WO2012051230A1 - Power management for remote antenna units in distributed antenna systems - Google Patents

Power management for remote antenna units in distributed antenna systems Download PDF

Info

Publication number
WO2012051230A1
WO2012051230A1 PCT/US2011/055861 US2011055861W WO2012051230A1 WO 2012051230 A1 WO2012051230 A1 WO 2012051230A1 US 2011055861 W US2011055861 W US 2011055861W WO 2012051230 A1 WO2012051230 A1 WO 2012051230A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
rau
consuming
powered
port
Prior art date
Application number
PCT/US2011/055861
Other languages
French (fr)
Inventor
Christian Heidler
Jonathan R Hull
John Kedziora
Michael Sauer
Wolfgang Schweiker
Original Assignee
Ccs Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP11781682.7A priority Critical patent/EP2628272A1/en
Priority to CN201180053270.3A priority patent/CN103329482B/en
Application filed by Ccs Technology, Inc. filed Critical Ccs Technology, Inc.
Publication of WO2012051230A1 publication Critical patent/WO2012051230A1/en
Priority to US13/860,017 priority patent/US9252874B2/en
Priority to US14/845,768 priority patent/US9419712B2/en
Priority to US15/228,375 priority patent/US10045288B2/en
Priority to US16/031,173 priority patent/US10425891B2/en
Priority to US16/536,271 priority patent/US10849064B2/en
Priority to US17/075,136 priority patent/US11178609B2/en
Priority to US17/088,276 priority patent/US11212745B2/en
Priority to US17/090,149 priority patent/US11224014B2/en
Priority to US17/523,380 priority patent/US11671914B2/en
Priority to US18/205,027 priority patent/US20230309013A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • RF antenna coverage areas also referred to as "antenna coverage areas.”
  • the antenna coverage areas are provided by remote antenna units in the distributed antenna system.
  • Remote antenna units can provide antenna coverage areas having radii in the range from a few meters up to twenty (20) meters as an example. If the antenna coverage areas provided each cover a small area, there are typically only a few users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide indoor distributed antenna system access to clients within the building or facility. It may also be desirable to employ optical fiber to distribute RF communications signals to provide an optical fiber-based distributed antenna system. Distribution of RF communications signals over optical fiber can include Radio-over-Fiber (RoF) distribution. Benefits of optical fiber include increased bandwidth.
  • RoF Radio-over-Fiber
  • Remote antenna units may contain power-consuming circuits and other components that are involved in processing RF communications signals.
  • remote antenna units provided in an optical-fiber based distributed antenna system may include electrical-to-optical (E/O) converters and optical-to-electrical (O/E) converters that require power to operate.
  • the E/O and O/E converters convert downlink optical RF communications signals to downlink electrical RF communications signals and uplink electrical RF communications signals to uplink optical RF communications signals, respectively.
  • Other power-consuming components may be included in the remote antenna unit.
  • a local power source can be provided at the remote antenna units to supply power to power-consuming components in the remote antenna units.
  • a remote power source can be provided that provides power over power lines routed to the remote antenna units.
  • the power lines may be provided in separate cabling or bundled in a hybrid cable with communications lines routed to the remote antenna units.
  • Embodiments disclosed in the detailed description include power management for a remote antenna unit(s) (RAUs) in a distributed antenna system, and related devices, systems, methods, and computer-readable media.
  • the distributed antenna system may distribute radio frequency (RF) communications signals to RAUs for communicating to client devices.
  • RF radio frequency
  • the distributed antenna system may be an optical fiber-based distributed antenna system.
  • Power can be managed for an RAU configured to power modules and devices that may require more power to operate than power available to the RAU.
  • the RAU may be configured to include power- consuming RAU modules to provide distributed antenna system-related services.
  • the RAU may be configured to provide power to external power- consuming devices through powered ports in the RAU.
  • the power- consuming RAU modules and/or external power-consuming devices may demand more power than is available at the RAU.
  • the power available at the RAU can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the RAU.
  • a power management device for remotely managing power consumed at an RAU in a distributed antenna system.
  • the power management device comprises a remote controller communicatively coupled to at least one RAU configured to provide power to at least one external power-consuming device connected to the at least one powered port.
  • the remote controller is configured to communicate with the at least one RAU to determine an available power budget for the at least one powered port.
  • the remote controller is also configured to communicate the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
  • a method of remotely managing power consumed at an RAU in a distributed antenna system includes communicating with at least one RAU configured to provide power to at least one external power- consuming device connected to the at least one powered port to determine an available power budget for the at least one powered port.
  • the method also includes communicating the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
  • a computer-readable medium stores one or more programs, the one or more programs comprising instructions, which when executed by a remote controller in a distributed antenna system and remotely located from an RAU, cause the remote controller to communicate with at least one RAU provided in a distributed antenna system to determine an available power budget for at least one powered port and provided in the at least one RAU configured to provide power to at least one external power- consuming device connected to the at least one powered port.
  • the instructions further cause the remote controller to communicate the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
  • an RAU for a distributed antenna system comprises at least one power-consuming RAU module.
  • the at least one power-consuming RAU module may be comprised of at least one of an RF communications module configured to provide RF communications services, and a digital data services (DDS) module configured to provide DDS.
  • the RAU further comprises at least one powered port configured to provide power to at least one external power-consuming device connected to the at least one powered port.
  • the RAU further comprises a controller configured to receive an available power budget for the at least one powered port from a remote controller in a distributed antenna system.
  • the RAU controller is further configured to enable power for the at least one powered port if the available power budget is sufficient to power the at least one external power-consuming device connected to the at least one powered port.
  • a method of managing power consumed at an RAU in a distributed antenna system comprises receiving an available power budget for at least one powered port configured to provide power to at least one external power-consuming device connected to the at least one powered port based on power required by at least one power-consuming RAU module.
  • the at least one power- consuming RAU module may be comprised of at least one of an RF communications module configured to provide RF communications services, and a digital data services (DDS) module configured to provide DDS.
  • the method further comprises enabling power for the at least one powered port if an available power budget is sufficient to power the at least one external power-consuming device connected to the at least one powered port.
  • a computer-readable medium stores one or more programs, the one or more programs comprising instructions, which when executed by an RAU controller in at least one RAU provided in a distributed antenna system, cause the RAU controller to receive an available power budget from a remote controller for at least one powered port in an RAU provided in a distributed antenna system, the RAU configured to provide power to at least one external power-consuming device connected to the at least one powered port based on power required by at least one power-consuming RAU module.
  • the instructions further cause the RAU controller to enable power for the at least one powered port if an available power budget is sufficient to power the at least one external power-consuming device connected to the at least one powered port.
  • FIG. 1 is a schematic diagram of an exemplary distributed antenna system
  • FIG. 3 is a partially schematic cut-away diagram of an exemplary building infrastructure in which the distributed antenna system in FIG. 1 can be employed;
  • FIG. 4 is a schematic diagram of another exemplary distributed antenna system
  • FIG. 5 is a schematic diagram of an exemplary embodiment of providing digital data services to RAUs in a distributed antenna system
  • FIG. 10 is a flowchart illustrating an exemplary power management process provided by the RAU to manage power at the RAU at initialization and when configuration changes are made to the RAU;
  • FIG. 12 is an exemplary digital data services (DDS) module that can be provided in the RAU to provide digital data services at the RAU; and
  • DDS digital data services
  • FIGS. 1-4 provide examples of distributed antenna systems, including those according to the embodiments described herein.
  • FIG. 1 is a schematic diagram of an exemplary distributed antenna system.
  • the distributed antenna system is an optical fiber-based distributed antenna system 10; however, other types of distributed antenna systems are also possible.
  • the optical fiber-based distributed antenna system 10 is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the RF range of the antenna coverage areas.
  • the optical fiber-based distributed antenna system 10 provides RF communications services (e.g., cellular services).
  • the optical fiber-based distributed antenna system 10 includes head-end equipment in the form of a head-end unit (HEU) 12, one or more remote antenna units (RAUs) 14, and an optical fiber 16 that optically couples the HEU 12 to the RAU 14.
  • HEU head-end unit
  • RAUs remote antenna units
  • the HEU 12 is configured to receive communications over downlink electrical RF communications signals 18D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14.
  • the HEU 12 is also configured to return communications received from the RAU 14, via uplink electrical RF communications signals 18U, back to the source or sources.
  • the optical fiber 16 includes at least one downlink optical fiber 16D to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEU 12.
  • the optical fiber-based distributed antenna system 10 has an antenna coverage area 20 that can be substantially centered about the RAU 14.
  • the antenna coverage area 20 of the RAU 14 forms an RF coverage area 21.
  • the HEU 12 is adapted to perform or to facilitate any one of a number of Radio-over-Fiber (RoF) applications, such as radio frequency identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service.
  • RFID radio frequency identification
  • WLAN wireless local-area network
  • cellular phone service Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example.
  • the client device 24 can be any device that is capable of receiving RF communications signals.
  • the client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF communications signals.
  • the HEU 12 includes an electrical-to-optical (E/O) converter 28.
  • the E/O converter 28 converts the downlink electrical RF communications signals 18D to downlink optical RF communications signals 22D to be communicated over the downlink optical fiber 16D.
  • the RAU 14 includes an optical-to -electrical (O/E) converter 30 to convert received downlink optical RF communications signals 22D back to electrical RF communications signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20.
  • O/E optical-to -electrical
  • the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20.
  • the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF communications signals representing the wireless RF communications to an E/O converter 34 in the RAU 14.
  • the E/O converter 34 converts the electrical RF communications signals into uplink optical RF communications signals 22U to be communicated over the uplink optical fiber 16U.
  • An O/E converter 36 provided in the HEU 12 converts the uplink optical RF communications signals 22U into uplink electrical RF communications signals, which can then be communicated as uplink electrical RF communications signals 18U back to a network or other source.
  • the HEU 12 in this embodiment is not able to distinguish the location of the client device 24 in this embodiment.
  • the optical fiber-based distributed antenna system 10 also includes a power supply 54 that provides an electrical power signal 56.
  • the power supply 54 is electrically coupled to the HEU 12 for powering the power- consuming elements therein.
  • an electrical power line 58 runs through the HEU 12 and over to the RAU 14 to power the O/E converter 30 and the E/O converter 34 in the converter pair 48, the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided.
  • the electrical power line 58 includes two wires 60 and 62 that carry a single voltage and that are electrically coupled to a DC power converter 64 at the RAU 14.
  • the optical fiber-based distributed antenna system 10 in this embodiment is configured to receive wireless RF communications signals and convert the RF communications signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14.
  • the optical fiber-based distributed antenna system 10 in this embodiment can be, for example, an indoor distributed antenna system (IDAS) to provide wireless service inside the building infrastructure 70.
  • IMS indoor distributed antenna system
  • These wireless signals can include cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, and combinations thereof, as examples.
  • the main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers 16D, 16U to and from the HEU 12.
  • the riser cable 84 may be routed through an interconnect unit (ICU) 85.
  • the ICU 85 may be provided as part of or separate from the power supply 54 in FIG. 2.
  • the ICU 85 may also be configured to provide power to the RAUs 14 via the electrical power line 58, as illustrated in FIG. 2 and discussed above, provided inside an array cable 87, or tail cable or home-run tether cable as other examples, and distributed with the downlink and uplink optical fibers 16D, 16U to the RAUs 14.
  • the main cable 82 can include one or more multi-cable (MC) connectors adapted to connect select downlink and uplink optical fibers 16D, 16U, along with an electrical power line, to a number of optical fiber cables 86.
  • MC multi-cable
  • a BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12.
  • a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage.
  • Each BTS serves a corresponding cell, and when a mobile client device enters the cell, the BTS communicates with the mobile client device.
  • Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell.
  • wireless repeaters or bi-directional amplifiers could also be used to serve a corresponding cell in lieu of a BTS.
  • radio input could be provided by a repeater or picocell as other examples.
  • the optical fiber-based distributed antenna system 10 in FIGS. 1-3 and described above provides point-to-point communications between the HEU 12 and the RAU 14.
  • Each RAU 14 communicates with the HEU 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications.
  • the RAU 14 is connected to a distinct downlink and uplink optical fiber pair connected to the HEU 12.
  • the downlink and uplink optical fibers 16U, 16D may be provided in a fiber optic cable.
  • Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable. For example, with reference to FIG.
  • FIG. 4 is a schematic diagram of another exemplary distributed antenna system 90.
  • the distributed antenna system 90 is an optical fiber-based distributed antenna system comprised of three main components.
  • One or more radio interfaces provided in the form of radio interface modules (RIMs) 92(1)-92(M) in this embodiment are provided in an HEU 94 to receive and process downlink electrical RF communications signals 96(1)-96(R) prior to optical conversion into downlink optical RF communications signals.
  • the processing of the downlink electrical RF communications signals 96(1)-96(R) can include any of the processing previously described above in the HEU 12 in FIG. 2.
  • the notations "1-R" and "1-M" indicate that any number of the referenced component, 1-R and 1-M, respectively, may be provided.
  • RIMs 92 may be provided in the HEU 94 that support any frequencies desired, including but not limited to US FCC and Industry Canada frequencies (824-849MHz on uplink and 869-894MHz on downlink), US FCC and Industry Canada frequencies (1850 - 1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110 - 2155 MHz on downlink), US FCC frequencies (698-716MHz and 776-787MHz on uplink and 728-746 MHz on downlink).
  • FIG. 5 is a schematic diagram of an exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from RF communications services to RAUs in an optical fiber-based distributed antenna system 120.
  • the optical fiber-based distributed antenna system 120 is described as including some components provided in the optical fiber-based distributed antenna system 10 of FIGS. 1-3. These common components are illustrated in FIG. 5 with common element numbers with FIGS. 1-3. However, note that the optical fiber-based distributed antenna system 120 could also employ other components, including those in the optical fiber-based distributed antenna system 90 in FIG. 4.
  • the DDS switch 127 may be configured to provide Gigabit (Gb) Ethernet digital data service as an example.
  • the DMCs 126 are configured to convert electrical digital signals to optical digital signals, and vice versa.
  • the DMCs 126 may be configured for plug and play installation (i.e., installation and operability without user configuration required) into the DDS controller 124.
  • the DMCs 126 may include Ethernet input connectors or adapters (e.g., RJ-45) and optical fiber output connectors or adapters (e.g., LC, SC, ST, MTP).
  • the DDS controller 124 (via the DMCs 126) in this embodiment is configured to convert downlink electrical digital signals (or downlink electrical digital data services signals) 128D over digital line cables 129 from the DDS switch 127 into downlink optical digital signals (or downlink optical digital data services signals) 130D that can be communicated over downlink optical fiber 135D to RAUs 14.
  • the DDS controller 124 (via the DMCs 126) is also configured to receive uplink optical digital signals 130U from the RAUs 14 via the uplink optical fiber 135U and convert the uplink optical digital signals 130U into uplink electrical digital signals 128U to be communicated to the DDS switch 127.
  • the digital data services can be provided over optical fiber as part of the optical fiber-based distributed antenna system 120 to provide digital data services in addition to RF communication services.
  • Client devices located at the RAUs 14 can access these digital data services and/or RF communications services depending on their configuration.
  • Exemplary digital data services include WLAN, Ethernet, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc.
  • Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10G) Ethernet.
  • downlink and uplink optical fibers 132D, 132U are provided in a fiber optic cable 134 that is interfaced to the ICU 85.
  • the ICU 85 provides a common point in which the downlink and uplink optical fibers 132D, 132U carrying digital optical signals can be bundled with the downlink and uplink optical fibers 16U, 16D carrying optical RF communications signals.
  • One or more of the fiber optic cables 134 also referenced herein as array cables 134, can be provided containing the downlink and uplink optical fibers 135D, 135U for RF communications services and digital data services to be routed and provided to the RAUs 14. Any combination of services or types of optical fibers can be provided in the array cable 134.
  • RAUs 14 can be connected to access units (AUs) 138, which may be access points (APs) or other devices supporting digital data services.
  • AUs 138 can also be connected directly to the HEU 12.
  • AUs 138 are illustrated, but the AUs 138 could be any other device supporting digital data services.
  • the AUs 138 provide access to the digital data services provided by the DDS switch 127.
  • the downlink and uplink optical fibers 135D, 135U carrying downlink and uplink optical digital signals 130D, 130U converted from downlink and uplink electrical digital signals 128D, 128U from the DDS switch 127 are provided to the AUs 138 via the array cables 134 and RAUs 14.
  • Digital data client devices can access the AUs 138 to access digital data services provided through the DDS switch 127.
  • the AUs 138 may also each include an antenna 140 to provide wireless access to digital data services provided through the DDS switch 127.
  • providing RF communications services and digital data services involves providing RF communications modules and DDS modules in the RAUs 14 and/or AUs 138 in the example of FIG. 5. These modules are power-consuming modules that require power to operate. Power distributed to the RAUs can also be used to provide access to power for DDS modules, as opposed to providing separate power sources for DDS modules and RF communications modules. For example, power distributed to the RAUs 14 in FIG. 5 by or through the ICUs 85 can also be used to provide power to the AUs 138 located at the RAUs 14 in the optical fiber- based distributed antenna system 120.
  • the ICUs 85 may be configured to provide power for both RAUs 14 and the AUs 138 over an electrical power line 142, as illustrated in FIG. 5.
  • the RAUs 14 and/or AUs 138 may also be configured with powered ports to provide power to external client devices connected to the powered ports, such as IEEE 802.3af Power-over- Ethernet (PoE) compatible devices as an example.
  • PoE Power-over- Ethernet
  • the power made available to the RAUs 14 and AUs 138 may not be sufficient to power all of the modules provided and external devices connected to the RAUs 14 and AUs 138.
  • embodiments disclosed below include power management for an RAU(s) in a distributed antenna system, and related devices, systems, methods, and computer-readable media.
  • Power can be managed for an RAU configured to power modules and devices that may require more power to operate than power available to the RAU.
  • the RAU may be configured to include power-consuming RAU modules to provide distributed antenna system-related services.
  • the RAU may be configured to provide power through powered ports in the RAU to external power-consuming devices.
  • the power- consuming RAU modules and/or external power-consuming devices may demand more power than is available at the RAU.
  • the power available at the RAU can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the RAU.
  • FIG. 6 is a schematic diagram of an exemplary RAU 14 configured with power-consuming components.
  • the RAU 14 is configured to receive power over a power line 150 routed to the RAU 14 from either a local power source or a remote power source to make power available for power-consuming components associated with the RAU 14.
  • the power line 150 may provide a voltage of between forty- eight (48) and sixty (60) Volts at a power rating of between eighty (80) to one hundred (100) Watts.
  • the RAU 14 includes an RF communications module 152 for providing RF communications services.
  • the RF communications module 152 requires power to operate in this embodiment and receives power from the power line 150. Power may be routed from the power line 150 directly to the RF communications module 152, or indirectly from another module.
  • the RF communications module 152 may include any of the previously referenced components to provide RF communications services, including O/E and E/O conversion.
  • the RAU 14 may also include a DDS module 154 to provide media conversion (e.g., O/E and E/O conversions) and route digital data services received from the DDS switch 127 in FIG. 5 to externally connected power- consuming devices (PDs) 156(1)-156(Q) configured to receive digital data services.
  • Power may be routed from the power line 150 to the DDS module 154 through the RF communications module 152 as one example, is provided to route power from the power line 150 to the DDS module 154.
  • the digital data services are routed by the DDS module 154 through communications ports 158(1)-158(Q) provided in the RAU 14.
  • the communications ports 158(1)-158(Q) may be RJ-45 connectors.
  • the communications ports 158(1)-158(Q) may be powered, meaning that a portion of the power from the power line 150 is provided to the powered communications ports 158(1)-158(Q).
  • PDs 156(1)-156(Q) configured to receive power through a powered communications port 158 can be powered from power provided to the RAU 14 when connected to the powered communications port 158.
  • a separate power source is not required to power the PDs 156(1)-156(Q).
  • the DDS module 154 may be configured to route power to the powered communications ports 158(1)-158(Q) as described in the PoE standard.
  • one or more remote expansion units (RXUs) 160(1)-160(Z) may also be connected to the RAU 14.
  • the RXUs 160(1)-160(Z) can be provided to provide additional RF communications services through the RAU 14, but remotely from the RAU 14. For example, if additional RF communications bands are needed and there are no additional bands available in a distributed antenna system, the RF communications bands of an existing RAU 14 can be expanded without additional communications bands by providing the RXUs 160(1)-160(Z).
  • the RXUs 160(1)-160(Z) are connected to the distributed antenna system through the RAU 14.
  • the RXUs 160(1)- 160(Z) can include the same or similar components provided in the RF communications module 152 to receive downlink RF communications signals 162D and to provide received uplink RF communications signals 162U from client devices to the distributed antenna system through the RAU 14.
  • the RXUs 160(1)-160(Z) are also power- consuming modules, and thus in this embodiment, power from the power line 150 is routed by the RAU 14 to the RXUs 160(1)-160(Z) over a power line 164.
  • the power provided on the power line 150 in FIG. 6 may not be sufficient to provide power for the modules 152, 154, 160(1)-160(Z) and external PDs 156(1)-156(Q) provided in the RAU 14.
  • eighty (80) Watts of power may be provided on the power line 150 in FIG. 6.
  • the RF communications module 152 may consume thirty (30) Watts of power
  • the RXUs 160(1)-160(Z) may consume twenty (20) Watts of power
  • the DDS module 154 may consume five (5) Watts of power. This is a total of fifty-five (55) Watts. In this example, twenty-five (25) Watts are available to be shared among the powered communications ports 158(1)-158(Q).
  • the PDs 156(1)-156(Q) may be configured to require more power than twenty-five (25) Watts.
  • power source equipment PSE
  • PSE power source equipment
  • the RAU 14 to provide power to the powered communications ports 158(1)-158(Q) may be required to provide up to 15.4 Watts of power to each powered communications port 158(1)-158(Q).
  • PSE power source equipment
  • FIG. 7 is an exemplary priority scheme for a power management scheme to provide sufficient power to power-consuming modules and PDs that may be powered by an RAU 14.
  • RF communications services have been assigned higher priority than digital data services and powered ports.
  • the available power on the power line 150 will be made available to the RF communications module 152. If more power is available from the power line 150 after power has been budgeted for the RF communications module 152, the remaining power is made available to the RXUs 160(1)-160(Z) to provide expansion RF communications services.
  • power is budgeted such that power is made available sufficient to power the PD 158(1) connected to the first powered communications port 158(1). If more power is available from the power line 150 after power has been budgeted for the RF communications module 152, the RXUs 160(1)- 160(Z), the DDS module 154, and the PD 158(1) connected to the first powered communications port 158(1), power is made available to the other powered communications ports 158(2)-158(Q) until sufficient power is not available to power the PDs 156(2)-156(Q) connected to the additional powered communications ports 158(2)- 158(Q). If the remaining power budget is not sufficient to power the PDs 156 connected to any powered communications ports 158, these powered communications ports 158 can be disabled.
  • the available power budget for the powered communications ports 158(1)-158(Q) may increase thereby allowing previously disabled powered communications ports 158(1)-158(Q) to be enabled.
  • FIG. 8 is a schematic diagram of an exemplary embodiment of components that can be provided in the RAU 14 of FIG. 6 to provide for remote power management of power provided to the power-consuming modules 152, 154, 160(1)-160(Z) and the externally connected PDs 156(1)-156(Q).
  • the discussion of remote power management of the RAU 14 in FIG. 8 will be described in conjunction with the flowcharts in FIGS. 9- 11.
  • FIG. 9 is a flowchart illustrating an exemplary remote power management process provided by the HEC 44 in FIG. 2 to perform remote power management at an RAU 14.
  • FIG. 10 is a flowchart illustrating an exemplary power management process provided by an RAU 14 to manage power at the RAU 14 at initialization and when configuration changes are made to the RAU 14.
  • FIG. 11 is a flowchart illustrating an exemplary power management process provided by an RAU 14 to manage power provided to PDs 156(1)- 156(Q) connected to powered communications ports 158(1)-158(Q) provided in a R
  • the RAU 14 includes power source equipment (PSE) 170.
  • the PSE 170 is configured to direct power from a power line 171, which receives power from the power line 150 through the RF communications module 152, to PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q).
  • a controller 176 provided in the DDS module 154 coupled to memory 178 is configured to provide power management functions according to an available power budget received from the HEC 44, as will be described in more detail below with regard to FIGS. 9-11.
  • the PSE 170 can manage directing power to the PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q) without depriving the other modules 152, 154, 160(1)-160(Z) present in the RAU 14 from receiving sufficient power to operate.
  • the HEC 44 in the HEU 12 is employed.
  • the HEC 44 receives a configuration of which power-consuming modules 152, 154, 160(1)-160(Z) are present in the RAU 14 (block 180 in FIG. 9).
  • the HEC 44 communicates with the RAUs 14 using digital communications communicated over the same communications links as provided to carry RF communications signals. More information on providing a digital communication and control system in a distributed antenna system is described in U.S. Provisional Application No.
  • the HEC 44 determines the power required for the modules 152, 154, 160(1)-160(Z) present in the RAU 14 by consulting the memory unit 46 (block 182 in FIG. 9).
  • the memory unit 46 may be programmed with the power consumption rates correlated to different types of modules 152, 154, 160(1)-160(Z) that can be looked up in the memory unit 46 by the HEC 44.
  • the total power available to the RAU 14 can be programmed into the memory unit 46, including by a user through a graphical user interface (GUI) hosted by the HEU 12, or by other configuration.
  • GUI graphical user interface
  • the process continues on a repetitive basis for each of the RAUs 14 configured for the HEU 12.
  • the RAUs 14 receive the available power budget that can be allocated to provide power to the PDs 156(1)- 156(Q) connected to the powered communications ports 158(1)-158(Q) in the RAUs 14.
  • the RAU 14 also performs a process to provide power management. The process may be performed by the controller 176 in the DDS module 154 illustrated in FIG. 8.
  • FIG. 10 is a flowchart illustrating an exemplary power management process provided by an RAU 14 to manage power at the RAU 14 at initialization and when configuration changes are made to the RAU 14.
  • the RAU 14 checks the configuration of the modules 152, 154, 160(1)-160(Z) present in the RAU 14 to determine if the configuration of the RAU 14 has changed (block 190). For example, a module 152, 154, 160(1)-160(Z) may have been added or removed from the RAU since the configuration was last determined and provided to the HEC 44.
  • the RAU 14 obtains the module type and the hardware and software versions of the modules 152, 154, 160(1)-160(Z) (block 194).
  • the RAU 14 then sends the module type and the hardware and software versions of the modules 152, 154, 160(1)- 160(Z) to the HEC 44 (block 196). This information is received by the HEC 44 in block 180 in FIG. 9, previously described above.
  • the PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q) may be enabled or disabled depending on the available power budget and the power requirements of the PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q).
  • the controller 176 waits for a status of the PDs 156(1)-156(Q) connected to the powered communications ports 158 (block 212).
  • the status is sent by the controller 176 to the HEC 44 (block 216).
  • the controller 176 then powers on the RXU modules 160(1)-160(Z) if present and not already switched on (blocks 204, 206, 208).
  • the available power budget is 16 Watts
  • a PoE Class 3 PD 156(1) rated at 15.4 Watts connected to a powered communications port 158(1) can be powered, and thus the powered communications port 158(1) is enabled.
  • a PoE Class 4 PD 156(1) rated at 30 Watts or less is connected to a powered communications port 158(1), the powered communications port 158(1) is disabled since the available power budget is less than 30 Watts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments disclosed in the detailed description include power management for a remote antenna unit(s) (RAUs) in a distributed antenna system, and related devices, systems, methods, and computer-readable media. Power can be managed for an RAU configured to power modules and devices that may require more power to operate than power available to the RAU. For example, the RAU may be configured to include power-consuming RAU modules to provide distributed antenna system-related services. As another example, the RAU may be configured to provide power through powered ports in the RAU to external power-consuming devices. Depending on the configuration of the RAU, the power-consuming RAU modules and/or external power-consuming devices may demand more power than is available at the RAU. In this instance, the power available at the RAU can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the RAU.

Description

POWER MANAGEMENT FOR REMOTE ANTENNA UNITS IN DISTRIBUTED
ANTENNA SYSTEMS
PRIORITY CLAIM
[0001] The present application claims the benefit of priority under 35 U.S.C. § 119 to U.S. Provisional Application No. 61/392,687, filed on October 13, 2010, and entitled "Power Management for Remote Antenna Units in Distributed Antenna Systems," the content of which is relied upon and incorporated herein by reference in its entirety.
RELATED APPLICATIONS
[0002] The present application is related to Attorney Docket No. HI 10-079 entitled "Local Power Management for Remote Antenna Units in Distributed Antenna Systems," which PCT International Application is being filed the same day and concurrently herewith which claims priority to U.S. Provisional Application No. 61/392,660, filed on October 13, 2010 and entitled "Local Power Management for Remote Antenna Units in Distributed Antenna Systems," both of which are incorporated herein by reference in their entireties.
[0003] The present application is also related to U.S. Provisional Application No. 61/330,386 filed on May 2, 2010 and entitled "Providing Digital Data Services in Optical Fiber-Based Distributed Radio Frequency (RF) Communications Systems, and Related Components and Methods," which is incorporated herein by reference in its entirety.
[0004] The present application is also related to U.S. Patent Application No. 12/892,424 filed on September 28, 2010 and entitled "Providing Digital Data Services in Optical Fiber-Based Distributed Radio Frequency (RF) Communications Systems, and Related Components and Methods," which is incorporated herein by reference in its entirety.
[0005] The present application is also related to U.S. Provisional Application No. 61/230,463 filed on July 31, 2009 and entitled "Optical Fiber-Based Distributed Antenna Systems, Components, and Related Methods for Calibration Thereof," which is incorporated herein by reference in its entirety.
[0006] The present application is also related to U.S. Provisional Application No. 61/230,472 filed on July 31, 2009 and entitled "Optical Fiber-Based Distributed Antenna Systems, Components, and Related Methods for Monitoring the Status Thereof," which is incorporated herein by reference in its entirety. BACKGROUND
Field of the Disclosure
[0007] The technology of the disclosure relates to power management in remote antenna units in distributed antenna systems for distributing radio frequency (RF) signals to the remote antenna units.
Technical Background
[0008] Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called "wireless fidelity" or "WiFi" systems and wireless local area networks (WLANs) are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Distributed antenna systems communicate with wireless devices called "clients," which must reside within the wireless range or "cell coverage area" in order to communicate with an access point device.
[0009] One approach to deploying a distributed antenna system involves the use of radio frequency (RF) antenna coverage areas, also referred to as "antenna coverage areas." The antenna coverage areas are provided by remote antenna units in the distributed antenna system. Remote antenna units can provide antenna coverage areas having radii in the range from a few meters up to twenty (20) meters as an example. If the antenna coverage areas provided each cover a small area, there are typically only a few users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide indoor distributed antenna system access to clients within the building or facility. It may also be desirable to employ optical fiber to distribute RF communications signals to provide an optical fiber-based distributed antenna system. Distribution of RF communications signals over optical fiber can include Radio-over-Fiber (RoF) distribution. Benefits of optical fiber include increased bandwidth.
[0010] Remote antenna units may contain power-consuming circuits and other components that are involved in processing RF communications signals. For example, remote antenna units provided in an optical-fiber based distributed antenna system may include electrical-to-optical (E/O) converters and optical-to-electrical (O/E) converters that require power to operate. The E/O and O/E converters convert downlink optical RF communications signals to downlink electrical RF communications signals and uplink electrical RF communications signals to uplink optical RF communications signals, respectively. Other power-consuming components may be included in the remote antenna unit. A local power source can be provided at the remote antenna units to supply power to power-consuming components in the remote antenna units. Alternatively, to avoid providing a local power source, a remote power source can be provided that provides power over power lines routed to the remote antenna units. The power lines may be provided in separate cabling or bundled in a hybrid cable with communications lines routed to the remote antenna units.
[0011] It is important that a sufficient amount of power be provided to the remote antenna unit to properly power the power-consuming components provided therein. Otherwise, the power-consuming components in the remote antenna unit may not properly operate and may not provide intended services for the distributed antenna system. In the case of multiple power- consuming components provided in a remote antenna unit, power provided to the remote antenna unit is split among the multiple components. In this case, it is also important that the power be managed to sufficiently power each of the power- consuming components.
SUMMARY OF THE DETAILED DESCRIPTION
[0012] Embodiments disclosed in the detailed description include power management for a remote antenna unit(s) (RAUs) in a distributed antenna system, and related devices, systems, methods, and computer-readable media. The distributed antenna system may distribute radio frequency (RF) communications signals to RAUs for communicating to client devices. As a non-limiting example, the distributed antenna system may be an optical fiber-based distributed antenna system. Power can be managed for an RAU configured to power modules and devices that may require more power to operate than power available to the RAU. For example, the RAU may be configured to include power- consuming RAU modules to provide distributed antenna system-related services. As another example, the RAU may be configured to provide power to external power- consuming devices through powered ports in the RAU. Depending on the configuration of the RAU, the power- consuming RAU modules and/or external power-consuming devices may demand more power than is available at the RAU. In this instance, the power available at the RAU can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the RAU.
[0013] In one embodiment, a power management device for remotely managing power consumed at an RAU in a distributed antenna system is provided. The power management device comprises a remote controller communicatively coupled to at least one RAU configured to provide power to at least one external power-consuming device connected to the at least one powered port. The remote controller is configured to communicate with the at least one RAU to determine an available power budget for the at least one powered port. The remote controller is also configured to communicate the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
[0014] In another embodiment, a method of remotely managing power consumed at an RAU in a distributed antenna system is provided. The method includes communicating with at least one RAU configured to provide power to at least one external power- consuming device connected to the at least one powered port to determine an available power budget for the at least one powered port. The method also includes communicating the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
[0015] In another embodiment, a computer-readable medium is provided. The computer-readable medium stores one or more programs, the one or more programs comprising instructions, which when executed by a remote controller in a distributed antenna system and remotely located from an RAU, cause the remote controller to communicate with at least one RAU provided in a distributed antenna system to determine an available power budget for at least one powered port and provided in the at least one RAU configured to provide power to at least one external power- consuming device connected to the at least one powered port. The instructions further cause the remote controller to communicate the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
[0016] In another embodiment, an RAU for a distributed antenna system is provided. The RAU comprises at least one power-consuming RAU module. As non-limiting examples, the at least one power- consuming RAU module may be comprised of at least one of an RF communications module configured to provide RF communications services, and a digital data services (DDS) module configured to provide DDS. The RAU further comprises at least one powered port configured to provide power to at least one external power-consuming device connected to the at least one powered port. The RAU further comprises a controller configured to receive an available power budget for the at least one powered port from a remote controller in a distributed antenna system. The RAU controller is further configured to enable power for the at least one powered port if the available power budget is sufficient to power the at least one external power-consuming device connected to the at least one powered port.
[0017] In another embodiment, a method of managing power consumed at an RAU in a distributed antenna system is provided. The method comprises receiving an available power budget for at least one powered port configured to provide power to at least one external power-consuming device connected to the at least one powered port based on power required by at least one power-consuming RAU module. As non-limiting examples, the at least one power- consuming RAU module may be comprised of at least one of an RF communications module configured to provide RF communications services, and a digital data services (DDS) module configured to provide DDS. The method further comprises enabling power for the at least one powered port if an available power budget is sufficient to power the at least one external power-consuming device connected to the at least one powered port.
[0018] In another embodiment, a computer-readable medium is provided. The computer-readable medium stores one or more programs, the one or more programs comprising instructions, which when executed by an RAU controller in at least one RAU provided in a distributed antenna system, cause the RAU controller to receive an available power budget from a remote controller for at least one powered port in an RAU provided in a distributed antenna system, the RAU configured to provide power to at least one external power-consuming device connected to the at least one powered port based on power required by at least one power-consuming RAU module. The instructions further cause the RAU controller to enable power for the at least one powered port if an available power budget is sufficient to power the at least one external power-consuming device connected to the at least one powered port.
[0019] It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure.
[0020] The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed. BRIEF DESCRIPTION OF THE FIGURES
[0021] FIG. 1 is a schematic diagram of an exemplary distributed antenna system;
[0022] FIG. 2 is a more detailed schematic diagram of exemplary head-end equipment and a remote antenna unit (RAU) that can be deployed in the distributed antenna system of FIG. 1;
[0023] FIG. 3 is a partially schematic cut-away diagram of an exemplary building infrastructure in which the distributed antenna system in FIG. 1 can be employed;
[0024] FIG. 4 is a schematic diagram of another exemplary distributed antenna system;
[0025] FIG. 5 is a schematic diagram of an exemplary embodiment of providing digital data services to RAUs in a distributed antenna system;
[0026] FIG. 6 is a schematic diagram of an exemplary RAU configured with power- consuming components for providing radio frequency (RF) communications services, digital data services, external power to digital data service devices, and a remote expansion unit;
[0027] FIG. 7 is an exemplary priority scheme for providing power to power- consuming components that may be present in an RAU;
[0028] FIG. 8 is a schematic diagram of an exemplary RAU that includes remote power management for managing power provided to internal power-consuming modules and external power-consuming modules connected to the RAU;
[0029] FIG. 9 is a flowchart illustrating an exemplary remote power management process provided by the controller in FIG. 8 to remotely manage power at the RAU;
[0030] FIG. 10 is a flowchart illustrating an exemplary power management process provided by the RAU to manage power at the RAU at initialization and when configuration changes are made to the RAU;
[0031] FIG. 11 is a flowchart illustrating an exemplary power management process provided by the RAU to manage power provided to powered ports provided in an RAU;
[0032] FIG. 12 is an exemplary digital data services (DDS) module that can be provided in the RAU to provide digital data services at the RAU; and
[0033] FIG. 13 is a schematic diagram of a generalized representation of an exemplary computer system that can be included in a head-end controller (HEC), which is adapted to execute instructions from an exemplary computer-readable medium to perform the power management functions in the RAU.
DETAILED DESCRIPTION
[0034] Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.
[0035] Embodiments disclosed in the detailed description include power management for a remote antenna unit(s) (RAUs) in a distributed antenna system, and related devices, systems, methods, and computer-readable media. The distributed antenna system may distribute radio frequency (RF) communications signals to RAUs for communicating to client devices. As a non-limiting example, the distributed antenna system may be an optical fiber-based distributed antenna system. Power can be managed for an RAU configured to power modules and devices that may require more power to operate than power available to the RAU. For example, the RAU may be configured to include power- consuming RAU modules to provide distributed antenna system related services. As another example, the RAU may be configured to provide power to external power- consuming devices through powered ports in the RAU. Depending on the configuration of the RAU, the power- consuming RAU modules and/or external power-consuming devices may demand more power than is available at the RAU. In this instance, the power available at the RAU can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the RAU.
[0036] Before discussing power management for RAUs provided in distributed antenna systems and related components and methods starting at FIG. 5, FIGS. 1-4 are provided and first discussed below. FIGS. 1-4 provide examples of distributed antenna systems, including those according to the embodiments described herein.
[0037] FIG. 1 is a schematic diagram of an exemplary distributed antenna system. In this embodiment, the distributed antenna system is an optical fiber-based distributed antenna system 10; however, other types of distributed antenna systems are also possible. The optical fiber-based distributed antenna system 10 is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the RF range of the antenna coverage areas. The optical fiber-based distributed antenna system 10 provides RF communications services (e.g., cellular services). In this embodiment, the optical fiber-based distributed antenna system 10 includes head-end equipment in the form of a head-end unit (HEU) 12, one or more remote antenna units (RAUs) 14, and an optical fiber 16 that optically couples the HEU 12 to the RAU 14. The HEU 12 is configured to receive communications over downlink electrical RF communications signals 18D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14. The HEU 12 is also configured to return communications received from the RAU 14, via uplink electrical RF communications signals 18U, back to the source or sources. In this regard in this embodiment, the optical fiber 16 includes at least one downlink optical fiber 16D to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEU 12.
[0038] The optical fiber-based distributed antenna system 10 has an antenna coverage area 20 that can be substantially centered about the RAU 14. The antenna coverage area 20 of the RAU 14 forms an RF coverage area 21. The HEU 12 is adapted to perform or to facilitate any one of a number of Radio-over-Fiber (RoF) applications, such as radio frequency identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communications signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF communications signals.
[0039] With continuing reference to FIG. 1, to communicate the electrical RF communications signals over the downlink optical fiber 16D to the RAU 14, to in turn be communicated to the client device 24 in the antenna coverage area 20 formed by the RAU 14, the HEU 12 includes an electrical-to-optical (E/O) converter 28. The E/O converter 28 converts the downlink electrical RF communications signals 18D to downlink optical RF communications signals 22D to be communicated over the downlink optical fiber 16D. The RAU 14 includes an optical-to -electrical (O/E) converter 30 to convert received downlink optical RF communications signals 22D back to electrical RF communications signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20.
[0040] Similarly, the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF communications signals representing the wireless RF communications to an E/O converter 34 in the RAU 14. The E/O converter 34 converts the electrical RF communications signals into uplink optical RF communications signals 22U to be communicated over the uplink optical fiber 16U. An O/E converter 36 provided in the HEU 12 converts the uplink optical RF communications signals 22U into uplink electrical RF communications signals, which can then be communicated as uplink electrical RF communications signals 18U back to a network or other source. The HEU 12 in this embodiment is not able to distinguish the location of the client device 24 in this embodiment. The client device 24 could be in the range of any antenna coverage area 20 formed by an RAU 14. [0041] FIG. 2 is a more detailed schematic diagram of the exemplary optical fiber- based distributed antenna system 10 of FIG. 1 that provides electrical RF service signals for a particular RF service or application. In an exemplary embodiment, the HEU 12 includes a service unit 37 that provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 38 via a network link 39. In a particular example embodiment, this includes providing WLAN signal distribution as specified in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 GigaHertz (GHz) and from 5.0 to 6.0 GHz. Any other electrical RF communications signal frequencies are possible. In another exemplary embodiment, the service unit 37 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 37 coordinates the delivery of the electrical RF service signals between client devices 24 within the antenna coverage area 20.
[0042] With continuing reference to FIG. 2, the service unit 37 is electrically coupled to the E/O converter 28 that receives the downlink electrical RF communications signals 18D from the service unit 37 and converts them to corresponding downlink optical RF communications signals 22D. In an exemplary embodiment, the E/O converter 28 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E/O converter 28 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).
[0043] With continuing reference to FIG. 2, the HEU 12 also includes the O/E converter 36, which is electrically coupled to the service unit 37. The O/E converter 36 receives the uplink optical RF communications signals 22U and converts them to corresponding uplink electrical RF communications signals 18U. In an example embodiment, the O/E converter 36 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 28 and the O/E converter 36 constitute a "converter pair" 35, as illustrated in FIG. 2.
[0044] In accordance with an exemplary embodiment, the service unit 37 in the HEU 12 can include an RF communications signal conditioner unit 40 for conditioning the downlink electrical RF communications signals 18D and the uplink electrical RF communications signals 18U, respectively. The service unit 37 can include a digital signal processing unit ("digital signal processor") 42 for providing to the RF communications signal conditioner unit 40 an electrical signal that is modulated onto an RF carrier to generate a desired downlink electrical RF communications signal 18D. The digital signal processor 42 is also configured to process a demodulation signal provided by the demodulation of the uplink electrical RF communications signal 18U by the RF communications signal conditioner unit 40. The service unit 37 in the HEU 12 can also include an optional head-end unit controller (HEC) 44 (or "controller 44") for processing data and otherwise performing logic and computing operations, and a memory unit 46 for storing data, such as data to be transmitted over a WLAN or other network for example.
[0045] With continuing reference to FIG. 2, the RAU 14 also includes a converter pair 48 comprising the O/E converter 30 and the E/O converter 34. The O/E converter 30 converts the received downlink optical RF communications signals 22D from the HEU 12 back into downlink electrical RF communications signals SOD. The E/O converter 34 converts uplink electrical RF communications signals SOU received from the client device 24 into the uplink optical RF communications signals 22U to be communicated to the HEU 12. The O/E converter 30 and the E/O converter 34 are electrically coupled to the antenna 32 via an RF signal-directing element 52, such as a circulator for example. The RF signal-directing element 52 serves to direct the downlink electrical RF communications signals SOD and the uplink electrical RF communications signals SOU, as discussed below. In accordance with an exemplary embodiment, the antenna 32 can include any type of antenna, including but not limited to one or more patch antennas, such as disclosed in U.S. Patent Application Serial No. 11/504,999, filed August 16, 2006, entitled "Radio-over-Fiber Transponder With A Dual-Band Patch Antenna System," and U.S. Patent Application Serial No. 11/451,553, filed June 12, 2006, entitled "Centralized Optical Fiber-based Wireless Picocellular Systems and Methods," both of which are incorporated herein by reference in their entireties.
[0046] With continuing reference to FIG. 2, the optical fiber-based distributed antenna system 10 also includes a power supply 54 that provides an electrical power signal 56. The power supply 54 is electrically coupled to the HEU 12 for powering the power- consuming elements therein. In an exemplary embodiment, an electrical power line 58 runs through the HEU 12 and over to the RAU 14 to power the O/E converter 30 and the E/O converter 34 in the converter pair 48, the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided. In an exemplary embodiment, the electrical power line 58 includes two wires 60 and 62 that carry a single voltage and that are electrically coupled to a DC power converter 64 at the RAU 14. The DC power converter 64 is electrically coupled to the O/E converter 30 and the E/O converter 34 in the converter pair 48, and changes the voltage or levels of the electrical power signal 56 to the power level(s) required by the power-consuming components in the RAU 14. In an exemplary embodiment, the DC power converter 64 is either a DC/DC power converter or an AC/DC power converter, depending on the type of electrical power signal 56 carried by the electrical power line 58. In another example embodiment, the electrical power line 58 (dashed line) runs directly from the power supply 54 to the RAU 14 rather than from or through the HEU 12. In another example embodiment, the electrical power line 58 includes more than two wires and may carry multiple voltages.
[0047] To provide further exemplary illustration of how an optical fiber-based distributed antenna system can be deployed indoors, FIG. 3 is provided. FIG. 3 is a partially schematic cut-away diagram of a building infrastructure 70 employing an optical fiber-based distributed antenna system. The system may be the optical fiber-based distributed antenna system 10 of FIGS. 1 and 2. The building infrastructure 70 generally represents any type of building in which the optical fiber-based distributed antenna system 10 can be deployed. As previously discussed with regard to FIGS. 1 and 2, the optical fiber-based distributed antenna system 10 incorporates the HEU 12 to provide various types of communications services to coverage areas within the building infrastructure 70, as an example. For example, as discussed in more detail below, the optical fiber-based distributed antenna system 10 in this embodiment is configured to receive wireless RF communications signals and convert the RF communications signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14. The optical fiber-based distributed antenna system 10 in this embodiment can be, for example, an indoor distributed antenna system (IDAS) to provide wireless service inside the building infrastructure 70. These wireless signals can include cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, and combinations thereof, as examples.
[0048] With continuing reference to FIG. 3, the building infrastructure 70 in this embodiment includes a first (ground) floor 72, a second floor 74, and a third floor 76. The floors 72, 74, 76 are serviced by the HEU 12 through a main distribution frame 78 to provide antenna coverage areas 80 in the building infrastructure 70. Only the ceilings of the floors 72, 74, 76 are shown in FIG. 3 for simplicity of illustration. In the example embodiment, a main cable 82 has a number of different sections that facilitate the placement of a large number of RAUs 14 in the building infrastructure 70. Each RAU 14 in turn services its own coverage area in the antenna coverage areas 80. The main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers 16D, 16U to and from the HEU 12. The riser cable 84 may be routed through an interconnect unit (ICU) 85. The ICU 85 may be provided as part of or separate from the power supply 54 in FIG. 2. The ICU 85 may also be configured to provide power to the RAUs 14 via the electrical power line 58, as illustrated in FIG. 2 and discussed above, provided inside an array cable 87, or tail cable or home-run tether cable as other examples, and distributed with the downlink and uplink optical fibers 16D, 16U to the RAUs 14. The main cable 82 can include one or more multi-cable (MC) connectors adapted to connect select downlink and uplink optical fibers 16D, 16U, along with an electrical power line, to a number of optical fiber cables 86.
[0049] The main cable 82 enables the multiple optical fiber cables 86 to be distributed throughout the building infrastructure 70 (e.g., fixed to the ceilings or other support surfaces of each floor 72, 74, 76) to provide the antenna coverage areas 80 for the first, second, and third floors 72, 74, and 76. In an example embodiment, the HEU 12 is located within the building infrastructure 70 (e.g., in a closet or control room), while in another example embodiment, the HEU 12 may be located outside of the building infrastructure 70 at a remote location. A base transceiver station (BTS) 88, which may be provided by a second party such as a cellular service provider, is connected to the HEU 12, and can be co-located or located remotely from the HEU 12. A BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell, and when a mobile client device enters the cell, the BTS communicates with the mobile client device. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell. As another example, wireless repeaters or bi-directional amplifiers could also be used to serve a corresponding cell in lieu of a BTS. Alternatively, radio input could be provided by a repeater or picocell as other examples.
[0050] The optical fiber-based distributed antenna system 10 in FIGS. 1-3 and described above provides point-to-point communications between the HEU 12 and the RAU 14. Each RAU 14 communicates with the HEU 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications. Whenever an RAU 14 is installed in the optical fiber-based distributed antenna system 10, the RAU 14 is connected to a distinct downlink and uplink optical fiber pair connected to the HEU 12. The downlink and uplink optical fibers 16U, 16D may be provided in a fiber optic cable. Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable. For example, with reference to FIG. 3, RAUs 14 installed on a given floor 72, 74, or 76 may be serviced from the same optical fiber 16. In this regard, the optical fiber 16 may have multiple nodes where distinct downlink and uplink optical fiber pairs can be connected to a given RAU 14. One downlink optical fiber 16 could be provided to support multiple channels each using wavelength-division multiplexing (WDM), as discussed in U.S. Patent Application Serial No. 12/892,424 entitled "Providing Digital Data Services in Optical Fiber-Based Distributed Radio Frequency (RF) Communications Systems, and Related Components and Methods," incorporated herein by reference in its entirety. Other options for WDM and frequency-division multiplexing (FDM) are also disclosed in U.S. Patent Application Serial No. 12/892,424, any of which can be employed in any of the embodiments disclosed herein.
[0051] FIG. 4 is a schematic diagram of another exemplary distributed antenna system 90. In this embodiment, the distributed antenna system 90 is an optical fiber-based distributed antenna system comprised of three main components. One or more radio interfaces provided in the form of radio interface modules (RIMs) 92(1)-92(M) in this embodiment are provided in an HEU 94 to receive and process downlink electrical RF communications signals 96(1)-96(R) prior to optical conversion into downlink optical RF communications signals. The processing of the downlink electrical RF communications signals 96(1)-96(R) can include any of the processing previously described above in the HEU 12 in FIG. 2. The notations "1-R" and "1-M" indicate that any number of the referenced component, 1-R and 1-M, respectively, may be provided. As will be described in more detail below, the HEU 94 is configured to accept a plurality of RIMs 92(1)-92(M) as modular components that can easily be installed and removed or replaced in the HEU 94. In one embodiment, the HEU 94 is configured to support up to four (4) RIMs 92(1)- 92(M) as an example.
[0052] Each RIM 92(1)-92(M) can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the HEU 94 and the optical fiber-based distributed antenna system 90 to support the desired radio sources. For example, one RIM 92 may be configured to support the Personal Communication Services (PCS) radio band. Another RIM 92 may be configured to support the 700 MHz radio band. In this example, by inclusion of these RIMs 92, the HEU 94 would be configured to support and distribute RF communications signals on both PCS and LTE 700 radio bands. RIMs 92 may be provided in the HEU 94 that support any frequency bands desired, including but not limited to US Cellular band, PCS (Personal Communication Services) ban, AWS (Advanced Wireless Services) band, 700 MHz band, Global System for Mobile communications (GSM) 900, GSM 1800, UMTS. RIMs 92 may be provided in the HEU 94 that support any wireless technologies desired, including but not limited to CDMA (Code Division Multiple Access), CDMA200, lxRTT, EV-DO (Evolution - Data Only), UMTS (Universal Mobile Telecommunication System), HSPA (High-speed Packet Access), GSM, GPRS (General Packet Radio Services), EDGE (Enhanced Data GSM Environment), TDMA (Time Division Multiple Access), LTE (Long Term Evolution), iDEN, and CDPD (Cellular Digital Packet Data).
[0053] RIMs 92 may be provided in the HEU 94 that support any frequencies desired, including but not limited to US FCC and Industry Canada frequencies (824-849MHz on uplink and 869-894MHz on downlink), US FCC and Industry Canada frequencies (1850 - 1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110 - 2155 MHz on downlink), US FCC frequencies (698-716MHz and 776-787MHz on uplink and 728-746 MHz on downlink). EU R & TTE frequencies (880-915 MHz on uplink and 925-960 MHz on downlink), EU R & TTE frequencies (1710-1785 MHz on uplink and 1805-1880 MHz on downlink), EU R & TTE frequencies (1920-1980 MHz on uplink and 2110-2170 MHz on downlink), US FCC frequencies (806-824 MHz on uplink and 851-869 MHz on downlink), US FCC frequencies (896-901 MHz on uplink and 929-941 MHz on downlink), US FCC frequencies (793-805 MHz on uplink and 763-775 MHz on downlink), and US FCC frequencies (2495-2690 MHz on uplink and downlink).
[0054] The downlink electrical RF communications signals 96(1)-96(R) are provided to a plurality of optical interfaces provided in the form of optical interface modules (OIMs) 98(1)-98(N) in this embodiment to convert the downlink electrical RF communications signals 96(1)-96(N) into downlink optical signals 100(1)-100(R). The notation "1-N" indicates that any number of the referenced component 1-N may be provided. The OIMs 98 may be configured to provide one or more optical interface components (OICs) that contain O/E and E/O converters, as will be described in more detail below. The OIMs 98 support the radio bands that can be provided by the RIMs 92, including the examples previously described above. Thus, in this embodiment, the OIMs 98 may support a radio band range from 400 MHz to 2700 MHz, as an example, so providing different types or models of OIMs 98 for narrower radio bands to support possibilities for different radio band-supported RIMs 92 provided in the HEU 94 is not required. Further, as an example, the OIMs 98s may be optimized for sub-bands within the 400 MHz to 2700 MHz frequency range, such as 400 - 700 MHz, 700 MHz - 1 GHz, 1 GHz - 1.6 GHz, and 1.6 GHz - 2.7 GHz, as examples.
[0055] The OIMs 98(1)-98(N) each include E/O converters to convert the downlink electrical RF communications signals 96(1)-96(R) to downlink optical signals 100(1)- 100(R). The downlink optical signals 100(1)-100(R) are communicated over downlink optical fiber(s) 103D to a plurality of RAUs 102(1)-102(P). The notation "1-P" indicates that any number of the referenced component 1-P may be provided. O/E converters provided in the RAUs 102(1)-102(P) convert the downlink optical signals 100(1)-100(R) back into downlink electrical RF communications signals 96(1)-96(R), which are provided over links 104(1)-104(P) coupled to antennas 106(1)-106(P) in the RAUs 102(1)-102(P) to client devices in the reception range of the antennas 106(1)-106(P).
[0056] E/O converters are also provided in the RAUs 102(1)-102(P) to convert uplink electrical RF communications signals received from client devices through the antennas 106(1)-106(P) into uplink optical signals 108(1)-108(R) to be communicated over uplink optical fibers 103U to the OIMs 98(1)-98(N). The OIMs 98(1)-98(N) include O/E converters that convert the uplink optical signals 108(1)-108(R) into uplink electrical RF communications signals 110(1)-110(R) that are processed by the RIMs 92(1)-102(M) and provided as uplink electrical RF communications signals 112(1)-112(R).
[0057] It may be desirable to provide both digital data services and RF communications services for client devices. For example, it may be desirable to provide digital data services and RF communications services in the building infrastructure 70 (FIG. 3) to client devices located therein. Wired and wireless devices may be located in the building infrastructure 70 that are configured to access digital data services. Examples of digital data services include, but are not limited to, Ethernet, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc. Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10G) Ethernet. Examples of digital data devices include, but are not limited to, wired and wireless servers, wireless access points (WAPs), gateways, desktop computers, hubs, switches, remote radio heads (RRHs), baseband units (BBUs), and femtocells. A separate digital data services network can be provided to provide digital data services to digital data devices.
[0058] FIG. 5 is a schematic diagram of an exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from RF communications services to RAUs in an optical fiber-based distributed antenna system 120. The optical fiber-based distributed antenna system 120 is described as including some components provided in the optical fiber-based distributed antenna system 10 of FIGS. 1-3. These common components are illustrated in FIG. 5 with common element numbers with FIGS. 1-3. However, note that the optical fiber-based distributed antenna system 120 could also employ other components, including those in the optical fiber-based distributed antenna system 90 in FIG. 4.
[0059] As illustrated in FIG. 5, the HEU 12 is provided. The HEU 12 receives the downlink electrical RF communications signals 18D from the BTS 88. As previously discussed, the HEU 12 converts the downlink electrical RF communications signals 18D to downlink optical RF communications signals 22D to be distributed to the RAUs 14. The HEU 12 is also configured to convert the uplink optical RF communications signals 22U received from the RAUs 14 into uplink electrical RF communications signals 18U to be provided to the BTS 88 and onto a network 122 connected to the BTS 88. A patch panel 123 may be provided to receive the downlink and uplink optical fibers 16D, 16U configured to carry the downlink and uplink optical RF communications signals 22D, 22U. The downlink and uplink optical fibers 16D, 16U may be bundled together in one or more riser cables 84 and provided to one or more ICUs 85, as previously discussed and illustrated in FIG. 3.
[0060] To provide digital data services in the optical fiber-based distributed antenna system 120 in this embodiment, a digital data services controller (also referred to as "DDS controller") 124 in the form of a media converter in this example is provided. The DDS controller 124 can include only a media converter for provision media conversion functionality or can include additional functionality to facilitate digital data services. The DDS controller 124 is configured to provide digital data services over a communications link, interface, or other communications channel or line, which may be either wired, wireless, or a combination of both. The DDS controller 124 may include a housing configured to house digital media converters (DMCs) 126 to interface to a DDS switch 127 to support and provide digital data services. For example, the DDS switch 127 could be an Ethernet switch. The DDS switch 127 may be configured to provide Gigabit (Gb) Ethernet digital data service as an example. The DMCs 126 are configured to convert electrical digital signals to optical digital signals, and vice versa. The DMCs 126 may be configured for plug and play installation (i.e., installation and operability without user configuration required) into the DDS controller 124. For example, the DMCs 126 may include Ethernet input connectors or adapters (e.g., RJ-45) and optical fiber output connectors or adapters (e.g., LC, SC, ST, MTP).
[0061] With continuing reference to FIG. 5, the DDS controller 124 (via the DMCs 126) in this embodiment is configured to convert downlink electrical digital signals (or downlink electrical digital data services signals) 128D over digital line cables 129 from the DDS switch 127 into downlink optical digital signals (or downlink optical digital data services signals) 130D that can be communicated over downlink optical fiber 135D to RAUs 14. The DDS controller 124 (via the DMCs 126) is also configured to receive uplink optical digital signals 130U from the RAUs 14 via the uplink optical fiber 135U and convert the uplink optical digital signals 130U into uplink electrical digital signals 128U to be communicated to the DDS switch 127. In this manner, the digital data services can be provided over optical fiber as part of the optical fiber-based distributed antenna system 120 to provide digital data services in addition to RF communication services. Client devices located at the RAUs 14 can access these digital data services and/or RF communications services depending on their configuration. Exemplary digital data services include WLAN, Ethernet, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc. Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10G) Ethernet.
[0062] With continuing reference to FIG. 5, in this embodiment, downlink and uplink optical fibers 132D, 132U are provided in a fiber optic cable 134 that is interfaced to the ICU 85. The ICU 85 provides a common point in which the downlink and uplink optical fibers 132D, 132U carrying digital optical signals can be bundled with the downlink and uplink optical fibers 16U, 16D carrying optical RF communications signals. One or more of the fiber optic cables 134, also referenced herein as array cables 134, can be provided containing the downlink and uplink optical fibers 135D, 135U for RF communications services and digital data services to be routed and provided to the RAUs 14. Any combination of services or types of optical fibers can be provided in the array cable 134. For example, the array cable 134 may include single mode and/or multi-mode optical fibers for RF communication services and/or digital data services. [0063] Examples of ICUs that may be provided in the optical fiber-based distributed antenna system 120 to distribute both downlink and uplink optical fibers 135D, 135U for RF communications services and digital data services are described in U.S. Patent Application Serial No. 12/466,514, filed on May 15, 2009, entitled "Power Distribution Devices, Systems, and Methods For Radio-Over-Fiber (RoF) Distributed Communication,", and U.S. Provisional Application Serial No. 61/330,385 filed on May 2, 2010, entitled "Power Distribution in Optical Fiber-Based Distributed Communications Systems Providing Digital Data and Radio Frequency (RF) Communications Services, and Related Components and Methods," both of which are incorporated herein by reference in their entireties.
[0064] With continuing reference to FIG. 5, some RAUs 14 can be connected to access units (AUs) 138, which may be access points (APs) or other devices supporting digital data services. AUs 138 can also be connected directly to the HEU 12. AUs 138 are illustrated, but the AUs 138 could be any other device supporting digital data services. In the example of AUs, the AUs 138 provide access to the digital data services provided by the DDS switch 127. This is because the downlink and uplink optical fibers 135D, 135U carrying downlink and uplink optical digital signals 130D, 130U converted from downlink and uplink electrical digital signals 128D, 128U from the DDS switch 127 are provided to the AUs 138 via the array cables 134 and RAUs 14. Digital data client devices can access the AUs 138 to access digital data services provided through the DDS switch 127. The AUs 138 may also each include an antenna 140 to provide wireless access to digital data services provided through the DDS switch 127.
[0065] As will be described in more detail below, providing RF communications services and digital data services involves providing RF communications modules and DDS modules in the RAUs 14 and/or AUs 138 in the example of FIG. 5. These modules are power-consuming modules that require power to operate. Power distributed to the RAUs can also be used to provide access to power for DDS modules, as opposed to providing separate power sources for DDS modules and RF communications modules. For example, power distributed to the RAUs 14 in FIG. 5 by or through the ICUs 85 can also be used to provide power to the AUs 138 located at the RAUs 14 in the optical fiber- based distributed antenna system 120. In this regard, the ICUs 85 may be configured to provide power for both RAUs 14 and the AUs 138 over an electrical power line 142, as illustrated in FIG. 5. As will also be described in more detail below, the RAUs 14 and/or AUs 138 may also be configured with powered ports to provide power to external client devices connected to the powered ports, such as IEEE 802.3af Power-over- Ethernet (PoE) compatible devices as an example. However, referring to FIG. 5 as an example, the power made available to the RAUs 14 and AUs 138 may not be sufficient to power all of the modules provided and external devices connected to the RAUs 14 and AUs 138.
[0066] In this regard, embodiments disclosed below include power management for an RAU(s) in a distributed antenna system, and related devices, systems, methods, and computer-readable media. Power can be managed for an RAU configured to power modules and devices that may require more power to operate than power available to the RAU. For example, the RAU may be configured to include power-consuming RAU modules to provide distributed antenna system-related services. As another example, the RAU may be configured to provide power through powered ports in the RAU to external power-consuming devices. Depending on the configuration of the RAU, the power- consuming RAU modules and/or external power-consuming devices may demand more power than is available at the RAU. In this instance, the power available at the RAU can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the RAU.
[0067] FIG. 6 is a schematic diagram of an exemplary RAU 14 configured with power-consuming components. The RAU 14 is configured to receive power over a power line 150 routed to the RAU 14 from either a local power source or a remote power source to make power available for power-consuming components associated with the RAU 14. As a non-limiting example, the power line 150 may provide a voltage of between forty- eight (48) and sixty (60) Volts at a power rating of between eighty (80) to one hundred (100) Watts. In this example, the RAU 14 includes an RF communications module 152 for providing RF communications services. The RF communications module 152 requires power to operate in this embodiment and receives power from the power line 150. Power may be routed from the power line 150 directly to the RF communications module 152, or indirectly from another module. The RF communications module 152 may include any of the previously referenced components to provide RF communications services, including O/E and E/O conversion.
[0068] With continuing reference to FIG. 6, the RAU 14 may also include a DDS module 154 to provide media conversion (e.g., O/E and E/O conversions) and route digital data services received from the DDS switch 127 in FIG. 5 to externally connected power- consuming devices (PDs) 156(1)-156(Q) configured to receive digital data services. Power may be routed from the power line 150 to the DDS module 154 through the RF communications module 152 as one example, is provided to route power from the power line 150 to the DDS module 154. With reference to FIG. 6, the digital data services are routed by the DDS module 154 through communications ports 158(1)-158(Q) provided in the RAU 14. As a non-limiting example, the communications ports 158(1)-158(Q) may be RJ-45 connectors. The communications ports 158(1)-158(Q) may be powered, meaning that a portion of the power from the power line 150 is provided to the powered communications ports 158(1)-158(Q). In this manner, PDs 156(1)-156(Q) configured to receive power through a powered communications port 158 can be powered from power provided to the RAU 14 when connected to the powered communications port 158. In this manner, a separate power source is not required to power the PDs 156(1)-156(Q). For example, the DDS module 154 may be configured to route power to the powered communications ports 158(1)-158(Q) as described in the PoE standard.
[0069] With continuing reference to FIG. 6, one or more remote expansion units (RXUs) 160(1)-160(Z) may also be connected to the RAU 14. The RXUs 160(1)-160(Z) can be provided to provide additional RF communications services through the RAU 14, but remotely from the RAU 14. For example, if additional RF communications bands are needed and there are no additional bands available in a distributed antenna system, the RF communications bands of an existing RAU 14 can be expanded without additional communications bands by providing the RXUs 160(1)-160(Z). The RXUs 160(1)-160(Z) are connected to the distributed antenna system through the RAU 14. The RXUs 160(1)- 160(Z) can include the same or similar components provided in the RF communications module 152 to receive downlink RF communications signals 162D and to provide received uplink RF communications signals 162U from client devices to the distributed antenna system through the RAU 14. The RXUs 160(1)-160(Z) are also power- consuming modules, and thus in this embodiment, power from the power line 150 is routed by the RAU 14 to the RXUs 160(1)-160(Z) over a power line 164.
[0070] The power provided on the power line 150 in FIG. 6 may not be sufficient to provide power for the modules 152, 154, 160(1)-160(Z) and external PDs 156(1)-156(Q) provided in the RAU 14. For example, eighty (80) Watts of power may be provided on the power line 150 in FIG. 6. However, the RF communications module 152 may consume thirty (30) Watts of power, the RXUs 160(1)-160(Z) may consume twenty (20) Watts of power, and the DDS module 154 may consume five (5) Watts of power. This is a total of fifty-five (55) Watts. In this example, twenty-five (25) Watts are available to be shared among the powered communications ports 158(1)-158(Q). However, the PDs 156(1)-156(Q) may be configured to require more power than twenty-five (25) Watts. For example, if the PDs 156(1)-156(Q) are configured according to the PoE standard, power source equipment (PSE) provided in the RAU 14 to provide power to the powered communications ports 158(1)-158(Q) may be required to provide up to 15.4 Watts of power to each powered communications port 158(1)-158(Q). In this example, if more than one powered communications port 158(1)-158(Q) is provided, there will not be sufficient power to power each of the powered communications port 158(1)-158(Q) at 30 Watts (i.e., a PoE Class 4 device).
[0071] Thus, to ensure proper operation of the maximum power consuming modules 152, 154, 160(1)-160(Z) possible in an RAU 14, less power could be provided to the powered communications port 158(1)-158(Q) or only one powered communications port 158(1)-158(Q) could be enabled with power. However, if one of the other modules 152, 154, 160(1)-160(Z) was not present, sufficient power may be available to be provided to each of the powered communications ports 158(1)-158(Q) provided. Further, if a PD 156 connected to a powered communication port 158 is a lower class device that does not require 30 Watts of power, there may be sufficient power available to power the PDs 156(1)-156(Q) connected to each of the powered communications ports 158(1)-158(Q).
[0072] In this regard, FIG. 7 is an exemplary priority scheme for a power management scheme to provide sufficient power to power-consuming modules and PDs that may be powered by an RAU 14. In this example, RF communications services have been assigned higher priority than digital data services and powered ports. Thus, in this example, the available power on the power line 150 will be made available to the RF communications module 152. If more power is available from the power line 150 after power has been budgeted for the RF communications module 152, the remaining power is made available to the RXUs 160(1)-160(Z) to provide expansion RF communications services. If more power is available from the power line 150 after power has been budgeted for the RF communications module 152 and the RXUs 160(1)-160(Z), the remaining power is made available to the DDS module 154 to provide digital data services. If more power is available from the power line 150 after power has been budgeted for the RF communications module 152, the RXUs 160(1)-160(Z), and the DDS module 154, the remaining power is made available to the powered communications ports 158(1)-158(Q) to provide power to the PDs 156(1)-156(Q). Note that the priority schemed in FIG. 7 is exemplary and any other priority scheme desired could be implemented in a power management scheme. [0073] With continuing reference to FIG. 7, power is budgeted such that power is made available sufficient to power the PD 158(1) connected to the first powered communications port 158(1). If more power is available from the power line 150 after power has been budgeted for the RF communications module 152, the RXUs 160(1)- 160(Z), the DDS module 154, and the PD 158(1) connected to the first powered communications port 158(1), power is made available to the other powered communications ports 158(2)-158(Q) until sufficient power is not available to power the PDs 156(2)-156(Q) connected to the additional powered communications ports 158(2)- 158(Q). If the remaining power budget is not sufficient to power the PDs 156 connected to any powered communications ports 158, these powered communications ports 158 can be disabled. Further, if any of the modules 152, 154, 160(1)-160(Z) are not present or are removed for a particular RAU 14, the available power budget for the powered communications ports 158(1)-158(Q) may increase thereby allowing previously disabled powered communications ports 158(1)-158(Q) to be enabled.
[0074] FIG. 8 is a schematic diagram of an exemplary embodiment of components that can be provided in the RAU 14 of FIG. 6 to provide for remote power management of power provided to the power-consuming modules 152, 154, 160(1)-160(Z) and the externally connected PDs 156(1)-156(Q). The discussion of remote power management of the RAU 14 in FIG. 8 will be described in conjunction with the flowcharts in FIGS. 9- 11. FIG. 9 is a flowchart illustrating an exemplary remote power management process provided by the HEC 44 in FIG. 2 to perform remote power management at an RAU 14. FIG. 10 is a flowchart illustrating an exemplary power management process provided by an RAU 14 to manage power at the RAU 14 at initialization and when configuration changes are made to the RAU 14. FIG. 11 is a flowchart illustrating an exemplary power management process provided by an RAU 14 to manage power provided to PDs 156(1)- 156(Q) connected to powered communications ports 158(1)-158(Q) provided in a RAU 14.
[0075] With reference to FIG. 8, the RAU 14 includes power source equipment (PSE) 170. The PSE 170 is configured to direct power from a power line 171, which receives power from the power line 150 through the RF communications module 152, to PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q). A controller 176 provided in the DDS module 154 coupled to memory 178 is configured to provide power management functions according to an available power budget received from the HEC 44, as will be described in more detail below with regard to FIGS. 9-11. By receiving the available power budget that can be provided from the power line 150 by the PSE 170 to power the PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q), the PSE 170 can manage directing power to the PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q) without depriving the other modules 152, 154, 160(1)-160(Z) present in the RAU 14 from receiving sufficient power to operate.
[0076] As illustrated in FIG. 9, to provide power management at the RAUs 14, the HEC 44 in the HEU 12 is employed. For each RAU 14, the HEC 44 receives a configuration of which power-consuming modules 152, 154, 160(1)-160(Z) are present in the RAU 14 (block 180 in FIG. 9). The HEC 44 communicates with the RAUs 14 using digital communications communicated over the same communications links as provided to carry RF communications signals. More information on providing a digital communication and control system in a distributed antenna system is described in U.S. Provisional Application No. 61/230,472 filed on July 31, 2009 entitled "Optical Fiber- Based Distributed Antenna Systems, Components, and Related Methods for Monitoring the Status Thereof," which is incorporated herein by reference in its entirety. The HEC 44 determines the power required for the modules 152, 154, 160(1)-160(Z) present in the RAU 14 by consulting the memory unit 46 (block 182 in FIG. 9). For example, the memory unit 46 may be programmed with the power consumption rates correlated to different types of modules 152, 154, 160(1)-160(Z) that can be looked up in the memory unit 46 by the HEC 44.
[0077] As will be discussed below with regard to FIG. 10, the RAU 14 may provide the particular hardware and/or software elements, and/or versions of those elements of the modules 152, 154, 160(1)-160(Z) present in the RAU 14 that can be used by the HEC 44 to determine the power requirements of the modules 152, 154, 160(1)-160(Z). The HEC 44 then determines the available power budget for the RAU 14 to provide power to any PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q) based on the total power provided to the RAU 14 minus the power required to sufficiently power the modules 152, 154, 160(1)-160(Z) present in the RAU 14 (block 184 in FIG. 9). The total power available to the RAU 14 can be programmed into the memory unit 46, including by a user through a graphical user interface (GUI) hosted by the HEU 12, or by other configuration. The process continues on a repetitive basis for each of the RAUs 14 configured for the HEU 12. By performing the process in FIG. 9, the RAUs 14 receive the available power budget that can be allocated to provide power to the PDs 156(1)- 156(Q) connected to the powered communications ports 158(1)-158(Q) in the RAUs 14.
[0078] The RAU 14 also performs a process to provide power management. The process may be performed by the controller 176 in the DDS module 154 illustrated in FIG. 8. FIG. 10 is a flowchart illustrating an exemplary power management process provided by an RAU 14 to manage power at the RAU 14 at initialization and when configuration changes are made to the RAU 14. The RAU 14 checks the configuration of the modules 152, 154, 160(1)-160(Z) present in the RAU 14 to determine if the configuration of the RAU 14 has changed (block 190). For example, a module 152, 154, 160(1)-160(Z) may have been added or removed from the RAU since the configuration was last determined and provided to the HEC 44. If the configuration of the RAU 14 has changed (block 192), the RAU 14 obtains the module type and the hardware and software versions of the modules 152, 154, 160(1)-160(Z) (block 194). The RAU 14 then sends the module type and the hardware and software versions of the modules 152, 154, 160(1)- 160(Z) to the HEC 44 (block 196). This information is received by the HEC 44 in block 180 in FIG. 9, previously described above.
[0079] With continuing reference to FIG. 10, the controller 176 in the RAU 14 waits for the new available power budget for the RAU 14 provided by the HEC 44 according to the process in FIG. 9 (block 198). When received (block 200), the controller 174 determines if the DDS module 154 is installed in the RAU 14 (block 202). If not, the controller 176 determines if the RXU modules 160(1)-160(Z) are installed (block 204). If not, the process repeats. If the RXU modules 160(1)-160(Z) are installed (block 204), the controller 176 determines if the RXU modules 160(1)-160(Z) are switched on (block 206). If so, the process repeats. If not, the controller 176 instructs the RF communications module 152 to switch on the RXU modules 160(1)-160(Z) (block 208) and the process repeats.
[0080] With continuing reference to FIG. 10, if the controller 176 determines that the DDS module 154 is installed (block 202), this means that digital data services are provided by the RAU 14. In this instance, the powered communications ports 158 are present to allow PDs 156(1)-156(Q) to connect to the powered communications ports 158(1)-158(Q) to receive digital data services supported by the DDS module 154. In this regard, the controller 176 directs the PSE 170 to send the available power budget received from the HEC 44 to the powered communications ports 158(1)-158(Q) in the RAU 14 (block 210). The PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q) may be enabled or disabled depending on the available power budget and the power requirements of the PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q). The controller 176 waits for a status of the PDs 156(1)-156(Q) connected to the powered communications ports 158 (block 212). When the status of the PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q) is received (block 214), the status is sent by the controller 176 to the HEC 44 (block 216). The controller 176 then powers on the RXU modules 160(1)-160(Z) if present and not already switched on (blocks 204, 206, 208).
[0081] FIG. 11 is a flowchart illustrating an exemplary power management process provided by an RAU 14 to manage power provided to PDs 156(1)-156(Q) when the status of the powered communications ports 158(1)-158(Q) provided in an RAU 14 changed (i.e., connected or disconnected). If the status of any powered communications port 158(1)-158(Q) has increased power requirements, such as by a new connection or a connection with a PD 156 requiring more power, other powered communications ports 158(1)-158(Q) may be required to be disabled to remain within the available power budget. If the status of any powered communications ports 158(1)-158(Q) has decreased power requirements, other powered communications ports 158(1)-158(Q) may be able to be enabled and still remain within the available power budget.
[0082] With reference to FIG. 11, the controller 176 determines if the configuration of the RAU 14 has changed (block 220). If changed (block 222), the controller 176 determines if the change is due to a change in status of a powered communications ports 158(1)-158(Q) in the RAU 14 (block 224). In this example, power is managed for two (2) powered communications ports 158(1), 158(2), but any number could be managed. If a powered communications port 158(1)-158(Q) has not changed, this means that the available power budget to provide power to the PDs 156(1)-156(Q) has changed since at least one module 152, 154, 160(1)-160(Z) has either been removed or added to the RAU 14. In this instance, the controller 176 determines if a PD 156(1) is connected to the first powered communications port 158(1) that is unpowered (block 226). If so, the controller 176 determines if the available power budget is sufficient to provide power to the PD 156(1) connected to the first powered communications port 158(1) (block 228). If so, the controller 176 directs the PSE 170 to provide power to the first powered communications port 158(1) (block 230). If not, the controller 176 checks the status of the second powered communications port 158(2) (block 232). [0083] If the controller 176 determines that the first powered communications port 158(1) is not powered (block 226), the controller 176 determines if a PD 156(2) is connected to a second powered communications port 158(2) that is unpowered (block 232). If so, the controller 176 determines if the available power budget is sufficient to provide power to the PD 156(2) connected to the second powered communications port 158(2) (block 234). If so, the controller 176 directs the PSE 170 to provide power to the second powered communications port 158(2) (block 236). If not, the controller 176 does not change the power configuration of the second powered communications port 158(2). Thus, the controller 176 manages power to by enabling a first powered communications port 158(1) if available power budget is present, and then enabling a second powered communications port 158(2) if available power budget is available after providing power to the first powered communications port 158(1). When the available power budget changes for the RAU 14, the enabling or disabling of the powered communications ports 158(1), 158(2) is re-evaluated based on the available power budget.
[0084] If the status of the powered communications ports 158(1), 158(2) has changed (block 224), the current power settings of the powered communications ports 158(1), 158(2) is also re-evaluated. In this regard, if the first powered communications port 158(1) is connected (block 238), the controller 176 obtains the class of the PD 156(1) connected to the powered communications port 158(1) from the PSE 170 (block 240). The controller 176 determines if the available power budget is sufficient to power the PD 156(1) at its class rating (block 242). If so, the controller 176 directs the PSE 170 to enable the powered communications port 158(1) to provide power to the PD 156(1) connected to the powered communications port 158(1) (block 244). For example, if the available power budget is 16 Watts, a PoE Class 3 PD 156(1) rated at 15.4 Watts connected to a powered communications port 158(1) can be powered, and thus the powered communications port 158(1) is enabled. However, if a PoE Class 4 PD 156(1) rated at 30 Watts or less is connected to a powered communications port 158(1), the powered communications port 158(1) is disabled since the available power budget is less than 30 Watts.
[0085] The available power budget for the RAU 14 is updated by the controller 176 in memory 178 based on the class of the PD 156(1) connected to the powered communications port 158(1) (block 246) so that power is not directed to the second powered communications port 158(2) if there is not sufficient power budget remaining. If the available power budget is not sufficient to power the PD 156(1) connected to the powered communications port 158(1) (block 242), the controller 176 disables the powered communications port 158(1) so that power is not made available by the PSE 170 to the powered communications port 158(1) (block 248).
[0086] If a PD 156(1) is not connected to the first powered communications port 158(1) (block 238), the controller 176 determines if the first powered communications port 158(1) is disconnected (block 249). If not, the controller 176 determines if a PD 156(2) is connected to the second powered communications port 158(2) (block 250). If so, the controller 176 obtains the class of the PD 156(2) connected to the powered communications port 158(2) from the PSE 170 (block 252). The controller 176 determines if the available power budget is sufficient to power the PD 156(2) at its class rating (block 254). If so, the controller 176 directs the PSE 170 to enable the powered communications port 158(2) to provide power to the PD 156(2) connected to the powered communications port 158(2) (block 256). The available power budget for the RAU 14 is updated by the controller 176 in memory 178 based on the class of the PD 156(2) connected to the powered communications port 158(2) (block 246) to so that power is not directed to the other powered communications port 158(1) if there is not sufficient power budget remaining. If the available power budget is not sufficient to power the PD 156(2) connected to the powered communications port 158(2) (block 254), the controller 176 disables the powered communications port 158(2) so that power is not made available by the PSE 170 to the powered communications port 158(2) (block 258).
[0087] FIG. 12 is a more detailed diagram of one embodiment of the DDS module 154 in FIG. 8 that can be provided in an RAU 14 to provide digital data services to the PDs 156(1)-156(Q) connected to the powered communications ports 158(1)-158(Q) and to provide power management for the powered communications ports 158(1)-158(Q), as described above. As illustrated in FIG. 12, the DDS module 174 includes a transmit optical sub-assembly (TOSA) 260 and a receive optical sub-assembly (ROSA) 262 to convert downlink optical digital signals 130D from the downlink optical fiber 135D to downlink electrical digital signals and convert uplink electrical digital signals to uplink optical digital signals 130U. A DDS switch 264 is provided to switch digital data services to the powered communications ports 158(1)-158(Q). The controller 176 is provided as a PoE PSE controller to manage power provided to the powered communications ports 158(1)-158(Q). A power interface 266 is provided to receive power from the power line 171 from the RF communications module 152. Switches 268 and light emitting diodes (LEDs) 270 are provided to allow configuration settings and to provide the status of the DDS module 174, respectively.
[0088] FIG. 13 is a schematic diagram representation of an exemplary electronic device 280 in the exemplary form of an exemplary computer system 282 adapted to execute instructions from an exemplary computer-readable medium to perform the power management functions. The electronic device 280 may be the DDS module 154, but could be any other module or device provided in the RAU 14. The electronic device 280 could be provided separately from the other modules 152, 154, 160(1)-160(Z) that can be configured for the RAU 14. In this regard, the electronic device 280 may comprise the computer system 282 within which a set of instructions for causing the electronic device 280 to perform any one or more of the methodologies discussed herein may be executed. The electronic device 280 may be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, or the Internet. The electronic device 280 may operate in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. While only a single device is illustrated, the term "device" shall also be taken to include any collection of devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The electronic device 280 may be a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device, and may represent, for example, a server or a user's computer.
[0089] The exemplary computer system 282 includes a processing device or processor 284, a main memory 286 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), and a static memory 288 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via a bus 290. Alternatively, the processing device 284 may be connected to the main memory 286 and/or the static memory 288 directly or via some other connectivity means. The processing device 284 may be the controller 176, and the main memory 286 or static memory 288 may be the memory 178.
[0090] The processing device 284 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 284 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 284 is configured to execute processing logic in instructions 292 for performing the operations and steps discussed herein.
[0091] The computer system 282 may further include a network interface device 294. The computer system 282 also may or may not include an input 296 to receive input and selections to be communicated to the processing device 284 when executing instructions. The computer system 282 also may or may not include an output 298, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).
[0092] The computer system 282 may or may not include a data storage device that includes instructions 300 stored in a computer-readable medium 302 embodying any one or more of the RAU 14 power management methodologies or functions described herein. The instructions 300 may also reside, completely or at least partially, within the main memory 286 and/or within the processing device 284 during execution thereof by the computer system 282, the main memory 286 and the processing device 284 also constituting computer-readable media. The instructions 300 may further be transmitted or received over a network 304 via the network interface device 294.
[0093] While the computer-readable medium 302 is shown in an exemplary embodiment to be a single medium, the term "computer-readable medium" should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term "computer-readable medium" shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the processor and that cause the processor to perform any one or more of the methodologies of the embodiments disclosed herein. The term "computer-readable medium" shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media, and carrier wave signals.
[0094] The DDS modules disclosed herein may be provided any type of digital data services. The powered communications ports provided in the RAU may be provided to meet any power standard. In the example of PoE, IEEE 802.3at specifies that link layer discovery protocol (LLDP) may be used and supported by the components described herein, including the controllers and power management components in the RAUs. LLDP allows exchange of data with PDs to determine the power rating of the PD. Also, more precise information regarding power requirements can only be exchanged using LLDP for media endpoint devices, such as LLDP-MED, according to TIA-1057). LLDP-MED allows requesting of power by PDs between 0 and 102.3 Watts in 0.1 Watt steps. LLDP and LLDP-MED are layer 2 protocols, which require a means to receive and transmit those Ethernet packets from and to PDs. This can be performed by the controllers disclosed herein and provided in the RAUs having an Ethernet media access controller connected to an Ethernet switch inside the media converter. Alternatively, power ratings for a PD could be provided manually or programmed into the RAUs by an operator accessing the RAUs in the distributed antenna system.
[0095] The embodiments disclosed herein include various steps. The steps of the embodiments disclosed herein may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general- purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.
[0096] The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine -readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes a machine-readable storage medium (e.g., read only memory ("ROM"), random access memory ("RAM"), magnetic disk storage media, optical storage media, flash memory devices, etc.), a machine-readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.), etc.
[0097] Unless specifically stated otherwise as apparent from the previous discussion, it is appreciated that throughout the description, discussions utilizing terms such as "processing," "computing," "determining," "displaying," or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices. [0098] The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description above. In addition, the embodiments described herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the embodiments as described herein.
[0099] Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer-readable medium and executed by a processor or other processing device, or combinations of both. The components of the distributed antenna systems described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends upon the particular application, design choices, and/or design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
[00100] The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
[00101] The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.
[00102] It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. It is to be understood that the operational steps illustrated in the flow chart diagrams may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Those of skill in the art would also understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
[00103] Further, as used herein, it is intended that the terms "fiber optic cables" and/or "optical fibers" include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structures in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entireties.
[00104] Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.

Claims

What is claimed is:
1. A power management device for remotely managing power consumed at a remote antenna unit (RAU) in a distributed antenna system, comprising:
a remote controller communicatively coupled to at least one remote antenna unit (RAU) provided in the distributed antenna system, the RAU configured to provide power to at least one external power- consuming device connected to at least one powered port;
wherein the remote controller is configured to:
communicate with the at least one RAU to determine an available power budget for the at least one powered port; and
communicate the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
2. The power management device of claim 1, wherein the remote controller is co- located in a head-end unit (HEU) configured to distribute downlink radio frequency (RF) communications signals to the at least one RAU.
3. The power management device according to any of the preceding claims, wherein the remote controller is configured to receive a type of at least one power- consuming RAU module present in the at least one RAU from the at least one RAU.
4. The power management device of claim 3, wherein the remote controller is configured to determine the available power budget for the at least one powered port based on power required for the at least one power-consuming RAU module present in the at least one RAU.
5. The power management device of claim 4, wherein the remote controller is configured to determine the available power budget for the at least one RAU by subtracting the power required for the at least one power-consuming RAU module present in the at least one RAU from a total power available to the at least one RAU.
6. The power management device of claim 4, wherein the remote controller is further configured to look up in memory coupled to the remote controller, the power required for the at least one power-consuming RAU module present in the at least one RAU.
7. The power management device of claim 4, wherein the remote controller is configured to determine the power required for the at least one power-consuming RAU module present in the at least one RAU based on a type of the at least one power- consuming RAU module present for the at least one power-consuming RAU module present in the at least one RAU.
8. The power management device according to any of the preceding claims , wherein the remote controller is further configured to receive a power status of the at least one powered port from the at least one RAU.
9. A method of remotely managing power consumed at a remote antenna unit (RAU) in a distributed antenna system, comprising:
communicating with at least one RAU configured to provide power to at least one external power- consuming device connected to at least one powered port to determine an available power budget for the at least one powered port; and communicating the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
10. The method of claim 9, further comprising receiving a type of at least one power- consuming RAU module present in the at least one RAU from the at least one RAU.
11. The method of claim 10, comprising determining the available power budget for the at least one powered port in the at least one RAU based on power required for the at least one power-consuming RAU module present in the at least one RAU.
12. The method of claim 11, comprising determining the available power budget for the at least one RAU by subtracting the power required for the at least one power- consuming RAU module present in the at least one RAU from a total power available to the at least one RAU.
13. The method according to claims 11 or 12, further comprising looking up in memory coupled to a remote controller, the power required for the at least one power- consuming RAU module present in the at least one RAU.
14. The method according to claims 11, 12, or 13, further comprising determining the power required for the at least one power-consuming RAU module present in the at one least RAU based on a type of the at least one power-consuming RAU module present for the at least one power-consuming RAU module present in the at least one RAU.
15. The method according to claims 11, 12, 13, or 14, further comprising determining the power required for the at least one power-consuming RAU module present in the at least one RAU based on a version of the at least one power-consuming RAU module.
16. The method of claim 15, wherein the version is comprised from the group consisting of a hardware version and a software version.
17. The method according to any of the preceding method claims, further comprising receiving a power status of the at least one powered port from the at least one RAU.
18. A computer-readable medium storing one or more programs, the one or more programs comprising instructions, which when executed by a remote controller in a distributed antenna system and remotely located from a remote antenna unit (RAU), cause the remote controller to:
communicate with at least one RAU provided in a distributed antenna system to determine an available power budget for at least one powered port and provided in the at least one RAU configured to provide power to at least one external power-consuming device connected to the at least one powered port; and
communicate the available power budget for the at least one powered port in the at least one RAU to the at least one RAU.
19. The computer-readable medium of claim 18, wherein the instructions are configured to cause the remote controller co-located in a head-end unit (HEU) to distribute downlink radio frequency (RF) communications signals to the at least one RAU.
20. The computer-readable medium according to any of the preceding computer- readable medium claims, wherein the instructions are configured to cause the remote controller to receive a type of at least one power-consuming RAU module present in the at least one RAU from the at least one RAU.
21. The computer-readable medium of claim 20, wherein the instructions are configured to cause the remote controller to determine the available power budget for the at least one powered port based on power required for the at least one power-consuming RAU module present in the at least one RAU.
22. The computer-readable medium of claim 21, wherein the instructions are configured to cause the remote controller to determine the available power budget for the at least one RAU by subtracting the power required for the at least one power-consuming RAU module present in the at least one RAU from a total power available to the at least one RAU.
23. The computer-readable medium of claim 21, wherein the instructions are configured to cause the remote controller to look up in memory coupled to the remote controller, the power required for the at least one power-consuming RAU module present in the at least one RAU.
24. The computer-readable medium of claim 21, wherein the instructions are configured to cause the remote controller to determine the power required for the at least one power-consuming RAU module present in the at least one RAU based on a type of the at least one power- consuming RAU module present for the at least one power-consuming RAU module present in the at least one RAU.
25. The computer-readable medium according to any of the preceding computer- readable medium claims, wherein the instructions are further configured to cause the remote controller to receive a power status of the at least one powered port from the at least one RAU.
26. A remote antenna unit (RAU) for a distributed antenna system, comprising: at least one power-consuming RAU module;
at least one powered port configured to provide power to at least one external power-consuming device connected to the at least one powered port; and an RAU controller configured to:
receive an available power budget for the at least one powered port from a remote controller in the distributed antenna system; and
enable power for the at least one powered port if the available power budget is sufficient to power the at least one external power- consuming device connected to the at least one powered port.
27. The RAU of claim 26, wherein the at least one power-consuming RAU module is comprised of at least one of a radio frequency (RF) communications module configured to provide RF communications services and a digital data services (DDS) module configured to provide DDS.
28. The RAU of claim 27, wherein the RAU controller is the DDS module.
29. The RAU according to any of the preceding RAU claims, wherein the at least one power-consuming RAU module is comprised of at least one optical-to-electrical (O/E) converter configured to convert a downlink optical RF signal to a downlink electrical RF signal.
30. The RAU according to any of the preceding RAU claims, wherein the at least one power-consuming RAU module is comprised of at least one electrical-to-optical (E/O) converter configured to convert an uplink electrical RF signal to an uplink optical RF signal.
31. The RAU according to any of the preceding RAU claims, wherein the at least one power-consuming RAU module further comprises at least one remote expansion unit (RXU) module configured to provide RF communications services.
32. The RAU of claim 31, wherein the at least one RXU module is configured to receive downlink RF communications signals.
33. The RAU of claim 31, wherein the at least one RXU module is configured to receive uplink RF communications signals.
34. The RAU according to any of the preceding RAU claims, wherein the at least one powered port is comprised of at least one Power-over-Ethernet (PoE) port.
35. The RAU according to any of the preceding RAU claims, wherein the RAU controller is further configured to disable the at least one powered port if the available power budget is not sufficient to power the at least one external power-consuming device connected to the at least one powered port.
36. The RAU according to any of the preceding RAU claims, wherein the at least one powered port is comprised of a plurality of powered ports,
wherein the RAU controller is further configured disable at least one first port among the plurality of powered ports if the available power budget is only sufficient to power the at least one external power-consuming device connected to at least one second port among the plurality of powered ports.
37. The RAU according to any of the preceding RAU claims, wherein the RAU controller is further configured to determine if a status of the at least one powered port has changed.
38. The RAU of claim 37, wherein the RAU controller is further configured to determine a device class of the at least one external power-consuming device connected to the at least one powered port.
39. The RAU of claim 38, wherein the RAU controller is configured to enable power for the at least one powered port if the available power budget is sufficient to power the at least one external power- consuming device of the device class.
40. The RAU of claim 38, wherein the RAU controller is further configured to disable the at least one powered port if the available power budget is not sufficient to power the at least one external power- consuming device of the device class.
41. A method of managing power consumed at a remote antenna unit (RAU) in a distributed antenna system, comprising:
receiving an available power budget for at least one powered port configured to provide power to at least one external power- consuming device connected to the at least one powered port based on power required by at least one power-consuming RAU module; and
enabling power for the at least one powered port if the available power budget is sufficient to power the at least one external power-consuming device connected to the at least one powered port.
42. The method of claim 41, further comprising disabling the at least one powered port if the available power budget is not sufficient to power the at least one external power- consuming device connected to the at least one powered port.
43. The method according to claims 41 or 42, wherein the at least one powered port is comprised of a plurality of powered ports,
further comprising disabling at least one first port among the plurality of powered ports if the available power budget is only sufficient to power the at least one external power-consuming device connected to at least one second port among the plurality of powered ports.
44. The method according to claims 41, 42, or 43, further comprising determining if a status of the at least one powered port has changed.
45. The method of claim 44, further comprising determining a device class of the at least one external power- consuming device connected to the at least one powered port.
46. The method of claim 45, further comprising enabling power for the at least one powered port if the available power budget is sufficient to power the at least one external power-consuming device of the device class.
47. The method of claim 45, further comprising disabling power for the at least one powered port if the available power budget is not sufficient to power the at least one external power-consuming device of the device class.
48. A computer-readable medium storing one or more programs, the one or more programs comprising instructions, which when executed by a remote antenna unit (RAU) controller in at least one RAU provided in a distributed antenna system, cause the RAU controller to:
receive an available power budget from a RAU controller for at least one powered port in a RAU provided in the distributed antenna system, the RAU configured to provide power to at least one external power-consuming device connected to the at least one powered port based on power required by at least one power-consuming RAU module; and
enable power for the at least one powered port if the available power budget is sufficient to power the at least one external power-consuming device connected to the at least one powered port.
49. The computer-readable medium of claim 48, wherein the instructions are further configured to cause the RAU controller to disable the at least one powered port if the available power budget is not sufficient to power the at least one external power- consuming device connected to the at least one powered port.
50. The computer-readable medium according to claims 48 or 49, wherein the instructions are further configured to cause the RAU controller to disable the at least one powered port comprised of at least one first port among a plurality of powered ports if the available power budget is only sufficient to power the at least one external power- consuming device connected to at least one second port among the plurality of powered ports.
51. The computer-readable medium according to claims 48, 49, or 50, further comprising determining if a status of the at least one powered port has changed.
52. The computer-readable medium of claim 51, wherein the instructions are further configured to cause the RAU controller to determine a device class of the at least one external power-consuming device connected to the at least one powered port.
53. The method of claim 52, wherein the instructions are further configured to cause the RAU controller to enable power for the at least one powered port if the available power budget is sufficient to power the at least one external power-consuming device of the device class.
54. The method of claim 52, wherein the instructions are further configured to cause the RAU controller to disable power for the at least one powered port if the available power budget is not sufficient to power the at least one external power-consuming device of the device class.
PCT/US2011/055861 2010-10-13 2011-10-12 Power management for remote antenna units in distributed antenna systems WO2012051230A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP11781682.7A EP2628272A1 (en) 2010-10-13 2011-10-12 Power management for remote antenna units in distributed antenna systems
CN201180053270.3A CN103329482B (en) 2010-10-13 2011-10-12 For electrical management device and the method for distributing antenna system medium-long range antenna element
US13/860,017 US9252874B2 (en) 2010-10-13 2013-04-10 Power management for remote antenna units in distributed antenna systems
US14/845,768 US9419712B2 (en) 2010-10-13 2015-09-04 Power management for remote antenna units in distributed antenna systems
US15/228,375 US10045288B2 (en) 2010-10-13 2016-08-04 Power management for remote antenna units in distributed antenna systems
US16/031,173 US10425891B2 (en) 2010-10-13 2018-07-10 Power management for remote antenna units in distributed antenna systems
US16/536,271 US10849064B2 (en) 2010-10-13 2019-08-08 Power management for remote antenna units in distributed antenna systems
US17/075,136 US11178609B2 (en) 2010-10-13 2020-10-20 Power management for remote antenna units in distributed antenna systems
US17/088,276 US11212745B2 (en) 2010-10-13 2020-11-03 Power management for remote antenna units in distributed antenna systems
US17/090,149 US11224014B2 (en) 2010-10-13 2020-11-05 Power management for remote antenna units in distributed antenna systems
US17/523,380 US11671914B2 (en) 2010-10-13 2021-11-10 Power management for remote antenna units in distributed antenna systems
US18/205,027 US20230309013A1 (en) 2010-10-13 2023-06-02 Power management for remote antenna units in distributed antenna systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39268710P 2010-10-13 2010-10-13
US61/392,687 2010-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/860,017 Continuation US9252874B2 (en) 2010-10-13 2013-04-10 Power management for remote antenna units in distributed antenna systems

Publications (1)

Publication Number Publication Date
WO2012051230A1 true WO2012051230A1 (en) 2012-04-19

Family

ID=44925630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/055861 WO2012051230A1 (en) 2010-10-13 2011-10-12 Power management for remote antenna units in distributed antenna systems

Country Status (3)

Country Link
EP (1) EP2628272A1 (en)
CN (1) CN103329482B (en)
WO (1) WO2012051230A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919728A (en) * 2012-09-25 2015-09-16 康宁光电通信有限责任公司 Power distribution module(s) for distributed antenna systems, and related power units, components, systems, and methods
WO2015147962A1 (en) * 2014-03-28 2015-10-01 Commscope Technologies Llc Power management for distributed antenna system
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9419712B2 (en) 2010-10-13 2016-08-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US9699723B2 (en) 2010-10-13 2017-07-04 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10455497B2 (en) 2013-11-26 2019-10-22 Corning Optical Communications LLC Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US10992484B2 (en) 2013-08-28 2021-04-27 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101967925B1 (en) * 2014-10-09 2019-04-10 앤드류 와이어리스 시스템즈 게엠베하 Distributed antenna system for MIMO signals
CN110521278B (en) * 2017-02-23 2020-09-22 瑞典马文无线公司 Automatic configuration of digital DAS for signal dominance
WO2019160951A1 (en) * 2018-02-16 2019-08-22 Commscope Technologies Llc Variable upgradable multi-user port of a remote antenna unit
CN111224722B (en) * 2018-11-27 2021-10-26 华为技术有限公司 Antenna head end detection method and device
CN112991543A (en) * 2021-04-20 2021-06-18 成都职业技术学院 BIM technology-based intelligent device communication signal visual representation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040230846A1 (en) * 2003-05-15 2004-11-18 Mancey Steven K J System and method for the management of power supplied over data lines
WO2005117337A1 (en) * 2004-05-20 2005-12-08 Cisco Technology, Inc. Methods and apparatus for provisioning phantom power to remote devices based on admission control
US20060053324A1 (en) * 2002-10-15 2006-03-09 Yaniv Giat Rack level power management for power over Ethernet
WO2006077569A1 (en) * 2005-01-18 2006-07-27 Powerdsine, Ltd. Rack level power management
US20080166094A1 (en) 2007-01-08 2008-07-10 Corning Incorporated Bend resistant multimode optical fiber
WO2009014710A1 (en) * 2007-07-24 2009-01-29 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (rof) wireless picocellular systems
US20090169163A1 (en) 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
WO2009145789A1 (en) * 2008-05-30 2009-12-03 Hewlett-Packard Development Company, L.P. Wireless access point

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299517B (en) * 2008-05-27 2011-12-07 中国移动通信集团广东有限公司韶关分公司 Centralized remote electric power system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060053324A1 (en) * 2002-10-15 2006-03-09 Yaniv Giat Rack level power management for power over Ethernet
US20040230846A1 (en) * 2003-05-15 2004-11-18 Mancey Steven K J System and method for the management of power supplied over data lines
WO2005117337A1 (en) * 2004-05-20 2005-12-08 Cisco Technology, Inc. Methods and apparatus for provisioning phantom power to remote devices based on admission control
WO2006077569A1 (en) * 2005-01-18 2006-07-27 Powerdsine, Ltd. Rack level power management
US20080166094A1 (en) 2007-01-08 2008-07-10 Corning Incorporated Bend resistant multimode optical fiber
WO2009014710A1 (en) * 2007-07-24 2009-01-29 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (rof) wireless picocellular systems
US20090169163A1 (en) 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
WO2009145789A1 (en) * 2008-05-30 2009-12-03 Hewlett-Packard Development Company, L.P. Wireless access point

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US10420025B2 (en) 2010-10-13 2019-09-17 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9419712B2 (en) 2010-10-13 2016-08-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US10104610B2 (en) 2010-10-13 2018-10-16 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10045288B2 (en) 2010-10-13 2018-08-07 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9699723B2 (en) 2010-10-13 2017-07-04 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US10425891B2 (en) 2010-10-13 2019-09-24 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US11114852B2 (en) 2010-11-24 2021-09-07 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US10454270B2 (en) 2010-11-24 2019-10-22 Corning Optical Communicatons LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US11715949B2 (en) 2010-11-24 2023-08-01 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
CN104919728A (en) * 2012-09-25 2015-09-16 康宁光电通信有限责任公司 Power distribution module(s) for distributed antenna systems, and related power units, components, systems, and methods
US10530670B2 (en) 2012-11-28 2020-01-07 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10999166B2 (en) 2012-11-28 2021-05-04 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11665069B2 (en) 2012-11-28 2023-05-30 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US11516030B2 (en) 2013-08-28 2022-11-29 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10992484B2 (en) 2013-08-28 2021-04-27 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10455497B2 (en) 2013-11-26 2019-10-22 Corning Optical Communications LLC Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption
WO2015147962A1 (en) * 2014-03-28 2015-10-01 Commscope Technologies Llc Power management for distributed antenna system
US10448324B2 (en) 2014-03-28 2019-10-15 Commscope Technologies Llc Power management for distributed antenna system
US9769744B2 (en) 2014-03-28 2017-09-19 Commscope Technologies Llc Power management for distributed antenna system
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)

Also Published As

Publication number Publication date
CN103329482A (en) 2013-09-25
EP2628272A1 (en) 2013-08-21
CN103329482B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
US11212745B2 (en) Power management for remote antenna units in distributed antenna systems
US10750442B2 (en) Local power management for remote antenna units in distributed antenna systems
EP2628271B1 (en) Local power management for remote antenna units in distributed antenna systems
US10148347B2 (en) Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US10205538B2 (en) Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
WO2012051230A1 (en) Power management for remote antenna units in distributed antenna systems
AU2013101109A4 (en) Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11781682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011781682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE