WO2012055094A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2012055094A1
WO2012055094A1 PCT/CN2010/078134 CN2010078134W WO2012055094A1 WO 2012055094 A1 WO2012055094 A1 WO 2012055094A1 CN 2010078134 W CN2010078134 W CN 2010078134W WO 2012055094 A1 WO2012055094 A1 WO 2012055094A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
data
contact
signal
data transmission
Prior art date
Application number
PCT/CN2010/078134
Other languages
English (en)
French (fr)
Inventor
李蔚
俞军
张纲
Original Assignee
上海复旦微电子集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海复旦微电子集团股份有限公司 filed Critical 上海复旦微电子集团股份有限公司
Priority to US13/881,591 priority Critical patent/US9252843B2/en
Priority to EP10858823.7A priority patent/EP2634926A4/en
Priority to PCT/CN2010/078134 priority patent/WO2012055094A1/zh
Publication of WO2012055094A1 publication Critical patent/WO2012055094A1/zh

Links

Classifications

    • H04B5/70
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10237Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the reader and the record carrier being capable of selectively switching between reader and record carrier appearance, e.g. in near field communication [NFC] devices where the NFC device may function as an RFID reader or as an RFID tag
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10237Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the reader and the record carrier being capable of selectively switching between reader and record carrier appearance, e.g. in near field communication [NFC] devices where the NFC device may function as an RFID reader or as an RFID tag
    • G06K7/10247Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the reader and the record carrier being capable of selectively switching between reader and record carrier appearance, e.g. in near field communication [NFC] devices where the NFC device may function as an RFID reader or as an RFID tag issues specific to the use of single wire protocol [SWP] in NFC like devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10257Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves arrangements for protecting the interrogation against piracy attacks
    • G06K7/10267Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves arrangements for protecting the interrogation against piracy attacks the arrangement comprising a circuit inside of the interrogation device
    • H04B5/72
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0492Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload by using a location-limited connection, e.g. near-field communication or limited proximity of entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to the field of near field communication technologies, and in particular, to a data transmission method and apparatus between a non-contact front end module and a security module in near field communication.
  • SWP single-line communication protocol
  • the electronic payment business has penetrated into our lives and brought us a lot of conveniences, especially in the fixed business premises.
  • the electronic payment service based on the contactless smart card (PICC) has formed mature technology and stable market.
  • PICC contactless smart card
  • the need to combine the PICC application with the mobile communication device has begun to appear: People want the display function on the PICC to query the data inside the display card. People hope that the PICC has communication function and can communicate with the background server. A remote refill function such as an electronic wallet is implemented. In other words, people want the phone to be a PICC. Therefore, in 2004, a new NFC-based product combining a contactless smart card, a contactless smart card reader and a mobile phone terminal emerged.
  • NFC-related technical standards and application specifications have matured a lot, but the products of this technology have not entered the market.
  • the NFC device implements the PICC simulation functionally, it cannot guarantee the full performance of the PICC.
  • the application is compatible with the features of the PICC used in the original system, resulting in higher entry barriers for some of the already operating and influential non-contact applications. For example, public transportation systems, micropayment systems, etc., often need to modify their deployed reading equipment (POS), resulting in high transformation costs and business costs.
  • POS deployed reading equipment
  • the NFC terminal is a product that needs a new design. In the absence of a mature application environment, the terminal equipment manufacturer has insufficient power to launch the NFC-enabled mobile phone terminal, resulting in slow progress in the practical application of the technology.
  • NFC is essentially a PICC application, nothing more than a change in the carrier of the smart card.
  • the implementation of near-field communication uses a dual-module architecture, as shown in Figure 1, which is a combination of a contactless front (CLF) module and a security module (SE).
  • CLF contactless front
  • SE security module
  • the CLF module handles the contactless RF interface and communication protocol
  • the SE handles the application and data management of the smart card.
  • CLF and SE dual module architecture, easy to achieve machine card separation.
  • the CLF is integrated on the terminal to realize a complete contactless RF interface.
  • the smart card application involves many security requirements, and needs to be issued and managed before entering the application.
  • the SE is separated from the near field communication terminal and can be separately issued and managed independently of the terminal. It is easy to maintain consistency with existing systems.
  • Smart cards are often closed application environments.
  • the initial configuration of different smart cards in different regions may be different.
  • CLF and SE architecture, the universal near field communication terminal can be used with different S E to achieve different application requirements.
  • the CLF and its RF antenna are integrated on the terminal, making it easy to achieve consistent non-contact interface performance.
  • the near field communication terminal implements the contactless smart card simulation function, which is jointly performed by the CLF and the SE, and a connection interface needs to be defined between the CLF and the SE.
  • the SE is implemented by a SIM card
  • the interface is a Single Wire Protocol (SWP) interface
  • Figure 2 shows the structure of the scheme.
  • the SIM card security module supporting the SWP interface is called SWP SIM.
  • the SWP SIM card uses the C6 pin of the SIM card to communicate with the CLF module to implement near field communication.
  • the non-contact smart card simulation function is implemented.
  • the standard ISO18092 is based on the non-contact smart card basic standard IS014443. Since the SWP interface defines a complete set of communication protocols, when transmitting ISO 14443 protocol packets between SE and CLF, it is necessary to convert ISO 14443 protocol data into packets conforming to the SWP protocol, and add a logical link control (LLC) layer. And the medium access control (MAC) layer, which constitutes the S WP data frame, as shown in FIG.
  • LLC logical link control
  • MAC medium access control
  • the contactless application layer protocol defined by IS014443-4 does not have strict requirements on response time. Therefore, the SWP interface can implement the PICC analog function, but requires the timeout setting of the non-contact identification device (PCD) to wait for a response, otherwise compatibility problems will occur. This is the first issue facing the SWP interface.
  • PCD non-contact identification device
  • the minimum response time of PICC to PCD is 1172/Fc (Fc is external field clock frequency, 13.56 ⁇ ) for card search, wake-up, anti-collision, and card selection. 86 ⁇ ⁇ .
  • Fc external field clock frequency, 13.56 ⁇
  • the instruction of IS014443-3 is directly responded by the CLF.
  • the SE responds to the PCD through the SWP interface.
  • the PICC analog function thus implemented, in addition to slightly increasing the delay, is functionally consistent with the normal PICC.
  • UID unique identification number
  • the CLF answers the UID to the PCD, and the SWP SIM card is inevitably required to transmit the UID of the SWP SIM card to the CLF and save it by synchronous operation when the near field communication terminal is placed.
  • the UID of an ordinary IC card is not allowed to be changed after leaving the factory, and various IC card manufacturers and operators have developed various management methods to ensure the uniqueness of the UID.
