on duration TCon reaches the reference voltage REFon, the on duration TCon has elapsed since the switching element SW is turned on. At this time, the pulse generator 414 outputs the nth turn-off pulse Poff. As a result, the switching element SW is turned off, and the inductor current iL gradually decreases.
 次に、第n回目のターンオンパルスPonの発生からターンオン周期T(予め定められたターンオン周期)が経過すると、スイッチング制御部402において、パルス発生器415は、第n+1回目のターンオンパルスPonを出力する。 Next, when a turn-on period T (predetermined turn-on period) has elapsed since the generation of the n-th turn-on pulse Pon, the pulse generator 415 outputs the (n + 1) -th turn-on pulse Pon in the switching control unit 402. .
  〔オン継続時間の調整〕
 オン継続時間TConは、スイッチング素子SWがターンオンしてからスイッチング電流iSWの電流値が目標電流値iTGに到達するまでの到達時間(オン到達時間TRon)がスイッチング素子SWのターンオンからターンオフまでの継続時間(オン継続時間TCon)に対して第1の時間割合(1/a)になるように調整される。例えば、図28のように、インダクタ電流iL(スイッチング電流iSW)の上昇勾配が図27の場合よりも急峻になった場合(例えば、入力電圧Vinが高くなった場合)や、図29のように、インダクタ電流iLの降下勾配が図27の場合よりも急峻になった場合(例えば、負荷素子RDの端子間電圧が高くなった場合)でも、スイッチング素子SWがターンオンしてからスイッチング電流iSWの電流値が目標電流値iTGに到達するまでの到達時間がスイッチング素子SWのターンオンからターンオフまでの継続時間Tonに対して第1の時間割合(1/a)となるように、スイッチング素子SWのターンオンからターンオフまでの継続時間Tonが調整される。
[Adjustment of ON duration]
The ON duration TCon is the duration from when the switching element SW is turned on until the current value of the switching current iSW reaches the target current value iTG (ON arrival time TRon). It is adjusted so as to be the first time ratio (1 / a) with respect to (ON duration TCon). For example, as shown in FIG. 28, when the rising gradient of the inductor current iL (switching current iSW) becomes steeper than in the case of FIG. 27 (for example, when the input voltage Vin becomes high), as shown in FIG. Even when the descending gradient of the inductor current iL becomes steeper than in the case of FIG. 27 (for example, when the voltage between the terminals of the load element RD becomes high), the current of the switching current iSW after the switching element SW is turned on. From the turn-on of the switching element SW so that the arrival time until the value reaches the target current value iTG is the first time ratio (1 / a) with respect to the duration Ton from the turn-on of the switching element SW to the turn-off. The duration Ton until turn-off is adjusted.
 このように、オン到達時間TRonがオン継続時間TConに対して第1の時間割合(1/a)になるようにオン継続時間TConを調整することにより、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間に対して第1の時間割合(1/a)になるときのスイッチング電流iSWの電流値を目標電流値iTGに近づけたことになる。これにより、インダクタ電流の平均電流値iAVEを所望値に近づけることができる。 Thus, by adjusting the ON duration time TCon so that the ON arrival time TRon becomes the first time ratio (1 / a) with respect to the ON duration time TCon, the elapsed time from the turn-on of the switching element SW is set. That is, the current value of the switching current iSW at the first time ratio (1 / a) with respect to the duration from the turn-on to the turn-off of the switching element SW is brought close to the target current value iTG. Thereby, the average current value iAVE of the inductor current can be brought close to a desired value.
  〔インダクタ電流の時間変化勾配のばらつき〕
 ここで、図27,図28,図29より、インダクタ電流iLの時間変化勾配が変動したとしても、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間Tonに対して“1/2”になるとき、インダクタ電流iL(スイッチング電流iSW)の電流値は、インダクタ電流の平均電流値iAVEになることがわかる。また、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間Tonの1/2に近いほど、その経過時間におけるインダクタ電流iL(スイッチング電流iSW)の電流値が、インダクタ電流iLの時間変化勾配のばらつきに対して変動しにくくなる。すなわち、第1の時間割合(1/a)が“1/2”に近くなるほど、インダクタ電流iLの時間変化勾配のばらつきに対して、インダクタ電流の平均電流値iAVEが変動しにくくなる。
[Variation of time gradient of inductor current]
Here, from FIG. 27, FIG. 28, and FIG. 29, even if the time change gradient of the inductor current iL fluctuates, the elapsed time from the turn-on of the switching element SW to the duration Ton from the turn-on to the turn-off of the switching element SW. When the current becomes “½”, the current value of the inductor current iL (switching current iSW) becomes the average current value iAVE of the inductor current. Further, as the elapsed time from the turn-on of the switching element SW approaches ½ of the duration Ton from the turn-on to the turn-off of the switching element SW, the current value of the inductor current iL (switching current iSW) at the elapsed time becomes the inductor value. It becomes difficult for the current iL to fluctuate with respect to the variation of the time change gradient. That is, as the first time ratio (1 / a) is closer to “1/2”, the average current value iAVE of the inductor current is less likely to vary with respect to the variation in the time change gradient of the inductor current iL.
 以上のように、インダクタ電流iLの時間変化勾配のばらつきに起因するインダクタ電流の平均電流値iAVEの変動を抑制できる。また、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりも、インダクタ電流の平均電流値iAVEを高くすることができるとともに、スイッチング素子SWにおける電力損失を低減できる。 As described above, it is possible to suppress fluctuations in the average current value iAVE of the inductor current due to variations in the time change gradient of the inductor current iL. Further, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode. .
 さらに、インダクタ電流の平均電流値iAVEをフィードバック制御するためにインダクタ電流iL(または、負荷電流iRD)を検出しなくても良いので、インダクタ電流iL(または、負荷電流iRD)の検出結果に基づいてスイッチング素子SWのオン/オフを制御する場合よりも、降圧チョッパ装置における電力損失を低減できる。 Furthermore, since it is not necessary to detect the inductor current iL (or load current iRD) in order to perform feedback control of the average current value iAVE of the inductor current, it is based on the detection result of the inductor current iL (or load current iRD). The power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element SW is controlled.
 (実施形態5)
 図30は、実施形態5による降圧チョッパ装置5の構成例を示す。降圧チョッパ装置5は、図24に示した制御回路41に代えて制御回路51を備える。制御回路51は、図24に示したスイッチング制御部402に代えて、非連続状態検出部501と、スイッチング制御部502とを含んでいても良い。その他の構成は、図24と同様であっても良い。
(Embodiment 5)
FIG. 30 shows a configuration example of the step-down chopper device 5 according to the fifth embodiment. The step-down chopper device 5 includes a control circuit 51 instead of the control circuit 41 shown in FIG. The control circuit 51 may include a discontinuous state detection unit 501 and a switching control unit 502 instead of the switching control unit 402 shown in FIG. Other configurations may be the same as those in FIG.
   《非連続状態検出部》
 非連続状態検出部501は、非連続状態(スイッチング素子SWのターンオフからターンオンまでの期間中において、第2および第3の電流経路に流れる還流電流の電流値が所定の電流値よりも低くなる状態)が発生したことを検出する。
《Discontinuous state detector》
The discontinuous state detection unit 501 is a discontinuous state (a state in which the current value of the return current flowing through the second and third current paths is lower than a predetermined current value during the period from the turn-off to the turn-on of the switching element SW). ) Is detected.
   《スイッチング制御部》
 スイッチング制御部502は、スイッチング制御部402と同様に、予め定められた所定のターンオン周期に基づいて、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させることによってスイッチング素子SWをターンオンし、スイッチング素子SWがターンオンした後に、オン継続時間調整部401によって調整されたオン継続時間TConが経過したときに、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させることによってスイッチング素子SWをターンオフする。また、スイッチング制御部502は、非連続状態検出部501によって非連続状態が検出されたときに、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させることによってスイッチング素子SWをターンオンする。
《Switching control unit》
Similar to the switching control unit 402, the switching control unit 502 turns on the switching element SW by changing the signal level of the switching control signal SWG from the low level to the high level based on a predetermined turn-on cycle. After the switching element SW is turned on, the switching control signal SWG is changed from the high level to the low level when the ON duration time TCon adjusted by the ON duration adjustment unit 401 elapses, thereby switching the switching element SW. To turn off. In addition, when the discontinuous state is detected by the discontinuous state detecting unit 501, the switching control unit 502 turns on the switching element SW by changing the signal level of the switching control signal SWG from the low level to the high level.
  〔非連続状態検出部の構成例〕
 図31のように、非連続状態検出部501は、図14に示した比較器CMP3および論理回路LGC1に加えて、インバータINV23を含んでいても良い。インバータINV23は、論理回路LGC1の出力信号(非連続検出信号S301に相当)を反転させて制御パルスP501として出力する。
[Configuration example of non-continuous state detector]
As illustrated in FIG. 31, the discontinuous state detection unit 501 may include an inverter INV23 in addition to the comparator CMP3 and the logic circuit LGC1 illustrated in FIG. The inverter INV23 inverts the output signal of the logic circuit LGC1 (corresponding to the discontinuous detection signal S301) and outputs it as a control pulse P501.
