WO2012053531A1 - Internal diameter examination device, electrical measurement sensor, and production method for electrical measurement sensor - Google Patents

Internal diameter examination device, electrical measurement sensor, and production method for electrical measurement sensor Download PDF

Info

Publication number
WO2012053531A1
WO2012053531A1 PCT/JP2011/073994 JP2011073994W WO2012053531A1 WO 2012053531 A1 WO2012053531 A1 WO 2012053531A1 JP 2011073994 W JP2011073994 W JP 2011073994W WO 2012053531 A1 WO2012053531 A1 WO 2012053531A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
measurement sensor
voltage detection
electrodes
electrode
Prior art date
Application number
PCT/JP2011/073994
Other languages
French (fr)
Japanese (ja)
Inventor
小西頴
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to JP2012539741A priority Critical patent/JPWO2012053531A1/en
Publication of WO2012053531A1 publication Critical patent/WO2012053531A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter

Definitions

  • the present invention relates to an inner diameter inspection device, an electric measurement sensor, and a method for manufacturing the electric measurement sensor.
  • Cerebral infarction or ischemic myocardial infarction is caused by a decrease in blood flow due to a vascular stenosis in an artery, cerebral blood vessel, or coronary artery.
  • the blood vessel stenosis is formed by the adhesion of a thrombus inside the blood vessel or the growth of plaque on the blood vessel wall. Plaque growth in the artery causes arteriosclerosis.
  • As a method for diagnosing thrombus or plaque there is an angiography test. This is a test in which a thin tube (catheter) is inserted into a blood vessel and the state of the contrast medium injected through this catheter is observed. The catheter is usually inserted into the blood vessel near the base of the patient's foot.
  • the contrast medium is injected into the target site via the catheter. Since the contrast agent has an X-ray shielding effect, a shadow of a blood vessel at a target site is grasped as an image in an image obtained by X-ray imaging. From this image, a stenosis portion of a blood vessel is detected as a narrow portion of a blood flow channel.
  • a stent is attached as one of the treatment means.
  • the stent is a tube having a metal network structure.
  • the diameter of the stent can be changed.
  • the stent is attached to the balloon catheter with its diameter reduced, and is sent to the stenosis portion together with the balloon catheter.
  • the diameter of the stent is expanded by inflating the balloon at the narrowed portion.
  • the blood vessel is expanded and supported by the stent so as to maintain the state. In this case, it is necessary to attach the stent to a place where the stenosis of the blood vessel exists.
  • the blood flow channel of the stenosis before surgery has recovered to the same channel width as the blood flow channels of other blood vessels, so that the stent has been mounted normally and the blood flow state is Check that it has recovered normally.
  • the blood vessel contrast agent examples include a nonionic water-soluble iodine contrast agent, a water-soluble iodine contrast agent, and a low osmotic water-soluble iodine contrast agent.
  • These contrast agents may be a burden on the patient's body. The causes of this burden are roughly divided into four categories: (1) physical properties of contrast agents, (2) chemical toxicity of contrast agents, (3) anaphylaxis-like reactions, and (4) psychological factors.
  • (1) and (2) are dose-dependent reactions involving the hyperosmolarity, non-hydrophilicity, and ion loading of contrast agents.
  • (3) is a non-dose-dependent allergic reaction such as release of chemical mediators and activating effects such as antigen-antibody reaction.
  • Each symptom of side effects that occur during treatment is a combination of various factors. For example, sneezing, rash (urticaria), heat sensation, vascular pain, vomiting, cold sweat, facial pallor, hypotension, or dyspnea may occur. Due to these side effects, the amount of angiographic contrast agent that can be used in one operation and the time of use are limited. As a result, it may be difficult to sufficiently confirm the completion of stent mounting from the detection of the vascular stenosis. This causes the need to reinsert the stent later.
  • X-ray projection is always performed when checking for the presence or absence of a stenosis and when confirming the completion of stent placement. Therefore, during that time, both the doctor and the patient may be exposed to X-rays.
  • the blood vessel images obtained by angiography examinations show a clear position of the vascular stenosis due to the continuous change of the blood vessel position due to the heartbeat, blurring of the image due to non-focus diffraction, loss of transport of the contrast agent in the blood vessel, etc. Confirmation is difficult. Also, for the same reasons, it is difficult to correctly determine the position of the attached stent. Under such circumstances, it is very difficult to mount an appropriate stent, and there are many cases in which a subsequent stent is reinserted. However, once a stent is mounted, it is difficult to remove it, so the number of treatments with the stent is limited.
  • the piping may be clogged due to, for example, calcium deposition in the plastic water piping or deposition of residues in the drainage in the sewer piping.
  • Such clogging cannot use X-rays or X-ray contrast media depending on the location of the piping, and it is extremely difficult to detect the site.
  • Patent Document 1 discloses a position and posture sensor using an electromagnetic pulse (EMP) and an intravascular ultrasonic examination (IVUS: intravascular ultrasound). And a medical system that combines optical coherence tomography (OCT: Optical Coherence Tomography) has been proposed. Details of the position and orientation sensors used in Patent Document 1 are disclosed in Patent Document 2. However, the sensor described in Patent Document 2 needs to generate a three-dimensional electromagnetic field, and also requires image processing. In addition, the apparatus described in Patent Document 1 in which IVUS or OCT is combined with such a sensor requires considerable calculation processing even with image processing alone, takes time for judgment, and says that confirmation of stent attachment cannot be performed quickly. There is also a problem. Therefore, a simple inner diameter inspection device has been desired for detecting clogging of piping.
  • EMP electromagnetic pulse
  • IVUS intravascular ultrasonic examination
  • OCT Optical Coherence Tomography
  • An object is to provide an inner diameter inspection device, an electric measurement sensor, and a method for manufacturing the electric measurement sensor.
  • an electrical measurement sensor that is inserted into a space to be inspected filled with a conductive solution, a current supply source that supplies current to the electrical measurement sensor, and a voltage of the electrical measurement sensor are detected.
  • An electrical measurement sensor at least at a surface made of an insulating material and having a substantially cylindrical shape, and a cylindrical shape on the surface of the insulation housing at a position separated in the axial direction. It is connected to two formed current electrodes, three or more voltage detection electrodes formed between two current electrodes on the surface of the insulating housing, two current electrodes and three or more voltage detection electrodes.
  • the inner diameter inspection characterized by being connected to three or more voltage detection electrodes via a cable so as to detect two or more voltages generated between three or more voltage detection electrodes.
  • the voltage detection means may include a voltage measuring device that measures a voltage for each electrode set including two adjacent electrodes among the voltage detection electrodes.
  • the voltage detection means may include a voltage measuring device that measures the voltage of an electrode set in which one electrode is shared for every two adjacent electrodes among the voltage detection electrodes.
  • the current supply source is an alternating current source
  • the voltage detection means includes a transformer that receives two or more voltages and performs electrical insulation and voltage conversion, a voltage amplifier that amplifies the output voltage of the transformer, and the voltage amplifier And a detector for detecting the output of.
  • a capacitor that cuts off low-frequency noise is inserted between the voltage detection electrode that is a voltage detection target when viewed from the voltage detection means and the transformer.
  • the two or more voltage values obtained by the voltage detecting means and the current value obtained by the current measuring means corresponds to two or more voltage values from the current measuring means for measuring the current supplied from the current supply source to the current electrode, the two or more voltage values obtained by the voltage detecting means and the current value obtained by the current measuring means. It is desirable to further include a calculation unit that calculates two or more apparent resistance values and an image generation unit that generates an image in which the two or more apparent resistance values are arranged.
  • the image generating means generates a resistance comparison image that can compare the magnitude relationship between two or more apparent resistance values in correspondence with the positions of three or more voltage detection electrodes, and the embolized portion that occurs in the space area to be inspected. This can be shown by the resistance comparison image.
  • the image generating means processes the two apparent resistance values calculated by the calculating means, two apparent resistances for two electrode sets that give two apparent resistance values among three or more voltage detection electrodes.
  • the electrical measurement sensor moves in the direction of the electrode set that gives a relatively large resistance value, and after the apparent resistance value of the electrode set reaches the maximum value, the two apparent resistance values become equal.
  • a resistance comparison image can be generated assuming that a constriction exists at the midpoint between the two electrode sets.
  • the three electrode sets When the apparent resistance value required for the central electrode group is the maximum, a resistance value comparison image can be generated assuming that a constriction exists at the midpoint of the central electrode group.
  • the insulating housing of the electrical measurement sensor is provided with a balloon that is inflated or deflated by a gas or liquid supplied through a pipe, and the image generating means displays a resistance value comparison image of the embolized portion generated in the space to be inspected.
  • the stent is attached to the balloon which can be expanded beyond the elastic limit by inflating the balloon.
  • the image generating means shows the position of the embolized portion of the blood vessel to which the stent is to be attached by showing the embolized portion generated in the space area to be examined by the resistance value comparison image in a state where the electrical measurement sensor is inserted into the blood vessel. Can show.
  • the voltage value of 2 or more changes according to the influence of the conductivity of the space to be inspected, and the image generation unit associates the magnitude relationship of the apparent resistance values of 2 or more with the position of the voltage detection electrode of 3 or more. It is also possible to generate a resistance value comparison image that can be compared, and to show a portion having a different conductivity from the other portion of the inspection target space by the resistance value comparison image.
  • the image generation means when processing two apparent resistance values calculated by the calculation means, two of the three or more voltage detection electrodes are used. With respect to two electrode sets that give an apparent resistance value, the electric measurement sensor moves in the direction of the electrode set that gives a relatively small resistance value out of the two apparent resistance values, and the apparent resistance value of the electrode set is minimum. When the two apparent resistance values become equal after reaching the value, the resistance value comparison image can be generated assuming that a stent exists at the midpoint between the two electrode sets.
  • the display processing means when processing the three apparent resistance values calculated by the calculation means, three of the four or more voltage detection electrodes are used.
  • the electric measurement sensor moves in the direction of the electrode set that gives a relatively small resistance value among the three apparent resistance values, and the apparent resistance value of the electrode set is minimum.
  • the apparent resistance value required for the center electrode group of the three electrode sets becomes the minimum after the value is reached, it is assumed that the stent is attached to the middle point of the center electrode group.
  • a comparison image can be generated.
  • At least the surface is made of an insulating material and has a substantially cylindrical shape, and the surface of the insulating case is formed at a position separated from the cylindrical shape in the axial direction.
  • Current is supplied between two current electrodes, three or more voltage detection electrodes formed between the two current electrodes on the surface of the insulating housing, and two current electrodes from the outside, and three or more voltages are supplied.
  • An electrical measurement sensor is provided, comprising: a conductive cable that extracts two or more voltages generated between the detection electrodes to the outside; and a sheath that encloses the conductive cable.
  • One of the two current electrodes can be configured to be formed at the tip of the insulating casing opposite to the side where the conductive cable of the insulating casing is attached. Further, a plurality of electrode groups including two current electrodes and three or more voltage detection electrodes may be formed in the axial direction of the insulating housing. Further, in addition to the two current electrodes, a configuration in which a third current electrode is formed between the two current electrodes and at a position between each of the two current electrodes and sandwiching the voltage detection electrode, You can also
  • the at least part of the two current electrodes and the three or more voltage detection electrodes may be formed of a metal electrode member.
  • the metal electrode member may be embedded in the insulating casing to form a surface that is substantially the same as the surface of the insulating casing.
  • At least a part of the two current electrodes and the three or more voltage detection electrodes may be formed by winding a conductive wire constituting the conductive cable around the surface of the insulating housing.
  • the conductive wires forming at least a part of the two current electrodes and the three or more voltage detection electrodes are embedded in the insulating casing to form a surface substantially the same as the surface of the insulating casing. It can be configured.
  • At least a part of the two current electrodes and the three or more voltage detection electrodes can be configured such that the end surfaces of the conductive wires constituting the conductive cable are exposed on the surface of the insulating housing.
  • the sheath is integrated with the insulating housing.
  • the insulating casing can be configured such that the inside is filled with an insulating material different from that of the insulating casing.
  • the insulating casing may be provided with a balloon that is inflated or deflated by a gas or liquid supplied via a pipe.
  • the insulating casing is heat-softening resinous, and is positioned at a position away from one electrode in the axial direction of the insulating casing.
  • a first step of providing the first and second holes, and a corresponding conductive wire of the conductive cable is drawn out from the first hole to the outside, and the drawn conductive wire is insulated to the position where the second hole is blocked.
  • the conductive wire is insulated by passing an electric current between the means and the second fixing means to heat the conductive wire therebetween.
  • a method for manufacturing an electrical measurement sensor is provided.
  • the present invention it is possible to inspect the state of the inspection object space with a relatively simple configuration. For example, when examining a blood vessel, plaque, thrombus, or stent can be detected without using a tube contrast examination. Further, even when the inspection target is a water pipe or a sewer pipe, there is no mechanism portion and the handling is easy, and a clogged portion of these pipes can be easily detected.
  • FIG. 3 is a diagram for briefly explaining the principle of measurement of electrical conductivity by the electrical conductivity sensor shown in FIG. 2, showing a simplified cross-sectional view of the electrical conductivity sensor, and an electrical measuring unit connected to the electrical conductivity sensor A simple configuration example is shown.
  • FIG. 4 is a diagram for quantitatively explaining in detail the measurement principle by the electrical conductivity sensor shown in FIGS. 2 and 3.
  • FIG. 1 It is a figure which shows the structural example of the voltage measuring device circuit used as a voltage measuring device. It is a figure which shows the structural example of another voltage measuring device circuit used as a voltage measuring device. It is a figure which shows the structural example of the circuit used as a detector in the voltage measuring device circuit of FIG. It is a figure which shows an example of the resistance value comparison image by two apparent resistance values. It is a figure which shows an example of the resistance value comparison image by three apparent resistance values. It is a figure which shows an example of the resistance value comparison image by two apparent resistance values. It is a figure which shows an example of the resistance value comparison image by three apparent resistance values. It is a figure explaining the structural example of the electric caliper balloon catheter used as an electric measurement sensor in the internal diameter measuring apparatus shown in FIG.
  • FIG. 1 is a diagram showing a configuration of an inner diameter inspection apparatus according to an embodiment of the present invention.
  • the structure and usage of an electric measurement sensor 1010 are simplified and measurement is performed using the electric measurement sensor 1010.
  • the block structure of the electric measurement part 1020 is shown.
  • FIG. 1 also shows a display device 1030 connected to the electrical measurement unit 1020.
  • This inner diameter inspection apparatus includes an electric measurement sensor 1010 inserted into an inspection target space 1000 (for example, inside a blood vessel) filled with a conductive solution, and an electric measurement unit 1020 connected to the electric measurement sensor 1010.
  • a display device 1030 is connected to the electrical measurement unit 1020.
  • the electrical measurement sensor 1010 includes an insulating housing 1011 having at least a surface made of an insulating material and having a substantially cylindrical shape. Two current electrodes 1012 and 1013 are formed at positions on the surface of the insulating housing 1011 that are separated from each other in the cylindrical axial direction. Between the two current electrodes 1012 and 1013 on the surface of the insulating edge housing 1011, three or more (three in FIG. 1) voltage detection electrodes 1014, 1015 and 1016 are formed.
  • the electrical measurement sensor 1010 also includes a conductive wire 1017 that connects the current electrodes 1012 and 1013 and the voltage detection electrodes 1014, 1015, and 1016 to the electrical measurement unit outside the inspection target space 1000, and an external lead-out cable 1019 that bundles them together. Prepare. External lead-out cable 1019 is enclosed in external lead-out cable sheath 1018.
  • the electrical measurement unit 1020 includes a current supply source 1021 that supplies current to the electrical measurement sensor 1010 and a voltage detection unit 1022 that detects the voltage of the electrical measurement sensor 1010.
  • the current supply source 1021 is connected to the two current electrodes 1012 and 1013 via the external lead-out cable 1019.
  • the voltage detection unit 1022 is a voltage that changes according to the size of the inner diameter of the space to be inspected 1000 and the electrical characteristics, and is generated between three or more voltage detection electrodes 1014, 1015, 1016 (2 in this case). Are connected to three or more voltage detection electrodes 1014, 1015, 1016 via an external lead-out cable 1019.
  • the electrical measurement unit 1020 also includes a digital / analog converter (A / D) 1023, an arithmetic processing unit 1024, and an image generation processing unit 1025.
  • the current supply source 1021 has current measuring means (not shown) for measuring the current supplied to the current electrodes 1012 and 1013, and the digital / analog converter (A / D) 1023 is obtained by the voltage detection unit stage 1022. The two or more analog voltage values obtained and the analog current value obtained by the current measuring means are each converted into a digital signal.
  • the image generation processing unit 1025 generates an image in which two or more apparent resistance values R1, R2,. This image is displayed on the display device 1030.
  • a personal computer can be used as the arithmetic processing unit 1024 and the image generation processing unit 1025. That is, by using a personal computer equipped with hardware such as a CPU, RAM, ROM, hard disk, and various interfaces, and installing a computer program that operates under a predetermined operating system, the arithmetic processing unit 1024 and the image generation processing unit 1025 functions can be realized.
  • an electrical conductivity sensor used in a conductivity meter is well known as a sensor for measuring the electrical conductivity of a conductive solution.
  • This electrical conductivity sensor includes a pair of current electrodes provided on the surface of an insulating casing in a protective pipe and a pair of voltage detection electrodes (generally used) formed between the current electrodes. Are also referred to as “voltage electrodes”). Based on the measurement principle of the electrical conductivity sensor having such a structure, the measurement principle using the electrical measurement sensor 1010 shown in FIG. 1 will be described.
  • FIG. 2 is a diagram showing a configuration example of a known electrical conductivity sensor 100 that measures the electrical conductivity of a conductive solution.
  • the electrical conductivity sensor 100 includes an insulating housing 1 having at least a surface made of an insulating material or entirely made of an insulating material, and surrounds the outer periphery of the insulating housing 1 to have an electrically insulating protective pipe 2. Is provided.
  • the protective pipe 2 is attached to the insulating housing 1 via the engaging portion 3.
  • the insulating housing 1 is provided with a pair of current electrodes 5 and 6, and a pair of voltage detection electrodes 7 and 8 are provided between the pair of current electrodes 5 and 6.
  • the protective pipe 2 is provided with an opening 9 that eliminates air bubbles and allows an external solution to freely enter and exit.
  • External lead-out cables (not shown) connected to the current electrodes 5 and 6 and the voltage detection electrodes 7 and 8 are sealed in the external lead-out cable sheath 4 from the insulating housing 1 and are connected to the external electrical measuring unit 30 ( (See FIG. 3).
  • FIG. 3 is a diagram for briefly explaining the principle of measurement of electrical conductivity by the electrical conductivity sensor 100 shown in FIG. 2, and a simplified cross-sectional view of the electrical conductivity sensor 100 is shown. The simple structural example of the electric measurement part 30 connected to is shown.
  • the electrical measuring unit 30 includes a current power source 31 and a voltage measuring device 32.
  • a current power source 31 is connected to the pair of current electrodes 5 and 6 of the electrical conductivity sensor 100.
  • a voltage measuring device 32 is provided on the voltage detection electrodes 7 and 8.
  • a current I ampere
  • V potential difference between the voltage detection electrodes 7 and 8 appears in the voltage measuring device 32 connected to the voltage detection electrode.
  • the electric conductivity ⁇ of the solution 11 in the protective pipe 2 to be measured by the electric conductivity sensor 100 is obtained by the following equation.
  • S is a spatial factor called a cell constant, which is a coefficient corresponding to a value obtained by dividing the current distribution in the solution, that is, the cross-sectional area through which the current flows by the distance through which the current flows.
  • FIG. 4 is a diagram for quantitatively explaining in detail the measurement principle by the electric conductivity sensor 100 shown in FIGS.
  • the radius of the insulating housing 1 is r0.
  • the insulating casing 1 having the radius r0 is provided with current electrodes 5 and 6 and voltage detection electrodes 7 and 8 whose surfaces have the same radius.
  • a current power source 31 is connected to the current electrodes 5 and 6 via a conductive cable 21.
  • a current I flows through the conductive cable 21.
  • a current flows between the current electrodes 5 and 6 via the solution 11.
  • the current density is J.
  • a voltage measuring device 32 is connected to the voltage detection electrodes 7 and 8 via a conductive cable 23.
  • a potential difference Vm is generated between the voltage detection electrodes 7 and 8 due to the current flowing through the solution 11 in the protective pipe 2 (its current density is J) and the electrical conductivity of the solution 11.
  • the voltage measuring device 32 detects the potential difference Vm between the voltage detection electrodes 7 and 8.
  • the spatial average current density is It becomes.
  • re is the radius of the effective spatial distribution (distance from the center line of the insulating housing 1) where the current obtained when the distribution of the current J is assumed to be uniform.
  • the effective potential difference Vm between the voltage detection electrodes 7 and 8 depends on the spatial average current density given by the equation (2). Given in. Here, d is the distance between the voltage detection electrodes.
  • the apparent resistance Ra is It becomes.
  • the cell constant S is It becomes. Therefore, when the apparent resistance Ra is expressed using the cell constant S, It becomes.
  • the apparent resistance depends on the cell constant S.
  • the cell constant S depends on the spatial distribution of current. Therefore, when the insulating housing 1, the current electrodes 5, 6 and the voltage detection electrodes 7, 8 are placed in a cylindrical space narrower than the effective spatial distribution in the protective pipe 2, for example, from the center line of the insulating housing 1
  • the apparent resistance Rn when the radius rn of the cylinder of r0 ⁇ rn ⁇ re is It becomes. That is, when the insulating casing 1, the current electrodes 5 and 6, and the voltage detection electrodes 7 and 8 are placed in a cylindrical space narrower than the protective pipe 2, the resistance between the voltage detection electrodes 7 and 8 increases. .
  • the known electrical conductivity sensor 100 shown in FIGS. 2 to 4 includes the insulating housing 1, the current electrodes 5 and 6, and the voltage detection electrodes 7 and 8 in the protective pipe 2.
  • the electrical conductivity of the solution 11 in the protective pipe 2 can be measured. In other words, the electrical conductivity cannot be measured unless it is in a fixed space called the protective pipe 2.
  • the electrical measurement sensor 1010 according to the present invention shown in FIG. 1 is fundamentally different in that the protective pipe 2 in the electrical conductivity sensor 100 shown in FIGS. 2 to 3 is not provided. It has a structure, and the effect that the apparent resistance value depends on the surrounding space is utilized from the structure.
  • the electric measurement sensor 1010 is hereinafter also referred to as “electric caliper” in the sense of measuring the inner diameter of the inspection target space.
  • the spatial dependence of the apparent resistance value in the electric measurement sensor 1010 will be quantitatively described.
  • FIG. 5 is an explanatory diagram for conducting a quantitative study, and shows one model structure of the electric measurement sensor 1010.
  • the insulating housing 1011 of the electric measurement sensor 1010 has at least a surface made of an insulating material or entirely made of an insulating material and has a cylindrical shape, and current electrodes 1012 and 1013 are formed on the surface. Since the purpose is to explain the principle and effect, the voltage detection electrodes 1014, 1015, 1016, the conductive wires 1017, the external lead-out cable sheath 1018, the external lead-out cable and 1019 are omitted in FIG.
  • An electric measuring sensor 1010 is placed in an outer insulating wall 12 having a cylindrical shape and made of an electrically insulating material, and the inside of the outer insulating wall 12 is filled with a conductive solution 11.
  • the outer insulating wall 12 is partially narrowed, and the solution region in that portion is referred to as “region“ 2 ””.
  • the portion of the solution that is not narrowed is referred to as “region“ 1 ””.
  • a transition area from the area “1” to the area “2” is defined as “area“ 3 ””.
  • the radius of the insulating housing 1011 is r0, and the radii of the external insulating walls of the region “1” and the region “2” are rb and rt, respectively.
  • the radius of the outer insulating wall of the region “3” is given by rd (x).
  • the current density in the space filled with the solution 11 is J.
  • the distribution of the current density J satisfying the above is obtained, and thereafter, the potential difference Vm between the voltage detection electrodes 1014, 1015, 1016 is obtained from the equation (3).
  • A represents the surface area of the current electrodes 1012 and 1013.
  • FIG. 6 and 7 are diagrams for explaining the validity of the model shown in FIG. 5 and for explaining the spatial distribution of current lines between the current electrodes 1012 and 1013.
  • FIG. 6 and 7 are diagrams for explaining the validity of the model shown in FIG. 5 and for explaining the spatial distribution of current lines between the current electrodes 1012 and 1013.
  • the longitudinal component Jx from one current electrode 1012 or 1013 to the other current electrode 1013 or 1012 is dominant as the current density.
  • the radial component of the electric field when the cylindrical charge is placed in free space shows a radial dependence of r ⁇ 1 by Gauss's electric field continuity principle.
  • the radial electric field is caused by the external insulating wall 12. Is restricted by the law of conservation. That is, when the radial dependence of the electric field is rn, the radial dependence coefficient n is in a range smaller than 1, which is a value in the free section, that is, 0 ⁇ n ⁇ 1. From this Gauss's law and the electric field conservation law, equation (9) is a reasonable approximation.
  • the spatial current density Jx along the insulating casing 1011 is obtained by approximation based on Expression (9). Assuming that the current densities in the regions “1”, “2”, and “3” are J1 (x, r), J2 (x, r), and J3 (x, r), the current densities in the respective regions are as described above. By approximation, it can be essentially expressed as: Here, J1, J2, and J30 (x) are amounts that determine the absolute value of the current density. Based on the current continuity principle and the current conservation law, the current density of region "1" and region "2" It becomes. Than this Is obtained.
  • rd indicates the radius of the outer insulating wall 12 from the central axis of the insulating casing 1011 with respect to the position in the longitudinal direction of the insulating casing 1011 in the region “3”.
  • the apparent resistance value Rm1 is obtained from the potential difference with respect to the radius rb of the constant external insulating wall 12.
  • the apparent resistance value Rm2 is a value in the narrowed region “2” of the outer insulating wall 12, and the radius of the outer insulating wall 12 is rt. Therefore, when the radius rt is different, the apparent resistance value Rm2 changes greatly.
  • the apparent resistance value Rm3 is a value in a transition region between the region “1” of the external insulating wall 12 having a constant radius and the region “2” of the external insulating wall 12 having a narrow radius.
  • At least two sets of voltage detection electrodes 1014, 1015, 1015, and 1016 are provided in the insulating housing 1011, and a potential difference detected between the voltage detection electrodes of each set is measured, thereby obtaining an apparent resistance value.
  • the higher the apparent resistance value the smaller the inner diameter of the external insulating wall 12.
  • the electrical measurement sensor 1010 is analyzed as a model when surrounded by the external insulating wall 12.
  • the external insulating wall 12 even if it is a conductive wall, if the electrical conductivity is lower than the electrical conductivity of the solution 11, the apparent resistance values Rm 1, Rm 2, and Rm 3 are relative to each other.
  • FIG. 8 and FIG. 9 have the same relationship.
  • the apparent resistance value corresponds to the diameter of the external insulating wall 12
  • the diameter of the external insulating wall at the position of the voltage detection electrode group having the larger apparent resistance value can be determined to be smaller than the diameter of the external insulating wall at the position of the voltage detection electrode set having the smaller apparent resistance value. Therefore, by moving the electrical measurement sensor 1010 provided with a plurality of voltage detection electrode sets and comparing the measured apparent resistance values, a portion where the outer insulating wall is constricted (that is, the inner radius of the outer insulating wall). Can be easily found. Further, the value of the diameter of the insulating pipe or the like can be determined from the resistance value by the formula (14a), the formula (14b), and the formula (14c).
  • a model using the external insulating wall 12 as an external pipe has been studied, but it may not be electrically insulative. That is, if the electric conductivity of the solution 11 is somewhat lower than that of the solution 11 and the electric conductivity has several times the contrast, it is possible to find a site where the constriction has advanced. For example, taking blood vessels as an example, the electrical conductivity of blood is about 0.6 S / m, and thrombus and plaque are about 0.1 to 0.07 S / m. Therefore, a site where the blood vessel is narrowed by a thrombus or plaque can be found using the electric measurement sensor 1010.
  • the position specified as the stenosis or the stent attachment site can be specified with respect to the insertion distance at which the electrical measurement sensor 1010 is inserted into the pipe or blood vessel from the outside.
  • a site where stenosis has advanced due to thrombus, plaque, etc. can be easily performed without angiographic examination. Can be found. Therefore, the burden on the patient due to the angiographic examination is eliminated. Moreover, according to the above embodiment, it is possible to detect a stent and determine a staying site where a stent is attached with an enlarged radius in a blood vessel.
  • Electrode of electrical measurement sensor] 1 includes two or more voltage detection electrodes 1014, 1015, 1015, and 1016 (in this case, two sets) in an intermediate portion where one set of current electrodes 1012 and 1013 is arranged. (Hereinafter referred to as “electric caliper”). By comparing these two or more sets of voltage detection electrodes 1014, 1015 and 1015, 1016, the potential difference (or the apparent resistance value obtained by dividing the potential difference by the current value supplied via the current electrodes 1012 and 1013) is large.
  • the position of the stenosis site can be specified by utilizing the fact that the set of corresponding voltage detection electrodes is at a position where the inner diameter of the external insulating wall is small.
  • an electric caliper that can be used as the electric measurement sensor 1010 in the inner diameter measuring apparatus shown in FIG. 1 will be described using the reference numerals corresponding to the reference numerals shown in FIG.
  • FIG. 10 is a diagram illustrating a configuration example of the electric caliper 201 used as the electric measurement sensor 1010 in the inner diameter measuring apparatus shown in FIG.
  • the electric caliper 201 shown in FIG. 10 includes an insulating casing 1 (corresponding to the insulating casing 1011 in FIG. 1) having at least a surface made of an insulating material and having a substantially cylindrical shape.
  • Two current electrodes 5 and 6 are formed at positions on the surface of the insulating housing 1 that are separated from each other in the cylindrical axial direction. Between the two current electrodes 5 and 6 on the surface of the insulating housing 1, three or more (four in this example) voltage detection electrodes 71, 81, 72, and 82 (voltage detection electrodes 1014, 1015 in FIG. 1). 1016).
  • a current is supplied from the outside between the current electrodes 5 and 6, and a conductive cable for taking out the voltage generated between the voltage detection electrodes 71 and 81 and between the voltage detection electrodes 72 and 82 to the outside (see FIG.
  • the conductive cable is enclosed in the external lead-out cable sheath 4 (corresponding to the external lead-out cable sheath 1018 in FIG. 1).
  • Each electrode of the electric caliper 201 and the surface of the insulating housing 1 form substantially the same cylindrical surface. This is to prevent edge effects at the edges of the electrodes.
  • the external lead-out cable sheath 4 in which the conductive cable is encapsulated is not formed by a member independent of the insulating casing 1 but can be formed by extending the insulating casing 1.
  • the electric caliper 201 can be used as a form of a catheter (ie, an electric caliper catheter) for the purpose of finding a stenosis in a blood vessel. This is particularly effective when This is because, since the external lead-out cable sheath 4 is not an independent member, the shielding effect of the insulating housing 1 becomes good, and bacterial infection in the blood vessel can be drastically reduced.
  • the insulating housing 1 includes a conductive cable or individual conductive wires of the conductive cable. Further, a filler made of an insulating material different from that of the insulating housing 1 is sealed in the insulating housing 1. By stopping, the bending of the insulating housing 1 can be increased. In particular, when an electric caliper catheter is constituted by the electric caliper 201, this has a remarkable effect that the risk of damage to the inner wall of the blood vessel is reduced and the electric caliper catheter can be operated safely.
  • FIG. 11 shows an electric caliper 202 having a configuration different from that of the electric caliper 201 shown in FIG.
  • At least a part, preferably all, of the current electrodes 5 and 6 and the voltage detection electrodes 71, 81, 72, and 82 are formed by independent metal electrode members.
  • the individual conductive wires of the conductive cable enclosed in the external lead-out cable sheath 4 are connected to each other.
  • the voltage detection electrodes 71, 81, 72, and 82 are not members independent of the conductive cable, and the end surfaces of the conductive wires constituting the conductive cable are the surface of the insulating housing 1. It is exposed and formed.
  • independent metal electrode members are used for the current electrodes 5 and 6, the current electrodes 5 and 6 can have the same configuration depending on the conditions of the current flowing around the electric caliper 202.
  • FIG. 12 is a diagram for explaining the configuration of an electric caliper 203 which is a modification of the electric caliper 202 shown in FIG.
  • the electric caliper 203 is provided with three sets of voltage detection electrodes 71a, 81a, 72a, and 82a that are 120 degrees apart from each other on the rotation plane about the longitudinal axis of the insulating casing 1. For this reason, the presence / absence of the stenosis can be examined in the examination target space in three directions within the plane of rotation. These electrodes are formed such that the end surfaces of the conductive wires constituting the conductive cable are exposed on the surface of the insulating housing 1.
  • the case where the number of voltage detection electrodes is four has been described, but this number may be any number as long as it is three or more.
  • the structure in that case is essentially equivalent to any of the structures shown in FIGS. In this case, only the number of detection electrodes and the number of conductive cables connected to the detection electrodes or conductive cables whose end faces serve as voltage detection electrodes are increased. The details are omitted.
  • FIGS. 13 and 14 are diagrams for explaining a connection form between each electrode of the electric calipers 201 to 203 shown in FIGS. 10 to 12 and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG.
  • the reference number of the electric caliper 203 is shown in parentheses.
  • the voltage measuring device 32 and the group of voltage detection electrodes 71a, 81a, 72a, 82a and the like shown in FIGS. 10 to 12 are provided in three sets corresponding to the respective inspection target spaces in the three directions. Yes.
  • the current electrodes 5 and 6 are connected to the current power supply 31 provided in the current supply source 1021 built in the electrical measuring unit 1020 shown in FIG. .
  • a voltage measuring device 32 provided in the voltage detecting unit 1022 in the electric measuring unit 1020 is connected to each of the voltage detecting electrodes 71 and 81 (71a and 81a) and 72 and 82 (72a and 82a). Note that the physical positions and sizes of the electrical measurement unit 1020, the current supply source 1021, and the voltage detection unit 1022 are conceptually displayed in order to clarify the electrical connection form.
  • the voltage measuring device 32 is provided for each electrode set composed of two adjacent electrodes among the voltage detection electrodes 71, 81, 72, 82 (71a, 81a, 72a, 82a), that is, the voltage detection electrodes 71, 81 (71a). , 81a) and the electrode set consisting of the voltage detection electrodes 72, 82 (72a, 82a) are measured for voltage. With the two sets of voltage detection electrodes, a potential difference (and therefore a resistance value) corresponding to the internal diameter of a blood vessel or the like can be obtained.
  • FIG. 14 shows the connection configuration between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG. 1 for the electric caliper 204 having three voltage detection electrodes and different from those shown in FIGS. It is a figure explaining.
  • the same parts and structures as those shown in FIGS. 10 to 12 can be determined by deduction from the above description, and thus detailed description thereof is omitted. To do.
  • the voltage is measured for each electrode set including two electrodes adjacent to each other.
  • the example of FIG. 14 among the voltage detection electrodes 701, 702, and 703, two electrode pairs adjacent to each other share one electrode, that is, a set of voltage detection electrodes 701 and 702.
  • the voltage is measured by the voltage measuring device 32 for each set of the voltage detection electrodes 702 and 703.
  • the voltage detection electrode 702 as a common electrode, the number of electrodes can be reduced. This is because the resistance value corresponding to the diameter of the blood vessel or the like may be a potential difference appearing at the two voltage detection electrodes, so that the object can be achieved without using two independent voltage detection electrodes.
  • FIG. 15 is a diagram for explaining a connection form between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG. 1 for the electric caliper 205 having a different number of voltage detection electrodes from those shown in FIGS. 10 to 13. is there.
  • the electric caliper 205 has three sets of voltage detection electrodes 71 and 81, 72 and 82, 73 and 83 as voltage detection electrodes. With these electrode sets, resistance values corresponding to the diameters of blood vessels and the like at three different positions are measured. Thereby, as will be described later, it becomes easy to determine the site of the stenosis.
  • FIG. 16 is a diagram for explaining a connection form between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG. 1 for the electric caliper 206 having a different number of voltage detection electrodes.
  • the electric caliper 206 has voltage detection electrodes 701 to 704, and among these, two voltage detection electrodes 702 and 703 are used as shared electrodes. As a result, the same measurement as when three sets of voltage detection electrodes are provided is possible while reducing the number of electrodes. This is based on the same concept as the example shown in FIG.
  • FIG. 17 is a diagram for explaining a connection form between each electrode and the electric measurement unit 1020 in the inner diameter inspection apparatus shown in FIG. 1 for the electric caliper 207 having a different number of voltage detection electrodes.
  • the electric caliper 207 has voltage detection electrodes 701 to 705, of which three voltage detection electrodes 702 to 704 are used as common electrodes, respectively. This makes it possible to perform the same measurement as when four sets of voltage detection electrodes are provided while reducing the number of electrodes.
  • FIG. 18 and FIG. 19 are diagrams for explaining an electric caliper 208 having a different configuration from that described above (for example, the electric caliper shown in FIG. 10).
  • FIG. 18 shows the structure of the electric caliper 208
  • FIG. 19 shows the spatial distribution of current generated by the electric caliper 208.
  • the electric caliper 208 includes two current electrodes 50 and 60 as current electrodes, one of which is the side opposite to the side where the conductive cable of the insulating housing 1 and the external lead-out cable sheath 4 are attached.
  • the insulating casing 1 is formed at the front end portion.
  • the maximum number of voltage detection electrode groups of the electric caliper is four, but the number of voltage detection electrode groups may be five or more.
  • the arrangement of the voltage detection electrodes may be different from that shown in FIGS.
  • FIGS. 20 and 21 are diagrams for explaining an electric caliper 209 having a different configuration from the electric caliper shown in FIGS. 10 to 19 described above.
  • FIG. 20 shows a structure of the electric caliper 209
  • FIG. 21 is a diagram for explaining a connection form between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG.
  • the electric caliper 209 two electrode groups including two current electrodes and three or more voltage detection electrodes are formed in the axial direction of the insulating housing 1. That is, the electric caliper 209 has two current electrode sets 51, 61, 52, 62, and the voltage detection electrodes 71, 81, 72, 82 and 73, 83, 74, 84 are provided between the sets. Is arranged.
  • the current electrodes 51, 61 and 52, 62 are connected to different current power sources 31 provided in the current supply source 1021 in the electric measuring unit 1020.
  • a voltage measuring device 32 provided in the voltage detecting unit 1022 in the electric measuring unit 1020 is connected to the voltage detecting electrodes 71 and 81, 72 and 82, 73 and 83, 74 and 84, respectively.
  • the voltage detection electrode arranged between one set of current electrodes is in the vicinity of the constriction, so that the potential difference between the voltage detection electrodes detected there, particularly at a position outside the constriction, is reduced. Since the potential difference detected by the voltage detection electrode arranged between the other sets of current electrodes does not become small, the voltage other than the constriction can be normally measured by the latter set of current electrodes.
  • FIGS. 22 and 23 are diagrams showing an electric caliper 210 that is a modification of the electric caliper 209 shown in FIGS. 20 and 21.
  • FIG. FIG. 22 shows the structure of the electric caliper 209
  • FIG. 23 is a diagram for explaining the connection form between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG.
  • the electric caliper 210 is between the two current electrodes 5, 6 and is paired with each of the two current electrodes 5, 6.
  • a third current electrode 56 is formed at a position sandwiching 72 and 82. That is, two sets of voltage detection electrodes 71, 81 and 72, 82 are arranged between the pair of current electrodes 5, 6, and are common between the two sets of voltage detection electrodes 71, 81 and 72, 82.
  • a current electrode 56 is provided. Since the current flowing between one set of current electrodes 5 and 56 is independent of the current flowing between the other set of current electrodes 6 and 56, the constricted portion is located in one set of voltage detection electrodes. Even so, the voltage of the other set of voltage detection electrodes is generated by the current flowing between the different sets of current electrodes, so it does not become small and can therefore be measured normally.
  • FIG. 24 shows a configuration example of the current power supply circuit 310 used as the current power supply 31.
  • the current power supply circuit 310 is an AC power supply circuit, and the output of the AC signal generator 311 is input to the first voltage converter 312, and the AC current that appears on the secondary side of the voltage converter 312 is the current electrode 5, 6. Has been supplied to.
  • the AC current is input to the current-voltage conversion circuit including the operational amplifier 315 and the resistor 316 via the second voltage converter 313.
  • the output of the current-voltage conversion circuit is input to a detector 317 (its detailed circuit is the same in configuration as the detector 325 shown in FIG. 25), and the current supplied to the current electrodes 5 and 6 is converted into a voltage. Further, it is detected as a DC voltage by the detector 317.
  • FIG. 25 shows a configuration example of a voltage measuring circuit 320 used as the voltage measuring device 32.
  • the voltage measuring circuit 320 converts the voltage of the potential difference that appears on the voltage detection electrode into an AC voltage that appears on the secondary side via a voltage converter 321 as a transformer that performs electrical insulation and voltage conversion.
  • the voltage is input to a voltage conversion circuit including an operational amplifier 323 and a resistor 324 through a resistor 322.
  • the output of this voltage conversion circuit is input to the detector 325.
  • the output of the voltage conversion circuit is input to the synchronous detector 327 that is synchronously controlled by the synchronous signal generator 326, and the output is output as a DC voltage output V 1 or V 2 or the like via the filter 328. .
  • FIG. 26 shows a configuration example of another voltage measuring device circuit 330 used as the voltage measuring device 32.
  • This voltage measuring device circuit 330 is used for voltage measurement of the electric calipers 204, 206, and 207 that detect a voltage for each electrode set that shares a part of the voltage detection electrode.
  • the electric caliper 206 shown in FIG. 16 will be described as an example.
  • the voltage detection electrodes 701, 702, 703, and 704 of the electric caliper 206 are connected to voltage converters 337 to 339 via capacitors 331 to 336, respectively. More specifically, the voltage detection electrode 701 is connected to the voltage converter 337 via the capacitor 331.
  • the voltage detection electrode 702 that is a common electrode is branched and connected to the voltage converter 337 via the capacitor 332 and to the voltage converter 338 via the capacitor 333.
  • a voltage detection electrode 703 which is also a common electrode is branched and connected to the voltage converter 338 via the capacitor 334 and to the voltage converter 339 via the capacitor 335.
  • the voltage detection electrode 704 is connected to the voltage converter 339 via the capacitor 336. The DC path is blocked by passing through the capacitors 331 to 336.
  • the output of the voltage converter 337 is input to a voltage amplifier circuit composed of an operational amplifier 343 and resistors 340 and 344.
  • the output of the voltage converter 338 is input to a voltage amplifier circuit including an operational amplifier 345 and resistors 341 and 346.
  • the output of the voltage converter 339 is input to a voltage amplification circuit including an operational amplifier 347 and resistors 342 and 348.
  • the outputs of these voltage amplification circuits are detected by detectors 349 to 351, and become voltage outputs V1, V2, and V3.
  • a configuration example of a circuit used as the detectors 349 to 351 is shown in FIG.
  • the rectifier circuit 420 includes an operational amplifier 418, a diode 417, resistors 410 and 411, and a capacitor 414.
  • the operational amplifier 418 outputs only the negative voltage portion of the AC signal from the diode 417.
  • the amplification degree is determined by the ratio of the resistors 411 and 410.
  • the capacitor 414 suppresses the negative voltage pulsating component.
  • the low-pass circuit 421 is a secondary Butterworth circuit including an operational amplifier 419, resistors 412 and 413, and capacitors 415 and 416.
  • the signal having the pulsating current component that is the output of the rectifier circuit 420 is effectively allowed to pass a direct current component.
  • the case where the voltage is measured by the voltage detection electrodes 701, 702, 703, and 704 of the electric caliper 206 has been described as an example.
  • the number of detection circuits composed of operational amplification and resistors and detectors It can be applied to the configuration of the voltage detection electrode of the electric caliper and the configuration of many more voltage detection electrodes.
  • ⁇ / RTI> By using the inner diameter inspection apparatus of the present invention, at least two voltages or apparent resistance values are compared to determine the site of stenosis. The determination is quick and simple to make visually. Next, a specific method will be described.
  • the electric measurement sensor 1010 described with reference to FIG. 1 one of the electric calipers 201 to 210 or an electric caliper equivalent thereto is used.
  • the current value supplied to the current electrode of the electric caliper is output as the current value A (which may be two of A1 and A2) of the digital signal via the analog / digital converter 1023.
  • the signal of each voltage detection electrode of the electric caliper is connected to the voltage detection unit 1022 in the electric measurement unit 1020 via an external lead cable 1019 connected to each electrode.
  • the signal is output as voltage values V1, V2,..., Vm of the digital signal via the analog / digital converter 1023.
  • the arithmetic processing unit 1024 calculates apparent resistance values R1 to Rm by dividing these signals by the corresponding current.
  • the image generation processing unit 1025 detects the apparent resistance values R1, R2,..., Rm in the order of the voltage detection electrodes arranged in the electric caliper, and detects the voltages corresponding to the resistance values R1, R2,.
  • a resistance comparison image in which the positions of the electrodes are arranged in the horizontal axis direction is displayed on the display device 1030 as a diagram.
  • the image generation processing part 1025 compares the magnitude relationship between two or more apparent resistance values R1, R2,..., Rm in correspondence with the positions of three or more voltage detection electrodes. A resistance comparison image that can be generated is generated, and the embolized portion generated in the space area to be inspected is indicated by the resistance comparison image.
  • the image generation processing unit 1025 processes the two apparent resistance values calculated by the calculation processing unit 1024.
  • the two electrode sets that give two apparent resistance values move the electric measurement sensor in the direction of the electrode set that gives a relatively large resistance value among the two apparent resistance values.
  • the resistance value comparison Generate an image. This resistance value comparison image is displayed on the display device 1030.
  • the operator who operates the electric caliper 1) Compare the relative magnitudes of two apparent resistance values in the diagram (resistance value comparison image) displayed on the display device 1030. 2) Move the electric caliper in the direction of the voltage detection electrode corresponding to the higher one of these apparent resistance values. 3) Thereafter, the electric caliper is further moved in the same direction, and it is confirmed that the apparent resistance value shows the maximum value and then decreases and the other apparent resistance value increases. 4) Then, gradually move the electric caliper in the same direction, and confirm that the apparent resistance value and the other apparent resistance value are equal. 5) At this position, it is determined that a constriction exists at the midpoint between the two voltage detection electrodes of the electric caliper.
  • the norm of the principle operation is based on comparing the resistance values adjacent to each other so that the portion between the voltage detection electrodes having a larger resistance value is a portion where a stenosis occurs in the pipe or blood vessel.
  • FIG. 28 shows an example of a resistance value comparison image using two apparent resistance values R1 and R2.
  • the apparent resistance values R1 and R2 are displayed on the display device 1030 by a straight line connecting the two apparent resistance values R1 and R2.
  • the apparent resistance values of R1 and R2 are equal, that is, when the slope of the straight line becomes zero, it can be determined that the constriction is located between the two voltage detection electrodes.
  • the image generation processing unit 1025 processes the three apparent resistance values calculated by the arithmetic processing unit 1024, and for three electrode sets that give three apparent resistance values among the three or more voltage detection electrodes, After the electric capacity moves in the direction of the electrode set that gives a relatively large resistance value among the three apparent resistance values, and the apparent resistance value of the electrode set reaches the maximum value, the center of the three electrode sets When the apparent resistance value required for the electrode group is maximized, a resistance value comparison image is generated assuming that a constriction exists at the midpoint of the center electrode group.
  • the operator who operates the electric caliper 1) In the diagram (resistance value comparison image) displayed on the display device 1030, the relative magnitudes of the three apparent resistance values are compared. 2) The electric caliper is moved in the direction of the voltage detection electrode corresponding to the larger one of these apparent resistance values. 3) After that, when the electric caliper is further moved in the same direction, and the apparent resistance value having the larger resistance value shows the maximum value, three sets of voltages of the electric caliper at the position corresponding to the middle voltage detection electrode It is determined that a constriction exists at the midpoint of the voltage detection electrode in the middle of the detection electrode.
  • the principle of the principle operation is that the portion between the voltage detection electrodes having the largest resistance value is a portion where a stenosis is caused in the blood vessel or pipe by comparing adjacent resistance values. by.
  • FIG. 29 shows an example of a resistance value comparison image using three apparent resistance values R1, R2, and R3.
  • the three apparent resistance values R1, R2 and R3 can be obtained by using the electric calipers 205 and 206 capable of measuring three voltages.
  • the image generation processing unit 1025 generates the three apparent resistance values R1, R2, and R3 as a resistance comparison image together with the connecting straight lines, and displays the resistance comparison image on the display device 1030. Thereby, as shown in FIG. 29, the difference between the resistance values R1, R2, and R3 is displayed as two straight lines.
  • the upper diagram of FIG. 29 shows that the gap between the electrodes corresponding to the apparent resistance value R3 is close to the constricted portion, and the middle diagram is the electrode between the electrodes corresponding to the apparent resistance value R2 and the electrode corresponding to the apparent resistance value R3. It can be seen that there is a stenosis between them.
  • the apparent resistance value R2 indicates the maximum value of the apparent resistance value, and it can be determined that the portion is most narrowed.
  • the portion where the apparent resistance value R2 positioned therein is the maximum compared to the other apparent resistance values R1 and R3 is the constriction. Can be judged. For this reason, this determination method is a user-friendly visualization method that facilitates determination of a stenosis.
  • the above judgment method is to judge and determine the stenosis part by comparing adjacent apparent resistance values, and between the voltage detection electrodes having the larger resistance value causes stenosis in the blood vessel or the water pipe or the sewer pipe. This is based on the fact that it is a part.
  • the inner diameter inspection apparatus of the present invention By utilizing the inner diameter inspection apparatus of the present invention, it is possible to find the site of the stent attached to the inner wall of the blood vessel and specify its position.
  • the method of determination and determination of the stent mounting part is based on the principle of operation of the principle, by comparing adjacent resistance values, the portion between the voltage detection electrodes having the smaller resistance values is the site where the stent is mounted in the blood vessel. It is in line with that. Therefore, in the method for determining and determining the stenosis, the place where the resistance value is large is used as an indicator for determination. However, in the case where the stent is attached and determined, the place where the resistance value is small is used as an indicator for determination. .
  • two or more voltage values detected by the voltage detection electrode change according to the influence of the conductivity of the inspection target space
  • the image generation processing unit 1025 shows the magnitude relationship between the two or more apparent resistance values.
  • a resistance value comparison image that can be compared in correspondence with the position of three or more voltage detection electrodes is generated, and a portion (specifically, the position of the stent) in which the conductivity is different from other portions in the inspection target space This is shown in the display device 1030.
  • the image generation processing unit 1025 processes the two apparent resistance values calculated by the arithmetic processing unit 1024, and for two electrode sets that give two apparent resistance values among three or more voltage detection electrodes, The two apparent resistance values after the electrical measurement sensor moves in the direction of the electrode set that gives a relatively small resistance value out of the two apparent resistance values, and the apparent resistance value of the electrode set becomes the minimum value.
  • a resistance comparison image is generated assuming that a stent exists at the midpoint between the two electrode sets. This resistance value comparison image is displayed on the display device 1030.
  • FIG. 30 shows an example of a resistance value comparison image based on two apparent resistance values R1 and R2.
  • the apparent resistance values R1 and R2 are displayed on the display device 1030 by a straight line connecting the two apparent resistance values R1 and R2.
  • the apparent resistance values of R1 and R2 are equal, that is, when the slope of the straight line becomes zero, it can be determined that the site where the stent is mounted is located between the two voltage detection electrodes.
  • the operator who operates the electric caliper 1) Compare the relative magnitudes of two apparent resistance values in the diagram (resistance value comparison image) displayed on the display device 1030. 2) Move the electric caliper in the direction of the voltage detection electrode corresponding to the smaller of these apparent resistance values, 3) Thereafter, the electric caliper is further moved in the same direction, and it is confirmed that the apparent resistance value shows the minimum value, then increases and then the other apparent resistance value decreases. 4) After that, gradually move the electric caliper in the same direction, and confirm that the apparent resistance value and the other apparent resistance value are equal. 5) At this position, it is determined that a stent is present at the midpoint between the two voltage detection electrodes of the electric caliper.
  • the image generation processing unit 1025 processes the three apparent resistance values calculated by the arithmetic processing unit 1024, and for three electrode sets that give three apparent resistance values among the three or more voltage detection electrodes, After the electric caliper moves in the direction of the electrode set that gives a relatively small resistance value among the three apparent resistance values, and the apparent resistance value of the electrode set becomes the minimum value, the center of the three electrode sets When the apparent resistance value required for the electrode group is minimized, a resistance value comparison image is generated assuming that the stent is mounted at the midpoint of the center electrode group.
  • FIG. 31 shows an example of a resistance value comparison image using three apparent resistance values R1, R2, and R3.
  • the three apparent resistance values R1, R2 and R3 can be obtained by using the electric calipers 205 and 206 capable of measuring three voltages.
  • the image generation processing unit 1025 generates the three apparent resistance values R1, R2, and R3 as a resistance comparison image together with the connecting straight lines, and displays the resistance comparison image on the display device 1030. Thereby, as shown in FIG. 31, the difference of resistance value R1, R2, R3 is displayed as two straight lines.
  • the upper diagram in FIG. 31 shows that the distance between the electrodes corresponding to the apparent resistance value R3 is close to the site where the stent is mounted.
  • the middle diagram shows the distance between the electrodes corresponding to the apparent resistance value R2 and the apparent resistance value R3 are shown. It can be seen that there is a site where a stent is mounted between corresponding electrodes.
  • the apparent resistance value R2 shows the minimum value of the apparent resistance value, it can be determined that the portion is in the middle of the site where the stent is mounted.
  • the operator who operates the electric caliper 1) In the diagram (resistance value comparison image) displayed on the display device 1030, the relative magnitudes of the three apparent resistance values are compared. 2) Move the electric caliper in the direction of the voltage detection electrode corresponding to the smaller of these apparent resistance values, 3) After that, when the electric caliper is further moved in the same direction, and the apparent resistance value having the smaller resistance value indicates the minimum, three sets of voltage detection of the electric caliper are performed at the position corresponding to the middle voltage detection electrode. It is determined that there is a site where a stent is attached to the voltage detection electrode located in the middle of the electrode.
  • the principle of the principle operation is that the adjacent resistance value is compared, and the portion between the voltage detection electrodes having the smaller resistance value is the site where the stent is mounted in the blood vessel.
  • the portion where the apparent resistance value R2 positioned therein is minimum compared to the other apparent resistance values R1 and R3 is the site where the stent is mounted. Can be determined.
  • this determination method is a user-friendly visualization method in which it is easy to determine the site where the stent is attached.
  • FIG. 32 is a diagram illustrating a configuration example of the electric caliper balloon catheter 211 used as the electric measurement sensor 1010 in the inner diameter measuring apparatus shown in FIG.
  • the electric caliper according to the present invention has the ability to detect and determine the location of thrombus or plaque in the blood vessel, so that the stent is correctly attached to the site of the blood vessel constriction due to the thrombus or plaque. It can be applied to a balloon catheter that can be used.
  • FIG. 32 shows such an example.
  • the electric caliper balloon catheter 211 shown in FIG. 32 is inflated or deflated by a gas or liquid supplied via a pipe (not shown) to the distal end portion of the insulating casing 1 of the electric caliper 201 shown in FIG. Is provided.
  • a stent 95 that is expanded beyond the elastic limit by inflating the balloon 90 is attached to the balloon 90.
  • a pipe for supplying a gas or liquid to the balloon 90 is extended inside the insulating housing 1 via the external lead-out cable sheath 4.
  • the insulating casing 1 is provided with a pair of current electrodes 5 and 6, and two sets of voltage detection electrodes 71, 81 and 72, 82 are provided therebetween.
  • a balloon 90 is provided in a portion from the current electrode 5 to one end portion of the insulating housing 1.
  • An external lead-out cable 1019 (see FIG. 1) connected to the electrical measurement unit 1020 (see FIG. 1) is sealed in the external lead-out cable sheath 4 from the other end of the insulating housing 1.
  • a pipe for supplying and supplying a gas or liquid for the balloon is enclosed in the outer lead-out cable sheath 4 and also in the insulating housing 1.
  • the pipe may be enclosed in a sheath different from the external lead-out cable.
  • Each electrode and the surface of the insulating housing 1 form substantially the same cylindrical surface. This is to prevent an edge effect at the edge of the electrode.
  • the balloon 90 forms a cylindrical surface that is substantially the same as the surface of the insulating housing 1 when contracted.
  • a stenosis site is specified by the method described above. Then, the electric caliper balloon catheter 211 at that location is pulled out of the blood vessel region by a distance determined by the midpoint between the voltage detection electrodes 81 and 72 and the midpoint in the longitudinal direction of the stent 95. Next, the balloon 90 is inflated by pressurizing and injecting balloon inflation gas or liquid, and the stent 95 is expanded at the narrowed portion. Thereafter, the balloon gas or liquid is discharged under reduced pressure to reduce the balloon 90, and the expanded stent 95 is placed in the stenosis.
  • the electric caliper balloon catheter 211 is moved again to the stent side, and the stent attachment site is determined by the method described above. It is confirmed by the introduction distance in the blood vessel of the electric caliper balloon catheter 211 that the identified stent mounting site matches the original stenosis site.
  • FIG. 33 shows an electric caliper 212 showing an example of an electrode structure formed by windings. A similar electrode structure can be adopted even for an electric caliper catheter.
  • the electrode and the conductive wire constituting the external lead-out cable are integrated, and all are formed by the external lead-out cable.
  • the insulating housing 1 has a cylindrical shape, and small openings 501, 502, 711, 712, 811, 812, 721, 722, 821, 822 are formed on the surface thereof.
  • one single-wire conductive wire of a conductive wire bundle 41 configured by bundling single-wire conductive wires having a plurality of insulating coatings is drawn out from one of the openings, and the insulating housing 1
  • the surface is densely wound by one layer, and the surface forms an electrode.
  • the current electrode 5 is formed by drawing one single-wire conductive wire in the conductive wire bundle 41 from the opening 502 and winding it around the surface of the insulating housing 1, and inserting the end of the single-wire conductive wire into the opening 501. . Thereafter, the insulating coating on the surface of the single-wire conductive wire is completed by removing with a polishing or stripping agent.
  • an electric caliper or electric caliper balloon catheter having a structure in which a single conductive wire to be an electrode is embedded in an insulating housing 1 (hereinafter referred to as an embedded electrode electric caliper or an embedded electrode electric caliper balloon). Called a catheter).
  • FIG. 34 and 35 show a method of manufacturing the embedded electrode electric caliper 213.
  • FIG. 36 shows an electrode structure in the embedded electrode electric caliper 213.
  • the insulating housing base material 1a is made of a heat-softening resin.
  • One single-wire conductive wire 511 forming the conductive wire bundle 41 is inserted from one end of the insulating housing 1a and taken out from the opening 502 to the outside. A portion of the insulating coating that goes out from the opening 502 of the single wire conductive wire is peeled off by a chemical method or left as it is. Thereafter, the single-wire conductive line 511 is wound further on the insulating casing 1a to a position where the other opening is blocked. Thereafter, the electrode 250 having a sharp tip is inserted into the opening 502. At this time, the electrode 250 is electrically connected to the single wire conductive line 511 by the pressing pressure.
  • the single-wire conductive wire 511 Even if the insulating coating is applied to the single-wire conductive wire 511, electrical continuity is ensured.
  • the other end of the single wire conductive line 511 is held by the electric grip 251.
  • Conductive cables 252 and 253 are connected to the electrode 250 and the electric grip 251, and a current flows through each of them. Then, the single wire conductive line 511 generates heat due to its electric resistance. At this time, when the single-wire conductive wire 511 is further pulled by the electric grip 251, the single-wire conductive wire 511 is embedded in the outer skin of the insulating housing 1 a as shown in FIG. 35 while the insulating housing 1 a is softened by heat. So buried.
  • the single conductive wire 511 on the electric grip 251 side is cut, and the cut end portion is pushed into the opening 501. Thereafter, the tip end portion 1b is attached to the insulating housing base material 1a to complete the embedded electrode electric caliper 213.
  • an embedded electrode electric caliper balloon catheter (not shown) can be manufactured by providing a balloon outside the electric electrodes 5 and 6 of the embedded electrode electric caliper 213 facing each other. .
  • the manufacturing method is essentially the same as that of the embedded electrode electric caliper 213.
  • the tip portion is formed in a cut shape in order to ensure workability, but the tip portion 1b may be formed.
  • the electrode is formed from the conductive wire constituting the external lead-out cable. Therefore, the process of connecting the electrode and the external lead-out cable is unnecessary, and the present invention About such an electric caliper and an electrode electric caliper balloon catheter, a thin one can be easily realized.
  • this invention is not limited to the above-mentioned embodiment, In the implementation stage, it can embody by modifying a component in the range which does not deviate from the summary.
  • Various embodiments can be made by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • Insulating housing 1a Insulating housing base material 1b Tip 2 Protection pipe 2 3 Engagement section 4 External lead-out cable sheaths 5, 6, 1012 and 1013 Current electrodes 7 and 8 Voltage detection electrode 9 Opening 11 Solution 12 External insulating wall 30 Electrical measurement section 31 Current power supply 32 Voltage measuring instrument 41 Conductive wire bundles 50 and 51, 52, 56, 60, 61, 62 Current electrodes 71, 72, 73, 74, 81, 82, 83, 84, 71a, 72a, 81a, 82a, 702, 703, 704, 1014, 1015, 1016 Voltage detection electrode 90 Balloon 95 Stent 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212 Electric caliper 211 Electric caliper balloon catheter 213 Implanted electrode Electric caliper 250 Electrode 251 Electric grip 252 253 Conductive cable 310 Current power supply circuit 311 AC signal generation 312, 313, 321 Voltage converters 316, 322, 324

Abstract

[Problem] To provide an internal diameter examination device which can with a comparatively simple configuration simply and rapidly examine the status of a space to be examined, an electrical measurement sensor, and a production method for the electrical measurement sensor. [Solution] An internal diameter examination device comprising: an electrical measurement sensor inserted into a space to be examined that is filled with a conductive solution; a current supply source; and a voltage detection means. The electrical measurement sensor has: an insulating case with at least a surface thereof that comprises an insulating material and is substantially cylindrical; two current electrodes formed at a position separated from the axial direction of the cylindrical shape of the surface of the insulating case; three or more voltage detection electrodes formed between the two current electrodes on the surface of the insulating case; a conductive cable connected to the two current electrodes and the three or more voltage electrodes and which conducts to the outside; and a sheath that encloses the cable. The current supply source and the voltage detection means detect the current between the two current electrodes and the two or more voltages generated at the three or more voltage detection electrodes, via the conductive cable.

Description

内径検査装置、電気計測センサおよび電気計測センサの製造方法Inner diameter inspection device, electric measurement sensor, and method of manufacturing electric measurement sensor
 本発明は、内径検査装置、電気計測センサおよび電気計測センサの製造方法に関する。 The present invention relates to an inner diameter inspection device, an electric measurement sensor, and a method for manufacturing the electric measurement sensor.
 脳梗塞、あるいは虚血性心筋梗塞は、動脈、脳血管、あるいは冠動脈に生じた血管狭窄部による血液流量の減少がその原因である。血管狭窄部は、血管内部への血栓の付着や、血管壁におけるプラークの成長によって形成される。動脈におけるプラ-クの成長は動脈硬化症を引き起こす。血栓やプラークの診断方法としては、血管造影検査(Angiography)がある。これは、血管内に細い管(カテーテル)を挿入し、このカテーテルを介して注入した造影剤の様子を観察する検査である。カテーテルは、通常、患者の足の付け根付近から血管に挿入される。カテーテルの先端が目的部位に到達するまでカテーテルを送り込んだ上で、このカテーテルを介して目的部位へと造影剤を注入する。造影剤はX線の遮蔽効果を持つため、X線撮影により得られる画像には目的部位の血管の影がイメージとして把握される。このイメージより、血流チャネルの狭小部として血管の狭窄部を検出している。 Cerebral infarction or ischemic myocardial infarction is caused by a decrease in blood flow due to a vascular stenosis in an artery, cerebral blood vessel, or coronary artery. The blood vessel stenosis is formed by the adhesion of a thrombus inside the blood vessel or the growth of plaque on the blood vessel wall. Plaque growth in the artery causes arteriosclerosis. As a method for diagnosing thrombus or plaque, there is an angiography test. This is a test in which a thin tube (catheter) is inserted into a blood vessel and the state of the contrast medium injected through this catheter is observed. The catheter is usually inserted into the blood vessel near the base of the patient's foot. After feeding the catheter until the tip of the catheter reaches the target site, the contrast medium is injected into the target site via the catheter. Since the contrast agent has an X-ray shielding effect, a shadow of a blood vessel at a target site is grasped as an image in an image obtained by X-ray imaging. From this image, a stenosis portion of a blood vessel is detected as a narrow portion of a blood flow channel.
 狭窄部が検出された場合、その治療手段のひとつとして、ステントの装着が行われる。ステントは、金属製の網目構造の筒である。ステントは、その径を変化させることができる。ステントは、その径を小さくした状態でバルーンカテーテルに装着され、バルーンカテーテルとともに狭窄部まで送り込まれる。そして狭窄部にてバルーンを膨張させることにより、ステントの径を拡大させる。これにより、血管が押し広げられるとともに、その状態を維持するようにステントにより支えられる。この場合、ステントを血管の狭窄部が存在する場所に装着する必要がある。ステントの装着作業が終了した後には、血管造影検査を再度行って、得られる血管イメージを術前に得られた血管イメージと比較することにより、ステントの装着が正しく行えたかどうかを確認する。すなわち、術前の狭窄部の血流チャンネルが他の血管部の血流チャンネルと同程度のチャンネル幅に回復していていることにより、ステントが正常に装着されたこと、また血流の状態が正常に回復したことを確認する。 When a stenosis is detected, a stent is attached as one of the treatment means. The stent is a tube having a metal network structure. The diameter of the stent can be changed. The stent is attached to the balloon catheter with its diameter reduced, and is sent to the stenosis portion together with the balloon catheter. Then, the diameter of the stent is expanded by inflating the balloon at the narrowed portion. As a result, the blood vessel is expanded and supported by the stent so as to maintain the state. In this case, it is necessary to attach the stent to a place where the stenosis of the blood vessel exists. After the stent mounting operation is completed, an angiographic examination is performed again, and the obtained blood vessel image is compared with the blood vessel image obtained before the operation to confirm whether or not the stent has been correctly mounted. That is, the blood flow channel of the stenosis before surgery has recovered to the same channel width as the blood flow channels of other blood vessels, so that the stent has been mounted normally and the blood flow state is Check that it has recovered normally.
 血管造影剤としては、非イオン性水溶性ヨード造影剤、水溶性ヨード造影剤、あるいは低浸透圧水溶性ヨード造影剤などがある。これらの造影剤は、患者の身体の負担となるおそれがある。この負担の原因は、(1)造影剤の物理的特性、(2)造影剤の化学毒性、(3)アナフィラキシー様反応、(4)心理的因子の4つに大別される。(1)および(2)は、造影剤の高浸透圧性、非親水性、ならびにイオン負荷が関係する用量依存性の反応である。(3)は、化学伝達物質の遊離や抗原抗体反応などの活性化作用といった非用量依存性のアレルギー反応である。(3)は特に、腎臓の機能に悪影響を及ぼす負担となる。施術中に生じる副作用の各症状は様々な要因が複合して生じている。たとえば、くしゃみ、発疹(葦麻疹)、熱感、血管痛、嘔吐、冷汗、顔面蒼白、血圧低下、あるいは呼吸困難などが発現する。これらの副作用により、一度の施術で用いることのできる血管造影剤の量と使用時間は限られる。その結果、血管狭窄部の検出からステント装着の完了を確認に十分に行うことが困難な場合がある。これが、後に再度のステントの入れ直しを必要とする原因となる。 Examples of the blood vessel contrast agent include a nonionic water-soluble iodine contrast agent, a water-soluble iodine contrast agent, and a low osmotic water-soluble iodine contrast agent. These contrast agents may be a burden on the patient's body. The causes of this burden are roughly divided into four categories: (1) physical properties of contrast agents, (2) chemical toxicity of contrast agents, (3) anaphylaxis-like reactions, and (4) psychological factors. (1) and (2) are dose-dependent reactions involving the hyperosmolarity, non-hydrophilicity, and ion loading of contrast agents. (3) is a non-dose-dependent allergic reaction such as release of chemical mediators and activating effects such as antigen-antibody reaction. (3) is particularly a burden that adversely affects kidney function. Each symptom of side effects that occur during treatment is a combination of various factors. For example, sneezing, rash (urticaria), heat sensation, vascular pain, vomiting, cold sweat, facial pallor, hypotension, or dyspnea may occur. Due to these side effects, the amount of angiographic contrast agent that can be used in one operation and the time of use are limited. As a result, it may be difficult to sufficiently confirm the completion of stent mounting from the detection of the vascular stenosis. This causes the need to reinsert the stent later.
 一方、狭窄部の有無の検査時およびステント装着の完了の確認時には、必ずX線投影が行われる。したがって、その間は医師も患者もX線に被曝するおそれがある。 On the other hand, X-ray projection is always performed when checking for the presence or absence of a stenosis and when confirming the completion of stent placement. Therefore, during that time, both the doctor and the patient may be exposed to X-rays.
 また、血管造影検査で得られる血管イメージは、心臓の鼓動による血管位置の絶え間ない変化、非焦点回折による映像のボヤケ、造影剤の血管中の輸送消失などにより、血管狭窄部の明確な位置の確認が困難である。またこれらと同じ原因により、装着されたステントの位置を正しく判断することは困難であった。このような事情から、適切なステントの装着は非常に困難な作業であり、後のステントの入れ直しとなるケースも少なくない。しかしながら、一旦装着したステントは、除去することが困難であるため、ステントによる治療の回数には限界がある。 In addition, the blood vessel images obtained by angiography examinations show a clear position of the vascular stenosis due to the continuous change of the blood vessel position due to the heartbeat, blurring of the image due to non-focus diffraction, loss of transport of the contrast agent in the blood vessel, etc. Confirmation is difficult. Also, for the same reasons, it is difficult to correctly determine the position of the attached stent. Under such circumstances, it is very difficult to mount an appropriate stent, and there are many cases in which a subsequent stent is reinserted. However, once a stent is mounted, it is difficult to remove it, so the number of treatments with the stent is limited.
 また、血管の狭窄部以外の場合としては、例えばプラスチック水道配管におけるカルシウム沈着や、下水道配管における排水中の残渣の沈着等により、配管に詰まりが生じることがある。このような詰まりは配管の場所によっては、X線やX線造影剤を使用することができず、その部位を検出することは極めて困難である。 Also, as a case other than the constricted portion of the blood vessel, the piping may be clogged due to, for example, calcium deposition in the plastic water piping or deposition of residues in the drainage in the sewer piping. Such clogging cannot use X-rays or X-ray contrast media depending on the location of the piping, and it is extremely difficult to detect the site.
 血管造影検査によらずにプラークや血栓を検出する技術として、特許文献1には、電磁パルス(EMP:Electromagnetic Pulse)を利用する位置および姿勢センサと、血管内超音波検査(IVUS:intravascular ultrasound)および光コヒーレンストモグラフィー(OCT:Optical Coherence Tomography)を組み合わせた医療システムが対案されている。特許文献1において利用される位置および姿勢センサの詳細については、特許文献2に開示されている。しかし、特許文献2に記載のセンサは、3次元電磁場を生成する必要があり、また、画像処理も必要となる等、それだけで装置が大規模なものである。しかも、そのようなセンサにIVUSやOCTを組み合わせた特許文献1に記載の装置は、画像処理だけでもかなりの演算処理が必要であり判断の時間がかかり、ステント装着の確認を迅速にできないと言う問題もある。そこで、配管の詰まりの検出には簡易な内径検査装置が望まれていた。 As a technique for detecting plaque and thrombus without using angiographic examination, Patent Document 1 discloses a position and posture sensor using an electromagnetic pulse (EMP) and an intravascular ultrasonic examination (IVUS: intravascular ultrasound). And a medical system that combines optical coherence tomography (OCT: Optical Coherence Tomography) has been proposed. Details of the position and orientation sensors used in Patent Document 1 are disclosed in Patent Document 2. However, the sensor described in Patent Document 2 needs to generate a three-dimensional electromagnetic field, and also requires image processing. In addition, the apparatus described in Patent Document 1 in which IVUS or OCT is combined with such a sensor requires considerable calculation processing even with image processing alone, takes time for judgment, and says that confirmation of stent attachment cannot be performed quickly. There is also a problem. Therefore, a simple inner diameter inspection device has been desired for detecting clogging of piping.
特開2006-346468号公報JP 2006-346468 A 米国特許第6233476号明細書US Pat. No. 6,233,476
 本発明は、以上のような事情を考慮してなされたものであり、X線を使用せず、迅速に検査判断ができ、比較的簡単な構成で検査対象空間の状況を検査することのできる内径検査装置、電気計測センサおよび電気計測センサの製造方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and can quickly make an inspection decision without using X-rays, and can inspect the state of the inspection object space with a relatively simple configuration. An object is to provide an inner diameter inspection device, an electric measurement sensor, and a method for manufacturing the electric measurement sensor.
 本発明の第1の観点によると、導電性の溶液で満たされた検査対象空間に挿通される電気計測センサと、電気計測センサに電流を供給する電流供給源と、電気計測センサの電圧を検出する電圧検出手段と、を備え、電気計測センサは、少なくとも表面が絶縁材料からなりかつ実質的に円筒形状をした絶縁筐体と、絶縁筐体の表面の円筒形状の軸方向に離れた位置に形成されている2つの電流電極と、絶縁筐体の表面の2つの電流電極の間に形成されている3以上の電圧検出電極と、2つの電流電極と3以上の電圧検出電極とに接続され検査対象空間の外部に導出する導電ケーブルと、導電ケーブルを封入する鞘とを有し、電流供給源は、導電ケーブルを介して2つの電流電極間に接続され、電圧検出手段は、検査対象空間の内径の影響に応じて変化する電圧であって3以上の電圧検出電極間に生じている2以上の電圧を検出するように、ケーブルを介して3以上の電圧検出電極に接続されていることを特徴とする内径検査装置が提供される。 According to the first aspect of the present invention, an electrical measurement sensor that is inserted into a space to be inspected filled with a conductive solution, a current supply source that supplies current to the electrical measurement sensor, and a voltage of the electrical measurement sensor are detected. An electrical measurement sensor at least at a surface made of an insulating material and having a substantially cylindrical shape, and a cylindrical shape on the surface of the insulation housing at a position separated in the axial direction. It is connected to two formed current electrodes, three or more voltage detection electrodes formed between two current electrodes on the surface of the insulating housing, two current electrodes and three or more voltage detection electrodes. A conductive cable led out of the inspection target space and a sheath enclosing the conductive cable, the current supply source is connected between the two current electrodes via the conductive cable, and the voltage detection means is connected to the inspection target space. Depending on the inner diameter of An inner diameter inspection characterized by being connected to three or more voltage detection electrodes via a cable so as to detect two or more voltages generated between three or more voltage detection electrodes. An apparatus is provided.
 電圧検出手段は、電圧検出電極のうち互いに隣り合う2つの電極からなる電極組ごとに電圧を測定する電圧測定器を有することができる。また、これとは別に、電圧検出手段は、電圧検出電極のうち互いに隣り合う2つの電極ごとに一方の電極を共有してなる電極組の電圧を測定する電圧測定器を有することもできる。 The voltage detection means may include a voltage measuring device that measures a voltage for each electrode set including two adjacent electrodes among the voltage detection electrodes. Alternatively, the voltage detection means may include a voltage measuring device that measures the voltage of an electrode set in which one electrode is shared for every two adjacent electrodes among the voltage detection electrodes.
 電流供給源は交流電流源であり、電圧検出手段は、2以上の電圧が入力され電気的絶縁と電圧変換を行う変成器と、この変成器の出力電圧を増幅する電圧増幅器と、この電圧増幅器の出力を検波する検波器とを有することができる。この構成において、電圧検出手段から見て電圧検出対象となる電圧検出電極と変成器との間には、低周波ノイズを遮断するコンデンサが挿入されていることが望ましい。 The current supply source is an alternating current source, and the voltage detection means includes a transformer that receives two or more voltages and performs electrical insulation and voltage conversion, a voltage amplifier that amplifies the output voltage of the transformer, and the voltage amplifier And a detector for detecting the output of. In this configuration, it is desirable that a capacitor that cuts off low-frequency noise is inserted between the voltage detection electrode that is a voltage detection target when viewed from the voltage detection means and the transformer.
 電流供給源から電流電極に供給される電流を測定する電流測定手段と、電圧検出手段により得られる2以上の電圧値と電流測定手段により得られる電流値とから、2以上の電圧値に対応する2以上の見かけの抵抗値を演算する演算手段と、2以上の見かけの抵抗値を並べた画像を生成する画像生成手段と、をさらに備えることが望ましい。 Corresponds to two or more voltage values from the current measuring means for measuring the current supplied from the current supply source to the current electrode, the two or more voltage values obtained by the voltage detecting means and the current value obtained by the current measuring means. It is desirable to further include a calculation unit that calculates two or more apparent resistance values and an image generation unit that generates an image in which the two or more apparent resistance values are arranged.
 画像生成手段は、2以上の見かけの抵抗値の互いの大小関係を3以上の電圧検出電極の位置に対応させて比較できる抵抗比較画像を生成し、検査対象空間領域に生じている塞栓部を上記抵抗比較画像により示すことができる。 The image generating means generates a resistance comparison image that can compare the magnitude relationship between two or more apparent resistance values in correspondence with the positions of three or more voltage detection electrodes, and the embolized portion that occurs in the space area to be inspected. This can be shown by the resistance comparison image.
 画像生成手段は、演算手段により演算された2つの見かけの抵抗値を処理する場合は、3以上の電圧検出電極のうち2つの見かけの抵抗値を与える2つの電極組について、2つの見かけの抵抗値のうち相対的に大きい抵抗値を与える電極組の方向に電気計測センサが移動し、当該電極組の見かけの抵抗値が最大値となった後に2つの見かけの抵抗値の値が等しくなったときに、2つの電極組の中点に狭窄部が存在するものとして、抵抗値比較画像を生成することができる。また、これとは別に、画像生成手段は、演算手段により演算された3つの見かけの抵抗値について処理する場合は、4以上の電圧検出電極のうち3つの見かけの抵抗値を与える3つの電極組について、3つの見かけの抵抗値のうち相対的に大きい抵抗値を与える電極組の方向に電気計測センサが移動し、当該電極組の見かけの抵抗値が最大値となった後に、3つの電極組の中央の電極組に対して求められる見かけの抵抗値が最大となるときに、中央の電極組の中点に狭窄部が存在するものとして、抵抗値比較画像を生成することもできる。 When the image generating means processes the two apparent resistance values calculated by the calculating means, two apparent resistances for two electrode sets that give two apparent resistance values among three or more voltage detection electrodes. The electrical measurement sensor moves in the direction of the electrode set that gives a relatively large resistance value, and after the apparent resistance value of the electrode set reaches the maximum value, the two apparent resistance values become equal. Sometimes, a resistance comparison image can be generated assuming that a constriction exists at the midpoint between the two electrode sets. Separately from this, when the image generating means processes three apparent resistance values calculated by the calculating means, three electrode sets that give three apparent resistance values among four or more voltage detection electrodes. After the electric measurement sensor moves in the direction of the electrode set that gives a relatively large resistance value among the three apparent resistance values, and the apparent resistance value of the electrode set reaches the maximum value, the three electrode sets When the apparent resistance value required for the central electrode group is the maximum, a resistance value comparison image can be generated assuming that a constriction exists at the midpoint of the central electrode group.
 電気計測センサの絶縁筐体には、パイプを介して供給される気体または液体により膨張または収縮するバルーンが設けられ、画像生成手段は、検査対象空間領域に生じている塞栓部を抵抗値比較画像により示すことで、バルーンを膨張または収縮させるべき位置を示すことができる。 The insulating housing of the electrical measurement sensor is provided with a balloon that is inflated or deflated by a gas or liquid supplied through a pipe, and the image generating means displays a resistance value comparison image of the embolized portion generated in the space to be inspected. By indicating by, it is possible to indicate the position where the balloon should be inflated or deflated.
 バルーンには、そのバルーンを膨張させることで弾性限界以上に広げられるステントが取り付けられている。画像生成手段は、電気計測センサが血管に挿通された状態で、検査対象空間領域に生じている塞栓部を抵抗値比較画像により示すことで、ステントが装着されるべき血管の塞栓部の位置を示すことができる。 The stent is attached to the balloon which can be expanded beyond the elastic limit by inflating the balloon. The image generating means shows the position of the embolized portion of the blood vessel to which the stent is to be attached by showing the embolized portion generated in the space area to be examined by the resistance value comparison image in a state where the electrical measurement sensor is inserted into the blood vessel. Can show.
 2以上の電圧値は検査対象空間の導電性による影響に応じて変化し、画像生成手段は、2以上の見かけの抵抗値の互いの大小関係を3以上の電圧検出電極の位置に対応させて比較できる抵抗値比較画像を生成し、検査対象空間のうち他の部分と導電性が異なる部分を抵抗値比較画像により示すこともできる。 The voltage value of 2 or more changes according to the influence of the conductivity of the space to be inspected, and the image generation unit associates the magnitude relationship of the apparent resistance values of 2 or more with the position of the voltage detection electrode of 3 or more. It is also possible to generate a resistance value comparison image that can be compared, and to show a portion having a different conductivity from the other portion of the inspection target space by the resistance value comparison image.
 検査対象空間が、内部にステントが装着された血管であるとき、画像生成手段は、演算手段により演算された2つの見かけの抵抗値について処理する場合は、3以上の電圧検出電極のうち2つの見かけの抵抗値を与える2つの電極組について、2つの見かけの抵抗値のうち相対的に小さい抵抗値を与える電極組の方向に電気計測センサが移動し、当該電極組の見かけの抵抗値が最小値となった後に2つの見かけの抵抗値の値が等しくなったときに、2つの電極組の中点にステントが存在するものとして、前記抵抗値比較画像を生成することができる。 When the space to be inspected is a blood vessel having a stent mounted therein, the image generation means, when processing two apparent resistance values calculated by the calculation means, two of the three or more voltage detection electrodes are used. With respect to two electrode sets that give an apparent resistance value, the electric measurement sensor moves in the direction of the electrode set that gives a relatively small resistance value out of the two apparent resistance values, and the apparent resistance value of the electrode set is minimum. When the two apparent resistance values become equal after reaching the value, the resistance value comparison image can be generated assuming that a stent exists at the midpoint between the two electrode sets.
 検査対象空間が、内部にステントが装着された血管であるとき、表示処理手段は、演算手段により演算された3つの見かけの抵抗値について処理する場合は、4以上の電圧検出電極のうち3つの見かけの抵抗値を与える3つの電極組について、3つの見かけの抵抗値のうち相対的に小さい抵抗値を与える電極組の方向に電気計測センサが移動し、当該電極組の見かけの抵抗値が最小値となった後に、3つの電極組の中央の電極組に対して求められる見かけの抵抗値が最小となるときに、中央の電極組の中点にステントが装着されているものとして、抵抗値比較画像を生成することができる。 When the examination target space is a blood vessel having a stent mounted therein, the display processing means, when processing the three apparent resistance values calculated by the calculation means, three of the four or more voltage detection electrodes are used. For the three electrode sets that give an apparent resistance value, the electric measurement sensor moves in the direction of the electrode set that gives a relatively small resistance value among the three apparent resistance values, and the apparent resistance value of the electrode set is minimum. When the apparent resistance value required for the center electrode group of the three electrode sets becomes the minimum after the value is reached, it is assumed that the stent is attached to the middle point of the center electrode group. A comparison image can be generated.
 本発明の第2の観点によると、少なくとも表面が絶縁材料からなりかつ実質的に円筒形状をした絶縁筐体と、絶縁筐体の表面の円筒形状の軸方向の離れた位置に形成されている2つの電流電極と、絶縁筐体の表面の上記2つの電流電極の間に形成されている3以上の電圧検出電極と、外部から2の電流電極間に電流を供給するとともに、3以上の電圧検出電極間に生じる2以上の電圧を外部に取り出す導電ケーブルと、導電ケーブルを封入する鞘と、を備えることを特徴とする電気計測センサが提供される。 According to the second aspect of the present invention, at least the surface is made of an insulating material and has a substantially cylindrical shape, and the surface of the insulating case is formed at a position separated from the cylindrical shape in the axial direction. Current is supplied between two current electrodes, three or more voltage detection electrodes formed between the two current electrodes on the surface of the insulating housing, and two current electrodes from the outside, and three or more voltages are supplied. An electrical measurement sensor is provided, comprising: a conductive cable that extracts two or more voltages generated between the detection electrodes to the outside; and a sheath that encloses the conductive cable.
 2つの電流電極の一方が、絶縁筐体の導電ケーブルが取り付けられている側と反対側の絶縁筐体の先端部に形成されている構成とすることができる。また、2つの電流電極および3以上の電圧検出電極からなる電極群が、絶縁筐体の軸方向に複数形成されている構成とすることができる。さらに、2つの電流電極に加え、2つの電流電極の間であって、2つの電流電極の各々と組になって電圧検出電極を挟む位置に、第3の電流電極が形成されている構成とすることもできる。 One of the two current electrodes can be configured to be formed at the tip of the insulating casing opposite to the side where the conductive cable of the insulating casing is attached. Further, a plurality of electrode groups including two current electrodes and three or more voltage detection electrodes may be formed in the axial direction of the insulating housing. Further, in addition to the two current electrodes, a configuration in which a third current electrode is formed between the two current electrodes and at a position between each of the two current electrodes and sandwiching the voltage detection electrode, You can also
 2つの電流電極および3以上の電圧検出電極の少なくとも一部は、金属電極部材により形成されている構成とすることができる。この場合、金属電極部材は、絶縁性筐体に埋め込まれて、絶縁性筐体の表面とほぼ同一の表面を形成している構成とすることができる。 The at least part of the two current electrodes and the three or more voltage detection electrodes may be formed of a metal electrode member. In this case, the metal electrode member may be embedded in the insulating casing to form a surface that is substantially the same as the surface of the insulating casing.
 2つの電流電極および3以上の電圧検出電極の少なくとも一部は、導電ケーブルを構成する導電線が絶縁筐体の表面に巻きつけられて形成されている構成とすることもできる。この場合、2つの電流電極および3以上の電圧検出電極の少なくとも一部を形成する導電線が、絶縁性筐体に埋め込まれて、絶縁性筐体の表面とほぼ同一の表面を形成している構成とすることができる。 At least a part of the two current electrodes and the three or more voltage detection electrodes may be formed by winding a conductive wire constituting the conductive cable around the surface of the insulating housing. In this case, the conductive wires forming at least a part of the two current electrodes and the three or more voltage detection electrodes are embedded in the insulating casing to form a surface substantially the same as the surface of the insulating casing. It can be configured.
 2つの電流電極および3以上の電圧検出電極の少なくとも一部は、導電ケーブルを構成する導電線の端面が絶縁筐体の表面に露出して形成されている構成とすることができる。 At least a part of the two current electrodes and the three or more voltage detection electrodes can be configured such that the end surfaces of the conductive wires constituting the conductive cable are exposed on the surface of the insulating housing.
 鞘が絶縁筐体と一体となっている構成とすることができる。また、絶縁筐体は、その内部が絶縁筐体とは異なる絶縁材料で充填されている構成することもできる。絶縁筐体には、パイプを介して供給される気体または液体により膨張または収縮するバルーンが設けられている構成とすることもできる。 It can be configured that the sheath is integrated with the insulating housing. Further, the insulating casing can be configured such that the inside is filled with an insulating material different from that of the insulating casing. The insulating casing may be provided with a balloon that is inflated or deflated by a gas or liquid supplied via a pipe.
 本発明の第3の観点によると、上述の電気計測センサの製造方法として、絶縁筐体は熱軟化性樹脂性であり、ひとつの電極に対して絶縁筐体の軸方向に離れた位置に第1および第2の開穴を設ける第1の工程と、導電ケーブルの該当する導電線を第1の開穴から外部に引き出し、引き出された導電線を第2の開穴を塞ぐ位置まで絶縁筐体に一層分を巻きつける第2の工程と、第1の開穴に導電性の第1の固定手段を差し込んで導電線との電気的接続を確保した上で導電線を固定する第3の工程と、第2の工程において巻きつけた導電線の端部に導電性の第2の固定手段を接続して導電線に張力を与えた状態で固定する第4の工程と、第1の固定手段と第2の固定手段との間に電流を流してその間の導電線を加熱することで導電線を絶縁筐体に埋め込む第5の工程と、導電線の第2の固定手段が接続されている側を第2の固定手段から外して、第2の開穴に挿入する第6の工程と、を有することを特徴とする電気計測センサの製造方法が提供される。 According to the third aspect of the present invention, as a method of manufacturing the above-described electrical measurement sensor, the insulating casing is heat-softening resinous, and is positioned at a position away from one electrode in the axial direction of the insulating casing. A first step of providing the first and second holes, and a corresponding conductive wire of the conductive cable is drawn out from the first hole to the outside, and the drawn conductive wire is insulated to the position where the second hole is blocked. A second step of winding a portion of the body around the body, and a third step of fixing the conductive wire after securing the electrical connection with the conductive wire by inserting a conductive first fixing means into the first opening. A step of connecting the conductive second fixing means to the end of the conductive wire wound in the second step and fixing the conductive wire in a tensioned state; and a first fixing The conductive wire is insulated by passing an electric current between the means and the second fixing means to heat the conductive wire therebetween. A fifth step of embedding, and a sixth step of removing the side to which the second fixing means of the conductive wire is connected from the second fixing means and inserting it into the second opening. A method for manufacturing an electrical measurement sensor is provided.
 本発明により、検査対象空間の状況を、比較的簡単な構成で検査することができる。たとえば血管を検査する場合には、管造影検査によらずに、プラークや血栓、あるいはステントを検出することができる。また、検査対象が水道配管や下水道配管の場合にも、機構部が無く取り扱いが容易であってこれら配管の詰まりの部位を容易に検出することができる。 According to the present invention, it is possible to inspect the state of the inspection object space with a relatively simple configuration. For example, when examining a blood vessel, plaque, thrombus, or stent can be detected without using a tube contrast examination. Further, even when the inspection target is a water pipe or a sewer pipe, there is no mechanism portion and the handling is easy, and a clogged portion of these pipes can be easily detected.
本発明の実施の形態に係る内径検査装置の構成を示す図であり、電気計測センサの構造および使用形態を簡略化して示すと共に、この電気計測センサを用いて計測を行う電気計測器のブロック構成を示す。It is a figure which shows the structure of the internal diameter test | inspection apparatus which concerns on embodiment of this invention, and while showing the structure and usage form of an electric measurement sensor simplified, it is a block structure of the electric measuring device which measures using this electric measurement sensor Indicates. 導電性を有する溶液の電気伝導を測定する公知の電気伝導率センサの構成例を示す図である。It is a figure which shows the structural example of the well-known electrical conductivity sensor which measures the electrical conduction of the solution which has electroconductivity. 図2に示す電気伝導率センサによる電気伝導率の測定原理を簡単に説明する図であり、電気伝導率センサの断面図を簡略化して示すと共に、この電気伝導率センサに接続される電気計測部の簡単な構成例を示す。FIG. 3 is a diagram for briefly explaining the principle of measurement of electrical conductivity by the electrical conductivity sensor shown in FIG. 2, showing a simplified cross-sectional view of the electrical conductivity sensor, and an electrical measuring unit connected to the electrical conductivity sensor A simple configuration example is shown. 図2および図3に示す電気伝導率センサによる測定原理を定量的に詳しく説明する図である。FIG. 4 is a diagram for quantitatively explaining in detail the measurement principle by the electrical conductivity sensor shown in FIGS. 2 and 3. 定量検討をするための説明図であり、電気計測センサの1つのモデル構造を示す。It is explanatory drawing for carrying out quantitative examination, and shows one model structure of an electric measurement sensor. 図5に示すモデルにおける電気的現象を説明する図であり、電流電極間の電流線の空間分布を説明する図である。It is a figure explaining the electrical phenomenon in the model shown in FIG. 5, and is a figure explaining the spatial distribution of the current line between current electrodes. 図5に示すモデルにおける電気的現象を説明する図であり、電流電極間の電流線の空間分布を説明する図である。It is a figure explaining the electrical phenomenon in the model shown in FIG. 5, and is a figure explaining the spatial distribution of the current line between current electrodes. モデル解析結果における見かけの抵抗値の変化の挙動を示す図である。It is a figure which shows the behavior of the change of the apparent resistance value in a model analysis result. モデル解析結果における見かけの抵抗値の変化の挙動を示す図である。It is a figure which shows the behavior of the change of the apparent resistance value in a model analysis result. 図1に示す内径計測装置中の電気計測センサとして用いられる電気キャリパの構成例を説明する図である。It is a figure explaining the structural example of the electric caliper used as an electric measurement sensor in the internal diameter measuring apparatus shown in FIG. 図10に示す電気キャリパとは別の構成の電気キャリパを示す図である。It is a figure which shows the electric caliper of a structure different from the electric caliper shown in FIG. 図11に示す電気キャリパの変形例である電気キャリパの構成を説明する図である。It is a figure explaining the structure of the electric caliper which is a modification of the electric caliper shown in FIG. 図10から図12にそれぞれ示した電気キャリパの各電極と、図1に示す内径検査装置中の電気計測部との接続形態を説明する図である。It is a figure explaining the connection form of each electrode of the electric caliper each shown in FIGS. 10-12, and the electrical measurement part in the internal diameter test | inspection apparatus shown in FIG. 電圧検出電極数が図10から図13に示すものとは異なる電気キャリパについて、各電極と図1に示す内径検査装置中の電気計測部との接続形態を説明する図である。It is a figure explaining the connection form of each electrode and the electric measurement part in the internal diameter test | inspection apparatus shown in FIG. 1 about the electric caliper from which the number of voltage detection electrodes differs from what is shown in FIGS. 電圧検出電極数が図10から図13に示すものとは異なる電気キャリパについて、各電極と図1に示す内径検査装置中の電気計測部との接続形態を説明する図である。It is a figure explaining the connection form of each electrode and the electric measurement part in the internal diameter test | inspection apparatus shown in FIG. 1 about the electric caliper from which the number of voltage detection electrodes differs from what is shown in FIGS. 電圧検出電極数がさらに異なる電気キャリパについて、各電極と図1に示す内径検査装置中の電気計測部との接続形態を説明する図である。It is a figure explaining the connection form of each electrode and the electrical measurement part in the internal diameter test | inspection apparatus shown in FIG. 1 about the electric caliper from which a voltage detection electrode differs further. 電圧検出電極数がさらに異なる電気キャリパについて、各電極と図1に示す内径検査装置中の電気計測部との接続形態を説明する図である。It is a figure explaining the connection form of each electrode and the electrical measurement part in the internal diameter test | inspection apparatus shown in FIG. 1 about the electric caliper from which a voltage detection electrode differs further. 図10ないし図13に示したものとはさらに異なる構成の電気キャリパの構造を説明する図である。It is a figure explaining the structure of the electric caliper of a structure further different from what was shown in FIG. 図18に示す電気キャリパにより生成される電流の空間分布を説明する図である。It is a figure explaining the spatial distribution of the electric current produced | generated by the electric caliper shown in FIG. 図10ないし図19に示す電気キャリパとはさらに異なる構成の電気キャリパの構造と各電極を説明する図である。It is a figure explaining the structure and each electrode of an electric caliper of a structure further different from the electric caliper shown in FIG. 10 thru | or FIG. 図20に示す電気キャリパの各電極と図1に示す内径検査装置中の電気計測部との接続形態を説明する図である。It is a figure explaining the connection form of each electrode of the electric caliper shown in FIG. 20, and the electric measurement part in the internal diameter test | inspection apparatus shown in FIG. 図20および図21に示す電気キャリパの変形例となるものの構造を説明する図である。It is a figure explaining the structure of what becomes a modification of the electric caliper shown in FIG. 20 and FIG. 図22に示す電気キャリパの各電極と図1に示す内径検査装置中の電気計測部との接続形態を説明する図である。It is a figure explaining the connection form of each electrode of the electric caliper shown in FIG. 22, and the electric measurement part in the internal diameter test | inspection apparatus shown in FIG. 電流電源として用いられる電流電源回路の構成例を示す図である。It is a figure which shows the structural example of the current power supply circuit used as a current power supply. 電圧測定器として用いられる電圧測定器回路の構成例を示す図である。It is a figure which shows the structural example of the voltage measuring device circuit used as a voltage measuring device. 電圧測定器として用いられる別の電圧測定器回路の構成例を示す図である。It is a figure which shows the structural example of another voltage measuring device circuit used as a voltage measuring device. 図26の電圧測定器回路において検波器として用いられる回路の構成例を示す図である。It is a figure which shows the structural example of the circuit used as a detector in the voltage measuring device circuit of FIG. 2つの見かけの抵抗値による抵抗値比較画像の一例を示す図である。It is a figure which shows an example of the resistance value comparison image by two apparent resistance values. 3つの見かけの抵抗値による抵抗値比較画像の一例を示す図である。It is a figure which shows an example of the resistance value comparison image by three apparent resistance values. 2つの見かけの抵抗値による抵抗値比較画像の一例を示す図である。It is a figure which shows an example of the resistance value comparison image by two apparent resistance values. 3つの見かけの抵抗値による抵抗値比較画像の一例を示す図である。It is a figure which shows an example of the resistance value comparison image by three apparent resistance values. 図1に示す内径計測装置中の電気計測センサとして用いられる電気キャリパバルーンカテーテルの構成例を説明する図である。It is a figure explaining the structural example of the electric caliper balloon catheter used as an electric measurement sensor in the internal diameter measuring apparatus shown in FIG. 電気キャリパまたは電気キャリパバルーカテーテルにおける電極構造の一例を示す図である。It is a figure which shows an example of the electrode structure in an electric caliper or an electric caliper balloon catheter. 埋込み電極電気キャリパの製造方法を示す図である。It is a figure which shows the manufacturing method of a buried electrode electric caliper. 埋込み電極電気キャリパの製造方法を示し、図34に示す工程に続く工程を説明する図である。It is a figure which shows the manufacturing method of a buried electrode electric caliper, and demonstrates the process following the process shown in FIG. 埋込み電極電気キャリパにおける電極構造を示す図である。It is a figure which shows the electrode structure in a buried electrode electric caliper.
 以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [全体構成]
 図1は、本発明の実施の形態に係る内径検査装置の構成を示す図であり、電気計測センサ1010の構造および使用形態を簡略化して示すと共に、この電気計測センサ1010を用いて計測を行う電気計測部1020のブロック構成を示す。図1にはまた、電気計測部1020に接続される表示装置1030が示される。
[overall structure]
FIG. 1 is a diagram showing a configuration of an inner diameter inspection apparatus according to an embodiment of the present invention. The structure and usage of an electric measurement sensor 1010 are simplified and measurement is performed using the electric measurement sensor 1010. The block structure of the electric measurement part 1020 is shown. FIG. 1 also shows a display device 1030 connected to the electrical measurement unit 1020.
 この内径検査装置は、導電性の溶液で満たされた検査対象空間1000(たとえば血管内)に挿通される電気計測センサ1010と、この電気計測センサ1010に接続される電気計測部1020とを備える。電気計測部1020には、表示装置1030が接続されている。 This inner diameter inspection apparatus includes an electric measurement sensor 1010 inserted into an inspection target space 1000 (for example, inside a blood vessel) filled with a conductive solution, and an electric measurement unit 1020 connected to the electric measurement sensor 1010. A display device 1030 is connected to the electrical measurement unit 1020.
 電気計測センサ1010は、少なくとも表面が絶縁材料からなりかつ実質的に円筒形状をした絶縁筐体1011を備える。絶縁筐体1011の表面の円筒形状の軸方向に離れた位置には、2つの電流電極1012,1013が形成されている。絶縁縁筐体1011の表面の2つの電流電極1012,1013の間には、3以上(図1では3つ)の電圧検出電極1014,1015,1016が形成されている。電気計測センサ1010はまた、電流電極1012,1013と電圧検出電極1014,1015,1016とを検査対象空間1000の外部で電気計測部に接続する導電線1017及びそれらを束ねてなる外部導出ケーブル1019を備える。外部導出ケーブル1019は、外部導出ケーブル鞘1018に封入される。 The electrical measurement sensor 1010 includes an insulating housing 1011 having at least a surface made of an insulating material and having a substantially cylindrical shape. Two current electrodes 1012 and 1013 are formed at positions on the surface of the insulating housing 1011 that are separated from each other in the cylindrical axial direction. Between the two current electrodes 1012 and 1013 on the surface of the insulating edge housing 1011, three or more (three in FIG. 1) voltage detection electrodes 1014, 1015 and 1016 are formed. The electrical measurement sensor 1010 also includes a conductive wire 1017 that connects the current electrodes 1012 and 1013 and the voltage detection electrodes 1014, 1015, and 1016 to the electrical measurement unit outside the inspection target space 1000, and an external lead-out cable 1019 that bundles them together. Prepare. External lead-out cable 1019 is enclosed in external lead-out cable sheath 1018.
 電気計測部1020は、電気計測センサ1010に電流を供給する電流供給源1021と、電気計測センサ1010の電圧を検出する電圧検出部1022とを備える。電流供給源1021は、外部導出ケーブル1019を介して2つの電流電極1012,1013に接続される。電圧検出部1022は、検査対象空間1000の内径の寸法や電気特性に応じて変化する電圧であって3以上の電圧検出電極1014,1015,1016間に生じている2以上(この場合は2)の電圧を検出するように、外部導出ケーブル1019を介して3以上の電圧検出電極1014,1015,1016に接続されている。 The electrical measurement unit 1020 includes a current supply source 1021 that supplies current to the electrical measurement sensor 1010 and a voltage detection unit 1022 that detects the voltage of the electrical measurement sensor 1010. The current supply source 1021 is connected to the two current electrodes 1012 and 1013 via the external lead-out cable 1019. The voltage detection unit 1022 is a voltage that changes according to the size of the inner diameter of the space to be inspected 1000 and the electrical characteristics, and is generated between three or more voltage detection electrodes 1014, 1015, 1016 (2 in this case). Are connected to three or more voltage detection electrodes 1014, 1015, 1016 via an external lead-out cable 1019.
 電気計測部1020はまた、ディジタル/アナログ変換器(A/D)1023、演算処理部1024および画像生成処理部1025を備える。電流供給源1021には、電流電極1012,1013に供給される電流を測定する電流測定手段(図示せず)を、ディジタル/アナログ変換器(A/D)1023は、電圧検出部段1022により得られる2以上のアナログ電圧値と、電流測定手段により得られるアナログ電流値とを、それぞれディジタル信号に変換する。演算処理部1024は、ディジタル/アナログ変換器(A/D)1023の出力から、2以上の電圧値V1,V2,…,Vm(図1の例ではm=2)に対応する2以上の見かけの抵抗値R1,R2,…,Rm(図1の例ではm=2)を演算する。画像生成処理部1025は、2以上の見かけの抵抗値R1,R2,…,Rmを並べた画像を生成する。この画像は、表示装置1030に表示される。 The electrical measurement unit 1020 also includes a digital / analog converter (A / D) 1023, an arithmetic processing unit 1024, and an image generation processing unit 1025. The current supply source 1021 has current measuring means (not shown) for measuring the current supplied to the current electrodes 1012 and 1013, and the digital / analog converter (A / D) 1023 is obtained by the voltage detection unit stage 1022. The two or more analog voltage values obtained and the analog current value obtained by the current measuring means are each converted into a digital signal. The arithmetic processing unit 1024 outputs two or more apparent values corresponding to two or more voltage values V1, V2,..., Vm (m = 2 in the example of FIG. 1) from the output of the digital / analog converter (A / D) 1023. , Rm (m = 2 in the example of FIG. 1). The image generation processing unit 1025 generates an image in which two or more apparent resistance values R1, R2,. This image is displayed on the display device 1030.
 演算処理部1024および画像生成処理部1025としては、たとえばパーソナルコンピュータを用いることができる。すなわち、CPU、RAM、ROM、ハードディスク、各種インタフェース等のハードウェアを備えたパーソナルコンピュータを用い、所定のオペレーティングシステムの下で動作するコンピュータープログラムをインストールすることにより、演算処理部1024および画像生成処理部1025の機能を実現することができる。 As the arithmetic processing unit 1024 and the image generation processing unit 1025, for example, a personal computer can be used. That is, by using a personal computer equipped with hardware such as a CPU, RAM, ROM, hard disk, and various interfaces, and installing a computer program that operates under a predetermined operating system, the arithmetic processing unit 1024 and the image generation processing unit 1025 functions can be realized.
 [測定原理の説明]
 従来から、導電性を有する溶液の電気伝導を測定するセンサとして、導電率メータに用いられる電気伝導率センサがよく知られている。この電気伝導率センサは、防護パイプ内に絶縁筐体が配置されこの絶縁筐体の表面に設けられた一対の電流電極と、その電流電極の間に形成された一対の電圧検出電極(一般的には「電圧電極」とも呼ばれている)とを備える。このような構造の電気伝導率センサの測定原理に基づいて、図1に示す電気計測センサ1010を用いる測定原理について説明する。
[Explanation of measurement principle]
2. Description of the Related Art Conventionally, an electrical conductivity sensor used in a conductivity meter is well known as a sensor for measuring the electrical conductivity of a conductive solution. This electrical conductivity sensor includes a pair of current electrodes provided on the surface of an insulating casing in a protective pipe and a pair of voltage detection electrodes (generally used) formed between the current electrodes. Are also referred to as “voltage electrodes”). Based on the measurement principle of the electrical conductivity sensor having such a structure, the measurement principle using the electrical measurement sensor 1010 shown in FIG. 1 will be described.
 図2は、導電性を有する溶液の電気伝導を測定する公知の電気伝導率センサ100の構成例を示す図である。 FIG. 2 is a diagram showing a configuration example of a known electrical conductivity sensor 100 that measures the electrical conductivity of a conductive solution.
 この電気伝導率センサ100は、少なくとも表面が絶縁材料から、または全体が絶縁材料から作られた絶縁筐体1を備え、この絶縁筐体1の外周を取り囲んで、電気絶縁性を有する防護パイプ2を備える。防護パイプ2は、係合部3を介して、絶縁筐体1に取り付けられている。絶縁筐体1には一対の電流電極5,6が設けられており、この一対の電流電極5,6の間には、一対の電圧検出電極7,8が設けられている。防護パイプ2には、気泡を排除し、かつ外部の溶液の出入りを自由にする開口9が設けられている。電流電極5,6と電圧検出電極7,8に接続された外部導出ケーブル(図示せず)は、絶縁筐体1から外部導出ケーブル鞘4の中に封止され、外部の電気計測部30(図3参照)に繋がっている。 The electrical conductivity sensor 100 includes an insulating housing 1 having at least a surface made of an insulating material or entirely made of an insulating material, and surrounds the outer periphery of the insulating housing 1 to have an electrically insulating protective pipe 2. Is provided. The protective pipe 2 is attached to the insulating housing 1 via the engaging portion 3. The insulating housing 1 is provided with a pair of current electrodes 5 and 6, and a pair of voltage detection electrodes 7 and 8 are provided between the pair of current electrodes 5 and 6. The protective pipe 2 is provided with an opening 9 that eliminates air bubbles and allows an external solution to freely enter and exit. External lead-out cables (not shown) connected to the current electrodes 5 and 6 and the voltage detection electrodes 7 and 8 are sealed in the external lead-out cable sheath 4 from the insulating housing 1 and are connected to the external electrical measuring unit 30 ( (See FIG. 3).
 図3は、図2に示す電気伝導率センサ100による電気伝導率の測定原理を簡単に説明する図であり、電気伝導率センサ100の断面図を簡略化して示すと共に、この電気伝導率センサ100に接続される電気計測部30の簡単な構成例を示す。 FIG. 3 is a diagram for briefly explaining the principle of measurement of electrical conductivity by the electrical conductivity sensor 100 shown in FIG. 2, and a simplified cross-sectional view of the electrical conductivity sensor 100 is shown. The simple structural example of the electric measurement part 30 connected to is shown.
 電気計測部30は、電流電源31と、電圧測定器32とを備える。電気伝導率センサ100の一対の電流電極5,6は、電流電源31が接続されている。電圧検出電極7,8には、電圧測定器32がされている。電流電源31からは電流I(アンペア)が供給され、電圧検出電極に繋がる電圧測定器32には電圧検出電極7,8間の電位差V(ボルト)が現れる。電気伝導率センサ100が測定しようとする防護パイプ2内の溶液11の電気伝導度ρは、次の式で得られる。
Figure JPOXMLDOC01-appb-M000001
ここで、Sは、セル定数と呼ばれる空間ファクタで、原則的には溶液中の電流分布、すなわち、電流の流れる断面積を電流の流れる距離で除した値に対応する係数である。当該電気伝導率センサ100の物理形状が決まり、セル定数が決まれば、溶液11の電気伝導度は、これらの電流I(アンペア)と、電圧検出電極7,8間の電位差V(ボルト)から決定できる。これが、公知の電気伝導率センサ100の原理である。
The electrical measuring unit 30 includes a current power source 31 and a voltage measuring device 32. A current power source 31 is connected to the pair of current electrodes 5 and 6 of the electrical conductivity sensor 100. A voltage measuring device 32 is provided on the voltage detection electrodes 7 and 8. A current I (ampere) is supplied from the current power supply 31, and a potential difference V (volt) between the voltage detection electrodes 7 and 8 appears in the voltage measuring device 32 connected to the voltage detection electrode. The electric conductivity ρ of the solution 11 in the protective pipe 2 to be measured by the electric conductivity sensor 100 is obtained by the following equation.
Figure JPOXMLDOC01-appb-M000001
Here, S is a spatial factor called a cell constant, which is a coefficient corresponding to a value obtained by dividing the current distribution in the solution, that is, the cross-sectional area through which the current flows by the distance through which the current flows. If the physical shape of the electrical conductivity sensor 100 is determined and the cell constant is determined, the electrical conductivity of the solution 11 is determined from the current I (ampere) and the potential difference V (volt) between the voltage detection electrodes 7 and 8. it can. This is the principle of the known electrical conductivity sensor 100.
 図4は、図2および図3に示す電気伝導率センサ100による測定原理を定量的に詳しく説明する図である。 FIG. 4 is a diagram for quantitatively explaining in detail the measurement principle by the electric conductivity sensor 100 shown in FIGS.
 絶縁筐体1の半径をr0とする。この半径r0の絶縁筐体1に、その表面が同一半径となる電流電極5,6および電圧検出電極7,8が設けられている。電流電極5,6には、電流電源31が、導電ケーブル21を介して接続されている。導電ケーブル21には電流Iが流れる。電流電極5,6間には、溶液11を介して、電流が流れる。その電流密度をJとする。電圧検出電極7,8には、電圧測定器32が、導電ケーブル23を介して接続されている。 Suppose that the radius of the insulating housing 1 is r0. The insulating casing 1 having the radius r0 is provided with current electrodes 5 and 6 and voltage detection electrodes 7 and 8 whose surfaces have the same radius. A current power source 31 is connected to the current electrodes 5 and 6 via a conductive cable 21. A current I flows through the conductive cable 21. A current flows between the current electrodes 5 and 6 via the solution 11. The current density is J. A voltage measuring device 32 is connected to the voltage detection electrodes 7 and 8 via a conductive cable 23.
 このとき、防護パイプ2の中の溶液11を流れる電流(その電流密度はJ)と、溶液11の電気伝導度により、電圧検出電極7,8間に電位差Vmが生じる。電圧測定器32により、その電圧検出電極7,8間の電位差Vmを検知する。このとき、空間的な平均電流密度は、
Figure JPOXMLDOC01-appb-M000002
となる。ここで、reは、電流Jの分布が一様であると仮定した場合に得られる電流が存在する実効的空間分布の半径(絶縁筐体1の中心線からの距離)である。この場合の電圧検出電極7,8の間の実効的な電位差Vmは、式(2)に与えられる空間的な平均電流密度によって、
Figure JPOXMLDOC01-appb-M000003
で与えられる。ここで、dは電圧検出電極間の距離である。そうすると見かけの抵抗Raは、
Figure JPOXMLDOC01-appb-M000004
となる。また、セル定数Sは
Figure JPOXMLDOC01-appb-M000005
となる。よって、見かけの抵抗Raを、セル定数Sを用いて表すと、
Figure JPOXMLDOC01-appb-M000006
となる。
At this time, a potential difference Vm is generated between the voltage detection electrodes 7 and 8 due to the current flowing through the solution 11 in the protective pipe 2 (its current density is J) and the electrical conductivity of the solution 11. The voltage measuring device 32 detects the potential difference Vm between the voltage detection electrodes 7 and 8. At this time, the spatial average current density is
Figure JPOXMLDOC01-appb-M000002
It becomes. Here, re is the radius of the effective spatial distribution (distance from the center line of the insulating housing 1) where the current obtained when the distribution of the current J is assumed to be uniform. In this case, the effective potential difference Vm between the voltage detection electrodes 7 and 8 depends on the spatial average current density given by the equation (2).
Figure JPOXMLDOC01-appb-M000003
Given in. Here, d is the distance between the voltage detection electrodes. Then, the apparent resistance Ra is
Figure JPOXMLDOC01-appb-M000004
It becomes. The cell constant S is
Figure JPOXMLDOC01-appb-M000005
It becomes. Therefore, when the apparent resistance Ra is expressed using the cell constant S,
Figure JPOXMLDOC01-appb-M000006
It becomes.
 式(6)より、見かけの抵抗は、セル定数Sに依存することがわかる。一方、セル定数Sは、電流の空間分布に依存する。したがって、絶縁筐体1、電流電極5,6および電圧検出電極7,8が、防護パイプ2の中の実効的空間分布より狭い円筒空間におかれた場合、たとえば絶縁筐体1の中心線からのその円筒の半径rnがr0<rn<reである場合の見かけの抵抗Rnは、
Figure JPOXMLDOC01-appb-M000007
となる。すなわち、絶縁筐体1、電流電極5,6および電圧検出電極7,8が、防護パイプ2より狭い円筒空間におかれる場合には、電圧検出電極7,8間の抵抗は大きくなることがわかる。
From the equation (6), it can be seen that the apparent resistance depends on the cell constant S. On the other hand, the cell constant S depends on the spatial distribution of current. Therefore, when the insulating housing 1, the current electrodes 5, 6 and the voltage detection electrodes 7, 8 are placed in a cylindrical space narrower than the effective spatial distribution in the protective pipe 2, for example, from the center line of the insulating housing 1 The apparent resistance Rn when the radius rn of the cylinder of r0 <rn <re is
Figure JPOXMLDOC01-appb-M000007
It becomes. That is, when the insulating casing 1, the current electrodes 5 and 6, and the voltage detection electrodes 7 and 8 are placed in a cylindrical space narrower than the protective pipe 2, the resistance between the voltage detection electrodes 7 and 8 increases. .
 このように、図2から図4に示す公知の電気伝導率センサ100は、絶縁筐体1、電流電極5,6および電圧検出電極7,8が防護パイプ2内に設けられていることで、防護パイプ2内の溶液11の電気伝導率を測定することができる。逆に言うと、防護パイプ2という固定的な空間内でなければ、電気伝導率を測定できない。これに対して、図1に示す本発明に係る電気計測センサ1010は、原理的には、図2から図3に示す電気伝導率センサ100における防護パイプ2が設けられていないという本質的に異なる構造を有し、その構造から見かけの抵抗値が周りの空間に依存する効果を利用する。検査対象空間の内径を測定するという意味で、電気計測センサ1010を、以下、「電気キャリパ」ともいう。以下、電気計測センサ1010における見かけの抵抗値の空間依存性を定量的に説明する。 As described above, the known electrical conductivity sensor 100 shown in FIGS. 2 to 4 includes the insulating housing 1, the current electrodes 5 and 6, and the voltage detection electrodes 7 and 8 in the protective pipe 2. The electrical conductivity of the solution 11 in the protective pipe 2 can be measured. In other words, the electrical conductivity cannot be measured unless it is in a fixed space called the protective pipe 2. On the other hand, the electrical measurement sensor 1010 according to the present invention shown in FIG. 1 is fundamentally different in that the protective pipe 2 in the electrical conductivity sensor 100 shown in FIGS. 2 to 3 is not provided. It has a structure, and the effect that the apparent resistance value depends on the surrounding space is utilized from the structure. The electric measurement sensor 1010 is hereinafter also referred to as “electric caliper” in the sense of measuring the inner diameter of the inspection target space. Hereinafter, the spatial dependence of the apparent resistance value in the electric measurement sensor 1010 will be quantitatively described.
 図5は、定量検討をするための説明図であり、電気計測センサ1010の1つのモデル構造を示す。電気計測センサ1010の絶縁筐体1011は、少なくとも表面が絶縁材料から、または全体が絶縁材料から作られ、かつ円筒状の形状を有し、その表面に電流電極1012,1013が形成されている。原理及び効果の説明を目的としているので、図5では、電圧検出電極1014,1015,1016、導電線1017、外部導出ケーブル鞘1018、外部導出ケーブルおよび1019は省略してある。 FIG. 5 is an explanatory diagram for conducting a quantitative study, and shows one model structure of the electric measurement sensor 1010. The insulating housing 1011 of the electric measurement sensor 1010 has at least a surface made of an insulating material or entirely made of an insulating material and has a cylindrical shape, and current electrodes 1012 and 1013 are formed on the surface. Since the purpose is to explain the principle and effect, the voltage detection electrodes 1014, 1015, 1016, the conductive wires 1017, the external lead-out cable sheath 1018, the external lead-out cable and 1019 are omitted in FIG.
 電気計測センサ1010が、円筒状の形状を有し電気的には絶縁性物質で作られた外部絶縁壁12の中に置かれ、かつ外部絶縁壁12の内部は導電性の溶液11で満たされているモデルを検討する。外部絶縁壁12は一部において狭くなっており、その部分の溶液領域を「領域”2”」とする。狭くなっていない部分の溶液領域を「領域”1”」とする。領域”1”から領域”2”への遷移領域を「領域”3”」とする。絶縁筐体1011の半径はr0であり、領域”1”と領域”2”の外部絶縁壁の半径はそれぞれ、rb、rtである。領域”3”の外部絶縁壁の半径は、rd(x)で与えられている。 An electric measuring sensor 1010 is placed in an outer insulating wall 12 having a cylindrical shape and made of an electrically insulating material, and the inside of the outer insulating wall 12 is filled with a conductive solution 11. Consider the model that is. The outer insulating wall 12 is partially narrowed, and the solution region in that portion is referred to as “region“ 2 ””. The portion of the solution that is not narrowed is referred to as “region“ 1 ””. A transition area from the area “1” to the area “2” is defined as “area“ 3 ””. The radius of the insulating housing 1011 is r0, and the radii of the external insulating walls of the region “1” and the region “2” are rb and rt, respectively. The radius of the outer insulating wall of the region “3” is given by rd (x).
 このようなモデルにおいて、電流電極1012,1013間におかれた電圧検出電極1014,1015,1016間の電位差を求めるには、溶液11が満たされた空間における電流密度をJとすると、
Figure JPOXMLDOC01-appb-M000008
を満たす電流密度Jの分布が求めれら、その後、式(3)より、電圧検出電極1014,1015,1016間の電位差Vmが求められる。なお、ここで、Aは、電流電極1012,1013の表面積を表す。
In such a model, in order to obtain the potential difference between the voltage detection electrodes 1014, 1015 and 1016 placed between the current electrodes 1012 and 1013, the current density in the space filled with the solution 11 is J.
Figure JPOXMLDOC01-appb-M000008
The distribution of the current density J satisfying the above is obtained, and thereafter, the potential difference Vm between the voltage detection electrodes 1014, 1015, 1016 is obtained from the equation (3). Here, A represents the surface area of the current electrodes 1012 and 1013.
 式(8)の電流密度Jについて、図5の形状に基づく一般的な空間形状パラメータに対して、一般的な解析解を求めることはできない。そこで、定量的な検討をするために、絶縁筐体1011の長手方向に沿った方向の電流密度を、次のように近似することとする。
Figure JPOXMLDOC01-appb-M000009
この近似は、電流電極1012,1013から離れた位置の電流密度に適用される。
For the current density J of Equation (8), a general analytical solution cannot be obtained for the general space shape parameter based on the shape of FIG. Therefore, in order to make a quantitative examination, the current density in the direction along the longitudinal direction of the insulating housing 1011 is approximated as follows.
Figure JPOXMLDOC01-appb-M000009
This approximation is applied to the current density at a position away from the current electrodes 1012 and 1013.
 図6および図7は、図5に示すモデルの妥当性を説明する図であり、電流電極1012,1013間の電流線の空間分布を説明する図である。 6 and 7 are diagrams for explaining the validity of the model shown in FIG. 5 and for explaining the spatial distribution of current lines between the current electrodes 1012 and 1013. FIG.
 電流電極1012または1013付近では、図6に示すように、半径方向成分Jrがかなりの大きさで、これを無視することはできない。 In the vicinity of the current electrode 1012 or 1013, as shown in FIG. 6, the radial component Jr is quite large and cannot be ignored.
 一方、電流電極1012,1013から離れた場所では、図6及び図7に示すように、電流密度として、一方の電流電極1012または1013から他方の電流電極1013または1012への長手方向成分Jxが優越する。円筒電荷を自由空間中に置いた場合の電界の半径方向の成分は、Gaussの電界連続の原理よりr-1なる半径方向依存性を示すところ、このモデルでは、外部絶縁壁12により半径方向電界が保存則による制限を受ける。すなわち、電界の半径方向依存性をr-nとするとその半径方向依存係数nは、自由区間における値である1より小さい範囲、すなわち0<n<1となる。このGaussの法則と電界の保存則から、式(9)は妥当な近似である。 On the other hand, in a place away from the current electrodes 1012 and 1013, as shown in FIGS. 6 and 7, the longitudinal component Jx from one current electrode 1012 or 1013 to the other current electrode 1013 or 1012 is dominant as the current density. To do. The radial component of the electric field when the cylindrical charge is placed in free space shows a radial dependence of r−1 by Gauss's electric field continuity principle. In this model, the radial electric field is caused by the external insulating wall 12. Is restricted by the law of conservation. That is, when the radial dependence of the electric field is rn, the radial dependence coefficient n is in a range smaller than 1, which is a value in the free section, that is, 0 <n <1. From this Gauss's law and the electric field conservation law, equation (9) is a reasonable approximation.
 次に、具体的に、絶縁筐体1011に沿った空間電流密度Jxを、式(9)に基づく近似により求める。領域”1”、”2”、”3”における電流密度をそれぞれJ1(x,r)、J2(x,r)、J3(x,r)とすると、それぞれの領域の電流密度は、上記の近似により、本質的に、次のように表すことができる。
Figure JPOXMLDOC01-appb-M000010
ここで、J1,J2,J30(x)は、電流密度の絶対値を決める量である。電流連続の原則と電流保存則より、領域”1”と領域”2”の電流密度について
Figure JPOXMLDOC01-appb-M000011
となる。これより
Figure JPOXMLDOC01-appb-M000012
が得られる。ただし、rdは、領域”3”での絶縁筐体1011での長手方向の位置に対する外部絶縁壁12の、絶縁筐体1011の中心軸からの半径を示す。
Next, specifically, the spatial current density Jx along the insulating casing 1011 is obtained by approximation based on Expression (9). Assuming that the current densities in the regions “1”, “2”, and “3” are J1 (x, r), J2 (x, r), and J3 (x, r), the current densities in the respective regions are as described above. By approximation, it can be essentially expressed as:
Figure JPOXMLDOC01-appb-M000010
Here, J1, J2, and J30 (x) are amounts that determine the absolute value of the current density. Based on the current continuity principle and the current conservation law, the current density of region "1" and region "2"
Figure JPOXMLDOC01-appb-M000011
It becomes. Than this
Figure JPOXMLDOC01-appb-M000012
Is obtained. Here, rd indicates the radius of the outer insulating wall 12 from the central axis of the insulating casing 1011 with respect to the position in the longitudinal direction of the insulating casing 1011 in the region “3”.
 次に、各領域”1”,”2”,”3”における2つの電圧検出電極(図5には図示せず、図1における電圧検出電極1014~1016の任意の2つの電極を想定する)間に生じる電位差Vm1,Vm2,Vm3の大きさについて検討する。ただし、2つの電圧検出電極間の電気的離隔距離をdとする。その結果は、
Figure JPOXMLDOC01-appb-M000013
となる。Vm3については、実数のnに対しては初等関数を用いて明示的に表現することはできない。しかし、n=0,1の整数に対しては、次のように求められる。
Figure JPOXMLDOC01-appb-M000014
式(13c)においては、d≪ldを用いて近似計算をした。ここで、x0は、領域”3”での領域”2”との境界位置からの距離を表す。したがって、0≦x0≦ld-dの範囲の値である。
Next, two voltage detection electrodes in each of the regions “1”, “2”, and “3” (not shown in FIG. 5 and any two electrodes of voltage detection electrodes 1014 to 1016 in FIG. 1 are assumed) Consider the magnitude of potential differences Vm1, Vm2, and Vm3 that occur between them. Here, d is an electrical separation distance between the two voltage detection electrodes. The result is
Figure JPOXMLDOC01-appb-M000013
It becomes. Vm3 cannot be expressed explicitly using a primary function for a real number n. However, for an integer of n = 0, 1, it is obtained as follows.
Figure JPOXMLDOC01-appb-M000014
In equation (13c), approximate calculation was performed using d << ld. Here, x0 represents the distance from the boundary position with the region “2” in the region “3”. Therefore, the value is in the range of 0 ≦ x0 ≦ ld−d.
 電位差Vm1,Vm2,Vm3の測定においては、いずれの電圧値も、電流電極1012,1013から供給される電流Iに依存する。したがって、この点において、電位差Vm1,Vm2,Vm3は、相互に依存する。そこで、電位差Vm1,Vm2,Vm3ではなく、これらを当該電流値Iで除した見かけの抵抗値が、各領域の径に対応する。よって、実際の測定評価は、見かけの抵抗値Rm1,Rm2,Rm3により行う。それぞれの値は、式(13a)、(13b)、(13c)より、
Figure JPOXMLDOC01-appb-M000015
となる。
In the measurement of the potential differences Vm1, Vm2, and Vm3, all voltage values depend on the current I supplied from the current electrodes 1012 and 1013. Therefore, at this point, the potential differences Vm1, Vm2, and Vm3 are mutually dependent. Therefore, not the potential differences Vm1, Vm2, and Vm3, but apparent resistance values obtained by dividing these by the current value I correspond to the diameters of the respective regions. Therefore, actual measurement evaluation is performed based on the apparent resistance values Rm1, Rm2, and Rm3. Each value is calculated from the equations (13a), (13b), and (13c).
Figure JPOXMLDOC01-appb-M000015
It becomes.
 図8および図9は、上述のモデル解析結果における見かけの抵抗値Rm1,Rm2,Rm3の変化の挙動を示す。すなわち、図8は、n=1に対して、rtがr0からrbの範囲において見かけの抵抗値Rm1,Rm2,Rm3がどのように変化するかを示す。図9は、n=0に対して、rtがr0からrbの範囲において見かけの抵抗値Rm1,Rm2,Rm3がどのように変化するかを示す。 8 and 9 show the behavior of changes in the apparent resistance values Rm1, Rm2, and Rm3 in the above model analysis results. That is, FIG. 8 shows how the apparent resistance values Rm1, Rm2, and Rm3 change in the range of rt from r0 to rb with respect to n = 1. FIG. 9 shows how the apparent resistance values Rm1, Rm2, and Rm3 change in the range of rt from r0 to rb with respect to n = 0.
 見かけの抵抗値Rm1は、一定の外部絶縁壁12の半径rbに対する電位差から求められるものであり、この例の場合、rtが異なってrbは一定としているので、見かけの抵抗値Rm1はrtが異なっても同じである。見かけの抵抗値Rm2は、狭くなっている外部絶縁壁12の領域”2”での値であり、その外部絶縁壁12の半径はrtである。したがって、半径rtが異なると、見かけの抵抗値Rm2は大きく変化する。見かけの抵抗値Rm3は、半径が一定の外部絶縁壁12の領域”1”と、半径が狭くなっている外部絶縁壁12の領域”2”との遷移領域での値である。当然のことながら、見かけの抵抗値Rm3は、見かけの抵抗値Rm1と見かけの抵抗値Rm2との中間的な変化を示す。半径rtの変化に対する実際の見かけの抵抗値Rm1,Rm2,Rm3の変化は、n=0とn=1との中間的な変化を示すこととなる。いずれにしても、見かけの抵抗値Rm2は、半径rtの変化に対して、大きく変わることがわかる。また見かけの抵抗値Rm1,Rm2,Rm3の大きさの関係は、必ず、
Figure JPOXMLDOC01-appb-M000016
となる。
The apparent resistance value Rm1 is obtained from the potential difference with respect to the radius rb of the constant external insulating wall 12. In this example, since rt is different and rb is constant, the apparent resistance value Rm1 is different from rt. It is the same. The apparent resistance value Rm2 is a value in the narrowed region “2” of the outer insulating wall 12, and the radius of the outer insulating wall 12 is rt. Therefore, when the radius rt is different, the apparent resistance value Rm2 changes greatly. The apparent resistance value Rm3 is a value in a transition region between the region “1” of the external insulating wall 12 having a constant radius and the region “2” of the external insulating wall 12 having a narrow radius. As a matter of course, the apparent resistance value Rm3 shows an intermediate change between the apparent resistance value Rm1 and the apparent resistance value Rm2. Changes in the actual apparent resistance values Rm1, Rm2, and Rm3 with respect to changes in the radius rt indicate intermediate changes between n = 0 and n = 1. In any case, it can be seen that the apparent resistance value Rm2 greatly changes with the change in the radius rt. The apparent relationship between the resistance values Rm1, Rm2, and Rm3 is always
Figure JPOXMLDOC01-appb-M000016
It becomes.
 この関係より、絶縁筐体1011に少なくとも2組の電圧検出電極1014と1015,1015と1016を設け、各組の電圧検出電極間で検出される電位差を測定し、それにより見かけの抵抗値を求め、これを比べると、見かけの抵抗値が高い方が、外部絶縁壁12の内径が小さいと判断することができる。 Based on this relationship, at least two sets of voltage detection electrodes 1014, 1015, 1015, and 1016 are provided in the insulating housing 1011, and a potential difference detected between the voltage detection electrodes of each set is measured, thereby obtaining an apparent resistance value. In comparison, it can be determined that the higher the apparent resistance value, the smaller the inner diameter of the external insulating wall 12.
 上記の理論解析では、電気計測センサ1010を、外部絶縁壁12に囲まれている場合をモデルとして解析している。しかし、外部絶縁壁12に変えて、導電性の壁であっても、その電気伝導度が溶液11の電気伝導度よりも低ければ、それぞれの見かけの抵抗値Rm1,Rm2,Rm3は、相対的に図8、図9と同等の関係を有する。 In the above theoretical analysis, the electrical measurement sensor 1010 is analyzed as a model when surrounded by the external insulating wall 12. However, instead of the external insulating wall 12, even if it is a conductive wall, if the electrical conductivity is lower than the electrical conductivity of the solution 11, the apparent resistance values Rm 1, Rm 2, and Rm 3 are relative to each other. FIG. 8 and FIG. 9 have the same relationship.
 見かけの抵抗値が外部絶縁壁12の径に対応するため、2組以上の電圧検出電極組を設けると、それらの見かけの抵抗値の大きい方の電圧検出電極組の位置における外部絶縁壁の径が、見かけの抵抗値の小さい方の電圧検出電極組の位置における外部絶縁壁の径より、小さいと判断できる。したがって、複数の電圧検出電極組を設けた電気計測センサ1010を動かしつつ、測定された見かけの抵抗値を比較することにより、外部絶縁壁の狭窄の進んだ部位(すなわち、外部絶縁壁の内部半径が小さい部位)を容易に発見することができる。また、抵抗値より、絶縁パイプ等の径の値も、式(14a)、式(14b)、式(14c)より決定することができる。 Since the apparent resistance value corresponds to the diameter of the external insulating wall 12, when two or more voltage detection electrode sets are provided, the diameter of the external insulating wall at the position of the voltage detection electrode group having the larger apparent resistance value. Can be determined to be smaller than the diameter of the external insulating wall at the position of the voltage detection electrode set having the smaller apparent resistance value. Therefore, by moving the electrical measurement sensor 1010 provided with a plurality of voltage detection electrode sets and comparing the measured apparent resistance values, a portion where the outer insulating wall is constricted (that is, the inner radius of the outer insulating wall). Can be easily found. Further, the value of the diameter of the insulating pipe or the like can be determined from the resistance value by the formula (14a), the formula (14b), and the formula (14c).
 さらに、上記の定量的な解析では、外部絶縁壁12を外部のパイプとするモデルを用いて検討したが、電気的に絶縁性のあるものでなくてもよい。すなわち、溶液11の電気伝導度に対してある程度低い伝導度を有し、電気伝導度において数倍のコントラストを持てば、狭窄の進んだ部位の発見をすることができる。たとえば、血管を例に考えると、血液の電気伝導度は約0.6S/mであり、血栓やプラークは約0.1~0.07S/mである。したがって、血管が血栓やプラ-クにより狭窄している部位について、電気計測センサ1010を用いて見つけることができる。 Furthermore, in the quantitative analysis described above, a model using the external insulating wall 12 as an external pipe has been studied, but it may not be electrically insulative. That is, if the electric conductivity of the solution 11 is somewhat lower than that of the solution 11 and the electric conductivity has several times the contrast, it is possible to find a site where the constriction has advanced. For example, taking blood vessels as an example, the electrical conductivity of blood is about 0.6 S / m, and thrombus and plaque are about 0.1 to 0.07 S / m. Therefore, a site where the blood vessel is narrowed by a thrombus or plaque can be found using the electric measurement sensor 1010.
 さらに、血管内壁にステントを装着している場合は、ステントが金属性である場合には、逆に当該部分が見かけの抵抗値が下がる。そのため、局所的に最も見かけの抵抗値の低い場所がステントの装着されている部位であるとして、その位置を発見することができる。 Furthermore, when a stent is attached to the inner wall of the blood vessel, when the stent is metallic, the apparent resistance value of the portion decreases. Therefore, it is possible to find the position where the place having the lowest apparent resistance value locally is the site where the stent is mounted.
 いずれの場合であって、狭窄あるいはステント装着部位として特定する位置は、外部からパイプや血管に電気測定センサ1010を挿入するその挿入距離に対して特定できる。 In any case, the position specified as the stenosis or the stent attachment site can be specified with respect to the insertion distance at which the electrical measurement sensor 1010 is inserted into the pipe or blood vessel from the outside.
 以上の実施の形態によれば、溶液の満たされた絶縁パイプや多少の導電性を有するパイプ、さらに血管において、血管造影検査によらずに、血栓、プラーク等により狭窄の進んだ部位を容易に発見することができる。したがって、血管造影検査による患者の負担を解消する。また、以上の実施の形態によれば、ステントの検出と血管内でステントをその半径を拡大して取付た停留部位の決定が可能となる。 According to the above-described embodiment, in an insulating pipe filled with a solution, a pipe having some conductivity, and a blood vessel, a site where stenosis has advanced due to thrombus, plaque, etc. can be easily performed without angiographic examination. Can be found. Therefore, the burden on the patient due to the angiographic examination is eliminated. Moreover, according to the above embodiment, it is possible to detect a stent and determine a staying site where a stent is attached with an enlarged radius in a blood vessel.
 [電気計測センサの実施の形態]
 図1に示す内径計測装置中の電気計測センサ1010は、1組の電流電極1012,1013を配置した中間部に2組以上の電圧検出電極1014,1015,と1015,1016(この場合は2組の電圧検出電極である)を有する電気計測センサである(以下では、これを「電気キャリパ」と呼ぶ)。これら2組以上の電圧検出電極1014,1015,と1015,1016を比較し、電位差(または、電位差を、電流電極1012,1013を介して供給する電流値で除した見かけの抵抗値)の大きいに対応する電圧検出電極の組が外部絶縁壁の内径が小さい位置にあることを利用して、狭窄部位の位置を特定することができる。以下では、図2に示した符号に対応する符号を用いて、図1に示す内径計測装置中の電気計測センサ1010として用いることのできる電気キャリパの具体的な実施の形態について説明する
[Embodiment of electrical measurement sensor]
1 includes two or more voltage detection electrodes 1014, 1015, 1015, and 1016 (in this case, two sets) in an intermediate portion where one set of current electrodes 1012 and 1013 is arranged. (Hereinafter referred to as “electric caliper”). By comparing these two or more sets of voltage detection electrodes 1014, 1015 and 1015, 1016, the potential difference (or the apparent resistance value obtained by dividing the potential difference by the current value supplied via the current electrodes 1012 and 1013) is large. The position of the stenosis site can be specified by utilizing the fact that the set of corresponding voltage detection electrodes is at a position where the inner diameter of the external insulating wall is small. In the following, a specific embodiment of an electric caliper that can be used as the electric measurement sensor 1010 in the inner diameter measuring apparatus shown in FIG. 1 will be described using the reference numerals corresponding to the reference numerals shown in FIG.
 図10は、図1に示す内径計測装置中の電気計測センサ1010として用いられる電気キャリパ201の構成例を説明する図である。以下では、構造上の類似を考慮して、各部の符号として、図2に示す電気伝導率センサ100で用いた符号に対応するものを用いる。 FIG. 10 is a diagram illustrating a configuration example of the electric caliper 201 used as the electric measurement sensor 1010 in the inner diameter measuring apparatus shown in FIG. In the following, considering the similarities in structure, the reference numerals used in the electrical conductivity sensor 100 shown in FIG.
 図10に示す電気キャリパ201は、少なくとも表面が絶縁材料からなり、かつ実質的に円筒形状をした絶縁筐体1(図1における絶縁筐体1011に相当)を備える。この絶縁筐体1の表面の円筒形状の軸方向の離れた位置には、2つの電流電極5,6(図1における電流電極1012,1013に相当)が形成されている。絶縁筐体1の表面の2つの電流電極5,6の間には、3以上(この例では4つ)の電圧検出電極71,81,72,82(図1における電圧検出電極1014,1015,1016に相当)が形成されている。電気キャリパ201内には、外部から電流電極5,6間に電流を供給するとともに、電圧検出電極71,81間、および電圧検出電極72,82間にそれぞれ生じる電圧を外部に取り出す導電ケーブル(図示せず、図1における外部導出ケーブル1019に相当)を有し、この導電ケーブルが、外部導出ケーブル鞘4(図1における外部導出ケーブル鞘1018に相当)に封入されている。電気キャリパ201の各電極と絶縁筐体1の表面とは、ほぼ同一の円筒表面を形成している。これは、電極の縁でのエッジ効果を防ぐためである。 The electric caliper 201 shown in FIG. 10 includes an insulating casing 1 (corresponding to the insulating casing 1011 in FIG. 1) having at least a surface made of an insulating material and having a substantially cylindrical shape. Two current electrodes 5 and 6 (corresponding to the current electrodes 1012 and 1013 in FIG. 1) are formed at positions on the surface of the insulating housing 1 that are separated from each other in the cylindrical axial direction. Between the two current electrodes 5 and 6 on the surface of the insulating housing 1, three or more (four in this example) voltage detection electrodes 71, 81, 72, and 82 ( voltage detection electrodes 1014, 1015 in FIG. 1). 1016). In the electric caliper 201, a current is supplied from the outside between the current electrodes 5 and 6, and a conductive cable for taking out the voltage generated between the voltage detection electrodes 71 and 81 and between the voltage detection electrodes 72 and 82 to the outside (see FIG. The conductive cable is enclosed in the external lead-out cable sheath 4 (corresponding to the external lead-out cable sheath 1018 in FIG. 1). Each electrode of the electric caliper 201 and the surface of the insulating housing 1 form substantially the same cylindrical surface. This is to prevent edge effects at the edges of the electrodes.
 導電ケーブルが封入される外部導出ケーブル鞘4は、絶縁筐体1と独立の部材により形成されるではなく、絶縁筐体1が延長されて形成されることもできる。絶縁筐体1と外部導出ケーブル鞘4とを一体の部材とすることは、電気キャリパ201を、血管の内の狭窄部を発見することを目的として、カテーテルの一形態(すなわち電気キャリパカテーテル)とする場合に、特に有効である。外部導出ケーブル鞘4が独立した部材ではないことにより、絶縁筐体1のシールド効果が良好となり、血管内の細菌感染が激減できるからである。 The external lead-out cable sheath 4 in which the conductive cable is encapsulated is not formed by a member independent of the insulating casing 1 but can be formed by extending the insulating casing 1. By making the insulating housing 1 and the outer lead-out cable sheath 4 as an integral member, the electric caliper 201 can be used as a form of a catheter (ie, an electric caliper catheter) for the purpose of finding a stenosis in a blood vessel. This is particularly effective when This is because, since the external lead-out cable sheath 4 is not an independent member, the shielding effect of the insulating housing 1 becomes good, and bacterial infection in the blood vessel can be drastically reduced.
 絶縁筐体1の内部には導電ケーブル又は導電ケーブルの個々の導電線が包含されているが、さらに、絶縁筐体1の中に、絶縁筐体1とは異なる絶縁材料からなる充填剤を封止して、絶縁筐体1のしなりを増すことができる。特に電気キャリパ201により電気キャリパカテーテルを構成する場合には、このしなりにより、血管内壁の損傷の危険を減らし、電気キャリパカテーテルを安全に操作できるという顕著な効果を有する。 The insulating housing 1 includes a conductive cable or individual conductive wires of the conductive cable. Further, a filler made of an insulating material different from that of the insulating housing 1 is sealed in the insulating housing 1. By stopping, the bending of the insulating housing 1 can be increased. In particular, when an electric caliper catheter is constituted by the electric caliper 201, this has a remarkable effect that the risk of damage to the inner wall of the blood vessel is reduced and the electric caliper catheter can be operated safely.
 図11は、図10に示す電気キャリパ201とは別の構成の電気キャリパ202を示す。 FIG. 11 shows an electric caliper 202 having a configuration different from that of the electric caliper 201 shown in FIG.
 図10に示す電気キャリパ201では、電流電極5,6と電圧検出電極71,81,72,82の少なくとも一部、望ましくはすべてが、独立の金属電極部材により形成され、この金属電極部材のそれぞれに、外部導出ケーブル鞘4に封入された導電ケーブルの個々の導電線が接続されている。 In the electric caliper 201 shown in FIG. 10, at least a part, preferably all, of the current electrodes 5 and 6 and the voltage detection electrodes 71, 81, 72, and 82 are formed by independent metal electrode members. The individual conductive wires of the conductive cable enclosed in the external lead-out cable sheath 4 are connected to each other.
 これに対して図11に示す電気キャリパ202では、電圧検出電極71,81,72,82が、導電ケーブルと独立の部材ではなく、導電ケーブルを構成する導電線の端面が絶縁筐体1の表面に露出して形成されている。電流電極5,6については独立の金属電極部材を用いているが、電気キャリパ202の周辺に流れる電流の条件によっては、電流電極5,6についても、同様の構成とすることができる。 On the other hand, in the electric caliper 202 shown in FIG. 11, the voltage detection electrodes 71, 81, 72, and 82 are not members independent of the conductive cable, and the end surfaces of the conductive wires constituting the conductive cable are the surface of the insulating housing 1. It is exposed and formed. Although independent metal electrode members are used for the current electrodes 5 and 6, the current electrodes 5 and 6 can have the same configuration depending on the conditions of the current flowing around the electric caliper 202.
 図12は、図11に示す電気キャリパ202の変形例である電気キャリパ203の構成を説明する図である。この電気キャリパ203には、電圧検出電極71a,81a,72a,82aが絶縁筐体1の長手方向の軸を中心とした回転面において120度ずつ離れて3組が設けられている。このため、狭窄部の存否をその回転面内において3方向の検査対象空間で調べることができる。これらの電極は、導電ケーブルを構成する導電線の端面が絶縁筐体1の表面に露出して形成されている。 FIG. 12 is a diagram for explaining the configuration of an electric caliper 203 which is a modification of the electric caliper 202 shown in FIG. The electric caliper 203 is provided with three sets of voltage detection electrodes 71a, 81a, 72a, and 82a that are 120 degrees apart from each other on the rotation plane about the longitudinal axis of the insulating casing 1. For this reason, the presence / absence of the stenosis can be examined in the examination target space in three directions within the plane of rotation. These electrodes are formed such that the end surfaces of the conductive wires constituting the conductive cable are exposed on the surface of the insulating housing 1.
 ここでは電圧検出電極数が4の場合を説明したが、この数は、3以上であれば、いくつでもよい。その場合の構造は、図10から図12にそれぞれ示した構造のいずれかと本質的に同等である。この場合、検出電極数及びこれに接続される導電ケーブルまたはその端面が電圧検出電極として働く導電ケーブルの数が増えるだけである。その詳細については説明を省略する。 Here, the case where the number of voltage detection electrodes is four has been described, but this number may be any number as long as it is three or more. The structure in that case is essentially equivalent to any of the structures shown in FIGS. In this case, only the number of detection electrodes and the number of conductive cables connected to the detection electrodes or conductive cables whose end faces serve as voltage detection electrodes are increased. The details are omitted.
 図13と図14は、図10から図12に示した電気キャリパ201~203の各電極と、図1に示す内径検査装置中の電気計測部1020との接続形態を説明する図である。電気キャリパ203の参照番号については、括弧書きしている。なお、電気キャリパ2003では、図10から図12に示す電圧測定器32や一群の電圧検出電極71a,81a,72a,82a等は3方向のそれぞれの検査対象空間に対応して3組を設けている。 FIGS. 13 and 14 are diagrams for explaining a connection form between each electrode of the electric calipers 201 to 203 shown in FIGS. 10 to 12 and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG. The reference number of the electric caliper 203 is shown in parentheses. In the electric caliper 2003, the voltage measuring device 32 and the group of voltage detection electrodes 71a, 81a, 72a, 82a and the like shown in FIGS. 10 to 12 are provided in three sets corresponding to the respective inspection target spaces in the three directions. Yes.
 図13に示す電気的な接続においては、電流電極5,6には、図1に示す電気計測部1020内に内蔵されている電流供給源1021に設けられている電流電源31が接続されている。電圧検出電極71,81(71a,81a)と72,82(72a,82a)にはそれぞれ、電気計測部1020内の電圧検出部1022内に設けられている電圧測定器32が接続されている。なお、電気的接続形態を明確にするため、電気計測部1020、電流供給源1021と電圧検出部1022の物理的な位置や大きさは概念的に表示している。電圧測定器32は、電圧検出電極71,81,72,82(71a,81a,72a,82a)のうち、互いに隣り合う2つの電極からなる電極組ごとに、すなわち電圧検出電極71,81(71a,81a)からなる電極組と、電圧検出電極72,82(72a,82a)からなる電極組とについて、電圧を測定する。2組の電圧検出電極により、血管等の内部の径に対応した電位差(したがって抵抗値)を求めることができる。 In the electrical connection shown in FIG. 13, the current electrodes 5 and 6 are connected to the current power supply 31 provided in the current supply source 1021 built in the electrical measuring unit 1020 shown in FIG. . A voltage measuring device 32 provided in the voltage detecting unit 1022 in the electric measuring unit 1020 is connected to each of the voltage detecting electrodes 71 and 81 (71a and 81a) and 72 and 82 (72a and 82a). Note that the physical positions and sizes of the electrical measurement unit 1020, the current supply source 1021, and the voltage detection unit 1022 are conceptually displayed in order to clarify the electrical connection form. The voltage measuring device 32 is provided for each electrode set composed of two adjacent electrodes among the voltage detection electrodes 71, 81, 72, 82 (71a, 81a, 72a, 82a), that is, the voltage detection electrodes 71, 81 (71a). , 81a) and the electrode set consisting of the voltage detection electrodes 72, 82 (72a, 82a) are measured for voltage. With the two sets of voltage detection electrodes, a potential difference (and therefore a resistance value) corresponding to the internal diameter of a blood vessel or the like can be obtained.
 図14は、電圧検出電極数が3であって図10から図13に示すものとは異なる電気キャリパ204について、各電極と図1に示す内径検査装置中の電気計測部1020との接続形態を説明する図である。図14およびこれ以降に示す電気キャリパについては、図10から図12に示したものと本質的に同じ部位や構造は上述の説明から演繹して判断できるものであるため、その詳細な説明は省略する。 FIG. 14 shows the connection configuration between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG. 1 for the electric caliper 204 having three voltage detection electrodes and different from those shown in FIGS. It is a figure explaining. Regarding the electric caliper shown in FIG. 14 and the subsequent drawings, the same parts and structures as those shown in FIGS. 10 to 12 can be determined by deduction from the above description, and thus detailed description thereof is omitted. To do.
 図13に示す例では、互いに隣り合う2つの電極からなる電極組ごとに電圧を測定するものとしている。これに対して図14の例では、電圧検出電極701,702,703のうち、互いに隣り合う2つの電極ごとに一方の電極を共有してなる電極組、すなわち、電圧検出電極701と702の組と、電圧検出電極702と703の組とについて、それぞれの組ごとの電圧測定器32により電圧を測定している。電圧検出電極702を共通電極とすることで、電極数を減らすことができる。血管等の径に対応する抵抗値は、2つの電圧検出電極に現れる電位差で良いため、独立した2組の電圧検出電極でなくても目的を達することができるからである。 In the example shown in FIG. 13, the voltage is measured for each electrode set including two electrodes adjacent to each other. On the other hand, in the example of FIG. 14, among the voltage detection electrodes 701, 702, and 703, two electrode pairs adjacent to each other share one electrode, that is, a set of voltage detection electrodes 701 and 702. The voltage is measured by the voltage measuring device 32 for each set of the voltage detection electrodes 702 and 703. By using the voltage detection electrode 702 as a common electrode, the number of electrodes can be reduced. This is because the resistance value corresponding to the diameter of the blood vessel or the like may be a potential difference appearing at the two voltage detection electrodes, so that the object can be achieved without using two independent voltage detection electrodes.
 図15は、電圧検出電極数が図10から図13に示すものとは異なる電気キャリパ205について、各電極と図1に示す内径検査装置中の電気計測部1020との接続形態を説明する図である。 FIG. 15 is a diagram for explaining a connection form between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG. 1 for the electric caliper 205 having a different number of voltage detection electrodes from those shown in FIGS. 10 to 13. is there.
 電気キャリパ205は、電圧検出電極として、3組の電圧検出電極71と81,72と82,73と83を有する。これらの電極組により、3つの異なる位置における血管等の径に対応する抵抗値を測定する。これにより、後述の説明の通り、狭窄部の部位の決定が容易となる。 The electric caliper 205 has three sets of voltage detection electrodes 71 and 81, 72 and 82, 73 and 83 as voltage detection electrodes. With these electrode sets, resistance values corresponding to the diameters of blood vessels and the like at three different positions are measured. Thereby, as will be described later, it becomes easy to determine the site of the stenosis.
 図16は、電圧検出電極数がさらに異なる電気キャリパ206について、各電極と図1に示す内径検査装置中の電気計測部1020との接続形態を説明する図である。 FIG. 16 is a diagram for explaining a connection form between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG. 1 for the electric caliper 206 having a different number of voltage detection electrodes.
 電気キャリパ206は、電圧検出電極701~704を有し、これらのうち、2つの電圧検出電極702,703を共有電極として用いる。これにより、電極数を減らしつつ、3組の電圧検出電極を設けたと同様の測定が可能となる。図14に示した例と同様の考え方に基づくものである。 The electric caliper 206 has voltage detection electrodes 701 to 704, and among these, two voltage detection electrodes 702 and 703 are used as shared electrodes. As a result, the same measurement as when three sets of voltage detection electrodes are provided is possible while reducing the number of electrodes. This is based on the same concept as the example shown in FIG.
 図17は、電圧検出電極数がさらに異なる電気キャリパ207について、各電極と図1に示す内径検査装置中の電気計測部1020との接続形態を説明する図である。 FIG. 17 is a diagram for explaining a connection form between each electrode and the electric measurement unit 1020 in the inner diameter inspection apparatus shown in FIG. 1 for the electric caliper 207 having a different number of voltage detection electrodes.
 電気キャリパ207は、電圧検出電極701~705を有し、これらのうち3つの電圧検出電極702~704をそれぞれ共通電極として用いる。これにより、電極数を減らしつつ、4組の電圧検出電極を設けたと同様の測定が可能となる。 The electric caliper 207 has voltage detection electrodes 701 to 705, of which three voltage detection electrodes 702 to 704 are used as common electrodes, respectively. This makes it possible to perform the same measurement as when four sets of voltage detection electrodes are provided while reducing the number of electrodes.
 図18および図19は、上述したもの(例えば図10に示した電気キャリパ)とはさらに異なる構成の電気キャリパ208を説明する図である。図18は電気キャリパ208の構造を示し、図19は電気キャリパ208により生成される電流の空間分布を示す。 FIG. 18 and FIG. 19 are diagrams for explaining an electric caliper 208 having a different configuration from that described above (for example, the electric caliper shown in FIG. 10). FIG. 18 shows the structure of the electric caliper 208, and FIG. 19 shows the spatial distribution of current generated by the electric caliper 208.
 この電気キャリパ208では、電流電極として2つの電流電極50,60を備え、その一方、すなわち電流電極50が、絶縁筐体1の導電ケーブルおよび外部導出ケーブル鞘4が取り付けられている側と反対側の絶縁筐体1の先端部に形成されている。電流電極50をこのように配置することにより、図19に示すように、電流電極50からの電流のほぼ全方向への拡散放出するため、電流の空間分布は電圧検出電極において絶縁筐体1表面に局在しにくくなる。すなわち、電流の空間分布は、絶縁筐体1の半径方向にはあまり依存せず、半径方向依存係数nは0に近くなる。従って、式(14b)と図9からわかるように、抵抗値の狭窄部の変化に対する影響が強く表れる。よって狭窄部の検知が容易となる。 The electric caliper 208 includes two current electrodes 50 and 60 as current electrodes, one of which is the side opposite to the side where the conductive cable of the insulating housing 1 and the external lead-out cable sheath 4 are attached. The insulating casing 1 is formed at the front end portion. By disposing the current electrode 50 in this way, as shown in FIG. 19, the current from the current electrode 50 is diffused and released in almost all directions, so that the current distribution is the surface of the insulating casing 1 at the voltage detection electrode. It becomes difficult to localize. That is, the current spatial distribution does not depend much on the radial direction of the insulating casing 1, and the radial direction dependence coefficient n is close to zero. Therefore, as can be seen from the equation (14b) and FIG. 9, the influence of the resistance value on the change of the constriction portion is strong. Therefore, it becomes easy to detect the constriction.
 以上の説明では、電気キャリパの電圧検出電極の組を最大4組までとしているが、電圧検出電極の組は5以上であってもよい。また、電流電極の一方(電流電極50)を絶縁筐体1の先端部に配置する構成については、電圧検出電極の配置が図18から図19にそれぞれ示すものと異なっていてもよい。 In the above description, the maximum number of voltage detection electrode groups of the electric caliper is four, but the number of voltage detection electrode groups may be five or more. In addition, regarding the configuration in which one of the current electrodes (current electrode 50) is disposed at the distal end portion of the insulating housing 1, the arrangement of the voltage detection electrodes may be different from that shown in FIGS.
 図20および図21は、上述した図10ないし図19に示した電気キャリパとはさらに異なる構成の電気キャリパ209を説明する図である。図20は、電気キャリパ209の構造を示し、図21は、各電極と図1に示す内径検査装置中の電気計測部1020との接続形態を説明する図である。 20 and 21 are diagrams for explaining an electric caliper 209 having a different configuration from the electric caliper shown in FIGS. 10 to 19 described above. FIG. 20 shows a structure of the electric caliper 209, and FIG. 21 is a diagram for explaining a connection form between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG.
 電気キャリパ209には、2つの電流電極および3以上の電圧検出電極からなる電極群が、絶縁筐体1の軸方向に2つ形成されている。すなわち、この電気キャリパ209は、2つの電流電極の組51,61と52,62を有し、それぞれの組の間に、電圧検出電極71,81,72,82と73,83,74,84が配されている。電流電極51,61と52,62とには、電気計測部1020内の電流供給源1021に設けられている別々の電流電源31が接続されている。電圧検出電極71と81,72と82,73と83,74と84にはそれぞれ、電気計測部1020内の電圧検出部1022内に設けられている電圧測定器32が接続されている。 In the electric caliper 209, two electrode groups including two current electrodes and three or more voltage detection electrodes are formed in the axial direction of the insulating housing 1. That is, the electric caliper 209 has two current electrode sets 51, 61, 52, 62, and the voltage detection electrodes 71, 81, 72, 82 and 73, 83, 74, 84 are provided between the sets. Is arranged. The current electrodes 51, 61 and 52, 62 are connected to different current power sources 31 provided in the current supply source 1021 in the electric measuring unit 1020. A voltage measuring device 32 provided in the voltage detecting unit 1022 in the electric measuring unit 1020 is connected to the voltage detecting electrodes 71 and 81, 72 and 82, 73 and 83, 74 and 84, respectively.
 図19までに示した例では、電流電極の組を1つとしている。この場合、極端に狭窄する部位がその電流電極の間に位置すると、その狭窄部により溶液11中を流れる電流全体が小さくなり、電圧検出電極で検知される電位差の電圧は小さくなる。特に狭窄部以外の部位での電位差は小さいため、その電圧は小さくなり、測定が困難となる場合もあり得る。これに対して、図20および図21に示す電気キャリパ209では、電流電極51,61と電流電極52,62により、独立して外部の狭窄部を検知することができる。その結果、一方の組の電流電極の間に配置された電圧検出電極が狭窄部付近にあり、そのためそこでの検知される特に狭窄部を外れた位置にある電圧検出電極間の電位差が小さくなるが、他の組の電流電極の間に配置された電圧検出電極で検知される電位差は小さくならないため、後者の組の電流電極により狭窄部以外の電圧も正常に測定できることとなる。 In the example shown up to FIG. 19, there is one set of current electrodes. In this case, if an extremely narrowed portion is located between the current electrodes, the entire current flowing in the solution 11 is reduced by the narrowed portion, and the voltage of the potential difference detected by the voltage detection electrode is reduced. In particular, since the potential difference at a portion other than the constricted portion is small, the voltage is small, and measurement may be difficult. On the other hand, in the electric caliper 209 shown in FIGS. 20 and 21, the external constriction can be detected independently by the current electrodes 51 and 61 and the current electrodes 52 and 62. As a result, the voltage detection electrode arranged between one set of current electrodes is in the vicinity of the constriction, so that the potential difference between the voltage detection electrodes detected there, particularly at a position outside the constriction, is reduced. Since the potential difference detected by the voltage detection electrode arranged between the other sets of current electrodes does not become small, the voltage other than the constriction can be normally measured by the latter set of current electrodes.
 図22および図23は、図20および図21に示す電気キャリパ209の変形例である電気キャリパ210を示す図である。図22は、電気キャリパ209の構造を示し、図23は、各電極と図1に示す内径検査装置中の電気計測部1020との接続形態を説明する図である。 22 and 23 are diagrams showing an electric caliper 210 that is a modification of the electric caliper 209 shown in FIGS. 20 and 21. FIG. FIG. 22 shows the structure of the electric caliper 209, and FIG. 23 is a diagram for explaining the connection form between each electrode and the electric measuring unit 1020 in the inner diameter inspection apparatus shown in FIG.
 電気キャリパ210は、2つの電流電極5,6に加え、この2つの電流電極5,6の間であって、2つの電流電極5,6の各々と組になって電圧検出電極71,81と72,82を挟む位置に、第3の電流電極56が形成されている。すなわち、ひと組の電流電極5,6の間に2組の電圧検出電極71,81と72,82が配され、かつ当該2組の電圧検出電極71,81と72,82の間に、共通する電流電極56が設けられている。1組の電流電極5,56の間で流れる電流は、他の1組の電流電極6,56の間で流れる電流とは独立しているため、狭窄部が一方の電圧検出電極の組に位置しても、他の電圧検出電極の組の電圧は異なる組の電流電極の間で流れる電流により発生するため、小さくならず、したがって、正常に測定することができる。 In addition to the two current electrodes 5, 6, the electric caliper 210 is between the two current electrodes 5, 6 and is paired with each of the two current electrodes 5, 6. A third current electrode 56 is formed at a position sandwiching 72 and 82. That is, two sets of voltage detection electrodes 71, 81 and 72, 82 are arranged between the pair of current electrodes 5, 6, and are common between the two sets of voltage detection electrodes 71, 81 and 72, 82. A current electrode 56 is provided. Since the current flowing between one set of current electrodes 5 and 56 is independent of the current flowing between the other set of current electrodes 6 and 56, the constricted portion is located in one set of voltage detection electrodes. Even so, the voltage of the other set of voltage detection electrodes is generated by the current flowing between the different sets of current electrodes, so it does not become small and can therefore be measured normally.
 [電気計測部の構成]
 電気計測部1020内の電流供給源1012に用いられる電流電源31および電圧検出部1022に用いられる電圧測定器32については、直流回路と交流回路のいずれも用いることができる。一方、電流電極から直流電流を溶液11や血液に流すと、通電されるこれら媒質が電気分解される恐れがある。この場合は、交流回路を使用する。そのような構成について以下に説明する。
[Configuration of electrical measurement unit]
As the current power source 31 used for the current supply source 1012 in the electric measuring unit 1020 and the voltage measuring device 32 used for the voltage detection unit 1022, either a DC circuit or an AC circuit can be used. On the other hand, when a direct current is passed from the current electrode to the solution 11 or blood, these energized media may be electrolyzed. In this case, an AC circuit is used. Such a configuration will be described below.
 図24は、電流電源31として用いられる電流電源回路310の構成例を示す。 FIG. 24 shows a configuration example of the current power supply circuit 310 used as the current power supply 31.
 電流電源回路310は交流電源回路であり、交流信号発生器311の出力が第1の電圧変換器312に入力され、この電圧変換器312の2次側に現れる交流電流が、電流電極5,6に供給されている。2次側の当該交流電流をモニタするため、当該交流電流は、第2の電圧変換器313を介して、演算増幅器315および抵抗316からなる電流-電圧変換回路に入力されている。電流-電圧変換回路の出力は、検波器317(その詳細回路は図25に示す検波器325と構成が同じである)に入力され、電流電極5,6に供給される電流は電圧に変換され、さらに、検波器317により、直流電圧として検知される。 The current power supply circuit 310 is an AC power supply circuit, and the output of the AC signal generator 311 is input to the first voltage converter 312, and the AC current that appears on the secondary side of the voltage converter 312 is the current electrode 5, 6. Has been supplied to. In order to monitor the AC current on the secondary side, the AC current is input to the current-voltage conversion circuit including the operational amplifier 315 and the resistor 316 via the second voltage converter 313. The output of the current-voltage conversion circuit is input to a detector 317 (its detailed circuit is the same in configuration as the detector 325 shown in FIG. 25), and the current supplied to the current electrodes 5 and 6 is converted into a voltage. Further, it is detected as a DC voltage by the detector 317.
 図25は、電圧測定器32として用いられる電圧測定器回路320の構成例を示す。 FIG. 25 shows a configuration example of a voltage measuring circuit 320 used as the voltage measuring device 32.
 電圧測定器回路320は、電圧検出電極に現れた電位差の電圧を、電気的絶縁と電圧変換を行う変成器としての電圧変換器321を介して、2次側に現れる交流電圧に変換する。当該電圧は、抵抗322を介して、演算増幅器323および抵抗324からなる電圧変換回路に入力されている。この電圧変換回路の出力は、検波器325に入力されている。検波器325では、電圧変換回路の出力が同期信号発生器326により同期制御された同期検波器327に入力され、その出力は、フィルタ328を介して、直流電圧出力V1またはV2等として出力される。 The voltage measuring circuit 320 converts the voltage of the potential difference that appears on the voltage detection electrode into an AC voltage that appears on the secondary side via a voltage converter 321 as a transformer that performs electrical insulation and voltage conversion. The voltage is input to a voltage conversion circuit including an operational amplifier 323 and a resistor 324 through a resistor 322. The output of this voltage conversion circuit is input to the detector 325. In the detector 325, the output of the voltage conversion circuit is input to the synchronous detector 327 that is synchronously controlled by the synchronous signal generator 326, and the output is output as a DC voltage output V 1 or V 2 or the like via the filter 328. .
 図26は、電圧測定器32として用いられる別の電圧測定器回路330の構成例を示す。この電圧測定器回路330は、電圧検出電極の一部を共通とする電極組ごとに電圧を検出する電気キャリパ204,206,207の電圧測定に用いられる。ここでは、図16に示す電気キャリパ206を例に説明する。 FIG. 26 shows a configuration example of another voltage measuring device circuit 330 used as the voltage measuring device 32. This voltage measuring device circuit 330 is used for voltage measurement of the electric calipers 204, 206, and 207 that detect a voltage for each electrode set that shares a part of the voltage detection electrode. Here, the electric caliper 206 shown in FIG. 16 will be described as an example.
 電気キャリパ206の電圧検出電極701,702,703,704はそれぞれ、コンデンサ331ないし336を介して、電圧変換器337ないし339に接続されている。詳しく説明すると、電圧検出電極701は、コンデンサ331を介して、電圧変換器337に接続されている。共通電極である電圧検出電極702は、分岐されて、コンデンサ332を介して電圧変換器337に、コンデンサ333を介して電圧変換器338に接続されている。同じく共通電極である電圧検出電極703は、分岐されて、コンデンサ334を介して電圧変換器338に、コンデンサ335を介して電圧変換器339に接続されている。電圧検出電極704は、コンデンサ336を介して、電圧変換器339に接続されている。コンデンサ331ないし336を介することにより、直流パスが遮断されている。電圧変換器337の出力は、演算増幅343と抵抗340,344から成る電圧増幅回路に入力される。電圧変換器338の出力は、演算増幅345と抵抗341,346から成る電圧増幅回路に入力される。電圧変換器339の出力は、演算増幅器347と抵抗342,348から成る電圧増幅回路に入力される。これらの電圧増幅回路の出力は、検波器349ないし351により検波され、電圧出力V1,V2,V3となる。検波器349ないし351として用いられる回路の構成例を図27に示す。 The voltage detection electrodes 701, 702, 703, and 704 of the electric caliper 206 are connected to voltage converters 337 to 339 via capacitors 331 to 336, respectively. More specifically, the voltage detection electrode 701 is connected to the voltage converter 337 via the capacitor 331. The voltage detection electrode 702 that is a common electrode is branched and connected to the voltage converter 337 via the capacitor 332 and to the voltage converter 338 via the capacitor 333. A voltage detection electrode 703 which is also a common electrode is branched and connected to the voltage converter 338 via the capacitor 334 and to the voltage converter 339 via the capacitor 335. The voltage detection electrode 704 is connected to the voltage converter 339 via the capacitor 336. The DC path is blocked by passing through the capacitors 331 to 336. The output of the voltage converter 337 is input to a voltage amplifier circuit composed of an operational amplifier 343 and resistors 340 and 344. The output of the voltage converter 338 is input to a voltage amplifier circuit including an operational amplifier 345 and resistors 341 and 346. The output of the voltage converter 339 is input to a voltage amplification circuit including an operational amplifier 347 and resistors 342 and 348. The outputs of these voltage amplification circuits are detected by detectors 349 to 351, and become voltage outputs V1, V2, and V3. A configuration example of a circuit used as the detectors 349 to 351 is shown in FIG.
 図27の回路は、整流回路420と低域通過回路421からなる。整流回路420は、演算増幅器418と、ダイオード417と、抵抗410,411とコンデンサ414から成る。演算増幅器418は、ダイオード417により交流信号の負電圧部分のみが出力される。また増幅度は抵抗411と410の比できまる。コンデンサ414は負電圧の脈流成分を押さえる。低域通過回路421は、演算増幅器419と、抵抗412,413とコンデンサ415,416から成る2次バタワース回路である。整流回路420の出力である脈流成分を有する信号について、実効的にはほぼ直流分を通過させる。図27の回路により、電圧検出電極701,702,703,704により検出された交流電圧を、電圧増幅回路を介した後、その交流電圧の大きさに比例した直流電圧を得ることができる。 27 includes a rectifier circuit 420 and a low-pass circuit 421. The rectifier circuit 420 includes an operational amplifier 418, a diode 417, resistors 410 and 411, and a capacitor 414. The operational amplifier 418 outputs only the negative voltage portion of the AC signal from the diode 417. The amplification degree is determined by the ratio of the resistors 411 and 410. The capacitor 414 suppresses the negative voltage pulsating component. The low-pass circuit 421 is a secondary Butterworth circuit including an operational amplifier 419, resistors 412 and 413, and capacitors 415 and 416. The signal having the pulsating current component that is the output of the rectifier circuit 420 is effectively allowed to pass a direct current component. With the circuit shown in FIG. 27, after the AC voltage detected by the voltage detection electrodes 701, 702, 703, and 704 is passed through the voltage amplification circuit, a DC voltage proportional to the magnitude of the AC voltage can be obtained.
 図26に示す電圧測定器回路330の構成において、コンデンサ331ないし336がないと、電圧変成器337ないし339の1次巻き線のインピーダンスが大きくなり、心臓の鼓動等の低周波のノイズが、電圧変成器337ないし339を介して、電流電圧変換回路およびその後段の検波器349ないし351に入力されてしまう。その結果、検波後の出力には、電流供給源の信号以外のこの低周波ノイズが混入してしまう。コンデンサ331ないし336を1次側に挿入し、電圧変換器337ないし339の入力インピーダンスを上げることで、そのような低周波ノイズを遮断することができる。 In the configuration of the voltage measuring circuit 330 shown in FIG. 26, if the capacitors 331 to 336 are not provided, the impedance of the primary windings of the voltage transformers 337 to 339 increases, and low-frequency noise such as heartbeat is The voltage is input to the current-voltage conversion circuit and the subsequent detectors 349 to 351 through the transformers 337 to 339. As a result, this low frequency noise other than the signal of the current supply source is mixed in the output after detection. By inserting capacitors 331 to 336 on the primary side and increasing the input impedance of the voltage converters 337 to 339, such low frequency noise can be cut off.
 ここでは、電気キャリパ206の電圧検出電極701,702,703,704で電圧を測定する場合を例に説明したが、演算増幅と抵抗および検波器から成る検知回路の数を増減することにより、他の電気キャリパの電圧検出電極の構成や、さらに多くの電圧検出電極の構成に適用できる。 Here, the case where the voltage is measured by the voltage detection electrodes 701, 702, 703, and 704 of the electric caliper 206 has been described as an example. However, by increasing or decreasing the number of detection circuits composed of operational amplification and resistors and detectors, It can be applied to the configuration of the voltage detection electrode of the electric caliper and the configuration of many more voltage detection electrodes.
 [利用形態]
 次に、本発明の利用形態として、狭窄部の発見に供する測定システム、その表示方法、および狭窄部の発見方法について説明する。また、血管狭窄部にステントの装着をすることのできる電気測定センサ(特に「電気キャリパバルーンカテーテル」という)についても説明する。
[Usage form]
Next, as a utilization form of the present invention, a measurement system used for finding a stenosis, its display method, and a method for finding a stenosis will be described. An electrical measurement sensor (particularly referred to as “electric caliper balloon catheter”) capable of attaching a stent to a vascular stenosis will also be described.
 本発明の内径検査装置を利用することで、少なくとも2つの電圧あるいは見かけの抵抗値を比較して、狭窄の部位を決定する。その決定については、目視的に行うのが迅速でかつ簡便である。次にその具体的な方法を説明する。 </ RTI> By using the inner diameter inspection apparatus of the present invention, at least two voltages or apparent resistance values are compared to determine the site of stenosis. The determination is quick and simple to make visually. Next, a specific method will be described.
 図1を参照して説明した電気計測センサ1010として、電気キャリパ201から210のいずれか、あるいはそれ同等の電気キャリパを用いる。電気キャリパの電流電極に供給される電流値は、アナログ・ディジタル変換器1023を介して、ディジタル信号の電流値A(A1とA2の2つであっても良い)として出力される。また、電気キャリパの各電圧検出電極の信号は、各電極に繋がる外部導出ケーブル1019を介して、電気計測部1020内の電圧検出部1022に接続されている。その信号は、アナログ・ディジタル変換器1023を介して、ディジタル信号の電圧値V1,V2,…,Vmとして出力される。演算処理部1024は、これら信号を、当該電圧を対応する電流で除すことにより、見かけの抵抗値R1ないしRmを算出する。その後、画像生成処理部1025により、これら見かけの抵抗値R1,R2,…,Rmを、電気キャリパに配置した電圧検出電極の順に、それぞれの抵抗値R1,R2,…,Rmに対応する電圧検出電極の位置をその横軸方向の位置に並べた抵抗比較画像を、ダイアグラムとして、表示装置1030に表示させる。 As the electric measurement sensor 1010 described with reference to FIG. 1, one of the electric calipers 201 to 210 or an electric caliper equivalent thereto is used. The current value supplied to the current electrode of the electric caliper is output as the current value A (which may be two of A1 and A2) of the digital signal via the analog / digital converter 1023. The signal of each voltage detection electrode of the electric caliper is connected to the voltage detection unit 1022 in the electric measurement unit 1020 via an external lead cable 1019 connected to each electrode. The signal is output as voltage values V1, V2,..., Vm of the digital signal via the analog / digital converter 1023. The arithmetic processing unit 1024 calculates apparent resistance values R1 to Rm by dividing these signals by the corresponding current. Thereafter, the image generation processing unit 1025 detects the apparent resistance values R1, R2,..., Rm in the order of the voltage detection electrodes arranged in the electric caliper, and detects the voltages corresponding to the resistance values R1, R2,. A resistance comparison image in which the positions of the electrodes are arranged in the horizontal axis direction is displayed on the display device 1030 as a diagram.
 [狭窄部の判定方法]
 血管などの狭窄部を見つけるには、画像生成処理部1025において、2以上の見かけの抵抗値R1,R2,…,Rmの互いの大小関係を3以上の電圧検出電極の位置に対応させて比較できる抵抗比較画像を生成し、検査対象空間領域に生じている塞栓部を、抵抗比較画像により示す。
[Stenosis determination method]
In order to find a stenosis part such as a blood vessel, the image generation processing part 1025 compares the magnitude relationship between two or more apparent resistance values R1, R2,..., Rm in correspondence with the positions of three or more voltage detection electrodes. A resistance comparison image that can be generated is generated, and the embolized portion generated in the space area to be inspected is indicated by the resistance comparison image.
 [2つの見かけの抵抗値による判定]
 2つの見かけの抵抗値により狭窄部を判定する方法について説明する。このとき、画像生成処理部1025は、演算処理部1024により演算された2つの見かけの抵抗値を処理する。3以上の電圧検出電極のうち2つの見かけの抵抗値を与える2つの電極組について、2つの見かけの抵抗値のうち相対的に大きい抵抗値を与える電極組の方向に前記電気計測センサが移動し、当該電極組の見かけの抵抗値が最大値となった後に2つの見かけの抵抗値の値が等しくなったときに、2つの電極組の中点に狭窄部が存在するものとして、抵抗値比較画像を生成する。この抵抗値比較画像は、表示装置1030に表示される。
[Judgment based on two apparent resistance values]
A method for determining a stenosis based on two apparent resistance values will be described. At this time, the image generation processing unit 1025 processes the two apparent resistance values calculated by the calculation processing unit 1024. Of the three or more voltage detection electrodes, the two electrode sets that give two apparent resistance values move the electric measurement sensor in the direction of the electrode set that gives a relatively large resistance value among the two apparent resistance values. When the two apparent resistance values become equal after the apparent resistance value of the electrode set becomes the maximum value, it is assumed that a constriction exists at the midpoint of the two electrode sets, and the resistance value comparison Generate an image. This resistance value comparison image is displayed on the display device 1030.
 電気キャリパを操作するオペレータは、
1)表示装置1030に表示されるダイアグラム(抵抗値比較画像)において、2つの見かけの抵抗値の相対的な大きさを比較する、
2)これらの見かけの抵抗値の高い方に対応する電圧検出電極の方向に当該電気キャリパを移動させる、
3)その後、さらに同じ方向に当該電気キャリパを移動させ、当該見かけの抵抗値が最大値を示し、その後減少するとともに、他方の見かけの抵抗値が増加することを確認する、
4)その後、徐々に更に同じ方向に当該電気キャリパを移動させ、当該見かけの抵抗値と他方の見かけの抵抗値が等しくなることを確認する、
5)この位置において、電気キャリパの2組の電圧検出電極の中点に狭窄部が存在すると判断する。
The operator who operates the electric caliper
1) Compare the relative magnitudes of two apparent resistance values in the diagram (resistance value comparison image) displayed on the display device 1030.
2) Move the electric caliper in the direction of the voltage detection electrode corresponding to the higher one of these apparent resistance values.
3) Thereafter, the electric caliper is further moved in the same direction, and it is confirmed that the apparent resistance value shows the maximum value and then decreases and the other apparent resistance value increases.
4) Then, gradually move the electric caliper in the same direction, and confirm that the apparent resistance value and the other apparent resistance value are equal.
5) At this position, it is determined that a constriction exists at the midpoint between the two voltage detection electrodes of the electric caliper.
 この方法においては、原理動作の規範は、隣り合う抵抗値を比較することにより、抵抗値が大きい方の電圧検出電極間の方が、パイプまたは血管において狭窄を生じている部位であることによる。 In this method, the norm of the principle operation is based on comparing the resistance values adjacent to each other so that the portion between the voltage detection electrodes having a larger resistance value is a portion where a stenosis occurs in the pipe or blood vessel.
 図28は、2つの見かけの抵抗値R1とR2による抵抗値比較画像の一例を示す。2つの電圧が測定できる電気キャリパ201,202,204においては、図28に示すように、当該2つの見かけの抵抗値R1とR2を結ぶ直線で当該見かけの抵抗値R1とR2を表示装置1030に表示すると、その直線の傾きにより、狭窄に近い電圧検出電極間を容易に判断することができる。そして、R1とR2の見かけの抵抗値が等しい、すなわち直線の傾きがゼロとなったとき、狭窄部は2つの電圧検出電極の中間に位置すると判断することができる。このとき、音や、画面の色の変化等により、オペレータの判断を助けるようにすることもできる。 FIG. 28 shows an example of a resistance value comparison image using two apparent resistance values R1 and R2. In the electric calipers 201, 202, and 204 that can measure two voltages, as shown in FIG. 28, the apparent resistance values R1 and R2 are displayed on the display device 1030 by a straight line connecting the two apparent resistance values R1 and R2. When displayed, it is possible to easily determine between the voltage detection electrodes close to constriction by the inclination of the straight line. When the apparent resistance values of R1 and R2 are equal, that is, when the slope of the straight line becomes zero, it can be determined that the constriction is located between the two voltage detection electrodes. At this time, it is also possible to assist the operator's judgment based on a sound, a change in color of the screen, or the like.
[3つの見かけの抵抗値による判定]
 3つの見かけの抵抗値により狭窄部を判定する方法について説明する。このとき、画像生成処理部1025は、演算処理部1024により演算された3つの見かけの抵抗値について処理し、3以上の電圧検出電極のうち3つの見かけの抵抗値を与える3つの電極組について、3つの見かけの抵抗値のうち相対的に大きい抵抗値を与える電極組の方向に電気キャパが移動し、当該電極組の見かけの抵抗値が最大値となった後に、3つの電極組の中央の電極組に対して求められる見かけの抵抗値が最大となるときに、中央の電極組の中点に狭窄部が存在するものとして、抵抗値比較画像を生成する。
[Judgment based on three apparent resistance values]
A method for determining a stenosis based on three apparent resistance values will be described. At this time, the image generation processing unit 1025 processes the three apparent resistance values calculated by the arithmetic processing unit 1024, and for three electrode sets that give three apparent resistance values among the three or more voltage detection electrodes, After the electric capacity moves in the direction of the electrode set that gives a relatively large resistance value among the three apparent resistance values, and the apparent resistance value of the electrode set reaches the maximum value, the center of the three electrode sets When the apparent resistance value required for the electrode group is maximized, a resistance value comparison image is generated assuming that a constriction exists at the midpoint of the center electrode group.
 電気キャリパを操作するオペレータは、
1)表示装置1030に表示されるダイアグラム(抵抗値比較画像)において、3つの見かけの抵抗値の相対的な大きさを比較する、
2)これらの見かけの抵抗値の大きい方に対応する電圧検出電極の方向に当該電気キャリパを移動させる、
3)その後、さらに同じ方向に当該電気キャリパを移動させ、当該抵抗値の大きい方の見かけの抵抗値が最大値を示すと、真ん中の電圧検出電極に対応する位置において電気キャリパの3組の電圧検出電極の真ん中の電圧検出電極の中点に狭窄部が存在すると判断する。
The operator who operates the electric caliper
1) In the diagram (resistance value comparison image) displayed on the display device 1030, the relative magnitudes of the three apparent resistance values are compared.
2) The electric caliper is moved in the direction of the voltage detection electrode corresponding to the larger one of these apparent resistance values.
3) After that, when the electric caliper is further moved in the same direction, and the apparent resistance value having the larger resistance value shows the maximum value, three sets of voltages of the electric caliper at the position corresponding to the middle voltage detection electrode It is determined that a constriction exists at the midpoint of the voltage detection electrode in the middle of the detection electrode.
 この判定法においても、原理動作の規範は、隣り合う抵抗値を比較することにより、抵抗値が最も大きい方の電圧検出電極間の方が、血管またはパイプにおいて狭窄を生じている部位であることによる。 Even in this determination method, the principle of the principle operation is that the portion between the voltage detection electrodes having the largest resistance value is a portion where a stenosis is caused in the blood vessel or pipe by comparing adjacent resistance values. by.
 図29は、3つの見かけの抵抗値R1,R2,R3による抵抗値比較画像の一例を示す。3つの見かけの抵抗値R1,R2,R3については、たとば、例えば3つの電圧が測定できる電気キャリパ205,206を用いることにより得られる。画像生成処理部1025は、この3つの見かけの抵抗値R1,R2,R3を、これら結ぶ直線とともに抵抗比較画像として生成し、表示装置1030に表示させる。これにより、図29に示すように、抵抗値R1,R2,R3の違いが、2本の直線となって表示される。 FIG. 29 shows an example of a resistance value comparison image using three apparent resistance values R1, R2, and R3. For example, the three apparent resistance values R1, R2 and R3 can be obtained by using the electric calipers 205 and 206 capable of measuring three voltages. The image generation processing unit 1025 generates the three apparent resistance values R1, R2, and R3 as a resistance comparison image together with the connecting straight lines, and displays the resistance comparison image on the display device 1030. Thereby, as shown in FIG. 29, the difference between the resistance values R1, R2, and R3 is displayed as two straight lines.
 図29の上図では、見かけの抵抗値R3に対応する電極間が狭窄部に近い事を示し、中図では、見かけの抵抗値R2に対応する電極間と見かけの抵抗値R3に対応する電極間の間に狭窄部が存在することがわかる。そして、下図においては、見かけの抵抗値R2が見かけの抵抗値の最大値を示し、その部分が最も狭窄していると判断することができる。特に、3つの見かけの抵抗値R1,R2,R3を用いる場合は、その中に位置する見かけの抵抗値R2が他の見かけの抵抗値R1,R3に比べて最大となるところが狭窄部であると判定できる。このため、この判定方法は、狭窄部の判定が容易なユーザフレンドリな可視化方法である。 The upper diagram of FIG. 29 shows that the gap between the electrodes corresponding to the apparent resistance value R3 is close to the constricted portion, and the middle diagram is the electrode between the electrodes corresponding to the apparent resistance value R2 and the electrode corresponding to the apparent resistance value R3. It can be seen that there is a stenosis between them. In the figure below, the apparent resistance value R2 indicates the maximum value of the apparent resistance value, and it can be determined that the portion is most narrowed. In particular, when three apparent resistance values R1, R2, and R3 are used, the portion where the apparent resistance value R2 positioned therein is the maximum compared to the other apparent resistance values R1 and R3 is the constriction. Can be judged. For this reason, this determination method is a user-friendly visualization method that facilitates determination of a stenosis.
 以上の判定方法は、狭窄部の判断と決定を、隣り合う見かけの抵抗値を比較し、抵抗値が大きい方の電圧検出電極間の方が、血管または水道配管や下水道配管において狭窄を生じている部位であるとすることに基づくものである。 The above judgment method is to judge and determine the stenosis part by comparing adjacent apparent resistance values, and between the voltage detection electrodes having the larger resistance value causes stenosis in the blood vessel or the water pipe or the sewer pipe. This is based on the fact that it is a part.
 [ステントの位置の特定]
 本発明の内径検査装置を利用することで、血管内壁に装着したステントの部位を発見し、その位置を特定することもできる。ステント装着部の判断と決定の方法は、その原理動作の規範を、隣り合う抵抗値を比較することにより、抵抗値が小さい方の電圧検出電極間の方が血管においてステントを装着した部位であるとすることに則るものである。したがって、狭窄部の判断と決定方法においては、抵抗値の大きいところを判断の指標としたが、ステントを装着した部位の判断と決定では、抵抗値の小さいところを判断の指標とするものである。
[Identification of stent position]
By utilizing the inner diameter inspection apparatus of the present invention, it is possible to find the site of the stent attached to the inner wall of the blood vessel and specify its position. The method of determination and determination of the stent mounting part is based on the principle of operation of the principle, by comparing adjacent resistance values, the portion between the voltage detection electrodes having the smaller resistance values is the site where the stent is mounted in the blood vessel. It is in line with that. Therefore, in the method for determining and determining the stenosis, the place where the resistance value is large is used as an indicator for determination. However, in the case where the stent is attached and determined, the place where the resistance value is small is used as an indicator for determination. .
 この場合、電圧検出電極により検出される2以上の電圧値が検査対象空間の導電性による影響に応じて変化し、画像生成処理部1025は、2以上の見かけの抵抗値の互いの大小関係を3以上の電圧検出電極の位置に対応させて比較できる抵抗値比較画像を生成し、検査対象空間のうち他の部分と導電性が異なる部分(具体的にはステントの位置)を抵抗値比較画像により表示装置1030に示す。
 [2つの見かけの抵抗値による判定]
 2つの見かけの抵抗値によりステントの部位を判定する方法について説明する。このとき、画像生成処理部1025は、演算処理部1024により演算された2つの見かけの抵抗値を処理し、3以上の電圧検出電極のうち2つの見かけの抵抗値を与える2つの電極組について、2つの見かけの抵抗値のうち相対的に小さい抵抗値を与える電極組の方向に前記電気計測センサが移動し、当該電極組の見かけの抵抗値が最小値となった後に2つの見かけの抵抗値の値が等しくなったときに、2つの電極組の中点にステントが存在するものとして、抵抗値比較画像を生成する。この抵抗値比較画像は、表示装置1030に表示される。
In this case, two or more voltage values detected by the voltage detection electrode change according to the influence of the conductivity of the inspection target space, and the image generation processing unit 1025 shows the magnitude relationship between the two or more apparent resistance values. A resistance value comparison image that can be compared in correspondence with the position of three or more voltage detection electrodes is generated, and a portion (specifically, the position of the stent) in which the conductivity is different from other portions in the inspection target space This is shown in the display device 1030.
[Judgment based on two apparent resistance values]
A method of determining a stent site based on two apparent resistance values will be described. At this time, the image generation processing unit 1025 processes the two apparent resistance values calculated by the arithmetic processing unit 1024, and for two electrode sets that give two apparent resistance values among three or more voltage detection electrodes, The two apparent resistance values after the electrical measurement sensor moves in the direction of the electrode set that gives a relatively small resistance value out of the two apparent resistance values, and the apparent resistance value of the electrode set becomes the minimum value. When the two values become equal, a resistance comparison image is generated assuming that a stent exists at the midpoint between the two electrode sets. This resistance value comparison image is displayed on the display device 1030.
 図30は、2つの見かけの抵抗値R1とR2による抵抗値比較画像の一例を示す。2つの電圧が測定できる電気キャリパ201,202,204においては、図30に示すように、当該2つの見かけの抵抗値R1とR2を結ぶ直線で当該見かけの抵抗値R1とR2を表示装置1030に表示すると、その直線の傾きにより、導電性の異なる部分に近い電圧検出電極間を容易に判断することができる。そして、R1とR2の見かけの抵抗値が等しい、すなわち直線の傾きがゼロとなったとき、ステントを装着した部位は、2つの電圧検出電極の中間に位置すると判断することができる。このとき、音や、画面の色の変化等により、オペレータの判断を助けるようにすることもできる。 FIG. 30 shows an example of a resistance value comparison image based on two apparent resistance values R1 and R2. In the electric calipers 201, 202, and 204 that can measure two voltages, as shown in FIG. 30, the apparent resistance values R1 and R2 are displayed on the display device 1030 by a straight line connecting the two apparent resistance values R1 and R2. When displayed, it is possible to easily determine between the voltage detection electrodes near the portions having different conductivities by the inclination of the straight line. When the apparent resistance values of R1 and R2 are equal, that is, when the slope of the straight line becomes zero, it can be determined that the site where the stent is mounted is located between the two voltage detection electrodes. At this time, it is also possible to assist the operator's judgment based on a sound, a color change of the screen, or the like.
 電気キャリパを操作するオペレータは、
1)表示装置1030に表示されるダイアグラム(抵抗値比較画像)において、2つの見かけの抵抗値の相対的な大きさを比較する、
2)これらの見かけの抵抗値の小さい方に対応する電圧検出電極の方向に当該電気キャリパを移動させる、
3)その後、さらに同じ方向に当該電気キャリパを移動させ、当該見かけの抵抗値が最小値を示し、その後増加するとともに他方の見かけの抵抗値が減少することを確認する、
4)その後、徐々にさらに同じ方向に当該電気キャリパを移動させ、当該見かけの抵抗値と他方の見かけの抵抗値が等しくなることを確認する、
5)この位置において、電気キャリパの2組の電圧検出電極の中点にステントが存在すると判定する。
The operator who operates the electric caliper
1) Compare the relative magnitudes of two apparent resistance values in the diagram (resistance value comparison image) displayed on the display device 1030.
2) Move the electric caliper in the direction of the voltage detection electrode corresponding to the smaller of these apparent resistance values,
3) Thereafter, the electric caliper is further moved in the same direction, and it is confirmed that the apparent resistance value shows the minimum value, then increases and then the other apparent resistance value decreases.
4) After that, gradually move the electric caliper in the same direction, and confirm that the apparent resistance value and the other apparent resistance value are equal.
5) At this position, it is determined that a stent is present at the midpoint between the two voltage detection electrodes of the electric caliper.
 [3つの見かけの抵抗値による判定]
 3つの見かけの抵抗値によりステントの部位を判定する方法について説明する。このとき、画像生成処理部1025は、演算処理部1024により演算された3つの見かけの抵抗値を処理し、3以上の電圧検出電極のうち3つの見かけの抵抗値を与える3つの電極組について、3つの見かけの抵抗値のうち相対的に小さい抵抗値を与える電極組の方向に電気キャリパが移動し、当該電極組の見かけの抵抗値が最小値となった後に、3つの電極組の中央の電極組に対して求められる見かけの抵抗値が最小となるときに、中央の電極組の中点にステントが装着されているものとして、抵抗値比較画像を生成する。
[Judgment based on three apparent resistance values]
A method for determining the site of the stent based on the three apparent resistance values will be described. At this time, the image generation processing unit 1025 processes the three apparent resistance values calculated by the arithmetic processing unit 1024, and for three electrode sets that give three apparent resistance values among the three or more voltage detection electrodes, After the electric caliper moves in the direction of the electrode set that gives a relatively small resistance value among the three apparent resistance values, and the apparent resistance value of the electrode set becomes the minimum value, the center of the three electrode sets When the apparent resistance value required for the electrode group is minimized, a resistance value comparison image is generated assuming that the stent is mounted at the midpoint of the center electrode group.
 図31は、3つの見かけの抵抗値R1,R2,R3による抵抗値比較画像の一例を示す。
3つの見かけの抵抗値R1,R2,R3については、たとば、例えば3つの電圧が測定できる電気キャリパ205,206を用いることにより得られる。画像生成処理部1025は、この3つの見かけの抵抗値R1,R2,R3を、これら結ぶ直線とともに抵抗比較画像として生成し、表示装置1030に表示させる。これにより、図31に示すように、抵抗値R1,R2,R3の違いが、2本の直線となって表示される。
FIG. 31 shows an example of a resistance value comparison image using three apparent resistance values R1, R2, and R3.
For example, the three apparent resistance values R1, R2 and R3 can be obtained by using the electric calipers 205 and 206 capable of measuring three voltages. The image generation processing unit 1025 generates the three apparent resistance values R1, R2, and R3 as a resistance comparison image together with the connecting straight lines, and displays the resistance comparison image on the display device 1030. Thereby, as shown in FIG. 31, the difference of resistance value R1, R2, R3 is displayed as two straight lines.
 図31の上図では、見かけの抵抗値R3に対応する電極間がステントを装着した部位に近いことを示し、中図では、見かけの抵抗値R2に対応する電極間と見かけの抵抗値R3に対応する電極間の間にステントを装着した部位が存在することがわかる。そして、下図においては、見かけの抵抗値R2が見かけの抵抗値の最小値を示すが、その部分がステントを装着した部位の真ん中にあると判断することができる。 The upper diagram in FIG. 31 shows that the distance between the electrodes corresponding to the apparent resistance value R3 is close to the site where the stent is mounted. In the middle diagram, the distance between the electrodes corresponding to the apparent resistance value R2 and the apparent resistance value R3 are shown. It can be seen that there is a site where a stent is mounted between corresponding electrodes. And in the following figure, although the apparent resistance value R2 shows the minimum value of the apparent resistance value, it can be determined that the portion is in the middle of the site where the stent is mounted.
 この場合、電気キャリパを操作するオペレータは、
1)表示装置1030に表示されるダイアグラム(抵抗値比較画像)において、3つの見かけの抵抗値の相対的な大きさを比較する、
2)これらの見かけの抵抗値の小さい方に対応する電圧検出電極の方向に当該電気キャリパを移動させる、
3)その後、さらに同じ方向に当該電気キャリパを移動させ、当該抵抗値の小さい方の見かけの抵抗値が最小を示すと、真ん中の電圧検出電極に対応する位置において電気キャリパの3組の電圧検出電極の真ん中に位置する電圧検出電極にステントを装着した部位が存在すると判定する。
In this case, the operator who operates the electric caliper
1) In the diagram (resistance value comparison image) displayed on the display device 1030, the relative magnitudes of the three apparent resistance values are compared.
2) Move the electric caliper in the direction of the voltage detection electrode corresponding to the smaller of these apparent resistance values,
3) After that, when the electric caliper is further moved in the same direction, and the apparent resistance value having the smaller resistance value indicates the minimum, three sets of voltage detection of the electric caliper are performed at the position corresponding to the middle voltage detection electrode. It is determined that there is a site where a stent is attached to the voltage detection electrode located in the middle of the electrode.
 以上の判定方法も、原理動作の規範は、隣り合う抵抗値を比較することにより、抵抗値が小さい方の電圧検出電極間の方が血管においてステントを装着した部位であることによる。特に、3つの見かけの抵抗値R1,R2,R3を用いる場合は、その中に位置する見かけの抵抗値R2が他の見かけの抵抗値R1,R3に比べて最小となるところがステントを装着した部位であると判定できる。このため、この判定方法は、ステントを装着した部位の判定が容易なユーザフレンドリな可視化方法である。 In the above determination method as well, the principle of the principle operation is that the adjacent resistance value is compared, and the portion between the voltage detection electrodes having the smaller resistance value is the site where the stent is mounted in the blood vessel. In particular, when three apparent resistance values R1, R2, and R3 are used, the portion where the apparent resistance value R2 positioned therein is minimum compared to the other apparent resistance values R1 and R3 is the site where the stent is mounted. Can be determined. For this reason, this determination method is a user-friendly visualization method in which it is easy to determine the site where the stent is attached.
 図32は、図1に示す内径計測装置中の電気計測センサ1010として用いられる電気キャリパバルーンカテーテル211の構成例を説明する図である。上述したように、本発明に係る電気キャリパは血管内の血栓やプラ-クの存在部位を発見し決定できる能力を有するため、血栓やプラ-クによる血管狭窄部の部位に正しくステントを装着することのできるバルーンカテーテルに適用できる。図32はこのような例を示す。 FIG. 32 is a diagram illustrating a configuration example of the electric caliper balloon catheter 211 used as the electric measurement sensor 1010 in the inner diameter measuring apparatus shown in FIG. As described above, the electric caliper according to the present invention has the ability to detect and determine the location of thrombus or plaque in the blood vessel, so that the stent is correctly attached to the site of the blood vessel constriction due to the thrombus or plaque. It can be applied to a balloon catheter that can be used. FIG. 32 shows such an example.
 図32に示す電気キャリパバルーンカテーテル211は、図10に示す電気キャリパ201の絶縁筐体1の先端部に、パイプ(図示せず)を介して供給される気体または液体により膨張または収縮するバルーン90を設けたものである。このバルーン90には、このバルーン90を膨張させることで弾性限界以上に広げられるステント95が取り付けられている。バルーン90に気体または液体を供給するパイプは、外部導出ケーブル鞘4を介して絶縁筐体1の内部に延長内装されている。 The electric caliper balloon catheter 211 shown in FIG. 32 is inflated or deflated by a gas or liquid supplied via a pipe (not shown) to the distal end portion of the insulating casing 1 of the electric caliper 201 shown in FIG. Is provided. A stent 95 that is expanded beyond the elastic limit by inflating the balloon 90 is attached to the balloon 90. A pipe for supplying a gas or liquid to the balloon 90 is extended inside the insulating housing 1 via the external lead-out cable sheath 4.
 さらに詳しく説明すると、絶縁筐体1には一対の電流電極5,6が配されて、その間に2組の電圧検出電極71,81と72,82が配されている。電流電極5から絶縁筐体1の一方の端部に至る部分にはバルーン90が設けられている。当該電気キャリパバルーンカテーテル211を使用する場合は、当該バルーン90の表面には血管内に装着すべきステント95を挿入する。絶縁筐体1の他方の端部からは、電気計測部1020(図1参照)に接続された外部導出ケーブル1019(図1参照)が、外部導出ケーブル鞘4の中に封止されている。また、バルーン用の気体または液体を搬送供給するパイプが、外部導出ケーブル鞘4の中にまた絶縁筐体1の中にも封入されている。なお、当該パイプは、外部導出ケーブルとは異なる鞘に封入されていても良い。各電極と絶縁筐体1の表面はほぼ同一の円筒表面を形成している。電極の縁でのエッジ効果を防ぐためである。また、電気キャリパバルーンカテーテル211を血管に円滑に導入するために、バルーン90は、その収縮時に、絶縁筐体1の表面とはほぼ同一の円筒表面を形成している。 More specifically, the insulating casing 1 is provided with a pair of current electrodes 5 and 6, and two sets of voltage detection electrodes 71, 81 and 72, 82 are provided therebetween. A balloon 90 is provided in a portion from the current electrode 5 to one end portion of the insulating housing 1. When the electric caliper balloon catheter 211 is used, a stent 95 to be mounted in the blood vessel is inserted on the surface of the balloon 90. An external lead-out cable 1019 (see FIG. 1) connected to the electrical measurement unit 1020 (see FIG. 1) is sealed in the external lead-out cable sheath 4 from the other end of the insulating housing 1. A pipe for supplying and supplying a gas or liquid for the balloon is enclosed in the outer lead-out cable sheath 4 and also in the insulating housing 1. The pipe may be enclosed in a sheath different from the external lead-out cable. Each electrode and the surface of the insulating housing 1 form substantially the same cylindrical surface. This is to prevent an edge effect at the edge of the electrode. Further, in order to smoothly introduce the electric caliper balloon catheter 211 into the blood vessel, the balloon 90 forms a cylindrical surface that is substantially the same as the surface of the insulating housing 1 when contracted.
 図32に示す電気キャリパバルーンカテーテル211を使用するには、まず、上述の方法により、狭窄部位を特定する。そして、その場所における電気キャリパバルーンカテーテル211を、電圧検出電極81と72の中間点とステント95の長手方向の中間点とで決まる距離だけ、血管領域より引き抜く。次に、バルーン90をバルーン膨張用気体または液体を加圧注入することにより膨張させ、ステント95を当該狭窄部で拡張する。その後バルーン用気体または液体を減圧注出してバルーン90を縮小させ、当該拡張したステント95を、当該狭窄部に留置する。ステント95を停留後は、再度、当該電気キャリパバルーンカテーテル211をステント側に移動させ、上述した方法により、ステント装着部位を判定する。そのようにして特定したステント装着部位が、元の狭窄部位と一致することを、当該電気キャリパバルーンカテーテル211の血管内の導入距離で確認する。 32. To use the electric caliper balloon catheter 211 shown in FIG. 32, first, a stenosis site is specified by the method described above. Then, the electric caliper balloon catheter 211 at that location is pulled out of the blood vessel region by a distance determined by the midpoint between the voltage detection electrodes 81 and 72 and the midpoint in the longitudinal direction of the stent 95. Next, the balloon 90 is inflated by pressurizing and injecting balloon inflation gas or liquid, and the stent 95 is expanded at the narrowed portion. Thereafter, the balloon gas or liquid is discharged under reduced pressure to reduce the balloon 90, and the expanded stent 95 is placed in the stenosis. After the stent 95 is stopped, the electric caliper balloon catheter 211 is moved again to the stent side, and the stent attachment site is determined by the method described above. It is confirmed by the introduction distance in the blood vessel of the electric caliper balloon catheter 211 that the identified stent mounting site matches the original stenosis site.
 このような電気キャリパカテーテル211を使用するについては、血管造影剤も不要または最少量であるため、患者の負担が少なく、図28から図31に示すダイアグラムを使用するため、医師は、時間的には連続して、狭窄部の発見、判断、決定ができるとともにステント装着部位の確認も同様にできる。この連続リアルタイム性により、利便性と、患者に対する安全性とを、格段に向上させることができる。 When using such an electric caliper catheter 211, since the angiographic agent is unnecessary or the minimum amount, the burden on the patient is small, and the diagrams shown in FIGS. 28 to 31 are used. Can continuously find, judge, and determine the stenosis, as well as confirm the stent attachment site. With this continuous real-time property, convenience and patient safety can be significantly improved.
 図33は、巻き線で形成された電極構造の一例を示す電気キャリパ212を示している。電気キャリパバルーカテーテルであっても、同様な電極構造を採用することができる。 FIG. 33 shows an electric caliper 212 showing an example of an electrode structure formed by windings. A similar electrode structure can be adopted even for an electric caliper catheter.
 本発明に係る電気キャリパまたは電気キャリパバルーンカテーテルにおいて、絶縁筐体1の径が小さくなると、2つの部材である電極と外部導出ケーブルとを独立に形成し電気的に接続することは困難となる。図33に示す電極構造は、電極と外部導出ケーブルを構成する導電線とを一体化して、全てを外部導出ケーブルで作成するものである。 In the electric caliper or the electric caliper balloon catheter according to the present invention, when the diameter of the insulating casing 1 is reduced, it is difficult to form and electrically connect two members, the electrode and the external lead-out cable independently. In the electrode structure shown in FIG. 33, the electrode and the conductive wire constituting the external lead-out cable are integrated, and all are formed by the external lead-out cable.
 すなわち、絶縁筐体1は円筒形状であって、その表面に小さな開口501,502,711,712,811,812,721,722,821,822が穿たれている。隣り合う2つの開口を利用して、一方の開口からは複数の絶縁塗料被服を有する単線導電線を束ねて構成された導電線束41の1本単線導電線が外部に引き出され、絶縁筐体1の表面に密にかつ一層分だけ巻かれて、その表面が電極を形成する。たとえば、電流電極5は導電線束41の中の1本の単線導電線を開口502から引き出し、絶縁筐体1の表面に巻き、当該単線導電線はその端部を開口501に差し込むことにより形成する。その後、単線導電線の表面の絶縁被覆を、研磨または剥離剤により除去することにより完成する。 That is, the insulating housing 1 has a cylindrical shape, and small openings 501, 502, 711, 712, 811, 812, 721, 722, 821, 822 are formed on the surface thereof. Using one adjacent opening, one single-wire conductive wire of a conductive wire bundle 41 configured by bundling single-wire conductive wires having a plurality of insulating coatings is drawn out from one of the openings, and the insulating housing 1 The surface is densely wound by one layer, and the surface forms an electrode. For example, the current electrode 5 is formed by drawing one single-wire conductive wire in the conductive wire bundle 41 from the opening 502 and winding it around the surface of the insulating housing 1, and inserting the end of the single-wire conductive wire into the opening 501. . Thereafter, the insulating coating on the surface of the single-wire conductive wire is completed by removing with a polishing or stripping agent.
 しかし、このような構造では、電極は、単線導電線の直径分だけ絶縁筐体1の表面から突出した形状となる。そうすると、電極のエッジ効果が大きくなり、絶縁筐体1の表面付近を流れる所謂表面電流が大きくなり、電圧検出電極により検知される電圧の狭窄部位の径の大きさに対する応答は悪くなる。この問題を解決するためには、電極となるべき単線導電線を絶縁筐体1に埋込んだ構造の電気キャリパまたは電気キャリパバルーンカテーテル(以下では、これらを埋込み電極電気キャリパまたは埋込み電極電気キャリパバルーンカテーテルと呼ぶ)が必要である。 However, in such a structure, the electrode has a shape protruding from the surface of the insulating housing 1 by the diameter of the single-wire conductive wire. As a result, the edge effect of the electrode increases, so-called surface current flowing near the surface of the insulating housing 1 increases, and the response of the voltage detected by the voltage detection electrode to the diameter of the constricted portion becomes worse. In order to solve this problem, an electric caliper or electric caliper balloon catheter having a structure in which a single conductive wire to be an electrode is embedded in an insulating housing 1 (hereinafter referred to as an embedded electrode electric caliper or an embedded electrode electric caliper balloon). Called a catheter).
 図34および図35は、埋込み電極電気キャリパ213の製造方法を示す。図36は、埋込み電極電気キャリパ213における電極構造を示す。 34 and 35 show a method of manufacturing the embedded electrode electric caliper 213. FIG. 36 shows an electrode structure in the embedded electrode electric caliper 213.
 図34に示す製造方法において、絶縁筐体母材1aは、熱軟化性樹脂により作成される。導電線束41を成す1本の単線導電線511を、絶縁筐体1aの一方の端部から挿入し、開口502から外部に取り出す。単線導電線の開口502から外部に出た部分の絶縁被覆を化学的方法で剥ぐか、またはそのままにしておく。その後、当該単線導電線511を絶縁筐体1aに、他の開口をふさぐ位置まで一層分を巻く。その後、開口502に先端の鋭利な電極250を差し込む。このとき、電極250は、押しつけ圧力により、単線導電線511に電気的に導通する。絶縁被覆が単線導電線511に塗布されていても、電気的な導通は確保される。一方、単線導電線511の他の端部は、電気グリップ251により握持される。電極250および電気グリップ251には導電ケーブル252と253が繋がれ、それぞれに電流が流される。そうすると、単線導電線511は、その電気抵抗による発熱する。この時、単線導電線511を電気グリップ251により更に引っ張ると、単線導電線511は、絶縁筐体1aを熱により軟化させつつ、図35に示すように絶縁筐体1aの外皮の中に埋め込まれるように埋没する。その後、電気グリップ251側の単線導電線511を切断し、その切断端部を開口501に押し込む。その後、絶縁筐体母材1aに先端部1bを取り付け、埋込み電極電気キャリパ213を完成する。 In the manufacturing method shown in FIG. 34, the insulating housing base material 1a is made of a heat-softening resin. One single-wire conductive wire 511 forming the conductive wire bundle 41 is inserted from one end of the insulating housing 1a and taken out from the opening 502 to the outside. A portion of the insulating coating that goes out from the opening 502 of the single wire conductive wire is peeled off by a chemical method or left as it is. Thereafter, the single-wire conductive line 511 is wound further on the insulating casing 1a to a position where the other opening is blocked. Thereafter, the electrode 250 having a sharp tip is inserted into the opening 502. At this time, the electrode 250 is electrically connected to the single wire conductive line 511 by the pressing pressure. Even if the insulating coating is applied to the single-wire conductive wire 511, electrical continuity is ensured. On the other hand, the other end of the single wire conductive line 511 is held by the electric grip 251. Conductive cables 252 and 253 are connected to the electrode 250 and the electric grip 251, and a current flows through each of them. Then, the single wire conductive line 511 generates heat due to its electric resistance. At this time, when the single-wire conductive wire 511 is further pulled by the electric grip 251, the single-wire conductive wire 511 is embedded in the outer skin of the insulating housing 1 a as shown in FIG. 35 while the insulating housing 1 a is softened by heat. So buried. Thereafter, the single conductive wire 511 on the electric grip 251 side is cut, and the cut end portion is pushed into the opening 501. Thereafter, the tip end portion 1b is attached to the insulating housing base material 1a to complete the embedded electrode electric caliper 213.
 ここでは電気キャリパを例に説明したが、埋込み電極電気キャリパ213の電流電極5,6が対向する外部にバルーンを設けることにより、埋込み電極電気キャリパバルーンカテーテル(図示せず)を製造することができる。その製造方法は、埋込み電極電気キャリパ213と本質的には変わるところはない。 Although the electric caliper has been described as an example here, an embedded electrode electric caliper balloon catheter (not shown) can be manufactured by providing a balloon outside the electric electrodes 5 and 6 of the embedded electrode electric caliper 213 facing each other. . The manufacturing method is essentially the same as that of the embedded electrode electric caliper 213.
 なお、絶縁筐体1aについては、製造の始めの段階では、作業性を確保するために先端部はカットしたままの形状としているが、先端部1bの形成されたものでも良い。 In addition, as for the insulating housing 1a, at the initial stage of manufacture, the tip portion is formed in a cut shape in order to ensure workability, but the tip portion 1b may be formed.
 このようにして製造した埋込み電極電気キャリパや埋込み電極電気キャリパバルーンカテーテルでは、外部導出ケーブルを構成する導電線より電極を形成するため、電極と外部導出ケーブルを接続する工程が不要で、当該発明に係る電気キャリパ及び電極電気キャリパバルーンカテーテルについて、細いものを容易に実現することができる。 In the implanted electrode electric caliper and the implanted electrode electric caliper balloon catheter manufactured as described above, the electrode is formed from the conductive wire constituting the external lead-out cable. Therefore, the process of connecting the electrode and the external lead-out cable is unnecessary, and the present invention About such an electric caliper and an electrode electric caliper balloon catheter, a thin one can be easily realized.
 なお、本発明は上述の実施の形態に限定されるものではなく、実施段階では、その要旨を逸脱しない範囲で、構成要素を変形して具体化できる。また、上述の実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の実施の形態とすることもできる。たとえば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施の形態にわたる構成要素を適宜組み合わせてもよい。 In addition, this invention is not limited to the above-mentioned embodiment, In the implementation stage, it can embody by modifying a component in the range which does not deviate from the summary. Various embodiments can be made by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
1    絶縁筐体
1a   絶縁筐体母材
1b   先端部
2    防護パイプ2
3    係合部
4    外部導出ケーブル鞘
5,6,1012,1013  電流電極
7,8  電圧検出電極
9    開口
11   溶液
12   外部絶縁壁
30   電気計測部
31   電流電源
32   電圧測定器
41   導電線束
50,51,52,56,60,61,62  電流電極
71,72,73,74,81,82,83,84,71a,72a,81a,82a,702,703,704,1014,1015,1016  電圧検出電極
90   バルーン
95   ステント
201,202,203,204,205,206,207,208,209,210、212  電気キャリパ
211  電気キャリパバルーンカテーテル
213  埋込み電極電気キャリパ
250  電極
251  電気グリップ
252,253  導電ケーブル
310  電流電源回路
311  交流信号発生器
312、313,321  電圧変換器
316,322,324,340,341,342,344,346,348,410,411  抵抗
315,323,343,345,347,418,419  演算増幅器
317,325,349,350,351  検波器
320  電圧測定器回路
326  同期信号発生器
327  同期検波器
328  フィルタ
330  電圧測定器回路
331,332,333,334,335,336,414,415,416  コンデンサ
337,338,339  電圧変換器
417  ダイオード
421  低域通過回路
501,502,711,712,811,812,721,722,821,822  開口
511  単線導電線
1000  検査対象空間
1010  電気計測センサ
1011  絶縁筐体
1017  導電線
1018  外部導出ケーブル鞘
1019  外部導出ケーブル
1020  電気計測部
1023  アナログ・ディジタル変換器
1030  表示装置
1022  電圧検出部
1023  アナログ・ディジタル変換器
1024  演算処理部
1025  画像生成処理部
1 Insulating housing 1a Insulating housing base material 1b Tip 2 Protection pipe 2
3 Engagement section 4 External lead-out cable sheaths 5, 6, 1012 and 1013 Current electrodes 7 and 8 Voltage detection electrode 9 Opening 11 Solution 12 External insulating wall 30 Electrical measurement section 31 Current power supply 32 Voltage measuring instrument 41 Conductive wire bundles 50 and 51, 52, 56, 60, 61, 62 Current electrodes 71, 72, 73, 74, 81, 82, 83, 84, 71a, 72a, 81a, 82a, 702, 703, 704, 1014, 1015, 1016 Voltage detection electrode 90 Balloon 95 Stent 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212 Electric caliper 211 Electric caliper balloon catheter 213 Implanted electrode Electric caliper 250 Electrode 251 Electric grip 252 253 Conductive cable 310 Current power supply circuit 311 AC signal generation 312, 313, 321 Voltage converters 316, 322, 324, 340, 341, 342, 344, 346, 348, 410, 411 Resistors 315, 323, 343, 345, 347, 418, 419 operational amplifiers 317, 325 349, 350, 351 Detector 320 Voltage measuring circuit 326 Synchronous signal generator 327 Synchronous detector 328 Filter 330 Voltage measuring circuit 331, 332, 333, 334, 335, 336, 414, 415, 416 Capacitors 337, 338, 339 Voltage converter 417 Diode 421 Low-pass circuit 501, 502, 711, 712, 811, 812, 721, 722, 821, 822 Opening 511 Single wire conductive wire 1000 Inspection object space 1010 Electrical measurement sensor 1011 Insulating housing 1017 Conductive wire 1 018 External cable sheath 1019 External cable 1020 Electrical measurement unit 1023 Analog / digital converter 1030 Display device 1022 Voltage detection unit 1023 Analog / digital converter 1024 Arithmetic processing unit 1025 Image generation processing unit

Claims (27)

  1.  導電性の溶液で満たされた検査対象空間に挿通される電気計測センサと、
     上記電気計測センサに電流を供給する電流供給源と、
     上記電気計測センサの電圧を検出する電圧検出手段と、
     を備え、
     上記電気計測センサは、少なくとも表面が絶縁材料からなりかつ実質的に円筒形状をした絶縁筐体と、上記絶縁筐体の表面の上記円筒形状の軸方向に離れた位置に形成されている2つの電流電極と、上記絶縁筐体の表面の上記2つの電流電極の間に形成されている3以上の電圧検出電極と、上記2つの電流電極と上記3以上の電圧検出電極とに接続され上記検査対象空間の外部に導出する導電ケーブルと、上記導電ケーブルを封入する鞘と、を有し、
     上記電流供給源は、上記導電ケーブルを介して上記2つの電流電極間に接続され、
     上記電圧検出手段は、上記検査対象空間の内径の影響に応じて変化する電圧であって上記3以上の電圧検出電極間に生じている2以上の電圧を検出するように、上記導電ケーブルを介して上記3以上の電圧検出電極に接続されている
     ことを特徴とする内径検査装置。
    An electrical measurement sensor inserted into a space to be inspected filled with a conductive solution;
    A current supply source for supplying a current to the electrical measurement sensor;
    Voltage detection means for detecting the voltage of the electrical measurement sensor;
    With
    The electric measurement sensor includes an insulating housing having at least a surface made of an insulating material and having a substantially cylindrical shape, and two cylindrical electrodes formed on the surface of the insulating housing at positions separated in the axial direction of the cylindrical shape. A current electrode; three or more voltage detection electrodes formed between the two current electrodes on the surface of the insulating casing; and the inspection connected to the two current electrodes and the three or more voltage detection electrodes. A conductive cable led out of the target space, and a sheath enclosing the conductive cable;
    The current supply source is connected between the two current electrodes via the conductive cable,
    The voltage detection means is connected via the conductive cable so as to detect two or more voltages generated according to the influence of the inner diameter of the inspection target space and occurring between the three or more voltage detection electrodes. The inner diameter inspection apparatus is connected to the three or more voltage detection electrodes.
  2.  請求項1記載の内径検査装置において、
     前記電圧検出手段は、前記電圧検出電極のうち互いに隣り合う2つの電極からなる電極組ごとに電圧を測定する電圧測定器を有する
     ことを特徴とする内径検査装置。
    The inner diameter inspection apparatus according to claim 1,
    The internal diameter inspection apparatus, wherein the voltage detection unit includes a voltage measuring device that measures a voltage for each electrode set including two adjacent electrodes among the voltage detection electrodes.
  3.  請求項1記載の内径検査装置において、
     前記電圧検出手段は、前記電圧検出電極のうち互いに隣り合う2つの電極ごとに一方の電極を共有してなる電極組の電圧を測定する電圧測定器を有する
     ことを特徴とする内径検査装置。
    The inner diameter inspection apparatus according to claim 1,
    The voltage detecting means includes a voltage measuring device that measures a voltage of an electrode set in which one electrode is shared for every two adjacent electrodes among the voltage detecting electrodes.
  4.  請求項1記載の内径検査装置において、
     前記電流供給源は交流電流源であり、
     前記電圧検出手段は、上記2以上の電圧が入力され電気的絶縁と電圧変換を行う変成器と、この変成器の出力電圧を増幅する電圧増幅器と、この電圧増幅器の出力を検波する検波器と有する
     ことを特徴とする内径検査装置。
    The inner diameter inspection apparatus according to claim 1,
    The current supply source is an alternating current source;
    The voltage detecting means includes a transformer that receives the two or more voltages and performs electrical insulation and voltage conversion, a voltage amplifier that amplifies the output voltage of the transformer, and a detector that detects the output of the voltage amplifier; An inner diameter inspection apparatus characterized by comprising:
  5.  請求項1記載の内径検査装置において、
     電圧検出対象となる電圧検出電極と前記変成器との間には、低周波ノイズを遮断するコンデンサが挿入されている
     ことを特徴とする内径検査装置。
    The inner diameter inspection apparatus according to claim 1,
    An inner diameter inspection apparatus, wherein a capacitor for blocking low-frequency noise is inserted between a voltage detection electrode to be a voltage detection target and the transformer.
  6.  請求項1記載の内径検査装置において、
     前記電流供給源から前記電流電極に供給される電流を測定する電流測定手段と、
     前記電圧検出手段により得られる2以上の電圧値と上記電流測定手段により得られる電流値とから、上記2以上の電圧値に対応する2以上の見かけの抵抗値を演算する演算手段と、
     上記2以上の見かけの抵抗値を並べた画像を生成する画像生成手段と、
     をさらに備えることを特徴とする内径検査装置。
    The inner diameter inspection apparatus according to claim 1,
    Current measuring means for measuring a current supplied from the current supply source to the current electrode;
    A computing means for computing two or more apparent resistance values corresponding to the two or more voltage values from two or more voltage values obtained by the voltage detecting means and a current value obtained by the current measuring means;
    Image generating means for generating an image in which the two or more apparent resistance values are arranged;
    An inner diameter inspection apparatus further comprising:
  7.  請求項6記載の内径検査装置において、
     前記画像生成手段は、前記2以上の見かけの抵抗値の互いの大小関係を前記3以上の電圧検出電極の位置に対応させて比較できる抵抗比較画像を生成し、前記検査対象空間領域に生じている塞栓部を上記抵抗比較画像により示す
     ことを特徴とする内径検査装置。
    The inner diameter inspection apparatus according to claim 6,
    The image generation means generates a resistance comparison image that can compare the magnitude relationship between the two or more apparent resistance values in correspondence with the positions of the three or more voltage detection electrodes, and is generated in the inspection target space region. An inner diameter inspection device characterized by showing the embolus portion by the resistance comparison image.
  8.  請求項7記載の内径検査装置において、
     前記画像生成手段は、
     前記演算手段により演算された2つの見かけの抵抗値を処理し、
     前記3以上の電圧検出電極のうち上記2つの見かけの抵抗値を与える2つの電極組について、上記2つの見かけの抵抗値のうち相対的に大きい抵抗値を与える電極組の方向に前記電気計測センサが移動し、当該電極組の見かけの抵抗値が最大値となった後に上記2つの見かけの抵抗値の値が等しくなったときに、上記2つの電極組の中点に狭窄部が存在するものとして、前記抵抗値比較画像を生成する
     ことを特徴とする内径検査装置。
    The inner diameter inspection device according to claim 7,
    The image generating means includes
    Processing two apparent resistance values computed by the computing means;
    Among the three or more voltage detection electrodes, for the two electrode sets that give the two apparent resistance values, the electric measurement sensor in the direction of the electrode set that gives a relatively large resistance value among the two apparent resistance values Moves, and when the apparent resistance value of the electrode set becomes the maximum value and the values of the two apparent resistance values become equal, a constriction is present at the midpoint of the two electrode sets. As an inner diameter inspection device, the resistance value comparison image is generated.
  9.  請求項7記載の内径検査装置において、
     前記画像生成手段は、
     前記演算手段により演算された3つの見かけの抵抗値について処理し、
     前記3以上の電圧検出電極のうち上記3つの見かけの抵抗値を与える3つの電極組について、上記3つの見かけの抵抗値のうち相対的に大きい抵抗値を与える電極組の方向に前記電気計測センサが移動し、当該電極組の見かけの抵抗値が最大値となった後に、上記3つの電極組の中央の電極組に対して求められる見かけの抵抗値が最大となるときに、上記中央の電極組の中点に狭窄部が存在するものとして、前記抵抗値比較画像を生成する
     ことを特徴とする内径検査装置。
    The inner diameter inspection device according to claim 7,
    The image generating means includes
    Processing three apparent resistance values computed by the computing means;
    Among the three or more voltage detection electrodes, for the three electrode sets that give the three apparent resistance values, the electric measurement sensor in the direction of the electrode set that gives a relatively large resistance value among the three apparent resistance values When the apparent resistance value required for the central electrode set of the three electrode sets becomes the maximum after the apparent resistance value of the electrode set reaches the maximum value, the central electrode The resistance value comparison image is generated assuming that a stenosis exists at the midpoint of the set.
  10.  請求項7記載の内径検査装置において、
     前記電気計測センサの前記絶縁筐体には、パイプを介して供給される気体または液体により膨張または収縮するバルーンが設けられ、
     前記画像生成手段は、前記検査対象空間領域に生じている塞栓部を前記抵抗値比較画像により示すことで、上記バルーンを膨張または収縮させるべき位置を示す
     ことを特徴とする内径検査装置。
    The inner diameter inspection device according to claim 7,
    The insulating housing of the electrical measurement sensor is provided with a balloon that expands or contracts by gas or liquid supplied through a pipe,
    The inner diameter inspection apparatus characterized in that the image generating means indicates a position where the balloon should be inflated or deflated by showing the embolus portion generated in the inspection target space region by the resistance value comparison image.
  11.  請求項10記載の内径検査装置において、
     前記バルーンには、前記バルーンを膨張させることで弾性限界以上に広げられるステントが取り付けられ、
     前記画像生成手段は、前記電気計測センサが血管に挿通された状態で、前記検査対象空間領域に生じている塞栓部を前記抵抗値比較画像により示すことで、上記ステントが装着されるべき血管の位置を示す
    The inner diameter inspection apparatus according to claim 10,
    The balloon is attached with a stent that is expanded beyond the elastic limit by inflating the balloon,
    The image generation means indicates the embolized portion generated in the examination target space region with the resistance comparison image in a state where the electrical measurement sensor is inserted into the blood vessel, so that the blood vessel to which the stent is to be attached is displayed. Indicate position
  12.  請求項6記載の内径検査装置において、
     前記2以上の電圧値は前記検査対象空間の導電性による影響に応じて変化し、
     前記画像生成手段は、前記2以上の見かけの抵抗値の互いの大小関係を前記3以上の電圧検出電極の位置に対応させて比較できる抵抗値比較画像を生成し、前記検査対象空間のうち他の部分と導電性が異なる部分を上記抵抗値比較画像により示す
     ことを特徴とする内径検査装置。
    The inner diameter inspection apparatus according to claim 6,
    The two or more voltage values change according to the influence of the conductivity of the inspection object space,
    The image generation means generates a resistance value comparison image that can compare the magnitude relationship of the two or more apparent resistance values in correspondence with the positions of the three or more voltage detection electrodes, An inner diameter inspection apparatus characterized in that a portion having conductivity different from that of the portion is indicated by the resistance value comparison image.
  13.  請求項12記載の内径検査装置において、
     前記検査対象空間は、内部にステントが装着された血管であり、
     前記画像生成手段は、
     前記演算手段により演算された2つの見かけの抵抗値について処理し、
     前記3以上の電圧検出電極のうち上記2つの見かけの抵抗値を与える2つの電極組について、上記2つの見かけの抵抗値のうち相対的に小さい抵抗値を与える電極組の方向に前記電気計測センサが移動し、当該電極組の見かけの抵抗値が最小値となった後に上記2つの見かけの抵抗値の値が等しくなったときに、上記2つの電極組の中点にステントが存在するものとして、前記抵抗値比較画像を生成する
     ことを特徴とする内径検査装置。
    The inner diameter inspection device according to claim 12,
    The space to be examined is a blood vessel in which a stent is mounted,
    The image generating means includes
    Processing two apparent resistance values calculated by the calculation means;
    Among the three or more voltage detection electrodes, for the two electrode sets that give the two apparent resistance values, the electric measurement sensor in the direction of the electrode set that gives a relatively small resistance value among the two apparent resistance values Is moved, and when the apparent resistance value of the electrode set becomes the minimum value and the values of the two apparent resistance values become equal, a stent is present at the midpoint of the two electrode sets. The resistance value comparison image is generated.
  14.  請求項12記載の内径検査装置において、
     前記検査対象空間は、内部にステントが装着された血管であり、
     前記表示処理手段は、
     前記演算手段により演算された3つの見かけの抵抗値について処理し、
     前記3以上の電圧検出電極のうち上記3つの見かけの抵抗値を与える3つの電極組について、上記3つの見かけの抵抗値のうち相対的に小さい抵抗値を与える電極組の方向に前記電気計測センサが移動し、当該電極組の見かけの抵抗値が最小値となった後に、上記3つの電極組の中央の電極組に対して求められる見かけの抵抗値が最小となるときに、上記中央の電極組の中点にステントが装着されているものとして、前記抵抗値比較画像を生成する
     ことを特徴とする内径検査装置。
    The inner diameter inspection device according to claim 12,
    The space to be examined is a blood vessel in which a stent is mounted,
    The display processing means includes
    Processing three apparent resistance values computed by the computing means;
    Among the three or more voltage detection electrodes, for the three electrode sets that give the three apparent resistance values, the electric measurement sensor in the direction of the electrode set that gives a relatively small resistance value among the three apparent resistance values When the apparent resistance value required for the central electrode set of the three electrode sets becomes the minimum after the apparent resistance value of the electrode set reaches the minimum value, the central electrode The resistance comparison image is generated on the assumption that a stent is mounted at the midpoint of the set.
  15.  少なくとも表面が絶縁材料からなりかつ実質的に円筒形状をした絶縁筐体と、
     上記絶縁筐体の表面の上記円筒形状の軸方向の離れた位置に形成されている2つの電流電極と、
     上記絶縁筐体の表面の上記2つの電流電極の間に形成されている3以上の電圧検出電極と、
     外部から上記2の電流電極間に電流を供給するとともに、上記3以上の電圧検出電極間に生じる2以上の電圧を外部に取り出す導電ケーブルと、
     上記導電ケーブルを封入する鞘と、
     を備えることを特徴とする電気計測センサ。
    An insulating housing having at least a surface made of an insulating material and having a substantially cylindrical shape;
    Two current electrodes formed at positions separated from each other in the cylindrical axial direction on the surface of the insulating housing;
    Three or more voltage detection electrodes formed between the two current electrodes on the surface of the insulating housing;
    A conductive cable for supplying a current between the two current electrodes from the outside and taking out two or more voltages generated between the three or more voltage detection electrodes;
    A sheath enclosing the conductive cable;
    An electrical measurement sensor comprising:
  16.  請求項1及び請求項15記載の電気計測センサにおいて、
     前記2つの電流電極の一方が、前記絶縁筐体の前記導電ケーブルが取り付けられている側と反対側の前記絶縁筐体の先端部に形成されている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    One of the two current electrodes is formed at the tip of the insulating casing opposite to the side where the conductive cable is attached to the insulating casing. Measuring sensor.
  17.  請求項1及び請求項15記載の電気計測センサにおいて、
     前記2つの電流電極および前記3以上の電圧検出電極からなる電極群が、上記軸方向に複数形成されている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    An inner diameter inspection apparatus and an electrical measurement sensor, each comprising a plurality of electrode groups each including the two current electrodes and the three or more voltage detection electrodes in the axial direction.
  18.  請求項1及び請求項15記載の電気計測センサにおいて、
     前記2つの電流電極に加え、前記2つの電流電極の間であって、前記2つの電流電極の各々と組になって前記電圧検出電極を挟む位置に、第3の電流電極が形成されている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    In addition to the two current electrodes, a third current electrode is formed between the two current electrodes at a position between each of the two current electrodes and sandwiching the voltage detection electrode. An inner diameter inspection device and an electric measurement sensor respectively characterized by the above.
  19.  請求項1及び請求項15記載の電気計測センサにおいて、
     前記2つの電流電極および前記3以上の電圧検出電極の少なくとも一部は金属電極部材により形成されている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    At least a part of the two current electrodes and the three or more voltage detection electrodes are formed of a metal electrode member.
  20.  請求項19記載の内径検査装置及び電気計測センサにおいて、
    前記電気計測センサは、
     前記金属電極部材が、前記絶縁性筐体に埋め込まれて、前記絶縁性筐体の表面とほぼ同一の表面を形成している
     電気計測センサであることをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the inner diameter inspection apparatus and electrical measurement sensor according to claim 19,
    The electrical measurement sensor is
    An inner diameter inspection apparatus and an electric measurement, wherein the metal electrode member is an electric measurement sensor embedded in the insulating casing to form a surface substantially the same as the surface of the insulating casing. Sensor.
  21.  請求項1及び請求項15記載の電気計測センサにおいて、
     前記2つの電流電極および前記3以上の電圧検出電極の少なくとも一部は、前記導電ケーブルを構成する導電線が前記絶縁筐体の表面に巻きつけられて形成されている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    At least a part of the two current electrodes and the three or more voltage detection electrodes are formed by winding a conductive wire constituting the conductive cable around the surface of the insulating casing. Inspection device and electrical measurement sensor.
  22.  請求項21記載の内径検査装置及び電気計測センサにおいて、
    前記電気計測センサは、
     前記2つの電流電極および前記3以上の電圧検出電極の少なくとも一部を形成する前記導電線が、前記絶縁性筐体に埋め込まれて、前記絶縁性筐体の表面とほぼ同一の表面を形成している
     電気計測センサであることをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the inner diameter inspection apparatus and electrical measurement sensor according to claim 21,
    The electrical measurement sensor is
    The conductive wires forming at least a part of the two current electrodes and the three or more voltage detection electrodes are embedded in the insulating casing to form a surface substantially the same as the surface of the insulating casing. An inner diameter inspection device and an electric measurement sensor, each characterized by being an electric measurement sensor.
  23.  請求項1及び請求項15記載の電気計測センサにおいて、
    前記2つの電流電極および前記3以上の電圧検出電極の少なくとも一部は、前記導電ケーブルを構成する導電線の端面が前記絶縁筐体の表面に露出して形成されている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    At least a part of the two current electrodes and the three or more voltage detection electrodes are formed such that end surfaces of conductive wires constituting the conductive cable are exposed on the surface of the insulating housing. Inner diameter inspection device and electrical measurement sensor.
  24.  請求項1及び請求項15記載の電気計測センサにおいて、
     前記鞘が前記絶縁筐体と一体となっている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    An inner diameter inspection device and an electric measurement sensor, wherein the sheath is integrated with the insulating casing.
  25.  請求項1及び請求項15記載の電気計測センサにおいて、
     前記絶縁筐体は、その内部が前記絶縁筐体とは異なる絶縁材料で充填されている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    The inner casing is filled with an insulating material different from that of the insulating casing. An inner diameter inspection device and an electric measurement sensor, respectively.
  26.  請求項1及び請求項15記載の電気計測センサにおいて、
     前記絶縁筐体には、パイプを介して供給される気体または液体により膨張または収縮するバルーンが設けられている
     ことをそれぞれ特徴とする内径検査装置及び電気計測センサ。
    In the electric measurement sensor according to claim 1 and claim 15,
    An inner diameter inspection device and an electrical measurement sensor, respectively, characterized in that the insulating casing is provided with a balloon that is inflated or contracted by a gas or a liquid supplied via a pipe.
  27.  請求項22記載の内径検査装置及び電気計測センサを製造する方法において、
     前記絶縁筐体は熱軟化性樹脂性であり、
     ひとつの電極に対して前記絶縁筐体の軸方向に離れた位置に第1および第2の開穴を設ける第1の工程と、
     前記導電ケーブルの該当する導電線を上記第1の開穴から外部に引き出し、引き出された導電線を上記第2の開穴を塞ぐ位置まで前記絶縁筐体に一層分を巻きつける第2の工程と、
     上記第1の開穴に導電性の第1の固定手段を差し込んで上記導電線との電気的接続を確保した上で上記導電線を固定する第3の工程と、
     上記第2の工程において巻きつけた上記導電線の端部に導電性の第2の固定手段を接続して上記導電線に張力を与えた状態で固定する第4の工程と、
     上記第1の固定手段と上記第2の固定手段との間に電流を流してその間の導電線を加熱することで上記導電線を前記絶縁筐体に埋め込む第5の工程と、
     上記導電線の上記第2の固定手段が接続されている側を上記第2の固定手段から外して、上記第2の開穴に挿入する第6の工程と、
     を有することをそれぞれ特徴とする内径検査装置及び電気計測センサの製造方法。
    In the method for manufacturing an inner diameter inspection apparatus and an electric measurement sensor according to claim 22,
    The insulating casing is heat-softening resinous,
    A first step of providing first and second apertures at positions spaced apart in the axial direction of the insulating housing with respect to one electrode;
    A second step of drawing a corresponding conductive wire of the conductive cable from the first opening to the outside and winding the drawn conductive wire one layer around the insulating casing to a position where the second opening is blocked. When,
    A third step of fixing the conductive wire after inserting a conductive first fixing means into the first opening to ensure electrical connection with the conductive wire;
    A fourth step of connecting a conductive second fixing means to the end of the conductive wire wound in the second step and fixing the conductive wire in a tensioned state;
    A fifth step of embedding the conductive wire in the insulating housing by flowing a current between the first fixing unit and the second fixing unit to heat the conductive wire therebetween;
    A sixth step of removing the side of the conductive wire to which the second fixing means is connected from the second fixing means and inserting it into the second opening;
    A method for manufacturing an inner diameter inspection device and an electric measurement sensor, respectively.
PCT/JP2011/073994 2010-10-19 2011-10-19 Internal diameter examination device, electrical measurement sensor, and production method for electrical measurement sensor WO2012053531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539741A JPWO2012053531A1 (en) 2010-10-19 2011-10-19 Inner diameter inspection device, electric measurement sensor, and method of manufacturing electric measurement sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-234770 2010-10-19
JP2010234770 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053531A1 true WO2012053531A1 (en) 2012-04-26

Family

ID=45975242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073994 WO2012053531A1 (en) 2010-10-19 2011-10-19 Internal diameter examination device, electrical measurement sensor, and production method for electrical measurement sensor

Country Status (2)

Country Link
JP (1) JPWO2012053531A1 (en)
WO (1) WO2012053531A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09499A (en) * 1995-06-22 1997-01-07 Terumo Corp Guide wire
JP2006518638A (en) * 2003-02-21 2006-08-17 エレクトロ−キャット リミテッド ライアビリティ カンパニー System and method for measuring cross-sectional area and pressure gradient of an organ having a lumen
JP2006247344A (en) * 2005-03-11 2006-09-21 Si Medico Tec:Kk Guide wire with electrodes for medical use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09499A (en) * 1995-06-22 1997-01-07 Terumo Corp Guide wire
JP2006518638A (en) * 2003-02-21 2006-08-17 エレクトロ−キャット リミテッド ライアビリティ カンパニー System and method for measuring cross-sectional area and pressure gradient of an organ having a lumen
JP2006247344A (en) * 2005-03-11 2006-09-21 Si Medico Tec:Kk Guide wire with electrodes for medical use

Also Published As

Publication number Publication date
JPWO2012053531A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
US20170332945A1 (en) Methods and systems for determining vascular bodily lumen information and guiding medical devices
JP6114853B2 (en) Multifunctional guide wire assembly and system for anatomical and functional parameter analysis
US8494794B2 (en) Methods and systems for determining vascular bodily lumen information and guiding medical devices
US6926674B2 (en) Combined pressure-volume sensor and guide wire assembly
JP2579570B2 (en) Probe system
JP4848369B2 (en) Apparatus and method for operating edema detection
US20140142398A1 (en) Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters
EP1438921A1 (en) Device for detecting a position and an orientation of a medical insertion tool inside a body cavity
JP2003525654A (en) Magnetic resonance imaging guidewire probe
JP2006187634A (en) Position detection based on current
CN106132293A (en) There is the intravascular device of nuclear core line, the system and method formed by multiple material
Wan et al. Sensitivity study of an ultrasound coupled transrectal electrical impedance tomography system for prostate imaging
US20220167938A1 (en) Apparatus for vessel characterization
US20060173279A1 (en) Method for implementing a medical imaging examination procedure
US20170181660A1 (en) Methods to obtain cross-sectional areas within luminal organs using impedance
WO2012053531A1 (en) Internal diameter examination device, electrical measurement sensor, and production method for electrical measurement sensor
EP3763289A1 (en) Estimating contact angle between a catheter and tissue, and associated devices, systems and methods
JP2019010533A (en) Methods and systems for determining vascular lumen information and guiding medical devices
WO2009138934A1 (en) Method and system for detecting a fluid distribution in an object of interest
KR101093936B1 (en) Radiometric Breast Cancer Self-Detector Using the USB Interface and Apparatus and Method for Self-Detecting Breast Cancer
Dhawale et al. Volumetric intracoronary ultrasound: methods and validation
WO2002005715A1 (en) Cardiac magnetic field diagnosing apparatus by late ventricular potential and method of locating intramyocardial excitement uneven propagation portion
US20230190215A1 (en) Co-registration of intraluminal data to no contrast x-ray image frame and associated systems, device and methods
JP2005040353A (en) Blood flow velocity and blood flow measuring instrument
JP6634104B2 (en) Side branch detection device, side branch detection probe, side branch detection method, and program therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539741

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834370

Country of ref document: EP

Kind code of ref document: A1