  • the near field communication terminal may be placed in a different SWP SIM card, which means that the UID of the CLF must be rewritable.
  • the unique management of the UID will face major challenges, which will lead to confusion in the accounting management of some applications and reduce the security of the system, making it difficult to clonch cards, for example.
  • SWP SIM has become a mainstream solution for near-field communication
  • the corresponding technical standards have been formulated, but the delay problem of the SWP interface and the derivative UID management problem will affect the future development of near-field communication.
  • a certain impact requires a more effective solution.
  • the technical problem to be solved by the embodiments in the present invention is: how to reduce the communication delay between the CLF and the SE in the near field communication terminal, and further solve the security problem and the timing compatibility problem caused by the UID stored in the CLF in the SE .
  • an embodiment of the present invention provides a data transmission method, including the steps of: a non-contact front-end module transparently transmits first data acquired from a non-contact identification device to a security module through a single-wire connection; Module processes the first data to form second data; non-contact The front end module transparently transmits the second data acquired from the security module through the single wire connection to the non-contact identification device.
  • the method further includes the step of: the non-contact front end module acquiring the modulated first data from the non-contact identification device by using a radio frequency signal.
  • the method further includes the steps of: the clock recovery in the non-contact front-end module and the field clock signal generated by the demodulation circuit module and the demodulated first data signal are logically processed to generate a coded signal including complete real-time non-contact information. Pass to the security module.
  • the method further includes the step of: transmitting, by the non-contact front end module, the second data to the non-contact identification device by using a radio frequency signal.
  • the method further includes the step of: the non-contact front end module modulating the second signal and transmitting the signal to the non-contact identification device.
  • the feature is: the transparent transmission is real-time transmission.
  • a signal transmitted between the non-contact front end module and the security module is synchronized with a signal transmitted between the non-contact front end module and the non-contact identification device.
  • a data transmission apparatus including a non-contact front end module and a security module connected to the non-contact front end module in a single line, wherein: the non-contact front end module is adapted to be in the The data is transparently transmitted between the security module and the external non-contact identification device.
  • the transparent transmission is real-time transmission.
  • a signal transmitted between the non-contact front end module and the security module is synchronized with a signal transmitted between the non-contact front end module and the external non-contact identification device.
  • the fixed delay of the non-contact front-end module satisfies the requirement of the non-contact identification device to the non-contact integrated circuit card frame delay time specified by the non-contact standard.
  • the non-contact front-end module includes a first signal generating module and a second signal demodulating module
  • the security module includes a first signal demodulating module and a second signal generating module, where the first signal generating module
  • the output, the input of the second signal demodulation module, the input of the first signal demodulation module, and the output of the second signal generation module form an electrical connection.
  • the first signal generating module includes a clock recovery and demodulation circuit and a logic processing circuit, and two outputs of the clock recovery and demodulation circuit are respectively connected to two input ends of the logic processing circuit, The output of the logic processing circuit is the output of the first signal generating module.
  • the security module further includes a main processing module, and an output end of the first signal demodulation module is connected to an input end of the main processing module, and an output end of the main processing module and the second signal The input of the module is connected.
  • the data transmission method provided by the present invention can transmit non-contact data in real time between the CLF and the SE.
  • the combination of CLF and SE implements the function of PICC, so the delay caused by the interface between CLF and SE is less than the minimum convention of the end of PCD frame data to the beginning of PICC frame data. It is this real-time feature that makes the PICC timing characteristics of the CLF-SE architecture simulation exactly the same as the standard PICC timing characteristics, which solves the application compatibility problem.
  • the present invention also solves the UID management problem, so that the UID does not have to be previously transferred from the SE to the CLF, but is directly replied by the SE.
  • This real-time transmission non-contact interface receives and should send back data, interface transmission delay is strictly limited, SE can directly respond to the instructions issued by PCD in the process of analog PICC, so that CLF completely becomes a transparent transmission channel, and then let The near field communication solution achieves a good uniformity of machine card separation and non-4-touch compatibility.
  • the data transmission device of the present invention strictly limits the interface to one pin, so that a SIM card pin can be shared with the SWP standard, and the SIM card is supported for SE and does not conflict with other existing standards.
  • the additional benefit of the single-wire interface is that it is easy to expand. In addition to the SIM card SE, it can be easily expanded into multiple interfaces, supporting multiple SEs, forming a chassis separation, multi-card multi-purpose architecture.
  • the present invention can directly use a non-contact standard (e.g., IS014443) communication protocol, and can be a feasible and efficient non-contact transmission standard.
  • a non-contact standard e.g., IS014443
  • FIG. 1 is a schematic diagram of a combined architecture of a non-contact front-end module and a security module in the prior art
  • FIG. 2 is a schematic diagram of a connection between a non-contact front-end module and a security module in the prior art
  • FIG. 3 is a schematic structural diagram of a S WP data frame in the prior art
  • FIG. 4 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a data transmission method according to still another embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the structure of a data transmission apparatus according to an embodiment of the present invention.
  • the data transmission apparatus 100 includes a non-contact front end module 101 and a security module 102 connected to the non-contact front end module 101 in a single line.
  • the contactless front end module 101 is responsible for processing the contactless radio frequency interface and the communication protocol.
  • the contactless front end module 101 constitutes an interface for communicating with the PCD through the antenna 103 connected thereto. This interface can transmit and receive commands and data by means of RF transmission in the standard communication protocol IS014443.
  • the security module 102 is responsible for processing various applications of the analog PICC, including processing card seek response commands, anti-collision commands, and card selection commands.
  • the security module 102 is also responsible for data management and processing, such as management of UIDs and processing of other application data.
  • the non-contact front end module 101 includes a first signal generating module 111, a second signal demodulating module 112, a load modulation circuit 113, a rectifying circuit 114, a power stabilizing circuit 115, and other circuits 116.
  • the output of the antenna 103 is connected to the input of the first signal generating module 111.
  • the output end of the first signal generating module 111 is connected to the input end of the second signal demodulating module 112; the output end of the second signal demodulating module 112 and the input end of the load modulation circuit 113 connection.
  • the output of the load modulation circuit 113 is connected to the input terminal of the antenna 103 through a switching circuit (not shown) or the like.
  • the other circuit 116 can control the power regulator circuit 115 to control the rectifier circuit to provide power to the entire data transmission device 100.
  • the function of the first signal generating module 111 is to demodulate and simply electrically process the signal received by the antenna 103.
  • the first signal generating module 111 includes a clock recovery and demodulation circuit 1111 and a logic processing circuit 1112.
  • the logic processing circuit 1112 processes the input clock and the demodulated signal in real time to generate an all-non-contact information suitable for single-line transmission and external non-contact.
  • the coded signal that is in contact with the signal synchronization.
  • the clock recovery and demodulation circuit 1111 has two outputs that respectively output a clock recovery signal and a signal generated after demodulation, such as a Miller signal.
  • the logic processing circuit 1112 has two inputs. The two outputs of the clock recovery and demodulation circuit 1111 are respectively coupled to the two inputs of the logic processing circuit 1112. The output of the logic processing circuit 1112 becomes the output of the entire first signal generating module 111.
  • the security module 102 includes a first signal demodulation module 121, a main processing module 122, and a second signal generation module 123.
  • An output of the first signal demodulation module 121 is coupled to an input of the main processing module 122; an output of the main processing module 122 is coupled to an input of the second signal generation module 123.
  • a new data transmission method can be implemented to reduce the delay of data transmission between the contactless front end module 101 and the security module 102, thereby implementing data between the security module 102 and the PCD of the contactless front end module 101. Penetrate.
  • a data transmission method is provided, as shown in FIG. 5, including the steps:
  • the non-contact front-end module 101 transparently transmits the first data acquired from the non-contact identification device to the security module 102 through a single-wire connection;
  • the security module 102 processes the first data to form second data.
  • the non-contact front-end module 101 transparently transmits the second data acquired from the security module 102 through the same single-wire connection to the non-contact identification device.
  • a data transmission method is provided, as shown in FIG. 6, comprising the steps of:
  • the non-contact front end module 101 acquires the modulated first data signal from the non-contact identification device by using a radio frequency signal;
  • the non-contact front end module 101 performs logic processing on the first data signal and the field clock signal after demodulating;
  • the non-contact front-end module 101 transmits the processed first data to the security module 102 through a single-wire connection;
  • the security module 102 processes the first data to form second data.
  • the security module 102 transmits the second data to the contactless front end module through the same single wire connection.
  • the contactless front end module 101 demodulates the second data
  • the contactless front end module 101 modulates the second data.
  • the contactless front end module 101 transmits the modulated second data to the non-contact identification device by using a radio frequency signal.
  • the non-contact front end module 101 acquires the modulated first data signal from the non-contact identification device (PCD) by using a radio frequency signal.
  • PCD non-contact identification device
  • Non-contact identification device output and received signals All are in compliance with certain standards, such as the modulation signal of the IS014443 standard.
  • Such a modulated signal can be received by the antenna 103 by means of radio frequency transmission.
  • step S302 the non-contact front end module 101 demodulates the first data signal and performs a logical operation on the field clock signal.
  • the clock recovery and demodulation circuit 1111 in the non-contact front end module 101 can output the field clock signal and the demodulated, for example, Miller envelope signal, respectively.
  • the logic and circuit 1112 in the non-contact front end module 101 then logically processes the field clock signal and the modulated signal.
  • the signal generated after processing is similar to the logic signal sent by the PCD.
  • step S303 the non-contact front end module 101 transmits the processed first data to the security module 102 through a single wire connection.
  • the signal sent from the non-contact front end module 101 to the security module 102 and the field signal sent from the PCD are signals conforming to the same standard (e.g., the IS014443 standard). That is, the non-contact front end module 101 does not repackage the first data to form a signal conforming to other standards (e.g., the SWP standard) as in the prior art.
  • the non-contact front end module 101 thus forms a "transparent" path between the PCD and the security module 102.
  • the transmission of data from the PCD to the security module 102 is transparent.
  • Such a transparent transmission mode eliminates the transmission delay problem caused by repackaging the first data and increasing the amount of data after packaging, so that the security module 102 can directly respond to all commands of the PCD and process all analog PICC functions.
  • the data avoids the security problem of saving UIDs caused by the CLF processing part of the PCD command in the prior art.
  • the single-wire connection is still used between the non-contact front-end module 101 and the security module 102, and the modification of the existing SIM card as the security module 102 is avoided.
  • step S304 the security module 102 processes the first data to form the second data.
  • This step includes the first data demodulation circuit 121 in the security module 102 to modulate the first data modulated in step S302. Performing demodulation; the main processing circuit 122 in the security module 102 generates second data in response to a command from the PCD, including performing data required to simulate the output of the PICC to the PCD; and the second signal generating circuit in the security module 102 modulating the second data .
  • step S305 the security module 102 transmits the second data to the non-contact front end module 101 through the same single-wire connection. This step is also transmitted by a single wire connection between the security module 102 and the contactless front end module 101.
  • step S306 the non-contact front end module 101 demodulates the second data.
  • This step demodulates the second data modulated by the security module 102 analog PICC for subsequent mediation of the second data to conform to the requirements for transmission to the PCD.
  • step S307 the non-contact front end module 101 modulates the second data.
  • This step modulates the second data into a signal that the PCD can receive over the radio.
  • the contactless front end module 101 In processing the second data returned from the security module 102 to the PCD, the contactless front end module 101 simply demodulates and modulates the second data instead of unpacking the packaged SWP frame data in the prior art. . Therefore, the second data transmitted by the non-contact front-end module 101 from the security module 102 to the PCD is also transmitted in a transparent manner, which avoids the time lag caused by the unpacking of the SWP frame data in the prior art.
  • step S308 the non-contact front end module 101 transmits the modulated second data to the non-contact identification device through the radio frequency signal.
  • step S301 to step S308 the entire process of fully emulating the PICC by the CLF-SE architecture is completed.
  • the transmission of the transparent transmission data has a real-time characteristic, and the signal transmitted between the CLF and the SE remains synchronized with the external PCD transmission signal.
  • the fixed delay introduced by it meets the time requirement of the frame delay of the non-contact identification device to the non-contact integrated circuit card specified by the non-contact standard.

Abstract

本发明涉及近场通讯中非接触前端模块与安全模块之间的数据传输方法及装置。其中,数据传输方法,包括步骤:非接触前端模块将从非接触识别设备获取的第一数据通过单线连接透传至安全模块;所述安全模块将所述第一数据处理后形成第二数据;非接触前端模块将从通过所述单线连接安全模块获取的第二数据透传至非接触识别设备。与现有技术相比,本发明提供的数据传输方法,可以在非接触前端模块和安全模块之间实时传输非接触数据,因而安全模块可以在模拟PICC的过程中直接响应PCD发出的指令,从而使非接触前端模块完全变成透明传输通道,避免了现有技术中的时序兼容性问题,也克服了非接触前端模块保存UID所带来的安全问题。

Description

数据传输方法及装置
技术领域
本发明涉及近场通讯技术领域,特别涉及近场通讯中非接触前端模块与安 全模块之间的数据传输方法及装置。
背景技术
基于移动通讯设备的移动非接触应用是目前技术和市场都比较活跃的应 用领域,其中以近场通讯 ( Near Field Communication, NFC )技术为典型代表。 近场通讯技术经过几代的发展,其相关的技术标准和应用规范 (例如 ISO18092 以及 IS021481 )越来越成熟,但是相关产品进入市场的进程却比预期要緩慢很 多。 除了近场通讯技术涉及的产业链长, 导致应用模式和商务模式较为复杂的 原因外, 现有的解决方案中釆用的单线通讯协议( SWP )对已存在非接触应用 系统的技术兼容性不佳, 是技术层面上的主要障碍。 关于 SWP的技术细节, 在 公开号为 CN 101103582A的中国专利申请中有详细描述。 另一方面, 电子支付业务已经深入了我们的生活,给我们带来了诸多的便 利, 特别是在固定营业场所, 基于非接触智能卡 (PICC ) 的电子支付业务形 成了成熟的技术和稳定的市场。 随着应用的发展, 希望将 PICC应用与移动通 讯设备相结合的需求开始出现: 人们希望 PICC上有显示功能, 可以查询显示 卡片内部的数据; 人们希望 PICC有通讯功能, 可以和后台服务器进行通讯, 实现例如电子钱包的远程充值功能。 换而言之, 人们希望手机就是 PICC。 所 以, 2004年出现了基于 NFC的将非接触智能卡、 非接触智能卡读写器与手机终 端结合在一起的全新产品。 经过技术开发以及标准化工作, NFC相关的技术标准和应用规范已经成熟 了很多,但 于该技术的产品却迟迟没有进入市场。其中一个主要的制约因 素是 NFC设备尽管在功能上实现了 PICC的模拟, 但无法保证完全体现 PICC的 特性。 特别是应用上兼容原系统中使用的 PICC的特性, 导致一些已经在运营 且影响巨大的非接触应用市场的进入门槛变高。如公共交通系统、 小额支付系 统等, 往往需要对其已部署的识读设备(POS )进行改造, 由此带来高额的改 造成本和商务成本。 而 NFC终端是一个需要全新设计的产品, 在无成熟的应用 环境的情况下, 终端设备制造商推出支持 NFC功能的手机终端的动力不足, 导 致该技术的实际应用推广进展緩慢。
NFC本质上是一个 PICC的应用, 无非是智能卡的载体发生了变化。 从结 构化的角度出发, 近场通讯的实现方案釆用的是双模块架构, 如图 1所示, 即 非接触前端( Contactless Front, CLF )模块和安全模块 ( Security Element, SE ) 的组合架构。其中 CLF模块负责处理非接触射频接口和通讯协议, SE负责处理 智能卡的应用和数据管理。 釆用这种设计架构的优点在于:
1 ) CLF与 SE双模块架构, 容易实现机卡分离。 CLF集成在终端上, 实现 完整的非接触射频接口; 而智能卡应用涉及诸多安全要求, 需要发行管理而后 才进入应用环节, SE从近场通讯终端上分离, 可以独立于终端之外单独发行, 管理上容易保持与现有系统的一致。
2 )智能卡往往是封闭应用环境, 不同地区不同应用之间, 即使是同一款 智能卡, 其初始化配置也会不同。 CLF与 SE架构, 通用近场通讯终端可与不同 的 S E搭配实现不同的应用需求。
3 ) CLF及其射频天线集成在终端上, 易于实现一致性的非接触接口性能。 近场通讯终端实现非接触智能卡模拟功能, 由 CLF和 SE联合完成, CLF与 SE之间需要定义连接接口。在近场通讯终端方案上, 通常 SE由 SIM卡实现, 其 接口是单线协议( Single Wire Protocol, SWP )接口, 图 2表示了该方案结构。 支持 SWP接口的 SIM卡安全模块, 称为 SWP SIM。 SWP SIM卡利用 SIM卡的 C6 引脚与 CLF模块进行通讯, 实现近场通讯功能。
基于近场通讯实现非接触智能卡模拟功能,其标准 ISO18092是架构在非接 触智能卡基础标准 IS014443之上的。 由于 SWP接口定义了完整的一套通讯协 议, 在 SE和 CLF之间传输 ISO 14443协议数据包时, 需要将 ISO 14443协议数据 转换成符合 SWP协议的数据包, 增加逻辑链路控制(LLC )层及介质访问控制 ( MAC )层, 组成 S WP数据帧, 如图 3所示。
而遵循 ISO18092或 IS014443的帧数据转化成 CLT帧时, 会增加 SOF, LLC control field, CRC16, EOF共 5字节数据。 在 SWP的速度为 848K的条件下, 理 想收发的最小延时也要大于 113 μ δ。 随着应用数据的增多, 延迟时间也随之增
IS014443-4定义的非接触应用层协议, 对响应时间没有严格规定。 因此 SWP接口可以实现 PICC模拟功能, 但要求非接触识别设备(PCD )等待响应 的超时设置相对长一些, 否则会发生兼容性问题。这是 SWP接口面临的第一个 问题。
根据 IS014443-3的规定, 针对寻卡、 唤醒、 防冲突、 选卡几条指令, PICC 对 PCD的最小响应时间是 1172/Fc ( Fc为外部场时钟频率, 为 13.56ΜΗζ ) , 换 算为时间约 86 μ δ。 即使将 SWP接口速度提至标准的极限, 再加上模块的数据 处理时间, 也远大于 86 s, 因而这些指令也无法通过 SWP接口及时完成。 因 此在已出现的近场通讯解决方案中, IS014443-3的指令由 CLF直接响应, 当进 入 IS014443-4层协议时, 再通过 SWP接口由 SE对 PCD响应。 这样实现的 PICC模拟功能, 除了稍微增加了一些延时之外, 功能上与普 通 PICC表现一致。 但其背后隐含着另一个比较严重的问题。 IS014443-3定义 的几条指令会处理卡片的唯一识别码(UID ) 。 UID在非接触应用系统中非常 重要, 通常是一卡一密模式下密钥分散的因子, 并且非常多的应用系统中以 UID作为卡片的识别标志。 当由 CLF完成 IS014443-3协议时, 是 CLF回答 UID 给 PCD, 必然要求 SWP SIM卡在放入近场通讯终端时, 通过同步操作事先将 SWP SIM卡的 UID传送至 CLF并保存。 普通 IC卡的 UID在出厂后是不允许被改 动的, 并且各 IC卡厂商和运营商制定了多种管理办法来保证 UID的唯一性。 由 于机卡分离的结构, 近场通讯终端可能被置入不同的 SWP SIM卡, 这意味着 CLF的 UID必定是可被改写的。 当 UID可被改写后, UID的唯一性管理将面临 重大挑战, 会导致一些应用系统的帐务管理发生混乱, 并降低系统的安全性, 使得例如克隆卡的难度降低。
综上,尽管 SWP SIM已经成为近场通讯的一种主流解决方案,相应的技术 标准也制定出台, 但 SWP接口存在的延时问题和衍生的 UID管理问题, 对近场 通讯将来的发展会有一定的影响, 需要有一种更有效的解决方案。
发明内容
本发明中实施方式所要解决的技术问题是: 如何降低近场通讯终端中 CLF 与 SE之间的通讯延时,进而解决 SE中的 UID保存在 CLF中所产生的安全性问题 和时序兼容性问题。
为解决上述技术问题, 本发明中的一个实施方式提供一种数据传输方法, 包括步骤:非接触前端模块将从非接触识别设备获取的第一数据通过单线连接 透传至安全模块; 所述安全模块将所述第一数据处理后形成第二数据; 非接触 前端模块将通过所述单线连接从安全模块获取的第二数据透传至非接触识别 设备。
可选地,还包括步骤: 所述非接触前端模块通过射频信号从非接触识别设 备获取经调制的第一数据。
可选地,还包括步骤: 非接触前端模块中的时钟恢复及解调电路模块产生 的场时钟信号和解调出的第一数据信号经逻辑处理产生包含完整的实时非接 触信息的编码信号后透传至安全模块。
可选地,还包括步骤: 所述非接触前端模块通过射频信号将第二数据传输 至非接触识别设备。
可选地,还包括步骤: 非接触前端模块将所述第二信号调制后传输至非接 触识别设备。
可选地, 其特征在于: 所述的透传为实时传输。
可选地, 所述非接触前端模块与所述安全模块之间传输的信号, 与所述非 接触前端模块与所述非接触识别设备之间传输的信号同步。
本发明的另一实施方式中,提供一种数据传输装置, 包括非接触前端模块 和与所述非接触前端模块单线连接的安全模块, 其特征在于: 所述非接触前端 模块适于在所述安全模块与外部非接触识别设备之间透传数据。
可选地, 所述的透传为实时传输。
可选地, 所述非接触前端模块与所述安全模块之间传输的信号, 与所述非 接触前端模块与所述外部非接触识别设备之间传输的信号同步。 可选地,所述非接触前端模块的固定延时满足非接触标准规定的非接触识 别设备至非接触集成电路卡帧延时时间的要求。
可选地, 所述非接触前端模块包括第一信号产生模块和第二信号解调模 块, 所述安全模块包括第一信号解调模块和第二信号产生模块, 所述第一信号 产生模块的输出端、第二信号解调模块的输入端、第一信号解调模块的输入端 和第二信号产生模块的输出端形成电连接。
可选地, 所述第一信号产生模块包括时钟恢复及解调电路和逻辑处理电 路,所述时钟恢复及解调电路的两个输出端分别连接至逻辑处理电路的两个输 入端, 所述逻辑处理电路的输出端为第一信号产生模块的输出端。
可选地, 所述安全模块还包括主处理模块, 所述第一信号解调模块的输出 端与所述主处理模块的输入端连接,所述主处理模块的输出端与所述第二信号 产生模块的输入端连接。
与现有技术相比, 本发明提供的数据传输方法, 可以在 CLF和 SE之间实时 传输非接触数据。 CLF和 SE组合在一起实现 PICC的功能, 因此 CLF和 SE之间 的接口引起的延时, 小于 PCD帧数据结束至 PICC帧数据开始的最小约定。 正 是这种实时性特点,使得 CLF-SE架构模拟的 PICC时序特性与标准 PICC时序特 性完全一致, 解决了应用兼容性问题。
本发明也解决了 UID管理问题, 使得 UID不必预先由 SE转存至 CLF, 而是 由 SE直接回复。 这种实时传输非接触界面接收和应回发的数据, 接口传输延 时被严格限制, SE可以在模拟 PICC的过程中直接响应 PCD发出的指令, 从而 使 CLF完全变成透明传输通道,进而让近场通讯解决方案实现机卡分离和非 4 触兼容性良好统一。 第三, 本发明中的数据传输装置将接口严格限定在一个引脚上, 这样可与 SWP标准共用一个 SIM卡引脚, 支持 SIM卡做 SE且不与其他已有标准形成冲 突。 另外, 单线接口的额外好处是扩展容易, 除了 SIM卡 SE外, 可以轻易扩充 为多路接口, 支持多路 SE, 形成机卡分离、 多卡多用的架构。
此外, 本发明可以直接釆用非接触标准(例如 IS014443 )通讯协议, 可以 成为一种可行及高效的非接触传输标准。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其 它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部 分。 并未刻意按实际尺寸等比例缩放绘制附图, 重点在于示出本发明的主旨。
图 1为现有技术中非接触前端模块和安全模块的组合架构示意图; 图 2为现有技术中非接触前端模块和安全模块的连接示意图;
图 3为现有技术中 S WP数据帧的结构示意图;
图 4为本发明一个实施例中数据传输装置的结构示意图;
图 5为本发明一个实施例中数据传输方法的流程图;
图 6为本发明又一个实施例的数据传输方法。
具体实施方式
在下面的描述中阐述了 [艮多具体细节以便于充分理解本发明。但是本发明 能够以艮多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背 本发明内涵的情况下做类似推广, 因此本发明不受下面公开的具体实施的限 制。 下面结合附图对本发明的具体实施方式做详细的说明。
本发明一个实施例中数据传输装置的结构示意图如图 4所示, 该数据传输 装置 100, 包括非接触前端模块 101和与非接触前端模块 101单线连接的安全模 块 102。
其中, 非接触前端模块 101负责处理非接触射频接口和通讯协议。 非接触 前端模块 101通过与其连接的天线 103—起组成了与 PCD进行通讯的接口。这一 接口可以通过射频传输的方式以 IS014443这一标准通讯协议实现命令和数据 的收发。
安全模块 102负责处理模拟 PICC的各种应用, 包括处理寻卡应答命令、 防 冲突命令及选卡命令等等。 安全模块 102还负责数据管理和处理, 例如 UID的 管理和其他应用数据的处理。
由于处理模拟 PICC的各种应用和数据管理都由安全模块 102处理, 因此避 免了现有技术中, UID等保密信息保存在 CLF中所带来的诸多安全隐患等问题。
非接触前端模块 101包括第一信号产生模块 111、 第二信号解调模块 112、 负载调制电路 113、 整流电路 114、 电源稳压电路 115和其他电路 116。 天线 103 的输出端与第一信号产生模块 111的输入端连接。而在非接触前端模块 101的内 部, 第一信号产生模块 111的输出端与第二信号解调模块 112的输入端连接; 第 二信号解调模块 112的输出端与负载调制电路 113的输入端连接。 最后, 负载调 制电路 113的输出端通过开关电路(未标注)等与天线 103的输入端连接。 其他 电路 116可以控制电源稳压电路 115来控制整流电路为整个数据传输装置 100提 供电源。 为表示方便, 图 4中的其他电路 116与第一信号产生模块 111和负载调 制电路 113的连接关系未画出。 第一信号产生模块 111的作用是将天线 103接收过来的信号进行解调和简 单电学处理。 第一信号产生模块 111包括时钟恢复及解调电路 1111和逻辑处理 电路 1112,逻辑处理电路 1112实时处理输入的时钟和解调信号,产生适合单线 传输的、 具备全部非接触信息的、 与外部非接触信号同步的编码信号。 时钟恢 复及解调电路 1111有两个输出端,分别输出时钟恢复信号和解调后所产生的信 号, 例如 Miller信号。 而逻辑处理电路 1112有两个输入端。 时钟恢复及解调电 路 1111的两个输出端分别和逻辑处理电路 1112的两个输入端连接。逻辑处理电 路 1112的输出端即成为整个第一信号产生模块 111的输出端。
安全模块 102包括第一信号解调模块 121、 主处理模块 122和第二信号产生 模块 123。 第一信号解调模块 121的输出端与主处理模块 122的输入端连接; 主 处理模块 122的输出端与所述第二信号产生模块 123的输入端连接。
安全模块 102中第一信号解调模块 121的输入端和第二信号产生模块 123的 输出端连接后,与非接触前端模块 101的第一信号产生模块 111的输出端和第二 信号解调模块 112所形成的连接, 形成单线连接。
上述结构,可以执行一种新的数据传输方法,用来降低非接触前端模块 101 与安全模块 102之间数据传输的延时,从而实现非接触前端模块 101在安全模块 102和 PCD之间的数据透传。
根据本发明的另一个实施方式, 提供一种数据传输方法, 如图 5所示, 包 括步骤:
S201, 非接触前端模块 101将从非接触识别设备获取的第一数据通过单线 连接透传至安全模块 102;
S202 , 安全模块 102将第一数据处理后形成第二数据; S203 ,非接触前端模块 101将通过同一单线连接从安全模块 102获取的第二 数据透传至非接触识别设备。
根据本发明的另一个优选的实施例,提供一种数据传输方法,如图 6所示, 包括步骤:
S301, 所述非接触前端模块 101通过射频信号从非接触识别设备获取经调 制的第一数据信号;
5302, 非接触前端模块 101对第一数据信号解调后与场时钟信号进行逻辑 处理;
5303 , 非接触前端模块 101将处理后的第一数据通过单线连接传输至安全 模块 102;
S304, 安全模块 102将第一数据处理后形成第二数据;
5305 , 安全模块 102将第二数据通过同一单线连接传输至非接触前端模块
101 ;
5306, 非接触前端模块 101对第二数据进行解调;
S307, 非接触前端模块 101对第二数据进行调制;
S308 , 非接触前端模块 101通过射频信号将调制后的第二数据传输至非接 触识别设备。
下面对上述方法进行详细解译。
首先执行步骤 S301, 所述非接触前端模块 101通过射频信号从非接触识别 设备(PCD )获取经调制的第一数据信号。 非接触识别设备输出和接收的信号 都是符合一定的标准,例如 IS014443标准的调制信号。这样的调制信号可以通 过射频传输的方式由天线 103所接收。
接着执行步骤 S302, 非接触前端模块 101对第一数据信号解调后与场时钟 信号进行逻辑操作。 非接触前端模块 101内的时钟恢复及解调电路 1111可以分 别输出场时钟信号和经解调出的例如 Miller包络信号。非接触前端模块 101内的 逻辑与电路 1112再将场时钟信号和调制出的信号进行经逻辑操作处理。处理后 产生的信号与 PCD送出的场信号类似的逻辑信号。
然后执行步骤 S303 , 非接触前端模块 101将处理后的第一数据通过单线连 接传输至安全模块 102。
因此,从非接触前端模块 101发往安全模块 102的信号与 PCD送出的场信号 是符合同一标准(例如 IS014443标准)的信号。也就是说,非接触前端模块 101 并没有像现有技术那样, 对第一数据进行再次打包形成符合其他标准 (例如 SWP标准)的信号。 因此非接触前端模块 101在 PCD与安全模块 102之间形成了 一个 "透明" 的通道。 使得数据从 PCD到安全模块 102之间的传输是透传。 这 样的透传模式,免去了对第一数据的再次打包和经过打包后数据量增加所带来 的传输延时问题, 因而可以直接用安全模块 102响应 PCD的所有命令和处理所 有模拟 PICC功能的数据,进而避免了现有技术中由 CLF处理部分 PCD命令所带 来的保存 UID的安全问题。
并且, 非接触前端模块 101与安全模块 102之间仍然釆用单线连接,避免了 对现有的 SIM卡用作安全模块 102进行改动。
接着执行步骤 S304, 安全模块 102将第一数据处理后形成第二数据。 这一 步包括安全模块 102中的第一信号解调电路 121将步骤 S302所调制的第一数据 进行解调; 安全模块 102中的主处理电路 122响应 PCD的命令产生第二数据, 包 括执行模拟 PICC所需输出至 PCD的数据; 安全模块 102中的第二信号产生电路 对第二数据进行调制。
然后执行步骤 S305, 安全模块 102将第二数据通过同一单线连接传输至非 接触前端模块 101。 这一步是也是通过安全模块 102与非接触前端模块 101之间 的单线连接来传输。
接着执行步骤 S306, 非接触前端模块 101对第二数据进行解调。 这一步即 将安全模块 102模拟 PICC所调制的第二数据进行解调, 以用于后续对第二数据 进行再次调解来符合传输至 PCD的要求。
再执行步骤 S307, 非接触前端模块 101对第二数据进行调制。 这一步即将 第二数据调制成 PCD可通过射频接收的信号。
在处理从安全模块 102回传至 PCD的第二数据过程中,非接触前端模块 101 仅对第二数据进行简单的解调和调制,而非现有技术中对打包的 SWP帧数据进 行解包。因而非接触前端模块 101在传输从安全模块 102至 PCD的第二数据也是 以透传的形式进行, 避免了现有技术中对 SWP帧数据解包所带来的时滞问题。
最后执行步骤 S308, 非接触前端模块 101通过射频信号将调制后的第二数 据传输至非接触识别设备。
从步骤 S301至步骤 S308即完成了 CLF-SE架构完全模拟 PICC的整个过程。 上述实施例中所提供的数据传输方法和数据传输装置中,透传数据的传输 具备实时特性, 在 CLF与 SE之间传输的信号保持与外部 PCD传输信号同步。 其 引入的固定延时满足非接触标准规定的非接触识别设备至非接触集成电路卡 的帧延时的时间要求。 虽然本发明已以较佳实施例披露如上, 然而并非用以限定本发明。任何熟 悉本领域的技术人体员,在不脱离本发明技术方案范围情况下,都可利用上述 揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改 为等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本 于本发明技术方案保护的范围内。

Claims

权 利 要 求
1. 一种数据传输方法, 其特征在于, 包括步骤:
非接触前端模块将从非接触识别设备获取的第一数据通过单线连接透传 至安全模块;
所述安全模块将所述第一数据处理后形成第二数据; 非接触前端模块将通过所述单线连接从安全模块获取的第二数据透传至 非接触识别设备。
2. 如权利要求 1 所述的数据传输方法, 其特征在于, 还包括步骤: 所述非接 触前端模块通过射频信号从非接触识别设备获取经调制的第一数据。
3. 如权利要求 2所述的数据传输方法, 其特征在于, 还包括步骤: 非接触前 端模块中的时钟恢复及解调电路模块产生的场时钟信号和解调出的第一数据 信号经逻辑处理产生包含完整的实时非接触信息的编码信号后透传至安全模 块。
4. 如权利要求 1 所述的数据传输方法, 其特征在于, 还包括步骤: 所述非接 触前端模块通过射频信号将第二数据传输至非接触识别设备。
5. 如权利要求 4所述的数据传输方法, 其特征在于, 还包括步骤: 非接触前 端模块将所述第二信号调制后传输至非接触识别设备。
6. 如权利要求 1所述的数据传输方法, 其特征在于: 所述的透传为实时传输。
7. 如权利要求 1 所述的数据传输方法, 其特征在于: 所述非接触前端模块与 所述安全模块之间传输的信号,与所述非接触前端模块与所述非接触识别设备 之间传输的信号同步。
8. 一种数据传输装置, 包括非接触前端模块和与所述非接触前端模块单线连 接的安全模块, 其特征在于: 所述非接触前端模块适于在所述安全模块与外部 非接触识别设备之间透传数据。
9. 如权利要求 8所述的数据传输装置, 其特征在于: 所述的透传为实时传输。
10. 如权利要求 8所述的数据传输装置, 其特征在于: 所述非接触前端模块与 所述安全模块之间传输的信号,与所述非接触前端模块与所述外部非接触识别 设备之间传输的信号同步。
11. 如权利要求 8所述的数据传输装置, 其特征在于: 所述非接触前端模块的 固定延时满足非接触标准规定的非接触识别设备至非接触集成电路卡帧延时 时间的要求。
12. 如权利要求 8所述的数据传输装置, 其特征在于: 所述非接触前端模块包 括第一信号产生模块和第二信号解调模块,所述安全模块包括第一信号解调模 块和第二信号产生模块, 所述第一信号产生模块的输出端、第二信号解调模块 的输入端、第一信号解调模块的输入端和第二信号产生模块的输出端形成电连 接。
13. 如权利要求 12所述的数据传输装置, 其特征在于: 所述第一信号产生模 块包括时钟恢复及解调电路和逻辑处理电路,所述时钟恢复及解调电路的两个 输出端分别连接至逻辑处理电路的两个输入端,所述逻辑处理电路的输出端为 第一信号产生模块的输出端。
14. 如权利要求 12所述的数据传输装置, 其特征在于: 所述安全模块还包括 主处理模块, 所述第一信号解调模块的输出端与所述主处理模块的输入端连 接, 所述主处理模块的输出端与所述第二信号产生模块的输入端连接。
PCT/CN2010/078134 2010-10-27 2010-10-27 数据传输方法及装置 WO2012055094A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/881,591 US9252843B2 (en) 2010-10-27 2010-10-27 Method and apparatus for data transmission
EP10858823.7A EP2634926A4 (en) 2010-10-27 2010-10-27 Method and apparatus for data transmission
PCT/CN2010/078134 WO2012055094A1 (zh) 2010-10-27 2010-10-27 数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078134 WO2012055094A1 (zh) 2010-10-27 2010-10-27 数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2012055094A1 true WO2012055094A1 (zh) 2012-05-03

Family

ID=45993054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078134 WO2012055094A1 (zh) 2010-10-27 2010-10-27 数据传输方法及装置

Country Status (3)

Country Link
US (1) US9252843B2 (zh)
EP (1) EP2634926A4 (zh)
WO (1) WO2012055094A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8874477B2 (en) 2005-10-04 2014-10-28 Steven Mark Hoffberg Multifactorial optimization system and method
US9345050B2 (en) * 2014-02-21 2016-05-17 Sony Corporation NFC collision avoidance with controllable NFC transmission delay timing
US10645556B2 (en) * 2015-12-17 2020-05-05 Airbus Operations Gmbh Wireless data transmitting device and method for wireless data transmission
CN106934315B (zh) * 2017-05-05 2023-06-02 成都因纳伟盛科技股份有限公司 基于手持式居民身份证阅读器的app与读卡板加密系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103582A (zh) 2004-07-28 2008-01-09 雅斯拓股份有限公司 通信设备和方法
CN101621469A (zh) * 2009-08-13 2010-01-06 杭州华三通信技术有限公司 数据报文存取控制装置和方法
CN201508570U (zh) * 2009-06-01 2010-06-16 北京握奇数据系统有限公司 非接触智能模块及智能卡
US20100252631A1 (en) * 2009-04-01 2010-10-07 Infineon Technologies Ag High speed contactless communication

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892212A1 (fr) * 2005-10-17 2007-04-20 St Microelectronics Sa Lecteur nfc ayant un mode de fonctionnement passif a faible consommation electrique
CN100520815C (zh) 2007-10-25 2009-07-29 上海复旦微电子股份有限公司 Sim卡连接非接触前端芯片实现移动非接触的电路
WO2009115997A2 (en) * 2008-03-19 2009-09-24 Nxp B.V. Method and system for ensuring integrity of a contactless card emulating device
CN101334913B (zh) 2008-05-08 2010-07-14 上海柯斯软件有限公司 自适应sim芯片操作系统接收处理多终端信息的方法
US20100045425A1 (en) * 2008-08-21 2010-02-25 Chivallier M Laurent data transmission of sensors
KR100911032B1 (ko) * 2009-04-01 2009-08-05 (주)애니쿼터스 Nfc 칩 모듈과 외부 rf 리더기를 통한 휴대폰 단말기의 벨소리·카메라·통신기능을 제어하는 장치 및 방법
CN101866463A (zh) * 2009-04-14 2010-10-20 中兴通讯股份有限公司 一种eNFC终端、eNFC智能卡及其通信方法
FR2960674A1 (fr) * 2010-05-27 2011-12-02 France Telecom Nfc pour telephone mobile
TWI421777B (zh) * 2010-06-30 2014-01-01 Mstar Semiconductor Inc 認證處理裝置及其相關行動裝置
US8811896B2 (en) * 2011-01-07 2014-08-19 Texas Instruments Incorporated Non-volatile memory for contactless systems
EP2816825B1 (en) * 2013-02-13 2019-04-24 Nxp B.V. NFC-enabled Mobile Device, NFC reader and NFC system for Supporting a Plurality of Proximity Services

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103582A (zh) 2004-07-28 2008-01-09 雅斯拓股份有限公司 通信设备和方法
US20100252631A1 (en) * 2009-04-01 2010-10-07 Infineon Technologies Ag High speed contactless communication
CN201508570U (zh) * 2009-06-01 2010-06-16 北京握奇数据系统有限公司 非接触智能模块及智能卡
CN101621469A (zh) * 2009-08-13 2010-01-06 杭州华三通信技术有限公司 数据报文存取控制装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634926A4

Also Published As

Publication number Publication date
US20130217328A1 (en) 2013-08-22
EP2634926A1 (en) 2013-09-04
US9252843B2 (en) 2016-02-02
EP2634926A4 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
EP2770782B1 (en) Wireless data communication
JP5621038B2 (ja) Nfcコントローラを用いた通信の管理方法
CN104253634B (zh) 双频多协议多功能近场通信集成系统和应用方法
TWI534712B (zh) 智慧卡性能增強電路及系統
US9661448B2 (en) Method for managing information communication between a NFC controller and a secure element within an apparatus, and corresponding apparatus and NFC controller
US10708744B2 (en) NFC-based communication method and apparatus
KR20150114765A (ko) 근거리 무선 통신(nfc) 기능을 지원하는 화상형성장치 및 화상형성장치의 nfc 동작 모드를 설정하는 방법
CN103095678A (zh) 管理涉及在无线设备内的无接触式应用的传入命令的方法
WO2013071711A1 (zh) 一种处理支付业务的方法和终端
US9262711B2 (en) NFC tag, communication method and system
CN104700262B (zh) 一种基于nfc移动终端和pos终端的支付系统
CN102426658B (zh) 支持双协议的非接触通讯智能卡
CN102064856B (zh) 数据传输方法及装置
WO2012055094A1 (zh) 数据传输方法及装置
CN102035576B (zh) 数据传输的方法
CN109151777B (zh) 一种非接通信方法以及通信装置
WO2018198813A1 (ja) 通信装置および方法
CN102082590B (zh) 数据传输方法
CN204291001U (zh) 具有加密保护的近场通信标签及适用的近场通信控制系统
KR101433608B1 (ko) Nfc 브릿지 장치
CN103186754B (zh) 多频段多协议应用扩展方法及装置、读卡设备
CN105792113A (zh) Nfc通信方法、智能信息终端、智能终端和nfc通信系统
CN104281952A (zh) 动态口令验证方法
CN203350881U (zh) 电子签名设备和电子签名验证系统
KR20150120898A (ko) Ic 접촉식 카드 리더와 rf 카드 간의 통신을 지원하는 인터페이스 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13881591

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010858823

Country of ref document: EP