 スイッチング制御信号SWGの信号レベルがローレベルである場合、論理回路LGC1の出力信号の信号レベルがハイレベルのまま維持されるので、インバータINV23の出力信号の信号レベルは、ローレベルのまま維持される(すなわち、制御パルスP501は発生しない)。ここで、還流電流の電流値が所定の電流値(例えば、0A)に到達すると、論理回路LGC1の出力信号の信号レベルがハイレベルからローレベルへ変化するので、インバータINV23の出力信号の信号レベルは、ローレベルからハイレベルへ変化する(すなわち、制御パルスP501が発生する)。このように、非連続状態が発生すると、制御パルスP501が発生する。 When the signal level of the switching control signal SWG is a low level, the signal level of the output signal of the logic circuit LGC1 is maintained at a high level, so that the signal level of the output signal of the inverter INV23 is maintained at a low level. (In other words, the control pulse P501 is not generated). Here, when the current value of the return current reaches a predetermined current value (for example, 0 A), the signal level of the output signal of the logic circuit LGC1 changes from the high level to the low level, so that the signal level of the output signal of the inverter INV23 Changes from a low level to a high level (that is, the control pulse P501 is generated). Thus, when the discontinuous state occurs, the control pulse P501 is generated.
 なお、非連続状態検出部501は、図31に示した比較器CMP3および論理回路LGC1に代えて、図23に示した抵抗素子R2,差動増幅器AMP3,および比較器CMP4を含んでいても良い。この場合、インバータINV23は、比較器CMP4の出力信号を反転させて制御パルスP501として出力する。 Note that the discontinuous state detection unit 501 may include the resistor element R2, the differential amplifier AMP3, and the comparator CMP4 shown in FIG. 23 instead of the comparator CMP3 and the logic circuit LGC1 shown in FIG. . In this case, the inverter INV23 inverts the output signal of the comparator CMP4 and outputs it as the control pulse P501.
  〔スイッチング制御部の構成例〕
 図32のように、スイッチング制御部502は、図26に示したパルス発生器415に代えて、発振器511と、選択部512とを含んでいても良い。その他の構成は、図26と同様であっても良い。
[Configuration example of switching control unit]
As illustrated in FIG. 32, the switching control unit 502 may include an oscillator 511 and a selection unit 512 instead of the pulse generator 415 illustrated in FIG. 26. Other configurations may be the same as in FIG.
 発振器511は、予め定められたターンオン周期に基づいて、制御パルスP502を周期的に出力する。また、発振器511は、ターンオンパルスP503に同期して、制御パルスP502の周期的な出力を開始する。選択部512は、スイッチング制御信号SWGの信号レベルがローレベルである期間において制御パルスP501が発生すると、制御パルスP501をターンオンパルスP503として選択する。一方、選択部512は、スイッチング制御信号SWGの信号レベルがローレベルである期間において制御パルスP501が発生しなかった場合には、発振器511からの制御パルスP502をターンオンパルスP503として選択する。SRラッチ416は、選択部512からのターンオンパルスP503に応答して、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させる。 The oscillator 511 periodically outputs a control pulse P502 based on a predetermined turn-on cycle. The oscillator 511 starts the periodic output of the control pulse P502 in synchronization with the turn-on pulse P503. The selection unit 512 selects the control pulse P501 as the turn-on pulse P503 when the control pulse P501 is generated in a period in which the signal level of the switching control signal SWG is low. On the other hand, the selection unit 512 selects the control pulse P502 from the oscillator 511 as the turn-on pulse P503 when the control pulse P501 is not generated during the period when the signal level of the switching control signal SWG is low. The SR latch 416 changes the signal level of the switching control signal SWG from the low level to the high level in response to the turn-on pulse P503 from the selection unit 512.
  〔動作〕
 次に、図33および図34を参照して、降圧チョッパ装置5による動作について説明する。ここでは、第1の時間割合(1/a)は、“1/2”であるものとする。
[Operation]
Next, the operation of the step-down chopper device 5 will be described with reference to FIG. 33 and FIG. Here, it is assumed that the first time ratio (1 / a) is “1/2”.
 図33のように、非連続状態が発生しない場合、制御パルスP501が発生しない。したがって、スイッチング制御部502では、選択部512は、発振器511からの制御パルスP502をターンオンパルスP503として選択する。すなわち、スイッチング制御部502は、予め定められたターンオン周期Tに基づいてスイッチング素子SWをターンオンする。 As shown in FIG. 33, when the discontinuous state does not occur, the control pulse P501 does not occur. Therefore, in the switching control unit 502, the selection unit 512 selects the control pulse P502 from the oscillator 511 as the turn-on pulse P503. That is, the switching control unit 502 turns on the switching element SW based on a predetermined turn-on cycle T.
 一方、図34のように、非連続状態が発生した場合、インダクタL1の両端電圧(ノード電圧V1,V2)が互いに等しくなるので、非連続状態検出部501は、制御パルスP501を出力する。スイッチング制御部502では、選択部512は、非連続状態検出部501からの制御パルスP501をターンオンパルスP503として選択する。また、発振器511は、ターンオンパルスP503(この場合、制御パルスP501)に同期して制御パルスP502の周期的な出力を開始し直す。 On the other hand, as shown in FIG. 34, when a discontinuous state occurs, the voltage across the inductor L1 (node voltages V1, V2) becomes equal to each other, and therefore the discontinuous state detection unit 501 outputs a control pulse P501. In the switching control unit 502, the selection unit 512 selects the control pulse P501 from the discontinuous state detection unit 501 as the turn-on pulse P503. The oscillator 511 restarts the periodic output of the control pulse P502 in synchronization with the turn-on pulse P503 (in this case, the control pulse P501).
 以上のように、インダクタ電流iLの時間変化勾配のばらつきに起因するインダクタ電流の平均電流値iAVEの変動を抑制できる。また、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりも、インダクタ電流の平均電流値iAVEを高くすることができるとともにスイッチング素子SWにおける電力損失を低減できる。 As described above, it is possible to suppress fluctuations in the average current value iAVE of the inductor current due to variations in the time change gradient of the inductor current iL. Further, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode.
 さらに、インダクタ電流の平均電流値iAVEをフィードバック制御するためにインダクタ電流iL(または、負荷電流iRD)を検出しなくても良いので、インダクタ電流iL(または、負荷電流iRD)の検出結果に基づいてスイッチング素子SWのオン/オフを制御する場合よりも、降圧チョッパ装置における電力損失を低減できる。 Furthermore, since it is not necessary to detect the inductor current iL (or load current iRD) in order to perform feedback control of the average current value iAVE of the inductor current, it is based on the detection result of the inductor current iL (or load current iRD). The power loss in the step-down chopper device can be reduced as compared with the case where on / off of the switching element SW is controlled.
 また、非連続状態が発生した場合にスイッチング素子SWを強制的にターンオンすることにより、連続モードから非連続モードへ遷移することを防止できる。 Also, when the discontinuous state occurs, the switching element SW is forcibly turned on, so that the transition from the continuous mode to the discontinuous mode can be prevented.
 (実施形態6)
 図35は、実施形態6による降圧チョッパ装置6の構成例を示す。降圧チョッパ装置6は、図24に示した制御回路41に代えて、制御回路61を備える。その他の構成は、図24と同様であっても良い。制御回路61は、図24に示したスイッチング制御部402に代えて、インダクタ電流検出部601と、オフ継続時間調整部602と、スイッチング制御部603とを含んでいても良い。
(Embodiment 6)
FIG. 35 shows a configuration example of the step-down chopper device 6 according to the sixth embodiment. The step-down chopper device 6 includes a control circuit 61 instead of the control circuit 41 shown in FIG. Other configurations may be the same as those in FIG. The control circuit 61 may include an inductor current detection unit 601, an off duration adjustment unit 602, and a switching control unit 603 instead of the switching control unit 402 shown in FIG.
   《インダクタ電流検出部》
 インダクタ電流検出部601は、インダクタL1に流れるインダクタ電流iLの電流値(インダクタ電流値idL)を検出する。ここでは、インダクタ電流検出部601は、インダクタ電流値idLに対応する電圧を検出する。インダクタ電流値idLが高くなるほど、インダクタ電流値idLに対応する電圧が高くなる。
<Inductor current detector>
The inductor current detection unit 601 detects the current value of the inductor current iL flowing through the inductor L1 (inductor current value idL). Here, the inductor current detection unit 601 detects a voltage corresponding to the inductor current value idL. The higher the inductor current value idL, the higher the voltage corresponding to the inductor current value idL.
   《オフ継続時間調整部》
 オフ継続時間調整部602は、スイッチング素子SWがターンオフしてからインダクタ電流検出部601によって検出されたインダクタ電流iLの電流値(インダクタ電流値idL)が目標電流値設定部105によって設定された目標電流値iTGに到達するまでの到達時間がスイッチング素子SWのターンオフからターンオンまでの継続時間を規定するオフ継続時間TCoffに対して第2の時間割合(1/b)になるように、オフ継続時間TCoffを調整する。
《Off duration adjustment unit》
The off duration adjusting unit 602 is a target current in which the current value (inductor current value idL) of the inductor current iL detected by the inductor current detecting unit 601 after the switching element SW is turned off is set by the target current value setting unit 105. The off duration TCoff is such that the arrival time until reaching the value iTG is a second time ratio (1 / b) with respect to the off duration TCoff that defines the duration from the turn-off of the switching element SW to the turn-on. Adjust.
