WO2012053869A2 - Load measuring device and method of weighing vehicle having suspension with two-stage springs - Google Patents

Load measuring device and method of weighing vehicle having suspension with two-stage springs Download PDF

Info

Publication number
WO2012053869A2
WO2012053869A2 PCT/KR2011/007910 KR2011007910W WO2012053869A2 WO 2012053869 A2 WO2012053869 A2 WO 2012053869A2 KR 2011007910 W KR2011007910 W KR 2011007910W WO 2012053869 A2 WO2012053869 A2 WO 2012053869A2
Authority
WO
WIPO (PCT)
Prior art keywords
load
vehicle
sensor
auxiliary spring
measured value
Prior art date
Application number
PCT/KR2011/007910
Other languages
French (fr)
Korean (ko)
Other versions
WO2012053869A3 (en
Inventor
김종우
조윤범
Original Assignee
㈜바이텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜바이텍코리아 filed Critical ㈜바이텍코리아
Publication of WO2012053869A2 publication Critical patent/WO2012053869A2/en
Publication of WO2012053869A3 publication Critical patent/WO2012053869A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/12Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having electrical weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/08Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a leaf spring

Definitions

  • the present invention relates to a vehicle load measuring apparatus and method, and more particularly to a vehicle load measuring apparatus and method having a two-stage spring suspension.
  • the conventional structure of the leaf spring suspension of a commercial vehicle has a variety of types, such as single spring, camel spring, two-stage spring.
  • the axle of the leaf spring suspension system can be converted to the load by measuring the strain or the slope change of the leaf spring, but in the case of the two-stage spring, the load measurement is not easy because of the spring behavior.
  • the behavior characteristic of the two-stage spring is that the lower main spring supports the entire weight without loading the load, and the Helper spring or Auxiliary spring is supported by the upper spring when the load above the certain weight is loaded. It comes into contact with the bearing plate and acts as a suspension, after which the main and auxiliary springs are distributed to support the total weight.
  • Figure 1 shows the structure of a conventional two-stage spring suspension.
  • the two-stage spring suspension system is difficult to apply the conventional technique of measuring the strain or the slope of the leaf spring in real time to measure the celebration of the vehicle in real time, and thus it was used before the real-time measurement technique was introduced. After loading the vehicle, it is inevitable to use the method of directly measuring the load of the vehicle. Since this method is difficult to prevent overloading, the load of the two-stage spring suspension system can be measured in real time. There is an urgent need for an apparatus and method for measuring a load on a vehicle.
  • the problem to be solved by the present invention is to provide a vehicle load measuring device and method that can measure the (axial) load of the two-stage spring suspension in real time, in consideration of the characteristics of the two-stage spring suspension.
  • the vehicle load measuring apparatus of the present invention for solving the above problems is a load measuring apparatus for a vehicle having a two-stage spring suspension composed of a main spring and an auxiliary spring, the main spring sensor and the auxiliary spring installed on the main spring.
  • a sensor module including an auxiliary spring sensor installed in the sensor;
  • a load output module that calculates and displays a load of the vehicle to the user by using the measured value of the main spring sensor and the measured value of the auxiliary spring sensor.
  • the load output module calculates the load of the vehicle using the measured value of the main spring sensor before the load is applied to the auxiliary spring, and outputs the output value of the auxiliary spring sensor from the moment the load is applied to the auxiliary spring. To calculate the load on the vehicle.
  • the load output module is calculated using the measured value of the main spring sensor at the time of tolerance and the main spring sensor at the time of operation of the auxiliary spring and the actual load from the time of tolerance to the time of operation of the auxiliary spring,
  • the load is measured according to the first trend line indicating the load corresponding to the measured value of the main spring sensor, and the measured value and the actual load of the auxiliary spring sensor at the time of the auxiliary spring operation from the time of the auxiliary spring operation to the full parking point
  • the load may be measured according to a second trend line indicating a load corresponding to the measured value of the auxiliary spring sensor, calculated using the measured value of the auxiliary spring sensor and the actual load at the time of fullness.
  • the load output module may add the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculate the load of the vehicle using the summed measured value.
  • the load output module obtains a trend line indicating a load corresponding to the sum of the measured values at the tolerance and the sum of the measured values at the full load and the sum of the measured values using the measured values, and the measured values summed according to the trend lines. It is possible to calculate the load of the vehicle corresponding to.
  • the load output module is a combined measured value of the tolerance time, the actual load and the combined measurement value of the full time, and the actual load and the combined measured value of any time corresponding to the intermediate time between the tolerance time and the full time
  • a trend line representing a load corresponding to the sum of the measured values may be obtained using, and the load of the vehicle corresponding to the sum of the measured values may be calculated according to the trend line.
  • the load output module can obtain a trend line that satisfies the first-order equation using the least square method.
  • the load output module can obtain a trend line satisfying the quadratic equation using the least square method.
  • the load output module may communicate with the sensor module in a wired or wireless communication manner to receive sensor measurement values.
  • the vehicle load measuring method of the present invention for solving the above problems is a load measuring method of a vehicle having a two-stage spring suspension composed of a main spring and an auxiliary spring, (a) as a load is applied to the vehicle Outputting a measured value by a main spring sensor installed in the main spring and an auxiliary spring sensor installed in the auxiliary spring; And (b) the load output module receiving the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculating and displaying the load of the vehicle using the received measured values to the user.
  • the load output module calculates the load of the vehicle using the measured value of the main spring sensor before the load is applied to the auxiliary spring, the instant the load is applied to the auxiliary spring
  • the load of the vehicle can be calculated using the output value of the auxiliary spring sensor.
  • the load output module measures the measured value of the main spring sensor at the time of tolerance and the measured value and actual value of the main spring sensor at the time of the auxiliary spring from the time of tolerance to the time of operation of the auxiliary spring.
  • the load is measured in accordance with a first trend line representing a load corresponding to the measured value of the main spring sensor calculated using the load, and the auxiliary spring sensor at the point of time when the auxiliary spring operates from the time when the auxiliary spring operates to the full load point.
  • the load can be measured in accordance with a second trend line indicating a load corresponding to the measured value of the auxiliary spring sensor and calculated using the measured value and the actual load of the auxiliary spring sensor and the measured value and the actual load of the auxiliary spring sensor.
  • the load output module may add the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculate the load of the vehicle using the added measured value.
  • the load output module obtains a trend line indicating a load corresponding to the sum of the measured values at the tolerance, the actual load at the full load and the sum of the measured values using the summed measurement values, According to the trend line, the load of the vehicle corresponding to the sum of the measured values may be calculated.
  • the load output module may include the combined measured value of the tolerance time point, the actual load and the aggregated measured value of the full time point, and an arbitrary time point corresponding to the middle point of the tolerance time and full time point.
  • the trend line representing the load corresponding to the sum of the measured values may be obtained using the actual load and the sum of the measured values, and the load of the vehicle corresponding to the sum of the measured values may be calculated according to the trend line.
  • the load output module can obtain a trend line satisfying the first-order equation using the least-squares method.
  • the load output module can obtain a trend line satisfying the quadratic equation using the least square method.
  • the load output module may communicate with the sensor module in a wired or wireless communication manner to receive sensor measurement values.
  • the present invention is to install the sensor in the main spring and the auxiliary spring of the suspension consisting of two-stage spring, respectively, the measured value of the sensor installed in the main spring and the sensor installed in the auxiliary spring that changes as the load is applied to the vehicle Measure the load applied to the vehicle.
  • the present invention adopts a load measuring method using the sensor value of the main spring or the sensor value of the auxiliary spring for each load section of the vehicle, or by adding up the sensor measurement value of the main spring and the sensor measurement value of the auxiliary spring,
  • a method of measuring the load applied to the vehicle by modeling an equation that can convert the measured value into a load, it is applied in real time using the measured values of the sensors that change in real time according to the load applied to the vehicle Since the calculated load can be calculated and output to the user, even the vehicle equipped with the suspension system composed of two-stage springs, which is difficult to apply the conventional method of measuring the real-time vehicle load, can accurately measure the load of the vehicle in real time. Overload can be prevented.
  • 1 is a view showing the structure of a conventional two-stage spring suspension.
  • FIG. 2 is a view showing the overall configuration of a load measuring device for a vehicle having a two-stage spring suspension device according to an embodiment of the present invention.
  • FIGS. 3A and 3B are views illustrating sensors installed on a left wheel shaft and a right wheel shaft of a vehicle, respectively.
  • 3C is a plan view showing the entire configuration of a sensor installed in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a view showing the overall configuration of a load measuring device (hereinafter, simply abbreviated as "load measuring device") of a vehicle having a two-stage spring suspension device according to a preferred embodiment of the present invention.
  • 3A to 3C are diagrams illustrating an arrangement in which sensors are installed according to an exemplary embodiment of the present invention
  • FIGS. 3A and 3B are views illustrating sensors installed on a left wheel shaft and a right wheel shaft of a vehicle, respectively.
  • 3C is a plan view showing the entire configuration of a sensor installed in accordance with a preferred embodiment of the present invention.
  • a load measuring apparatus according to a preferred embodiment of the present invention will be described with reference to FIGS. 2 to 3C.
  • the load measuring apparatus the sensor module 100 consisting of a plurality of sensors installed in the main spring and the auxiliary spring of the second stage of the suspension of the vehicle, and the sensor module 100 ) Is configured to receive a sensor measurement value from the sensor module 100 by performing a wired or wireless communication, and a load output module 200 for measuring the load of the vehicle using the measured values and displaying the measured value to the user.
  • the sensor module 100 includes a first juice spring sensor (04,06) installed on the main spring of the left wheel shaft, a first auxiliary spring sensor (08, 10) installed on the auxiliary spring of the left wheel shaft, and a main spring of the right wheel shaft. And a second auxiliary spring sensor (07, 09) installed on the auxiliary spring of the right wheel shaft and the second juice spring sensor (03, 05) installed in the.
  • first and second juice spring sensors and the first and second auxiliary spring sensors may be installed in pairs as shown in FIGS. 3A and 3B, or may be individually installed in each spring.
  • the senor of the present invention may be used a strain sensor for measuring the strain of the leaf spring as the load is applied, a tilt sensor for measuring the change in the slope of the leaf spring as the load is applied.
  • the reference inclination sensor 11 installed in the vehicle body is additionally included in the sensor module 100 to measure the reference inclination, which is the inclination of the vehicle, and the inclination sensor is illustrated in FIG. 3C. Shows an example installed.
  • the measurement value of the main spring sensor described later represents the difference between the inclination value measured by the sensor installed in the main spring and the inclination value measured by the reference inclination sensor
  • the measurement value of the auxiliary spring sensor is the auxiliary spring The difference between the slope measured by the sensor installed at and the reference slope measured by the sensor.
  • a strain gauge is attached to a main spring or an auxiliary spring, which is a leaf spring, and the leaf spring is bent as a load is applied, and thus, a strain gauge attached to the leaf spring is measured.
  • a specific measurement method is disclosed in detail in Korean Patent No. 10-0455038, and thus a detailed description thereof will be omitted.
  • the method of measuring the load by using the inclination sensor is a method that uses the change in the inclination value of the inclination sensor attached to the leaf spring, the plate spring is bent as the load is applied, and thus the load on the vehicle The difference between the reference slope of the vehicle and the inclination of the leaf spring decreases as the leaf spring is spread as it is applied.
  • a specific measurement method is Korean Patent No. 10-0880156 and Korean Patent Application No. 10-2008-0124882 and Since it is disclosed in detail in the corresponding PCT publication WO2009084824, the detailed description is omitted.
  • Each sensor of the sensor module 100 communicates with the load output module 200 in a wired or wireless manner, performs a measurement at a predetermined time period, or receives a measurement instruction signal from the load output module 200. The measurement is performed to transmit the measured values to the load output module 200.
  • the load output module 200 may be implemented in various forms such as a portable electronic device, an electronic device installed in a vehicle, or a vehicle navigation system.
  • the load output module 200 may include a communication unit 210, a main control unit 250, a display unit 230, and an input unit. 240, and a database (DB) 220.
  • DB database
  • the communication unit 210 may be connected to the sensor module 100 by wire to perform communication, or may perform communication with the sensor module 100 by wireless.
  • the main spring sensors 04, 06, 03, and the like in a predetermined frequency band the preferred embodiment of the present invention uses the 2.4 GHz band but other frequency bands are also available.
  • 05 by wireless communication with the auxiliary spring sensors (08, 10, 07, 09) and the reference tilt sensor (11), to wirelessly transmit the load measurement control command to a plurality of sensors, and to measure from the plurality of sensors
  • the value and sensor identification information are received and output to the main controller 250.
  • the display unit 230 is implemented as an LCD display device to display a vehicle management menu and a load measurement result input from the main controller 250 to the user.
  • the input unit 240 is implemented as a keypad or a touch screen, and receives selection information and control commands for menus displayed on the display unit 230 from the user and outputs them to the main controller 250.
  • the database 220 stores in advance the measured values measured by each sensor in the tolerance state and the full state, and a weightless conversion coefficient used for real-time load measurement. In addition, the database 220 records, as actual data, load measurement time, sensor measurement values input from the sensors, and finally calculated load measurement results (axial load and overall vehicle load, etc.) during actual load measurement. Save it.
  • the main controller 250 outputs basic menus related to vehicle management to the display unit 230.
  • the main communication unit 250 transmits a load measuring command to the wireless communication unit. And transmits the load applied to each axle of the vehicle and the load of the entire vehicle using the measured values received from the sensors and identification information of each sensor through the 210. Is output to the display unit 230.
  • FIG. 4 is a diagram showing the sensor measurement characteristics of the two-stage spring suspension. Referring to FIG. 4, the measurement signals of the sensors installed in the main spring and the auxiliary spring in the two-stage spring suspension device are different from the sensor measurement values of the main spring and the sensor measurement values of the auxiliary spring, respectively. Appears as a graph of.
  • the auxiliary spring measurement is measured from the moment when the auxiliary spring comes into contact with the spring support according to the step of loading the load, and the main spring value is measured relatively linearly until the auxiliary spring is operated. From the step, it changes in the form of a quadratic curve.
  • the main controller 250 of the present invention can measure the load by selectively applying any one of the following four methods.
  • the load from the unloaded vehicle to the operation of the auxiliary spring is measured using the measured values of the sensors installed in the main spring, and the load after the auxiliary spring starts to operate The load is measured using the measured values of the sensors installed in the auxiliary spring.
  • This first measuring method is shown in FIG. 5, and the measured value of the sensor at the tolerance is displayed on the graph as zero. Referring to FIG. 5, the first load measuring method will be described by Equation 1 below.
  • the first equation in Equation 1 represents the load (y11) applied to the vehicle from the tolerance to the operation of the auxiliary spring, a1 is the weight conversion factor of the main spring, b1 is the tolerance load applied at the tolerance Represent each. Substituting the measured value of the main spring sensor at the time of tolerance and the actual load at that time, and the measured value of the main spring sensor at the time of auxiliary spring operation and the actual load at the first equation, the weight conversion factor (a1) and the tolerance load (b1) can be obtained.
  • the second equation represents the load (y12) applied to the vehicle from the auxiliary spring operation to full load
  • c1 is the weight conversion factor of the auxiliary spring
  • d1 is the auxiliary spring operating load applied when the auxiliary spring is operated. Represent each. Further, if the sensor measurement value of the main spring and the actual load at that time, the auxiliary spring sensor measurement value and the actual load at the time of the auxiliary spring operation are substituted into the second equation, the weight conversion factor a1 and Tolerance load b1 can be calculated
  • the weight conversion factors a1 and c1, the tolerance load b1, and the auxiliary spring operating load d1 measured here are stored in the database 220.
  • the second to fourth load measuring method to be described later is a method of summing the signal value of the main spring sensor and the signal value of the auxiliary spring sensor, and the load is measured using the combined measurement value.
  • FIG. 6 is a graph showing a sum of a main spring sensor value and an auxiliary spring sensor value illustrated in FIG. 4. Also in FIGS. 6-9, the sensor measurement value at the time of tolerance was set to 0, and the graph was displayed. As shown in FIG. 6, the summed measurement value increases linearly until the load on which the auxiliary spring operates is applied, showing a measurement value similar to the linear function graph, and from the time when the auxiliary spring starts to operate, A curve similar to the quadratic function curve is shown. Therefore, it is necessary to derive an equation that approximates this measurement, and this modeling method is described in the second to fourth load measurement methods below.
  • FIG. 7 is a view for explaining a second load measurement method. It should be noted that the measured values below are the sum of the measured values of the sensors shown in the drawings.
  • the second load measuring method is a method of measuring a load by obtaining a linear equation that connects a load and a measured value at a tolerance and a load and a measured value at a full load.
  • the second load measurement method is summarized as in Equation 2 below.
  • Equation 2 y2 represents the converted load value, the slope a2 represents the load conversion coefficient, represents the sensor measurement value, b2 represents the tolerance load. Substituting the load and measured value at tolerance and the load and measured value at full load into Equation 2, the load conversion factor (a2) and the tolerance load (b2) can be obtained, and these values are stored in the database 220. do.
  • the third load measuring method of the present invention is a method for increasing the accuracy of the load measurement by reducing the error while reducing the measurement. The error was reduced by substituting the actual load and the measured values, substituting the linear equations, and using the least-squares method.
  • Equation 3 y3 represents the calculated load value, a3 represents the load conversion factor, represents the measured value of the sensor, and b3 represents the tolerance load, respectively.
  • the trend line represented by the first equation obtained according to the third load measurement method is shown in FIG. 8, and compared with the second method shown in FIG. 7, it can be seen that an error is present at full load but the error is reduced overall.
  • the fourth load measurement method of the present invention is a method of obtaining a secondary trend line as shown in Figure 9, for a more accurate load measurement than the second and third load measurement method described above.
  • the fourth load measurement method is the same as the third method, using the load and sensor measured values at tolerance and full load points, and the load and sensor measured values at the midpoint, by the least square method, It is a method of obtaining the second-order trend line equation.
  • Equation 4 y represents a converted load value, a represents a first load conversion coefficient, b represents a second load conversion coefficient, and c represents a tolerance load, respectively.
  • the main controller 250 is configured to measure load using only one of the four load measuring methods described above, or selectively applies one of four methods according to a user's setting. You may.
  • the invention can also be embodied as computer readable code on a computer readable recording medium.
  • the computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, and the like, which are also implemented in the form of a carrier wave (for example, transmission over the Internet). It also includes.
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

The present invention provides a load measuring device and method capable of measuring, in real time, the load of a vehicle having a suspension with two-stage springs. The invention allows: sensors to be installed in both main springs and auxiliary springs of the suspension which has two-stages; and the weight, which is applied to the vehicle, to be measured by using measurement values of the sensors installed in the main springs and measurement values of the sensors installed in the auxiliary springs, wherein the measurement values are changed as the load is applied to the vehicle. Particularly, the invention adopts; a load measuring method using sensor values of the main springs or sensor values of the auxiliary springs in each load section of the vehicle; or a method for measuring the load that is applied to the vehicle by adding up the sensor measurement values of the main springs and the sensor measurement values of the auxiliary springs such that a mathematical formula capable of changing the added measurement values into the load is modeled, thereby calculating the applied load in real time by using the measurement values of the sensors, which are changed in real time according to the load that is applied to the vehicle, and outputting the calculated load to a user. Thus, even for conventional vehicles having a suspension with two-stage springs, to which the method for measuring the load of the vehicle in real time is difficult to apply, the invention can measure the exact load of the vehicle in real time, thereby effectively preventing an overload.

Description

2단 스프링 현가장치를 갖는 차량의 하중 측정 장치 및 방법Load measuring device and method of vehicle with two-stage spring suspension
본 발명은 차량의 하중 측정 장치 및 방법에 관한 것으로서, 보다 구체적으로는 2단 스프링 현가장치를 갖는 차량의 하중 측정 장치 및 방법에 관한 것이다.The present invention relates to a vehicle load measuring apparatus and method, and more particularly to a vehicle load measuring apparatus and method having a two-stage spring suspension.
종래의 상용차의 판스프링 현가장치의 구조는 형태에 따라 싱글스프링, 카멜스프링, 2단 스프링 등의 다양한 종류를 가지고 있다. 일반적으로 판스프링 현가장치의 차축은 판스프링의 변형율 또는 기울기 변화 등을 측정하여 하중으로 변환이 가능하지만, 2단 스프링의 경우는 스프링 거동 특성 때문에 하중 측정이 간단하지 않다. The conventional structure of the leaf spring suspension of a commercial vehicle has a variety of types, such as single spring, camel spring, two-stage spring. In general, the axle of the leaf spring suspension system can be converted to the load by measuring the strain or the slope change of the leaf spring, but in the case of the two-stage spring, the load measurement is not easy because of the spring behavior.
2단 스프링의 거동 특성이란 짐을 상차하지 않은 상태에서는 일차적으로 하단 주 스프링(Main Spring)이 전체 중량을 받쳐주며, 일정 무게 이상의 짐을 상차한 경우 상단의 보조 스프링(Helper spring or Auxiliary spring)이 스프링 받침(Bearing plate)과 접촉하면서 현가장치로서의 역할을 하게 되고, 이 상태 이후에서는 전체 중량을 주 스프링과 보조 스프링이 분배하여 받쳐주게 된다. 도 1에 종래의 2단 스프링 현가장치의 구조를 도시하였다.The behavior characteristic of the two-stage spring is that the lower main spring supports the entire weight without loading the load, and the Helper spring or Auxiliary spring is supported by the upper spring when the load above the certain weight is loaded. It comes into contact with the bearing plate and acts as a suspension, after which the main and auxiliary springs are distributed to support the total weight. Figure 1 shows the structure of a conventional two-stage spring suspension.
이러한 특성으로 인하여, 2단 스프링 현가장치는, 판스프링의 변형률이나 기울기를 측정하여 차량의 축하중을 실시간으로 측정하는 종래 기술이 적용되기 어렵고, 따라서, 이러한 실시간 측정 기술이 도입되기 이전에 이용되던 방식인, 차량에 상차를 완료한 후, 차량의 하중을 직접 측정하는 방식을 사용할 수 밖에 없으며, 이러한 방식은 실질적으로 과적을 방지하기 어려우므로, 2단 스프링 현가장치의 하중을 실시간으로 측정할 수 있는 차량의 하중 측정 장치 및 방법이 절실히 요구되는 실정이다.Due to this characteristic, the two-stage spring suspension system is difficult to apply the conventional technique of measuring the strain or the slope of the leaf spring in real time to measure the celebration of the vehicle in real time, and thus it was used before the real-time measurement technique was introduced. After loading the vehicle, it is inevitable to use the method of directly measuring the load of the vehicle. Since this method is difficult to prevent overloading, the load of the two-stage spring suspension system can be measured in real time. There is an urgent need for an apparatus and method for measuring a load on a vehicle.
본 발명이 해결하고자 하는 과제는, 2단 스프링 현가장치의 특성을 고려하여, 실시간으로 2단 스프링 현가장치의 (축)하중을 측정할 수 있는, 차량 하중 측정 장치 및 방법을 제공하는 것이다The problem to be solved by the present invention is to provide a vehicle load measuring device and method that can measure the (axial) load of the two-stage spring suspension in real time, in consideration of the characteristics of the two-stage spring suspension.
상술한 과제를 해결하기 위한 본 발명의 차량 하중 측정 장치는, 주 스프링과 보조 스프링으로 구성되는 2단 스프링 현가장치를 갖는 차량의 하중 측정 장치로서, 상기 주 스프링에 설치된 주 스프링 센서 및 상기 보조 스프링에 설치된 보조 스프링 센서를 포함하는 센서 모듈; 및 상기 주 스프링 센서의 측정값과 상기 보조 스프링 센서의 측정값을 이용하여 차량의 하중을 계산하여 사용자에게 표시하는 하중 출력 모듈을 포함한다.The vehicle load measuring apparatus of the present invention for solving the above problems is a load measuring apparatus for a vehicle having a two-stage spring suspension composed of a main spring and an auxiliary spring, the main spring sensor and the auxiliary spring installed on the main spring. A sensor module including an auxiliary spring sensor installed in the sensor; And a load output module that calculates and displays a load of the vehicle to the user by using the measured value of the main spring sensor and the measured value of the auxiliary spring sensor.
또한, 상기 하중 출력 모듈은 상기 보조 스프링에 하중이 인가되기 전에는 상기 주 스프링 센서의 측정값을 이용하여 차량의 하중을 계산하고, 상기 보조 스프링에 하중이 인가된 순간부터 상기 보조 스프링 센서의 출력값을 이용하여 차량의 하중을 계산할 수 있다.In addition, the load output module calculates the load of the vehicle using the measured value of the main spring sensor before the load is applied to the auxiliary spring, and outputs the output value of the auxiliary spring sensor from the moment the load is applied to the auxiliary spring. To calculate the load on the vehicle.
또한, 상기 하중 출력 모듈은 공차시점부터 보조 스프링이 동작하는 시점까지는, 공차시점의 주 스프링 센서의 측정값 및 보조 스프링이 동작하는 시점의 주 스프링 센서의 측정값 및 실제 하중을 이용하여 계산된, 주 스프링 센서의 측정값에 대응되는 하중을 나타내는 제 1 추세선에 따라서 하중을 측정하고, 보조 스프링이 동작하는 시점부터 만차 시점까지는, 보조 스프링이 동작하는 시점의 보조 스프링 센서의 측정값 및 실제 하중과, 만차 시점의 보조 스프링 센서의 측정값 및 실제 하중을 이용하여 계산된, 보조 스프링 센서의 측정값에 대응되는 하중을 나타내는 제 2 추세선에 따라서 하중을 측정할 수 있다.In addition, the load output module is calculated using the measured value of the main spring sensor at the time of tolerance and the main spring sensor at the time of operation of the auxiliary spring and the actual load from the time of tolerance to the time of operation of the auxiliary spring, The load is measured according to the first trend line indicating the load corresponding to the measured value of the main spring sensor, and the measured value and the actual load of the auxiliary spring sensor at the time of the auxiliary spring operation from the time of the auxiliary spring operation to the full parking point The load may be measured according to a second trend line indicating a load corresponding to the measured value of the auxiliary spring sensor, calculated using the measured value of the auxiliary spring sensor and the actual load at the time of fullness.
또한, 상기 하중 출력 모듈은 상기 주 스프링 센서의 측정값과 상기 보조 스프링 센서의 측정값을 합산하고, 합산된 측정값을 이용하여 차량의 하중을 계산할 수 있다.In addition, the load output module may add the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculate the load of the vehicle using the summed measured value.
또한, 상기 하중 출력 모듈은 공차시의 합산된 측정값과 만차시의 실제 하중 및 합산된 측정값을 이용하여 합산된 측정값에 대응되는 하중을 나타내는 추세선을 구하고, 상기 추세선에 따라서 합산된 측정값에 대응되는 차량의 하중을 계산할 수 있다.In addition, the load output module obtains a trend line indicating a load corresponding to the sum of the measured values at the tolerance and the sum of the measured values at the full load and the sum of the measured values using the measured values, and the measured values summed according to the trend lines. It is possible to calculate the load of the vehicle corresponding to.
또한, 상기 하중 출력 모듈은 공차시점의 합산된 측정값과, 만차시점의 실제 하중 및 합산된 측정값과, 공차시점과 만차시점의 중간 시점에 해당되는 임의의 시점의 실제 하중 및 합산된 측정값을 이용하여 합산된 측정값에 대응되는 하중을 나타내는 추세선을 구하고, 상기 추세선에 따라서 합산된 측정값에 대응되는 차량의 하중을 계산할 수 있다.In addition, the load output module is a combined measured value of the tolerance time, the actual load and the combined measurement value of the full time, and the actual load and the combined measured value of any time corresponding to the intermediate time between the tolerance time and the full time A trend line representing a load corresponding to the sum of the measured values may be obtained using, and the load of the vehicle corresponding to the sum of the measured values may be calculated according to the trend line.
또한, 상기 하중 출력 모듈은 최소 자승법을 이용하여 1차 방정식을 만족하는 추세선을 구할 수 있다.In addition, the load output module can obtain a trend line that satisfies the first-order equation using the least square method.
또한, 상기 하중 출력 모듈은 최소 자승법을 이용하여 2차 방정식을 만족하는 추세선을 구할 수 있다.In addition, the load output module can obtain a trend line satisfying the quadratic equation using the least square method.
또한, 상기 하중 출력 모듈은 유선 또는 무선 통신 방식으로 상기 센서 모듈과 통신을 수행하여 센서 측정값을 수신할 수 있다.In addition, the load output module may communicate with the sensor module in a wired or wireless communication manner to receive sensor measurement values.
한편, 상술한 과제를 해결하기 위한 본 발명의 차량 하중 측정 방법은, 주 스프링과 보조 스프링으로 구성되는 2단 스프링 현가장치를 갖는 차량의 하중 측정 방법으로서, (a) 차량에 하중이 인가됨에 따라서 상기 주 스프링에 설치된 주 스프링 센서 및 상기 보조 스프링에 설치된 보조 스프링 센서가 측정값을 출력하는 단계; 및 (b) 하중 출력 모듈이 상기 주 스프링 센서의 측정값과 상기 보조 스프링 센서의 측정값을 수신하고, 수신된 측정값들을 이용하여 차량의 하중을 계산하여 사용자에게 표시하는 단계를 포함한다.On the other hand, the vehicle load measuring method of the present invention for solving the above problems is a load measuring method of a vehicle having a two-stage spring suspension composed of a main spring and an auxiliary spring, (a) as a load is applied to the vehicle Outputting a measured value by a main spring sensor installed in the main spring and an auxiliary spring sensor installed in the auxiliary spring; And (b) the load output module receiving the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculating and displaying the load of the vehicle using the received measured values to the user.
또한, 상술한 (b)단계에서, 상기 하중 출력 모듈은 상기 보조 스프링에 하중이 인가되기 전에는 상기 주 스프링 센서의 측정값을 이용하여 차량의 하중을 계산하고, 상기 보조 스프링에 하중이 인가된 순간부터 상기 보조 스프링 센서의 출력값을 이용하여 차량의 하중을 계산할 수 있다.In addition, in the above step (b), the load output module calculates the load of the vehicle using the measured value of the main spring sensor before the load is applied to the auxiliary spring, the instant the load is applied to the auxiliary spring The load of the vehicle can be calculated using the output value of the auxiliary spring sensor.
또한, 상기 (b) 단계에서, 상기 하중 출력 모듈은 공차시점부터 보조 스프링이 동작하는 시점까지는, 공차시점의 주 스프링 센서의 측정값 및 보조 스프링이 동작하는 시점의 주 스프링 센서의 측정값 및 실제 하중을 이용하여 계산된, 주 스프링 센서의 측정값에 대응되는 하중을 나타내는 제 1 추세선에 따라서 하중을 측정하고, 보조 스프링이 동작하는 시점부터 만차 시점까지는, 보조 스프링이 동작하는 시점의 보조 스프링 센서의 측정값 및 실제 하중과, 만차 시점의 보조 스프링 센서의 측정값 및 실제 하중을 이용하여 계산된, 보조 스프링 센서의 측정값에 대응되는 하중을 나타내는 제 2 추세선에 따라서 하중을 측정할 수 있다.In addition, in the step (b), the load output module measures the measured value of the main spring sensor at the time of tolerance and the measured value and actual value of the main spring sensor at the time of the auxiliary spring from the time of tolerance to the time of operation of the auxiliary spring. The load is measured in accordance with a first trend line representing a load corresponding to the measured value of the main spring sensor calculated using the load, and the auxiliary spring sensor at the point of time when the auxiliary spring operates from the time when the auxiliary spring operates to the full load point. The load can be measured in accordance with a second trend line indicating a load corresponding to the measured value of the auxiliary spring sensor and calculated using the measured value and the actual load of the auxiliary spring sensor and the measured value and the actual load of the auxiliary spring sensor.
또한, 상기 (b) 단계에서, 상기 하중 출력 모듈은 상기 주 스프링 센서의 측정값과 상기 보조 스프링 센서의 측정값을 합산하고, 합산된 측정값을 이용하여 차량의 하중을 계산할 수 있다.In addition, in the step (b), the load output module may add the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculate the load of the vehicle using the added measured value.
또한, 상기 (b) 단계에서, 상기 하중 출력 모듈은 공차시의 합산된 측정값과 만차시의 실제 하중 및 합산된 측정값을 이용하여 합산된 측정값에 대응되는 하중을 나타내는 추세선을 구하고, 상기 추세선에 따라서 합산된 측정값에 대응되는 차량의 하중을 계산할 수 있다.In addition, in the step (b), the load output module obtains a trend line indicating a load corresponding to the sum of the measured values at the tolerance, the actual load at the full load and the sum of the measured values using the summed measurement values, According to the trend line, the load of the vehicle corresponding to the sum of the measured values may be calculated.
또한, 상기 (b) 단계에서, 상기 하중 출력 모듈은 공차시점의 합산된 측정값과, 만차시점의 실제 하중 및 합산된 측정값과, 공차시점과 만차시점의 중간 시점에 해당되는 임의의 시점의 실제 하중 및 합산된 측정값을 이용하여 합산된 측정값에 대응되는 하중을 나타내는 추세선을 구하고, 상기 추세선에 따라서 합산된 측정값에 대응되는 차량의 하중을 계산할 수 있다.In addition, in the step (b), the load output module may include the combined measured value of the tolerance time point, the actual load and the aggregated measured value of the full time point, and an arbitrary time point corresponding to the middle point of the tolerance time and full time point. The trend line representing the load corresponding to the sum of the measured values may be obtained using the actual load and the sum of the measured values, and the load of the vehicle corresponding to the sum of the measured values may be calculated according to the trend line.
또한, 상기 (b) 단계에서, 상기 하중 출력 모듈은 최소 자승법을 이용하여 1차 방정식을 만족하는 추세선을 구할 수 있다.In addition, in the step (b), the load output module can obtain a trend line satisfying the first-order equation using the least-squares method.
또한, 상기 (b) 단계에서, 상기 하중 출력 모듈은 최소 자승법을 이용하여 2차 방정식을 만족하는 추세선을 구할 수 있다.Further, in the step (b), the load output module can obtain a trend line satisfying the quadratic equation using the least square method.
또한, 상기 하중 출력 모듈은 유선 또는 무선 통신 방식으로 상기 센서 모듈과 통신을 수행하여 센서 측정값을 수신할 수 있다.In addition, the load output module may communicate with the sensor module in a wired or wireless communication manner to receive sensor measurement values.
본 발명은 2단 스프링으로 구성된 현가장치의 주 스프링과 보조 스프링에 각각 센서를 설치하고, 차량에 하중이 인가됨에 따라서 변화되는 주 스프링에 설치된 센서의 측정값과 보조 스프링에 설치된 센서의 측정값을 이용하여 차량에 인가된 하중을 측정한다.The present invention is to install the sensor in the main spring and the auxiliary spring of the suspension consisting of two-stage spring, respectively, the measured value of the sensor installed in the main spring and the sensor installed in the auxiliary spring that changes as the load is applied to the vehicle Measure the load applied to the vehicle.
특히, 본 발명은 차량의 하중 구간별로 주 스프링의 센서값을 이용하거나 보조 스프링의 센서값을 이용하는 하중 측정 방식을 채택하거나, 주 스프링의 센서 측정값과 보조 스프링의 센서 측정값을 합산하여, 합산된 측정값을 하중으로 환산할 수 있는 수학식을 모델링하여, 차량에 인가되는 하중을 측정하는 방식을 채택하여, 차량에 인가되는 하중에 따라서 실시간으로 변화하는 센서들의 측정값을 이용하여 실시간으로 인가된 하중을 계산하여 사용자에게 출력할 수 있으므로, 종래의 실시간 차량의 하중을 측정하는 방법이 적용되기 어려운 2단 스프링으로 구성된 현가장치가 설치된 차량에 대해서도 실시간으로 정확한 차량의 하중을 측정할 수 있어 효과적으로 과적을 방지할 수 있다.In particular, the present invention adopts a load measuring method using the sensor value of the main spring or the sensor value of the auxiliary spring for each load section of the vehicle, or by adding up the sensor measurement value of the main spring and the sensor measurement value of the auxiliary spring, By adopting a method of measuring the load applied to the vehicle by modeling an equation that can convert the measured value into a load, it is applied in real time using the measured values of the sensors that change in real time according to the load applied to the vehicle Since the calculated load can be calculated and output to the user, even the vehicle equipped with the suspension system composed of two-stage springs, which is difficult to apply the conventional method of measuring the real-time vehicle load, can accurately measure the load of the vehicle in real time. Overload can be prevented.
도 1은 종래의 2단 스프링 현가장치의 구조를 도시한 도면이다.1 is a view showing the structure of a conventional two-stage spring suspension.
도 2는 본 발명의 바람직한 일 실시예에 따른 2단 스프링 현가장치를 갖는 차량의 하중 측정 장치의 전체 구성을 도시하는 도면이다. 2 is a view showing the overall configuration of a load measuring device for a vehicle having a two-stage spring suspension device according to an embodiment of the present invention.
도 3a 내지 도 3c는 본 발명의 바람직한 일 실시예에 따라서 센서가 설치된 배치를 도시하는 도면으로서, 도 3a 및 도 3b는 각각 차량의 왼쪽 바퀴축과 오른쪽 바퀴축에 센서들이 설치된 모습을 도시한 도면이고, 도 3c는 본 발명의 바람직한 일 실시예에 따라서 센서가 설치된 전체 구성을 표시한 평면도이다.3A to 3C are diagrams illustrating an arrangement in which sensors are installed according to an exemplary embodiment of the present invention, and FIGS. 3A and 3B are views illustrating sensors installed on a left wheel shaft and a right wheel shaft of a vehicle, respectively. 3C is a plan view showing the entire configuration of a sensor installed in accordance with a preferred embodiment of the present invention.
도 4 내지 도 9는 본 발명의 바람직한 실시예에 따른 각 하중 측정 방법을 설명하는 그래프이다. 4 to 9 are graphs illustrating each load measuring method according to a preferred embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
도 2는 본 발명의 바람직한 일 실시예에 따른 2단 스프링 현가장치를 갖는 차량의 하중 측정 장치(이하, "하중 측정 장치"라고만 약칭한다)의 전체 구성을 도시하는 도면이다. 도 3a 내지 도 3c는 본 발명의 바람직한 일 실시예에 따라서 센서가 설치된 배치를 도시하는 도면으로서, 도 3a 및 도 3b는 각각 차량의 왼쪽 바퀴축과 오른쪽 바퀴축에 센서들이 설치된 모습을 도시한 도면이고, 도 3c는 본 발명의 바람직한 일 실시예에 따라서 센서가 설치된 전체 구성을 표시한 평면도이다. 이하에서는, 도 2 내지 도 3c를 참조하여, 본 발명의 바람직한 일 실시예에 따른 하중 측정 장치를 설명한다.FIG. 2 is a view showing the overall configuration of a load measuring device (hereinafter, simply abbreviated as "load measuring device") of a vehicle having a two-stage spring suspension device according to a preferred embodiment of the present invention. 3A to 3C are diagrams illustrating an arrangement in which sensors are installed according to an exemplary embodiment of the present invention, and FIGS. 3A and 3B are views illustrating sensors installed on a left wheel shaft and a right wheel shaft of a vehicle, respectively. 3C is a plan view showing the entire configuration of a sensor installed in accordance with a preferred embodiment of the present invention. Hereinafter, a load measuring apparatus according to a preferred embodiment of the present invention will be described with reference to FIGS. 2 to 3C.
먼저, 본 발명의 바람직한 일 실시예에 따른 하중 측정 장치는, 차량의 현가장치 중 2단 스프링의 주 스프링과 보조 스프링에 설치된 복수의 센서들로 구성되는 센서 모듈(100), 및 센서 모듈(100)과 유선 또는 무선으로 통신을 수행하여 센서 모듈(100)로부터 센서 측정값을 입력받고, 측정값들을 이용하여 차량의 하중을 측정하여 사용자에게 표시하는 하중 출력 모듈(200)을 포함하여 구성된다.First, the load measuring apparatus according to an embodiment of the present invention, the sensor module 100 consisting of a plurality of sensors installed in the main spring and the auxiliary spring of the second stage of the suspension of the vehicle, and the sensor module 100 ) Is configured to receive a sensor measurement value from the sensor module 100 by performing a wired or wireless communication, and a load output module 200 for measuring the load of the vehicle using the measured values and displaying the measured value to the user.
먼저, 센서 모듈(100)은 좌측 바퀴축의 주 스프링에 설치된 제 1 주스프링 센서(04,06) 및 좌측 바퀴축의 보조 스프링에 설치된 제 1 보조 스프링 센서(08, 10)와, 우측 바퀴축의 주 스프링에 설치된 제 2 주스프링 센서(03, 05) 및 우측 바퀴축의 보조 스프링에 설치된 제 2 보조 스프링 센서(07, 09)를 포함한다. First, the sensor module 100 includes a first juice spring sensor (04,06) installed on the main spring of the left wheel shaft, a first auxiliary spring sensor (08, 10) installed on the auxiliary spring of the left wheel shaft, and a main spring of the right wheel shaft. And a second auxiliary spring sensor (07, 09) installed on the auxiliary spring of the right wheel shaft and the second juice spring sensor (03, 05) installed in the.
또한, 제 1 및 제 2 주스프링 센서와 제 1 및 제 2 보조 스프링 센서는 도 3a 및 도 3b에 도시된 바와 같이 한 쌍으로 설치될 수 있고, 각 스프링에 하나씩 개별적으로 설치될 수도 있다.In addition, the first and second juice spring sensors and the first and second auxiliary spring sensors may be installed in pairs as shown in FIGS. 3A and 3B, or may be individually installed in each spring.
또한, 본 발명의 센서는 하중이 인가됨에 따라서 판스프링의 변형률을 측정하는 변형률 센서가 이용될 수 있고, 하중이 인가됨에 따라서 판스프링의 기울기 변화를 측정하는 기울기 센서가 이용될 수도 있다. In addition, the sensor of the present invention may be used a strain sensor for measuring the strain of the leaf spring as the load is applied, a tilt sensor for measuring the change in the slope of the leaf spring as the load is applied.
다만, 본 발명의 측정 센서로서 기울기 센서가 이용되는 경우에는 차량의 기울기인 기준 기울기를 측정하기 위해서 차체에 설치된 기준 기울기 센서(11)가 추가적으로 센서 모듈(100)에 포함되고, 도 3c에는 기울기 센서가 설치된 예를 도시하였다. 기울기 센서가 이용되는 경우에, 후술하는 주 스프링 센서의 측정값은 주 스프링에 설치된 센서가 측정한 기울기값과 기준 기울기 센서가 측정한 기울기값간의 차이를 나타내고, 보조 스프링 센서의 측정값은 보조 스프링에 설치된 센서가 측정한 기울기값과 기준 기울기 센서가 측정한 기울기값간의 차이를 나타낸다. However, when the inclination sensor is used as the measurement sensor of the present invention, the reference inclination sensor 11 installed in the vehicle body is additionally included in the sensor module 100 to measure the reference inclination, which is the inclination of the vehicle, and the inclination sensor is illustrated in FIG. 3C. Shows an example installed. When the inclination sensor is used, the measurement value of the main spring sensor described later represents the difference between the inclination value measured by the sensor installed in the main spring and the inclination value measured by the reference inclination sensor, and the measurement value of the auxiliary spring sensor is the auxiliary spring The difference between the slope measured by the sensor installed at and the reference slope measured by the sensor.
변형률 센서를 이용하여 하중을 측정하는 방법은, 판스프링인 주 스프링 또는 보조 스프링에 스트레인 게이지를 부착하고, 하중이 인가됨에 따라서 판스프링이 휘어지게 되고, 이에 따라서 판스프링에 부착된 스트레인 게이지에서 측정되는 값들이 비례적으로 변화하는 것을 이용하는 방법으로서, 구체적인 측정 방법은 대한민국 특허 제 10-0455038 호에 자세하게 공개되어 있으므로 구체적인 설명은 생략한다.In the method of measuring the load by using a strain sensor, a strain gauge is attached to a main spring or an auxiliary spring, which is a leaf spring, and the leaf spring is bent as a load is applied, and thus, a strain gauge attached to the leaf spring is measured. As a method of using a proportional change in values, a specific measurement method is disclosed in detail in Korean Patent No. 10-0455038, and thus a detailed description thereof will be omitted.
또한, 기울기 센서를 이용하여 하중을 측정하는 방법은, 하중이 인가됨에 따라서 판스프링이 휘어지게 되고, 이에 따라서 판스프링에 부착된 기울기 센서의 기울기값이 변화되는 것을 이용하는 방식으로서, 차량에 하중이 인가됨에 따라서 판스프링이 펴지면서 차량의 기준 기울기와 판스프링의 기울기의 차가 감소하는 현상을 이용한 것으로서, 구체적인 측정 방법은 대한민국 특허 제 10-0880156 호, 대한민국 특허출원 제 10-2008-0124882 호 및 이에 대응되는 PCT 공개 WO2009084824 호에 자세하게 공개되어 있으므로, 구체적인 설명은 생략한다.In addition, the method of measuring the load by using the inclination sensor is a method that uses the change in the inclination value of the inclination sensor attached to the leaf spring, the plate spring is bent as the load is applied, and thus the load on the vehicle The difference between the reference slope of the vehicle and the inclination of the leaf spring decreases as the leaf spring is spread as it is applied.A specific measurement method is Korean Patent No. 10-0880156 and Korean Patent Application No. 10-2008-0124882 and Since it is disclosed in detail in the corresponding PCT publication WO2009084824, the detailed description is omitted.
따라서, 이하에서는 주 스프링에 설치된 센서들의 측정값들 및 보조 스프링에 설치된 센서들의 측정값들을 이용하여 하중을 측정하는 개념에 대해서만 설명한다.Therefore, hereinafter, only the concept of measuring the load by using the measured values of the sensors installed in the main spring and the sensors installed in the auxiliary spring will be described.
센서 모듈(100)의 각 센서들은 유선 방식 또는 무선 방식으로 하중 출력 모듈(200)과 통신을 수행하고, 일정한 시간 주기로 측정을 수행하거나, 하중 출력 모듈(200)로부터 측정 지시 신호를 수신한 경우에 측정을 수행하여, 측정값들을 하중 출력 모듈(200)로 전송한다. Each sensor of the sensor module 100 communicates with the load output module 200 in a wired or wireless manner, performs a measurement at a predetermined time period, or receives a measurement instruction signal from the load output module 200. The measurement is performed to transmit the measured values to the load output module 200.
한편, 하중 출력 모듈(200)은 휴대용 전자 기기, 차량 내부에 설치되는 전자기기, 또는 차량용 내비게이션 등 다양한 형태로 구현될 수 있고, 통신부(210), 메인 제어부(250), 표시부(230), 입력부(240), 및 데이터 베이스(DB;220)를 포함하여 구성된다.The load output module 200 may be implemented in various forms such as a portable electronic device, an electronic device installed in a vehicle, or a vehicle navigation system. The load output module 200 may include a communication unit 210, a main control unit 250, a display unit 230, and an input unit. 240, and a database (DB) 220.
통신부(210)는 유선으로 센서 모듈(100)과 연결되어 통신을 수행할 수 있고, 무선으로 센서 모듈(100)과 통신을 수행할 수도 있다. 통신부(210)가 무선 통신을 수행하는 경우에, 소정의 주파수 대역(본 발명의 바람직한 실시예는 2.4GHz대역을 사용하지만 다른 주파수 대역도 이용 가능함)으로 주 스프링 센서들(04, 06, 03, 05), 보조 스프링 센서들(08, 10, 07, 09) 및 기준 기울기 센서(11)와 무선 통신을 수행하여, 하중 측정 제어 명령을 복수의 센서들로 무선 전송하고, 복수의 센서들로부터 측정값 및 센서 식별 정보를 수신하여 메인 제어부(250)로 출력한다.The communication unit 210 may be connected to the sensor module 100 by wire to perform communication, or may perform communication with the sensor module 100 by wireless. In the case where the communication unit 210 performs wireless communication, the main spring sensors 04, 06, 03, and the like in a predetermined frequency band (the preferred embodiment of the present invention uses the 2.4 GHz band but other frequency bands are also available). 05), by wireless communication with the auxiliary spring sensors (08, 10, 07, 09) and the reference tilt sensor (11), to wirelessly transmit the load measurement control command to a plurality of sensors, and to measure from the plurality of sensors The value and sensor identification information are received and output to the main controller 250.
표시부(230)는 LCD 디스플레이 장치로 구현되어 메인 제어부(250)로부터 입력되는 차량 관리 메뉴 및 하중 측정 결과를 사용자에게 표시한다.The display unit 230 is implemented as an LCD display device to display a vehicle management menu and a load measurement result input from the main controller 250 to the user.
입력부(240)는 키패드 또는 터치 스크린등으로 구현되어 사용자로부터 표시부(230)에 출력된 메뉴에 대한 선택 정보 및 제어 명령을 입력받아 메인 제어부(250)로 출력한다.The input unit 240 is implemented as a keypad or a touch screen, and receives selection information and control commands for menus displayed on the display unit 230 from the user and outputs them to the main controller 250.
데이터 베이스(220)는 사전에 공차 상태 및 만차 상태에서 각 센서에서 측정된 측정값과, 실시간 하중 측정에 이용되는 무계 환산 계수 등을 사전에 저장한다. 또한, 데이터 베이스(220)는 실제 하중 측정 시에, 하중 측정 시간과, 각 센서들로부터 입력된 센서 측정값과, 최종적으로 계산된 하중 측정 결과(축하중 및 차량 전체이 하중 등)를 이력 데이터로서 저장한다.The database 220 stores in advance the measured values measured by each sensor in the tolerance state and the full state, and a weightless conversion coefficient used for real-time load measurement. In addition, the database 220 records, as actual data, load measurement time, sensor measurement values input from the sensors, and finally calculated load measurement results (axial load and overall vehicle load, etc.) during actual load measurement. Save it.
한편, 메인 제어부(250)는 본 발명의 하중 측정 장치가 구동되면 차량 관리에 관한 기본적인 메뉴들을 표시부(230)로 출력하고, 입력부(240)로부터 하중 측정 명령이 입력되면, 하중 측정 명령을 무선 통신부(210)를 통해서 각 센서들로 전송하고, 각 센서들로부터 수신된 측정값과 각 센서의 식별 정보를 이용하여, 차량의 각 차축에 인가된 하중 및 차량 전체의 하중을 계산하고, 계산된 결과를 표시부(230)로 출력한다. Meanwhile, when the load measuring device of the present invention is driven, the main controller 250 outputs basic menus related to vehicle management to the display unit 230. When the load measuring command is input from the input unit 240, the main communication unit 250 transmits a load measuring command to the wireless communication unit. And transmits the load applied to each axle of the vehicle and the load of the entire vehicle using the measured values received from the sensors and identification information of each sensor through the 210. Is output to the display unit 230.
메인 제어부(250)에서 차량 하중을 계산하는 과정은 도 4 내지 도 9를 참조하여 상세하게 설명한다. The process of calculating the vehicle load in the main controller 250 will be described in detail with reference to FIGS. 4 to 9.
도 4는 2단 스프링 현가장치의 센서 측정 특성을 도시하는 도면이다. 도 4를 참조하면, 2단 스프링 현가장치에 주 스프링과 보조 스프링에 설치된 각 센서의 측정 신호들은 도 3에 도시된 바와 같이, 주 스프링의 센서 측정값과 보조 스프링의 센서 측정값이 각각 다른 모양의 그래프로 나타난다. 4 is a diagram showing the sensor measurement characteristics of the two-stage spring suspension. Referring to FIG. 4, the measurement signals of the sensors installed in the main spring and the auxiliary spring in the two-stage spring suspension device are different from the sensor measurement values of the main spring and the sensor measurement values of the auxiliary spring, respectively. Appears as a graph of.
보조 스프링 측정값은 짐을 상차하는 단계에 따라 보조 스프링이 스프링 받침과 접촉하여 변형이 생기는 순간부터 측정이 되며, 주 스프링 값은 보조 스프링이 작동하기 전까지는 비교적 선형으로 측정되나 보조 스프링이 역할을 하는 단계부터는 2차 곡선의 형태로 변화한다.The auxiliary spring measurement is measured from the moment when the auxiliary spring comes into contact with the spring support according to the step of loading the load, and the main spring value is measured relatively linearly until the auxiliary spring is operated. From the step, it changes in the form of a quadratic curve.
따라서, 이러한 특성을 고려하여, 본 발명의 메인 제어부(250)는 다음과 같은 4가지 방법 중 어느 하나를 선택적으로 적용하여 하중을 측정할 수 있다.Therefore, in consideration of such characteristics, the main controller 250 of the present invention can measure the load by selectively applying any one of the following four methods.
첫 번째 하중 측정 방법은 차량에 하중이 인가되지 않은 상태로부터 보조 스프링이 동작하기까지의 하중은 주 스프링에 설치된 센서들의 측정값을 이용하여 하중을 측정하고, 보조 스프링이 동작하기 시작한 이후의 하중은 보조 스프링에 설치된 센서들의 측정값을 이용하여 하중을 측정하는 방식이다. In the first load measurement method, the load from the unloaded vehicle to the operation of the auxiliary spring is measured using the measured values of the sensors installed in the main spring, and the load after the auxiliary spring starts to operate The load is measured using the measured values of the sensors installed in the auxiliary spring.
이러한 첫 번째 측정 방법은 도 5에 도시되었으며, 공차시의 센서의 측정값은 0으로 그래프상에 표시되었다. 도 5를 더 참조하여, 첫 번째 하중 측정 방식을 수식으로 설명하면, 아래의 수학식 1과 같다.This first measuring method is shown in FIG. 5, and the measured value of the sensor at the tolerance is displayed on the graph as zero. Referring to FIG. 5, the first load measuring method will be described by Equation 1 below.
수학식 1
Figure PCTKR2011007910-appb-M000001
Equation 1
Figure PCTKR2011007910-appb-M000001
수학식 1에서 첫 번째 수식은 공차시부터 보조 스프링이 동작할때까지의 차량에 인가된 하중(y11)을 나타내고, a1은 주 스프링의 무게 환산 계수이고, b1은 공차시에 인가되는 공차 하중을 각각 나타낸다. 공차시의 주 스프링의 센서 측정값 및 그 때의 실제 하중과, 보조 스프링 동작시의 주 스프링 센서 측정값 및 그 때의 실제 하중을 첫 번째 수학식에 대입하면 무게 환산 계수(a1) 및 공차 하중(b1)을 구할 수 있다.The first equation in Equation 1 represents the load (y11) applied to the vehicle from the tolerance to the operation of the auxiliary spring, a1 is the weight conversion factor of the main spring, b1 is the tolerance load applied at the tolerance Represent each. Substituting the measured value of the main spring sensor at the time of tolerance and the actual load at that time, and the measured value of the main spring sensor at the time of auxiliary spring operation and the actual load at the first equation, the weight conversion factor (a1) and the tolerance load (b1) can be obtained.
두 번째 수식은 보조 스프링 동작시부터 만차시까지의 차량에 인가된 하중(y12)을 나타내고, c1은 보조 스프링의 무게 환산 계수이고, d1은 보조 스프링이 동작되는 시점에 인가되는 보조 스프링 동작 하중을 각각 나타낸다. 또한, 만차시의 주 스프링의 센서 측정값 및 그 때의 실제 하중과, 보조 스프링 동작시의 보조 스프링 센서 측정값 및 그 때의 실제 하중을 두 번째 수학식에 대입하면 무게 환산 계수(a1) 및 공차 하중(b1)을 구할 수 있다. 여기서 측정된 무게 환산 계수 (a1 및 c1), 공차 하중(b1), 및 보조 스프링 동작 하중(d1)은 데이터 베이스(220)에 저장된다.The second equation represents the load (y12) applied to the vehicle from the auxiliary spring operation to full load, c1 is the weight conversion factor of the auxiliary spring, and d1 is the auxiliary spring operating load applied when the auxiliary spring is operated. Represent each. Further, if the sensor measurement value of the main spring and the actual load at that time, the auxiliary spring sensor measurement value and the actual load at the time of the auxiliary spring operation are substituted into the second equation, the weight conversion factor a1 and Tolerance load b1 can be calculated | required. The weight conversion factors a1 and c1, the tolerance load b1, and the auxiliary spring operating load d1 measured here are stored in the database 220.
메인 제어부(250)가 첫 번째 측정 방법을 채택하는 경우에, 메인 제어부(250)는 y11=d 가 될 때까지는, 실시간으로 y11 값을 하중으로서 출력하고, y11≥d 가 되는 순간부터 y12 값을 하중값으로서 출력한다.When the main control unit 250 adopts the first measurement method, the main control unit 250 outputs the y11 value as a load in real time until y11 = d, and outputs the y12 value from the moment y11≥d. Output as a load value.
한편, 후술하는 두 번째 내지 네 번째 하중 측정 방법은 주 스프링 센서의 신호값과 보조 스프링 센서의 신호값을 합산하고, 합산된 측정값을 이용하여 하중을 측정하는 방식이다. On the other hand, the second to fourth load measuring method to be described later is a method of summing the signal value of the main spring sensor and the signal value of the auxiliary spring sensor, and the load is measured using the combined measurement value.
도 6은 도 4에 도시된 주 스프링 센서값과 보조 스프링 센서값이 합산된 값을 표시하는 그래프이다. 도 6 내지 도 9에서도, 공차시의 센서 측정값은 0으로 설정하여 그래프를 표시하였다. 도 6에 도시된 바와 같이, 합산된 측정값은 보조 스프링이 동작하는 하중이 인가되기 직전까지는 선형적으로 증가하여 1차 함수 그래프와 유사한 측정값을 나타내다가, 보조 스프링이 동작하기 시작하는 시점부터 2차 함수 곡선과 유사한 곡선을 나타낸다. 따라서, 이러한 측정값을 근사적으로 모델링하는 수학식을 도출하는 것이 필요하고, 이러한 모델링 방법은 아래의 두 번째 내지 네 번째 하중 측정 방법에서 설명한다.FIG. 6 is a graph showing a sum of a main spring sensor value and an auxiliary spring sensor value illustrated in FIG. 4. Also in FIGS. 6-9, the sensor measurement value at the time of tolerance was set to 0, and the graph was displayed. As shown in FIG. 6, the summed measurement value increases linearly until the load on which the auxiliary spring operates is applied, showing a measurement value similar to the linear function graph, and from the time when the auxiliary spring starts to operate, A curve similar to the quadratic function curve is shown. Therefore, it is necessary to derive an equation that approximates this measurement, and this modeling method is described in the second to fourth load measurement methods below.
도 7은 두 번째 하중 측정 방법을 설명하는 도면이다. 이하에서의 측정값은 도면에 도시된 센서들의 측정값들의 합산값임을 주의해야 한다.7 is a view for explaining a second load measurement method. It should be noted that the measured values below are the sum of the measured values of the sensors shown in the drawings.
두 번째 하중 측정 방법은 도 7에 도시된 바와 같이, 공차시의 하중 및 측정값과, 만차시의 하중 및 측정값을 서로 연결하는 1차 방정식을 구하여 하중을 측정하는 방식이다. 이러한 두 번째 하중 측정 방법을 정리하면 아래의 수학식 2와 같다.As shown in FIG. 7, the second load measuring method is a method of measuring a load by obtaining a linear equation that connects a load and a measured value at a tolerance and a load and a measured value at a full load. The second load measurement method is summarized as in Equation 2 below.
수학식 2
Figure PCTKR2011007910-appb-M000002
Equation 2
Figure PCTKR2011007910-appb-M000002
수학식 2에서 y2는 환산된 하중값을 나타내고, 기울기 a2는 하중 환산 계수를 나타내며, 는 센서 측정값을 나타내고, b2는 공차 하중을 나타낸다. 공차시의 하중 및 측정값과 만차시의 하중 및 측정값을 수학식 2에 대입하면, 하중 환산 계수(a2) 및 공차 하중(b2)을 구할 수 있고, 이들 값들은 데이터 베이스(220)에 저장된다.In Equation 2, y2 represents the converted load value, the slope a2 represents the load conversion coefficient, represents the sensor measurement value, b2 represents the tolerance load. Substituting the load and measured value at tolerance and the load and measured value at full load into Equation 2, the load conversion factor (a2) and the tolerance load (b2) can be obtained, and these values are stored in the database 220. do.
상술한 두 번째 하중 측정 방법은, 측정이 간편하지만 측정되는 하중에 따라서는 실제 하중과 상당한 오차가 발생할 수 있다. 즉, 2차 곡선의 특성상 만차시보다 가벼운 하중을 상차할 경우에 오차가 커지는 경항이 나타난다. 따라서, 측정이 간편하면서도 오차를 감소시켜 하중 측정의 정확도를 높이기 위한 방식으로, 본 발명의 세 번째 하중 측정 방법은, 수학식 3에 기재된 바와 같이, 공차시점과 만차시점 이외에, 중간 시점에 해당하는 실제 하중과 측정값을 대입하고, 일차 방정식에 대입하고, 최소 자승법을 이용하여 추세선을 구하여 오차를 감소시켰다. The second load measurement method described above is easy to measure, but depending on the load being measured, significant errors may occur with the actual load. That is, when the load on the lighter than the full load due to the characteristics of the secondary curve, the error tends to increase. Accordingly, the third load measuring method of the present invention is a method for increasing the accuracy of the load measurement by reducing the error while reducing the measurement. The error was reduced by substituting the actual load and the measured values, substituting the linear equations, and using the least-squares method.
수학식 3
Figure PCTKR2011007910-appb-M000003
Equation 3
Figure PCTKR2011007910-appb-M000003
수학식 3에서 y3은 산된 하중값을 나타내고, a3은 하중 환산 계수를 나타내며, 은 센서의 측정값을 나타내고, b3 은 공차 하중을 각각 나타낸다.In Equation 3, y3 represents the calculated load value, a3 represents the load conversion factor, represents the measured value of the sensor, and b3 represents the tolerance load, respectively.
세 번째 하중 측정 방법에 따라서 구해진 1차 방정식으로 표현되는 추세선은 도 8에 도시되었고, 도 7에 도시된 두 번째 방식에 비하여, 만차시에 오차는 존재하지만 전체적으로 오차가 감소함을 알 수 있다.The trend line represented by the first equation obtained according to the third load measurement method is shown in FIG. 8, and compared with the second method shown in FIG. 7, it can be seen that an error is present at full load but the error is reduced overall.
한편, 본 발명의 네 번째 하중 측정 방법은, 상술한 두 번째 및 세 번째 하중 측정 방법보다 정확한 하중 측정을 위해서, 도 9에 도시된 바와 같은 2차 추세선을 구하는 방식이다. 네 번째 하중 측정 방법은, 세 번째 방법과 동일하게 공차시점과 만차시점에서의 하중 및 센서 측정값과, 중간 시점에서의 하중 및 센서 측정값을 이용하여, 최소 자승법에 의해서 아래의 수학식 4로 표현되는 2차 추세선 방정식을 구하는 방법이다.On the other hand, the fourth load measurement method of the present invention is a method of obtaining a secondary trend line as shown in Figure 9, for a more accurate load measurement than the second and third load measurement method described above. The fourth load measurement method is the same as the third method, using the load and sensor measured values at tolerance and full load points, and the load and sensor measured values at the midpoint, by the least square method, It is a method of obtaining the second-order trend line equation.
수학식 4
Figure PCTKR2011007910-appb-M000004
Equation 4
Figure PCTKR2011007910-appb-M000004
상술한 수학식 4에서, y는 환산된 하중값을 나타내고, a는 제 1 하중 환산 계수를 나타내며, b 는 제 2 하중 환산 계수를 나타내며, c는 공차 하중을 각각 나타낸다.In Equation 4, y represents a converted load value, a represents a first load conversion coefficient, b represents a second load conversion coefficient, and c represents a tolerance load, respectively.
다시 도 2를 참조하면, 메인 제어부(250)는 상술한 4가지의 하중 측정 방법 중에서 한 가지 방식만을 이용해서 하중을 측정하도록 구성되거나, 사용자의 설정에 따라서 4가지 방법 중에서 한 가지를 선택적으로 적용할 수도 있다.Referring back to FIG. 2, the main controller 250 is configured to measure load using only one of the four load measuring methods described above, or selectively applies one of four methods according to a user's setting. You may.
본 발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플라피디스크, 광데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.The invention can also be embodied as computer readable code on a computer readable recording medium. The computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, and the like, which are also implemented in the form of a carrier wave (for example, transmission over the Internet). It also includes. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (19)

  1. 주 스프링과 보조 스프링으로 구성되는 2단 스프링 현가장치를 갖는 차량의 하중 측정 장치로서,A load measuring device for a vehicle having a two-stage spring suspension composed of a main spring and an auxiliary spring,
    상기 주 스프링에 설치된 주 스프링 센서 및 상기 보조 스프링에 설치된 보조 스프링 센서를 포함하는 센서 모듈; 및A sensor module including a main spring sensor installed in the main spring and an auxiliary spring sensor installed in the auxiliary spring; And
    상기 주 스프링 센서의 측정값과 상기 보조 스프링 센서의 측정값을 이용하여 차량의 하중을 계산하여 사용자에게 표시하는 하중 출력 모듈을 포함하는 것을 특징으로 하는 차량 하중 측정 장치.And a load output module configured to calculate and display a load of the vehicle by using the measured value of the main spring sensor and the measured value of the auxiliary spring sensor.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 하중 출력 모듈은 상기 보조 스프링에 하중이 인가되기 전에는 상기 주 스프링 센서의 측정값을 이용하여 차량의 하중을 계산하고, 상기 보조 스프링에 하중이 인가된 순간부터 상기 보조 스프링 센서의 출력값을 이용하여 차량의 하중을 계산하는 것을 특징으로 하는 차량 하중 측정 장치.The load output module calculates the load of the vehicle using the measured value of the main spring sensor before the load is applied to the auxiliary spring, and uses the output value of the auxiliary spring sensor from the moment the load is applied to the auxiliary spring. Vehicle load measuring apparatus, characterized in that for calculating the load of the vehicle.
  3. 제 2 항에 있어서, 상기 하중 출력 모듈은 The method of claim 2, wherein the load output module
    공차시점부터 보조 스프링이 동작하는 시점까지는, 공차시점의 주 스프링 센서의 측정값 및 보조 스프링이 동작하는 시점의 주 스프링 센서의 측정값 및 실제 하중을 이용하여 계산된, 주 스프링 센서의 측정값에 대응되는 하중을 나타내는 제 1 추세선에 따라서 하중을 측정하고,From the tolerance point to the point where the auxiliary spring operates, the measured value of the main spring sensor calculated using the measured value of the main spring sensor at the tolerance point and the measured value of the main spring sensor at the time of the auxiliary spring operation and the actual load The load is measured according to a first trend line representing the corresponding load,
    보조 스프링이 동작하는 시점부터 만차 시점까지는, 보조 스프링이 동작하는 시점의 보조 스프링 센서의 측정값 및 실제 하중과, 만차 시점의 보조 스프링 센서의 측정값 및 실제 하중을 이용하여 계산된, 보조 스프링 센서의 측정값에 대응되는 하중을 나타내는 제 2 추세선에 따라서 하중을 측정하는 것을 특징으로 하는 차량 하중 측정 장치.From the point of time when the auxiliary spring operates to the point of full parking, the auxiliary spring sensor calculated using the measured value and actual load of the auxiliary spring sensor at the time of the auxiliary spring operation, and the measured value and actual load of the auxiliary spring sensor at the full parking point. A vehicle load measuring apparatus, characterized in that the load is measured in accordance with a second trend line indicating a load corresponding to the measured value of.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 하중 출력 모듈은 상기 주 스프링 센서의 측정값과 상기 보조 스프링 센서의 측정값을 합산하고, 합산된 측정값을 이용하여 차량의 하중을 계산하는 것을 특징으로 하는 차량 하중 측정 장치.The load output module adds the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculates the load of the vehicle using the summed measured value.
  5. 제 4 항에 있어서, 상기 하중 출력 모듈은 The method of claim 4, wherein the load output module
    공차시의 합산된 측정값과 만차시의 실제 하중 및 합산된 측정값을 이용하여 합산된 측정값에 대응되는 하중을 나타내는 추세선을 구하고, 상기 추세선에 따라서 합산된 측정값에 대응되는 차량의 하중을 계산하는 것을 특징으로 하는 차량 하중 측정 장치.A trend line representing a load corresponding to the sum of the measured values at the tolerance, the actual load at the full load, and the sum of the measured values is calculated, and the load of the vehicle corresponding to the measured values summed according to the trend lines is obtained. Vehicle load measuring apparatus, characterized in that the calculation.
  6. 제 4 항에 있어서, 상기 하중 출력 모듈은 The method of claim 4, wherein the load output module
    공차시점의 합산된 측정값과, 만차시점의 실제 하중 및 합산된 측정값과, 공차시점과 만차시점의 중간 시점에 해당되는 임의의 시점의 실제 하중 및 합산된 측정값을 이용하여 합산된 측정값에 대응되는 하중을 나타내는 추세선을 구하고, 상기 추세선에 따라서 합산된 측정값에 대응되는 차량의 하중을 계산하는 것을 특징으로 하는 차량 하중 측정 장치.The sum of the measured values at the time of tolerance, the actual load and the sum of the measured values at the full time, and the sum of the measured values and the actual load and the summed values at any time between the tolerance and the full time. And obtaining a trend line indicating a load corresponding to, and calculating a load of the vehicle corresponding to the measured value summed up according to the trend line.
  7. 제 6 항에 있어서, 상기 하중 출력 모듈은The method of claim 6, wherein the load output module
    최소 자승법을 이용하여 1차 방정식을 만족하는 추세선을 구하는 것을 특징으로 하는 차량 하중 측정 장치.A vehicle load measuring apparatus for obtaining a trend line satisfying a linear equation using a least square method.
  8. 제 6 항에 있어서, 상기 하중 출력 모듈은The method of claim 6, wherein the load output module
    최소 자승법을 이용하여 2차 방정식을 만족하는 추세선을 구하는 것을 특징으로 하는 차량 하중 측정 장치.A vehicle load measuring apparatus for obtaining a trend line satisfying a quadratic equation using a least square method.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 하중 출력 모듈은 유선 또는 무선 통신 방식으로 상기 센서 모듈과 통신을 수행하여 센서 측정값을 수신하는 것을 특징으로 하는 차량 하중 측정 장치.The load output module communicates with the sensor module in a wired or wireless communication manner to receive a sensor measurement value.
  10. 주 스프링과 보조 스프링으로 구성되는 2단 스프링 현가장치를 갖는 차량의 하중 측정 방법으로서,A load measuring method of a vehicle having a two-stage spring suspension composed of a main spring and an auxiliary spring,
    (a) 차량에 하중이 인가됨에 따라서 상기 주 스프링에 설치된 주 스프링 센서 및 상기 보조 스프링에 설치된 보조 스프링 센서가 측정값을 출력하는 단계; 및 (a) outputting a measured value by a main spring sensor installed in the main spring and an auxiliary spring sensor installed in the auxiliary spring as a load is applied to the vehicle; And
    (b) 하중 출력 모듈이 상기 주 스프링 센서의 측정값과 상기 보조 스프링 센서의 측정값을 수신하고, 수신된 측정값들을 이용하여 차량의 하중을 계산하여 사용자에게 표시하는 단계를 포함하는 것을 특징으로 하는 차량 하중 측정 방법.(b) receiving, by the load output module, the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculating and displaying the load of the vehicle using the received measured values to the user; Vehicle load measurement method.
  11. 제 10 항에 있어서, The method of claim 10,
    상기 (b)단계에서, 상기 하중 출력 모듈은 상기 보조 스프링에 하중이 인가되기 전에는 상기 주 스프링 센서의 측정값을 이용하여 차량의 하중을 계산하고, 상기 보조 스프링에 하중이 인가된 순간부터 상기 보조 스프링 센서의 출력값을 이용하여 차량의 하중을 계산하는 것을 특징으로 하는 차량 하중 측정 방법.In the step (b), the load output module calculates the load of the vehicle using the measured value of the main spring sensor before the load is applied to the auxiliary spring, and from the moment the load is applied to the auxiliary spring Vehicle load measuring method, characterized in that for calculating the load of the vehicle using the output value of the spring sensor.
  12. 제 11 항에 있어서, 상기 (b) 단계에서 상기 하중 출력 모듈은 The method of claim 11, wherein in the step (b) the load output module
    공차시점부터 보조 스프링이 동작하는 시점까지는, 공차시점의 주 스프링 센서의 측정값 및 보조 스프링이 동작하는 시점의 주 스프링 센서의 측정값 및 실제 하중을 이용하여 계산된, 주 스프링 센서의 측정값에 대응되는 하중을 나타내는 제 1 추세선에 따라서 하중을 측정하고,From the tolerance point to the point where the auxiliary spring operates, the measured value of the main spring sensor calculated using the measured value of the main spring sensor at the tolerance point and the measured value of the main spring sensor at the time of the auxiliary spring operation and the actual load The load is measured according to a first trend line representing the corresponding load,
    보조 스프링이 동작하는 시점부터 만차 시점까지는, 보조 스프링이 동작하는 시점의 보조 스프링 센서의 측정값 및 실제 하중과, 만차 시점의 보조 스프링 센서의 측정값 및 실제 하중을 이용하여 계산된, 보조 스프링 센서의 측정값에 대응되는 하중을 나타내는 제 2 추세선에 따라서 하중을 측정하는 것을 특징으로 하는 차량 하중 측정 방법.From the point of time when the auxiliary spring operates to the point of full parking, the auxiliary spring sensor calculated using the measured value and actual load of the auxiliary spring sensor at the time of the auxiliary spring operation, and the measured value and actual load of the auxiliary spring sensor at the full parking point. The load measurement method according to claim 2, wherein the load is measured in accordance with a second trend line indicating a load corresponding to the measured value of.
  13. 제 10 항에 있어서, 상기 (b) 단계에서The method of claim 10, wherein in step (b)
    상기 하중 출력 모듈은 상기 주 스프링 센서의 측정값과 상기 보조 스프링 센서의 측정값을 합산하고, 합산된 측정값을 이용하여 차량의 하중을 계산하는 것을 특징으로 하는 차량 하중 측정 방법.The load output module adds the measured value of the main spring sensor and the measured value of the auxiliary spring sensor, and calculates the load of the vehicle using the summed measured value.
  14. 제 13 항에 있어서, 상기 (b) 단계에서The method of claim 13, wherein in step (b)
    상기 하중 출력 모듈은 공차시의 합산된 측정값과 만차시의 실제 하중 및 합산된 측정값을 이용하여 합산된 측정값에 대응되는 하중을 나타내는 추세선을 구하고, 상기 추세선에 따라서 합산된 측정값에 대응되는 차량의 하중을 계산하는 것을 특징으로 하는 차량 하중 측정 방법.The load output module obtains a trend line indicating a load corresponding to the sum of the measured values at tolerance and the sum of the measured values at full load and the sum of the measured values using the sum of the measured values, and corresponds to the sum of the measured values according to the trend lines. Vehicle load measuring method, characterized in that for calculating the load of the vehicle.
  15. 제 13 항에 있어서, 상기 (b) 단계에서The method of claim 13, wherein in step (b)
    상기 하중 출력 모듈은 공차시점의 합산된 측정값과, 만차시점의 실제 하중 및 합산된 측정값과, 공차시점과 만차시점의 중간 시점에 해당되는 임의의 시점의 실제 하중 및 합산된 측정값을 이용하여 합산된 측정값에 대응되는 하중을 나타내는 추세선을 구하고, 상기 추세선에 따라서 합산된 측정값에 대응되는 차량의 하중을 계산하는 것을 특징으로 하는 차량 하중 측정 방법.The load output module uses the summed measurement value of the tolerance time point, the actual load and the summed measurement value of the full time point, and the actual load and the summed measurement value of the arbitrary time point corresponding to the middle point of the tolerance time and the full time point. Obtaining a trend line representing loads corresponding to the summed measurement values, and calculating a load of the vehicle corresponding to the summed measurement values according to the trend lines.
  16. 제 15 항에 있어서, 상기 (b) 단계에서The method of claim 15, wherein in step (b)
    상기 하중 출력 모듈은 최소 자승법을 이용하여 1차 방정식을 만족하는 추세선을 구하는 것을 특징으로 하는 차량 하중 측정 방법.The load output module is a vehicle load measuring method, characterized in that for obtaining a trend line satisfying the first-order equation using the least square method.
  17. 제 15 항에 있어서, 상기 (b) 단계에서The method of claim 15, wherein in step (b)
    상기 하중 출력 모듈은 최소 자승법을 이용하여 2차 방정식을 만족하는 추세선을 구하는 것을 특징으로 하는 차량 하중 측정 방법.And the load output module obtains a trend line satisfying a quadratic equation using a least square method.
  18. 제 10 항 내지 제 17 항 중 어느 한 항에 있어서,The method according to any one of claims 10 to 17,
    상기 하중 출력 모듈은 유선 또는 무선 통신 방식으로 상기 센서 모듈과 통신을 수행하여 센서 측정값을 수신하는 것을 특징으로 하는 차량 하중 측정 방법.The load output module communicates with the sensor module in a wired or wireless communication manner to receive a sensor measurement value.
  19. 제 10 항 내지 제 17 항 중 어느 한 항의 하중 측정 방법을 컴퓨터에서 판독할 수 있고, 실행 가능한 프로그램 코드로 기록한 기록 매체.A recording medium in which the load measuring method according to any one of claims 10 to 17 is readable by a computer and recorded by executable program code.
PCT/KR2011/007910 2010-10-22 2011-10-21 Load measuring device and method of weighing vehicle having suspension with two-stage springs WO2012053869A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100103609A KR101092581B1 (en) 2010-10-22 2010-10-22 Apparatus and method for weighing the vehicle
KR10-2010-0103609 2010-10-22

Publications (2)

Publication Number Publication Date
WO2012053869A2 true WO2012053869A2 (en) 2012-04-26
WO2012053869A3 WO2012053869A3 (en) 2012-07-26

Family

ID=45506073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007910 WO2012053869A2 (en) 2010-10-22 2011-10-21 Load measuring device and method of weighing vehicle having suspension with two-stage springs

Country Status (2)

Country Link
KR (1) KR101092581B1 (en)
WO (1) WO2012053869A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768212A (en) * 2016-12-02 2017-05-31 山东交通学院 A kind of overload of vehicle detection and information carrying means
GB2548488A (en) * 2016-03-04 2017-09-20 Toigo Imp E Distribuidora De Sist Automotivos Ltda Onboard load weight measurement system for vehicles, with a multipoint automatic and semi-automatic calibration system
DE102018132697A1 (en) * 2018-12-18 2020-06-18 Wabco Gmbh Method for determining an axle load and suspension system for a vehicle
KR20210029593A (en) * 2019-09-06 2021-03-16 주식회사기원전자 ISO 11783 compliant vehicle weight meter system based on tilting sensor
CN112525310A (en) * 2019-09-17 2021-03-19 北汽福田汽车股份有限公司 Wheel load testing system, method and device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101478760B1 (en) * 2014-08-25 2015-01-05 주식회사 유디코 Apparatus and method for measuring lift axle weight of vehicle
KR101504573B1 (en) * 2014-09-04 2015-03-23 주식회사 유디코 Apparatus and method for measuring axle weight of vehicle
KR101919345B1 (en) * 2018-01-25 2018-11-19 주식회사 이에스피 Non-linear electrical conductivity measuring device and its method
KR102129946B1 (en) * 2019-09-24 2020-07-03 (주)유디엔에스 Weight measurement system and method for cargo vehicle
KR102365275B1 (en) 2020-08-25 2022-02-22 건설기계부품연구원 Apparatus and method for load measuring of onboard type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934663A (en) * 1974-01-16 1976-01-27 Kurt Eilert Johansson Attachment device for a gauge
JPS5597528U (en) * 1978-12-25 1980-07-07
KR100480832B1 (en) * 2002-11-18 2005-04-07 주식회사 아이세스 Apparatus for measuring wheel axle weight
KR20090073976A (en) * 2008-12-09 2009-07-03 (주)바이텍코리아 Apparatus and method for measuring weight of vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934663A (en) * 1974-01-16 1976-01-27 Kurt Eilert Johansson Attachment device for a gauge
JPS5597528U (en) * 1978-12-25 1980-07-07
KR100480832B1 (en) * 2002-11-18 2005-04-07 주식회사 아이세스 Apparatus for measuring wheel axle weight
KR20090073976A (en) * 2008-12-09 2009-07-03 (주)바이텍코리아 Apparatus and method for measuring weight of vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2548488A (en) * 2016-03-04 2017-09-20 Toigo Imp E Distribuidora De Sist Automotivos Ltda Onboard load weight measurement system for vehicles, with a multipoint automatic and semi-automatic calibration system
CN106768212A (en) * 2016-12-02 2017-05-31 山东交通学院 A kind of overload of vehicle detection and information carrying means
CN106768212B (en) * 2016-12-02 2023-06-09 山东交通学院 Vehicle overload detection and information transmission device
DE102018132697A1 (en) * 2018-12-18 2020-06-18 Wabco Gmbh Method for determining an axle load and suspension system for a vehicle
US11874157B2 (en) 2018-12-18 2024-01-16 Zf Cv Systems Europe Bv Method for determining an axle load and suspension system for a vehicle
KR20210029593A (en) * 2019-09-06 2021-03-16 주식회사기원전자 ISO 11783 compliant vehicle weight meter system based on tilting sensor
KR102242991B1 (en) 2019-09-06 2021-04-21 주식회사기원전자 ISO 11783 compliant vehicle weight meter system based on tilting sensor
CN112525310A (en) * 2019-09-17 2021-03-19 北汽福田汽车股份有限公司 Wheel load testing system, method and device

Also Published As

Publication number Publication date
KR101092581B1 (en) 2011-12-13
WO2012053869A3 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
WO2012053869A2 (en) Load measuring device and method of weighing vehicle having suspension with two-stage springs
WO2019045414A1 (en) Method for managing weight of user and electronic device therefor
WO2011132863A2 (en) Water-quality measurement system using a smartphone
WO2020251248A1 (en) Portable blood pressure measuring device
WO2020180038A2 (en) Method and device for monitoring performance of high-speed weigh-in-motion equipment
CN105823539A (en) Multi-weighing-platform combination type multi-range motor truck scale and working method thereof
CN103837221A (en) Electronic scale technology capable of achieving accurate metering without weight calibration
WO2016143936A2 (en) Wireless meter reading system using terminal, which employs multi-meter reading function, and control method for wireless meter reading using terminal
KR100471589B1 (en) Digital Weight Scale For PC And Method of Managing Weight Therewith
CN210346590U (en) Wireless static strain tester and wireless static strain test system
CN102116697A (en) Center-of-gravity measurement module and action induction module
CN114383704A (en) Small-sized floor scale and mounting method
CN111780846B (en) Object weighing method, mobile terminal and computer readable storage medium
CN114370960A (en) Pull rod load measuring method, device and system and storage medium
JP4776821B2 (en) Weighing system
CN201121121Y (en) Weighing apparatus of fork truck
CN209945521U (en) Electronic weighing apparatus weighing system based on independent weighing unit
CN201226181Y (en) Wireless transmission digital electronic belt weigher
CN105283822B (en) Communication module of popping one's head in and calculating equipment
JP4795552B2 (en) Load cell device
Bielen et al. A low cost wireless multi-channel measurement system for strain gauges
US10215617B2 (en) Analog sensor with digital compensation function
CN217111261U (en) Pressure distribution detection system
CN110270051A (en) Balance control method, device, omnidirectional's treadmill and the medium of omnidirectional's treadmill
KR20190128808A (en) Smart apparatus of scaling weight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834669

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834669

Country of ref document: EP

Kind code of ref document: A2