WO2012054081A1 - Enveloppe et système de distribution pour contenant portatif - Google Patents

Enveloppe et système de distribution pour contenant portatif Download PDF

Info

Publication number
WO2012054081A1
WO2012054081A1 PCT/US2011/001779 US2011001779W WO2012054081A1 WO 2012054081 A1 WO2012054081 A1 WO 2012054081A1 US 2011001779 W US2011001779 W US 2011001779W WO 2012054081 A1 WO2012054081 A1 WO 2012054081A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
dispensing system
wing
container
actuation area
Prior art date
Application number
PCT/US2011/001779
Other languages
English (en)
Inventor
Erica Eden Cohen
Daniel A. Andersen
Kevin Harrity
Paul Katz
Jonathan N. Mandell
Nicholas Oxley
Thomas A. Renner
Original Assignee
S. C. Johnson & Son, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/112,608 external-priority patent/US20120000940A1/en
Application filed by S. C. Johnson & Son, Inc. filed Critical S. C. Johnson & Son, Inc.
Priority to AU2011318571A priority Critical patent/AU2011318571B2/en
Publication of WO2012054081A1 publication Critical patent/WO2012054081A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/20Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operated by manual action, e.g. button-type actuator or actuator caps
    • B65D83/201Lever-operated actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/20Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operated by manual action, e.g. button-type actuator or actuator caps
    • B65D83/205Actuator caps, or peripheral actuator skirts, attachable to the aerosol container
    • B65D83/206Actuator caps, or peripheral actuator skirts, attachable to the aerosol container comprising a cantilevered actuator element, e.g. a lever pivoting about a living hinge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/22Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means with a mechanical means to disable actuation
    • B65D83/224Tamper indicating means obstructing initial actuation, e.g. removable
    • B65D83/226Tamper indicating means obstructing initial actuation, e.g. removable preventing initial depression of the actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/38Details of the container body
    • B65D83/384Details of the container body comprising an aerosol container disposed in an outer shell or in an external container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/40Closure caps

Definitions

  • the present disclosure relates to a shroud adapted to facilitate the emission of a fluid product from a hand-held container.
  • Various hand-held dispensing systems are known in the prior art, which comprise a container, a cap, and a dispensing mechanism that facilitates the release of a fluid product.
  • these dispensing mechanisms are manufactured without regard to various factors that assist in the use of the dispensing mechanisms and spraying of the fluid product.
  • a container is provided with a cap, which includes a distinct button that extends from the cap. A user depresses the button to actuate a valve stem of the container to release fluid therefrom.
  • actuation is accomplished via a trigger that extends from the cap.
  • some systems require a user to exert a relatively significant force on a specific location of the trigger to pivot same about a hinge axis to release fluid from the container.
  • These prior systems fail to provide a dispensing mechanism that is universally easy to operate for different types of users, e.g., elderly people, parents holding children, people with disabilities, such as arthritis, etc.
  • the present disclosure provides new and non-obvious dispensing systems, which address one or more of the above issues.
  • a dispensing system includes a shroud for holding a container.
  • the shroud has a gripping portion adapted to be gripped by a hand of a user and an actuation area.
  • the actuation area is activated by a user upon exertion of a force generally transverse to a central longitudinal axis. The force rotates the actuation area about a rotation point that is on the central longitudinal axis of the dispensing system.
  • a dispensing system includes a shroud for holding a container.
  • the shroud has a gripping portion adapted to be gripped by a hand of a user and an actuation area.
  • the gripping portion is comprised of a first wing and a second wing defined by a first cutout and a second cutout.
  • the first cutout has a first lower end and the second cutout has a second lower end.
  • the actuation area is activated by a user upon exertion of a force to the actuation area generally transverse to a central longitudinal axis of the dispensing system. The force rotates the actuation area about a rotation axis defined by the first lower end and the second lower end.
  • a dispensing system includes a shroud for holding a container that includes a mounting cup.
  • the shroud has a gripping portion adapted to be gripped by a hand of a user and an actuation area.
  • the actuation area is activated by a user upon exertion of a force to the actuation area. The force rotates the actuation area about a rotation point below the mounting cup.
  • FIG. 1 is an isometric view of a top, front, and right side of a dispensing system that includes a shroud, a container, a manifold, and a cap;
  • FIG. 2 is an exploded view of the dispensing system of FIG. 1 ;
  • FIG. 3 is a front elevational view of the shroud of FIG. 1 ;
  • FIG. 4 is a back elevational view of the shroud of FIG. 1 ;
  • FIG. 5 is a right side elevational view of the shroud of FIG. 1, the left side being a mirror image thereof;
  • FIG. 6 is a bottom elevational view of the shroud of FIG. 1 ;
  • FIG. 7 is a top elevational view of the shroud of FIG.1 ;
  • FIG. 8 is a cross-sectional view of the shroud of FIG. 1 taken generally along lines 8-8 of FIG. 7;
  • FIG. 9 is an enlarged isometric view of the manifold of FIG. 1 ;
  • FIG. 10 is a cross-sectional view of the manifold of FIG. 9 taken generally along lines 10-10 of FIG. 9;
  • FIG. 11 is an isometric view of a bottom, front, and left side of the cap of FIG. l ;
  • FIG. 12 is a cross-sectional view of the cap of FIG. 11 taken generally along lines 12-12 of FIG. 11;
  • FIG. 13 is a partial cross-sectional, isometric view of a top, back, and right side of the dispensing system of FIG. 1 taken generally along lines 13-13 of FIG. 6 and including the shroud, manifold, and cap in an assembled condition;
  • FIG. 14 is a view similar to FIG, 13 taken generally along lines 14-14 of FIG.
  • FIG. 15 is a partial cross-sectional view of the dispensing system of FIG. 1 taken generally along lines 15-15 of FIG. 1;
  • FIG. 16A is an isometric view of an additional embodiment of a dispensing system, wherein no portion of a container is visible beneath a bottom edge of a shroud;
  • FIG. 16B is an isometric view of an additional embodiment of a dispensing system, wherein about 25% of a container is visible beneath a bottom edge of a shroud;
  • FIG. 16C is an isometric view of an additional embodiment of a dispensing system, wherein about 50% of a container is visible beneath a bottom edge of a shroud;
  • FIG. 16D is an isometric view of an additional embodiment of a dispensing system, wherein about 60% of a container is visible beneath a bottom edge of a shroud;
  • FIG. 16E is an isometric view of an additional embodiment of a dispensing system, wherein about 70% of a container is visible beneath a bottom edge of a shroud;
  • FIG. 17 is an isometric view of a top, front, and a right side of an additional embodiment of a dispensing system similar to the one depicted in FIG. 1 ;
  • FIG. 18 is an isometric view of a top, front, and a right side of the shroud of
  • FIG. 17 is a diagrammatic representation of FIG. 17.
  • FIG 19 is a cross-sectional view of the shroud of FIG. 18 taken generally along lines 19-19 thereof;
  • FIG 20 is a top elevational view of the shroud of FIG. 18;
  • FIG. 21 is an isometric view of a front, bottom, and right side of the cap of FIG. 17;
  • FIG. 22 is a cross-sectional view of the cap of FIG. 21 taken along lines 22-22 of FIG. 21;
  • FIG. 23 is an enlarged isometric view of the manifold of FIG. 17;
  • FIG. 24 is an isometric view of the top, front, and right side of the cap of FIG.
  • FIG. 25 is a cross-sectional view of the cap and manifold taken generally along the lines 25-25 of FIG. 24;
  • FIG. 26 is a cross-sectional view of the dispensing system of FIG. 17 taken generally along the lines 26-26 of FIG. 17;
  • FIG 26a is an enlarged partial sectional view of the dispensing system of FIG.
  • FIG. 27 is a partial isometric view of the dispensing systems of FIGS. 1 or 17 including a removable locking mechanism
  • FIG. 28 is a cross-sectional view of the dispensing system and locking mechanism of FIG. 27 taken generally along the line 28-28 of FIG. 27;
  • FIG. 29 is a cross-sectional view of the dispensing system and locking mechanism of FIG. 27 taken generally along the lines 29-29;
  • FIG. 30 is a bottom elevational view of a further embodiment of the cap of
  • FIG. 31 is an isometric view of a bottom, front, and right side of the cap of
  • FIG. 30
  • FIG. 32 is an isometric view of a further embodiment of the shroud of FIGS. 1 or 17 for use in conjunction with the cap of FIGS. 30 and 31 ;
  • FIG. 33 is an isometric view of a further embodiment of the dispensing systems of FIGS. 1 or 17;
  • FIG. 34 is a right side elevational view of the embodiment of FIG. 33, the left side being a mirror image thereof;
  • FIG. 35 is an isometric view of a further embodiment of the manifold.
  • FIG. 36 is an isometric view of a further embodiment of the shroud of FIGS. 1 or 17 for use in conjunction with the manifold of FIG. 33;
  • FIG. 37 is a view similar to FIG. 36, wherein the manifold has been removed;
  • FIG. 38 is an isometric view of a further embodiment of the dispensing systems of FIGS. 1 or 17;
  • FIG. 39 is an isometric view of a shroud of FIG. 38;
  • FIG. 40 is an isometric view of a door of FIG. 38;
  • FIG. 41 is a partial cross-sectional view of FIG. 38 taken generally along the line 41-41 of FIG. 38;
  • FIG. 42 is a diagrammatic cross-sectional view similar to FIG. 15 of a further embodiment of a dispensing system that includes a different actuation mechanism;
  • FIGS. 43 and 44 are further diagrammatic views of another embodiment of the dispensing system of FIG. 42;
  • FIG. 45 is a diagrammatic cross-sectional view similar to FIG. 42 of a further embodiment of a dispensing system that includes an alternative actuation mechanism;
  • FIG. 46 is a diagrammatic view of a further embodiment of a dispensing system that includes peel away labeling
  • FIG. 47 illustrates an isometric view of a top, front, and right side of the dispensing system of FIG. 1 according to another example, wherein the shroud includes a transparent portion;
  • FIG. 48 is a schematic side elevational view of a different embodiment of a dispensing system having overlapping first and second actuation areas separated by cutouts. DETAILED DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-15 one embodiment of a dispensing system
  • the 100 includes a shroud 102, a container 104, a manifold 106, and a cap 108.
  • the shroud 102 includes a generally cylindrical side wall 110 that extends upwardly from a bottom edge 1 12 toward a top edge 1 14 thereof.
  • An opening 1 16 is defined by the bottom edge 112 of the shroud 102, as seen more clearly in FIG. 6.
  • the container 104 is inserted into the opening 116 of the shroud 102 and the manifold 106 and the cap 108 are adapted to be at least partially disposed within an upper portion of the shroud 102, as will be described in more detail hereinafter.
  • the bottom edge 112 of the shroud 102 is adapted to rest on a support surface 118, e.g., a table, a desk, a cabinet, etc.
  • a bottom edge 120 of the container 104 extends from the bottom edge 112 of the shroud 102 and is adapted to rest on the support surface 118.
  • a central or longitudinal axis 122 of the dispensing system 100 is generally perpendicular with respect to the support surface 118 (see FIG. 1).
  • a secondary axis 124 is defined as being orthogonal to the longitudinal axis 122.
  • the central axis 122 and the secondary axis 124 are defined herein for reference purposes only without intending any limitation.
  • the container includes a length L defined by the longitudinal axis 122 of the dispensing system. More specifically, the length L of the container may be described as the distance between the bottom edge 120 of the container to a mounting cup thereof, i.e., the sidewall of the container, about the longitudinal axis 122. In one embodiment, the container is between about 5 cm to about 30 cm in length, and more preferably between about 10 cm to about 23 cm in length.
  • the sidewall 110 of the shroud 102 is defined by a first diameter dl at the bottom edge 112.
  • the diameter dl is about 6.3 cm (about 2.5 inches).
  • the sidewall 110 tapers inwardly from the bottom edge 112 upwardly in the direction of the longitudinal axis 122 until reaching an inflexion point 126 spaced between the bottom and top edges 112, 114, respectively.
  • the shroud is defined by a length L2 defined from the bottom edge 112 to the top edge 114 of the shroud 102 along the longitudinal axis 122 (see FIGS. 2 and 16A).
  • the shroud 102 is between about 10 cm to about 40 cm in length, and more preferably between about 15 cm to about 25 cm in length, and most preferably between about 20 cm to about 23 cm in length.
  • the shroud 102 is further defined by a second diameter d2 at the inflexion point 126.
  • the diameter d2 is about 5.1 cm (about 2.0 inches).
  • a ratio between dl and d2 is between about 5:3 to about 5:4.
  • the sidewall 110 of the shroud 102 tapers outwardly from the inflexion point 126 toward the top edge 114 of the shroud.
  • the shroud 102 is defined by a third diameter d3 proximate the top edge 114 thereof. In one example, the diameter d3 is about 5.6 cm (about 2.2 inches).
  • First and second generally U-shaped cutouts 128A, 128B are disposed on opposing sides of the shroud 102 and delineate the shroud into a first wing 130A and a second wing 130B (see, e.g., FIG. 5).
  • the term cutout generally defines one or more spaces, apertures, slots, or overriding surfaces, which generally define the absence of space that allows for the movement of one or more actuating surfaces.
  • a surface area of the first and second wings 130A, 130B is defined as the area between first and second lower ends 129A, 129B of the first and second cutouts 128A, 128B, respectively, and the top edge of the shroud 1 14.
  • the first and second wings 130A, 130B are further defined by length portions extending from the first and second lower ends 129A, 129B toward the top edge of the shroud 114.
  • Each wing 130A, 130B includes a rounded top edge 132A, 132B, respectively, and the first wing 130A further includes a generally U-shaped notch 134 defined in the top edge 132A thereof.
  • the U-shaped notch 134 is configured to accept an outlet of the manifold 106 through which fluid material is dispensed.
  • the first and second wings 130A, 130B, the cutouts 128A, 128B, and/or the notch 134 can be any suitable shape or size without departing from the spirit of the present disclosure.
  • the first wing 130A extends farther along the central axis 122 than the second wing 130B.
  • the second wing 130B may extend farther than the first wing 130A or the wings 130A, 130B may extend the same length.
  • the difference in height between the first and second wings 130A, 130B results in an inclined tangential line 136 between the rounded top edges 132A, 132B.
  • the inclined tangential line 136 provides an intuitive indication to a user of a spray direction angled up and away from the U-shaped notch 134.
  • FIG. 5 further illustrates that the second wing 130B includes a more severely curved portion 138 disposed below the top edge 132B as compared to the first wing 130A.
  • the U-shaped cutouts 128A, 128B in the shroud 102 provide gently curved or generally planar portions 140A, 140B (see, e.g., FIGS. 3 and 4).
  • the curved portion 138 and the generally planar portions I40A, 140B are adapted to be used as . an intuitive gripping portion 141 during use of the dispensing system 100.
  • the surface area of the gripping portion 141 is the area of the shroud 102 between the first and second lower ends 129A, 129B of the cutouts 128A, 128B, respectively, and the top-edge 1 14 of the shroud 102.
  • a user's hand grasps the dispensing system such that the curved portion 138 rests generally in the user's palm, portions of the user's fingers wrap around one of the generally planar portions 140A, 140B with the user's thumb wrapped around the other generally planar portion, and the remaining portions of the user's fingers wrap around the first wing 130A.
  • the curved portion 138 and/or the generally planar portions 140 A, 140B provide a comfortable gripping portion 141 that invites a user to pick up the dispensing system 100 and squeeze the shroud 102 to dispense a liquid.
  • Experimental testing has shown that users overwhelmingly prefer the present embodiment over prior designs because the dispensing system 100 feels comfortable being held in the user's hand, i.e., the tapered shroud 102 accommodates various sized hands of users not found in previous designs.
  • testing has shown that users prefer the ability to grip the dispensing system 100 anywhere about the shroud 102, which allows users to easily and naturally pick up and actuate the device without the need to re-orient a hand and/or finger(s) to a specific button or trigger such as fpund in prior devices.
  • a user can simply and comfortably grip and squeeze the shroud using multiple fingers in combination with their thumb and palm, the force/pressure necessary to actuate the system 100 is more evenly distributed across the user's hand and the overall force to actuate the system per unit area of the user's hand in contact with the shroud is reduced over other trigger button actuated systems.
  • actuation areas in the form of actuating members or portions that provide for the above-noted advantages. Squeezing, depressing, pulling, pivoting, or otherwise actuating the one or more actuation areas provides for the dispensing of fluid from the dispensing system.
  • a surface area of the actuation area is preferably between about 15% to about 95% of the surface area of a gripping portion, and more preferably between about 40% to about 85% of the surface area of the gripping portion, and most preferably between about 40% to about 50% of the surface area of the gripping portion.
  • the actuation area has a surface area between about 10% to about 95% of a surface area of the shroud, and more preferably between about 25% to about 95% of the surface area of the shroud.
  • the actuation area has a length dimension L3 of between about 20% to about 90% of the length L2 of the shroud, and more preferably between about 40% to about 60% of the length L2 of the shroud, as measured about a longitudinal axis of the dispensing system.
  • the length of the at least one 'actuation member is between about 5 cm to about 40 cm and the length of the shroud is between about 10 cm to about 80 cm.
  • the length L3 of the actuation area extends between a lower perimeter A and the top edge 114 of the shroud 102 and has a length of about 9 cm about the longitudinal axis 122 and a length L2 of the shroud of about 22 cm about the longitudinal axis. Therefore, in the present embodiment the actuation area length L3 is about 40% of the length L2 of the shroud 102.
  • the actuation area of an actuating member or portion comprises the total outer surface area of the member or portion that may be contacted by a user to effect emission of fluid from a dispensing system.
  • the actuation area is measured from the section of rotation to the outer peripheral bounds of the member or portion.
  • one actuation area may be provided.
  • the actuation area may comprise two or more members or portions.
  • a single actuation member or portion is provided in conjunction with a non-actuable member or portion.
  • the gripping area of a dispensing system comprises the total surface area of a shroud, sleeve, housing, or other retention structure that is grippable by a user for actuating the system. More particularly, the gripping areas of the dispensing systems are bounded by a lower perimeter that circumscribes the retention structure and an upper perimeter that extends about a top end of the retention structure.
  • the lower perimeter may be generally depicted as a line that circumscribes the retention structure, e.g., see line A in FIG. 16A, adjacent an area bounding the lowermost portions of the actuation area(s).
  • the upper perimeter may be generally depicted as a line that circumscribes the retention structure about the top edge of the retention structure.
  • the area bounded by the lower and upper perimeters should be assumed to be uninterrupted, i.e., apertures, grooves, cutouts, or any other interruptions, should not be eliminated from the surface area calculation.
  • the actuation area is generally shown as comprising one or more wings 130A, 130B. While the present embodiment discloses rotational movement of only the first wing 130A, it is contemplated that one or more of the first and second wings 130A, 130B could be modified for rotation, depression, lateral actuation, sliding, or any other type of movement to cause activation of the dispensing system. As previously noted, the surface area of the first and second wings 130A, 130B are bounded by a lower perimeter (see generally line A on FIGS. 16A and 33) adjacent the first and second lower ends 129A, 129B of the first and second cutouts 128A, 128B.
  • the remaining portions of the first and second wings 130A, 130B between the lower perimeter and peripheral edges of the respective wings 130A, 130B provide the surface area thereof.
  • the surface area of the gripping portion 141 is defined as the total surface area of the shroud 102 between the lower perimeter A and an upper perimeter (shown generally as line B on FIGS. 16A and 33). More specifically, the gripping portion 141 is calculated as if the surface area of the shroud 102 were uninterrupted. In the present embodiment, the surface area of removed portions of the shroud, e.g., the cutouts 128 A, 128B and the U-shaped notch 1 4, would not be omitted from the calculation of the gripping area 141.
  • the actuation area is about 40% of the surface area of the gripping portion 141. In connection with an embodiment where the second wing 130B is rotatable, the actuation area is about 50% of the surface area of the gripping portion 141. Finally, in connection with an embodiment where both the first and second wings 130A, 130B are rotatable to actuate the device, the actuation area is about 85% of the surface area of the gripping portion 141. In one particular embodiment depicted in FIG.
  • the surface area of the gripping portion is about 94.97 cm 2 (14.72 in 2 )
  • the surface area of first wing 130A is about 37.10 cm 2 (5.75 in 2 )
  • the surface area of the second wing 130B is about 44.97 cm 2 (6.97 in 2 ).
  • the actuation areas of the disclosed dispensing systems also have the unique advantage of reducing the force necessary to actuate the systems per unit area of the user's hand. This advantage is realized by the relatively larger surface area of the present actuation areas over prior art trigger/button systems that utilize smaller actuation surfaces.
  • a greater actuation area provides for increased user interaction by utilization of a greater portion of a user's hand during actuation.
  • FIGS. 16A and 33 depict a dispensing system that has an actuation force of about 5.90 kg (13 lbs).
  • the average user is able to apply 3 or 4 fingers to the actuation area of the present system, i.e., the first wing 130A, to activate the device, thereby resulting in an average force per finger of between about 22 kPa (3.25 psi) to about 30 kPa (4.33 psi). It has been found that having an average force per finger of less than about 31 kPa (4.5 psi) provides a low force profile that will activate the dispensing system and be comfortable to users.
  • the surface area of the first wing 130A is about 37.10 cm 2 (5.75 in 2 ), which results in a force of about 158 g cm 2 (2.26 psi) across the actuation area of the present dispensing system. It has also been found that having a force of less than about 204 g/cm 2 (2.90 psi) provides a low force profile that will activate the dispensing system and be comfortable to users. In contrast, commercial devices on the market have significantly higher average forces across their actuation surfaces. For example, an aerosol dispensing system sold under the trade name Febreze ® Air Effects ®, by The Procter and Gamble Company, has an actuation force of about 5 kgs (11 lbs).
  • the average user of this device uses 1 or 2 fingers to trigger an actuation surface of about 4.13 cm 2 (0.64 in 2 ), which results in an average force per finger between about 40 kPa (5.5 psi) to about 76 kPa (11 psi) and a force of about 1208 g cm 2 (17.19 psi) across the actuation surface.
  • another commercial aerosol dispensing system sold under the trade name Air Wick ® Air Freshener, has an actuation force of about 2.72 kg (6 lbs).
  • the average user of this device uses 1 finger to trigger an actuation surface, i.e., a vertically actuable button, of about 2.45 cm 2 (0.38 in 2 ), which results in an average force per finger of about 41 kPa (6 psi) and a force of about 1110 g/cm 2 (15.79 psi) across the actuation surface.
  • an actuation surface i.e., a vertically actuable button
  • FIGS. 16A-16E which includes a shroud 102 that covers about 100%, 75%, 50%, 40%, and 30% of the length of the container 104, respectively, as measured from the bottom edge 1 12 of the shroud 102.
  • the users rated the various dispensing systems 100A-100E based on which dispensing system 100A-100E the user's liked the most and that they were most likely to leave out in plain sight. As previously noted, it was traditionally thought that users would increasingly like shrouds that covered a greater extent of a container in a linear manner from 70% exposure to 0% exposure.
  • the shroud 102 covers a majority of the container 104. In a preferred embodiment, about 0% to about 50% of the surface area of the sidewall 104a of the container 104 is visible below the bottom edge, and more preferably about 0% to about 25% of the surface area of the sidewall 104a of the container 104 is visible below the bottom edge.
  • shroud 102 can be reused with a new container 104 if the old container is depleted or with different containers if a new scent is desired.
  • the shroud 102 may be adapted to be non-removably attached to the container 104.
  • the shroud 102 does not include any distinct or visible trigger or button for dispensing the liquid.
  • any distinct or visible trigger or button for dispensing the liquid.
  • an extending trigger or a cut-out portion within the shroud or indicia on the shroud could be considered "distinct" or “visible.” Rather, a user merely grips the wings 130A, 130B and squeezes to dispense the liquid, as will be described in more detail hereinafter.
  • the absence of any distinct or visible trigger or button has proven to be primarily preferred during experimental testing over other designs utilizing such structure.
  • the shroud 102 further includes a horizontal platform 150 that extends inwardly from an inner surface 152 of the sidewall 110.
  • the horizontal platform 150 extends from the inner surface 152 adjacent the second wing BOB.
  • the platform 150 may extend from the first wing 130A or any other suitable portion of the shroud 102 without departing from the spirit of the present invention.
  • the platform 150 is attached to and/or integrally formed with the sidewall 110 at a first end 154 and is unattached at a second end 156.
  • the platform 150 is generally circular and truncated by opposing first and second planar edges 158A, 158B.
  • First and second rails 160A, 160B are generally parallel with respect to each other and extend upwardly from the platform 150 at locations spaced from the first and second edges 158A, 158B, respectively.
  • Back edges 162A, 162B of the rails 160A, 160B are attached and/or are otherwise integral with the inner surface 152 of the sidewall 108.
  • each rail 160A, 160B further includes a curved cutout 164A, 164B in a central portion thereof.
  • First and second L-shaped members 166A, 166B extend from inside surfaces 168A, 168B of the rails 160A, 160B, respectively, proximate the inner surface 152.
  • 1 6B are generally the same height as the first and second rails 160A, 160B (see, e.g., FIG.
  • First and second rectangular voids 170A, 170B are formed through the platform 150 in an area defined between the L-shaped members 166A, 166B and the inside surfaces 168A,
  • Third and fourth L-shaped members 172 A, 172B extend from outside surfaces 174A,
  • the third and fourth L-shaped members 172a, 172b extend upwardly from the platform 150 to a height less than the L-shaped members 166A, 166B (see, e.g., FIG. 8).
  • Third and fourth rectangular voids 176A, 176B are formed through the platform 150 in an area defined between the L- shaped members 172 A, 172B and the outside surfaces 174 A, 174B of the rails 160a, 160b.
  • a centrally located cylindrical wall 178 extends upwardly from the platform 150 and defines a circular opening 180 between the curved cutouts 164a, 164b in the rails 160A, 160B.
  • the shroud 102 includes a stepped projection 182 that extends from the inner surface 152 adjacent the first wing 130A.
  • the circular opening 180 and the projection 182 are adapted to support portions of the manifold 108, as will be described in more detail hereinafter with respect to FIG. 15.
  • a generally frusto-conical column 184 extends from a central portion of the platform 150 proximate the inner surface 152.
  • a bottom side 200 of the platform 150 includes a mechanism adapted to secure the container 104 thereto.
  • the mechanism includes a plurality of hooks 202 that extend downwardly from the platform 150.
  • a plurality of cut-outs 204 are defined in the platform proximate the hooks 202.
  • the cut-outs 204 facilitate the hooks 202 flexing outwardly around portions of the container 104 to retain the container to the shroud 102. For example, as shown generally in FIGS.
  • the container 104 can be an aerosol container that includes a mounting cup 210 and a tilt-activated or axial ly depressible valve stem 212 that extends from a central portion of the mounting cup.
  • FIG. 15 illustrates an example where the hooks 202 are configured to be secured under peripheral portions of the mounting cup 210 to secure the container 104 to the shroud 102.
  • the container 104 can be selectively retained to the shroud 102 by other known means, e.g., an interference fit, adhesive, a threaded connection, a bayonet-type connection, and the like.
  • the manifold 106 includes a generally cylindrical base 220 that defines an opening 222 adapted to receive the valve stem 212 of the container 104.
  • a first hollow tube 224 is defined in the base 220 and extends upwardly from the opening 202.
  • the first hollow tube 224 is fluidly coupled to a second hollow tube 226 that is defined within an arm 228 that extends angularly away from the base 220.
  • a discharge nozzle 230 is provided on a distal end of the arm 228 through which liquid that travels up through the first and second hollow tubes 224, 226 is ejected from the manifold 106.
  • the discharge nozzle 230 may further include a spray insert 231, which can be easily modified and replaced, e.g., at a manufacturing facility.
  • the discharge nozzle 230 and the spray insert 231 may be designed to facilitate the generation of different spray patterns, e.g., a spray, mist, or stream of liquid, and to modify fluid turbulence characteristics of the discharged liquid.
  • a horizontal shelf 232 extends outwardly from the manifold 106 proximate an intersection 234 between the base 220 and the arm 228.
  • a wall 236 extends downwardly from a distal end of the horizontal shelf 232.
  • first and second members 238A, 238B extend outwardly from opposing sides of the manifold 106 proximate the intersection 234 between the base 220 and the arm 228.
  • the first and second members 238A, 238B are generally cylindrical.
  • a projection 240 extends upwardly from the base 220 and includes a rod 242 extending horizontally from a distal end thereof, generally along the same direction as the cylindrical member 238B.
  • the cap 108 includes a top wall
  • each of the first and second side walls 262 and the front wall 264 extend from a periphery of the top wall 260 with the side walls extending substantially farther than the front wall.
  • the top wall 260 is inclined to correspond generally to the angle of the tangential line 136 between the rounded top edges 132A, 132B of the first and second wings 130A, 130B.
  • the angled top wall 260 further provides an intuitive indication to a user of a spray direction angled up and away from the U-shaped notch 134.
  • the front wall 264 further defines a notch 266 that is configured to accept an outlet of the manifold 106, e.g., the discharge nozzle 230, and to align generally with the notch 134 of the shroud 102.
  • the cap 108 further includes first and second rails 268A, 268B, respectively, that are generally parallel with respect to each other and extend downwardly from the top wall 260 of the cap 108 at locations spaced from the periphery of the top wall.
  • Each rail 268A, 268B further includes a curved cutout 270A, 270B, respectively, in a central portion thereof.
  • First and second hook members 272A, 272B, respectively extend from the rails 268A, 268B, respectively, proximate the front wall 264.
  • third and fourth hook members 274A, 274B, respectively extend from positions inwardly spaced from the rails 268A, 268B, respectively, distal from the front wall 264.
  • the first and second hook members 272A, 272B extend farther than the third and fourth hook members 274A, 274B.
  • the container 104 is inserted through the opening 116 in the shroud 102 so that the hooks 202 that extend from the bottom side 200 of the horizontal platform 150 are engaged with the mounting cup 210 of the container 104 to retain same thereto and the valve stem 212 is disposed within the circular opening 180.
  • the manifold 106 is inserted past the top edge 114 of the shroud 102 so that the opening 222 in the base member 220 is secured in the opening 180 of the horizontal platform 150 and around the valve stem 212 of the container 104.
  • the manifold 106 is further disposed within the shroud 102 so that the horizontal shelf 232 and the downwardly extending wall 236 abut the inner surface 152 of the shroud 102 above the stepped projection 182.
  • the cap 108 is inserted over the manifold 106 so that the side walls 262A,
  • the first and second L-shaped members 166A, 166B further include cutout portions 276A, 276B (only portion 276A shown in the FIG. 13, portion 276B being a mirror image thereof).
  • the third and fourth L-shaped members 172A, 172B further include cutout portions 278 A, 278B (only portion 278A shown in the FIG. 14, portion 278B being a mirror image thereof).
  • the hooks 272, 274 of the cap 108 engage under portions of the L-shaped members 172, 166 that define the cutout portions 278, 276.
  • the column 184 that extends from the horizontal platform 150 of the shroud 102 provides a support structure so that the cap 108 does not damage the shroud when assembled thereon. Further, during an injection molding manufacturing process of the shroud 102, the column 184 may be formed as part of an inlet to the mold cavity.
  • first and second tracks 280A, 280B are generally vertically aligned and define first and second tracks 280A, 280B (only track 280A shown in the FIGS. 13-15, track 280B being a mirror image thereof).
  • the cylindrical member 238A of the manifold 106 is disposed within the track 280A to constrain the movement of the manifold along the path of arrow A.
  • the cylindrical member 238B is disposed within the track 280B.
  • the projection 240 and the rod 242 of the manifold 106 interact with the top wall 260 of the cap 108 to further constrain the movement of the manifold 106 along the direction of arrow A.
  • a user grasps the wings 130A, 130B of the shroud and exerts an inward force directed generally along the arrows B to press the wings together, which is generally perpendicular or transverse to the longitudinal axis 122 of the dispensing system 100.
  • the container 104 is held in a relatively fixed position with respect to the second wing 130B by the hooks 202 that extend from the horizontal platform 150.
  • the first wing 130A moves inwardly and presses against the downwardly extending wall 236 of the manifold 106, which causes the manifold 106 to move W
  • the valve stem 212 of the container 104 is moved in a generally radial and/or axial direction due to the coupling between the base member 220 of the manifold 106 and the valve stem 212. Consequently, the valve stem 212 is actuated and liquid is dispensed therefrom, through the first and second hollow rubes 224, 226, and out through the discharge nozzle 230.
  • the wings 130A, 130B are designed to actuate under a force applied along the arrows B of between about 5 to about 20 pounds.
  • the present configuration of the shroud 102 is designed so that the wings 130A, 130B can be easily grasped and squeezed by male and female consumers with hand size and strength characteristics in about the 5th to about the 95th percentile.
  • FIGS. 17-26 another embodiment of a dispensing system 300 is depicted, which is identical to the previously described embodiments except for the below noted differences.
  • the dispensing system 300 includes a manifold retention system to prevent unintentional actuation of the dispensing system 300. Tilt valves and other types of valve stems may be unintentionally activated during the manufacturing and/or shipping process.
  • the manifold retention system has been modified to hold the manifold 106 above the valve stem 212 of the container 104 until the dispensing system 300 is ready for first use, thereby preventing unintentional actuation.
  • FIGS. 18-20 depict the shroud 102 of the present embodiment, which includes the horizontal platform 150.
  • the horizontal platform 150 extends from the inner surface 152 of the sidewall 110 adjacent the second wing 130B.
  • the first and second rails 160A, 160B are generally parallel with one another and extend upwardly from the platform 150 at locations spaced from the first and second edges 158A, 158B, respectively.
  • the back edges 162A, 162B of the rails 160A, 160B are attached and/or are otherwise integral with the inner surface 152 of the sidewall 110.
  • the first and second rails 160A, 160B include rectangular cutouts 302A, 302B, respectively, instead of the curved cutouts 164A, 164B described in connection with the previous embodiment Additionally, the present embodiment does not include the centrally located cylindrical wall 178, which extends upwardly from the platform 150 to define the circular opening 180. Further, two protrusions 304 (see FIGS. 19 and 20) extend inwardly from the inner surface 1 2 of the first wing 130A to contact the bottom side 200 of the horizontal platform 150. During actuation, as the first wing 130A moves back toward the second wing 130B, the protrusions 304 ride below the horizontal platform 150 to provide additional control to the movement of the wing 130A.
  • FIGS. 21 and 22 depict the modified cap 108 for use in the present embodiment, which includes ramps 306A, 306B and semicircular recesses 308A, 308B within the first and second rails 268a, 268b, respectively, as opposed to the curved cutouts 270A, 270B.
  • the semicircular recesses 308a, 308b located at the top of the ramps 306a, 306b aid in retaining the manifold 106 within the cap 108.
  • the cap 108 also includes protrusions 31 OA, 310B located on the first and second rails 268A, 268B of the cap 108 (only protrusion 31 OA is shown in FIGS.
  • protrusion 310B being a mirror image thereof).
  • the protrusions 310A, 310B mate with grooves 312A, 312B on the manifold 106 (see FIG. 23) and help retain the manifold 106 within the cap 108.
  • FIG. 23 depicts the modified manifold 106 used in the present embodiment.
  • T e manifold 106 is provided with a conical docking base 314 attached to the end of the generally cylindrical base 220.
  • the manifold 106 is also provided with the grooves 312A, 312B on the horizontal shelf 232 (only groove 312A is shown, groove 312B being a mirror image thereof).
  • the grooves 312A, 312B mate with the protrusions 31 OA, 310B to assist in holding the manifold 106 above the valve stem 212 of the container 104.
  • the container 104 in an assembled condition, is inserted through the opening 116 in the shroud 102 so that the hooks 202 that extend from the bottom side 200 of the horizontal platform 150 are engaged with the mounting cup 210 of the container 104 to retain same thereto and the valve stem 212 within the circular opening 180.
  • the manifold 106 is not seated on the valve stem 212 of the container 104 during initial assembly of the dispensing system 300.
  • the manifold 106 is inserted into the cap 108 such that the notch 266 is generally aligned with the discharge nozzle 230 of the manifold 106 and the cylindrical members 238A, 238B are nested within the semicircular recesses 308A, 308B of the cap 108.
  • the grooves 312A, 312B, on the manifold 106 mate w h the protrusions 1 OA, 310B of the cap 108 to retain the manifold 106 within the cap 108 (see FIGS. 24 and 25). It is anticipated that other engagement mechanisms could be used to retain the manifold 106 within the cap 108, such as various snapping or breakaway features.
  • the cap 108 with the manifold 106 retained therein is then inserted into the top of the shroud 102 so that the side walls 262A, 262B and the front wall 264 of the cap 108 are disposed within the top edge 1 14 of the shroud 102 and the notch 266 is generally aligned with the notch 134 of the shroud 102.
  • the cap 108 is connected to the shroud 102 in the same manner as previously described, by engaging the hooks 272A, 272B, 274A, 274B under portions of the L-shaped members 172A, 172B, 166A, 166B.
  • valve stem 212 is disposed partially within the conical docking base 314 and in a non-engaged relationship with the docking base 220 to prevent unintentional fluid release.
  • the conical docking base 314 may be omitted or modified.
  • the valve stem 212 may be disposed entirely beneath all portions of the manifold 106. Still further, it is contemplated that the valve stem 212 may be partially engaged with portions of the manifold 106, e.g., the docking base 220.
  • the manifold 106 To place the dispensing system 300 into an active state, the manifold 106 must be released from the cap 108.
  • a user grasps the wings 130A, 130B of the shroud 102 and exerts a force directed generally along the arrows B to press the wings together.
  • the wings 130A, 130B When the wings 130A, 130B are pressed together, the first wing 130A moves inwardly and presses against the downwardly extending wall 236 of the manifold 106, which causes the manifold 106 to move generally in the direction of arrow A as seen in FIG 26.
  • the cylindrical members 238A, 238B leave the semicircular recesses 308A, 308B and ride down the angled ramps 306A, 306B of the cap 108.
  • the movement of the cylindrical members 238A, 238B causes the manifold 106 to release from the protrusions 31 OA, 310B in the cap 1 8.
  • the conical docking base 314 guides the base member 220 of the manifold 106 over the valve stem 212 of the container 104, allowing the manifold 106 to sealingly connect with the valve stem 212 (see FIG. 26a).
  • the dispensing system 300 Upon release of the manifold 106 from the cap 108 and seating of the base member 220 on the valve stem 212 the dispensing system 300 is placed in an operational state. Thereafter, the dispensing device 300 is operated in the same manner as described above. A user squeezes one or more of the wings 130A, 130B of the shroud 102 to cause the first wing 130A to press against the downwardly extending wall 236 of the manifold 106. The manifold 106 moves back toward the second wing 130B and the valve stem 212 of the container 104 is moved in a generally radial and/or axial direction due to the coupling between the base member 220 of the manifold 106 and the valve stem 212. Consequently, the valve stem 212 is actuated and fluid is dispensed from the dispensing system 300.
  • FIG. 27 illustrates a removable locking mechanism 350 that can be placed over the cap 108 of the dispenser 100, 300.
  • the locking mechanism 350 prevents the dispenser 100, 300 from actuating during transportation.
  • the locking mechanism 350 includes two wing-like tabs 352A and 352 B that extend over the sides of the cap 108 and sit within the U-shaped cutouts 128A, 128B (see FIGS. 27 and 28).
  • the tabs 352A, 352B keep the first wing 130A of the shroud 102 from pressing back toward the second wing 130B.
  • the locking mechanism 350 also includes a front piece 354 that extends between the front wall 264 of the cap 108 and the first wing 130A of the shroud 102 (see FIGS. 27 and 29).
  • the front piece 354 also prevents the first wall 130A of the shroud from pressing back and actuating the dispensing system 100, 300. Prior to use, the user removes the locking mechanism 350 to place the dispensing system 100, 300 into an operable state.
  • FIGS. 30-32 illustrate an alternative embodiment for attaching the cap 108 to the shroud 102 of the dispensing systems 100, 300.
  • Tubular members 360 are disposed on the underside of the cap 108 (see FIGS. 30 and 31), which fittingly engage with receiving posts 362 provided on the horizontal platform 150 (see FIG. 32) to retain the cap 108 within the shroud 102.
  • other fastening means and embodiments for attaching the cap 108 to the shroud 102 can be made without departing from the spirit of the present disclosure.
  • the shroud 102 described with any of the previous embodiments may be modified to include tapered cutouts 370A, 370B (only 370B is shown, 370A being a mirror image thereof) instead of the U-shaped cutouts 128A, 128B, respectively.
  • the tapered cutouts 370A, 370B extend into the first wing 130A of the shroud 102.
  • the tapered cutouts 370A, 370B facilitate the actuation of the device by requiring less force to actuate the first wing 130A, i.e., it is easier to squeeze and inwardly depress the first wing 130A.
  • FIGS. 35-37 illustrate an alternative manifold retention system for retaining the manifold 106 within the shroud 102, which may be used with any of the previous embodiments.
  • the manifold 106 is modified to include a circular aperture 372 disposed adjacent the distal end of the horizontal shelf 232.
  • a cylindrical pin 374 extending upwardly from the stepped projection 182 is inserted into the cylindrical aperture 372 (see FIG. 37). This aperture 372 and pin 374 combination prevents the removal or disruption of the manifold 106 when the dispensing system 100 is operated or when the container 104 is replaced.
  • the dispensing systems 100, 300 may be modified to include a removable door 376 to assist in the removal and retention of the container 104.
  • the door 376 is similar in shape to the opening 116 defined by the bottom edge 112 of the shroud 102.
  • a peripheral surface 378 of the door includes a threading 380, which engages with a threaded section 382 disposed on the inner surface 152 of the shroud 102 adjacent the bottom edge 112 thereof.
  • the container 104 is inserted through the opening 116 in the shroud 102.
  • the door 376 is then rotatably attached to the threaded section 382 of the shroud 102, thereby retaining the container 104 within the shroud 102.
  • a plurality of ribs 384 disposed within an interior 386 of the door 376 contact the bottom edge 120 of the container 104.
  • the ribs 384 cause the mounting cup 210 of the container 104 to be held against the bottom side 200 of the platform 150 without the need for the plurality of hooks 202 as described in the previous embodiments.
  • the door 376 may include additional supports designed to assist in holding the container 104 against the bottom side 200 of the platform 150.
  • the door 376 may include a central domed portion (not shown) designed to interact with a central domed portion 121 of the container 104.
  • the valve stem 212 of the container 104 extends through the aperture 180 and engages with the manifold 106 as described above.
  • a user may unscrew the door 376 to remove the container 104 from the shroud 102 and replace it.
  • other means for opening and closing the door 376 such as snap-fit engagements can be used to close the opening 116 of the shroud 102 without departing from the spirit of the present disclosure.
  • FIG. 42 illustrates another embodiment of the dispensing system 100 that includes features that enable both of the wings 130A, 130B to be moveable with respect to the container 104 to dispense liquid therefrom.
  • a discharge member 420 extends from the first wing 130A and is coupled to the valve stem 212 of the container 104.
  • a wedge-shaped member 422 extends from the second wing 130B.
  • both of the wings 130A, 130B may exert forces, which are transferred to the valve stem 212 to actuate same.
  • the movement of both wings 130A, 130B may further reduce the overall force necessary to actuate the system 100 per unit area of the user's hand in contact with the shroud 102 over other trigger/button actuated systems.
  • FIGS. 43 and 44 illustrate another example, similar to FIG. 42, wherein the wedge-shaped member 422 is connected to the second wing 130B by a hinge 424.
  • the wedge-shaped member 422 becomes locked against the discharge member 420 when the cap 108 is disposed on the shroud 102.
  • FIG. 45 illustrates yet another example of the dispensing system 100 that includes features that enable both of the wings 130A, 130B to be moveable with respect to the container 104 to dispense liquid therefrom.
  • a discharge member 440 is coupled to the valve stem 212 of the container 104 and further includes a concave spring 442 that is retained between inner surfaces 152 of the wings 130A, 130B.
  • the concave spring 442 flexes downwardly to actuate the valve stem 212.
  • the movement of both wings 130A, 130B may further reduce the overall force necessary to actuate the system 100 per unit area of the user's hand in contact with the shroud 102 over other trigger/button actuated systems.
  • FIG. 46 generally illustrates a different feature that may be included with the dispensing systems described herein.
  • peel away labeling 406 has been added to the shroud, the cap, and/or the container to provide use and/or purchasing information, which can later be removed by a user.
  • Other permanent and/or removable labeling can be applied to any portion of the dispensing system, e.g., the cap 108 may include brand information so that the dispensing system can be easily distinguished from other dispensers.
  • the shroud 102, the container 104, the manifold 106, and the cap 108 can be made from any suitable materials, as would be apparent to one of ordinary skill in the art.
  • a portion 450 or the entire shroud 102 is transparent or translucent so that a user can view surface indicia or graphics 452 on the container 104 therethrough.
  • the portion 450 is made from a clear plastic, e.g., clarified polypropylene, polycarbonate, PET, Eastman TritanTM, and BarexTM.
  • the portion 450 may comprise the entire shroud 102 or only portions of the shroud, e.g., portions below the inflexion point 126 or portions adjacent areas of the container that include distinguishing indicia or graphics.
  • the shrouds disclosed herein can be reused with different containers, which may include different surface indicia, colors, or graphics to distinguish one container from another.
  • the transparent or translucent portion 450 allows a user to conveniently and easily see which container is disposed within the shroud before picking up the dispensing system 100 to dispense liquid from the container.
  • the shroud 102 is not transparent or translucent the user can still see which container is disposed within the shroud by viewing the container's surface indicia, color, or graphics, which are visible through the U-shaped cutouts.
  • FIG. 48 depicts a different embodiment of a dispensing system 500 having overlapping members 502A, 502B separated by cutouts 504A, 504B (only cutout 504A is shown).
  • cutouts of any of the described embodiments may be fashioned in any manner insofar as it facilitates the movement of one or more actuation areas to effect operation of the dispensing system.
  • a user squeezing one or more of the members 502A, 502B will cause the member 502A, i.e. the actuation member or area of the present embodiment, to slide over portions of the second member 502A to effect actuation of the dispensing system 500 by any of the above-noted actuation mechanisms.
  • the dispensing system 100 disclosed herein may be used with other types of dispensing mechanisms, e.g., pump action dispensers, electromechanical atomizers, wick-based systems, etc., as would be apparent to one of ordinary skill in the art.
  • the shroud 102 and/or container 104 may be shaped differently to accommodate other design choices.
  • the container 104 may hold any type of fluid product or other substance that is to be dispensed.
  • the product may be in any suitable form including liquid or gas.
  • the container may include a propellant or other compressed gases to facilitate the release thereof.
  • the fluid may be a fragrance or insecticide disposed within a carrier liquid, a deodorizing liquid, a cleaning and/or polishing formulation or the like.
  • the fluid may comprise PLEDGE®, a surface cleaning composition for household, commercial, and institutional use, or GLADE®, a household deodorant, both sold by S. C. Johnson and Son, Inc., of Racine, Wisconsin.
  • the fluid may also comprise other actives, such as sanitizers, air fresheners, odor eliminators, mold or mildew inhibitors, insect repellents, and the like, or that have aromatherapeutic properties.
  • the fluid alternatively comprises any fluid known to those skilled in the art that can be dispensed from the container 104.
  • the dispensing system described herein advantageously allows for the dispensing of a fluid product therefrom by application of a force to a shroud holding a container.
  • Various features provide an ergonomic gripping surface and give visual and spatial Indicators to the user to facilitate product dispensing.
  • This description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and use what is herein disclosed and to teach the best mode of carrying out same. All patents, patent applications, and other references cited herein are incorporated herein by reference as if they appear in this document in their entirety. The exclusive rights to all modifications which come within the scope of this disclosure are reserved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

L'invention porte sur un système de distribution qui comprend une enveloppe (102) pour tenir un contenant (104). L'enveloppe (102) présente une partie de préhension (141) conçue pour être saisie par la main d'un utilisateur et une zone d'activation. La zone d'activation est activée par un utilisateur lors de l'application d'une force généralement transversale à un axe longitudinal central. La force fait tourner la zone d'activation autour d'un point de rotation qui est sur l'axe longitudinal central du système de distribution.
PCT/US2011/001779 2010-10-22 2011-10-20 Enveloppe et système de distribution pour contenant portatif WO2012054081A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011318571A AU2011318571B2 (en) 2010-10-22 2011-10-20 Shroud and dispensing system for a handheld container

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US40607410P 2010-10-22 2010-10-22
US61/406,074 2010-10-22
US13/112,608 US20120000940A1 (en) 2010-05-21 2011-05-20 Shroud and dispensing system for a handheld countainer
PCT/US2011/000904 WO2011146132A1 (fr) 2010-05-21 2011-05-20 Enveloppe de protection et système de distribution pour un contenant portatif
USPCT/US2011/000903 2011-05-20
US13/112,578 2011-05-20
US13/112,608 2011-05-20
PCT/US2011/000903 WO2011146131A1 (fr) 2010-05-21 2011-05-20 Enveloppe et système de distribution pour récipient tenu à la main
US13/112,559 US9051108B2 (en) 2010-05-21 2011-05-20 Shroud and dispensing system for a handheld container
USPCT/US2011/000906 2011-05-20
PCT/US2011/000905 WO2011146133A1 (fr) 2010-05-21 2011-05-20 Enveloppe de protection et système de distribution pour un contenant portatif
PCT/US2011/000906 WO2011146134A1 (fr) 2010-05-21 2011-05-20 Enveloppe de protection et système de distribution pour un contenant portatif
US13/112,559 2011-05-20
US13/112,595 US20120000939A1 (en) 2010-05-21 2011-05-20 Shroud and dispensing system for a handheld countainer
US13/112,578 US20120000938A1 (en) 2010-05-21 2011-05-20 Shroud and dispensing system for a handheld countainer
USPCT/US2011/000904 2011-05-20
US13/112,595 2011-05-20
USPCT/US2011/000905 2011-05-20
US13/267,558 2011-10-06
US13/267,558 US20120037663A1 (en) 2010-05-21 2011-10-06 Shroud and Dispensing System for a Handheld Container

Publications (1)

Publication Number Publication Date
WO2012054081A1 true WO2012054081A1 (fr) 2012-04-26

Family

ID=44947171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/001779 WO2012054081A1 (fr) 2010-10-22 2011-10-20 Enveloppe et système de distribution pour contenant portatif

Country Status (2)

Country Link
AU (1) AU2011318571B2 (fr)
WO (1) WO2012054081A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051108B2 (en) 2010-05-21 2015-06-09 S.C. Johnson & Son, Inc. Shroud and dispensing system for a handheld container
US9211994B2 (en) 2010-05-21 2015-12-15 S.C. Johnson & Son, Inc. Shroud and dispensing system for a handheld container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1444387A (fr) * 1964-07-15 1966-07-01 Neotechnic Eng Ltd Dispositif d'actionnement pour récipient à aérosol
US5899365A (en) * 1994-10-10 1999-05-04 Boehringer Ingelheim Kg Device for assisting manual actuation of an aerosol dispenser
US20040245291A1 (en) * 2001-10-04 2004-12-09 Bruno Simon Laterally-actuated fluid dispenser device
US20050234402A1 (en) * 2002-08-01 2005-10-20 Collins Matthew S Fluid dispensing device
US20090200335A1 (en) * 2005-07-12 2009-08-13 Billy Nilson Spray Device, Method for Spraying a Certain Quantity of Fluid and a Process for Manufacturing the Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1444387A (fr) * 1964-07-15 1966-07-01 Neotechnic Eng Ltd Dispositif d'actionnement pour récipient à aérosol
US5899365A (en) * 1994-10-10 1999-05-04 Boehringer Ingelheim Kg Device for assisting manual actuation of an aerosol dispenser
US20040245291A1 (en) * 2001-10-04 2004-12-09 Bruno Simon Laterally-actuated fluid dispenser device
US20050234402A1 (en) * 2002-08-01 2005-10-20 Collins Matthew S Fluid dispensing device
US20090200335A1 (en) * 2005-07-12 2009-08-13 Billy Nilson Spray Device, Method for Spraying a Certain Quantity of Fluid and a Process for Manufacturing the Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051108B2 (en) 2010-05-21 2015-06-09 S.C. Johnson & Son, Inc. Shroud and dispensing system for a handheld container
US9211994B2 (en) 2010-05-21 2015-12-15 S.C. Johnson & Son, Inc. Shroud and dispensing system for a handheld container

Also Published As

Publication number Publication date
AU2011318571A1 (en) 2013-01-10
AU2011318571B2 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
AU2011256772B2 (en) Shroud and dispensing system for a handheld container
US9211994B2 (en) Shroud and dispensing system for a handheld container
US8459508B2 (en) Shroud for a dispenser
AU2014326943B2 (en) Dispensing system with bracket
CA2695993A1 (fr) Bouchon actionneur pour un dispositif de pulverisation
US20120024894A1 (en) Dispenser
US20120217243A1 (en) Shroud and Dispensing System for a Handheld Container
AU2011318571B2 (en) Shroud and dispensing system for a handheld container
AU2015200972B2 (en) Shroud and dispensing system for a handheld container
AU2013209295B2 (en) Shroud and dispensing system for a handheld container
AU2014201971B2 (en) Shroud and dispensing system for a handheld container
WO2013142305A2 (fr) Diffuseur et système de distribution pour un récipient portatif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11782260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011318571

Country of ref document: AU

Date of ref document: 20111020

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11782260

Country of ref document: EP

Kind code of ref document: A1