   《スイッチング制御部》
 スイッチング制御部603は、スイッチング素子SWがターンオンした後に、オン継続時間調整部401によって調整されたオン継続時間TConが経過したときに、スイッチング制御信号SWGの信号レベルをハイレベルからローレベルへ変化させることによってスイッチング素子SWをターンオフする。また、スイッチング制御部603は、スイッチング素子SWがターンオフした後に、オフ継続時間調整部602によって調整されたオン継続時間TCoffが経過したときに、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させることによってスイッチング素子SWをターンオンする。
《Switching control unit》
The switching control unit 603 changes the signal level of the switching control signal SWG from the high level to the low level when the ON duration time TCon adjusted by the ON duration duration adjustment unit 401 elapses after the switching element SW is turned on. As a result, the switching element SW is turned off. Further, the switching control unit 603 changes the signal level of the switching control signal SWG from the low level to the high level when the ON duration time TCoff adjusted by the OFF duration adjusting unit 602 has elapsed after the switching element SW is turned off. By changing, the switching element SW is turned on.
  〔オフ継続時間調整部の構成例〕
 図36のように、オフ継続時間調整部602は、オフ到達時間検出部611と、オフ継続時間設定部612とを含んでいても良い。
[Configuration example of off duration adjustment unit]
As illustrated in FIG. 36, the off duration adjustment unit 602 may include an off arrival time detection unit 611 and an off duration setting unit 612.
   《オフ到達時間検出部》
 オフ到達時間検出部611は、スイッチング素子SWがターンオフしてからインダクタ電流流値idLが目標電流値iTGに到達するまでの到達時間に相当するオフ到達時間TRoff(ここでは、オフ到達時間TRoffに対応する電圧)を検出する。オフ到達時間TRoffが長くなるほど、オフ到達時間TRoffに対応する電圧のハイレベル時間が長くなる。例えば、オフ到達時間検出部611は、パルス発生器PG22と、比較器CMP22と、SRラッチSR22とを含んでいても良い。
《Off arrival time detection unit》
The off-arrival time detection unit 611 corresponds to an off-arrival time TRoff corresponding to the arrival time from when the switching element SW is turned off until the inductor current flow value idL reaches the target current value iTG (here, corresponding to the off-arrival time TRoff). Voltage). As the OFF arrival time TRoff increases, the high level time of the voltage corresponding to the OFF arrival time TRoff increases. For example, the off arrival time detection unit 611 may include a pulse generator PG22, a comparator CMP22, and an SR latch SR22.
 パルス発生器PG22は、スイッチング制御信号SWGの立ち下がりエッジ(ハイレベルからローレベルへの変化)に同期して、セットパルスを出力する。比較器CMP22は、インダクタ電流値idLに対応する電圧と目標電流値iTGに対応する電圧とを比較する。ここでは、インダクタ電流値idLが目標電流値iTGに到達すると、比較器CMP22の出力信号の信号レベルがローレベルからハイレベルへ変化する。SRラッチSR22は、パルス発生器PG22からのセットパルスに応答して、オフ到達時間TRoffに対応する電圧の電圧レベルをローレベルからハイレベルへ変化させる。また、SRラッチSR22は、比較器CMP22の出力変化(ここでは、立ち上がりエッジ)に応答して、オフ到達時間TRoffに対応する電圧の電圧レベルをハイレベルからローレベルへ変化させる。 The pulse generator PG22 outputs a set pulse in synchronization with the falling edge (change from high level to low level) of the switching control signal SWG. The comparator CMP22 compares the voltage corresponding to the inductor current value idL with the voltage corresponding to the target current value iTG. Here, when the inductor current value idL reaches the target current value iTG, the signal level of the output signal of the comparator CMP22 changes from the low level to the high level. In response to the set pulse from the pulse generator PG22, the SR latch SR22 changes the voltage level of the voltage corresponding to the OFF arrival time TRoff from the low level to the high level. In addition, the SR latch SR22 changes the voltage level of the voltage corresponding to the OFF arrival time TRoff from the high level to the low level in response to the output change (here, the rising edge) of the comparator CMP22.
   《オフ継続時間設定部》
 オフ継続時間設定部612は、オフ到達時間検出部611によって検出されたオフ到達時間TRoffに第2の時間割合(1/b)の逆数を乗算して得られる時間(すなわち、オフ到達時間TRoffのb倍)になるように、オフ到達時間TRoffに基づいてオフ継続時間TCoff(ここでは、オフ継続時間TCoffに対応する電圧)を設定する。オフ継続時間TCoffが長くなるほど、オフ継続時間TCoffに対応する電圧の変動時間(上昇時間と降下時間との合計時間)が長くなる。例えば、オフ継続時間設定部612は、キャパシタC22と、電流源CS23,CS24と、スイッチング素子SW23,SW24と、インバータINV22とを含んでいても良い。
《Off duration setting section》
The off duration setting unit 612 multiplies the off arrival time TRoff detected by the off arrival time detection unit 611 by the reciprocal of the second time ratio (1 / b) (that is, the off arrival time TRoff). The OFF duration time TCoff (here, the voltage corresponding to the OFF duration time TCoff) is set based on the OFF arrival time TRoff. The longer the OFF duration time TCoff, the longer the voltage fluctuation time corresponding to the OFF duration time TCoff (the total time of the rise time and the fall time). For example, the off duration setting unit 612 may include a capacitor C22, current sources CS23 and CS24, switching elements SW23 and SW24, and an inverter INV22.
 キャパシタC22の一端は、接地ノードに接続される。電流源CS23およびスイッチング素子SW23は、電源ノードとキャパシタC22の他端との間に直列に接続される。電流源CS24およびスイッチング素子SW24は、キャパシタC22の他端と接地ノードとの間に直列に接続される。インバータINV22は、オフ到達時間TRoffに対応する電圧を反転させる。スイッチング素子SW23,SW24は、それぞれ、オフ到達時間TRoffに対応する電圧およびインバータINV22の出力信号に応答して、オン/オフを切り替える。 One end of the capacitor C22 is connected to the ground node. Current source CS23 and switching element SW23 are connected in series between the power supply node and the other end of capacitor C22. Current source CS24 and switching element SW24 are connected in series between the other end of capacitor C22 and the ground node. The inverter INV22 inverts the voltage corresponding to the off arrival time TRoff. The switching elements SW23 and SW24 are turned on / off in response to the voltage corresponding to the off-arrival time TRoff and the output signal of the inverter INV22.
 オフ到達時間TRoffに対応する電圧の電圧レベルがローレベルからハイレベルへ変化すると、スイッチング素子SW23がターンオンするとともにスイッチング素子SW24がターンオフする。これにより、電流源CS23によるキャパシタC22の充電が開始され、キャパシタC22の電圧(オフ継続時間TCoffに対応する電圧)が徐々に上昇する。次に、オフ到達時間TRoffに対応する電圧の電圧レベルがハイレベルからローレベルへ変化すると、スイッチング素子SW23がターンオフするとともにスイッチング素子SW24がターンオンする。これにより、電流源CS24によるキャパシタC22の放電が開始され、キャパシタC22の電圧が徐々に降下する。ここでは、電流源CS23の電流値(充電電流値)と電流源CS24の電流値(放電電流値)との電流比は、オフ継続時間TCoffがオフ到達時間TRoffのb倍になるように設定されている。例えば、第2の時間割合(1/b)が“1/2”である場合、電流源CS23と電流源CS24との電流比は“1:1”である。 When the voltage level of the voltage corresponding to the OFF arrival time TRoff changes from the low level to the high level, the switching element SW23 is turned on and the switching element SW24 is turned off. Thereby, charging of the capacitor C22 by the current source CS23 is started, and the voltage of the capacitor C22 (voltage corresponding to the off duration time TCoff) gradually increases. Next, when the voltage level of the voltage corresponding to the OFF arrival time TRoff changes from the high level to the low level, the switching element SW23 is turned off and the switching element SW24 is turned on. Thereby, discharging of the capacitor C22 by the current source CS24 is started, and the voltage of the capacitor C22 gradually decreases. Here, the current ratio between the current value of the current source CS23 (charge current value) and the current value of the current source CS24 (discharge current value) is set so that the off duration time TCoff is b times the off arrival time TRoff. ing. For example, when the second time ratio (1 / b) is “1/2”, the current ratio between the current source CS23 and the current source CS24 is “1: 1”.
  〔スイッチング制御部の構成例〕
 図37のように、スイッチング制御部603は、図26に示したパルス発生器415に代えて、比較器613と、パルス発生器614とを含んでいても良い。その他の構成は、図26と同様であっても良い。
[Configuration example of switching control unit]
As shown in FIG. 37, the switching control unit 603 may include a comparator 613 and a pulse generator 614 instead of the pulse generator 415 shown in FIG. Other configurations may be the same as in FIG.
 比較器613は、オフ継続時間TCoffに対応する電圧と基準電圧REFoffとを比較する。ここでは、基準電圧REFoffは、オフ継続時間TCoffに対応する電圧の上昇開始および降下終了を判別するための電圧(例えば、0V近傍の電圧)であり、オフ継続時間TCoffに対応する電圧が上昇した後に降下して基準電圧REFoffに到達すると(すなわち、スイッチング素子SWがターンオフした後に、オフ継続時間TCoffが経過すると)、比較器613の出力信号の信号レベルがハイレベルからローレベルへ変化する。パルス発生器614は、比較器613の出力変化(ここでは、立ち下がりエッジ)に同期して、ターンオンパルスPonを出力する。すなわち、パルス発生器614は、スイッチング素子SWがターンオフした後にオフ継続時間TCoffが経過したときに、ターンオンパルスPonを出力する。 The comparator 613 compares the voltage corresponding to the off duration time TCoff with the reference voltage REFoff. Here, the reference voltage REFoff is a voltage (for example, a voltage in the vicinity of 0V) for determining the rise start and fall end of the voltage corresponding to the off duration TCoff, and the voltage corresponding to the off duration TCoff has increased. When the voltage subsequently drops and reaches the reference voltage REFoff (that is, when the OFF duration time TCoff elapses after the switching element SW is turned off), the signal level of the output signal of the comparator 613 changes from the high level to the low level. The pulse generator 614 outputs a turn-on pulse Pon in synchronization with a change in the output of the comparator 613 (here, a falling edge). That is, the pulse generator 614 outputs the turn-on pulse Pon when the OFF duration TCoff elapses after the switching element SW is turned off.
  〔動作〕
 次に、図38を参照して、降圧チョッパ装置6による動作について説明する。ここでは、第1の時間割合(1/a)および第2の時間割合(1/b)は、“1/2”であるものとする。
[Operation]
Next, the operation of the step-down chopper device 6 will be described with reference to FIG. Here, it is assumed that the first time ratio (1 / a) and the second time ratio (1 / b) are “1/2”.
 まず、スイッチング制御部603において、パルス発生器614が第n回目のターンオンパルスPonを出力すると、SRラッチ416は、スイッチング制御信号SWGの信号レベルをローレベルからハイレベルへ変化させる。これにより、スイッチング素子SWがターンオンし、インダクタ電流iL(スイッチング電流値idSW)が徐々に上昇する。また、オン継続時間調整部401において、オン到達時間検出部411は、オン到達時間TRonに対応する電圧の電圧レベルをローレベルからハイレベルへ変化させ、オン継続時間設定部412は、オン継続時間TConに対応する電圧を徐々に上昇させる。 First, in the switching control unit 603, when the pulse generator 614 outputs the n-th turn-on pulse Pon, the SR latch 416 changes the signal level of the switching control signal SWG from the low level to the high level. As a result, the switching element SW is turned on, and the inductor current iL (switching current value idSW) gradually increases. In the ON duration adjustment unit 401, the ON arrival time detection unit 411 changes the voltage level of the voltage corresponding to the ON arrival time TRon from a low level to a high level, and the ON duration setting unit 412 The voltage corresponding to TCon is gradually increased.
 次に、スイッチング電流値idSWが目標電流値iTGに到達すると、オン継続時間調整部401において、オン到達時間検出部411は、オン到達時間TRonに対応する電圧の電圧レベルをハイレベルからローレベルへ変化させる。これにより、オン継続時間設定部412は、オン継続時間TConに対応する電圧を徐々に降下させる。 Next, when the switching current value idSW reaches the target current value iTG, in the ON duration adjustment unit 401, the ON arrival time detection unit 411 changes the voltage level of the voltage corresponding to the ON arrival time TRon from the high level to the low level. Change. Thereby, the ON duration setting unit 412 gradually decreases the voltage corresponding to the ON duration TCon.
 次に、オン継続時間TConに対応する電圧が基準電圧REFonに到達すると、スイッチング素子SWがターンオンしてからオン継続時間TConが経過したことになる。このとき、パルス発生器414は、第n回目のターンオフパルスPoffを出力する。これにより、スイッチング素子SWがターンオフし、インダクタ電流iLが徐々に降下する。また、オフ継続時間調整部602において、オフ到達時間検出部611は、オフ到達時間TRoffに対応する電圧の電圧レベルをローレベルからハイレベルへ変化させ、オフ継続時間設定部612は、オフ継続時間TCoffに対応する電圧を徐々に上昇させる。 Next, when the voltage corresponding to the on duration TCon reaches the reference voltage REFon, the on duration TCon has elapsed since the switching element SW is turned on. At this time, the pulse generator 414 outputs the nth turn-off pulse Poff. As a result, the switching element SW is turned off, and the inductor current iL gradually decreases. Further, in the off duration adjustment unit 602, the off arrival time detection unit 611 changes the voltage level of the voltage corresponding to the off arrival time TRoff from the low level to the high level, and the off duration setting unit 612 The voltage corresponding to TCoff is gradually increased.
 次に、インダクタ電流値idLが目標電流値iTGに到達すると、オフ継続時間調整部602において、オフ到達時間検出部611は、オフ到達時間TRoffに対応する電圧の電圧レベルをハイレベルからローレベルへ変化させる。これにより、オフ継続時間設定部612は、オフ継続時間TCoffに対応する電圧を徐々に降下させる。 Next, when the inductor current value idL reaches the target current value iTG, in the off duration adjustment unit 602, the off arrival time detection unit 611 changes the voltage level of the voltage corresponding to the off arrival time TRoff from the high level to the low level. Change. Thereby, the off duration setting unit 612 gradually decreases the voltage corresponding to the off duration TCoff.
 次に、オン継続時間TCoffに対応する電圧が基準電圧REFoffに到達すると、スイッチング素子SWがターンオフしてからオフ継続時間TCoffが経過したことになる。このとき、パルス発生器614は、第n+1回目のターンオンパルスPonを出力する。 Next, when the voltage corresponding to the ON duration time TCoff reaches the reference voltage REFoff, the OFF duration time TCoff has elapsed since the switching element SW is turned off. At this time, the pulse generator 614 outputs the (n + 1) th turn-on pulse Pon.
  〔オン継続時間の調整〕
 オン継続時間TConは、スイッチング素子SWがターンオンしてからスイッチング電流iSWの電流値が目標電流値iTGに到達するまでの到達時間(オン到達時間TRon)がスイッチング素子SWのターンオンからターンオフまでの継続時間(オン継続時間TCon)に対して第1の時間割合(1/a)になるように調整される。例えば、図39のように、インダクタ電流iL(スイッチング電流iSW)の上昇勾配が図38の場合よりも急峻になった場合(例えば、入力電圧Vinが高くなった場合)でも、スイッチング素子SWがターンオンしてからスイッチング電流iSWの電流値が目標電流値iTGに到達するまでの到達時間がスイッチング素子SWのターンオンからターンオフまでの継続時間Tonに対して第1の時間割合(1/a)となるように、スイッチング素子SWのターンオンからターンオフまでの継続時間Tonが調整される。
[Adjustment of ON duration]
The ON duration TCon is the duration from when the switching element SW is turned on until the current value of the switching current iSW reaches the target current value iTG (ON arrival time TRon). It is adjusted so as to be the first time ratio (1 / a) with respect to (ON duration TCon). For example, as shown in FIG. 39, even when the rising gradient of the inductor current iL (switching current iSW) becomes steeper than in FIG. 38 (for example, when the input voltage Vin becomes high), the switching element SW is turned on. The time until the current value of the switching current iSW reaches the target current value iTG is set to the first time ratio (1 / a) with respect to the duration Ton from the turn-on to the turn-off of the switching element SW. Further, the duration Ton from the turn-on to the turn-off of the switching element SW is adjusted.
 このように、オン到達時間TRonがオン継続時間TConに対して第1の時間割合(1/a)になるようにオン継続時間TConを調整することにより、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間に対して第1の時間割合(1/a)になるときのスイッチング電流iSWの電流値を目標電流値iTGに近づけたことになる。これにより、インダクタ電流の平均電流値iAVEを所望値に近づけることができる。 Thus, by adjusting the ON duration time TCon so that the ON arrival time TRon becomes the first time ratio (1 / a) with respect to the ON duration time TCon, the elapsed time from the turn-on of the switching element SW is set. That is, the current value of the switching current iSW at the first time ratio (1 / a) with respect to the duration from the turn-on to the turn-off of the switching element SW is brought close to the target current value iTG. Thereby, the average current value iAVE of the inductor current can be brought close to a desired value.
  〔オフ継続時間の調整〕
 オフ継続時間TCoffは、スイッチング素子SWがターンオフしてからインダクタ電流iLの電流値が目標電流値iTGに到達するまでの到達時間(オフ到達時間TRoff)がスイッチング素子SWのターンオフからターンオンまでの継続時間(オフ継続時間TCoff)に対して第2の時間割合(1/b)になるように調整される。例えば、図40のように、インダクタ電流iLの降下勾配が図38の場合よりも急峻になった場合(例えば、負荷素子RDの端子間電圧が高くなった場合)でも、スイッチング素子SWがターンオフしてからインダクタ電流iLの電流値が目標電流値iTGに到達するまでの到達時間がスイッチング素子SWのターンオフからターンオンまでの継続時間Toffに対して第2の時間割合(1/b)となるように、スイッチング素子SWのターンオフからターンオンまでの継続時間Toffが調整される。
[Adjustment of OFF duration]
The off duration time TCoff is the duration time from when the switching element SW is turned off until the current value of the inductor current iL reaches the target current value iTG (off arrival time TRoff). It is adjusted to be the second time ratio (1 / b) with respect to (off duration TCoff). For example, as shown in FIG. 40, even when the descending gradient of the inductor current iL is steeper than in FIG. 38 (for example, when the voltage across the terminals of the load element RD is increased), the switching element SW is turned off. The arrival time until the current value of the inductor current iL reaches the target current value iTG is set to the second time ratio (1 / b) with respect to the duration Toff from the turn-off to the turn-on of the switching element SW. The duration Toff from turn-off to turn-on of the switching element SW is adjusted.
 このように、オフ到達時間TRoffがオフ継続時間TCoffに対して第2の時間割合(1/b)になるようにオフ継続時間TCoffを調整することにより、インダクタ電流の平均電流値iAVEを所望値に近づけることができる。 Thus, by adjusting the off duration time TCoff so that the off arrival time TRoff becomes the second time ratio (1 / b) with respect to the off duration time TCoff, the average current value iAVE of the inductor current is set to a desired value. Can be approached.
  〔インダクタ電流の時間変化勾配のばらつき〕
 ここで、図38,図39より、インダクタ電流iLの上昇勾配が変動したとしても、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオフまでの継続時間Tonに対して“1/2”になるとき、インダクタ電流iL(スイッチング電流iSW)の電流値は、インダクタ電流の平均電流値iAVEになることがわかる。また、スイッチング素子SWのターンオンからの経過時間がスイッチング素子SWのターンオンからターンオンオフの継続時間Tonの1/2に近いほど、その経過時間におけるインダクタ電流iL(スイッチング電流iSW)の電流値が、インダクタ電流iLの上昇勾配のばらつきに対して変動しにくくなる。すなわち、第1の時間割合(1/a)が“1/2”に近くなるほど、インダクタ電流iLの上昇勾配のばらつきに対して、インダクタ電流の平均電流値iAVEが変動しにくくなる。
[Variation of time gradient of inductor current]
Here, from FIG. 38 and FIG. 39, even if the rising gradient of the inductor current iL fluctuates, the elapsed time from the turn-on of the switching element SW is “1 /” with respect to the duration Ton from the turn-on to the turn-off of the switching element SW. When 2 ″, the current value of the inductor current iL (switching current iSW) is found to be the average current value iAVE of the inductor current. Further, as the elapsed time from the turn-on of the switching element SW is closer to ½ of the duration Ton from the turn-on of the switching element SW to the turn-on / off, the current value of the inductor current iL (switching current iSW) at that elapsed time becomes the inductor value. It becomes difficult to fluctuate with respect to variations in the rising gradient of the current iL. That is, as the first time ratio (1 / a) is closer to “1/2”, the average current value iAVE of the inductor current is less likely to vary with respect to the variation in the rising gradient of the inductor current iL.
 また、図38,図40より、インダクタ電流iLの降下勾配が変動したとしても、スイッチング素子SWのターンオフからの経過時間がスイッチング素子SWのターンオフからターンオンまでの継続時間Toffに対して“1/2”になるとき、インダクタ電流iLの電流値は、インダクタ電流の平均電流値iAVEになることがわかる。また、スイッチング素子SWのターンオフからの経過時間がスイッチング素子SWのターンオフからターンオンまでの継続時間Toffの1/2に近いほど、その経過時間におけるインダクタ電流iLの電流値が、インダクタ電流iLの降下勾配のばらつきに対して変動しにくくなる。すなわち、第2の時間割合(1/b)が“1/2”に近くなるほど、インダクタ電流iLの降下勾配のばらつきに対して、インダクタ電流の平均電流値iAVEが変動しにくくなる。 38 and 40, even if the descending gradient of the inductor current iL varies, the elapsed time from the turn-off of the switching element SW is “1/2” with respect to the duration Toff from the turn-off of the switching element SW to the turn-on. ”, The current value of the inductor current iL becomes the average current value iAVE of the inductor current. Further, as the elapsed time from the turn-off of the switching element SW is closer to ½ of the duration Toff from the turn-off to the turn-on of the switching element SW, the current value of the inductor current iL at the elapsed time becomes a descending gradient of the inductor current iL. It becomes difficult to fluctuate with respect to the variation of. That is, as the second time ratio (1 / b) is closer to “1/2”, the average current value iAVE of the inductor current is less likely to vary with respect to the variation in the descending gradient of the inductor current iL.
 以上のように、インダクタ電流iLの時間変化勾配のばらつきに起因するインダクタ電流の平均電流値iAVEの変動を抑制できる。また、臨界モードだけでなく連続モードでも動作可能であるので、臨界モードのみで動作する場合よりも、インダクタ電流の平均電流値iAVEを高くすることができるとともに、スイッチング素子SWにおける電力損失を低減できる。 As described above, it is possible to suppress fluctuations in the average current value iAVE of the inductor current due to variations in the time change gradient of the inductor current iL. Further, since the operation is possible not only in the critical mode but also in the continuous mode, the average current value iAVE of the inductor current can be increased and the power loss in the switching element SW can be reduced as compared with the case of operating only in the critical mode. .
 さらに、オフ到達時間TRoffがオフ継続時間TCoffに対して第2の時間割合(1/b)になるようにオフ継続時間TCoffを調整することにより、連続モードから非連続モードへ遷移することを防止できる。 Further, the transition from the continuous mode to the non-continuous mode is prevented by adjusting the off duration time TCoff so that the off arrival time TRoff becomes the second time ratio (1 / b) with respect to the off duration time TCoff. it can.
 (その他の実施形態)
  〔第1の時間割合・第2の時間割合〕
 以上の実施形態において、第1の時間割合(1/a)は、予め定められた固定値であっても良いし、外部制御により変更可能な可変値であっても良い。例えば、時間割合検出部112において、時間電圧生成部VG1は、外部制御に応答してオン継続時間TConに対する比較時間TXonの電圧比(例えば、抵抗分割比)を変更するものであっても良い。または、オン継続時間設定部412において、電流源CS21(または、電流源CS22)は、外部制御に応答して電流値を変更するものであっても良い。これと同様に、第2の時間割合も、予め定められた固定値であっても良いし、外部制御により変更可能な可変値であっても良い。
(Other embodiments)
[First time ratio / Second time ratio]
In the above embodiment, the first time ratio (1 / a) may be a predetermined fixed value or a variable value that can be changed by external control. For example, in the time ratio detection unit 112, the time voltage generation unit VG1 may change the voltage ratio (for example, resistance division ratio) of the comparison time TXon with respect to the ON duration time TCon in response to external control. Alternatively, in the ON duration setting unit 412, the current source CS21 (or current source CS22) may change the current value in response to external control. Similarly, the second time ratio may be a predetermined fixed value or a variable value that can be changed by external control.
 ここで、図41を参照して、第1の時間割合(1/a)の設定範囲について説明する。図41は、第1の時間割合(1/a)の設定値毎に、入力電圧Vinとインダクタ電流の平均電流値の変動量(Δi)との対応関係を示している。ここでは、インダクタ電流の平均電流値の変動量(Δi)は、インダクタ電流の平均電流値の所望値に対する想定値(シミュレーションによって得られたインダクタ電流の平均電流値)の割合によって表現されている。図41において、最も上の直線は“1/a=1/2.22”である場合に対応し、中央の直線は“1/a=1/2.00”である場合に対応し、最も下の直線は“1/a=1/1.82”である場合に対応する。ここでは、インダクタ電流の平均電流値の所望値に対する目標電流値iTGの割合は、“1/a=1/2.22”である場合には“0.976”に設定され、“1/a=1/2.00”である場合には“1.000”に設定され、“1/a=1/1.82”である場合には“1.026”に設定されているものとする。例えば、第1の時間割合(1/a)が“1/2.22”である場合、目標電流値iTGは、インダクタ電流の平均電流値の所望値の0.976倍に設定される。また、入力電圧Vinが“120V”である場合に、インダクタ電流の最高電流値iPに対する最低電流値iSの割合(iP/iS)が“0.6”になるように設定されているものとする。入力電圧Vinの電圧値を“120V”から“360V”へ変化させると、図41のように、インダクタ電流の平均電流値の変動量(Δi)は、“1/a=1/2.22”である場合には“約1.05”となり、“1/a=1/2.00”である場合には“1.00”となり、“1/a=1/1.82”である場合には“約0.95”となる。このように、第1の時間割合(1/a)が1/2.22以上であり1/1.82以下である場合、入力電圧Vinの変動に対するインダクタ電流の平均電流値の変動量を所定の許容範囲内(約5%)に収めることができる。これと同様に、第2の時間割合(1/b)も、1/2.22以上であり1/1.82以下であることが好ましい。 Here, the setting range of the first time ratio (1 / a) will be described with reference to FIG. FIG. 41 shows a correspondence relationship between the input voltage Vin and the fluctuation amount (Δi) of the average current value of the inductor current for each set value of the first time ratio (1 / a). Here, the fluctuation amount (Δi) of the average current value of the inductor current is expressed by the ratio of the assumed value (the average current value of the inductor current obtained by simulation) to the desired value of the average current value of the inductor current. In FIG. 41, the uppermost straight line corresponds to the case of “1 / a = 1 / 2.22”, and the central straight line corresponds to the case of “1 / a = 1 / 2.00”. The lower straight line corresponds to the case of “1 / a = 1 / 1.82”. Here, the ratio of the target current value iTG to the desired value of the average current value of the inductor current is set to “0.976” when “1 / a = 1 / 2.22”, and “1 / a = 1 / 2.00 ”is set to“ 1.000 ”, and“ 1 / a = 1 / 1.82 ”is set to“ 1.026 ”. . For example, when the first time ratio (1 / a) is “1 / 2.22”, the target current value iTG is set to 0.976 times the desired value of the average current value of the inductor current. Further, when the input voltage Vin is “120 V”, the ratio (iP / iS) of the minimum current value iS to the maximum current value iP of the inductor current is set to be “0.6”. . When the voltage value of the input voltage Vin is changed from “120V” to “360V”, as shown in FIG. 41, the fluctuation amount (Δi) of the average current value of the inductor current is “1 / a = 1 / 2.22”. Is "about 1.05", "1 / a = 1 / 2.00" is "1.00", and "1 / a = 1 / 1.82" Is "about 0.95". Thus, when the first time ratio (1 / a) is 1 / 2.22 or more and 1 / 1.82 or less, the fluctuation amount of the average current value of the inductor current with respect to the fluctuation of the input voltage Vin is predetermined. Can be within the allowable range (about 5%). Similarly, the second time ratio (1 / b) is preferably 1 / 2.22 or more and preferably 1 / 1.82 or less.
  〔降圧チョッパ装置の変形例〕
 以上の実施形態において、インダクタL1と負荷素子RDを互いに入れ替えられていても良い。また、還流ダイオードD1の代わりに、スイッチング素子SWがオン状態である期間においてオフ状態になりスイッチング素子SWがオフ状態である期間においてオン状態になるスイッチング素子が設けられていても良い。さらに、図42のように、降圧チョッパ装置1,2,3,3a,4,5,6は、ローサイド型の降圧チョッパ装置であっても良い。図42では、スイッチング素子SWは、入力ノードNin2と中間ノードN2との間の電流経路(第1の電流経路)に設けられる。インダクタL1は、中間ノードN2と入力ノードNin1との間の電流経路(第2の電流経路)において負荷素子RDと直列に設けられる。還流ダイオードD1は、中間ノードN2と入力ノードNin1との間の電流経路(第3の電流経路)に設けられる。
[Modification of step-down chopper device]
In the above embodiment, the inductor L1 and the load element RD may be interchanged with each other. Further, instead of the free wheel diode D1, a switching element that is turned off during a period in which the switching element SW is in an on state and turned on in a period in which the switching element SW is in an off state may be provided. Furthermore, as shown in FIG. 42, the step-down chopper devices 1, 2, 3, 3a, 4, 5, and 6 may be low-side step-down chopper devices. In FIG. 42, the switching element SW is provided in a current path (first current path) between the input node Nin2 and the intermediate node N2. Inductor L1 is provided in series with load element RD in the current path (second current path) between intermediate node N2 and input node Nin1. The free-wheeling diode D1 is provided in a current path (third current path) between the intermediate node N2 and the input node Nin1.
  〔画像表示装置〕
 図43のように、降圧チョッパ装置1,2,3,3a,4,5,6は、光源駆動装置として画像表示装置に搭載されても良い。図43に示した画像表示装置は、光源装置7と、表示部8と、表示制御部9とを備える。光源装置7は、光源駆動装置71R,71G,71Bと、発光素子72R,72G,72Bとを含む。光源駆動装置71R,71G,71Bは、降圧チョッパ装置1,2,3,3a,4,5,6のいずれかに相当し、発光素子72R,72G,72Bは、負荷素子RDに相当する。光源駆動装置71R,71G,71Bは、それぞれ、表示制御部9による制御に応答して、発光素子72R,72G,72Bに流れる負荷電流iRDを制御する。発光素子72R,72G,72Bは、負荷電流iRDに応じて発光する。
(Image display device)
As shown in FIG. 43, the step-down chopper devices 1, 2, 3, 3a, 4, 5, and 6 may be mounted on the image display device as light source driving devices. The image display device illustrated in FIG. 43 includes a light source device 7, a display unit 8, and a display control unit 9. The light source device 7 includes light source driving devices 71R, 71G, 71B and light emitting elements 72R, 72G, 72B. The light source driving devices 71R, 71G, 71B correspond to any of the step-down chopper devices 1, 2, 3, 3a, 4, 5, 6, and the light emitting elements 72R, 72G, 72B correspond to the load element RD. The light source driving devices 71R, 71G, and 71B control the load current iRD that flows through the light emitting elements 72R, 72G, and 72B in response to the control by the display control unit 9, respectively. The light emitting elements 72R, 72G, 72B emit light according to the load current iRD.
 表示部8は、集光管81と、レンズ82と、ライトバルブ83と、レンズ84と、スクリーン85とを含む。発光素子72R,72G,72Bから発せられた光は、光ファイバを通じて集光管81に伝達され、集光管81において集光される。集光管81において集光された光は、レンズ82を通じてライトバルブ83に照射される。ライトバルブ83は、表示制御部9による制御に応答して、集光管81からレンズ82を通じて照射された光を空間的に変調する。ライトバルブ83によって空間変調された光は、レンズ84を介してスクリーン85に投影される。 The display unit 8 includes a condenser tube 81, a lens 82, a light valve 83, a lens 84, and a screen 85. Light emitted from the light emitting elements 72R, 72G, and 72B is transmitted to the condenser tube 81 through the optical fiber and is collected in the condenser tube 81. The light condensed in the condenser tube 81 is applied to the light valve 83 through the lens 82. The light valve 83 spatially modulates the light emitted from the condenser 81 through the lens 82 in response to control by the display control unit 9. The light spatially modulated by the light valve 83 is projected onto the screen 85 via the lens 84.
 表示制御部9は、映像信号に示された映像がスクリーン85に投影されるように、映像信号や同期信号に基づいて光源装置7および表示部8を制御する。例えば、表示制御部9は、光源駆動装置71R,71G,71Bの駆動タイミング(発光素子72R,72G,72Bの発光タイミング)や、ライトバルブ83における空間変調処理などを制御する。 The display control unit 9 controls the light source device 7 and the display unit 8 based on the video signal and the synchronization signal so that the video shown in the video signal is projected on the screen 85. For example, the display control unit 9 controls the drive timing of the light source driving devices 71R, 71G, 71B (light emission timing of the light emitting elements 72R, 72G, 72B), the spatial modulation processing in the light valve 83, and the like.
 以上のように、上述の降圧チョッパ装置は、インダクタ電流の時間変化勾配のばらつきに起因するインダクタ電流の平均電流値の変動を抑制できるとともに臨界モードだけでなく連続モードでも動作可能であるので、光源駆動装置のような定電流電源などとして有用である。 As described above, the above-described step-down chopper device can suppress the fluctuation of the average current value of the inductor current due to the variation of the time variation gradient of the inductor current and can operate not only in the critical mode but also in the continuous mode. It is useful as a constant current power source such as a driving device.
1,2,3,3a,4,5,6  降圧チョッパ装置
RD  負荷素子
SW  スイッチング素子
L1  インダクタ
D1  還流ダイオード(還流素子)
11,21,31,31a,41,51,61  制御回路
101  スイッチング電流検出部
102,202,302,302a  ターンオン周期調整部
103,203,303,303a  スイッチング制御部
301  非連続状態検出部
401  オン継続時間調整部
402,502,603  スイッチング制御部
501 非連続状態検出部
601  インダクタ電流検出部
602  オフ継続時間調整部
7  光源装置
8  表示部
9  表示制御部
1, 2, 3, 3a, 4, 5, 6 Step-down chopper device RD Load element SW Switching element L1 Inductor D1 Reflux diode (reflux element)
11, 21, 31, 31a, 41, 51, 61 Control circuit 101 Switching current detection unit 102, 202, 302, 302a Turn-on cycle adjustment unit 103, 203, 303, 303a Switching control unit 301 Discontinuous state detection unit 401 On-continuation Time adjustment unit 402, 502, 603 Switching control unit 501 Discontinuous state detection unit 601 Inductor current detection unit 602 Off duration adjustment unit 7 Light source device 8 Display unit 9 Display control unit

Claims (13)

  1.  負荷素子に流れる負荷電流を制御する降圧チョッパ装置であって、
     互いの間に入力電圧が印加される第1および第2の入力ノードのうち前記第1の入力ノードと中間ノードとの間の第1の電流経路に設けられたスイッチング素子と、
     前記中間ノードと前記第2の入力ノードとの間の第2の電流経路において前記負荷素子と直列に設けられたインダクタと、
     前記中間ノードと前記第2の入力ノードとの間の第3の電流経路に設けられ、前記スイッチング素子がオフ状態である期間において前記第2および第3の電流経路に電流を還流させる還流素子と、
     前記スイッチング素子のターンオンからの経過時間が前記スイッチング素子のターンオンからターンオフまでの継続時間に対して第1の時間割合になるときの前記スイッチング素子に流れるスイッチング電流の瞬時電流値が予め定められた目標電流値に近づくように、前記スイッチング素子のオン/オフを制御する制御回路とを備える
    ことを特徴とする降圧チョッパ装置。
    A step-down chopper device for controlling a load current flowing through a load element,
    A switching element provided in a first current path between the first input node and the intermediate node among first and second input nodes to which an input voltage is applied between each other;
    An inductor provided in series with the load element in a second current path between the intermediate node and the second input node;
    A reflux element provided in a third current path between the intermediate node and the second input node and configured to return current to the second and third current paths during a period in which the switching element is in an off state; ,
    The instantaneous current value of the switching current flowing through the switching element when the elapsed time from the turn-on of the switching element becomes a first time ratio with respect to the duration from the turn-on to turn-off of the switching element is determined in advance A step-down chopper device comprising: a control circuit that controls ON / OFF of the switching element so as to approach a current value.
  2.  請求項1において、
     前記制御回路は、前記スイッチング素子のターンオンからの経過時間が前記スイッチング素子のターンオンからターンオフまでの継続時間に対して前記第1の時間割合になるときの前記スイッチング電流の瞬時電流値を検出し、当該スイッチング電流の瞬時電流値と前記目標電流値との差分に応じて前記スイッチング素子のターンオン周期を制御する
    ことを特徴とする降圧チョッパ装置。
    In claim 1,
    The control circuit detects an instantaneous current value of the switching current when the elapsed time from the turn-on of the switching element becomes the first time ratio with respect to the duration from the turn-on to turn-off of the switching element, A step-down chopper device that controls a turn-on cycle of the switching element according to a difference between an instantaneous current value of the switching current and the target current value.
  3.  請求項2において、
     前記制御回路は、
      前記スイッチング電流の電流値を検出するスイッチング電流検出部と、
      前記スイッチング素子のターンオンからの経過時間に相当するターンオン経過時間を検出し、前記ターンオン経過時間が前記スイッチング素子のターンオンからターンオフまでの継続時間を規定する予め定められたオン継続時間に対して第1の時間割合になったときに前記スイッチング電流検出部によって検出された前記スイッチング電流の電流値を前記スイッチング電流の瞬時電流値として検出し、当該スイッチング電流の瞬時電流値と前記目標電流値との差分に応じて前記スイッチング素子のターンオン周期を調整するターンオン周期調整部と、
      前記ターンオン周期調整部によって調整されたターンオン周期に基づいて前記スイッチング素子をターンオンし、前記ターンオン周期調整部によって検出されたターンオン経過時間が前記オン継続時間に到達したときに前記スイッチング素子をターンオフするスイッチング制御部とを含む
    ことを特徴とする降圧チョッパ装置。
    In claim 2,
    The control circuit includes:
    A switching current detector for detecting a current value of the switching current;
    A turn-on elapsed time corresponding to an elapsed time from turn-on of the switching element is detected, and the turn-on elapsed time is first with respect to a predetermined on-duration that defines a duration from turn-on to turn-off of the switching element. The current value of the switching current detected by the switching current detector when the time ratio is reached is detected as the instantaneous current value of the switching current, and the difference between the instantaneous current value of the switching current and the target current value A turn-on period adjusting unit that adjusts a turn-on period of the switching element according to
    Switching that turns on the switching element based on the turn-on period adjusted by the turn-on period adjusting unit, and turns off the switching element when the turn-on elapsed time detected by the turn-on period adjusting unit reaches the on duration A step-down chopper device comprising a control unit.
  4.  請求項2において、
     前記制御回路は、
      前記スイッチング電流の電流値を検出するスイッチング電流検出部と、
      前記スイッチング素子のターンオンからの経過時間に相当するターンオン経過時間を検出し、前記スイッチング素子のターンオンからターンオフまでの継続時間に相当するオン継続時間を検出し、前記ターンオン経過時間が前記オン継続時間に対して前記第1の時間割合になったときに前記スイッチング電流検出部によって検出された前記スイッチング電流の電流値を前記スイッチング電流の瞬時電流値として検出し、当該スイッチング電流の瞬時電流値と前記目標電流値との差分に応じて前記スイッチング素子のターンオン周期を調整するターンオン周期調整部と、
      前記ターンオン周期調整部によって調整されたターンオン周期に基づいて前記スイッチング素子をターンオンし、前記スイッチング電流検出部によって検出された前記スイッチング電流の電流値が予め定められた最高電流値に到達したときに前記スイッチング素子をターンオフするスイッチング制御部とを含む
    ことを特徴とする降圧チョッパ装置。
    In claim 2,
    The control circuit includes:
    A switching current detector for detecting a current value of the switching current;
    A turn-on elapsed time corresponding to an elapsed time from the turn-on of the switching element is detected, an on-duration time corresponding to a duration from the turn-on to the turn-off of the switching element is detected, and the turn-on elapsed time is set to the on-duration time In contrast, the current value of the switching current detected by the switching current detector when the first time ratio is reached is detected as an instantaneous current value of the switching current, and the instantaneous current value of the switching current and the target A turn-on period adjusting unit that adjusts a turn-on period of the switching element according to a difference with a current value;
    The switching element is turned on based on the turn-on cycle adjusted by the turn-on cycle adjusting unit, and the current value of the switching current detected by the switching current detection unit reaches a predetermined maximum current value. A step-down chopper device comprising: a switching control unit that turns off the switching element.
  5.  請求項3または4において、
     前記制御回路は、前記スイッチング素子のターンオフからターンオンまでの期間中に前記第2および第3の電流経路に流れる還流電流の電流値が所定の電流値よりも低くなる非連続状態を検出する非連続状態検出部をさらに含み、
     前記ターンオン周期調整部は、
      前記非連続状態検出部によって前記非連続状態が検出されなかった場合には、前記ターンオン経過時間が前記オン継続時間に対して前記第1の時間割合になったときの前記スイッチング電流の瞬時電流値と前記目標電流値との差分に応じて前記スイッチング素子のターンオン周期を調整し、
      前記非連続状態検出部によって前記非連続状態が検出された場合には、前記スイッチング素子のターンオン周期を前記スイッチング素子のターンオンから前記非連続状態検出部による検出までの経過時間に相当する電流連続時間で除算して得られた時間割合が、前記ターンオン経過時間が前記オン継続時間に対して前記第1の時間割合になったときの前記スイッチング電流の瞬時電流値を前記目標電流値で除算して得られた電流割合に近づくように、前記スイッチング素子のターンオン周期を調整する
    ことを特徴とする降圧チョッパ装置。
    In claim 3 or 4,
    The control circuit detects a discontinuous state in which a current value of a return current flowing through the second and third current paths is lower than a predetermined current value during a period from a turn-off to a turn-on of the switching element. A state detector;
    The turn-on period adjusting unit is
    If the discontinuous state is not detected by the discontinuous state detection unit, the instantaneous current value of the switching current when the turn-on elapsed time becomes the first time ratio with respect to the on-continuation time And adjusting the turn-on period of the switching element according to the difference between the target current value and
    When the discontinuous state is detected by the discontinuous state detecting unit, the current continuous time corresponding to the elapsed time from the turn-on of the switching element to the detection by the discontinuous state detecting unit when the switching element is turned on Is obtained by dividing the instantaneous current value of the switching current when the turn-on elapsed time becomes the first time ratio with respect to the ON duration time by the target current value. A step-down chopper device that adjusts a turn-on cycle of the switching element so as to approach the obtained current ratio.
  6.  請求項1において、
     前記制御回路は、前記スイッチング素子がターンオンしてから前記スイッチング電流の電流値が前記目標電流値に到達するまでの到達時間が前記スイッチング素子のターンオンからターンオフまでの継続時間に対して前記第1の時間割合になるように、前記スイッチング素子のターンオンからターンオフまでの継続時間を制御する
    ことを特徴とする降圧チョッパ装置。
    In claim 1,
    The control circuit includes a first arrival time from when the switching element is turned on to when the current value of the switching current reaches the target current value with respect to a duration from the turn-on to turn-off of the switching element. A step-down chopper device that controls a duration from a turn-on to a turn-off of the switching element so as to be a time ratio.
  7.  請求項6において、
     前記制御回路は、
      前記スイッチング電流の電流値を検出するスイッチング電流検出部と、
      前記スイッチング素子がターンオンしてから前記スイッチング電流検出部によって検出された前記スイッチング電流の電流値が前記目標電流値に到達するまでの到達時間が前記スイッチング素子のターンオンからターンオフまでの継続時間を規定するオン継続時間に対して前記第1の時間割合になるように、前記オン継続時間を調整するオン継続時間調整部と、
      所定のターンオン周期に基づいて前記スイッチング素子をターンオンし、前記スイッチング素子がターンオンした後に、前記オン継続時間調整部によって調整されたオン継続時間が経過したときに前記スイッチング素子をターンオフするスイッチング制御部とを含む
    ことを特徴とする降圧チョッパ装置。
    In claim 6,
    The control circuit includes:
    A switching current detector for detecting a current value of the switching current;
    The arrival time from when the switching element is turned on until the current value of the switching current detected by the switching current detector reaches the target current value is defined as the duration from the turn-on of the switching element to the turn-off. An on-duration adjusting unit that adjusts the on-duration so as to be the first time ratio with respect to the on-duration;
    A switching control unit that turns on the switching element based on a predetermined turn-on period, and turns off the switching element when the ON duration adjusted by the ON duration adjustment unit elapses after the switching element is turned on; A step-down chopper device comprising:
  8.  請求項7において、
     前記制御回路は、前記スイッチング素子のターンオフからターンオンまでの期間中において前記第2および第3の電流経路に流れる還流電流の電流値が所定の電流値よりも低くなる非連続状態を検出する非連続状態検出部をさらに含み、
     前記スイッチング制御部は、前記非連続状態検出部によって前記非連続状態が検出されたときに、前記スイッチング素子をターンオンする
    ことを特徴とする降圧チョッパ装置。
    In claim 7,
    The control circuit detects a discontinuous state in which a current value of a return current flowing through the second and third current paths is lower than a predetermined current value during a period from a turn-off to a turn-on of the switching element. A state detector;
    The step-down chopper device, wherein the switching control unit turns on the switching element when the discontinuous state is detected by the discontinuous state detection unit.
  9.  請求項6において、
     前記制御回路は、
      前記スイッチング電流の電流値を検出するスイッチング電流検出部と、
      前記インダクタに流れるインダクタ電流の電流値を検出するインダクタ電流検出部と、
      前記スイッチング素子がターンオンしてから前記スイッチング電流検出部によって検出された前記スイッチング電流の電流値が前記目標電流値に到達するまでの到達時間が前記スイッチング素子のターンオンからターンオフまでの継続時間を規定するオン継続時間に対して前記第1の時間割合になるように、前記オン継続時間を調整するオン継続時間調整部と、
      前記スイッチング素子がターンオフしてから前記インダクタ電流検出部によって検出された前記インダクタ電流の電流値が前記目標電流値に到達するまでの到達時間が前記スイッチング素子のターンオフからターンオンまでの継続時間を規定するオフ継続時間に対して第2の時間割合になるように、前記オフ継続時間を調整するオフ継続時間調整部と、
      前記スイッチング素子がターンオンした後に、前記オン継続時間調整部によって調整された前記オン継続時間が経過したときに前記スイッチング素子をターンオフし、前記スイッチング素子がターンオフした後に、前記オフ継続時間調整部によって調整された前記オフ継続時間が経過したときに前記スイッチング素子をターンオンするスイッチング制御部とを含む
    ことを特徴とする降圧チョッパ装置。
    In claim 6,
    The control circuit includes:
    A switching current detector for detecting a current value of the switching current;
    An inductor current detector for detecting a current value of an inductor current flowing through the inductor;
    The arrival time from when the switching element is turned on until the current value of the switching current detected by the switching current detector reaches the target current value is defined as the duration from the turn-on of the switching element to the turn-off. An on-duration adjusting unit that adjusts the on-duration so as to be the first time ratio with respect to the on-duration;
    An arrival time from when the switching element is turned off until the current value of the inductor current detected by the inductor current detection unit reaches the target current value is defined as a duration from turn-off to turn-on of the switching element. An off duration adjusting unit that adjusts the off duration so as to be a second time ratio with respect to the off duration;
    After the switching element is turned on, the switching element is turned off when the on-duration time adjusted by the on-duration adjusting unit elapses. After the switching element is turned off, the switching element is adjusted by the off-duration adjusting unit A step-down chopper device comprising: a switching control unit that turns on the switching element when the off duration time has elapsed.
  10.  請求項1~9のいずれか1項において、
     前記第1の時間割合は、1/2.22以上であり、1/1.82以下である
    ことを特徴とする降圧チョッパ装置。
    In any one of claims 1 to 9,
    The step-down chopper device wherein the first time ratio is 1 / 2.22 or more and 1 / 1.82 or less.
  11.  請求項9において、
     前記第1の時間割合は、1/2.22以上であり、1/1.82以下であり、
     前記第2の時間割合は、1/2.22以上であり、1/1.82以下である
    ことを特徴とする降圧チョッパ装置。
    In claim 9,
    The first time ratio is 1 / 2.22 or more and 1 / 1.82 or less,
    The step-down chopper device wherein the second time ratio is 1 / 2.22 or more and 1 / 1.82 or less.
  12.  請求項1~11のいずれか1項に記載の降圧チョッパ装置と、
     前記負荷素子とを備え、
     前記負荷素子は、前記負荷電流によって駆動される発光素子である
    ことを特徴とする光源装置。
    A step-down chopper device according to any one of claims 1 to 11,
    Comprising the load element,
    The light source device, wherein the load element is a light emitting element driven by the load current.
  13.  請求項12に記載の光源装置と、
     前記発光素子から発せられた光を用いて画像を表示する表示部とを備える
    ことを特徴とする画像表示装置。
    A light source device according to claim 12,
    An image display device comprising: a display unit that displays an image using light emitted from the light emitting element.
PCT/JP2010/006411 2010-10-29 2010-10-29 Step-down chopper device WO2012056501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/006411 WO2012056501A1 (en) 2010-10-29 2010-10-29 Step-down chopper device
TW100124991A TW201232807A (en) 2010-10-29 2011-07-14 Step-down chopper device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006411 WO2012056501A1 (en) 2010-10-29 2010-10-29 Step-down chopper device

Publications (1)

Publication Number Publication Date
WO2012056501A1 true WO2012056501A1 (en) 2012-05-03

Family

ID=45993257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006411 WO2012056501A1 (en) 2010-10-29 2010-10-29 Step-down chopper device

Country Status (2)

Country Link
TW (1) TW201232807A (en)
WO (1) WO2012056501A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061440A (en) * 2006-09-01 2008-03-13 Fujitsu Ten Ltd Power supply device, controller for power supply device, and electronic device
JP2008539565A (en) * 2005-04-25 2008-11-13 キャタリスト セミコンダクター,インコーポレーテッド Light-emitting diode current bias control using a step-down voltage regulator
JP2009240114A (en) * 2008-03-28 2009-10-15 Shindengen Electric Mfg Co Ltd Switching power supply unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539565A (en) * 2005-04-25 2008-11-13 キャタリスト セミコンダクター,インコーポレーテッド Light-emitting diode current bias control using a step-down voltage regulator
JP2008061440A (en) * 2006-09-01 2008-03-13 Fujitsu Ten Ltd Power supply device, controller for power supply device, and electronic device
JP2009240114A (en) * 2008-03-28 2009-10-15 Shindengen Electric Mfg Co Ltd Switching power supply unit

Also Published As

Publication number Publication date
TW201232807A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CN108243542B (en) Light emission control circuit, light source device, and projection type image display device
US8803445B2 (en) Circuit and method for driving LEDs
JP4782785B2 (en) Switching constant current drive / control circuit
US8680781B1 (en) Circuit and method for driving LEDs
TWI509959B (en) Electronic circuit and method of providing a regulated voltage to a load
US8508206B2 (en) Adaptive constant on time adjustment circuit and method for adaptively adjusting constant on time
JP4631916B2 (en) Boost DC-DC converter
US10334694B2 (en) Light emission control circuit, light source device, and projection type video display apparatus
JP2013149479A (en) Light emitting element driving device
TW201044914A (en) Method and system for high efficiency, fast transient multi-channel LED driver
WO2017124115A1 (en) Sensor-less buck current regulator with average current mode control
JP2013027301A (en) Controllers for power converters
CN114981747B (en) Current mode DC-DC converter
US9979302B2 (en) Device and method for closed-loop control of a power converter
JP6189591B2 (en) LIGHT EMITTING DEVICE CONTROL CIRCUIT, LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE USING THE SAME, AND LIGHT EMITTING DEVICE CONTROL METHOD
CN104852568B (en) Current source based on Cuk
JP5973164B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic device using the same
CN114944756A (en) Control circuit, corresponding electronic converter device and method
JP5960982B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic device using the same
JP2016101085A (en) Controllers for dc/dc converter
US20150333625A1 (en) Method and apparatus for hysteresis regulation of the output voltage of a DC-to-DC converter
JP5225940B2 (en) Load drive circuit
WO2012056501A1 (en) Step-down chopper device
JP5070555B2 (en) Circuit and method for controlling the power supply of a pulse waveform
JP2018037233A (en) Led lighting device and led illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP