WO2012050012A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012050012A1
WO2012050012A1 PCT/JP2011/072915 JP2011072915W WO2012050012A1 WO 2012050012 A1 WO2012050012 A1 WO 2012050012A1 JP 2011072915 W JP2011072915 W JP 2011072915W WO 2012050012 A1 WO2012050012 A1 WO 2012050012A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display device
substrate
electrode
Prior art date
Application number
PCT/JP2011/072915
Other languages
French (fr)
Japanese (ja)
Inventor
伊奈 恵一
吉田 圭介
田坂 泰俊
博嗣 福谷
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012050012A1 publication Critical patent/WO2012050012A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device in which an electrode for applying a voltage to a liquid crystal layer is provided on each of a pair of substrates that sandwich a liquid crystal.
  • a liquid crystal display device is a display device that uses a liquid crystal composition for display, and a typical display method is to apply a voltage to liquid crystal sealed between a pair of substrates, and according to the applied voltage. The amount of transmitted light is controlled by changing the alignment state of the liquid crystal.
  • an active matrix method is generally used in televisions, monitors, and the like that perform display with a large number of pixels.
  • an active matrix method is generally used in televisions, monitors, and the like that perform display with a large number of pixels.
  • the active matrix system in order to individually input an electric signal for each pixel arranged in a matrix, a pixel electrode provided for each pixel individually and a common electrode used in common for all the pixels are provided, and a switching element is provided.
  • An electric signal input to each pixel electrode is selected using the thin film transistor.
  • the electric signal input to each pixel electrode corresponds to the voltage applied between the pixel electrode provided corresponding to each pixel and the common electrode, in other words, the voltage applied to the liquid crystal of each pixel. It corresponds to.
  • the arrangement and shape of the pixel electrode and the common electrode are adjusted according to the display mode of the liquid crystal display device as well as the arrangement and shape of the pixel.
  • a vertical alignment (vertical alignment) mode which is one of the typical display modes used in televisions, monitors, etc.
  • a pixel electrode is disposed on one substrate and a common electrode is disposed on the other substrate.
  • a technique for enlarging the viewing angle by applying multiple directions in which the liquid crystal is tilted when a voltage is applied is often used.
  • an opening is formed in the pixel electrode and / or the common electrode.
  • the liquid crystal display device can display a high-definition image by controlling the voltage applied to the liquid crystal through the pair of electrodes with high accuracy.
  • an unintended voltage is applied to the liquid crystal, the image display is disturbed.
  • static electricity causes image quality degradation such as a reduction in the contrast ratio of the screen (see, for example, Patent Document 3).
  • a conductive resin is arranged in a mesh pattern or a lattice pattern in order to remove static electricity.
  • the conductive resin arranged in a mesh or grid it is difficult to completely prevent a reduction in contrast ratio due to static electricity on a high-definition display screen in which a large number of fine pixels are arranged.
  • the liquid crystal display device is strongly required to be thin, and the method of disposing a conductive resin is not a suitable method.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device that can effectively prevent a reduction in contrast ratio due to static electricity.
  • the present inventors have made various studies on a liquid crystal display device in which an opening for controlling the alignment of liquid crystal is formed in a counter electrode. As a result, contact discharge during an ESD (electrostatic discharge) test, friction with an insulator during a manufacturing process, It has been found that when an opening is provided in the counter electrode by the above method, static electricity is easily charged in the opening. Such charging may cause light leakage at the opening portion during black display and may reduce the contrast ratio. Therefore, the present inventors can effectively prevent a reduction in contrast ratio without interfering with the features and productivity of the liquid crystal display device by disposing a light shielding body over the entire region overlapping with the opening. As a result of conceiving that the problem can be solved brilliantly, the present invention has been achieved.
  • ESD electrostatic discharge
  • the present invention provides a first substrate having a plurality of pixel electrodes, a second substrate having a counter electrode on the surface of an insulating film, and a liquid crystal layer disposed between the first substrate and the second substrate.
  • a liquid crystal display device comprising: In the counter electrode, an opening for controlling the alignment of the liquid crystal layer is formed in each of the regions facing the pixel electrode, At least one of the first substrate and the second substrate is a liquid crystal display device in which a light shielding body is provided over the entire region overlapping the opening.
  • the present invention light leakage that occurs at the opening formed in the counter electrode can be prevented by the light shield. Therefore, it is possible to prevent the contrast ratio from being lowered by the light shield while improving the response speed of the liquid crystal and increasing the viewing angle by the opening. Moreover, since the said light shielding body is provided in said 1st board
  • the other member examples include a black matrix and a metal wiring.
  • at least one of the first substrate and the second substrate includes a color filter and a black matrix that partitions the color filter, and the light shielding member is formed with the black matrix.
  • substrate is provided with a switching element and metal wiring
  • the said light-shielding body is a metal member formed with the said metal wiring.
  • the liquid crystal display device of the present invention is provided with the light-shielding body in the entire region overlapping the opening formed in the counter electrode, but does not exclude the provision of a member for removing static electricity. . Therefore, the liquid crystal display device of the present invention may include a member for removing static electricity in addition to the light shielding body.
  • liquid crystal display device of the present invention it is possible to effectively prevent a decrease in contrast ratio due to static electricity.
  • FIG. 3 is a schematic plan view illustrating a configuration of a pixel of the liquid crystal display device of Embodiment 1.
  • FIG. FIG. 2 is a schematic cross-sectional view schematically showing a cross section of the liquid crystal display device taken along line A1-A2 in FIG.
  • FIG. 2 is a schematic plan view showing the configuration on the active matrix substrate side in the liquid crystal display device shown in FIG. 1.
  • FIG. 2 is a schematic plan view illustrating a configuration on a color filter substrate side in the liquid crystal display device illustrated in FIG. 1.
  • 3 is a schematic cross-sectional view for explaining the configuration of the active matrix substrate of Embodiment 1.
  • FIG. In the conventional liquid crystal display device it is the enlarged photograph of the pixel which shows that the light leak has generate
  • FIG. 4 is an enlarged photograph of a pixel showing that light leakage during black display is prevented in the liquid crystal display device of Embodiment 1.
  • 6 is a schematic plan view illustrating a configuration of a pixel of a liquid crystal display device according to Embodiment 2.
  • FIG. 9 is a schematic cross-sectional view schematically showing a cross section of the liquid crystal display device taken along line B1-B2 in FIG. 6 is a schematic plan view illustrating a configuration of a pixel of a liquid crystal display device according to Embodiment 3.
  • FIG. FIG. 11 is a schematic cross-sectional view schematically showing a cross section of the liquid crystal display device taken along line C1-C2 in FIG.
  • FIG. 1 is a schematic plan view illustrating a configuration of a pixel of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a simplified cross section of the liquid crystal display device taken along line A1-A2 in FIG.
  • FIG. 3 is a schematic plan view showing the configuration of the active matrix substrate side in the liquid crystal display device shown in FIG.
  • FIG. 4 is a schematic plan view showing the configuration of the color filter substrate side in the liquid crystal display device shown in FIG.
  • FIG. 5 is a schematic cross-sectional view for explaining the configuration of the active matrix substrate of the first embodiment.
  • the liquid crystal display device uses a member formed together with the black matrix 31 as the light shielding body 32.
  • the arrangement pattern of the light shielding body 32 substantially matches the arrangement pattern of the openings formed in the counter electrode 35, and is arranged at the center of the region partitioned by the gate bus line 11 and the source bus line 13.
  • the shape of each light shielding body 32 is a substantially rectangular shape with corners cut off obliquely, and extends substantially parallel to the source bus line 13.
  • the liquid crystal display device of the present embodiment employs an active matrix driving method, and controls the orientation of liquid crystal molecules sealed between the active matrix substrate and the color filter substrate by the pixel electrode 15 and the counter electrode 35. Thus, the amount of light transmitted through the liquid crystal layer 50 is controlled.
  • FIG. 1 The main configuration of the active matrix substrate is shown in FIG.
  • a plurality of gate bus lines 11 extend in parallel with each other, and in the up-down direction in FIG. 3, a plurality of source bus lines 13 extend in parallel with each other, and both are orthogonal to each other.
  • a thin film transistor (TFT) as a switching element is provided.
  • the gate electrode is electrically connected to the gate bus line 11
  • the source electrode is electrically connected to the source bus line 13
  • the drain electrode is electrically connected to the pixel electrode 15.
  • the pixel electrode 15 is disposed in each of the regions partitioned by the gate bus line 11 and the source bus line 13, and a desired voltage can be applied to the liquid crystal layer 50 in units of the pixel electrode 15.
  • One pixel electrode 15 may be provided for each pixel, or a plurality of pixel electrodes 15 may be provided. As a typical example in which a plurality of pixel electrodes 15 are provided in one pixel, the pixel electrodes 15 are individually provided for each color for the purpose of individually adjusting the amount of light transmitted through a plurality of color filters 33 for color display. It is. In this specification, a region corresponding to one pixel electrode 15 is also referred to as a “display unit”.
  • a scanning signal is supplied from the driver to the gate bus line 11, and an image signal is supplied from the driver to the source bus line 13.
  • the scanning signal is input to the gate electrode through the gate bus line 11 and controls the timing for conducting between the source electrode and the drain electrode.
  • the image signal is input to the source electrode through the source bus line 13, and is appropriately transmitted to the drain electrode based on the scanning signal.
  • the image signal transmitted to the drain electrode reaches the pixel electrode 15 and controls the orientation of the liquid crystal molecules in the liquid crystal layer 50.
  • Each display unit is provided with an auxiliary capacity.
  • the auxiliary capacitance is formed by disposing a gate insulating film 25 between the auxiliary capacitance electrode 18 and the auxiliary capacitance wiring 17.
  • the auxiliary capacitance electrode 18 is electrically connected to the pixel electrode 15 and the drain electrode, and is provided for each display unit.
  • the auxiliary capacitance line 17 is shared by each display unit, and extends in the active matrix substrate in parallel with the gate bus line 11.
  • the main structure of the color filter substrate is shown in FIG.
  • the counter electrode 35 is disposed on almost the entire surface of the color filter substrate.
  • the counter electrode 35 is shared by a plurality of display units. Further, as described above, an opening is formed at a position corresponding to the center of each display unit of the counter electrode 35.
  • the opening is provided to control the alignment of the liquid crystal molecules in the liquid crystal layer 50. That is, due to the presence of the opening, the electric lines of force formed in the liquid crystal layer 50 when a voltage is applied between the pixel electrode 15 and the counter electrode 35 are bent obliquely with respect to the surface of the counter electrode 35. As a result, the response speed of the liquid crystal molecules in the liquid crystal layer 50 and the viewing angle of the liquid crystal display can be improved.
  • the opening has a rectangular shape and extends substantially parallel to the source bus line 13. Thereby, the alignment of the liquid crystal molecules in the liquid crystal layer 50 can be stably aligned in line symmetry. Note that the position and shape of the opening may be changed as appropriate in accordance with the mode for controlling the alignment of the liquid crystal molecules in the liquid crystal layer 50.
  • a black matrix 31 is arranged so as to divide a plurality of display units.
  • the pattern of the black matrix 31 may be a stripe shape or a lattice shape.
  • the material of the black matrix 31 may be a metal or a black resin.
  • the member formed together with the black matrix 31 is disposed as the light shielding body 32 in the entire region overlapping the opening of the counter electrode 35.
  • the opening of the counter electrode 35 static electricity is charged in the insulator that is the base of the counter electrode 35, and thereby the alignment of liquid crystal molecules in the vicinity of the opening may be disturbed.
  • the light shielding body 32 is not disposed, light leakage caused by the alignment disorder is conspicuous during black display, and the contrast ratio is lowered.
  • the light shielding body 32 is arranged, leakage light generated by the alignment disturbance is blocked by the light shielding body 32 before reaching the display surface, and the alignment disorder of the liquid crystal molecules is displayed in the display quality of the liquid crystal display device. Can be prevented.
  • the opening of the counter electrode 35 means a portion where no electrode is disposed, and is different from a concave portion of the electrode such as a contact hole.
  • an SiO 2 film having a thickness of 100 nm is provided as a base coat film 21 on a glass substrate 10 as an insulating substrate by a plasma CVD method.
  • an amorphous silicon layer having a thickness of 50 nm is provided on the base coat film 21 by plasma CVD.
  • the amorphous silicon layer is crystallized by heat treatment by laser annealing. Further, the crystallized silicon layer is patterned into a predetermined shape.
  • a 100 nm thick SiO 2 film is provided as a gate insulating film 25 on the patterned silicon layer 23 by plasma CVD.
  • a conductive film is formed by sequentially stacking a tantalum nitride film having a thickness of 50 nm and a tungsten film having a thickness of 370 nm on the gate insulating film 25 by a sputtering method, and then the conductive film is patterned into a predetermined shape.
  • a gate bus line 11, a gate electrode, and an auxiliary capacitance line 17 are formed.
  • the conductive film may be formed using an element selected from Ta, W, Ti, Mo, Al, and Cu, or an alloy or compound containing the above element as a main component, instead of tantalum nitride and tungsten.
  • P (phosphorus) is doped into the silicon layer 23 from above the gate electrode through the gate insulating film 25 to form an n ⁇ region and an n + region in the silicon layer 23 located on both sides of the gate electrode. These n ⁇ region and n + region become the source electrode and drain electrode of the TFT, and the TFT is formed. Note that P (phosphorus) is doped when an N channel is formed, but B (boron) is doped when a P channel is formed. Further, heat treatment is performed to activate the impurity element added to the silicon layer 23.
  • a first insulating film 27 having a thickness of 950 nm and having a two-layer structure of a silicon nitride film and an oxide film is provided by a CVD method. Further, a first contact hole 26 reaching the drain electrode of the TFT is formed in the gate insulating film 25 and the first insulating film 27.
  • the conductive film is patterned into a predetermined shape.
  • the source bus line 13 and the connection electrode 26a are formed.
  • the connection electrode 26 a is disposed inside the first contact hole 26 and partly on the first insulating film 27.
  • the entire substrate having the laminated structure manufactured through the above steps is heat-treated to hydrogenate the silicon layer 23. This hydrogenation is to terminate dangling bonds (unbonded bonds in the atoms) of the silicon layer 23 with hydrogen in the first insulating film 27.
  • a 1.6 ⁇ m-thick second insulating film 29 made of an insulating resin is provided on the first insulating film 27 and the source bus line 13. Further, a second contact hole 28 reaching the connection electrode 26 a is formed in the second insulating film 29. Subsequently, an ITO (indium tin oxide) film having a thickness of 100 nm is provided by a sputtering method, and this ITO film is patterned into a predetermined shape to provide a plurality of pixel electrodes 15 in a matrix. Adjacent pixel electrodes 15 are spaced apart on the gate bus line 11 and the source bus line 13 so as not to be electrically connected. The ITO film is also formed inside the second contact hole 28.
  • ITO indium tin oxide
  • connection electrode in the first contact hole 26 and on the first insulating film 27
  • pixel electrode 15 in the second contact hole 28 and on the second insulating film 29
  • a polyimide film is printed as an alignment film (not shown). As described above, the active matrix substrate of this embodiment can be manufactured.
  • a black matrix 31 is formed in a stripe shape by photolithography on a glass substrate 30 as an insulating substrate. Furthermore, ink is ejected using an ink jet printing apparatus, and R (red), G (green), B (blue), and Y (yellow) color filters 33 are formed.
  • an ITO (indium tin oxide) film having a thickness of 100 nm is formed on the entire surface of the substrate by a sputtering method. Further, an opening is formed in the counter electrode 35 by photolithography. Finally, a polyimide film is printed as an alignment film (not shown). As described above, the color filter substrate of this embodiment can be manufactured.
  • the active matrix substrate and the counter substrate are bonded together at a predetermined uniform interval. Then, a liquid crystal layer 50 mainly composed of liquid crystal molecules having negative dielectric anisotropy that is vertically aligned is sandwiched between these two substrates.
  • a polarizing plate is attached to the front and back of the structure formed by attaching the active matrix substrate and the counter substrate, thereby completing the liquid crystal panel.
  • the phenomenon in which the opening portion of the counter electrode is charged by static electricity and the display quality of the liquid crystal display device is deteriorated is when low gradation display is performed (typically when black is displayed). This is noticeable and occurs remarkably when no voltage is applied to the liquid crystal layer 50 by the pixel electrode 15 and the counter electrode 35. Therefore, the light shielding body 32 is particularly effective for a normally black mode liquid crystal display device.
  • a polarizing plate to be attached to the surface of the structure and a polarizing plate to be attached to the back of the structure Have their polarization axes arranged in a crossed Nicols relationship.
  • a backlight unit, various optical films, and the like are disposed on the back side of the liquid crystal panel, and various optical films, a touch panel, and the like are disposed on the front side (display surface side).
  • An external circuit for driving is connected to the end of the liquid crystal panel.
  • the liquid crystal panels that have been mounted are stored in the chassis. Thus, the liquid crystal display device of this embodiment is completed.
  • FIG. 6 is an enlarged photograph of a pixel showing that light leakage occurs during black display in the conventional liquid crystal display device
  • FIG. 7 shows light leakage during black display in the liquid crystal display device of the first embodiment. It is an enlarged photograph of the pixel which shows that is prevented.
  • the light-blocking body 32 can prevent light leakage that occurs at the opening formed in the counter electrode 35. Therefore, it is possible to prevent the contrast ratio from being lowered by the light shielding body 32 while improving the response speed of the liquid crystal and increasing the viewing angle by the opening. Further, since the light shielding body 32 is provided in the color filter substrate, it does not hinder the thinning of the liquid crystal display device. Furthermore, since the light shielding body 32 is formed in the same process as the black matrix 31, the productivity of the liquid crystal display device is not hindered.
  • FIG. 8 is a schematic plan view illustrating a configuration of a pixel of the liquid crystal display device according to the second embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a simplified cross section of the liquid crystal display device along line B1-B2 in FIG.
  • the present embodiment shows a liquid crystal display device using a metal member formed with a source bus line 13 which is a metal wiring as a light shield 14.
  • the arrangement pattern of the light shields 14 substantially coincides with the arrangement pattern of the openings formed in the counter electrode 35, and is arranged at the center of the area partitioned by the gate bus line 11 and the source bus line 13.
  • the shape of each light shield 14 is a substantially rectangular shape with its corners cut off obliquely, and extends substantially parallel to the source bus line 13.
  • the liquid crystal display device of the present embodiment light leakage that occurs at the opening formed in the counter electrode 35 can be prevented by the light shield 14. Therefore, it is possible to prevent the contrast ratio from being lowered by the light shield 14 while improving the response speed of the liquid crystal and expanding the viewing angle by the opening. Further, since the light shield 14 is provided in the active matrix substrate, it does not hinder the thinning of the liquid crystal display device. Furthermore, since the light shield 14 is formed in the same process as the source bus line 13, the productivity of the liquid crystal display device is not hindered.
  • FIG. 10 is a schematic plan view illustrating a configuration of a pixel of the liquid crystal display device according to the third embodiment.
  • FIG. 11 is a schematic cross-sectional view showing a simplified cross section of the liquid crystal display device taken along line C1-C2 in FIG.
  • this embodiment shows a liquid crystal display device using a metal member formed together with a gate bus line 11 which is a metal wiring as a light shielding body 12.
  • the arrangement pattern of the light shield 12 substantially matches the arrangement pattern of the openings formed in the counter electrode 35, and is arranged at the center of the region partitioned by the gate bus line 11 and the source bus line 13.
  • the shape of each light shielding body 12 is a substantially rectangular shape with corners cut off obliquely, and extends substantially parallel to the source bus line 13.
  • the liquid crystal display device of the present embodiment light leakage that occurs at the opening formed in the counter electrode 35 can be prevented by the light blocking body 12. Accordingly, it is possible to prevent the contrast ratio from being lowered by the light shield 12 while improving the response speed of the liquid crystal and increasing the viewing angle by the opening. Further, since the light shield 12 is provided in the active matrix substrate, it does not hinder the thinning of the liquid crystal display device. Furthermore, since the light shielding body 12 is formed in the same process as the gate bus line 11, the productivity of the liquid crystal display device is not hindered.
  • the shape of the opening formed in the counter electrode 35 and the light shielding body 32 is a substantially rectangular shape with the corners cut off obliquely, but the substantially rectangular shape shown in FIG.
  • the substantially elliptical shape shown in FIG. 13 the substantially circular shape shown in FIG. 14, the combination of the rectangle and the circular shape shown in FIG. 15, or the shape shown in FIG. It is good also as a shape which combined the ellipse and circle shown in (1), and the substantially cross shape shown in FIG. 17, and it is not specifically limited.
  • one substrate constituting the liquid crystal display panel is an active matrix substrate including a switching element (TFT), a pixel electrode, and the like, and the other substrate is a color filter, a black matrix, a counter electrode, and the like.
  • TFT switching element
  • the other substrate is a color filter, a black matrix, a counter electrode, and the like.
  • a color filter on-array system in which a color filter is provided on an active matrix substrate may be applied.
  • VA vertical alignment
  • TAA Transverse Bend Alignment
  • OCB Optically Compensated Bend Mode
  • TN Twisted Nematic
  • STN Super Twist Nematic
  • the liquid crystal display device of the present invention can be any of a transmissive type, a reflective type, and a transflective type (a transmissive / reflective type). There may be.
  • a backlight is provided on the back side of the liquid crystal display panel, and polarizing plates are provided on the display side and back side surfaces of the liquid crystal display panel.
  • a reflective film is provided on the back side of the liquid crystal layer of the liquid crystal display panel, and a circularly polarizing plate is provided on the display side surface of the liquid crystal display panel.
  • the reflective film may be a pixel electrode (reflective electrode) having a reflective surface on the liquid crystal layer side, or provided separately from the pixel electrode when the pixel electrode is a transmissive electrode.
  • the reflective liquid crystal display device include those using external light as display light and those having a front light on the display surface side of the liquid crystal layer.
  • a transflective liquid crystal display device includes a method in which a transmissive region for performing transmissive display and a reflective region for performing reflective display are provided in a pixel, and a method in which a semi-transmissive film is provided in a pixel.
  • the transmissive region includes a transmissive electrode
  • the reflective region includes a reflective electrode or a laminate of the transmissive electrode and a reflective film.
  • the transflective liquid crystal display device is provided with a backlight on the back side of the liquid crystal display panel in order to perform transmissive display, and the display side and back side of the liquid crystal display panel.
  • a polarizing plate is provided on each surface.
  • at least the polarizing plate on the display side is provided with a ⁇ / 4 retardation plate to constitute a circularly polarizing plate.
  • the liquid crystal display device of the present invention may be either a direct type or a side light type.
  • a backlight is disposed on the back side of the liquid crystal display panel so as to face the liquid crystal display panel.
  • a light guide plate is disposed so as to face the liquid crystal display panel, and a backlight is disposed on the side of the light guide plate. The light guide plate emits light from the backlight incident on the side surface from the surface facing the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

The present invention provides a liquid crystal display device which is capable of effectively preventing decrease in the contrast ratio due to static electricity. This liquid crystal display device comprises: a first substrate that comprises a plurality of pixel electrodes; a second substrate that comprises counter electrodes on the surface of an insulating film; and a liquid crystal layer that is arranged between the first substrate and the second substrate. The counter electrodes are respectively provided with openings for controlling the alignment of the liquid crystal layer in respective regions that face the pixel electrodes, and the first substrate and/or the second substrate is provided with a light-blocking body over the entire region that overlaps the openings.

Description

液晶表示装置Liquid crystal display
本発明は、液晶表示装置に関する。より詳しくは、液晶を挟持する一対の基板のそれぞれに、液晶層への電圧印加用の電極が設けられた液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device in which an electrode for applying a voltage to a liquid crystal layer is provided on each of a pair of substrates that sandwich a liquid crystal.
液晶表示装置は、表示のために液晶組成物を利用する表示装置であり、その代表的な表示方式は、一対の基板間に封入した液晶に対して電圧を印加し、印加した電圧に応じて液晶の配向状態を変化させることにより、光の透過量を制御するものである。 A liquid crystal display device is a display device that uses a liquid crystal composition for display, and a typical display method is to apply a voltage to liquid crystal sealed between a pair of substrates, and according to the applied voltage. The amount of transmitted light is controlled by changing the alignment state of the liquid crystal.
液晶表示装置の駆動方式としては、パッシブマトリックス方式とアクティブマトリックス方式とがよく知られているが、多数の画素により表示を行うテレビ、モニター等では、アクティブマトリックス方式が一般的に用いられている。アクティブマトリックス方式では、マトリックス状に配置された画素ごとに個別に電気信号を入力するために、各画素が個別に備える画素電極と、全画素が共通して用いる共通電極とが設けられ、スイッチング素子である薄膜トランジスタを用いて各画素電極に入力する電気信号を選択している。各画素電極に入力される電気信号は、各画素に対応して設けられた画素電極と共通電極との間に印加される電圧に対応しており、言い換えれば、各画素の液晶への印加電圧に対応している。 As a driving method of the liquid crystal display device, a passive matrix method and an active matrix method are well known, but an active matrix method is generally used in televisions, monitors, and the like that perform display with a large number of pixels. In the active matrix system, in order to individually input an electric signal for each pixel arranged in a matrix, a pixel electrode provided for each pixel individually and a common electrode used in common for all the pixels are provided, and a switching element is provided. An electric signal input to each pixel electrode is selected using the thin film transistor. The electric signal input to each pixel electrode corresponds to the voltage applied between the pixel electrode provided corresponding to each pixel and the common electrode, in other words, the voltage applied to the liquid crystal of each pixel. It corresponds to.
画素電極及び共通電極の配置及び形状は、画素の配置及び形状だけでなく、液晶表示装置の表示モードに応じて調整されるものである。例えば、テレビ、モニター等で利用される代表的な表示モードの一つである、垂直配向(Vertical Alignement)モードでは、一方の基板に画素電極を配置し、他方の基板に共通電極が配置される。更に、垂直配向モードでは、電圧印加時に液晶が傾斜する方向を多方向にして視野角を拡大する技術がよく用いられており、このために画素電極及び/又は共通電極に開口が形成されることがある(例えば、特許文献1、2参照。)。 The arrangement and shape of the pixel electrode and the common electrode are adjusted according to the display mode of the liquid crystal display device as well as the arrangement and shape of the pixel. For example, in a vertical alignment (vertical alignment) mode, which is one of the typical display modes used in televisions, monitors, etc., a pixel electrode is disposed on one substrate and a common electrode is disposed on the other substrate. . Furthermore, in the vertical alignment mode, a technique for enlarging the viewing angle by applying multiple directions in which the liquid crystal is tilted when a voltage is applied is often used. For this purpose, an opening is formed in the pixel electrode and / or the common electrode. (For example, refer to Patent Documents 1 and 2).
以上のように、液晶表示装置は、一対の電極を通じて液晶に印加する電圧を高精度に制御することによって、高精細な画像表示が可能である。一方で、液晶に対して意図しない電圧がかかると、画像表示に乱れが生じることになる。例えば、静電気が、画面のコントラスト比を低下させる等の画質の劣化を引き起こすことが指摘されている(例えば、特許文献3参照。)。 As described above, the liquid crystal display device can display a high-definition image by controlling the voltage applied to the liquid crystal through the pair of electrodes with high accuracy. On the other hand, if an unintended voltage is applied to the liquid crystal, the image display is disturbed. For example, it has been pointed out that static electricity causes image quality degradation such as a reduction in the contrast ratio of the screen (see, for example, Patent Document 3).
特開2001-75103号公報JP 2001-75103 A 特開2008-102545号公報JP 2008-102545 A 特開2008-185935号公報JP 2008-185935 A
特許文献3に記載の表示装置は、静電気を除去するために、導電性樹脂を網の目又は格子状に配置している。しかしながら、網の目又は格子状に配置した導電性樹脂によっては、多数の微細な画素が配置された高精細な表示画面において、静電気によるコントラスト比の低下を完全に防止することは困難であった。また、液晶表示装置の特長を活かして商品性を高める観点から液晶表示装置には薄型化が強く求められており、導電性樹脂を配置する方法は、それに適した方法ではなかった。更に、液晶表示装置の製造工程を簡素化する観点、及び、液晶表示装置の製造原価を低減する観点からも、静電除去用の部材を配置する方法に代わる対策について検討の余地があった。 In the display device described in Patent Document 3, a conductive resin is arranged in a mesh pattern or a lattice pattern in order to remove static electricity. However, depending on the conductive resin arranged in a mesh or grid, it is difficult to completely prevent a reduction in contrast ratio due to static electricity on a high-definition display screen in which a large number of fine pixels are arranged. . In addition, from the viewpoint of improving the merchantability by taking advantage of the characteristics of the liquid crystal display device, the liquid crystal display device is strongly required to be thin, and the method of disposing a conductive resin is not a suitable method. Furthermore, from the viewpoint of simplifying the manufacturing process of the liquid crystal display device and the viewpoint of reducing the manufacturing cost of the liquid crystal display device, there is room for study on measures to replace the method of disposing the member for removing static electricity.
本発明は、上記現状に鑑みてなされたものであり、静電気によるコントラスト比の低下を効果的に防止することができる液晶表示装置を提供することを目的とするものである。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device that can effectively prevent a reduction in contrast ratio due to static electricity.
本発明者らは、液晶の配向を制御するための開口を対向電極に形成した液晶表示装置について種々検討したところ、ESD(静電気放電)試験時の接触放電、製造工程中の絶縁体との摩擦等により対向電極に開口を設けた場合には、上記開口の部分に静電気が帯電しやすいことを見出した。そのような帯電は、黒表示時に上記開口の部分で光漏れを引き起し、コントラスト比を低下させる場合がある。そこで、本発明者らは、上記開口と重なる領域の全体に遮光体を配置することにより、液晶表示装置の特長及び生産性を妨げることなく、コントラスト比の低下を効果的に防止でき、上記課題をみごとに解決することができることに想到した結果、本発明に到達したものである。 The present inventors have made various studies on a liquid crystal display device in which an opening for controlling the alignment of liquid crystal is formed in a counter electrode. As a result, contact discharge during an ESD (electrostatic discharge) test, friction with an insulator during a manufacturing process, It has been found that when an opening is provided in the counter electrode by the above method, static electricity is easily charged in the opening. Such charging may cause light leakage at the opening portion during black display and may reduce the contrast ratio. Therefore, the present inventors can effectively prevent a reduction in contrast ratio without interfering with the features and productivity of the liquid crystal display device by disposing a light shielding body over the entire region overlapping with the opening. As a result of conceiving that the problem can be solved brilliantly, the present invention has been achieved.
すなわち、本発明は、複数の画素電極を備える第一基板と、絶縁膜の表面上に対向電極を備える第二基板と、上記第一基板と上記第二基板との間に配置された液晶層と、を有する液晶表示装置であって、
上記対向電極には、上記画素電極と対向する領域の各々に、上記液晶層の配向を制御するための開口が形成されており、
上記第一基板及び上記第二基板の少なくとも一方は、上記開口と重なる領域の全体に、遮光体が設けられている液晶表示装置である。
That is, the present invention provides a first substrate having a plurality of pixel electrodes, a second substrate having a counter electrode on the surface of an insulating film, and a liquid crystal layer disposed between the first substrate and the second substrate. A liquid crystal display device comprising:
In the counter electrode, an opening for controlling the alignment of the liquid crystal layer is formed in each of the regions facing the pixel electrode,
At least one of the first substrate and the second substrate is a liquid crystal display device in which a light shielding body is provided over the entire region overlapping the opening.
本発明においては、上記対向電極に形成された上記開口の部分で生じる光抜けを上記遮光体によって防止することができる。したがって、上記開口によって液晶の応答速度の向上、視野角の拡大を図りながら、上記遮光体によってコントラスト比の低下を防止することができる。また、上記遮光体は、上記第一基板及び/又は上記第二基板に設けられることから、液晶表示装置の薄型化を妨げることはない。上記遮光体を上記第一基板及び/又は上記第二基板中の他の部材と同じ工程で形成すれば、液晶表示装置の生産性を妨げることもない。 In the present invention, light leakage that occurs at the opening formed in the counter electrode can be prevented by the light shield. Therefore, it is possible to prevent the contrast ratio from being lowered by the light shield while improving the response speed of the liquid crystal and increasing the viewing angle by the opening. Moreover, since the said light shielding body is provided in said 1st board | substrate and / or said 2nd board | substrate, it does not prevent thickness reduction of a liquid crystal display device. If the light shielding body is formed in the same process as other members in the first substrate and / or the second substrate, productivity of the liquid crystal display device is not hindered.
上記他の部材としては、ブラックマトリックス、金属配線等が挙げられる。本発明の一形態として、上記第一基板及び上記第二基板の少なくとも一方は、カラーフィルタと、上記カラーフィルタを区画するブラックマトリックスとを備え、上記遮光体は、上記ブラックマトリックスとともに形成された部材である形態が挙げられる。また、本発明の一形態として、上記第一基板は、スイッチング素子及び金属配線を備え、上記遮光体は、上記金属配線とともに形成された金属部材である形態が挙げられる。 Examples of the other member include a black matrix and a metal wiring. As one aspect of the present invention, at least one of the first substrate and the second substrate includes a color filter and a black matrix that partitions the color filter, and the light shielding member is formed with the black matrix. The form which is is mentioned. Moreover, as one form of this invention, the said 1st board | substrate is provided with a switching element and metal wiring, and the said light-shielding body is a metal member formed with the said metal wiring.
本発明の液晶表示装置は、上記対向電極に形成された上記開口と重なる領域の全体に、上記遮光体を備えるものであるが、更に静電除去用の部材を備えることを排除したものではない。したがって、本発明の液晶表示装置は、上記遮光体に加えて、静電除去用の部材を備えるものであってもよい。 The liquid crystal display device of the present invention is provided with the light-shielding body in the entire region overlapping the opening formed in the counter electrode, but does not exclude the provision of a member for removing static electricity. . Therefore, the liquid crystal display device of the present invention may include a member for removing static electricity in addition to the light shielding body.
本発明の液晶表示装置によれば、静電気によるコントラスト比の低下を効果的に防止することができる。 According to the liquid crystal display device of the present invention, it is possible to effectively prevent a decrease in contrast ratio due to static electricity.
実施形態1の液晶表示装置の画素の構成を示す平面模式図である。3 is a schematic plan view illustrating a configuration of a pixel of the liquid crystal display device of Embodiment 1. FIG. 図1中のA1-A2線に沿った液晶表示装置の断面を簡略化して示す断面模式図である。FIG. 2 is a schematic cross-sectional view schematically showing a cross section of the liquid crystal display device taken along line A1-A2 in FIG. 図1に示した液晶表示装置において、アクティブマトリックス基板側の構成を示す平面模式図である。FIG. 2 is a schematic plan view showing the configuration on the active matrix substrate side in the liquid crystal display device shown in FIG. 1. 図1に示した液晶表示装置において、カラーフィルタ基板側の構成を示す平面模式図である。FIG. 2 is a schematic plan view illustrating a configuration on a color filter substrate side in the liquid crystal display device illustrated in FIG. 1. 実施形態1のアクティブマトリックス基板の構成を説明するための断面模式図である。3 is a schematic cross-sectional view for explaining the configuration of the active matrix substrate of Embodiment 1. FIG. 従来の液晶表示装置において、黒表示時に光漏れが発生していることを示す画素の拡大写真である。In the conventional liquid crystal display device, it is the enlarged photograph of the pixel which shows that the light leak has generate | occur | produced at the time of black display. 実施形態1の液晶表示装置において、黒表示時の光漏れが防止されていることを示す画素の拡大写真である。4 is an enlarged photograph of a pixel showing that light leakage during black display is prevented in the liquid crystal display device of Embodiment 1. 実施形態2の液晶表示装置の画素の構成を示す平面模式図である。6 is a schematic plan view illustrating a configuration of a pixel of a liquid crystal display device according to Embodiment 2. FIG. 図8中のB1-B2線に沿った液晶表示装置の断面を簡略化して示す断面模式図である。FIG. 9 is a schematic cross-sectional view schematically showing a cross section of the liquid crystal display device taken along line B1-B2 in FIG. 実施形態3の液晶表示装置の画素の構成を示す平面模式図である。6 is a schematic plan view illustrating a configuration of a pixel of a liquid crystal display device according to Embodiment 3. FIG. 図10中のC1-C2線に沿った液晶表示装置の断面を簡略化して示す断面模式図である。FIG. 11 is a schematic cross-sectional view schematically showing a cross section of the liquid crystal display device taken along line C1-C2 in FIG. 本発明において設けられる遮光体の形状の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the shape of the light-shielding body provided in this invention. 本発明において設けられる遮光体の形状の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the shape of the light-shielding body provided in this invention. 本発明において設けられる遮光体の形状の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the shape of the light-shielding body provided in this invention. 本発明において設けられる遮光体の形状の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the shape of the light-shielding body provided in this invention. 本発明において設けられる遮光体の形状の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the shape of the light-shielding body provided in this invention. 本発明において設けられる遮光体の形状の一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the shape of the light-shielding body provided in this invention.
実施形態1
本実施形態の液晶表示装置の構成を図1~5を参照して説明する。図1は、実施形態1の液晶表示装置の画素の構成を示す平面模式図である。図2は、図1中のA1-A2線に沿った液晶表示装置の断面を簡略化して示す断面模式図である。図3は、図1に示した液晶表示装置において、アクティブマトリックス基板側の構成を示す平面模式図である。図4は、図1に示した液晶表示装置において、カラーフィルタ基板側の構成を示す平面模式図である。図5は、実施形態1のアクティブマトリックス基板の構成を説明するための断面模式図である。
Embodiment 1
The configuration of the liquid crystal display device of this embodiment will be described with reference to FIGS. FIG. 1 is a schematic plan view illustrating a configuration of a pixel of the liquid crystal display device according to the first embodiment. FIG. 2 is a schematic cross-sectional view showing a simplified cross section of the liquid crystal display device taken along line A1-A2 in FIG. FIG. 3 is a schematic plan view showing the configuration of the active matrix substrate side in the liquid crystal display device shown in FIG. FIG. 4 is a schematic plan view showing the configuration of the color filter substrate side in the liquid crystal display device shown in FIG. FIG. 5 is a schematic cross-sectional view for explaining the configuration of the active matrix substrate of the first embodiment.
図1及び図2に示すように、本実施形態の液晶表示装置は、ブラックマトリックス31とともに形成された部材を遮光体32として利用したものである。遮光体32の配置パターンは、対向電極35に形成された開口の配置パターンにほぼ一致しており、ゲートバスライン11とソースバスライン13とによって区画された領域の中心に配置されている。各遮光体32の形状は、角を斜めに切り取った略矩形状であり、ソースバスライン13と略平行に伸びている。 As shown in FIGS. 1 and 2, the liquid crystal display device according to the present embodiment uses a member formed together with the black matrix 31 as the light shielding body 32. The arrangement pattern of the light shielding body 32 substantially matches the arrangement pattern of the openings formed in the counter electrode 35, and is arranged at the center of the region partitioned by the gate bus line 11 and the source bus line 13. The shape of each light shielding body 32 is a substantially rectangular shape with corners cut off obliquely, and extends substantially parallel to the source bus line 13.
以下に、本実施形態の液晶表示装置の構成を具体的に説明する。
本実施形態の液晶表示装置は、アクティブマトリックス方式の駆動方式を採用しており、アクティブマトリックス基板とカラーフィルタ基板との間に封入した液晶分子の配向を画素電極15と対向電極35とによって制御することにより、液晶層50を透過する光の光量を制御する。
Below, the structure of the liquid crystal display device of this embodiment is demonstrated concretely.
The liquid crystal display device of the present embodiment employs an active matrix driving method, and controls the orientation of liquid crystal molecules sealed between the active matrix substrate and the color filter substrate by the pixel electrode 15 and the counter electrode 35. Thus, the amount of light transmitted through the liquid crystal layer 50 is controlled.
アクティブマトリックス基板の主要な構成は、図3に示されている。
図3中の左右方向には、複数本のゲートバスライン11が互いに平行に伸び、図3中の上下方向には、複数本のソースバスライン13が互いに平行に伸び、両者は直交している。ゲートバスライン11とソースバスライン13との交点近傍には、スイッチング素子である薄膜トランジスタ(TFT)が設けられている。TFTにおいて、ゲート電極はゲートバスライン11と電気的に接続されており、ソース電極はソースバスライン13と電気的に接続されており、ドレイン電極は画素電極15と電気的に接続されている。画素電極15は、ゲートバスライン11とソースバスライン13とによって区画された領域のそれぞれに配置されており、画素電極15単位で液晶層50に対して所望の電圧を印加できる。
The main configuration of the active matrix substrate is shown in FIG.
In the left-right direction in FIG. 3, a plurality of gate bus lines 11 extend in parallel with each other, and in the up-down direction in FIG. 3, a plurality of source bus lines 13 extend in parallel with each other, and both are orthogonal to each other. . Near the intersection of the gate bus line 11 and the source bus line 13, a thin film transistor (TFT) as a switching element is provided. In the TFT, the gate electrode is electrically connected to the gate bus line 11, the source electrode is electrically connected to the source bus line 13, and the drain electrode is electrically connected to the pixel electrode 15. The pixel electrode 15 is disposed in each of the regions partitioned by the gate bus line 11 and the source bus line 13, and a desired voltage can be applied to the liquid crystal layer 50 in units of the pixel electrode 15.
なお、画素電極15は、各画素に1つであってもよいし、複数設けられてもよい。画素電極15を一画素に複数設ける代表的な例としては、カラー表示のために複数色のカラーフィルタ33を透過させる光量を個別に調整する目的で、画素電極15を色ごとに個別に設ける場合である。本明細書では、1つの画素電極15に対応する領域を「表示単位」とも表記する。 One pixel electrode 15 may be provided for each pixel, or a plurality of pixel electrodes 15 may be provided. As a typical example in which a plurality of pixel electrodes 15 are provided in one pixel, the pixel electrodes 15 are individually provided for each color for the purpose of individually adjusting the amount of light transmitted through a plurality of color filters 33 for color display. It is. In this specification, a region corresponding to one pixel electrode 15 is also referred to as a “display unit”.
表示期間中には、ゲートバスライン11に対してドライバから走査信号が供給され、ソースバスライン13に対してドライバから画像信号が供給される。走査信号は、ゲートバスライン11を通じてゲート電極に入力され、ソース電極とドレイン電極との間を導通させるタイミングを制御するものである。画像信号は、ソースバスライン13を通じてソース電極に入力され、走査信号に基づいて適宜ドレイン電極へと伝達される。ドレイン電極に伝達された画像信号は、画素電極15に到達し、液晶層50中の液晶分子の配向を制御する。 During the display period, a scanning signal is supplied from the driver to the gate bus line 11, and an image signal is supplied from the driver to the source bus line 13. The scanning signal is input to the gate electrode through the gate bus line 11 and controls the timing for conducting between the source electrode and the drain electrode. The image signal is input to the source electrode through the source bus line 13, and is appropriately transmitted to the drain electrode based on the scanning signal. The image signal transmitted to the drain electrode reaches the pixel electrode 15 and controls the orientation of the liquid crystal molecules in the liquid crystal layer 50.
また、各表示単位には、補助容量が設けられている。補助容量は、補助容量電極18と補助容量配線17との間にゲート絶縁膜25が配置されることによって形成されている。補助容量電極18は、画素電極15及びドレイン電極と電気的に接続されており、表示単位ごとに設けられている。補助容量配線17は、各表示単位で共用されており、アクティブマトリックス基板内をゲートバスライン11と平行に伸びている。 Each display unit is provided with an auxiliary capacity. The auxiliary capacitance is formed by disposing a gate insulating film 25 between the auxiliary capacitance electrode 18 and the auxiliary capacitance wiring 17. The auxiliary capacitance electrode 18 is electrically connected to the pixel electrode 15 and the drain electrode, and is provided for each display unit. The auxiliary capacitance line 17 is shared by each display unit, and extends in the active matrix substrate in parallel with the gate bus line 11.
カラーフィルタ基板の主要な構成は、図4に示されている。
図4に示すように、カラーフィルタ基板のほぼ全面には、対向電極35が配置されている。対向電極35は、複数の表示単位で共用されるものである。また、上述したように、対向電極35の各表示単位の中心に対応する位置には、開口が形成されている。開口は、液晶層50中の液晶分子の配向を制御するために設けられている。すなわち、開口が存在することによって、画素電極15と対向電極35との間に電圧を印加した際に液晶層50中に形成される電気力線は、対向電極35面に対して斜め方向に曲げられ、その効果によって液晶層50中の液晶分子の応答速度、及び、液晶表示の視野角を向上させることができる。本実施形態において、開口は、矩形状であり、ソースバスライン13と略平行に伸びている。これにより、液晶層50中の液晶分子の配向を線対称に安定して配向させることができる。なお、開口の位置及び形状は、液晶層50中の液晶分子の配向を制御する態様に応じて適宜変更されてもよい。
The main structure of the color filter substrate is shown in FIG.
As shown in FIG. 4, the counter electrode 35 is disposed on almost the entire surface of the color filter substrate. The counter electrode 35 is shared by a plurality of display units. Further, as described above, an opening is formed at a position corresponding to the center of each display unit of the counter electrode 35. The opening is provided to control the alignment of the liquid crystal molecules in the liquid crystal layer 50. That is, due to the presence of the opening, the electric lines of force formed in the liquid crystal layer 50 when a voltage is applied between the pixel electrode 15 and the counter electrode 35 are bent obliquely with respect to the surface of the counter electrode 35. As a result, the response speed of the liquid crystal molecules in the liquid crystal layer 50 and the viewing angle of the liquid crystal display can be improved. In the present embodiment, the opening has a rectangular shape and extends substantially parallel to the source bus line 13. Thereby, the alignment of the liquid crystal molecules in the liquid crystal layer 50 can be stably aligned in line symmetry. Note that the position and shape of the opening may be changed as appropriate in accordance with the mode for controlling the alignment of the liquid crystal molecules in the liquid crystal layer 50.
また、カラーフィルタ基板では、複数の表示単位を区分するように、ブラックマトリックス31が配置されている。ブラックマトリックス31のパターンは、ストライプ状であってもよいし、格子状であってもよい。ブラックマトリックス31の材質は、金属であってもよいし、黒色樹脂であってもよい。 In the color filter substrate, a black matrix 31 is arranged so as to divide a plurality of display units. The pattern of the black matrix 31 may be a stripe shape or a lattice shape. The material of the black matrix 31 may be a metal or a black resin.
本実施形態では、ブラックマトリックス31とともに形成された部材が、対向電極35の開口と重なる領域の全体に遮光体32として配置されている。対向電極35の開口内では、対向電極35の下地である絶縁体に静電気が帯電し、それによって開口近傍の液晶分子の配向が乱れることがある。このため、遮光体32が配置されていない場合には、黒表示の際に、配向乱れにより引き起こされた光漏れが目立ち、コントラスト比の低下を引き起こしてしまう。これに対して、遮光体32が配置されることにより、配向乱れにより生じた漏れ光は、表示面に到達する前に遮光体32により遮断され、液晶分子の配向乱れが液晶表示装置の表示品位に影響を及ぼすことを防止できる。 In the present embodiment, the member formed together with the black matrix 31 is disposed as the light shielding body 32 in the entire region overlapping the opening of the counter electrode 35. In the opening of the counter electrode 35, static electricity is charged in the insulator that is the base of the counter electrode 35, and thereby the alignment of liquid crystal molecules in the vicinity of the opening may be disturbed. For this reason, when the light shielding body 32 is not disposed, light leakage caused by the alignment disorder is conspicuous during black display, and the contrast ratio is lowered. On the other hand, since the light shielding body 32 is arranged, leakage light generated by the alignment disturbance is blocked by the light shielding body 32 before reaching the display surface, and the alignment disorder of the liquid crystal molecules is displayed in the display quality of the liquid crystal display device. Can be prevented.
以上のように、本実施形態では、対向電極35の開口内が帯電することによる不具合を解決している。すなわち、対向電極35の開口とは、電極が配置されていない部分を意味しており、コンタクトホールのような、電極の凹部とは異なるものである。 As described above, in the present embodiment, a problem caused by charging in the opening of the counter electrode 35 is solved. That is, the opening of the counter electrode 35 means a portion where no electrode is disposed, and is different from a concave portion of the electrode such as a contact hole.
続いて、図5を参照しつつ、本実施形態の液晶表示装置の製造方法の一例を説明する。
まず、アクティブマトッリクス基板を製造するために、絶縁性基板としてのガラス基板10上に、プラズマCVD法によりベースコート膜21として厚さ100nmのSiO膜を設ける。次に、ベースコート膜21上に、プラズマCVD法により厚さ50nmのアモルファスシリコン層を設ける。そのアモルファスシリコン層を、レーザアニールにより熱処理して結晶化する。さらに、結晶化したシリコン層を所定形状にパターニングする。
Next, an example of a method for manufacturing the liquid crystal display device of the present embodiment will be described with reference to FIG.
First, in order to manufacture an active matrix substrate, an SiO 2 film having a thickness of 100 nm is provided as a base coat film 21 on a glass substrate 10 as an insulating substrate by a plasma CVD method. Next, an amorphous silicon layer having a thickness of 50 nm is provided on the base coat film 21 by plasma CVD. The amorphous silicon layer is crystallized by heat treatment by laser annealing. Further, the crystallized silicon layer is patterned into a predetermined shape.
次に、パターニングしたシリコン層23上に、プラズマCVD法によりゲート絶縁膜25として厚さ100nmのSiO膜を設ける。さらに、ゲート絶縁膜25上に、厚さ50nmの窒化タンタル膜と厚さ370nmのタングステン膜とをスパッタリング法にて順次積層して導電膜を形成した後、この導電膜を所定形状にパターニングしてゲートバスライン11、ゲート電極、補助容量配線17を形成する。なお、導電膜は、窒化タンタル、タングステンに代えて、Ta、W、Ti、Mo、Al、Cuから選ばれた元素、又は、上記元素を主成分とする合金若しくは化合物により形成してもよい。 Next, a 100 nm thick SiO 2 film is provided as a gate insulating film 25 on the patterned silicon layer 23 by plasma CVD. Further, a conductive film is formed by sequentially stacking a tantalum nitride film having a thickness of 50 nm and a tungsten film having a thickness of 370 nm on the gate insulating film 25 by a sputtering method, and then the conductive film is patterned into a predetermined shape. A gate bus line 11, a gate electrode, and an auxiliary capacitance line 17 are formed. Note that the conductive film may be formed using an element selected from Ta, W, Ti, Mo, Al, and Cu, or an alloy or compound containing the above element as a main component, instead of tantalum nitride and tungsten.
次に、ゲート電極の上方からゲート絶縁膜25を通してシリコン層23にP(リン)をドーピングし、ゲート電極の両側に位置するシリコン層23にn領域、n領域を形成する。このn領域、n領域がTFTのソース電極及びドレイン電極となり、TFTが形成される。なお、Nチャネルを形成する場合にはP(リン)がドーピングされるが、Pチャネルを形成する場合にはB(ボロン)がドーピングされる。さらに、熱処理を行い、シリコン層23に添加した不純物元素を活性化させる。 Next, P (phosphorus) is doped into the silicon layer 23 from above the gate electrode through the gate insulating film 25 to form an n region and an n + region in the silicon layer 23 located on both sides of the gate electrode. These n region and n + region become the source electrode and drain electrode of the TFT, and the TFT is formed. Note that P (phosphorus) is doped when an N channel is formed, but B (boron) is doped when a P channel is formed. Further, heat treatment is performed to activate the impurity element added to the silicon layer 23.
次に、CVD法により窒化シリコン膜、酸化膜の2層構造からなる厚さ950nmの第一絶縁膜27を設ける。さらに、TFTのドレイン電極に達する第一コンタクトホール26をゲート絶縁膜25及び第一絶縁膜27に形成する。 Next, a first insulating film 27 having a thickness of 950 nm and having a two-layer structure of a silicon nitride film and an oxide film is provided by a CVD method. Further, a first contact hole 26 reaching the drain electrode of the TFT is formed in the gate insulating film 25 and the first insulating film 27.
次に、厚さ100nmのTi膜、厚さ500nmのAl膜、及び、厚さ100nmのTi膜をスパッタリング法により順次積層して導電膜を形成した後、この導電膜を所定形状にパターニングしてソースバスライン13及び接続電極26aを形成する。接続電極26aは、第一コンタクトホール26の内部、及び、第一絶縁膜27上の一部に配置される。 Next, after forming a conductive film by sequentially laminating a 100 nm thick Ti film, a 500 nm thick Al film, and a 100 nm thick Ti film by a sputtering method, the conductive film is patterned into a predetermined shape. The source bus line 13 and the connection electrode 26a are formed. The connection electrode 26 a is disposed inside the first contact hole 26 and partly on the first insulating film 27.
以上の工程により作製した積層構造を備える基板全体を熱処理し、シリコン層23を水素化する。この水素化は、第一絶縁膜27中の水素によりシリコン層23のダングリングボンド(原子中の未結合手)を終端させるものである。 The entire substrate having the laminated structure manufactured through the above steps is heat-treated to hydrogenate the silicon layer 23. This hydrogenation is to terminate dangling bonds (unbonded bonds in the atoms) of the silicon layer 23 with hydrogen in the first insulating film 27.
次に、第一絶縁膜27、ソースバスライン13上に、絶縁樹脂からなる厚さ1.6μmの第二絶縁膜29を設ける。さらに、接続電極26aに達する第二コンタクトホール28を第二絶縁膜29に形成する。続いて、厚さ100nmのITO(酸化インジウム錫)膜をスパッタリング法により設け、このITO膜を所定形状にパターニングして複数の画素電極15をマトリクス状に設ける。隣接する画素電極15の間は電気的に接続されないようにゲートバスライン11及びソースバスライン13上で離間されている。また、ITO膜は、第二コンタクトホール28の内部にも形成される。これにより、TFTのドレイン電極、接続電極(第一コンタクトホール26内及び第一絶縁膜27上)26a、画素電極15(第二コンタクトホール28内及び第二絶縁膜29上)の順に電気的接続が確保される。 Next, a 1.6 μm-thick second insulating film 29 made of an insulating resin is provided on the first insulating film 27 and the source bus line 13. Further, a second contact hole 28 reaching the connection electrode 26 a is formed in the second insulating film 29. Subsequently, an ITO (indium tin oxide) film having a thickness of 100 nm is provided by a sputtering method, and this ITO film is patterned into a predetermined shape to provide a plurality of pixel electrodes 15 in a matrix. Adjacent pixel electrodes 15 are spaced apart on the gate bus line 11 and the source bus line 13 so as not to be electrically connected. The ITO film is also formed inside the second contact hole 28. Thus, the TFT drain electrode, connection electrode (in the first contact hole 26 and on the first insulating film 27) 26a, and pixel electrode 15 (in the second contact hole 28 and on the second insulating film 29) are electrically connected in this order. Is secured.
その後、配向膜(図示省略)としてポリイミド膜を印刷する。以上のようにして本実施形態のアクティブマトリックス基板を製造することができる。 Thereafter, a polyimide film is printed as an alignment film (not shown). As described above, the active matrix substrate of this embodiment can be manufactured.
次に、カラーフィルタ基板を製造するために、絶縁性基板としてのガラス基板30上に、フォトリソグラフィによりブラックマトリックス31をストライプ状に形成する。さらに、インクジェット印刷装置を用いてインクを吐出し、R(赤)、G(緑)、B(青)、Y(黄)の各カラーフィルタ33を形成する。 Next, in order to manufacture a color filter substrate, a black matrix 31 is formed in a stripe shape by photolithography on a glass substrate 30 as an insulating substrate. Furthermore, ink is ejected using an ink jet printing apparatus, and R (red), G (green), B (blue), and Y (yellow) color filters 33 are formed.
次に、対向電極35として、厚さ100nmのITO(酸化インジウム錫)膜をスパッタリング法により基板全面に成膜する。さらに、フォトリソグラフィ法により対向電極35に開口を形成する。最後に、配向膜(図示省略)としてポリイミド膜を印刷する。以上のようにして本実施形態のカラーフィルタ基板を製造することができる。 Next, as the counter electrode 35, an ITO (indium tin oxide) film having a thickness of 100 nm is formed on the entire surface of the substrate by a sputtering method. Further, an opening is formed in the counter electrode 35 by photolithography. Finally, a polyimide film is printed as an alignment film (not shown). As described above, the color filter substrate of this embodiment can be manufactured.
次に、上述したアクティブマトリックス基板の配向膜側に球状スペーサを散布した後、アクティブマトリックス基板と対向基板とを所定の均一な間隔で貼り合わせる。そして、これら両基板の間に垂直配向する負の誘電率異方性を持った液晶分子を主体とする液晶層50を挟持させる。 Next, after dispersing spherical spacers on the alignment film side of the active matrix substrate described above, the active matrix substrate and the counter substrate are bonded together at a predetermined uniform interval. Then, a liquid crystal layer 50 mainly composed of liquid crystal molecules having negative dielectric anisotropy that is vertically aligned is sandwiched between these two substrates.
続いて、アクティブマトリックス基板と対向基板とを貼り合わせて形成した構造体の表裏にそれぞれ偏光板を貼り付けることにより、液晶パネルが完成する。なお、対向電極の開口の部分が静電気によって帯電し、液晶表示装置の表示品位を低下させる現象は、低階調の表示を行っているとき(典型的には黒を表示しているとき)に視認されやすく、かつ画素電極15及び対向電極35によって液晶層50に電圧が印加されていない状態において顕著に生じるものである。したがって、遮光体32は、ノーマリーブラックモードの液晶表示装置に特に有効であり、ノーマリーブラックモードの場合、上記構造体の表に貼り付ける偏光板と上記構造体の裏に貼り付ける偏光板とは、それらの偏光軸がクロスニコルの関係に配置される。 Subsequently, a polarizing plate is attached to the front and back of the structure formed by attaching the active matrix substrate and the counter substrate, thereby completing the liquid crystal panel. Note that the phenomenon in which the opening portion of the counter electrode is charged by static electricity and the display quality of the liquid crystal display device is deteriorated is when low gradation display is performed (typically when black is displayed). This is noticeable and occurs remarkably when no voltage is applied to the liquid crystal layer 50 by the pixel electrode 15 and the counter electrode 35. Therefore, the light shielding body 32 is particularly effective for a normally black mode liquid crystal display device. In the normally black mode, a polarizing plate to be attached to the surface of the structure and a polarizing plate to be attached to the back of the structure. Have their polarization axes arranged in a crossed Nicols relationship.
更に必要に応じて、液晶パネルの背面側には、バックライトユニット、各種光学フィルム等が配置され、前面側(表示面側)には、各種光学フィルム、タッチパネル等が配置される。また、液晶パネルの端部には、駆動用外部回路が接続される。それらの取付けが完了した液晶パネルは、シャーシ内に収納される。
以上により本実施形態の液晶表示装置が完成する。
Further, if necessary, a backlight unit, various optical films, and the like are disposed on the back side of the liquid crystal panel, and various optical films, a touch panel, and the like are disposed on the front side (display surface side). An external circuit for driving is connected to the end of the liquid crystal panel. The liquid crystal panels that have been mounted are stored in the chassis.
Thus, the liquid crystal display device of this embodiment is completed.
図6は、従来の液晶表示装置において、黒表示時に光漏れが発生していることを示す画素の拡大写真であり、図7は、実施形態1の液晶表示装置において、黒表示時の光漏れが防止されていることを示す画素の拡大写真である。図6及び7を対比すれば明らかなように、本実施形態の液晶表示装置によれば、対向電極35に形成された開口の部分で生じる光抜けを遮光体32によって防止することができる。したがって、上記開口によって液晶の応答速度の向上、視野角の拡大を図りながら、遮光体32によってコントラスト比の低下を防止することができる。また、遮光体32は、カラーフィルタ基板内に設けられることから、液晶表示装置の薄型化を妨げることはない。更に、遮光体32をブラックマトリックス31と同じ工程で形成しているので、液晶表示装置の生産性を妨げることもない。 FIG. 6 is an enlarged photograph of a pixel showing that light leakage occurs during black display in the conventional liquid crystal display device, and FIG. 7 shows light leakage during black display in the liquid crystal display device of the first embodiment. It is an enlarged photograph of the pixel which shows that is prevented. As apparent from the comparison between FIGS. 6 and 7, according to the liquid crystal display device of the present embodiment, the light-blocking body 32 can prevent light leakage that occurs at the opening formed in the counter electrode 35. Therefore, it is possible to prevent the contrast ratio from being lowered by the light shielding body 32 while improving the response speed of the liquid crystal and increasing the viewing angle by the opening. Further, since the light shielding body 32 is provided in the color filter substrate, it does not hinder the thinning of the liquid crystal display device. Furthermore, since the light shielding body 32 is formed in the same process as the black matrix 31, the productivity of the liquid crystal display device is not hindered.
実施形態2
本実施形態の液晶表示装置の構成を図8及び9を参照して説明する。図8は、実施形態2の液晶表示装置の画素の構成を示す平面模式図である。図9は、図8中のB1-B2線に沿った液晶表示装置の断面を簡略化して示す断面模式図である。
Embodiment 2
The configuration of the liquid crystal display device of this embodiment will be described with reference to FIGS. FIG. 8 is a schematic plan view illustrating a configuration of a pixel of the liquid crystal display device according to the second embodiment. FIG. 9 is a schematic cross-sectional view showing a simplified cross section of the liquid crystal display device along line B1-B2 in FIG.
図8及び9に示したように、本実施形態は、金属配線であるソースバスライン13とともに形成された金属部材を遮光体14として利用した液晶表示装置を示すものである。遮光体14の配置パターンは、対向電極35に形成された開口の配置パターンにほぼ一致しており、ゲートバスライン11とソースバスライン13とによって区画された領域の中心に配置されている。各遮光体14の形状は、角を斜めに切り取った略矩形状であり、ソースバスライン13と略平行に伸びている。遮光体14が配置されることにより、バックライトユニットからの光は液晶層50の配向乱れが生じた部分に到達する前に、遮光体14により遮断され、液晶分子の配向乱れが液晶表示装置の表示品位に影響を及ぼすことを防止できる。 As shown in FIGS. 8 and 9, the present embodiment shows a liquid crystal display device using a metal member formed with a source bus line 13 which is a metal wiring as a light shield 14. The arrangement pattern of the light shields 14 substantially coincides with the arrangement pattern of the openings formed in the counter electrode 35, and is arranged at the center of the area partitioned by the gate bus line 11 and the source bus line 13. The shape of each light shield 14 is a substantially rectangular shape with its corners cut off obliquely, and extends substantially parallel to the source bus line 13. By disposing the light shield 14, the light from the backlight unit is blocked by the light shield 14 before reaching the portion where the alignment disorder of the liquid crystal layer 50 occurs, and the alignment disorder of the liquid crystal molecules is prevented. This can prevent the display quality from being affected.
本実施形態の液晶表示装置によれば、対向電極35に形成された開口の部分で生じる光抜けを遮光体14によって防止することができる。したがって、上記開口によって液晶の応答速度の向上、視野角の拡大を図りながら、遮光体14によってコントラスト比の低下を防止することができる。また、遮光体14は、アクティブマトリックス基板内に設けられることから、液晶表示装置の薄型化を妨げることはない。更に、遮光体14をソースバスライン13と同じ工程で形成しているので、液晶表示装置の生産性を妨げることもない。 According to the liquid crystal display device of the present embodiment, light leakage that occurs at the opening formed in the counter electrode 35 can be prevented by the light shield 14. Therefore, it is possible to prevent the contrast ratio from being lowered by the light shield 14 while improving the response speed of the liquid crystal and expanding the viewing angle by the opening. Further, since the light shield 14 is provided in the active matrix substrate, it does not hinder the thinning of the liquid crystal display device. Furthermore, since the light shield 14 is formed in the same process as the source bus line 13, the productivity of the liquid crystal display device is not hindered.
実施形態3
本実施形態の液晶表示装置の構成を図10及び11を参照して説明する。図10は、実施形態3の液晶表示装置の画素の構成を示す平面模式図である。図11は、図10中のC1-C2線に沿った液晶表示装置の断面を簡略化して示す断面模式図である。
Embodiment 3
The configuration of the liquid crystal display device of this embodiment will be described with reference to FIGS. FIG. 10 is a schematic plan view illustrating a configuration of a pixel of the liquid crystal display device according to the third embodiment. FIG. 11 is a schematic cross-sectional view showing a simplified cross section of the liquid crystal display device taken along line C1-C2 in FIG.
図10及び11に示したように、本実施形態は、金属配線であるゲートバスライン11とともに形成された金属部材を遮光体12として利用した液晶表示装置を示すものである。遮光体12の配置パターンは、対向電極35に形成された開口の配置パターンにほぼ一致しており、ゲートバスライン11とソースバスライン13とによって区画された領域の中心に配置されている。各遮光体12の形状は、角を斜めに切り取った略矩形状であり、ソースバスライン13と略平行に伸びている。遮光体12が配置されることにより、バックライトユニットからの光は液晶層50の配向乱れが生じた部分に到達する前に、遮光体12により遮断され、液晶分子の配向乱れが液晶表示装置の表示品位に影響を及ぼすことを防止できる。 As shown in FIGS. 10 and 11, this embodiment shows a liquid crystal display device using a metal member formed together with a gate bus line 11 which is a metal wiring as a light shielding body 12. The arrangement pattern of the light shield 12 substantially matches the arrangement pattern of the openings formed in the counter electrode 35, and is arranged at the center of the region partitioned by the gate bus line 11 and the source bus line 13. The shape of each light shielding body 12 is a substantially rectangular shape with corners cut off obliquely, and extends substantially parallel to the source bus line 13. By arranging the light shielding body 12, the light from the backlight unit is blocked by the light shielding body 12 before reaching the portion where the alignment disorder of the liquid crystal layer 50 occurs, and the alignment disorder of the liquid crystal molecules is prevented. This can prevent the display quality from being affected.
本実施形態の液晶表示装置によれば、対向電極35に形成された開口の部分で生じる光抜けを遮光体12によって防止することができる。したがって、上記開口によって液晶の応答速度の向上、視野角の拡大を図りながら、遮光体12によってコントラスト比の低下を防止することができる。また、遮光体12は、アクティブマトリックス基板内に設けられることから、液晶表示装置の薄型化を妨げることはない。更に、遮光体12をゲートバスライン11と同じ工程で形成しているので、液晶表示装置の生産性を妨げることもない。 According to the liquid crystal display device of the present embodiment, light leakage that occurs at the opening formed in the counter electrode 35 can be prevented by the light blocking body 12. Accordingly, it is possible to prevent the contrast ratio from being lowered by the light shield 12 while improving the response speed of the liquid crystal and increasing the viewing angle by the opening. Further, since the light shield 12 is provided in the active matrix substrate, it does not hinder the thinning of the liquid crystal display device. Furthermore, since the light shielding body 12 is formed in the same process as the gate bus line 11, the productivity of the liquid crystal display device is not hindered.
上述の各実施形態は、本発明の技術的思想を逸脱しない範囲でさまざまな変更が施されてもよく、例えば、特定の実施形態に記載された構成を他の実施形態に記載された構成により置き換えてもよいし、各実施形態同士を組み合わせてもよい。 Various modifications may be made to the above-described embodiments without departing from the technical idea of the present invention. For example, a configuration described in a specific embodiment may be changed according to a configuration described in another embodiment. You may replace and you may combine each embodiment.
また、上述の各実施形態では、対向電極35に形成された開口、及び、遮光体32の形状は、角を斜めに切り取った略矩形状であったが、図12に示した略矩形状としてもよいし、図13に示した略楕円形状としてもよいし、図14に示した略円形状としてもよいし、図15に示した矩形と円形とを組み合わせた形状としてもよいし、図16に示した楕円形と円形とを組み合わせた形状としてもよいし、図17に示した略十字形状としてもよく、特に限定されるものではない。遮光体12,14の形状についても同様である。 Further, in each of the above-described embodiments, the shape of the opening formed in the counter electrode 35 and the light shielding body 32 is a substantially rectangular shape with the corners cut off obliquely, but the substantially rectangular shape shown in FIG. Alternatively, the substantially elliptical shape shown in FIG. 13, the substantially circular shape shown in FIG. 14, the combination of the rectangle and the circular shape shown in FIG. 15, or the shape shown in FIG. It is good also as a shape which combined the ellipse and circle shown in (1), and the substantially cross shape shown in FIG. 17, and it is not specifically limited. The same applies to the shapes of the light shielding bodies 12 and 14.
上述の各実施形態では、液晶表示パネルを構成する一方の基板が、スイッチング素子(TFT)、画素電極等を備えるアクティブマトリックス基板であり、他方の基板が、カラーフィルタ、ブラックマトリックス、対向電極等を備えるカラーフィルタ基板であったが、本発明においては、アクティブマトリックス基板にカラーフィルタを設けるカラーフィルタ・オン・アレイ方式を適用してもよい。 In each of the above-described embodiments, one substrate constituting the liquid crystal display panel is an active matrix substrate including a switching element (TFT), a pixel electrode, and the like, and the other substrate is a color filter, a black matrix, a counter electrode, and the like. In the present invention, a color filter on-array system in which a color filter is provided on an active matrix substrate may be applied.
上述の各実施形態は、垂直配向(Vertical Alignment(VA))モードの液晶表示装置に関するものであったが、本発明において液晶モードは特に限定されず、ねじれネマチック垂直配向(Vertical Alignment Twisted Nematic(VATN))モード、トランスバース・ベンド・アライメント(Transverse Bend Alignment(TBA))モード、光学補償ベンド(Optically Compensated Bend Mode(OCB))モード、ねじれネマチック(Twisted Nematic(TN))モード、超ねじれネマチック(Super Twisted Nematic(STN))モード等を用いることができる。 Each of the above embodiments relates to a vertical alignment (VA) mode liquid crystal display device, but the liquid crystal mode is not particularly limited in the present invention, and a twisted nematic vertical alignment (Vertical Alignment Twisted Nematic (VATN) )) Mode, Transverse Bend Alignment (TBA) mode, Optically Compensated Bend Mode (OCB) mode, Twisted Nematic (TN) mode, Super Twist Nematic (Super) Twisted Nematic (STN)) mode or the like can be used.
上述の各実施形態は、透過型の液晶表示装置に関するものであったが、本発明の液晶表示装置は、透過型、反射型、及び、半透過型(透過反射両用型)のいずれの方式であってもよい。透過型の液晶表示装置では、液晶表示パネルの背面側にバックライトが設けられ、液晶表示パネルの表示側及び背面側の面に偏光板がそれぞれ設けられる。反射型の液晶表示装置では、液晶表示パネルの液晶層よりも背面側に反射膜が設けられ、液晶表示パネルの表示側の面に円偏光板が設けられる。上記反射膜は、液晶層側に反射面を備える画素電極(反射電極)であってもよいし、画素電極が透過電極である場合には、画素電極とは別に設けられる。反射型の液晶表示装置としては、表示光として外光を用いるもののほか、液晶層よりも表示面側にフロントライトを備えるものが挙げられる。半透過型の液晶表示装置は、透過表示を行う透過領域と反射表示を行う反射領域とが画素内に設けられる方式と、半透過膜が画素内に設けられる方式とがある。透過領域は透過電極を備え、反射領域は反射電極又は透過電極と反射膜との積層体を備える。また、半透過型の液晶表示装置は、透過表示を行うために、透過型の液晶表示装置と同様に、液晶表示パネルの背面側にバックライトが設けられ、液晶表示パネルの表示側及び背面側の面に偏光板がそれぞれ設けられる。更に、反射表示を行うために、少なくとも表示側の偏光板にはλ/4位相差板が付設され、円偏光板が構成される。 Each of the above-described embodiments relates to a transmissive liquid crystal display device. However, the liquid crystal display device of the present invention can be any of a transmissive type, a reflective type, and a transflective type (a transmissive / reflective type). There may be. In the transmissive liquid crystal display device, a backlight is provided on the back side of the liquid crystal display panel, and polarizing plates are provided on the display side and back side surfaces of the liquid crystal display panel. In the reflective liquid crystal display device, a reflective film is provided on the back side of the liquid crystal layer of the liquid crystal display panel, and a circularly polarizing plate is provided on the display side surface of the liquid crystal display panel. The reflective film may be a pixel electrode (reflective electrode) having a reflective surface on the liquid crystal layer side, or provided separately from the pixel electrode when the pixel electrode is a transmissive electrode. Examples of the reflective liquid crystal display device include those using external light as display light and those having a front light on the display surface side of the liquid crystal layer. A transflective liquid crystal display device includes a method in which a transmissive region for performing transmissive display and a reflective region for performing reflective display are provided in a pixel, and a method in which a semi-transmissive film is provided in a pixel. The transmissive region includes a transmissive electrode, and the reflective region includes a reflective electrode or a laminate of the transmissive electrode and a reflective film. In addition, the transflective liquid crystal display device is provided with a backlight on the back side of the liquid crystal display panel in order to perform transmissive display, and the display side and back side of the liquid crystal display panel. A polarizing plate is provided on each surface. Furthermore, in order to perform reflective display, at least the polarizing plate on the display side is provided with a λ / 4 retardation plate to constitute a circularly polarizing plate.
本発明の液晶表示装置は、直下型及びサイドライト型のいずれの方式であってもよい。直下型の液晶表示装置では、液晶表示パネルの背面側に、液晶表示パネルと対向するようにバックライトが配置される。サイドライト型の液晶表示装置では、液晶表示パネルと対向するように導光板が配置され、導光板の側方にバックライトが配置される。導光板は、側面に入射したバックライトからの光を液晶表示パネルと対向する面から出射する。 The liquid crystal display device of the present invention may be either a direct type or a side light type. In the direct type liquid crystal display device, a backlight is disposed on the back side of the liquid crystal display panel so as to face the liquid crystal display panel. In the sidelight type liquid crystal display device, a light guide plate is disposed so as to face the liquid crystal display panel, and a backlight is disposed on the side of the light guide plate. The light guide plate emits light from the backlight incident on the side surface from the surface facing the liquid crystal display panel.
なお、本願は、2010年10月13日に出願された日本国特許出願2010-230830号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 The present application claims priority based on the Paris Convention or the laws and regulations in the country of transition based on Japanese Patent Application No. 2010-230830 filed on Oct. 13, 2010. The contents of the application are hereby incorporated by reference in their entirety.
10 ガラス基板
11 ゲートバスライン
12 遮光体
13 ソースバスライン
14 遮光体
15 画素電極
17 補助容量配線
18 補助容量電極
21 ベースコート膜
23 シリコン層
25 ゲート絶縁膜
26 第一コンタクトホール
26a 接続電極
27 第一絶縁膜
28 第二コンタクトホール
29 第二絶縁膜
30 ガラス基板
31 ブラックマトリックス
32 遮光体
33 カラーフィルタ
35 対向電極
50 液晶層
DESCRIPTION OF SYMBOLS 10 Glass substrate 11 Gate bus line 12 Light shield 13 Source bus line 14 Light shield 15 Pixel electrode 17 Auxiliary capacity wiring 18 Auxiliary capacity electrode 21 Base coat film 23 Silicon layer 25 Gate insulating film 26 First contact hole 26a Connection electrode 27 First insulation Film 28 Second contact hole 29 Second insulating film 30 Glass substrate 31 Black matrix 32 Light shield 33 Color filter 35 Counter electrode 50 Liquid crystal layer

Claims (3)

  1. 複数の画素電極を備える第一基板と、
    絶縁体の表面上に対向電極を備える第二基板と、
    前記第一基板と前記第二基板との間に配置された液晶層と、
    を有する液晶表示装置であって、
    前記対向電極には、前記画素電極と対向する領域の各々に、前記液晶層の配向を制御するための開口が形成されており、
    前記第一基板及び前記第二基板の少なくとも一方は、前記開口と重なる領域の全体に、遮光体が設けられていることを特徴とする液晶表示装置。
    A first substrate comprising a plurality of pixel electrodes;
    A second substrate comprising a counter electrode on the surface of the insulator;
    A liquid crystal layer disposed between the first substrate and the second substrate;
    A liquid crystal display device comprising:
    In the counter electrode, an opening for controlling the alignment of the liquid crystal layer is formed in each of the regions facing the pixel electrode,
    A liquid crystal display device, wherein at least one of the first substrate and the second substrate is provided with a light-shielding body in an entire region overlapping with the opening.
  2. 前記第一基板及び前記第二基板の少なくとも一方は、カラーフィルタと、前記カラーフィルタを区画するブラックマトリックスとを備え、
    前記遮光体は、前記ブラックマトリックスとともに形成された部材であることを特徴とする請求項1記載の液晶表示装置。
    At least one of the first substrate and the second substrate comprises a color filter and a black matrix that partitions the color filter,
    The liquid crystal display device according to claim 1, wherein the light shielding member is a member formed together with the black matrix.
  3. 前記第一基板は、スイッチング素子及び金属配線を備え、
    前記遮光体は、前記金属配線とともに形成された金属部材であることを特徴とする請求項1記載の液晶表示装置。
     
    The first substrate includes a switching element and metal wiring,
    The liquid crystal display device according to claim 1, wherein the light shield is a metal member formed together with the metal wiring.
PCT/JP2011/072915 2010-10-13 2011-10-05 Liquid crystal display device WO2012050012A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010230830 2010-10-13
JP2010-230830 2010-10-13

Publications (1)

Publication Number Publication Date
WO2012050012A1 true WO2012050012A1 (en) 2012-04-19

Family

ID=45938241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072915 WO2012050012A1 (en) 2010-10-13 2011-10-05 Liquid crystal display device

Country Status (2)

Country Link
TW (1) TW201243441A (en)
WO (1) WO2012050012A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111622654A (en) * 2020-05-30 2020-09-04 宁波新城建筑设计有限公司 Green building with intelligent sun-shading system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222010A (en) * 2000-02-09 2001-08-17 Sanyo Electric Co Ltd Liquid crystal display device
JP2006058734A (en) * 2004-08-23 2006-03-02 Seiko Epson Corp Liquid crystal display and electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222010A (en) * 2000-02-09 2001-08-17 Sanyo Electric Co Ltd Liquid crystal display device
JP2006058734A (en) * 2004-08-23 2006-03-02 Seiko Epson Corp Liquid crystal display and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111622654A (en) * 2020-05-30 2020-09-04 宁波新城建筑设计有限公司 Green building with intelligent sun-shading system
CN111622654B (en) * 2020-05-30 2021-11-05 宁波新城建筑设计有限公司 Green building with intelligent sun-shading system

Also Published As

Publication number Publication date
TW201243441A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US7453086B2 (en) Thin film transistor panel
US8130344B2 (en) Liquid crystal device and electronic apparatus
JP4259579B2 (en) Electro-optical device, electronic apparatus, and driving method of electro-optical device
WO2012102158A1 (en) Substrate for liquid crystal display panel and liquid crystal display device
JP4057579B2 (en) Horizontally aligned (IPS) liquid crystal display element and method for manufacturing the same
TW200422731A (en) Liquid crystal display device
JPH0736058A (en) Active matrix type liquid crystal display device
US20090310072A1 (en) Liquid crystal display device and method of manufacturing the same
CN106444172B (en) Liquid crystal display device
KR101866565B1 (en) Liquid crystal display device and method for fabricating the same
US20140293171A1 (en) Polarized glasses type stereoscopic image display device and method of fabricating the same
JP2011158690A (en) Liquid crystal display panel and electronic apparatus
JP2000352939A (en) Display device
CN113467133B (en) Dimming panel, dimming unit and liquid crystal display device
JP2010276909A (en) Liquid crystal display device
KR20130034744A (en) Liquid crystal display device and method for fabricating the same
WO2012050012A1 (en) Liquid crystal display device
JP6587668B2 (en) Display device
JP4876470B2 (en) Display element
JPWO2011104956A1 (en) Liquid crystal display panel and liquid crystal display device
CN113467134B (en) Dimming unit and liquid crystal display device
KR20050003263A (en) In plane switching mode liquid crystal display device
EP2453297A2 (en) Method for creating a multi-display device
JP5779525B2 (en) Liquid crystal display
JP2009251489A (en) Liquid crystal device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP