WO2012055301A1 - 唤醒远端设备的方法和系统 - Google Patents

唤醒远端设备的方法和系统 Download PDF

Info

Publication number
WO2012055301A1
WO2012055301A1 PCT/CN2011/079460 CN2011079460W WO2012055301A1 WO 2012055301 A1 WO2012055301 A1 WO 2012055301A1 CN 2011079460 W CN2011079460 W CN 2011079460W WO 2012055301 A1 WO2012055301 A1 WO 2012055301A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake
signal
power supply
remote device
voltage
Prior art date
Application number
PCT/CN2011/079460
Other languages
English (en)
French (fr)
Inventor
陈相宁
张�杰
郝丽芳
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US13/882,410 priority Critical patent/US9058169B2/en
Publication of WO2012055301A1 publication Critical patent/WO2012055301A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/738Interface circuits for coupling substations to external telephone lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention is directed to a method and system for controlling power consumption of a remote device, and more particularly to a method and system for awakening a remote device over a cable.
  • the ordinary fixed telephone system has the capability of remote wake-up and state detection, that is, the central office equipment can remotely wake up the terminal equipment through the twisted pair and detect the terminal status.
  • Figure 1 shows a block diagram of a network interface portion of a general telephone system user, including a central office interface device 1, a telephone 2, and a twisted pair line 3 connecting the central office interface device and the telephone, wherein the central office interface device 1 is further transceived by voice.
  • the module 11 , the power supply and monitoring module 12 , the ringing current generator module 13 , the transformers 14 and 15 , etc., the telephone is composed of a voice processing module 21 , a regulated power supply module 22 , a ringing module 23 , a hook switch 24 , and a rectifier module 25 .
  • an earphone connected to the port E and a microphone externally connected to the port M.
  • the hook switch 24 of the telephone 2 in the on-hook state, the hook switch 24 of the telephone 2 is in the off state, the leakage current of the telephone should be less than 25 microamps, and the feed voltage output from the central interface device 1 is the direct current 48.
  • the hook switch 24 In the state of taking off, the hook switch 24 is in a closed state, the DC resistance of the telephone is less than 350 ohms, and the normal working power consumption is about 18-60 mA.
  • the power supply and monitoring module 12 determines that the telephone has been in the active state of the machine, and on the other hand, sends the active state to the other modules of the central office through the port W for further processing, and on the other hand, feeds the output voltage. Adjust to about 10 volts.
  • the power supply and monitoring module 12 supporting the remote charging indication also has the function of exchanging the polarity of the feeding voltage. After the call connection is established, the feeding voltage outputted on the twisted pair 3 can be output according to the indication of the feeding control port. Positive and negative polarity is reversed.
  • a ringer generator module 13 is provided in the central office interface device 1, and a ringing module 23 is provided in the telephone set 2.
  • the ringing current generator module 13 In order to inform the called party that the called user has arrived, the ringing current generator module 13 generates an AC voltage of about 90 volts and 25 Hz with the input voltage V R , outputs it to the telephone twisted pair 3 through the transformers 14 and 15, and then twists the pair. Line 3 is applied to the ringing module 23 in the telephone 2, causing the ringing module 23 to ring.
  • the ringing current generator module 13 generates a ringing current voltage in an intermittent manner in which the operation is stopped for 1 second for 4 seconds.
  • the ringing current generator module 13 During the one-second period in which the ringing current generator module 13 outputs the ringing voltage, the feeding voltage output and the feeding current detection of the power supply and monitoring module 12 are suspended; the ringing current generator module 13 stops outputting the ringing voltage for 4 seconds. During this period, the feed voltage output and feed current detection of the power supply and monitoring module 12 are enabled.
  • the hook switch 24 When the telephone user makes a call, the hook switch 24 is manually closed, and more circuit modules in the telephone 2 start to consume current, which causes the feed current flowing through the telephone twisted pair 3 to increase greatly, and the power supply and monitoring module 12 passes the detection.
  • the feed current determines that the telephone 2 is in the active state.
  • the above-mentioned wake-up method of the analog telephone system requires a separately provided ring current generating device, and there is a conflict with the hooking current detecting system, and the system structure is quite complicated. Moreover, the ringing method using the 90 volt AC ringing current consumes a large amount of electricity and has high cost, and does not meet the requirements of energy conservation and environmental protection, and should be cancelled.
  • DSL modems can also work remotely from the central office just like regular telephones; they enter an almost inactive sleep state when there is no data to transmit; they actively boot into the working state when there is data to be sent locally. When called by another network device, the central office device wakes up to work.
  • the wake-up and calling mode of an ordinary telephone is suitable for human operation and is not suitable for the working mode of the DSL modem.
  • the DSL modem device cannot guarantee it. If two devices on the same telephone line initiate work at the same time, or start work because they receive the called signal at the same time, the DSL modem usually cannot establish a connection normally.
  • Other remote wake-up techniques that are currently disclosed are associated with remote wake-up computers. These wake-up methods require the computer to have a chassis power supply that provides additional sleep power, as well as a motherboard and network card that supports remote wake-up. In fact, all chassis power supplies, computer motherboards, and network cards are in a live working state. The operating current is greatly reduced because of the high power consumption of some functions, which is not a power-off state in which the entire computer does not consume power.
  • the present invention is intended to solve or ameliorate one of the problems disclosed above.
  • the method for waking up a remote device of the present invention is characterized by including "wake-up signal generating means", “remote device power supply means” and “wake-up signal feeder” connecting "wake-up signal generating means” and “remote device power supply means”
  • the "wake-up signal generating device” includes a “power module”, a “wake-up signal generating module”, and a “current detecting module”
  • the “remote device power-supply device” includes a “wake-up signal detecting module” and "Controllable Power Module".
  • the specified characteristic voltage signal corresponding to the remote device does not need to wake up the remote device is a normal signal, and the specified characteristic voltage signal corresponding to the normal signal corresponding to the remote device is called a wake-up signal, which is used to indicate
  • the specified characteristic voltage signal corresponding to the normal signal corresponding to the remote device that has been awake in the active state is an occupied signal.
  • the “wake-up signal generating means” is capable of generating a voltage signal of a different characteristic including a wake-up signal, and the “remote device power supply means” can receive and recognize the wake-up signal in the sleep state.
  • the “wake-up signal generating device” When the “remote device power supply device” is in a sleep state, and the power supply voltage required for the normal operation of the remote device is not output, the “wake-up signal generating device” is externally controlled according to the “wake-up control port” input. The signal generates a wake-up signal and is delivered to the “remote device power supply device” via the “wake-up signal feeder".
  • the "remote device power supply device” in the dormant state wakes up the “remote device power supply device” to work normally after correctly recognizing the arrived wake-up signal, and generates and outputs the power supply voltage required for the remote device to work normally. , thereby waking up the remote device from the power down state.
  • the voltage signals of different characteristics generated by the "wake-up signal generating means" are pulse-coded for a DC voltage or a DC voltage of a specified polarity and amplitude value, and the wake-up signal different from the normal state is a polarity or an amplitude.
  • the value is different from the normal DC voltage or DC voltage pulse code.
  • the voltage signals of different characteristics generated by the "wake-up signal generating device" are pulse-coded for an alternating voltage or an alternating voltage of a specified frequency, phase, and amplitude value, and the wake-up signal different from the normal state is a frequency or a phase.
  • an AC voltage or AC voltage pulse code whose amplitude value is different from the normal state.
  • the "wake-up signal generating means” also detects the current outputted to the "wake-up signal feeder” and determines that the remote device is already in the awake state when the feeder current exceeds a prescribed threshold.
  • the "wake-up signal generating means" is capable of generating a plurality of different wake-up signals.
  • the "wake-up signal generating device” When the “remote device power supply device” is in a sleep state, and the power supply voltage required for the normal operation of the remote device is not output, the “wake-up signal generating device” is externally controlled according to the “wake-up control port” input.
  • the signal selectively generates a specific wake-up signal and delivers the “remote device power supply device” through the “wake-up signal feeder",
  • the “remote device power supply device” in the dormant state wakes up the “remote device power supply device” to work normally after correctly identifying the specific wake-up signal that arrives, and generates and outputs the normal operation of the remote device.
  • a power supply voltage is required to wake the remote device from a power down state.
  • the voltages of different characteristics are DC voltage pulse codes of specified polarity and amplitude values, or AC voltage pulse codes of different frequency or frequency combinations specified, or AC voltage pulse codes of specified amplitude and phase
  • the wake-up signal is a specified set of DC voltage pulse codes of different polarity or amplitude different from the normal state, or a specified set of AC voltage pulse codes whose phase or amplitude is different from the normal state, or a specified set of different frequency codes.
  • AC voltage AC voltage
  • the "remote device power supply device” wakes up the “remote device power supply device” in a sleep state in five steps after detecting a wake-up signal from the "wake-up feeder port” from the “wake-up feeder port” ",
  • the "remote device power supply device” waits for the wake-up signal on the "wake-up signal feeder” to disappear until the normal signal is reproduced.
  • the "remote device power supply” freezes the wake-up operation until the "wake-up signal feeder” sends the normal signal again to end the wake-up process. And continue to sleep,
  • the "remote device power supply” outputs the normal power supply voltage, thereby causing the remote device to wake up from sleep and enter the normal working state.
  • the "wake-up signal generating means” generates and outputs an occupation signal to the "wake-up signal feeder” after determining that the remote device is already in the awake state.
  • the occupied signal is a DC voltage or a DC voltage pulse having a polarity or amplitude value different from that in the normal state, or an AC voltage or AC voltage pulse having a different frequency or phase or amplitude value than the normal state.
  • the "remote device power supply device” wakes up the “remote device power supply device” in the sleep state in three steps.
  • the remote device power supply device detects a normal signal from the "wake-up feeder port"
  • the “remote device power supply device” outputs a normal power supply voltage, thereby causing the remote device to wake up from sleep and enter a normal working state.
  • the "wake-up signal generating device” determines that the remote device is already in the awake state, it generates and outputs an occupation signal to the "wake-up signal feeder".
  • the occupied signal is a DC voltage or a DC voltage pulse having a polarity or amplitude value different from that in the normal state, or an AC voltage or AC voltage pulse having a different frequency or phase or amplitude value than the normal state.
  • the remote wake-up system of the remote device in the wake-off state of the present invention includes "wake-up signal generating means”, “remote device power supply means” and “wake-up signal feeder”, and is characterized by:
  • the “wake-up signal feeder” is a connection between a “wake-up signal generating device” and a “remote device power supply device”, and transmits a wake-up signal generated by the "wake-up signal generating device” and a power supply generated by the "remote device power supply device”.
  • the “wake-up signal generating device” is a “wake-up signal generating device” for generating a wake-up signal to wake up the remote device and detect the state of the remote device, and includes:
  • a "feeder output port" for feeding a wake-up signal voltage to a remote device
  • a “power module” that supplies power to other modules using the input power provided by the "input power port”.
  • a wake-up signal generation module that generates a wake-up signal under the action of an external control signal provided by the "wake-up control port” and outputs it through the "feeder output port” and
  • a "current detecting module” for detecting a power supply state signal of the "remote device power supply device” and outputting the power supply state through the "remote state output port S"
  • the "current detecting module” is connected in series with the voltage output end of the “power module” via the “wake-up signal generating module” to the “feeder output port”.
  • the wake-up signal is a DC voltage or DC voltage pulse code whose polarity or amplitude value is different from the normal state, or an AC voltage or AC voltage pulse code whose frequency or phase or amplitude value is different from the normal state.
  • the power supply status signal is a feeder current.
  • the “remote device power supply device” is a “remote device power supply device” that can be awakened in a sleep state to generate a local power supply output and feed back a power supply status signal, and includes:
  • wake-up feeder port for receiving wake-up signals from “wake-up signal feeders”
  • a “wake-up signal detection module” for detecting a voltage signal of a different characteristic input from the "wake-up feeder port", determining whether the input voltage signal is a wake-up signal, and outputting a wake-up instruction according to the detection result
  • the wake-up signal is a DC voltage or DC voltage pulse code whose polarity or amplitude value is different from the normal state, or an AC voltage or AC voltage pulse code whose frequency or phase or amplitude value is different from the normal state.
  • the power supply status signal is a feeder current.
  • the traditional ringing wake-up method using a 90 volt ring current feed requires more than 1 watt of ringing power during the ringing period.
  • power consumption and heat dissipation are both challenges, which limits the further improvement of integration.
  • the required power does not exceed several milliwatts, and the central end energy consumption and thermal design difficulty are greatly reduced without affecting the original wake-up capability, and the trend of the low-carbon economy is met.
  • the invention completely eliminates the ringing current generator module of up to 90 volts AC voltage, the maximum working voltage of the whole system is reduced to the rated DC voltage which must be provided for normal operation, and the requirements for system leakage electric shock safety and withstand voltage are greatly reduced. , to facilitate the system to further expand the application and system integration of the broader field.
  • One embodiment of the present invention achieves wake-up to a remote device by generating and identifying a reverse polarity voltage signal.
  • the remote device can be in a state of completely cutting off the power: When it is awakened, only the wake-up signal needs to be rectified, and the power required to wake up the power supply module can be obtained, and the power of the power can be provided by the wake-up signal voltage.
  • the network card and the modem wake-up method that currently rely on the signaling signal to wake up are avoided, and the device needs to provide a certain power to maintain the power.
  • the present invention discloses a simple method of generating and identifying a reverse polarity voltage signal.
  • An embodiment for generating a wake-up signal requires only a double-pole double-throw switch, and an implementation for identifying the wake-up signal requires only one Diode, easy to implement.
  • the entire wake-up system includes only the wake-up signal generating device, the remote device power supply device, and the wake-up signal feeder. It does not involve the special application of the remote device, and can be applied in almost any occasion where remote wake-up is required and a wired connection can be provided, which has wide application prospects. .
  • FIG. 1 is a block diagram of a telecom central office interface device and a user telephone implementation of the prior art.
  • FIG. 2 is a block diagram of an example system in accordance with an embodiment of the present invention.
  • Figure 3 is a schematic diagram of an example system feeder connection using a pair of twisted pairs as wake-up signal feeders.
  • Figure 4 is a schematic diagram of a feeder connection using a pair of twisted pairs plus one wire as a wake-up signal feeder.
  • Figure 5 is a schematic diagram of a feeder connection using two pairs of twisted pairs as wake-up signal feeders.
  • Figure 6 is a schematic diagram of a power module powered by a battery.
  • Figure 7 is a schematic diagram of a power module that implements an AC input AC output using a tapped transformer.
  • Fig. 8 is a schematic diagram of a series-connected current detecting module of a wake-up signal generating module for generating a DC voltage wake-up signal having a polarity opposite to a normal signal.
  • Figure 9 is a schematic diagram of an alternating current detecting module.
  • Figure 10 is a schematic diagram of a current sensing module implemented using an optocoupler element.
  • Figure 11 is a schematic diagram of a conventional wake-up signal detection module that senses a DC voltage wake-up signal that is opposite in polarity to a normal signal and produces a high-level wake-up indication signal.
  • Figure 12 is a schematic diagram of a conventional wake-up signal detection module that senses a DC voltage wake-up signal that is opposite in polarity to a normal signal and produces a low-level wake-up indication signal.
  • Figure 13 is a schematic diagram of a wake-up signal detection module with a memory-sensing reverse polarity DC voltage wake-up signal and a wake-up indication signal.
  • Figure 14 is a schematic diagram of a controllable power supply module with an enabled control terminal regulated power supply chip.
  • Figure 15 is a schematic diagram of a controllable power module with a thyristor.
  • Figure 16 is a schematic diagram of a controllable power module with a local power input port.
  • 17 is a block diagram of an example system in accordance with a second embodiment of the present invention.
  • Figure 18 is a schematic diagram of a wake-up signal generation block for generating a DC voltage pulse coded wake-up signal having a polarity opposite to a normal signal.
  • 19 is a schematic diagram of a wake-up signal detecting module capable of intelligently recognizing a reverse polarity DC voltage pulse coded wake-up signal.
  • Figure 20 is a diagram of an exemplary system in accordance with a third embodiment of the present invention.
  • Figure 21 is a block diagram of a wake-up signal generation module that generates a voltage wake-up signal that is different from the normal signal amplitude.
  • Figure 22 is a schematic diagram of a wake-up signal detection module that senses a DC voltage wake-up signal that is different from the normal signal amplitude and generates a wake-up indication signal.
  • Fig. 23 is a schematic diagram of a wake-up signal detecting module with a memory function for sensing a voltage wake-up signal having a different amplitude from a normal signal and generating a wake-up indication signal.
  • Figure 24 is a block diagram of an exemplary system in accordance with a fourth embodiment of the present invention.
  • Figure 25 is a schematic illustration of a wake-up signal generation module that produces a voltage pulse coded wake-up signal that differs from the normal signal amplitude.
  • Fig. 26 is a schematic diagram of a wake-up signal detecting module capable of intelligently recognizing a voltage pulse coded wake-up signal different from a normal signal amplitude.
  • Figure 27 is a block diagram of an example system in accordance with a fifth embodiment of the present invention.
  • Figure 28 is a schematic diagram of a wake-up signal generation module for generating an AC voltage wake-up signal of a specified frequency coding combination.
  • Figure 29 is a schematic diagram of an improved wake-up signal generation module for generating an AC voltage wake-up signal for a specified frequency coding combination.
  • Figure 30 is a schematic diagram of a wake-up signal detection module capable of intelligently identifying AC voltage wake-up signals of different frequency coding combinations.
  • FIG. 31 is a block diagram of an example system in accordance with Embodiment 6 of the present invention.
  • Figure 32 is a schematic diagram of a wake-up signal generation module that generates an alternating voltage or alternating voltage pulse code that is different in phase from the normal signal.
  • Figure 33 is a schematic diagram of a wake-up signal detection module capable of intelligently identifying an AC voltage or AC voltage pulse code having a different phase from a normal signal.
  • This embodiment is a remote wake-up system and method using a reverse polarity DC voltage as a wake-up signal.
  • the remote wake-up system includes: “wake-up signal generating device 4", “remote device power supply device 5", and “wake-up signal generating device 4" and “remote device power supply device 5" "wake-up signal feeder” 6".
  • the “wake-up signal generating means 4" is used to generate voltage signals of different characteristics including a wake-up signal, a normal signal, and an occupation signal, and is supplied to the "remote device power supply unit 5" through the "wake-up signal feeder 6".
  • the “remote device power supply device 5" is used to remotely wake up in the sleep state to generate a local power supply output, and feeds the remote device power supply status signal to the "wake signal generating device 4" through the "wake signal feeder 6".
  • the "wake-up signal generating means 4" also simultaneously detects the feeder current outputted to the "wake-up signal feeder” and determines that the remote device is already in the awake operating state when the feeder current exceeds a prescribed threshold.
  • the "wake-up signal generating means 4" may be a separate device or part of other devices, similar to the power supply and monitoring module 12 in a conventional analog telephone office interface device.
  • connection of the "wake-up signal generating means 4" to the "wake-up signal feeder 6" may be a direct connection, as shown in Fig. 2, or may be a coupling connection by some intermediate means.
  • the "wake-up signal generating means 4" are respectively coupled to the "wake-up signal feeder” via a transformer coupling in different manners.
  • Wake-up signal feeder 6 can be a variety of forms of conductive cable.
  • the simplest "wake-up signal feeder 6" implementation is two parallel wires.
  • Figure 3, Figure 4 and Figure 5 show the different implementations of the "wake-up signal feeder 6" using a pair of twisted pairs 6A, a pair of twisted pairs 6B1 plus one wire 6B2, and 6C1 plus 6C2 two pairs of twisted pairs. example.
  • the coupling transformer of the connection method is equivalent to the series resistance for transmitting the wake-up signal and the power supply state signal
  • the twisted pair is equivalent to a single straight wire
  • the feeder implementation is circuit equivalent in principle to the two parallel conductors in Figure 2.
  • the "remote device power supply unit 5" does not consume current during the sleep state, so there is no current or only a small leakage current on the "wake-up signal feeder". Once the "remote device power supply unit 5" is woken up to normal operation, the "wake signal feeder” can carry a large current as a power status signal indication. When the feeder current is less than a certain threshold, for example, less than 2 mA, the “remote device power supply device” can be considered to be in a sleep state; and when the feeder current is greater than a certain threshold, for example, greater than 5 mA, it can be considered The “remote device power supply unit" is already in normal working condition.
  • a certain threshold for example, less than 2 mA
  • the feeder current is less than 2 mA for the sleep state and the feeder current is greater than 5 mA for normal operation, the feeder current is between 2 mA and 5 mA and is undefined.
  • the normally undefined state occurs when the "wake-up signal feeder" is used as the bus and too many devices are attached. Smaller leakage currents from multiple devices may be larger after stacking.
  • the probability of an undefined state can be reduced or eliminated by reducing the difference between the two thresholds specified by the device that is simultaneously hooked up, or by reducing the two states of determining sleep and determining the job.
  • the remote device power supply unit 5 provides working power for the remote device during normal operation.
  • the output power can be a single-voltage DC power supply, or a regulated or unregulated DC power supply with multiple voltage values, or even AC power.
  • the supply voltage output port shown in Figure 2 only indicates the location of the output supply voltage, not the output of a supply voltage.
  • connection between the "remote device power supply unit 5" and the “wake-up signal feeder 6" can also be variously modified, as shown in Figure 2 directly connected to the coupling connection shown in Figures 3, 4 and 5.
  • the wake-up signal in this embodiment is a DC voltage having a polarity opposite to that of a normal signal. If it is specified that a DC voltage of a specified polarity is applied to the wake-up signal feeder when the remote device is not operating normally, and the DC voltage is said to be a normal signal, it may be specified that the wake-up signal is a DC voltage having a polarity opposite to that of the normal signal.
  • the “wake-up signal generating device 4" in this embodiment includes: an input power supply port V B , a wake-up control port G, and a remote state.
  • the "remote device power supply device 5" includes: a wake-up feeder port 62, a wake-up signal detecting module 53, a controllable power supply module 51, and a power supply voltage output port V.
  • the “power module 41” receives power from the input power supply port V B and is converted and output to other modules in the "wake signal generating device”.
  • the power module 41 can output a variety of power supply voltages, and can be various embodiments such as an AC input AC output, an AC input DC output, a DC input AC output, and a DC input DC output. All of these implementation methods are available on the market with mature products.
  • Texas Instruments' standard isolated DC-to-DC converter series regulated power supply can be generated with PT4141.
  • the PT4142 produces a 5 volt output
  • the PT4244 produces a 12 volt output
  • the PT4564 produces a 15 volt output.
  • Shenzhen Huada Ainos Power Co., Ltd., Beijing Huize Weiye Co., Ltd., Shanghai Yize Electric Co., Ltd. and many other companies provide 48 volt standard communication power modules and other types of DC regulated power modules.
  • the power module can even be a simple straight wire connection 411 as shown in Figure 6.
  • the power module with AC input AC output it can be realized by the tap output transformer shown in Figure 7, or it can be other standard AC voltage regulator modules or variable frequency voltage regulators.
  • the “wake-up signal generating module 43" outputs a DC voltage wake-up signal having a polarity opposite to the normal signal to the "feeder output port 61" according to the instruction of the "wake-up control port G".
  • the "wake-up signal generation module 43" can be implemented with a double-pole double-throw switch K1 or a relay, as shown in FIG.
  • the wake-up signal generation module 431 includes a double-pole double-throw switch K1, which can be a controlled switch portion of the relay that converts the input voltage VI control to the desired polarity output.
  • the outputs V+ and V- do not indicate the polarity of the output voltage, but only the two different polarities of the output voltage in the normal signal state.
  • the wake-up signal generator module 43 can also be implemented using a full bridge drive circuit.
  • LMD18245 produced by National Semiconductor Corporation, UBA2036 produced by NXP Corporation of the Netherlands, and A3959, which is manufactured by Allegro, can easily realize the output of DC with different polarities according to the indication of the wake-up control port G.
  • the voltage wake-up signal, the specific circuit can be found in the recommended reference design in the relevant chip manual.
  • the occupied signal is defined as a DC voltage having a polarity opposite to that of the normal signal, and the wake-up signal generating module 43 also needs to generate and output an occupied signal when an external control signal is received.
  • the "current detecting module 42" may be an ammeter; or may be a DC current detecting module 421 as shown in FIG. 8 or an alternating current detecting module 422 as shown in FIG. 9;
  • the current detecting module 423 includes optocoupler elements 4231 and 4232, Vp is connected to the positive power supply, and is provided by the power module 41. It can also be implemented by a commercially available mature chip, such as the LT2940 chip of Linear Technology, and the specific circuit can be referred to. Instructions and recommended reference designs in the relevant chip manual.
  • the specific position of the current detecting module 42 can be set according to its own nature.
  • the DC current detecting module should be placed between the “power module 41” and the “wake signal generating module 43", and the alternating current detecting module is placed in the “power module 41" and Between the “wake-up signal generation module 43” or after the “wake-up signal generation module 43".
  • the "wake-up signal detecting module 53" can generate and output a wake-up indication when the wake-up signal is sensed, so that the "controllable power supply module 51" can obtain power and enter a normal working state, and output a stable power supply voltage to the local device.
  • the “wake-up signal detecting module 53" can be realized by the wake-up signal detecting module 531 as shown in FIG.
  • the wake-up signal detecting module 531 cannot provide a valid wake-up indication at the output.
  • the diodes D1 and D2 are both turned on, and the reverse polarity wake-up signal voltage is divided by the resistors R1 and R2, and then output through the diode D3, which can be used as the controllable power supply module 51. Enable signal.
  • the "wake-up signal detecting module 53" can also be implemented by the wake-up signal detecting module 532 shown in FIG.
  • the FET is also turned off, and the resistor R5 outputs a high level, indicating that no wake-up signal arrives.
  • the wake-up signal is input, the diode D4 is turned on, the FET is also turned on, and the wake-up signal detecting module 532 outputs a low-level signal, which can be used as an enable signal for controlling the controllable power supply module 51.
  • the “wake-up signal detecting module 53" can also be realized by the memory-capable wake-up signal detecting module 533 shown in FIG.
  • the wake-up signal detection module 533 includes a conventional wake-up signal detection module 5331 and an intelligent processing module 5332.
  • the conventional wake-up signal detecting module 5331 may be the wake-up signal detecting module 531 shown in FIG. 11, or may be the wake-up signal detecting module 532 shown in FIG.
  • the intelligent processing module 5332 can be designed with pure digital logic devices, can be implemented using field-programmable gate array FPGAs, or can be implemented using, for example, a 51 microcontroller or an ARM embedded smart chip.
  • the smart processing module 5332 can memorize the wake-up signal for a period of time and continue to output during the memory effective time range.
  • controllable power module 51 may be a remotely powered controllable power supply module that obtains electrical energy from a wake-up signal feeder.
  • the block can also be a local power supply controllable power module that directly obtains power from the local.
  • the controllable power module 51 can be a controllable power module 511 as shown in FIG.
  • the preferred embodiment controllable power module 511 includes input filter circuits (Cl, L1, L2, and C2), integrated voltage stabilization circuits (LM2575HV, L3, and D511), and an output filter circuit (C3).
  • the controllable power module 511 receives the low-level effective wake-up indication signal output by the wake-up signal detecting module 53, the power is obtained from the wake-up signal feeder, and the converted voltage is outputted to provide stability for the local power-demanding device. DC voltage.
  • the controllable power supply module 511 consumes a large current, and outputs this current as a power supply state signal through the wake-up feeder port.
  • the voltage control integrated circuit chip LM2575HV with enable control is selected in the controllable power module 511. More typical DC regulated power supplies may not have control ports enabled.
  • the controllable power module 512 shown in Fig. 15 can be used.
  • a unidirectional thyristor D512 is connected in series at the input end. When the input voltage of the thyristor is input to the forward trigger voltage, the thyristor is turned on, and the voltage stabilizing circuit 5121 operates to output a stable DC voltage.
  • the voltage stabilizing circuit 5121 can be any commercially available mature regulated power supply module.
  • the regulated power supply module should be connected in series with a rectifier module at its input to ensure the polarity of the input power required for the DC regulated power supply module to work properly.
  • the PKM5000D produced by Shanghai Ericsson the A78S40 produced by Motorola, the TNY268 produced by POWER, and the NCP3063 produced by ON Semiconductor can be used to implement the controllable power module 51.
  • the specific circuit can refer to the description and recommended reference design in the relevant chip manual.
  • the controllable power module 51 can be implemented by the controllable power module 513 as shown in FIG.
  • the module has a local power input port VL and draws power from the local power input port VL.
  • the controllable power module 513 After receiving the wake-up indication of the wake-up signal detecting module 53, the controllable power module 513 obtains power from the local power input port VL, and after being converted, the regulated output is provided to provide a stable DC voltage for the local power-receiving device.
  • the locally powered controllable power module 513 needs to add a remote device working state signal generating module 5132.
  • the preferred remote operating state signal generating module is a relay, the connection of which is shown in FIG.
  • the regulated power supply module 5131 in FIG. 16 may be a controllable power module 511 or a controllable power module 512.
  • the relay When the regulated power supply module 5131 is operating normally, the relay is used as a relay of the remote device operating state signal generator module 5132 to provide a current loop for the "wake signal feeder 6" to generate a feeder for use as a power supply status indication of the remote device. Current.
  • the regulated power supply module When the regulated power supply module is in the sleep state and there is no voltage output, the winding of the relay control terminal has no current, and the switch of the controlled terminal is disconnected. At this time, there is no current in the "wake signal line 6".
  • the wake-up signal generating device 4 In the initial state, all the remote device power supply devices are in a sleep state, the wake-up signal generating device 4 outputs a normal state signal, and there is no current in the wake-up signal feeder 6, and the wake-up signal generating device 4 detects that the current in the wake-up signal feeder 6 is less than a preset.
  • the threshold determines that the remote device is in the sleep state and outputs the output through the remote state output port S.
  • the "wake-up signal generation module 4" can generate a DC voltage wake-up signal having a polarity opposite to that of the normal signal, and wake up the remote device power supply unit connected to the wake-up signal feeder 6. Can be divided into two situations:
  • the "wake signal generating device 4" When it is required to wake up the power supply device of the remote device in the sleep state, the "wake signal generating device 4" generates a DC voltage wake-up signal having a polarity opposite to the normal signal according to the external control signal input from the "wake control port G", And the “wake-up signal feeder 6" is sent to the remote device power supply device.
  • the remote device power supply device After receiving the wake-up signal, the remote device power supply device detects and confirms that the received wake-up signal is indeed the specified wake-up signal, and enables the controllable power module to work normally; Signal feeder 6"
  • the power is taken as an input power line of the controllable power module, or the power is directly obtained from the local power input port VL, and after being transformed, the power voltage output required by the remote device is generated, thereby awakening the remote device from the power-off state.
  • the "wake-up signal generating device 4" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the second case of this embodiment can be specifically completed by the following eight steps.
  • Wake-up signal generating means 4" confirms that all remote devices connected to the wake-up signal feeder 6 are powered by detecting that the current in the "wake-up signal feeder 6" is less than a prescribed threshold and that only the normal signal is on the "wake-up signal feeder 6" The devices are all in a sleep state.
  • the remote device power supply detects the wake-up signal on the "wake-up signal feeder 6", initiates the wait-to-go normal signal procedure, detects the voltage signal on the "wake-up signal feeder 6" and waits until the normal signal is detected.
  • the "wake-up signal generating device 4" re-sends the normal signal after the wake-up signal is sent.
  • the remote device power supply device continues to wait for a random time after detecting the normal signal on the "wake signal feeder 6".
  • the "remote device power supply device” freezes the wake-up operation until the "wake-up signal feeder” sends the normal signal again to end the wake-up. Process, and continue to sleep.
  • the remote device power supply device If no occupancy signal is detected on the wake-up signal feeder 6 during the delay wait, the remote device power supply device outputs the normal power supply voltage, thereby causing the remote device to wake up from sleep and enter the normal working state.
  • the "wake-up signal generating device 4" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the "remote device power supply” wakes up the “remote device power supply” in the sleep state in three steps.
  • the remote device power supply unit detects a normal signal from the "wake-up feeder port 62"
  • the “remote device power supply unit” outputs a normal power supply voltage, thereby causing the remote device to wake up from sleep and enter a normal working state.
  • the "wake-up signal generating means 4" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the present embodiment provides a remote wake-up system and method for pulsing a DC voltage pulse with different polarities as a wake-up signal.
  • the remote wake-up system is as shown in FIG. 17, and includes: “wake-up signal generating device 4A", “remote device power-supply device 5A", and connection “wake-up signal generating device 4A” and “remote device power-supply device 5A””Wake up signal feeder 6".
  • the wake-up signal generating means 4A includes: an input power supply port V B , a wake-up control port G, a remote state output port S, a feeder output port 61, a power supply module 41, a current detecting module 42, and a wake-up signal generating module 43A.
  • the "remote device power supply device 5A” includes: a wake-up feeder port 62, a wake-up signal detecting module 53A, and a controllable power module 51 and supply voltage output port V.
  • the "wake-up signal generating module 43A” outputs a DC voltage pulse code having a polarity opposite to that of the normal signal to the "feeder output port 61" according to the instruction of "wake-up control port G".
  • the wake-up signal generation module 431 shown in FIG. 8 can be used in the same manner as the embodiment in which the wake-up signal is a DC voltage having a polarity opposite to that of the normal signal. to realise.
  • the incoming wake-up indication signal is a DC voltage, or a digital code, but requires output DC voltage pulse encoding, it can be implemented using the wake-up signal generation module 432 shown in FIG.
  • the wake-up signal generation module 432 includes an intelligent pulse coding module 4321 and a full bridge drive circuit 4322.
  • the intelligent pulse coding module 4321 can be designed with pure digital logic devices or with smart chips such as 51 microcontrollers or ARM embedded systems or field programmable gate array FPGAs.
  • the intelligent pulse coding module 4321 receives the external control signal and outputs a corresponding DC voltage pulse control waveform signal, and controls the full bridge drive circuit 4322 to output a reverse polarity DC voltage pulse wake-up signal.
  • a full-bridge driver circuit may require two supply voltages: one is the full-bridge drive control circuit voltage supply V2, and the other is the controlled supply voltage V3 for the output.
  • the occupied signal is defined as a DC voltage that is opposite in polarity to the normal signal. Since the continuous reverse polarity DC voltage can also be regarded as a special DC voltage pulse, the wakeup signal generation module 43A also needs to generate and output an occupancy signal upon receiving a specific external control signal.
  • the "wake-up signal detecting module 53A" can be implemented by the wake-up signal detecting module 534 as shown in FIG.
  • the wake-up signal detection module 534 includes a voltage polarity detection module 5341 and an intelligent processing module 5342.
  • the voltage polarity detecting module 5341 can be implemented by the wake-up signal detecting module 531 shown in FIG. 11, or can be implemented by the wake-up signal detecting module 532.
  • the intelligent processing module 5342 can be designed with pure digital logic devices, can be implemented using field-programmable gate array FPGAs, or can be implemented using, for example, a 51 microcontroller or an ARM embedded smart chip.
  • the intelligent processing module 5342 After receiving the voltage polarity indication sent from the voltage polarity detecting module 5341, the intelligent processing module 5342 memorizes, compares and determines whether the received DC voltage pulse signal is a specified voltage pulse code, and receives the correct voltage.
  • the wake-up indication signal is continuously output during pulse encoding.
  • the wake-up signal detection module 534 can have multiple wake-up indication signal output ports to control a plurality of controllable power modules.
  • the wake-up signal generating device 4A In the initial state, all the remote device power supply devices are in a sleep state, the wake-up signal generating device 4A outputs a normal state signal, and the wake-up signal feeder 6 has no current, and the wake-up signal generating device 4A detects that the current in the wake-up signal feeder 6 is less than a preset.
  • the threshold determines that the remote device is in the sleep state and outputs the output through the remote state output port S.
  • the "wake-up signal generation module 4A" can generate a DC voltage pulse-encoding wake-up signal having a polarity opposite to that of the normal signal, and wake up the remote device power supply unit connected to the "wake-up signal feeder 6".
  • the remote device power supply connected to the "wake signal feeder 6" is immediately woken up when receiving the wake-up signal.
  • the specific wake-up method includes three steps.
  • the "wake signal generating device 4A” When it is required to wake up the power supply device of the remote device in the sleep state, the "wake signal generating device 4A" generates a reverse polarity DC voltage pulse code as a wakeup signal according to an external control signal input from the "wake control port G", And the “wake-up signal feeder 6" is sent to the remote device power supply device.
  • the remote device power supply device After receiving the wake-up signal, the remote device power supply device detects and confirms that the received wake-up signal is indeed the specified wake-up signal, and enables the controllable power module to work normally;
  • the signal feeder 6" takes power as the input power line of the controllable power module, or directly obtains power from the local power input port VL, and after conversion, generates the power voltage output required by the remote device, thereby awakening the remote device from the power-off state. .
  • the "wake-up signal generating means 4A" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4A" is capable of generating a plurality of different wake-up signals to select and designate a particular remote device power supply to be woken up.
  • the wake-up signal generation module 432 includes the smart pulse coding module 4321, so that different given regular reverse polarity DC voltage pulse codes can be generated according to different input control signals.
  • a plurality of remote device power supply devices can be allowed to be connected in parallel to the "wake signal feeder 6", and the wake-up signal generating device 4A in the control center position is individually woken up by designating different wake-up signals.
  • the specific wake-up method includes the following three steps.
  • the "wake-up signal generating device 4A" When the "remote device power supply device” is in a sleep state and does not output the power supply voltage required for the remote device to operate normally, the "wake-up signal generating device 4A" according to the “wake-up control port G" "The input external control signal selectively generates a specific wake-up signal and is delivered to the "remote device power supply unit” via the “wake-up signal feeder 6".
  • the particular wake-up signal is one of the several different reverse polarity DC voltage pulse codes described.
  • the "remote device power supply device” in the dormant state wakes up the “remote device power supply device” to work normally after correctly identifying the specific wake-up signal that arrives, generates and outputs the remote device The power supply voltage required for normal operation, thereby waking the remote device from a power-off state.
  • the "wake-up signal generating device 4A" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • a plurality of remote device power supply devices may be connected in parallel on the "wake-up signal feeder 6", but the system does not allow two or more remote device power supply devices to be powered on at the same time.
  • the specific wake-up method includes the following eight steps.
  • the remote device power supply detects that the wake-up signal on the "wake-up signal feeder 6" continues to wait until the wake-up signal on the "wake-up signal feeder 6" disappears and a normal signal appears.
  • the "wake-up signal generating device 4A" re-sends the normal signal after the wake-up signal is sent.
  • the "remote device power supply” continues to wait for a random time after detecting a normal signal on the "wake-up signal feeder 6".
  • the "remote device power supply device” freezes the wake-up operation until the "wake-up signal feeder” sends the normal signal again to end the wake-up. Process, and continue to sleep.
  • the remote device power supply device If no occupancy signal is detected on the wake-up signal feeder 6 during the delay wait, the remote device power supply device outputs the normal power supply voltage, thereby causing the remote device to wake up from sleep and enter the normal working state.
  • the "wake-up signal generating device 4A" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4A" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the "remote device power supply” wakes up the “remote device power supply” in a dormant state in three steps. (1) If the “remote device power supply device” detects a normal signal from the “wake-up feeder port 62", the “remote device power supply device” outputs a normal power supply voltage, thereby causing the remote device to wake up from sleep into a normal working state.
  • the "wake-up signal generating means 4A" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the present embodiment provides a remote wake-up system and method with voltages of different amplitudes as wake-up signals.
  • the remote wake-up system is as shown in FIG. 20, and includes: "wake-up signal generating device 4B", “remote device power-supply device 5B", and connection “wake-up signal generating device 4B” and “remote device power-supply device 5B””Wake up signal feeder 6".
  • the wake-up signal generating means 4B includes: an input power supply port V B , a wake-up control port G, a remote state output port S, a feeder output port 61, a power supply module 41, a current detecting module 42, and a wake-up signal generating module 43B.
  • the "remote device power supply device 5B” includes: a wake-up feeder port 62, a wake-up signal detecting module 53B, a controllable power source module 51, and a power supply voltage output port V.
  • the “wake-up signal generating module 43B” outputs a voltage wake-up signal different from the normal signal amplitude value to the "feeder output port 61" in accordance with the instruction of the "wake-up control port G".
  • the "wake-up signal generation module 43B” can be implemented with a double-pole double-throw switch K1 or a relay.
  • the wake-up signal generation module 433 shown in Fig. 21 includes a double-pole double-throw switch K1.
  • the input voltages V4 and V5 represent two different amplitudes of DC or AC voltage, V4 represents a normal signal voltage, and V5 represents a wake-up signal voltage. It is only necessary to simply switch the double-pole double-throw switch K1 according to the indication of the external control signal to generate and output a normal signal or a wake-up signal.
  • the wake-up signal generation module 43 ⁇ also needs to generate and output the occupied signal when the external control signal is received.
  • the "wake-up signal detecting module 53" can generate and output a wake-up indication when the wake-up signal is sensed, so that the "controllable power supply module 51" can obtain power and enter a normal working state, and output a stable power supply voltage to the local device.
  • the wake-up signal detecting module 53 can be implemented by the wake-up signal detecting module 535 as shown in FIG. It is assumed that the voltage of the normal signal is low and the voltage of the wake-up signal is high. Then, the voltage regulation values of the Zener diodes D5 and D6 and the resistance values of the current limiting resistors R6 and R7 can be reasonably designed, so that when the wake-up signal occurs, the comparator module 5351 outputs a high level, which can be used as the controllable power supply module 51. Enable signal.
  • the arriving signal may be rectified first, and then the rectified signal is detected by the wake-up signal detecting module 535 shown in FIG.
  • the wake-up signal detecting module 535 detects the wake-up signal
  • the wake-up indication signal is outputted as an enable signal for controlling the controllable power supply module 51.
  • the “wake-up signal detecting module 53" can also be realized by the memory-capable wake-up signal detecting module 536 shown in FIG.
  • the wake-up signal detection module 536 includes a conventional wake-up signal detection module 5361 and an intelligent processing module 5362.
  • the conventional wake-up signal detecting module 5361 may be a wake-up signal detecting module 535 for detecting a DC voltage amplitude or a wake-up signal detecting module for detecting an AC voltage amplitude as shown in FIG.
  • the intelligent processing module 5362 can be designed with pure digital logic devices, can be implemented using field-programmable gate array FPGAs, or can be implemented using, for example, a 51 microcontroller or an ARM embedded smart chip. When the normal wake-up signal detection module 5361 detects the wake-up signal and outputs an indication, the intelligent processing module 5362 can memorize the wake-up signal for a period of time and continue to output during the memory effective time range.
  • the wake-up signal generating device 4B In the initial state, all the remote device power supply devices are in a sleep state, the wake-up signal generating device 4B outputs a normal state signal, and the wake-up signal feeder 6 has no current, and the wake-up signal generating device 4B detects that the current in the wake-up signal feeder 6 is less than a preset.
  • the threshold determines that the remote device is in the sleep state and outputs the output through the remote state output port S.
  • the "wake-up signal generation module 4B" can generate a voltage wake-up signal different from the normal signal amplitude value to wake up the remote-device power supply device connected to the "wake-up signal feeder 6". Can be divided into two situations:
  • the "wake signal generating device 4B" When it is required to wake up the remote device power supply device in the sleep state, the "wake signal generating device 4B" generates a voltage wake-up signal different from the normal signal amplitude value according to the external control signal input from the "wake control port G", and The remote device power supply device is delivered through the "wake signal feeder 6".
  • the remote device power supply device After receiving the wake-up signal, the remote device power supply device detects and confirms that the received wake-up signal is indeed the specified wake-up signal, and enables the controllable power module to work normally;
  • the signal feeder 6" takes power as the input power line of the controllable power module, or directly obtains power from the local power input port, and after conversion, generates the power voltage output required by the remote device, thereby awakening the remote device from the power-off state.
  • the "wake-up signal generating device 4B" detects that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and knows that the remote device has been successfully woken up, and outputs a confirmation to the control center through the remote-state output port S.
  • any remote device power supply device is woken up, and two or more remote devices cannot be tolerated.
  • the power supply unit works at the same time.
  • the second case of this embodiment can be specifically completed by the following eight steps.
  • the "wake-up signal generating means 4B" confirms that all the remote devices connected to the wake-up signal feeder 6 are powered by detecting that the current in the "wake-up signal feeder 6" is less than a prescribed threshold and that only the normal signal is on the "wake-up signal feeder 6". The devices are all in a sleep state.
  • the "wake-up signal generating means 4B" generates and outputs a wake-up signal to the "wake-up signal feeder 6".
  • the remote device power supply detects the wake-up signal on the "wake-up signal feeder 6", initiates the wait-to-go normal signal procedure, detects the voltage signal on the "wake-up signal feeder 6" and waits until the normal signal is detected.
  • the "wake-up signal generating device 4B" re-sends the normal signal after the wake-up signal is sent.
  • the remote device continues to wait for a random time after detecting a normal signal on the "wake signal feeder 6".
  • the "remote device power supply device” freezes the wake-up operation until the "wake-up signal feeder 6" sends the normal signal again. Wake up the process and continue to sleep.
  • the remote device power supply device If no occupancy signal is detected on the wake-up signal feeder 6 during the delay waiting period, the remote device power supply device outputs the normal power supply voltage, thereby causing the remote device to wake up from sleep and enter the normal working state.
  • the "wake-up signal generating device 4B" detects that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and knows that the remote device has been successfully woken up, and outputs a confirmation to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4B" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the "remote device power supply” wakes up the “remote device power supply” in the sleep state in three steps.
  • the remote device power supply unit detects a normal signal from the "wake-up feeder port 62"
  • the “remote device power supply unit” outputs a normal power supply voltage, thereby causing the remote device to wake up from sleep and enter a normal working state.
  • the "remote device power supply device” detects the occupancy signal from the "wake-up feeder port 62"
  • the “remote device power supply device” freezes the wake-up operation until the "wake-up signal feeder 6" sends the normal signal again. Then, after waiting for a delay of a random time, restart the self-wake process from step (1).
  • the "wake-up signal generating means 4B" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the present embodiment provides a remote wake-up system and method for encoding a voltage pulse with different amplitudes as a wake-up signal.
  • the remote wake-up system is as shown in FIG. 24, and includes: “wake-up signal generating device 4C", “remote device power-supply device 5C", and connection “wake-up signal generating device 4C” and “remote device power-supply device 5C””Wake up signal feeder 6".
  • the wake-up signal generating means 4C includes: an input power supply port V B , a wake-up control port G, a remote state output port S, a feeder output port 61, a power supply module 41, a current detecting module 42, and a wake-up signal generating module 43C.
  • the "remote device power supply device 5C” includes: a wake-up feeder port 62, a wake-up signal detecting module 53C, a controllable power source module 51, and a power supply voltage output port V.
  • the "wake-up signal generating module 43C" outputs a voltage pulse code different from the normal signal amplitude value to the "feeder output port 61" according to the instruction of "wake-up control port G" according to a given rule. If the indication signal sent from the "wake-up control port G" is itself a voltage pulse, it can be realized by the wake-up signal generating means 433 of Fig. 21 in the same manner as the embodiment in which the wake-up signal is a voltage different from the normal signal amplitude value. If the incoming wake-up indication signal is a DC voltage, or a digital code, but requires output voltage pulse encoding, then the wake-up signal generation module 434 can be implemented as shown in FIG.
  • the wake-up signal generation module 434 includes an intelligent pulse coding module 4341 and a double-pole double-throw switch K1, V6 represents a normal signal voltage, and V7 represents a voltage different from the normal voltage amplitude value.
  • the intelligent pulse coding module 4341 can be designed with pure digital logic devices or with smart chips such as 51 microcontrollers or ARM embedded systems or field programmable gate array FPGAs.
  • the intelligent pulse coding module 4341 receives the external control signal and outputs a corresponding DC voltage pulse control waveform signal to control the switching of the double-pole double-throw switch K1, so that the wake-up signal generation module 434 outputs the specified voltage pulse code.
  • the occupied signal is defined as a voltage pulse that is different from the amplitude value of the normal signal.
  • the wake-up signal generation module 43C also needs to generate and output an occupation signal when a specific external control signal is received.
  • the "wake-up signal detecting module 53C" can be implemented by the wake-up signal detecting module 537 as shown in FIG.
  • the wake-up signal detection module 537 includes a voltage amplitude detection module 5371 and an intelligent processing module 5372.
  • the voltage amplitude detecting module 5371 can be implemented by the wake-up signal detecting module 535 for detecting the DC voltage amplitude shown in Fig. 22 or the wake-up signal detecting module for detecting the amplitude of the AC voltage.
  • the intelligent processing module 5372 can be designed with pure digital logic devices, can be implemented using field-programmable gate array FPGAs, or can be implemented using, for example, a 51 microcontroller or an ARM embedded smart chip.
  • the intelligent processing module 5372 After receiving the voltage amplitude indication sent from the voltage polarity detecting module 5371, the intelligent processing module 5372 memorizes, compares and determines whether the received voltage pulse signal of a certain amplitude is a specified voltage pulse code, and receives the correct one.
  • the wake-up indication signal is continuously output during voltage pulse encoding.
  • the wake-up signal detection module 537 can have multiple wake-up indication signal output ports to control multiple controllable power modules.
  • the wake-up signal generating device 4C In the initial state, all the remote device power supply devices are in a sleep state, the wake-up signal generating device 4C outputs a normal state signal, and there is no current in the wake-up signal feeder 6, and the wake-up signal generating device 4C detects that the current in the wake-up signal feeder 6 is less than a preset.
  • the threshold determines that the remote device is in the sleep state and outputs the output through the remote state output port S.
  • the "wake-up signal generating means 4C" can generate a voltage pulse-encoded wake-up signal different from the normal-signal amplitude to wake up the remote-device power supply unit connected to the "wake-up signal feeder 6".
  • the remote device power supply connected to the "wake signal feeder 6" is received upon receiving the wake-up signal. Wake up.
  • the specific wake-up method includes three steps.
  • the "wake-up signal generating device 4C" When the remote device power supply device that is in the sleep state needs to be woken up, the "wake-up signal generating device 4C" generates a voltage different from the normal signal amplitude value as the wake-up signal according to the external control signal input from the "wake-up control port G". Pulse coded and sent to the remote device power supply via "wake signal feeder 6".
  • the remote device power supply device After receiving the wake-up signal, the remote device power supply device detects and confirms that the received wake-up signal is indeed the specified wake-up signal, and enables the controllable power module to work normally;
  • the signal feeder 6" takes power as the input power line of the controllable power module, or directly obtains power from the local power input port VL, and after conversion, generates the power voltage output required by the remote device, thereby awakening the remote device from the power-off state.
  • the "wake-up signal generating device 4C" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4C" is capable of generating a plurality of different wake-up signals to select and designate a particular remote device power supply to be woken up.
  • the wake-up signal generation module 434 can include different voltage pulse codes of different given rules according to different external control signals, and the amplitude values of the voltage pulse codes are different from the normal signals.
  • a plurality of remote device power supply devices can be allowed to be connected in parallel to the "wake signal feeder 6", and the wake-up signal generating means 4C in the control center position can be individually woken up by designating different wake-up signals.
  • the specific wake-up method includes the following three steps.
  • the "wake-up signal generating device 4C" When the “remote device power supply device” is in a sleep state and does not output a power supply voltage required for the remote device to operate normally, the "wake-up signal generating device 4C" according to the “wake-up control port G" "The input external control signal selectively generates a specific wake-up signal and is delivered to the "remote device power supply unit” via the “wake-up signal feeder 6".
  • the specific wake-up signal is one of the several voltage pulse codes different from the normal signal amplitude value.
  • the "remote device power supply device” in the dormant state wakes up the “remote device power supply device” to work normally after correctly identifying the specific wake-up signal that arrives, generates and outputs the remote device The power supply voltage required for normal operation, thereby waking the remote device from a power-off state.
  • the "wake-up signal generating device 4C" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • a plurality of remote device power supply devices may be connected in parallel on the "wake-up signal feeder 6", but the system does not allow two or more remote device power supply devices to be powered on at the same time.
  • the specific wake-up method includes the following eight steps.
  • the "wake-up signal generating means 4C" confirms that all the remote devices connected to the wake-up signal feeder 6 are powered by detecting that the current in the "wake-up signal feeder 6" is less than a prescribed threshold and that only the normal signal is on the "wake-up signal feeder 6". The devices are all in a sleep state.
  • the remote device power supply device detects that the wake-up signal on the "wake-up signal feeder 6" continues to wait until the wake-up signal on the "wake-up signal feeder 6" disappears and a normal signal appears.
  • the "wake-up signal generating device 4C" re-sends the normal signal after the wake-up signal is sent.
  • the "remote device power supply” continues to wait for a random time after detecting a normal signal on the "wake-up signal feeder 6".
  • the "remote device power supply device” freezes the wake-up operation until the "wake-up signal feeder 6" sends the normal signal again. Wake up Cheng, and continue to sleep.
  • the remote device power supply device If no occupancy signal is detected on the wake-up signal feeder 6 during the delay wait, the remote device power supply device outputs the normal power supply voltage, thereby causing the remote device to wake up from sleep and enter the normal working state.
  • the "wake-up signal generating device 4C" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4C" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the "remote device power supply” wakes up the “remote device power supply” in a dormant state in three steps.
  • the remote device power supply unit detects a normal signal from the "wake-up feeder port 62"
  • the “remote device power supply unit” outputs a normal power supply voltage, thereby causing the remote device to wake up from sleep and enter a normal working state.
  • the "wake-up signal generating means 4C" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the present embodiment provides a remote wake-up system and method for pulsing an alternating voltage or alternating voltage pulse of a specified frequency or frequency range as a wake-up signal.
  • the remote wake-up system is as shown in FIG. 27, and includes: "wake-up signal generating device 4D", “remote device power-supply device 5D", and connection “wake-up signal generating device 4D” and “remote device power-supply device 5D””Wake up signal feeder 6".
  • the wake-up signal generating means 4D includes: an input power supply port V B , a wake-up control port G, a remote state output port S, a feeder output port 61, a power supply module 41, a current detecting module 42, and a wake-up signal generating module 43D.
  • the "remote device power supply device 5D” includes: a wake-up feeder port 62, a wake-up signal detecting module 53D, a controllable power source module 51, and a power supply voltage output port V.
  • the "wake-up signal generating module 43D" outputs an AC voltage wake-up signal of a different frequency-coded combination to the "feeder output port 61" according to the instruction of "wake-up control port G" according to a given rule.
  • the “wake-up signal generation module 43D" can be implemented by the wake-up signal generation module 435 as shown in FIG.
  • the wake-up signal generation module 435 includes an intelligent coding module 4351, a double-pole double-throw switch K1, and two AC signal generators 4352 and 4353 that generate AC voltages of different frequencies.
  • the AC signal generator 4352 is used to generate a normal signal of a specified frequency.
  • the intelligent coding module 4351 can be designed with pure digital logic devices or with smart chips such as 51 microcontrollers or ARM embedded systems or field programmable gate array FPGAs.
  • the intelligent coding module 4351 receives the external control signal and outputs a corresponding DC voltage or DC voltage pulse control waveform signal to control the switching of the double-pole double-throw switch K1, so that the wake-up signal generation module 435 outputs the frequency coding combination of the given rule. AC voltage wake-up signal.
  • the normal signal is selected from a certain frequency of AC voltage.
  • DC voltage may be used as the normal signal, and the AC voltage of the specified frequency or frequency range is superimposed on the DC normal signal as the wake-up signal.
  • the wake-up signal generation module 436 shown in Fig. 29 can be employed.
  • the wake-up signal generation module 436 includes an intelligent coding module 4361, a double-pole double-throw switch K1, an AC signal generator 4362, and coupling transformers 4363 and 4364.
  • V8 represents the dc normal voltage
  • the ac signal generator 4362 generates an ac voltage signal of a specified frequency or frequency range for waking up purposes.
  • the intelligent coding module 4361 can be designed with pure digital logic devices, and can also use such as 51 single chip microcomputer or ARM embedded system or field programmable gate array FPGA. Smart chip implementation.
  • the intelligent coding module 4361 After receiving the external control signal, the intelligent coding module 4361 outputs a corresponding DC voltage or DC voltage pulse control waveform signal, and controls the switching of the double-pole double-throw switch K1, so that the AC signal generator 4362 can generate a certain frequency or frequency range.
  • the AC voltage signal is superimposed on the normal DC voltage signal for output.
  • the occupied signal is defined as an alternating voltage or alternating voltage pulse that is different from the normal signal frequency.
  • the wake-up signal generation module 43D also needs to generate and output an occupation signal when a specific external control signal is received.
  • the "wake-up signal detecting module 53D" can generate and output a wake-up indication when the wake-up signal is sensed, so that the "controllable power supply module 51" can obtain power and enter a normal working state, and output a stable power supply voltage to the local device.
  • the wake-up signal detecting module 53D can be implemented by the wake-up signal detecting module 538 as shown in FIG.
  • the wake-up signal detection module 538 includes a resonant filter module 5381, a detection output module 5382, and an intelligent processing module 5383.
  • the resonant filter module 5351 can be an inductor-capacitor resonant tank or a low-pass or high-pass filter module depending on whether the frequency of the wake-up signal is higher or lower than the frequency of the normal signal.
  • the detection filter module 5382 can also have various options different from those of Figure 26, such as full-wave rectification, half-wave detection, and voltage doubler rectification. For details, please refer to the textbook.
  • the intelligent processing module 5383 can be designed with pure digital logic devices, can be implemented using field-programmable gate array FPGAs, or can be implemented using, for example, a 51 microcontroller or an ARM embedded smart chip.
  • the intelligent processing module 5383 After receiving the voltage frequency indication sent from the detection output module 5382, the intelligent processing module 5383 memorizes, compares and determines whether the received voltage signal is a specified frequency coding combination, and when receiving the correct frequency coding combined AC voltage The wake-up indication signal is continuously output.
  • the wake-up signal detection module 538 can have multiple wake-up indication signal output ports to control a plurality of controllable power modules.
  • all the remote device power supply devices are in a sleep state, the wake-up signal generating device 4D outputs a normal state signal, and the wake-up signal feeder 6 has no current, and the wake-up signal generating device 4D detects that the current in the wake-up signal feeder 6 is less than a preset.
  • the threshold determines that the remote device is in the sleep state and outputs the output through the remote state output port S.
  • the "wake-up signal generating device 4D" can generate an AC voltage wake-up signal of a different frequency-encoding combination to wake up the remote device power supply connected to the "wake-up signal feeder 6".
  • the remote device power supply connected to the "wake signal feeder 6" is immediately woken up when receiving the wake-up signal.
  • the specific wake-up method includes three steps.
  • the "wake-up signal generating device 4D" When the remote device power supply device that needs to wake up in the sleep state is required to operate, the "wake-up signal generating device 4D" generates an AC voltage of a different frequency-encoded combination as a wake-up signal according to an external control signal input from the "wake-up control port G", And the “wake-up signal feeder 6" is sent to the remote device power supply device.
  • the remote device power supply device After receiving the wake-up signal, the remote device power supply device detects and confirms that the received wake-up signal is indeed the specified wake-up signal, and enables the controllable power module to work normally;
  • the signal feeder 6" takes power as the input power line of the controllable power module, or directly obtains power from the local power input port VL, and after conversion, generates the power voltage output required by the remote device, thereby awakening the remote device from the power-off state.
  • the "wake-up signal generating device 4D" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4D" is capable of generating a plurality of different wake-up signals to select and designate a particular remote device power supply to be woken up.
  • Both the wake-up signal generation module 435 and the wake-up signal generation module 436 include an intelligent coding module, so that different combinations of the frequency codes of the AC voltages can be generated according to different external control signals.
  • a plurality of remote device power supply devices may be allowed to be connected in parallel on the "wake signal feeder 6", and
  • the wake-up signal generating means 4D in the control center position is individually woken up by designating different wake-up signals.
  • the specific wake-up method includes the following three steps.
  • the "wake-up signal generating device 4D" When the "remote device power supply device” is in a sleep state, and the power supply voltage required for the normal operation of the remote device is not output, the "wake-up signal generating device 4D" according to the “wake-up control port G" "The input external control signal selectively generates a specific wake-up signal and is delivered to the "remote device power supply unit” via the “wake-up signal feeder 6".
  • the particular wake-up signal is one of the AC voltage wake-up signals of the several specified frequency-coded combinations.
  • the "remote device power supply device” in the dormant state wakes up the “remote device power supply device” to work normally after correctly identifying the specific wake-up signal that arrives, generates and outputs the remote device The power supply voltage required for normal operation, thereby waking the remote device from a power-off state.
  • the "wake-up signal generating device 4D" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • a plurality of remote device power supply devices may be connected in parallel on the "wake-up signal feeder 6", but the system does not allow two or more remote device power supply devices to be powered on at the same time.
  • the specific wake-up method includes the following eight steps.
  • the "wake-up signal generating means 4D" confirms that all the remote devices connected to the wake-up signal feeder 6 are powered by detecting that the current in the "wake-up signal feeder 6" is less than a prescribed threshold and that only the normal signal is on the "wake-up signal feeder 6". The devices are all in a sleep state.
  • the remote device power supply detects that the wake-up signal on the "wake-up signal feeder 6" continues to wait until the wake-up signal on the "wake-up signal feeder 6" disappears and a normal signal appears.
  • the "wake-up signal generating device 4D" re-sends the normal signal after the wake-up signal is sent.
  • the "remote device power supply” continues to wait for a random time after detecting a normal signal on the "wake-up signal feeder 6".
  • the "remote device power supply device” freezes the wake-up operation until the "wake-up signal feeder 6" sends the normal signal again. Wake up the process and continue to sleep.
  • the remote device power supply device If no occupancy signal is detected on the wake-up signal feeder 6 during the delay wait, the remote device power supply device outputs the normal power supply voltage, thereby causing the remote device to wake up from sleep and enter the normal working state.
  • the "wake-up signal generating device 4D" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4D" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the "remote device power supply device” wakes up the “remote device power supply device” in the sleep state in three steps.
  • the remote device power supply unit detects a normal signal from the "wake-up feeder port 62"
  • the “remote device power supply unit” outputs a normal power supply voltage, thereby causing the remote device to wake up from sleep and enter a normal working state.
  • the present embodiment provides a remote wake-up system and method for pulsing an alternating voltage or alternating voltage pulse with different phases as a wake-up signal.
  • the remote wake-up system is as shown in FIG. 31, and includes: "wake-up signal generating device 4E", “remote device power-supply device 5E", and connection “wake-up signal generating device 4E” and “remote device power-supply device 5E””Wake up signal feeder 6".
  • the wake-up signal generating means 4E includes: an input power supply port V B , a wake-up control port G, a remote state output port S, a feeder output port 61, a power supply module 41, a current detecting module 42, and a wake-up signal generating module 43E.
  • the "remote device power supply device 5E” includes: a wake-up feeder port 62, a wake-up signal detecting module 53E, a controllable power source module 51, and a power supply voltage output port V.
  • the “wake-up signal generating module 43E” outputs an alternating voltage or alternating voltage pulse code having a phase different from the normal state to the "feeder output port 61" according to the instruction of "wake-up control port G".
  • the wake-up signal generating module 43E can be implemented by the wake-up signal generating module 437 shown in FIG. 32.
  • the wake-up signal generating module 437 includes a phase-modulating module 4371, an intelligent encoding module 4372, and a double-pole double-throwing switch K1.
  • the phase modulation module 4371 can be easily implemented with a varactor diode and inductor to form a single resonant circuit, or it can be implemented with a commercially available mature chip.
  • the intelligent coding module 4372 can be designed with pure digital logic devices or with smart chips such as 51 microcontrollers or ARM embedded systems or field programmable gate array FPGAs.
  • the intelligent coding module 4372 receives the external control signal and outputs a corresponding DC voltage or DC voltage pulse control waveform signal to control the switching of the double-pole double-throw switch K1, so that the wake-up signal generation module 437 outputs an AC voltage different in phase from the normal state. Or an alternating voltage pulse encodes a wake-up signal.
  • the occupied signal is defined as an alternating voltage or alternating voltage pulse that is different in phase from the normal signal.
  • the wake-up signal generating module 43A also needs to generate and output an occupied signal upon receiving a specific external control signal.
  • the "wake-up signal detecting module 53E" can generate and output a wake-up indication when the wake-up signal is sensed, so that the "controllable power supply module 51" can obtain power and enter a normal working state, and output a stable power supply voltage to the local device.
  • the wake-up signal detecting module 53E can be implemented by the wake-up signal detecting module 539 as shown in FIG.
  • the wake-up signal detection module 539 includes a phase detection module 5391 and an intelligent processing module 5392.
  • the intelligent processing module 5392 can be designed with pure digital logic devices, can be implemented using field-programmable gate array FPGAs, or can be implemented using, for example, a 51 microcontroller or an ARM embedded smart chip.
  • the intelligent processing module 5392 After receiving the phase indication sent from the phase detecting module 5391, the intelligent processing module 5392 memorizes, compares, and determines whether the received AC signal is a specified AC voltage or AC voltage pulse code, and receives the correct AC voltage or The wake-up indication signal is continuously output when the AC voltage pulse is encoded.
  • the wake-up signal detection module 539 can have multiple wake-up indication signal output ports to control a plurality of controllable power modules.
  • all the remote device power supply devices are in a sleep state, the wake-up signal generating device 4E outputs a normal state signal, and the wake-up signal feeder 6 has no current, and the wake-up signal generating device 4E detects that the current in the wake-up signal feeder 6 is less than a preset.
  • the threshold determines that the remote device is in the sleep state and outputs the output through the remote state output port S.
  • the "wake-up signal generating means 4E" can generate an alternating voltage or alternating voltage pulse-encoding wake-up signal that is different in phase from the normal signal, and wake up the remote-device power supply unit connected to the "wake-up signal feeder 6".
  • the remote device power supply connected to the "wake signal feeder 6" is immediately woken up when receiving the wake-up signal.
  • the specific wake-up method includes three steps.
  • the remote device power supply device After receiving the wake-up signal, the remote device power supply device detects and confirms that the received wake-up signal is indeed the specified wake-up signal, and enables the controllable power module to work normally;
  • the signal feeder 6" takes power as an input power line of the controllable power module, or directly obtains power from the local power input port VL, and after conversion, generates a power supply voltage output required by the remote device, thereby awakening the remote device from the power-off state.
  • the "wake-up signal generating device 4E" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4E" is capable of generating a plurality of different wake-up signals to select and designate a particular remote device power supply to be woken up.
  • the wake-up signal generation module 437 can include different AC-voltage pulse codes of different given rules according to different external control signals, and the phase of the AC-voltage pulse coded signals is different from the normal state.
  • a plurality of remote device power supply devices may be allowed to be connected in parallel to the "wake signal feeder 6", and individually awakened by the wake-up signal generating means 4E at the control center position by designating different wake-up signals.
  • the specific wake-up method includes the following three steps.
  • the "wake-up signal generating device 4E" When the "remote device power supply device” is in a sleep state and the power supply voltage required for the normal operation of the remote device is not output, the "wake-up signal generating device 4E" according to the “wake-up control port G" "The input external control signal selectively generates a specific wake-up signal and is delivered to the "remote device power supply unit” via the “wake-up signal feeder 6".
  • the specific wake-up signal is one of the alternating voltage pulse codes of the different phases described.
  • the "remote device power supply device” in the dormant state wakes up the “remote device power supply device” to work normally after correctly identifying the specific wake-up signal that arrives, generates and outputs the remote device The power supply voltage required for normal operation, thereby waking the remote device from a power-off state.
  • the "wake-up signal generating device 4E" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • a plurality of remote device power supply devices may be connected in parallel on the "wake-up signal feeder 6", but the system does not allow two or more remote device power supply devices to be powered on at the same time.
  • the specific wake-up method includes the following eight steps.
  • the remote device power supply detects that the wake-up signal on the "wake-up signal feeder 6" continues to wait until the wake-up signal on the "wake-up signal feeder 6" disappears and a normal signal appears.
  • the "wake-up signal generating device 4E" re-sends the normal signal after the wake-up signal is sent.
  • the "remote device power supply” continues to wait for a random time after detecting a normal signal on the "wake-up signal feeder 6".
  • the "remote device power supply device” freezes the wake-up operation until the "wake-up signal feeder 6" sends the normal signal again. Wake up the process and continue to sleep.
  • the remote device supplies power.
  • the device outputs a normal supply voltage, thereby causing the remote device to wake up from sleep and enter a normal operating state.
  • the "wake-up signal generating device 4E" detects that the remote device has been successfully woken up by detecting that the current on the "wake-up signal feeder 6" is greater than a predetermined threshold, and outputs an acknowledgement to the control center through the remote-state output port S.
  • the "wake-up signal generating means 4E" generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.
  • the "remote device power supply device” wakes up the “remote device power supply device” in the sleep state in three steps.
  • the remote device power supply unit detects a normal signal from the "wake-up feeder port 62"
  • the “remote device power supply unit” outputs a normal power supply voltage, thereby causing the remote device to wake up from sleep and enter a normal working state.
  • the "wake-up signal generating means” generates and outputs an occupation signal to the "wake-up signal feeder 6" after determining that the remote device is already in the awake state.

Abstract

本发明公开了一种通过有线方式实现远程唤醒和状态检测的方法和系统,其中唤醒信号发生装置根据控制产生唤醒信号,经过线缆馈送到远端设备供电装置,唤醒远端设备供电装置正常工作,向远端设备供电。其特征在于,所述的唤醒信号是与常态特征不同的指定特性电压,处于断电状态的远端设备供电装置可以检测出这种特定唤醒信号,并在检测到唤醒信号后唤醒远端设备供电装置提供正常电源电压输出。同时唤醒信号发生装置能够根据唤醒信号馈线上的馈线电流判断出远端设备是否已经处于被唤醒的活动状态。本发明的有益效果是:唤醒能耗低、可以唤醒真正断电休眠的系统、简化了结构、易于实施、便于与远程馈电方式兼容并且耐压工艺要求低。

Description

唤醒远端设备的方法和系统 技术领域
本发明属于控制远端设备功耗的方法和系统, 尤其是一种通过线缆唤醒远端设备的方 法和系统。
背景技术
普通固定电话系统具有远程唤醒和状态检测的能力, 即局端设备可以通过双绞线远程 唤醒终端设备并检测终端状态。
图 1显示了一个普通电话系统用户网络接口部分的框图,包括局端接口设备 1、 电话机 2和连接局端接口设备与电话机的双绞线 3,其中局端接口设备 1又由话音收发模块 11、供 电和监测模块 12、铃流发生器模块 13、变压器 14和 15等组成,电话机由话音处理模块 21、 稳压电源模块 22、 振铃模块 23、 叉簧开关 24、 整流模块 25以及外接于端口 E的耳机和外 接于端口 M的麦克风组成。
根据 GB-T 15279规范, 在挂机状态下, 电话机 2的叉簧开关 24处于断开的状态, 电 话机的漏电电流应小于 25微安, 局端接口设备 1输出的馈电电压为直流 48伏; 在取机状 态下,叉簧开关 24处于闭合状态, 电话机的直流电阻小于 350欧姆,正常工作耗电约 18-60 毫安。 供电和监测模块 12通过检测馈电电流, 判断出电话机已处于取机活动状态后, 一方 面将该活动状态通过端口 W送至局端其他模块进一步处理, 另一方面将自身馈电输出电压 调整到 10伏左右。 支持远程计费指示的供电和监测模块 12还具有交换馈电电压极性的功 能, 在建立通话连接以后, 可以根据馈电控制端口〗的指示, 将在双绞线 3上输出的馈电 电压正负极性对调。
在局端接口设备 1中设置有铃流发生器模块 13, 在电话机 2中设有振铃模块 23。 为了 通知电话被叫用户有来话到达, 铃流发生器模块 13用输入电压 VR产生一个约 90伏 25赫 兹的交流电压, 通过变压器 14和 15输出到电话双绞线 3, 再经过双绞线 3施加到电话机 2 中的振铃模块 23, 使振铃模块 23响铃。 铃流发生器模块 13以工作 1秒停 4秒的间歇方式 产生铃流电压。在铃流发生器模块 13输出铃流电压的 1秒钟期间,暂停供电和监测模块 12 的馈电电压输出和馈电电流检测; 在铃流发生器模块 13停止输出铃流电压的 4秒钟期间, 启用供电和监测模块 12的馈电电压输出和馈电电流检测。
当电话用户打电话时, 人工闭合叉簧开关 24, 电话机 2中更多的电路模块开始工作消 耗电流, 导致流经电话双绞线 3的馈电电流大增, 供电和监测模块 12通过检测馈电电流, 判断出电话机 2处于取机活动状态。
模拟电话系统的上述唤醒方法需要单独提供的铃流发生装置, 并且存在与摘挂机电流 检测系统存在冲突, 系统结构相当复杂。 而且使用 90伏交流铃流的响铃方式耗电大、 成本 高, 不符合节能环保的要求, 应当予以取消。
信息时代普通电话正逐渐被数字用户线调制解调器所取代。 人们希望 DSL调制解调器 也能够像普通电话那样, 可以仅依靠局端远程供电工作; 在没有数据需要传输时进入几乎 不耗能的休眠状态; 在本地有数据需要发送时主动自举进入工作状态, 在被其它网络设备 呼叫时由局端设备唤醒进入工作状态。
然而普通电话的唤醒和呼叫方式适合于人的操作,不适合 DSL调制解调器的工作方式。 对于挂接了多个设备的电话线, 人可以保证只有唯一设备在线工作, 而 DSL调制解调器设 备无法保证。 如果同一条电话线上有两台设备同时主动启动工作, 或因为同时收到被叫信 号而启动工作, DSL调制解调器通常都不能正常建立连接。 目前公开的其它远程唤醒的技术, 均与远程唤醒计算机相关。 这些唤醒方法要求计算 机安装了可提供额外休眠电源的机箱电源, 以及支持远程唤醒的主板和网卡。 实际上所有 机箱电源、 电脑主板和网卡均处于带电工作状态, 只是因为关闭了耗能较高的部分功能而 使工作电流大幅度下降, 并非真正整台电脑都不耗电能的断电状态。
此外智能家庭或办公场所, 也存在某些设备需要远程唤醒供电的情况。 如用于间歇监 控的摄像头、 智能照明灯具等。 目前这些设备只能人工启动, 或者一直开机供电, 还不能 实现远程唤醒。
本发明拟解决或改善上述公开的某些问题之一。
发明内容
为了概括本发明的目的, 在这里描述了本发明的某些方面、 优点和新颖特征。 应了解, 无需所有这些方面、 优点和特征包含在任一特殊的实施例中。
本发明的目的就是为通过有线电缆互联的设备提供一种远程唤醒和状态检测的方法和 系统。
本发明的唤醒远端设备的方法的特征在于, 包括了 "唤醒信号发生装置"、 "远端设备 供电装置"和连接 "唤醒信号发生装置"与 "远端设备供电装置" 的 "唤醒信号馈线", 所 述的 "唤醒信号发生装置"包括了 "电源模块"、 "唤醒信号发生模块"和 "电流检测模块", 所述的 "远端设备供电装置"包括了 "唤醒信号检测模块"和 "可控电源模块"。
称与不需要唤醒远端设备时所对应的指定特性电压信号为常态信号, 称与用以唤醒远 端设备时所对应的、 与常态信号不同的指定特性电压信号为唤醒信号, 称用以标明远端设 备已被唤醒处于活动状态时所对应的、 与常态信号不同的指定特性电压信号为占用信号。
"唤醒信号发生装置"能够产生包括唤醒信号在内的不同特性的电压信号, "远端设备 供电装置 "能够在休眠状态下接收并识别出唤醒信号。
当所述的 "远端设备供电装置"处于休眠状态, 没有输出远端设备正常工作所需电源 电压时, 所述的 "唤醒信号发生装置"根据所述的 "唤醒控制端口"输入的外部控制信号 产生唤醒信号, 并通过 "唤醒信号馈线"送达所述的 "远端设备供电装置",
处于休眠状态的所述的 "远端设备供电装置"在正确识别出到达的唤醒信号以后, 唤 醒所述的 "远端设备供电装置"正常工作, 产生并输出远端设备正常工作所需电源电压, 从而将远端设备从断电状态唤醒。
优选地, 所述 "唤醒信号发生装置"所产生的不同特性的电压信号, 为指定极性和幅 度值的直流电压或直流电压脉冲编码, 所述与常态时不同的唤醒信号为极性或幅度值与常 态时不同的直流电压或直流电压脉冲编码。
优选地, 所述 "唤醒信号发生装置"所产生的不同特性的电压信号, 为指定频率、 相 位和幅度值的交流电压或交流电压脉冲编码, 所述与常态时不同的唤醒信号为频率或相位 或幅度值与常态时不同的交流电压或交流电压脉冲编码。
优选地, 所述 "唤醒信号发生装置"还检测输出到 "唤醒信号馈线" 中的电流, 并在 馈线电流超过规定阈值时判定远端设备已经处于被唤醒状态。
优选地, 所述的 "唤醒信号发生装置"能够产生多种不同的唤醒信号。
当所述的 "远端设备供电装置"处于休眠状态, 没有输出远端设备正常工作所需电源电压 时, 所述的 "唤醒信号发生装置"根据所述的 "唤醒控制端口"输入的外部控制信号有选择性 地产生一种特定唤醒信号, 并通过 "唤醒信号馈线"送达所述的 "远端设备供电装置", 处于休眠状态的所述的 "远端设备供电装置"在正确识别出到达的所述特定唤醒信号 以后, 唤醒所述的 "远端设备供电装置" 正常工作, 产生并输出远端设备正常工作所需电 源电压, 从而将远端设备从断电状态唤醒。
优选地, 所述的不同特性的电压为指定极性和幅度值的直流电压脉冲编码, 或指定的 不同频率或频率组合的交流电压脉冲编码, 或指定幅度和相位的交流电压脉冲编码, 所述 的唤醒信号是指定的一组极性或幅度与常态时不同的直流电压脉冲编码, 或指定的一组相 位或幅度与常态时不同的交流电压脉冲编码,或指定的一组不同频率编码组合的交流电压。
优选地, 所述 "远端设备供电装置"在从 "唤醒馈线端口"检测到来自 "唤醒信号馈 线" 的唤醒信号后, 再用 5个步骤唤醒处于休眠状态的所述 "远端设备供电装置",
( 1 ) "远端设备供电装置"等待 "唤醒信号馈线"上的唤醒信号消失, 直到再现常态 信号,
(2) "远端设备供电装置"再继续等待一段随机时间,
( 3 ) 如果在延迟等待期间从 "唤醒馈线端口"检测到了占用信号, "远端设备供电装 置"就冻结此次唤醒操作, 直到 "唤醒信号馈线"再次送来常态信号时结束此次唤醒过程, 并继续维持在休眠状态,
(4) 如果在延迟等待期间 "唤醒信号馈线"上没有检测到占用信号, "远端设备供电 装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态,
( 5 ) "唤醒信号发生装置"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤醒 信号馈线"输出占用信号。
所述的占用信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲, 或频率或 相位或幅度值与常态时不同的交流电压或交流电压脉冲。
优选地, 当远端设备准备自举唤醒自己时, "远端设备供电装置 "用 3个步骤唤醒处于 休眠状态的所述 "远端设备供电装置",
( 1 ) 如果 "远端设备供电装置"从 "唤醒馈线端口"检测到了常态信号, "远端设备 供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态,
(2) 如果 "远端设备供电装置"从 "唤醒馈线端口"检测到了占用信号, "远端设备 供电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线"再次送来常态信号, 然后再等待 一段随机时间的延迟后, 从步骤 (1 ) 重新开始自我唤醒过程,
( 3 ) "唤醒信号发生装置"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤醒 信号馈线"输出占用信号,
所述的占用信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲, 或频率或 相位或幅度值与常态时不同的交流电压或交流电压脉冲。
本发明的唤醒断电状态远端设备的远程唤醒系统是,包括了 "唤醒信号发生装置"、 "远 端设备供电装置"和 "唤醒信号馈线", 其特征在于:
所述的 "唤醒信号馈线"是连接 "唤醒信号发生装置"与 "远端设备供电装置", 并传 递 "唤醒信号发生装置"所产生的唤醒信号和 "远端设备供电装置"所产生的供电状态信 号的导电线缆,
所述的 "唤醒信号发生装置"是用于产生唤醒信号唤醒远端设备并检测远端设备状态 的 "唤醒信号发生装置", 包括了:
用于提供本地输入电源的 "输入供电端口"、 用于接收外部控制信号的 "唤醒控制端口
用于输出远端设备活动状态的 "远端状态输出端口"、
用于向远端设备馈送唤醒信号电压的 "馈线输出端口"和
利用 "输入供电端口"提供的输入电源为其他各模块供电的 "电源模块",
其特征在于还包括了:
用于在 "唤醒控制端口"提供的外部控制信号作用下产生唤醒信号, 并通过 "馈线输 出端口"输出的 "唤醒信号发生模块"和
用于检测 "远端设备供电装置"供电状态信号, 并将所述的供电状态通过 "远端状态 输出端口 S "输出的 "电流检测模块",
所述的 "电流检测模块" 串联于所述 "电源模块" 的电压输出端经所述的 "唤醒信号 发生模块"至所述的 "馈线输出端口"之间,
所述唤醒信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲编码, 或频率 或相位或幅度值与常态时不同的交流电压或交流电压脉冲编码,
所述供电状态信号是馈线电流。
所述的 "远端设备供电装置"是可在休眠状态被唤醒而产生本地电源供电输出并反馈 供电状态信号的 "远端设备供电装置", 包括了:
用于从 "唤醒信号馈线"接收唤醒信号的 "唤醒馈线端口"和
用于输出本地模块工作电源的 "供电电压输出端口",
其特征在于还包括了:
用于检测从 "唤醒馈线端口"输入的不同特性的电压信号, 判断输入电压信号是否为 唤醒信号, 并根据检测结果输出唤醒指示的 "唤醒信号检测模块",
用于根据 "唤醒信号检测模块"输出的唤醒指示, 从 "唤醒馈线端口"输入电压并处 理, 从 "供电电压输出端口"输出本地正常工作电源电压, 并通过 "唤醒馈线端口"输出 供电状态信号的 "可控电源模块"。
所述唤醒信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲编码, 或频率 或相位或幅度值与常态时不同的交流电压或交流电压脉冲编码,
所述供电状态信号是馈线电流。
本发明的有益效果:
1. 唤醒能耗低
采用 90伏铃流馈电的传统振铃唤醒方式,振铃期间局端需要提供超过 1瓦的铃流功率。 这对于端口密度较高的局端设备而言, 功耗与散热都是一种挑战, 限制了集成度的进一步 提高。 而采用本发明的远程唤醒方式, 所需功率不超过数毫瓦, 在不影响原有唤醒能力的 前提下大大降低了局端能耗和热设计难度, 符合低碳经济的趋势。
2. 降低了耐压工艺要求
本发明完全取消了高达 90伏交流电压的铃流发生器模块,整个系统的最高工作电压降 低了到正常工作所必须提供的额定直流电压, 对系统漏触电安全和耐压工艺要求都大为降 低, 便于系统向更广阔领域的应用和系统自身集成度的进一步提高。
3. 可唤醒真正休眠的系统 本发明的一种实施方案通过产生和识别反极性电压信号, 实现对远端设备的唤醒。远端设 备可以处于完全切断电源的状态: 在被唤醒时, 只需要对唤醒信号进行整流, 就可以获得唤醒 供电模块工作所需的电能, 也可以依靠唤醒信号电压提供电源功率。避免了目前依靠信令信号 实现唤醒的网卡和调制解调器唤醒方法, 均需要设备提供一定功率的维持电源的情况。
4. 应用范围广, 易于实施
本发明所公开的产生和识别反极性电压信号都是简单方法, 产生唤醒信号的一种实施 方案仅需一个双刀双掷开关即可, 识别唤醒信号的一种实施方案也仅需要一支二极管, 易 于实施。 整个唤醒系统仅包括唤醒信号发生装置、 远端设备供电装置和唤醒信号馈线, 不 涉及远端设备的特殊应用,几乎任何需要远程唤醒并可以提供有线连接的场合均可以应用, 具有广泛的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面对实施例或现有技术 描述中所需要使用的附图作简单的介绍。 显而易见的, 下面描述中的附图仅仅是本发明的 典型实施例, 并不能看作是对其范围的限制。 通过附图的使用, 将对本发明作更加具体和 详细的描述和说明:
图 1是背景技术的电信局端接口设备和用户电话机实现框图。
图 2是根据本发明的实施例一的示例系统框图。
图 3是采用一对双绞线做唤醒信号馈线的示例系统馈线连接示意图。
图 4是采用一对双绞线加一根导线做唤醒信号馈线的馈线连接示意图。
图 5是采用两对双绞线做唤醒信号馈线的馈线连接示意图。
图 6是利用电池供电的电源模块示意图。
图 7是利用抽头变压器实现交流输入交流输出的电源模块示意图。
图 8是一种产生与常态信号极性相反的直流电压唤醒信号的唤醒信号发生模块串联直 流电流检测模块示意图。
图 9是一种交流电流检测模块示意图。
图 10是一种利用光耦元件实现的电流检测模块示意图。
图 11是一种感知与常态信号极性相反的直流电压唤醒信号并产生高电平唤醒指示信号 的常规唤醒信号检测模块示意图。
图 12是一种感知与常态信号极性相反的直流电压唤醒信号并产生低电平唤醒指示信号 的常规唤醒信号检测模块示意图。
图 13是一种带有记忆能力的感知反极性直流电压唤醒信号并产生唤醒指示信号的唤醒 信号检测模块示意图。
图 14是一种带有使能控制端稳压电源芯片的可控电源模块示意图。
图 15是一种带有可控硅的可控电源模块示意图。
图 16是一种带有本地电源输入端口的可控电源模块示意图。
图 17是根据本发明的实施例二的示例系统框图。
图 18是一种产生与常态信号极性相反的直流电压脉冲编码唤醒信号的唤醒信号发生模 块示意图。 图 19是一种能够智能识别反极性直流电压脉冲编码唤醒信号的唤醒信号检测模块示意图。 图 20是根据本发明的实施例三的示例系统图。
图 21是一种产生与常态信号幅度不同的电压唤醒信号的唤醒信号发生模块示意图。 图 22是一种感知与常态信号幅度不同的直流电压唤醒信号并产生唤醒指示信号的唤醒 信号检测模块示意图。
图 23是一种带有记忆功能的感知与常态信号幅度不同的电压唤醒信号并产生唤醒指示 信号的唤醒信号检测模块示意图。
图 24是根据本发明的实施例四的示例系统框图。
图 25是一种产生与常态信号幅度不同的电压脉冲编码唤醒信号的唤醒信号发生模块示 意图。
图 26是一种能够智能识别与常态信号幅度不同的电压脉冲编码唤醒信号的唤醒信号检 测模块示意图。
图 27是根据本发明的实施例五的示例系统框图。
图 28是一种产生指定频率编码组合的交流电压唤醒信号的唤醒信号发生模块示意图。 图 29是一种改进的产生指定的频率编码组合的交流电压唤醒信号的唤醒信号发生模块 示意图。
图 30是一种能够智能识别不同的频率编码组合的交流电压唤醒信号的唤醒信号检测模 块示意图。
图 31是根据本发明的实施例六的示例系统框图。
图 32是一种产生与常态信号相位不同的交流电压或交流电压脉冲编码的唤醒信号发生 模块示意图。
图 33是一种能够智能识别与常态信号不同相位的交流电压或交流电压脉冲编码的唤醒 信号检测模块示意图。
具体实施方式
下面描述本发明的具体实施例。 为了提供这些实施例的简明描述, 本文件中未描述实际实 现方案的所有特征。 应当认识到, 在任何实际实现方案的开发过程中, 可能还必须做出一些针 对特定应用的其它具体决定, 以符合与特定系统和业务相关的约束条件。 对于受益于本公开内 容的普通技术人员而言, 这些可能复杂而耗时的具体决定只是设计、 制造和生产的常规任务。 第一实施例
本实施例是一种以反极性直流电压作为唤醒信号的远程唤醒系统和方法。
在本实施例中, 远程唤醒系统包括: "唤醒信号发生装置 4"、 "远端设备供电装置 5 " 和连接 "唤醒信号发生装置 4"与 "远端设备供电装置 5 " 的 "唤醒信号馈线 6"。
"唤醒信号发生装置 4"用以产生包括唤醒信号、常态信号和占用信号在内的不同特性 的电压信号, 并通过 "唤醒信号馈线 6"送达 "远端设备供电装置 5 "。
"远端设备供电装置 5 "用以在休眠的情况下被远程唤醒而产生本地电源供电输出, 并 通过 "唤醒信号馈线 6"将远端设备供电状态信号反馈给 "唤醒信号发生装置 4"。
"唤醒信号发生装置 4"还同时通过检测输出到 "唤醒信号馈线"中的馈线电流, 并在 馈线电流超过规定阈值时判定远端设备已经处于被唤醒的工作状态。 "唤醒信号发生装置 4"可以是一个单独的设备, 也可以是其它设备中的一部分, 类似 于普通模拟电话局端接口设备中的供电和监测模块 12。
"唤醒信号发生装置 4"与 "唤醒信号馈线 6"的连接可以是直接的连接, 如图 2所示, 也可以是通过某种中间装置的耦合连接。如图 3、图 4、图 5中所示, "唤醒信号发生装置 4" 分别以不同的方式经过变压器耦合连接到 "唤醒信号馈线 "。
用于连接 "唤醒信号发生装置 4"与 "远端设备供电装置 5", 并传递 "唤醒信号发生 装置 4"所产生的唤醒信号和 "远端设备供电装置 5"所产生的供电状态信号的 "唤醒信号 馈线 6", 可以是多种形式的导电线缆。
最简单的 "唤醒信号馈线 6"实现方式是两根平行导线。 图 3、 图 4和图 5分别给出了 "唤醒信号馈线 6"采用一对双绞线 6A、 一对双绞线 6B1加一根导线 6B2, 和 6C1加 6C2 两对双绞线的不同实施例。 对于低频等效电路而言, 由于所述连接方法的耦合变压器对于 传输唤醒信号和供电状态信号而言相当于串联电阻, 双绞线等效于单根直导线, 实施例所 给出的唤醒信号馈线实施方案在电路原理上与图 2中的两根平行导线是等价的。
"远端设备供电装置 5"在休眠状态下不消耗电流, 因此 "唤醒信号馈线"上没有电流或 只存在极小的泄漏电流。 而一旦 "远端设备供电装置 5"被唤醒进入正常工作状态, "唤醒信 号馈线 "中可以承载一个较大的电流, 作为供电状态信号指示。 当馈线电流小于某个规定阈值 时, 例如小于 2毫安时, 可以认为 "远端设备供电装置"处于休眠状态; 而当馈线电流大于某 个规定阈值时, 例如大于 5毫安时, 可以认为 "远端设备供电装置" 已经处于正常工作状态。
如果规定的判定处于休眠状态和判定处于工作状态的两个阈值不同, 那么可能存在重 叠或未定义的状态。 例如当规定馈线电流小于 2毫安为休眠状态, 馈线电流大于 5毫安为 正常工作状态, 则馈线电流处于 2毫安至 5毫安之间时即为未定义状态。 通常未定义状态 出现于将 "唤醒信号馈线"作为总线, 挂接了过多设备时的情况。 多个设备较小的泄漏电 流叠加以后可能会比较大。 减少同时挂接工作的设备, 或縮减判定休眠和判定工作两种状 态而规定的两个阈值的差距, 可以减少或消除出现未定义状态的概率。
"远端设备供电装置 5"正常工作时为远端设备提供工作电源。 输出的电源可以是单一电 压的直流电源, 也可以是多种电压值的稳压或不稳压的直流电源, 甚至可以提供交流电源。 图 2中给出的供电电压输出端口只是表明输出电源电压的位置,并不是指只能输出一种电源电压。
"远端设备供电装置 5"与 "唤醒信号馈线 6"的连接也可以有多种变形形式, 分别如 图 2所示的直接相连和图 3、 图 4和图 5所示的耦合连接方式。
本实施例中的所述的唤醒信号是与常态信号极性相反的直流电压。 如果规定在远端设 备没有正常工作时唤醒信号馈线上施加了指定极性的直流电压, 并称此直流电压为常态信 号, 那么可以规定唤醒信号是与常态信号极性相反的直流电压。
为了帮助实施所述的 "唤醒信号发生装置"和 "远端设备供电装置", 本实施例中的 "唤 醒信号发生装置 4"包括了: 输入供电端口 VB、 唤醒控制端口 G、 远端状态输出端口 S、 馈线 输出端口 61、 电源模块 41、 电流检测模块 42和唤醒信号发生模块 43。 "远端设备供电装置 5" 包括了: 唤醒馈线端口 62、 唤醒信号检测模块 53、 可控电源模块 51和供电电压输出端口 V。
所述的 "电源模块 41 "从输入供电端口 VB取得电能, 经过变换以后输出给 "唤醒信 号发生装置" 中的其他模块使用。
电源模块 41可以输出多种电源电压, 并且可以是交流输入交流输出、 交流输入直流输 出、 直流输入交流输出和直流输入直流输出等多种实施方案。 所有这些实施方法市场上均 有成熟产品可以选用。
例如德州仪器公司的标准隔离型直流到直流变换系列稳压电源就可以用 PT4141 产生 3.3伏电压输出, PT4142产生 5伏电压输出, PT4244产生 12伏电压输出, PT4564产生 15 伏电压输出。 此外深圳华达艾诺斯电源有限公司、 北京惠泽伟业公司、 上海意泽电气有限 公司等许多公司都提供 48伏标准通信电源模块和其他多种型号的直流稳压电源模块。
对于采用稳定的电池供电的系统, 电源模块甚至可以是图 6 所示的简单直导线连接 411。对于采用交流输入交流输出的电源模块,则可以采用图 7所示的抽头输出变压器实现, 也可以是市售的其他标准交流调压模块或变频调压设备。
所述的 "唤醒信号发生模块 43"根据 "唤醒控制端口 G" 的指示, 向 "馈线输出端口 61 "输出与常态信号极性相反的直流电压唤醒信号。 "唤醒信号发生模块 43"可以用双刀双 掷的开关 K1或继电器来实现,如图 8所示。唤醒信号发生模块 431包括了一个双刀双掷的 开关 Kl, 它可以是一个继电器的受控开关部分, 将输入电压 VI控制变换成需要的极性输 出。输出端 V+和 V-不是表示输出电压的极性,而是仅表示在常态信号状态下输出电压的两 个不同极性。 唤醒信号发生器模块 43也可以采用一个全桥驱动电路实现。 例如采用美国国 家半导体公司生产的 LMD18245、 荷兰恩智普公司生产的 UBA2036、 以及 Allegro公司生 产的 A3959等市售成熟芯片, 均可以方便地实现根据唤醒控制端口 G的指示来控制输出不 同极性的直流电压唤醒信号, 具体电路见相关芯片手册中的推荐参考设计。
定义占用信号是与常态信号极性相反的直流电压, 唤醒信号发生模块 43还需要在收到 外部控制信号时产生并输出占用信号。
所述的 "电流检测模块 42"可以是一个电流表; 也可以是如图 8中所示的直流电流检 测模块 421或者如图 9中所示的交流电流检测模块 422; 也可以是如图 10所示的电流检测 模块 423, 包括光耦元件 4231和 4232, Vp接正电源, 由电源模块 41提供; 还可以由市售 成熟芯片来实现, 如凌力尔特公司的 LT2940芯片, 具体电路可以参考相关芯片手册中的说 明和推荐参考设计。 电流检测模块 42的具体位置可以根据自身的性质设置, 例如直流电流 检测模块应放置在 "电源模块 41 "与 "唤醒信号发生模块 43"之间, 交流电流检测模块放 在 "电源模块 41 "与 "唤醒信号发生模块 43"之间或 "唤醒信号发生模块 43"之后。
所述的 "唤醒信号检测模块 53"在感知到唤醒信号时能产生并输出唤醒指示, 使 "可 控电源模块 51 "能够取得电能而进入正常工作状态, 向本地设备输出稳定的电源电压。
"唤醒信号检测模块 53"可以由如图 11所示的唤醒信号检测模块 531实现。当输入常 态信号时, 由于串联的二极管 D1和 D2反向截止, 唤醒信号检测模块 531在输出端无法提 供有效的唤醒指示。 当输入电压极性反转的唤醒信号时, 二极管 D1和 D2均导通, 反极性 的唤醒信号电压经过电阻 R1和 R2分压, 然后经过二极管 D3输出, 可作为控制可控电源 模块 51的使能信号。
"唤醒信号检测模块 53"也可以由图 12所示的唤醒信号检测模块 532实现。当输入常 态信号时, 由于二极管 D4反向截止, 场效应管也截止, 电阻 R5输出高电平, 表示没有唤 醒信号到达。 当输入唤醒信号时, 二极管 D4 导通, 场效应管也导通, 唤醒信号检测模块 532输出低电平信号, 该信号可作为控制可控电源模块 51的使能信号。
"唤醒信号检测模块 53"还可以由图 13所示的带记忆能力的唤醒信号检测模块 533 来实现。唤醒信号检测模块 533包括了一个常规的唤醒信号检测模块 5331和一个智能处理 模块 5332。 所述的常规唤醒信号检测模块 5331可以是图 11所示唤醒信号检测模块 531, 也可以是图 12所示的唤醒信号检测模块 532。智能处理模块 5332可以用纯数字逻辑器件来 设计, 可以使用现场可编程门阵列 FPGA实现, 也可以使用诸如 51单片机或 ARM嵌入式 智能芯片实现。 当常规唤醒信号检测模块 5331检测到唤醒信号并输出指示后, 智能处理模 块 5332可以记忆唤醒信号一段时间, 并在记忆有效时间范围内持续输出。
所述的 "可控电源模块 51 "可以是从唤醒信号馈线上取得电能的远程供电可控电源模 块, 也可以是直接从本地取得电能的本地供电可控电源模块。
对于远程供电可控电源模块而言, 可控电源模块 51可以是如图 14所示的可控电源模 块 511。 优选实施例可控电源模块 511包括了输入滤波电路 (Cl、 Ll、 L2和 C2)、 集成稳 压电路 (LM2575HV、 L3和 D511 ) 和输出滤波电路 (C3) 三部分电路。 所述的可控电源 模块 511在收到唤醒信号检测模块 53输出的低电平有效唤醒指示信号时, 从唤醒信号馈线 上取得电能, 经变换后稳压输出, 为本地需电设备提供出稳定的直流电压。 此时可控电源 模块 511消耗较大的电流, 并将此电流作为供电状态信号通过唤醒馈线端口输出。
优选实施例可控电源模块 511 中选用了带有使能控制的稳压集成电路芯片 LM2575HV。 更多更典型的直流稳压电源可能没有使能控制端口。 这时可以采用图 15所示 的可控电源模块 512。为了使可控电源模块在收到唤醒指示后能持续地取得电能,在输入端 串联了单向可控硅 D512。 当可控硅的输入端输入正向触发电压时, 可控硅导通, 稳压电路 5121工作,输出稳定的直流电压。稳压电路 5121可以是任何一种市售的成熟稳压电源模块。
由于唤醒信号馈线上的电压极性有可能翻转, 稳压电源模块应该在其输入部分串联一 个整流模块, 以保证直流稳压电源模块正常工作所需的输入电源极性。
除了美国国家半导体公司生产的 LM2575HV外, 上海爱立信公司生产的 PKM5000D、 摩托罗拉公司生产的 A78S40、 POWER公司生产的 TNY268、安森美公司生产的 NCP3063 等市售成熟芯片均可用于实现可控电源模块 51, 具体电路可以参考相关芯片手册中的说明 和推荐参考设计。
对于采用本地供电方式的可控电源模块而言, 可控电源模块 51可以用如图 16所示的 可控电源模块 513来实现。 该模块带有本地电源输入端口 VL, 并从本地电源输入端口 VL 取得电能。 可控电源模块 513在收到唤醒信号检测模块 53的唤醒指示后, 从本地电源输入 端口 VL取得电能, 经变换后稳压输出, 为本地需电设备提供稳定的直流电压。
为了向唤醒信号发生装置反馈远端设备工作状态, 采用本地供电的可控电源模块 513 需要增加一个远端设备工作状态信号发生模块 5132。 优选的远端工作状态信号发生模块是 一个继电器, 其接法示于图 16。 图 16中的稳压电源模块 5131可以是可控电源模块 511或 可控电源模块 512。
当稳压电源模块 5131 正常工作输出电压时, 作为远端设备工作状态信号发生器模块 5132的继电器吸合, 为 "唤醒信号馈线 6"提供电流回路, 产生用作远端设备供电状态指 示的馈线电流。 当稳压电源模块处于休眠状态而无电压输出时, 继电器控制端的绕阻无电 流通过, 受控端的开关断开, 此时 "唤醒信号线 6" 中无电流。
在初态情况下, 所有远端设备供电装置处于休眠状态, 唤醒信号发生装置 4输出常态 信号, 唤醒信号馈线 6中无电流, 唤醒信号发生装置 4检测到唤醒信号馈线 6中的电流小 于预设阈值, 判断出远端设备处于休眠状态, 并通过远端状态输出端口 S输出。
"唤醒信号发生模块 4"可产生与常态信号极性相反的直流电压唤醒信号, 唤醒连接在 唤醒信号馈线 6上的远端设备供电装置。 可分为两种情况:
第一种情况,连接在"唤醒信号馈线 6"上的所有远端设备供电装置在收到唤醒信号时, 被即时唤醒。 具体可用三个步骤完成。
( 1 )在需要唤醒处于休眠状态的远端设备供电装置工作时, "唤醒信号发生装置 4"根 据 "唤醒控制端口 G"输入的外部控制信号产生与常态信号极性相反的直流电压唤醒信号, 并通过 "唤醒信号馈线 6"送达远端设备供电装置。
(2)远端设备供电装置收到唤醒信号以后, 一方面由唤醒信号检测模块检测并确认收 到的确实是规定的唤醒信号后,使能可控电源模块正常工作;另一方面将"唤醒信号馈线 6" 作为可控电源模块的输入电源线取得电能, 或直接从本地电源输入端口 VL取得电能, 经过 变换后生成远端设备所需电源电压输出, 从而将远端设备从断电状态唤醒。
(3) "唤醒信号发生装置 4"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第二种情况, 连接在"唤醒信号馈线 6"上的多个远端设备供电装置在收到唤醒信号时, 任 意一个远端设备供电装置被唤醒, 且不能容忍两个或两个以上的远端设备供电装置同时工作。
本实施例的第二种情况具体可用如下八个步骤完成。
( 1 ) "唤醒信号发生装置 4"通过检测 "唤醒信号馈线 6"中的电流小于规定阈值和 "唤 醒信号馈线 6"上只有常态信号,确认连接在唤醒信号馈线 6上的所有远端设备供电装置都 处于休眠状态。
(2) "唤醒信号发生装置 4"产生并向 "唤醒信号馈线 6"输出唤醒信号。
(3) 远端设备供电装置检测到 "唤醒信号馈线 6"上的唤醒信号, 启动进入唤醒的等 待常态信号程序, 检测 "唤醒信号馈线 6"上的电压信号并等待直到检测到常态信号。
(4) "唤醒信号发生装置 4"在送完唤醒信号以后, 重新送出常态信号。远端设备供电 装置在检测 "唤醒信号馈线 6"上出现常态信号后, 再继续等待一段随机时间。
(5) 如果在延迟等待期间从 "唤醒馈线端口 62"检测到了占用信号, "远端设备供电 装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线"再次送来常态信号时结束此次唤醒过 程, 并继续维持在休眠状态。
(6) 如果在延迟等待期间 "唤醒信号馈线 6"上没有检测到占用信号, 远端设备供电 装置就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(7) "唤醒信号发生装置 4"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
(8) "唤醒信号发生装置 4"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤醒 信号馈线 6"输出占用信号。
当远端设备准备自举唤醒自己时, "远端设备供电装置 "用 3个步骤唤醒处于休眠状态 的所述 "远端设备供电装置"。
(1) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了常态信号, "远端设 备供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(2) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了占用信号, "远端设 备供电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号, 然后再等 待一段随机时间的延迟后, 从步骤 (1) 重新开始自我唤醒过程。
(3) "唤醒信号发生装置 4"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤醒 信号馈线 6"输出占用信号。
第二实施例
本实施例提供一种以不同极性的直流电压脉冲编码作为唤醒信号的远程唤醒系统和方法。 本实施例中, 远程唤醒系统如图 17所示, 包括: "唤醒信号发生装置 4A"、 "远端设备 供电装置 5A"和连接 "唤醒信号发生装置 4A"与 "远端设备供电装置 5A" 的 "唤醒信号 馈线 6"。 唤醒信号发生装置 4A包括了: 输入供电端口 VB、 唤醒控制端口 G、 远端状态输 出端口 S、馈线输出端口 61、电源模块 41、电流检测模块 42和唤醒信号发生模块 43A。"远 端设备供电装置 5A"包括了: 唤醒馈线端口 62、 唤醒信号检测模块 53A、 可控电源模块 51和供电电压输出端口 V。
所述的 "唤醒信号发生模块 43A "根据 "唤醒控制端口 G" 的指示, 向 "馈线输出端 口 61 "按给定规则输出与常态信号极性相反的直流电压脉冲编码。如果 "唤醒控制端口 G" 送来的指示信号本身就是电压脉冲, 那么可以按照唤醒信号是与常态信号极性相反的直流 电压的实施方案相同的方法, 用图 8所示的唤醒信号发生模块 431来实现。 如果送来的唤 醒指示信号是直流电压, 或者是某种数字代码, 但是要求输出直流电压脉冲编码, 那么可 以使用图 18所示的唤醒信号发生模块 432来实现。
唤醒信号发生模块 432包括了智能脉冲编码模块 4321和全桥驱动电路 4322。智能脉冲 编码模块 4321可以用纯数字逻辑器件来设计,也可以使用诸如 51单片机或 ARM嵌入式系 统或现场可编程门阵列 FPGA等智能芯片实现。智能脉冲编码模块 4321收到外部控制信号 后输出相应的直流电压脉冲控制波形信号,控制全桥驱动电路 4322输出反极性直流电压脉 冲唤醒信号。全桥驱动电路可能需要两种电源电压:一种是全桥驱动控制电路电压电源 V2, 另一种是用于输出的被控制电源电压 V3。
定义占用信号是与常态信号极性相反的直流电压。 由于持续的反极性直流电压也可以 被视为一种特殊的直流电压脉冲, 因此唤醒信号发生模块 43A还需要在收到特定外部控制 信号时产生并输出占用信号。
所述的 "唤醒信号检测模块 53A"可用如图 19所示的唤醒信号检测模块 534实现。 唤醒信号检测模块 534包括了电压极性检测模块 5341和智能处理模块 5342。电压极性 检测模块 5341可以用图 11所示的唤醒信号检测模块 531实现, 也可以用唤醒信号检测模 块 532实现。
智能处理模块 5342可以用纯数字逻辑器件来设计、 可以使用现场可编程门阵列 FPGA 实现, 也可以使用诸如 51单片机或 ARM嵌入式智能芯片实现。
当收到从电压极性检测模块 5341送来的电压极性指示后, 智能处理模块 5342记忆、 比较并判断收到的直流电压脉冲信号是否是规定的电压脉冲编码, 并在收到正确的电压脉 冲编码时持续输出唤醒指示信号。
唤醒信号检测模块 534可以有多个唤醒指示信号输出端口, 控制多个可控电源模块。 在初态情况下,所有远端设备供电装置处于休眠状态, 唤醒信号发生装置 4A输出常态 信号, 唤醒信号馈线 6中无电流, 唤醒信号发生装置 4A检测到唤醒信号馈线 6中的电流小 于预设阈值, 判断出远端设备处于休眠状态, 并通过远端状态输出端口 S输出。
"唤醒信号发生模块 4A"可产生与常态信号极性相反的直流电压脉冲编码唤醒信号, 唤醒连接在 "唤醒信号馈线 6 "上的远端设备供电装置。
可分三种情况描述唤醒方法的步骤:
第一种情况, 连接在 "唤醒信号馈线 6 "上的远端设备供电装置在收到唤醒信号时被即 时唤醒。 具体唤醒方法包括三个步骤。
( 1 ) 在需要唤醒处于休眠状态的远端设备供电装置工作时, "唤醒信号发生装置 4A" 根据 "唤醒控制端口 G"输入的外部控制信号产生作为唤醒信号的反极性直流电压脉冲编 码, 并通过 "唤醒信号馈线 6 "送达远端设备供电装置。
( 2)远端设备供电装置收到唤醒信号以后, 一方面由唤醒信号检测模块检测并确认收 到的确实是规定的唤醒信号后,使能可控电源模块正常工作;另一方面将"唤醒信号馈线 6 " 作为可控电源模块的输入电源线取得电能, 或直接从本地电源输入端口 VL取得电能, 经过 变换后生成远端设备所需电源电压输出, 从而将远端设备从断电状态唤醒。 (3) "唤醒信号发生装置 4A"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第二种情况, 所述的 "唤醒信号发生装置 4A"能够产生多种不同的唤醒信号, 从而选择和 指定特定的远端设备供电装置被唤醒。 唤醒信号发生模块 432 由于包括了智能脉冲编码模块 4321, 因此可以根据输入外部控制信号的不同产生不同的给定规则的反极性直流电压脉冲编码。
在这种情况下, 可以允许多个远端设备供电装置并联连接在"唤醒信号馈线 6"上, 并 由处于控制中心地位的唤醒信号发生装置 4A通过指定不同的唤醒信号而被分别唤醒。具体 唤醒方法包括以下 3个步骤。
( 1 ) 当所述的 "远端设备供电装置"处于休眠状态, 没有输出远端设备正常工作所需 电源电压时, 所述的 "唤醒信号发生装置 4A"根据所述的 "唤醒控制端口 G"输入的外部 控制信号有选择性地产生一种特定唤醒信号, 并通过 "唤醒信号馈线 6"送达所述的 "远端 设备供电装置"。 所述的特定唤醒信号是所述的几种不同的反极性直流电压脉冲编码之一。
(2)处于休眠状态的所述的 "远端设备供电装置"在正确识别出到达的所述特定唤醒 信号以后, 唤醒所述的 "远端设备供电装置"正常工作, 产生并输出远端设备正常工作所 需电源电压, 从而将远端设备从断电状态唤醒。
(3) "唤醒信号发生装置 4A"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第三种情况, "唤醒信号馈线 6"上可能并联着多个远端设备供电装置, 但是系统不允 许两个或两个以上的远端设备供电装置同时上电工作。
在这种情况下, 需要使用占用信号和额外的步骤来唤醒远端设备供电装置。 具体唤醒 方法包括以下八个步骤。
( 1 ) "唤醒信号发生装置 4A"通过检测 "唤醒信号馈线 6" 中的电流小于规定阈值和 "唤醒信号馈线 6"上只有常态信号,确认连接在唤醒信号馈线上的所有远端设备供电装置 都处于休眠状态。
(2) "唤醒信号发生装置 4A"产生并向 "唤醒信号馈线 6"输出唤醒信号。
(3) 远端设备供电装置检测到 "唤醒信号馈线 6"上的唤醒信号继续等待, 直到 "唤 醒信号馈线 6"上的唤醒信号消失出现常态信号。
(4) "唤醒信号发生装置 4A"在送完唤醒信号后, 重新送出常态信号。 "远端设备供 电装置"在检测 "唤醒信号馈线 6"上出现常态信号后, 再继续等待一段随机时间。
(5) 如果在延迟等待期间从 "唤醒馈线端口 62"检测到了占用信号, "远端设备供电 装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线"再次送来常态信号时结束此次唤醒过 程, 并继续维持在休眠状态。
(6) 如果在延迟等待期间 "唤醒信号馈线 6"上没有检测到占用信号, 远端设备供电 装置就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(7) "唤醒信号发生装置 4A"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
( 8) "唤醒信号发生装置 4A"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤 醒信号馈线 6"输出占用信号。
当远端设备准备自举唤醒自己时, "远端设备供电装置"用三个步骤唤醒处于休眠状态 的所述 "远端设备供电装置"。 ( 1 ) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了常态信号, "远端设 备供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(2) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了占用信号, "远端设 备供电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号, 然后再等 待一段随机时间的延迟后, 从步骤 (1 ) 重新开始自我唤醒过程。
(3) "唤醒信号发生装置 4A"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤 醒信号馈线 6"输出占用信号。
第三实施例
本实施例提供一种以不同幅度的电压作为唤醒信号的远程唤醒系统和方法。
本实施例中, 远程唤醒系统如图 20所示, 包括: "唤醒信号发生装置 4B"、 "远端设备 供电装置 5B"和连接 "唤醒信号发生装置 4B"与 "远端设备供电装置 5B" 的 "唤醒信号 馈线 6"。 唤醒信号发生装置 4B包括了: 输入供电端口 VB、 唤醒控制端口 G、 远端状态输 出端口 S、馈线输出端口 61、电源模块 41、 电流检测模块 42和唤醒信号发生模块 43B。"远 端设备供电装置 5B"包括了: 唤醒馈线端口 62、 唤醒信号检测模块 53B、 可控电源模块 51和供电电压输出端口 V。
所述的 "唤醒信号发生模块 43B"根据 "唤醒控制端口 G" 的指示, 向 "馈线输出端 口 61 "输出与常态信号幅度值不同的电压唤醒信号。 "唤醒信号发生模块 43B"可以用双刀 双掷开关 K1或继电器来实现。 如图 21所示的唤醒信号发生模块 433包括了双刀双掷的开 关 Kl, 输入电压 V4和 V5代表两种不同幅度的直流或交流电压, V4代表常态信号电压, V5代表唤醒信号电压。 只需要根据外部控制信号的指示简单地切换双刀双掷的开关 Kl, 就可以产生并输出常态信号或唤醒信号。
定义占用信号时与常态信号幅度值不同的直流或交流电压, 唤醒信号发生模块 43Β还 需要在收到外部控制信号时产生并输出占用信号。
所述的 "唤醒信号检测模块 53Β"在感知到唤醒信号时能产生并输出唤醒指示, 使 "可 控电源模块 51 "能够取得电能而进入正常工作状态, 向本地设备输出稳定的电源电压。
当所述的唤醒信号是与常态信号幅度值不同的直流电压时, 唤醒信号检测模块 53Β可用 如图 22所示的唤醒信号检测模块 535来实现。 假设常态信号的电压较低, 而唤醒信号的电压 较高。那么可以合理设计稳压二极管 D5和 D6的稳压值和限流电阻 R6和 R7的阻值, 使得当 唤醒信号出现时比较器模块 5351输出高电平, 可以用作控制可控电源模块 51的使能信号。
当所述的唤醒信号是与常态信号幅度值不同的交流电压时, 可以先对到达的信号进行整流, 然后再用图 22所示的唤醒信号检测模块 535来检测整流后的信号。当所述的唤醒信号检测模块 535检测到唤醒信号时, 相应地输出唤醒指示信号, 作为控制可控电源模块 51的使能信号。
"唤醒信号检测模块 53"还可以由图 23所示的带记忆能力的唤醒信号检测模块 536 来实现。唤醒信号检测模块 536包括了一个常规的唤醒信号检测模块 5361和一个智能处理 模块 5362。 所述的常规唤醒信号检测模块 5361可以是图 22所示检测直流电压幅度的唤醒 信号检测模块 535或检测交流电压幅度的唤醒信号检测模块。智能处理模块 5362可以用纯 数字逻辑器件来设计, 可以使用现场可编程门阵列 FPGA实现, 也可以使用诸如 51单片机 或 ARM嵌入式智能芯片实现。 当常规唤醒信号检测模块 5361检测到唤醒信号并输出指示 后, 智能处理模块 5362可以记忆唤醒信号一段时间, 并在记忆有效时间范围内持续输出。
在初态情况下,所有远端设备供电装置处于休眠状态, 唤醒信号发生装置 4B输出常态 信号, 唤醒信号馈线 6中无电流, 唤醒信号发生装置 4B检测到唤醒信号馈线 6中的电流小 于预设阈值, 判断出远端设备处于休眠状态, 并通过远端状态输出端口 S输出。 "唤醒信号发生模块 4B"可产生与常态信号幅度值不同的电压唤醒信号, 唤醒连接在 "唤醒信号馈线 6"上的远端设备供电装置。 可分为两种情况:
第一种情况,连接在"唤醒信号馈线 6"上的所有远端设备供电装置在收到唤醒信号时, 被即时唤醒。 具体可用三个步骤完成。
( 1 ) 在需要唤醒处于休眠状态的远端设备供电装置工作时, "唤醒信号发生装置 4B" 根据 "唤醒控制端口 G"输入的外部控制信号产生与常态信号幅度值不同的电压唤醒信号, 并通过 "唤醒信号馈线 6"送达远端设备供电装置。
(2)远端设备供电装置收到唤醒信号以后, 一方面由唤醒信号检测模块检测并确认收 到的确实是规定的唤醒信号后,使能可控电源模块正常工作;另一方面将"唤醒信号馈线 6" 作为可控电源模块的输入电源线取得电能, 或直接从本地电源输入端口取得电能, 经过变 换后生成远端设备所需电源电压输出, 从而将远端设备从断电状态唤醒。
(3) "唤醒信号发生装置 4B "通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第二种情况, 连接在 "唤醒信号馈线 6"上的远端设备供电装置在收到唤醒信号时, 任意 一个远端设备供电装置被唤醒, 且不能容忍两个或两个以上的远端设备供电装置同时工作。
本实施例的第二种情况具体可用如下八个步骤完成。
( 1 ) "唤醒信号发生装置 4B"通过检测 "唤醒信号馈线 6" 中的电流小于规定阈值和 "唤醒信号馈线 6"上只有常态信号,确认连接在唤醒信号馈线 6上的所有远端设备供电装 置都处于休眠状态。
(2) "唤醒信号发生装置 4B"产生并向 "唤醒信号馈线 6"输出唤醒信号。
(3) 远端设备供电装置检测到 "唤醒信号馈线 6"上的唤醒信号, 启动进入唤醒的等 待常态信号程序, 检测 "唤醒信号馈线 6"上的电压信号并等待直到检测到常态信号。
(4) "唤醒信号发生装置 4B "在送完唤醒信号以后, 重新送出常态信号。 远端设备供 电装置在检测 "唤醒信号馈线 6"上出现常态信号后, 再继续等待一段随机时间。
(5) 如果在延迟等待期间从 "唤醒馈线端口 62"检测到了占用信号, "远端设备供电 装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号时结束此次唤醒过 程, 并继续维持在休眠状态。
(6) 如果在延迟等待期间 "唤醒信号馈线 6"上没有检测到占用信号, 远端设备供电 装置就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态,
(7) "唤醒信号发生装置 4B "通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
( 8) "唤醒信号发生装置 4B "在判定远端设备已经处于被唤醒状态后, 产生并向 "唤 醒信号馈线 6"输出占用信号。
当远端设备准备自举唤醒自己时, "远端设备供电装置 "用 3个步骤唤醒处于休眠状态 的所述 "远端设备供电装置"。
( 1 ) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了常态信号, "远端设 备供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(2) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了占用信号, "远端设 备供电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号, 然后再等 待一段随机时间的延迟后, 从步骤 (1 ) 重新开始自我唤醒过程。 (3) "唤醒信号发生装置 4B "在判定远端设备已经处于被唤醒状态后, 产生并向 "唤 醒信号馈线 6"输出占用信号。
第四实施例
本实施例提供一种以不同幅度的电压脉冲编码作为唤醒信号的远程唤醒系统和方法。 本实施例中, 远程唤醒系统如图 24所示, 包括: "唤醒信号发生装置 4C"、 "远端设备 供电装置 5C"和连接 "唤醒信号发生装置 4C"与 "远端设备供电装置 5C" 的 "唤醒信号 馈线 6"。 唤醒信号发生装置 4C包括了: 输入供电端口 VB、 唤醒控制端口 G、 远端状态输 出端口 S、馈线输出端口 61、电源模块 41、 电流检测模块 42和唤醒信号发生模块 43C。"远 端设备供电装置 5C"包括了: 唤醒馈线端口 62、 唤醒信号检测模块 53C、 可控电源模块 51和供电电压输出端口 V。
所述的 "唤醒信号发生模块 43C"根据 "唤醒控制端口 G" 的指示, 向 "馈线输出端 口 61 "按给定规则输出与常态信号幅度值不同的电压脉冲编码。 如果 "唤醒控制端口 G" 送来的指示信号本身就是电压脉冲, 那么可以按照唤醒信号是与常态信号幅度值不同的电 压的实施方案相同的方法, 用图 21的唤醒信号发生装置 433来实现。 如果送来的唤醒指示 信号是直流电压, 或者是某种数字代码, 但是要求输出电压脉冲编码, 那么可用图 25所示 唤醒信号发生模块 434来实现。
唤醒信号发生模块 434包括了智能脉冲编码模块 4341和一个双刀双掷的开关 Kl, V6 代表常态信号电压, V7代表与常态电压幅度值不同的电压。 智能脉冲编码模块 4341可以 用纯数字逻辑器件来设计, 也可以使用诸如 51单片机或 ARM嵌入式系统或现场可编程门 阵列 FPGA等智能芯片实现。智能脉冲编码模块 4341收到外部控制信号后输出相应的直流 电压脉冲控制波形信号, 控制双刀双掷的开关 K1 的切换, 从而使唤醒信号发生模块 434 输出指定的电压脉冲编码。
定义占用信号是与常态信号幅度值不同的电压脉冲。 唤醒信号发生模块 43C还需要在 收到特定外部控制信号时产生并输出占用信号。
所述的 "唤醒信号检测模块 53C"可用如图 26所示的唤醒信号检测模块 537实现。 唤醒信号检测模块 537包括了电压幅度检测模块 5371和智能处理模块 5372。电压幅度 检测模块 5371可以用图 22所示的检测直流电压幅度的唤醒信号检测模块 535或检测交流 电压幅度的唤醒信号检测模块实现。
智能处理模块 5372可以用纯数字逻辑器件来设计、 可以使用现场可编程门阵列 FPGA 实现, 也可以使用诸如 51单片机或 ARM嵌入式智能芯片实现。
当收到从电压极性检测模块 5371送来的电压幅度指示后, 智能处理模块 5372记忆、 比较并判断收到的一定幅度的电压脉冲信号是否是规定的电压脉冲编码, 并在收到正确的 电压脉冲编码时持续输出唤醒指示信号。
唤醒信号检测模块 537可以有多个唤醒指示信号输出端口, 控制多个可控电源模块。 在初态情况下,所有远端设备供电装置处于休眠状态, 唤醒信号发生装置 4C输出常态 信号, 唤醒信号馈线 6中无电流, 唤醒信号发生装置 4C检测到唤醒信号馈线 6中的电流小 于预设阈值, 判断出远端设备处于休眠状态, 并通过远端状态输出端口 S输出。
"唤醒信号发生装置 4C"可产生与常态信号幅度不同的电压脉冲编码唤醒信号, 唤醒 连接在 "唤醒信号馈线 6"上的远端设备供电装置。
可分三种情况描述唤醒方法的步骤:
第一种情况, 连接在 "唤醒信号馈线 6"上的远端设备供电装置在收到唤醒信号时被即 时唤醒。 具体唤醒方法包括三个步骤。
( 1 ) 在需要唤醒处于休眠状态的远端设备供电装置工作时, "唤醒信号发生装置 4C" 根据 "唤醒控制端口 G"输入的外部控制信号产生作为唤醒信号的与常态信号幅度值不同 的电压脉冲编码, 并通过 "唤醒信号馈线 6 "送达远端设备供电装置。
( 2)远端设备供电装置收到唤醒信号以后, 一方面由唤醒信号检测模块检测并确认收 到的确实是规定的唤醒信号后,使能可控电源模块正常工作;另一方面将"唤醒信号馈线 6 " 作为可控电源模块的输入电源线取得电能, 或直接从本地电源输入端口 VL取得电能, 经过 变换后生成远端设备所需电源电压输出, 从而将远端设备从断电状态唤醒。
( 3 ) "唤醒信号发生装置 4C "通过检测 "唤醒信号馈线 6 "上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第二种情况, 所述的 "唤醒信号发生装置 4C"能够产生多种不同的唤醒信号, 从而选 择和指定特定的远端设备供电装置被唤醒。 唤醒信号发生模块 434 由于包括了智能脉冲编 码模块 4341, 因此可以根据不同的外部控制信号产生不同的给定规则的电压脉冲编码, 且 该电压脉冲编码的幅度值与常态信号不同。
在这种情况下, 可以允许多个远端设备供电装置并联连接在"唤醒信号馈线 6 "上, 并 由处于控制中心地位的唤醒信号发生装置 4C通过指定不同的唤醒信号而被分别唤醒。具体 唤醒方法包括以下 3个步骤。
( 1 ) 当所述的 "远端设备供电装置"处于休眠状态, 没有输出远端设备正常工作所需电 源电压时, 所述的 "唤醒信号发生装置 4C"根据所述的 "唤醒控制端口 G"输入的外部控制 信号有选择性地产生一种特定唤醒信号, 并通过 "唤醒信号馈线 6"送达所述的 "远端设备供 电装置"。 所述的特定唤醒信号是所述的几种与常态信号幅度值不同的电压脉冲编码之一。
( 2)处于休眠状态的所述的 "远端设备供电装置"在正确识别出到达的所述特定唤醒 信号以后, 唤醒所述的 "远端设备供电装置"正常工作, 产生并输出远端设备正常工作所 需电源电压, 从而将远端设备从断电状态唤醒。
( 3 ) "唤醒信号发生装置 4C "通过检测 "唤醒信号馈线 6 "上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第三种情况, "唤醒信号馈线 6 "上可能并联着多个远端设备供电装置, 但是系统不允 许两个或两个以上的远端设备供电装置同时上电工作。
在这种情况下, 需要使用占用信号和额外的步骤来唤醒远端设备供电装置。 具体唤醒 方法包括以下八个步骤。
( 1 ) "唤醒信号发生装置 4C"通过检测 "唤醒信号馈线 6 " 中的电流小于规定阈值和 "唤醒信号馈线 6 "上只有常态信号,确认连接在唤醒信号馈线 6上的所有远端设备供电装 置都处于休眠状态。
( 2) "唤醒信号发生装置 4C"产生并向 "唤醒信号馈线 6 "输出唤醒信号。
( 3 ) 远端设备供电装置检测到 "唤醒信号馈线 6 "上的唤醒信号继续等待, 直到 "唤 醒信号馈线 6 "上的唤醒信号消失出现常态信号。
( 4) "唤醒信号发生装置 4C"在送完唤醒信号后, 重新送出常态信号。 "远端设备供 电装置"在检测 "唤醒信号馈线 6 "上出现常态信号后, 再继续等待一段随机时间。
( 5 ) 如果在延迟等待期间从 "唤醒馈线端口 62"检测到了占用信号, "远端设备供电 装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6 "再次送来常态信号时结束此次唤醒过 程, 并继续维持在休眠状态。
(6) 如果在延迟等待期间 "唤醒信号馈线 6"上没有检测到占用信号, 远端设备供电 装置就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(7) "唤醒信号发生装置 4C"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
( 8) "唤醒信号发生装置 4C"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤 醒信号馈线 6"输出占用信号。
当远端设备准备自举唤醒自己时, "远端设备供电装置"用三个步骤唤醒处于休眠状态 的所述 "远端设备供电装置"。
( 1 ) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了常态信号, "远端设 备供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(2) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了占用信号, "远端设 备供电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号, 然后再等 待一段随机时间的延迟后, 从步骤 (1 ) 重新开始自我唤醒过程。
(3) "唤醒信号发生装置 4C"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤 醒信号馈线 6"输出占用信号。
第五实施例
本实施例提供一种以指定频率或频率范围的交流电压或交流电压脉冲编码作为唤醒信 号的远程唤醒系统和方法。
本实施例中, 远程唤醒系统如图 27所示, 包括: "唤醒信号发生装置 4D"、 "远端设备 供电装置 5D"和连接 "唤醒信号发生装置 4D"与 "远端设备供电装置 5D" 的 "唤醒信号 馈线 6"。 唤醒信号发生装置 4D包括了: 输入供电端口 VB、 唤醒控制端口 G、 远端状态输 出端口 S、馈线输出端口 61、电源模块 41、电流检测模块 42和唤醒信号发生模块 43D。"远 端设备供电装置 5D"包括了: 唤醒馈线端口 62、 唤醒信号检测模块 53D、 可控电源模块 51和供电电压输出端口 V。
所述的 "唤醒信号发生模块 43D"根据 "唤醒控制端口 G" 的指示, 向 "馈线输出端 口 61 " 按给定规则输出不同的频率编码组合的交流电压唤醒信号。
"唤醒信号发生模块 43D"可以用如图 28所示的唤醒信号发生模块 435来实现。 唤醒 信号发生模块 435包括智能编码模块 4351、 一个双刀双掷的开关 K1和两个产生不同频率 交流电压的交流信号发生器 4352和 4353。 交流信号发生器 4352用来产生指定频率的常态 信号。智能编码模块 4351可以用纯数字逻辑器件来设计,也可以使用诸如 51单片机或 ARM 嵌入式系统或现场可编程门阵列 FPGA等智能芯片实现。智能编码模块 4351收到外部控制 信号后输出相应的直流电压或直流电压脉冲控制波形信号, 控制双刀双掷的开关 K1 的切 换, 从而使唤醒信号发生模块 435输出给定规则的频率编码组合的交流电压唤醒信号。
优选实施例中常态信号选用了一定频率的交流电压, 实际上更多时候可能使用直流电 压作为常态信号,将指定频率或频率范围的交流电压叠加在直流常态信号上作为唤醒信号。 这时可以采用图 29所示的唤醒信号发生模块 436。
唤醒信号发生模块 436包括了智能编码模块 4361、双刀双掷的开关 Kl、交流信号发生 器 4362和耦合变压器 4363和 4364。 V8代表直流常态电压, 交流信号发生器 4362产生用 于唤醒目的的指定频率或频率范围的交流电压信号。智能编码模块 4361可以用纯数字逻辑 器件来设计, 也可以使用诸如 51单片机或 ARM嵌入式系统或现场可编程门阵列 FPGA等 智能芯片实现。智能编码模块 4361收到外部控制信号后输出相应的直流电压或直流电压脉 冲控制波形信号, 控制双刀双掷的开关 K1的切换, 就可以将交流信号发生器 4362产生的 一定频率或频率范围的交流电压信号叠加到常态直流电压信号上输出。
定义占用信号是与常态信号频率不同的交流电压或交流电压脉冲。 唤醒信号发生模块 43D还需要在收到特定的外部控制信号时产生并输出占用信号。
所述的 "唤醒信号检测模块 53D "在感知唤醒信号时能产生并输出唤醒指示, 使 "可 控电源模块 51 "能够取得电能而进入正常工作状态, 向本地设备输出稳定的电源电压。
唤醒信号检测模块 53D可用如图 30所示的唤醒信号检测模块 538来实现。唤醒信号检 测模块 538包括了谐振滤波模块 5381、 检波输出模块 5382和智能处理模块 5383。 谐振滤 波模块 5351可以是一个电感电容谐振回路, 也可以是低通或高通滤波器模块, 取决于唤醒 信号的频率比常态信号的频率高还是低。 检波滤波模块 5382也可以有不同于图 26的多种 选择, 如全波整流、 半波检波、 倍压整流等方式。 具体可参考教科书。
智能处理模块 5383可以用纯数字逻辑器件来设计、 可以使用现场可编程门阵列 FPGA 实现, 也可以使用诸如 51单片机或 ARM嵌入式智能芯片实现。
当收到从检波输出模块 5382送来的电压频率指示后, 智能处理模块 5383记忆、 比较 并判断收到的电压信号是否是规定的频率编码组合, 并在收到正确的频率编码组合交流电 压时持续输出唤醒指示信号。
唤醒信号检测模块 538可以有多个唤醒指示信号输出端口, 控制多个可控电源模块。 在初态情况下,所有远端设备供电装置处于休眠状态, 唤醒信号发生装置 4D输出常态 信号, 唤醒信号馈线 6中无电流, 唤醒信号发生装置 4D检测到唤醒信号馈线 6中的电流小 于预设阈值, 判断出远端设备处于休眠状态, 并通过远端状态输出端口 S输出。
"唤醒信号发生装置 4D "可产生不同的频率编码组合的交流电压唤醒信号, 唤醒连接 在 "唤醒信号馈线 6 "上的远端设备供电装置。
可分三种情况描述唤醒方法的步骤:
第一种情况, 连接在 "唤醒信号馈线 6 "上的远端设备供电装置在收到唤醒信号时被即 时唤醒。 具体唤醒方法包括三个步骤。
( 1 ) 在需要唤醒处于休眠状态的远端设备供电装置工作时, "唤醒信号发生装置 4D " 根据 "唤醒控制端口 G "输入的外部控制信号产生作为唤醒信号的不同频率编码组合的交 流电压, 并通过 "唤醒信号馈线 6 "送达远端设备供电装置。
( 2 )远端设备供电装置收到唤醒信号以后, 一方面由唤醒信号检测模块检测并确认收 到的确实是规定的唤醒信号后,使能可控电源模块正常工作;另一方面将"唤醒信号馈线 6 " 作为可控电源模块的输入电源线取得电能, 或直接从本地电源输入端口 VL取得电能, 经过 变换后生成远端设备所需电源电压输出, 从而将远端设备从断电状态唤醒。
( 3 ) "唤醒信号发生装置 4D "通过检测 "唤醒信号馈线 6 "上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第二种情况, 所述的 "唤醒信号发生装置 4D "能够产生多种不同的唤醒信号, 从而选 择和指定特定的远端设备供电装置被唤醒。唤醒信号发生模块 435和唤醒信号发生模块 436 都包括了智能编码模块, 因此可以根据不同的外部控制信号产生不同的给定规则的频率编 码组合的交流电压。
在这种情况下, 可以允许多个远端设备供电装置并联连接在"唤醒信号馈线 6 "上, 并 由处于控制中心地位的唤醒信号发生装置 4D通过指定不同的唤醒信号而被分别唤醒。具体 唤醒方法包括以下 3个步骤。
( 1 ) 当所述的 "远端设备供电装置"处于休眠状态, 没有输出远端设备正常工作所需电 源电压时, 所述的 "唤醒信号发生装置 4D"根据所述的 "唤醒控制端口 G"输入的外部控制 信号有选择性地产生一种特定唤醒信号, 并通过 "唤醒信号馈线 6"送达所述的 "远端设备供 电装置"。 所述的特定唤醒信号是所述的几种指定的频率编码组合的交流电压唤醒信号之一。
(2)处于休眠状态的所述的 "远端设备供电装置"在正确识别出到达的所述特定唤醒 信号以后, 唤醒所述的 "远端设备供电装置"正常工作, 产生并输出远端设备正常工作所 需电源电压, 从而将远端设备从断电状态唤醒。
(3) "唤醒信号发生装置 4D"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第三种情况, "唤醒信号馈线 6"上可能并联着多个远端设备供电装置, 但是系统不允 许两个或两个以上的远端设备供电装置同时上电工作。
在这种情况下, 需要使用占用信号和额外的步骤来唤醒远端设备供电装置。 具体唤醒 方法包括以下八个步骤。
( 1 ) "唤醒信号发生装置 4D"通过检测 "唤醒信号馈线 6" 中的电流小于规定阈值和 "唤醒信号馈线 6"上只有常态信号,确认连接在唤醒信号馈线 6上的所有远端设备供电装 置都处于休眠状态。
(2) "唤醒信号发生装置 4D"产生并向 "唤醒信号馈线 6"输出唤醒信号。
(3) 远端设备供电装置检测到 "唤醒信号馈线 6"上的唤醒信号继续等待, 直到 "唤 醒信号馈线 6"上的唤醒信号消失出现常态信号。
(4) "唤醒信号发生装置 4D"在送完唤醒信号后, 重新送出常态信号。 "远端设备供 电装置"在检测 "唤醒信号馈线 6"上出现常态信号后, 再继续等待一段随机时间。
(5) 如果在延迟等待期间从 "唤醒馈线端口 62"检测到了占用信号, "远端设备供电 装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号时结束此次唤醒过 程, 并继续维持在休眠状态。
(6) 如果在延迟等待期间 "唤醒信号馈线 6"上没有检测到占用信号, 远端设备供电 装置就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(7) "唤醒信号发生装置 4D"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
( 8) "唤醒信号发生装置 4D"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤 醒信号馈线 6"输出占用信号。
当远端设备准备自举唤醒自己时, "远端设备供电装置"用三个步骤唤醒处于休眠状态 的所述 "远端设备供电装置",
( 1 ) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了常态信号, "远端设 备供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(2) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了占用信号, "远端设 备供电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号, 然后再等 待一段随机时间的延迟后, 从步骤 (1 ) 重新开始自我唤醒过程。
(3 ) "唤醒信号发生装置"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤醒 信号馈线 6"输出占用信号。
第六实施例
本实施例提供一种以不同相位的交流电压或交流电压脉冲编码作为唤醒信号的远程唤 醒系统和方法。
本实施例中, 远程唤醒系统如图 31所示, 包括: "唤醒信号发生装置 4E"、 "远端设备 供电装置 5E"和连接 "唤醒信号发生装置 4E"与 "远端设备供电装置 5E" 的 "唤醒信号 馈线 6"。 唤醒信号发生装置 4E包括了: 输入供电端口 VB、 唤醒控制端口 G、 远端状态输 出端口 S、馈线输出端口 61、 电源模块 41、 电流检测模块 42和唤醒信号发生模块 43E。"远 端设备供电装置 5E"包括了: 唤醒馈线端口 62、 唤醒信号检测模块 53E、 可控电源模块 51 和供电电压输出端口 V。
所述的 "唤醒信号发生模块 43E"根据 "唤醒控制端口 G" 的指示, 向 "馈线输出端 口 61 " 按给定规则输出相位与常态时不同的交流电压或交流电压脉冲编码。唤醒信号发生 模块 43E可用图 32所示唤醒信号发生模块 437来实现,唤醒信号发生模块 437包括调相模 块 4371、 智能编码模块 4372, 双刀双掷的开关 Kl。 调相模块 4371可以用变容二极管和电 感构成单谐振回路简单实现, 也可用市售成熟芯片实现。
智能编码模块 4372可以用纯数字逻辑器件来设计, 也可以使用诸如 51单片机或 ARM嵌 入式系统或现场可编程门阵列 FPGA等智能芯片实现。 智能编码模块 4372收到外部控制信号 后输出相应的直流电压或直流电压脉冲控制波形信号, 控制双刀双掷的开关 K1的切换, 从而 使唤醒信号发生模块 437输出相位与常态时不同的交流电压或交流电压脉冲编码唤醒信号。
定义占用信号是与常态信号相位不同的交流电压或交流电压脉冲。 唤醒信号发生模块 43A还需要在收到特定的外部控制信号时产生并输出占用信号。
所述的 "唤醒信号检测模块 53E"在感知到唤醒信号时能产生并输出唤醒指示, 使 "可 控电源模块 51 "能够取得电能而进入正常工作状态, 向本地设备输出稳定的电源电压。
唤醒信号检测模块 53E可用如图 33所示的唤醒信号检测模块 539来实现。唤醒信号检 测模块 539包括相位检测模块 5391和智能处理模块 5392。
智能处理模块 5392可以用纯数字逻辑器件来设计、 可以使用现场可编程门阵列 FPGA 实现, 也可以使用诸如 51单片机或 ARM嵌入式智能芯片实现。
当收到从相位检测模块 5391送来的相位指示后, 智能处理模块 5392记忆、 比较并判 断收到的交流信号是否是规定的交流电压或交流电压脉冲编码, 并在收到正确的交流电压 或交流电压脉冲编码时持续输出唤醒指示信号。
唤醒信号检测模块 539可以有多个唤醒指示信号输出端口, 控制多个可控电源模块。 在初态情况下, 所有远端设备供电装置处于休眠状态, 唤醒信号发生装置 4E输出常态 信号, 唤醒信号馈线 6中无电流, 唤醒信号发生装置 4E检测到唤醒信号馈线 6中的电流小 于预设阈值, 判断出远端设备处于休眠状态, 并通过远端状态输出端口 S输出。
"唤醒信号发生装置 4E"可产生与常态信号相位不同的交流电压或交流电压脉冲编码 唤醒信号, 唤醒连接在 "唤醒信号馈线 6"上的远端设备供电装置。
可分三种情况描述唤醒方法的步骤:
第一种情况, 连接在 "唤醒信号馈线 6"上的远端设备供电装置在收到唤醒信号时被即 时唤醒。 具体唤醒方法包括三个步骤。
( 1 ) 在需要唤醒处于休眠状态的远端设备供电装置工作时, "唤醒信号发生装置 4E" 根据 "唤醒控制端口 G"输入的外部控制信号产生作为唤醒信号的与常态信号相位不同的 交流电压或交流电压脉冲编码, 并通过 "唤醒信号馈线 6"送达远端设备供电装置。
(2)远端设备供电装置收到唤醒信号以后, 一方面由唤醒信号检测模块检测并确认收 到的确实是规定的唤醒信号后,使能可控电源模块正常工作;另一方面将"唤醒信号馈线 6" 作为可控电源模块的输入电源线取得电能, 或直接从本地电源输入端口 VL取得电能, 经过 变换后生成远端设备所需电源电压输出, 从而将远端设备从断电状态唤醒。
(3) "唤醒信号发生装置 4E"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第二种情况, 所述的 "唤醒信号发生装置 4E"能够产生多种不同的唤醒信号, 从而选 择和指定特定的远端设备供电装置被唤醒。 唤醒信号发生模块 437 由于包括了智能编码模 块 4372, 因此可以根据不同的外部控制信号产生不同的给定规则的交流电压脉冲编码, 且 该交流电压脉冲编码信号的相位与常态时不同。
在这种情况下, 可以允许多个远端设备供电装置并联连接在"唤醒信号馈线 6"上, 并 由处于控制中心地位的唤醒信号发生装置 4E通过指定不同的唤醒信号而被分别唤醒。具体 唤醒方法包括以下 3个步骤。
(1) 当所述的 "远端设备供电装置"处于休眠状态, 没有输出远端设备正常工作所需 电源电压时, 所述的 "唤醒信号发生装置 4E"根据所述的 "唤醒控制端口 G"输入的外部 控制信号有选择性地产生一种特定唤醒信号, 并通过 "唤醒信号馈线 6"送达所述的 "远端 设备供电装置"。 所述的特定唤醒信号是所述的几种不同相位的交流电压脉冲编码之一。
(2)处于休眠状态的所述的 "远端设备供电装置"在正确识别出到达的所述特定唤醒 信号以后, 唤醒所述的 "远端设备供电装置"正常工作, 产生并输出远端设备正常工作所 需电源电压, 从而将远端设备从断电状态唤醒。
(3) "唤醒信号发生装置 4E"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
第三种情况, "唤醒信号馈线 6"上可能并联着多个远端设备供电装置, 但是系统不允 许两个或两个以上的远端设备供电装置同时上电工作。
在这种情况下, 需要使用占用信号和额外的步骤来唤醒远端设备供电装置。 具体唤醒 方法包括以下八个步骤。
(1) "唤醒信号发生装置 4E"通过检测 "唤醒信号馈线 6" 中的电流小于规定阈值和 "唤醒信号馈线 6"上只有常态信号,确认连接在唤醒信号馈线上的所有远端设备供电装置 都处于休眠状态。
(2) "唤醒信号发生装置 4E"产生并向 "唤醒信号馈线 6"输出唤醒信号。
(3) 远端设备供电装置检测到 "唤醒信号馈线 6"上的唤醒信号继续等待, 直到 "唤 醒信号馈线 6"上的唤醒信号消失出现常态信号。
(4) "唤醒信号发生装置 4E"在送完唤醒信号后, 重新送出常态信号。 "远端设备供 电装置"在检测 "唤醒信号馈线 6"上出现常态信号后, 再继续等待一段随机时间。
(5) 如果在延迟等待期间从 "唤醒馈线端口 62"检测到了占用信号, "远端设备供电 装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号时结束此次唤醒过 程, 并继续维持在休眠状态。
(6) 如果在延迟等待期间 "唤醒信号馈线 6"上没有检测到占用信号, 远端设备供电 装置就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(7) "唤醒信号发生装置 4E"通过检测 "唤醒信号馈线 6"上的电流大于规定的阈值, 获知远端设备已被成功唤醒, 通过远端状态输出端口 S向控制中心输出确认。
( 8) "唤醒信号发生装置 4E"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤 醒信号馈线 6"输出占用信号。
当远端设备准备自举唤醒自己时, "远端设备供电装置"用三个步骤唤醒处于休眠状态 的所述 "远端设备供电装置",
( 1 ) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了常态信号, "远端设 备供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态。
(2) 如果 "远端设备供电装置"从 "唤醒馈线端口 62"检测到了占用信号, "远端设 备供电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线 6"再次送来常态信号, 然后再等 待一段随机时间的延迟后, 从步骤 (1 ) 重新开始自我唤醒过程。
(3 ) "唤醒信号发生装置"在判定远端设备已经处于被唤醒状态后, 产生并向 "唤醒 信号馈线 6"输出占用信号。
需要指出, 根据上述描述, 本领域的技术人员将理解在不脱离本发明的精神的情况下, 可以对本发明的各种实施例中进行修改和改变。 也就是, 本说明书中的描述仅用于说明性 的目的, 而不应当理解为对本发明的限制。 本发明的保护范围仅取决于权利要求书的保护 范围。

Claims

权利要求书
1. 一种唤醒远端设备的方法, 其特征在于:
包括了 "唤醒信号发生装置"、 "远端设备供电装置"和连接 "唤醒信号发生装置" 与 "远端设备供电装置" 的 "唤醒信号馈线",
"唤醒信号发生装置 "能产生包括唤醒信号在内的不同特性的电压信号,
"远端设备供电装置"能够在休眠状态下接收并识别出所述唤醒信号, 当所述的 "远端设备供电装置"处于休眠状态, 没有输出远端设备正常工作所需 电源电压时, 所述的 "唤醒信号发生装置"根据所述的 "唤醒控制端口"输入的外部 控制信号产生唤醒信号, 并通过 "唤醒信号馈线"送达所述的 "远端设备供电装置", 处于休眠状态的所述的"远端设备供电装置"在正确识别出到达的唤醒信号以后, 唤醒所述的 "远端设备供电装置"正常工作, 产生并输出远端设备正常工作所需电源 电压, 从而将远端设备从断电状态唤醒。
2. 根据权利要求 1 所述的唤醒远端设备的方法, 其特征还在于, 所述不同特性 的电压为指定极性和幅度值的直流电压或直流电压脉冲编码, 或指定频率和相位和幅 度值的交流电压或交流电压脉冲编码, 所述的唤醒信号是极性或幅度值与常态时不同 的直流电压或直流电压脉冲编码, 或频率或相位或幅度值与常态时不同的交流电压或 交流电压脉冲编码。
3. 根据权利要求 1所述的唤醒远端设备的方法, 其特征还在于, "唤醒信号发生 装置"检测输出到 "唤醒信号馈线" 中的馈线电流, 并在馈线电流超过规定阈值时判 定远端设备已经处于被唤醒状态。
4. 根据权利要求 1所述的唤醒远端设备的方法, 其特征还在于,
"唤醒信号发生装置"能够产生多种不同的唤醒信号,
"远端设备供电装置" 能够在休眠状态下接收并识别出所述的不同唤醒信号之 当所述的 "远端设备供电装置"处于休眠状态, 没有输出远端设备正常工作所需 电源电压时, 所述的 "唤醒信号发生装置"根据所述的 "唤醒控制端口"输入的外部 控制信号有选择性地产生一种特定唤醒信号,并通过 "唤醒信号馈线"送达所述的"远 端设备供电装置",
处于休眠状态的所述的 "远端设备供电装置"在正确识别出到达的所述特定唤醒 信号以后, 唤醒所述的 "远端设备供电装置"正常工作, 产生并输出远端设备正常工 作所需电源电压, 从而将远端设备从断电状态唤醒。
5. 根据权利要求 4所述的唤醒远端设备的方法, 其特征还在于,
所述的不同特性的电压为指定极性和幅度值的直流电压脉冲编码, 或指定的不同 频率或频率组合的交流电压脉冲编码, 或指定幅度和相位的交流电压脉冲编码, 所述 的唤醒信号是指定的一组极性或幅度与常态时不同的直流电压脉冲编码, 或指定的一 组相位或幅度与常态时不同的交流电压脉冲编码, 或指定的一组不同频率编码组合的 交流电压。
6. 根据权利要求 4所述的唤醒远端设备的方法, 其特征还在于, "远端设备供电装置"在从 "唤醒馈线端口"检测到来自 "唤醒信号馈线" 的唤 醒信号后, 再用 5个步骤唤醒处于休眠状态的所述 "远端设备供电装置",
( 1 ) "远端设备供电装置"等待 "唤醒信号馈线"上的唤醒信号消失, 直到再现 常态信号,
(2) "远端设备供电装置"继续再等待一段随机时间,
(3) 如果在延迟等待期间从 "唤醒馈线端口"检测到了占用信号, "远端设备供 电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线"再次送来常态信号时结束此次 唤醒过程, 并继续维持在休眠状态,
(4) 如果在延迟等待期间 "唤醒信号馈线"上没有检测到占用信号, "远端设备 供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状态,
( 5 ) "唤醒信号发生装置 "在判定远端设备已经处于被唤醒状态后,产生并向"唤 醒信号馈线"输出占用信号,
所述的占用信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲, 或频 率或相位或幅度值与常态时不同的交流电压或交流电压脉冲。
7. 根据权利要求 1所述的唤醒远端设备的方法, 其特征还在于,
当远端设备准备自举唤醒自己时, "远端设备供电装置"用 3个步骤唤醒处于休 眠状态的所述 "远端设备供电装置",
( 1 ) 如果 "远端设备供电装置"从 "唤醒馈线端口"检测到了常态信号, "远端 设备供电装置"就输出正常电源电压, 从而使远端设备从休眠中唤醒进入正常工作状 态,
(2) 如果 "远端设备供电装置"从 "唤醒馈线端口"检测到了占用信号, "远端 设备供电装置"就冻结此次唤醒操作, 直到 "唤醒信号馈线"再次送来常态信号, 然 后再等待一段随机时间的延迟后, 从步骤 (1 ) 重新开始自我唤醒过程,
(3) "唤醒信号发生装置 "在判定远端设备已经处于被唤醒状态后,产生并向"唤 醒信号馈线"输出占用信号,
所述的占用信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲, 或频 率或相位或幅度值与常态时不同的交流电压或交流电压脉冲。
8. 一种实现权利要求 1的 "唤醒信号发生装置", 包括了输入供电端口、 唤醒控 制端口、 远端状态输出端口、 馈线输出端口和利用 "输入供电端口"提供的输入电源 为其他各模块供电的 "电源模块", 其特征在于,
所述的 "唤醒信号发生装置"是用于产生唤醒信号唤醒远端设备并检测远端设备 状态的 "唤醒信号发生装置", 其还包括了:
用于在 "唤醒控制端口"提供的外部控制信号作用下产生唤醒信号, 并通过 "馈 线输出端口"输出的 "唤醒信号发生模块"和
用于检测 "远端设备供电装置"供电状态信号, 并将所述的供电状态通过 "远端 状态输出端口"输出的 "电流检测模块",
所述的 "电流检测模块" 串联于所述 "电源模块" 的电压输出端经所述的 "唤醒 信号发生模块"至所述的 "馈线输出端口"之间, 所述的唤醒信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲编码, 或频率或相位或幅度值与常态时不同的交流电压或交流电压脉冲编码,
所述供电状态信号是馈线电流。
9. 一种实现权利要求 1的 "远端设备供电装置", 包括了: 唤醒馈线端口和供电 电压输出端口, 其特征在于,
所述的 "远端设备供电装置"是可在休眠状态被唤醒而产生本地电源供电输出并 反馈供电状态信号的 "远端设备供电装置", 其还包括了:
用于检测从 "唤醒馈线端口"输入的不同特性的电压信号, 判断输入电压信号是 否为唤醒信号, 并根据检测结果输出唤醒指示的 "唤醒信号检测模块",
用于根据 "唤醒信号检测模块"输出的唤醒指示, 从 "唤醒馈线端口"输入电压 并处理, 从 "供电电压输出端口"输出本地正常工作电源电压, 并通过 "唤醒馈线端 口"输出供电状态信号的 "可控电源模块",
所述的唤醒信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲编码, 或频率或相位或幅度值与常态时不同的交流电压或交流电压脉冲编码,
所述供电状态信号是馈线电流。
10. 一种唤醒断电状态远端设备的远程唤醒系统, 其特征在于包括了: 如权利要求 8所述的用于产生唤醒信号并检测 "远端设备供电装置"供电状态的 "唤醒信号发生装置"和
如权利要求 9所述的用于在休眠状态被唤醒而产生本地电源供电输出并反馈供电 状态信号的 "远端设备供电装置"和
连接 "唤醒信号发生装置"与 "远端设备供电装置", 并传递 "唤醒信号发生装 置"所产生的唤醒信号和 "远端设备供电装置"所产生的供电状态信号的 "唤醒信号 馈线",
所述的唤醒信号是极性或幅度值与常态时不同的直流电压或直流电压脉冲编码, 或频率或相位或幅度值与常态时不同的交流电压或交流电压脉冲编码,
所述供电状态信号是馈线电流。
PCT/CN2011/079460 2010-10-28 2011-09-08 唤醒远端设备的方法和系统 WO2012055301A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/882,410 US9058169B2 (en) 2010-10-28 2011-09-08 Method and system for waking up remote devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010522794.X 2010-10-28
CN201010522794XA CN101964714B (zh) 2010-10-28 2010-10-28 唤醒远端设备的方法和系统

Publications (1)

Publication Number Publication Date
WO2012055301A1 true WO2012055301A1 (zh) 2012-05-03

Family

ID=43517465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079460 WO2012055301A1 (zh) 2010-10-28 2011-09-08 唤醒远端设备的方法和系统

Country Status (3)

Country Link
US (1) US9058169B2 (zh)
CN (1) CN101964714B (zh)
WO (1) WO2012055301A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964714B (zh) * 2010-10-28 2013-01-30 南京大学 唤醒远端设备的方法和系统
CN103514039B (zh) * 2012-06-25 2018-07-06 联想(北京)有限公司 操作控制方法及电子设备
CN103986588B (zh) * 2013-02-07 2017-05-24 宏碁股份有限公司 电脑系统及电脑装置的远端遥控方法
US10110755B2 (en) * 2013-12-31 2018-10-23 British Telecommunications Public Limited Company Method and apparatus for use in supplying power over a telephone line
CN105653297A (zh) * 2014-11-11 2016-06-08 宏碁股份有限公司 电子装置及其控制方法
CN104581050A (zh) * 2014-12-19 2015-04-29 镇江丰成民用联网设备科技有限公司 一种节能的远程控制视频监控系统
CN104581051A (zh) * 2014-12-19 2015-04-29 镇江丰成民用联网设备科技有限公司 基于四线的远程馈电视频监控系统
JP2016208120A (ja) * 2015-04-16 2016-12-08 株式会社日本自動車部品総合研究所 ネットワーク制御装置
CN104993974B (zh) * 2015-06-30 2019-03-08 华为技术有限公司 一种识别设备工作状态的检测方法以及上位机
US9946322B2 (en) * 2016-01-14 2018-04-17 Qualcomm Incorporated Wake-up detector
EP3331195A1 (en) * 2016-12-01 2018-06-06 Iristick nv Device and method for wake-up signalling
CN107027163B (zh) * 2017-06-08 2020-07-10 歌尔股份有限公司 TypeC耳机唤醒手机电路
KR102001934B1 (ko) * 2017-06-20 2019-07-19 엘지전자 주식회사 대기 전력 기능을 가지는 전원 장치 및 이를 포함하는 공기 조화기
CN107453959B (zh) * 2017-09-22 2021-04-30 郑州云海信息技术有限公司 一种网卡的管理方法及其装置
CN109672950B (zh) * 2017-10-13 2020-07-24 华为终端有限公司 一种基于Type-C耳机的省电电路和省电方法
KR20200052131A (ko) * 2018-11-06 2020-05-14 삼성에스디아이 주식회사 슬레이브 모듈
CN109802480B (zh) * 2019-03-01 2021-03-30 深圳锐合飞航智能设备有限公司 一种进入休眠或出厂模式的装置
CN111077974B (zh) * 2019-11-07 2024-02-20 江苏理工学院 基于差分通信的远程唤醒电源装置
DE102020131502A1 (de) * 2020-11-27 2022-06-02 Infineon Technologies Ag Verfahren zum Übertragen nicht-akustischer Daten zwischen einem Mikrofon und einem Controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599320A (zh) * 2004-08-09 2005-03-23 电子科技大学 无线网络中实现远程控制休眠和唤醒的装置及方法
CN1857911A (zh) * 2005-05-04 2006-11-08 现代摩比斯株式会社 托架制造方法
CN1878071A (zh) * 2006-07-05 2006-12-13 刘文斌 基于网络的计算机远程唤醒方法与装置
CN101964714A (zh) * 2010-10-28 2011-02-02 南京大学 唤醒远端设备的方法和系统
CN101980472A (zh) * 2010-10-28 2011-02-23 南京大学 带唤醒功能的远程恒压馈电方法和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463543B1 (en) * 1999-08-03 2002-10-08 Btech, Inc. Serial bus communications system
EP1857911A1 (en) 2006-05-17 2007-11-21 Sony Deutschland Gmbh Method for operating an electronic device, electronic device, and electronic assembly
CN101355256B (zh) * 2008-06-04 2013-04-17 李幸 一种电源适配器供电系统
US20110107116A1 (en) * 2009-11-04 2011-05-05 Broadcom Corporation System and Method for Power Over Ethernet Enabled Network Management

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599320A (zh) * 2004-08-09 2005-03-23 电子科技大学 无线网络中实现远程控制休眠和唤醒的装置及方法
CN1857911A (zh) * 2005-05-04 2006-11-08 现代摩比斯株式会社 托架制造方法
CN1878071A (zh) * 2006-07-05 2006-12-13 刘文斌 基于网络的计算机远程唤醒方法与装置
CN101964714A (zh) * 2010-10-28 2011-02-02 南京大学 唤醒远端设备的方法和系统
CN101980472A (zh) * 2010-10-28 2011-02-23 南京大学 带唤醒功能的远程恒压馈电方法和系统

Also Published As

Publication number Publication date
CN101964714A (zh) 2011-02-02
US9058169B2 (en) 2015-06-16
US20130219204A1 (en) 2013-08-22
CN101964714B (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2012055301A1 (zh) 唤醒远端设备的方法和系统
CN201570873U (zh) 实现usb端口智能式电源管理的装置及集成电路
CN101980472B (zh) 带唤醒功能的远程恒压馈电方法和系统
CN1518200B (zh) 开关式电源装置
JP2010104203A (ja) 送電制御装置、送電装置、受電制御装置、受電装置、電子機器、及び無接点電力伝送システム
TW202002572A (zh) 用於乙太網路供電之具有低待機電壓電源設備控制器
CN109075714B (zh) 具有用于减少功耗的突发模式操作的开关模式电源
CN107453427B (zh) Can信号唤醒电路
WO2014180186A1 (zh) 一种无线充电终端及用户终端、无线充电方法
RU2706412C2 (ru) Системы и способы для индивидуального управления нагрузками
CN107085379B (zh) 一种智能家居控制系统及控制方法
CN105629896A (zh) 一种用于自助终端设备的电源系统管理方法及装置
JP2011135749A (ja) 電力供給装置、電力受電装置及び情報通知方法
CN113328478A (zh) 一种无线充电方法、电子设备及充电系统
CN203466837U (zh) 一种网络摄像机的供电装置
US8912759B2 (en) Power supply system with variable supply voltage
US20130221944A1 (en) Power Supplies Responsive To Multiple Control Signal Formats
CN209844988U (zh) 一种can总线芯片的通信唤醒电路
CN110418321B (zh) 低功耗通讯方法、装置、系统、电子设备以及存储介质
CN210927651U (zh) 一种支持双网口以太网受电的受电设备及受电系统
CN109104091B (zh) 一种电源电路和电源适配器
JP2004265794A (ja) 照明システム
CN104581445A (zh) 一种远程无源通信及控制系统
TWM523235U (zh) 電壓轉換器
CN211557583U (zh) 调光电源及调光电源监控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13882410

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11835575

Country of ref document: EP

Kind code of ref document: A1