WO2012049859A1 - Communication system, base station, terminal and communication method - Google Patents

Communication system, base station, terminal and communication method Download PDF

Info

Publication number
WO2012049859A1
WO2012049859A1 PCT/JP2011/005770 JP2011005770W WO2012049859A1 WO 2012049859 A1 WO2012049859 A1 WO 2012049859A1 JP 2011005770 W JP2011005770 W JP 2011005770W WO 2012049859 A1 WO2012049859 A1 WO 2012049859A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
frequency
doppler
doppler frequency
Prior art date
Application number
PCT/JP2011/005770
Other languages
French (fr)
Japanese (ja)
Inventor
利哲 具
隆行 外山
昭裕 齋藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012049859A1 publication Critical patent/WO2012049859A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking

Definitions

  • the present invention relates to a communication system, a base station, a terminal, and a communication method used in a mobile communication system including a 3GPP-LTE radio base station and a mobile radio terminal, and in particular, a downlink channel estimation information notification amount in base station cooperative transmission. It relates to improvement of reduction technology.
  • a mobile communication system is required to have a large capacity and a high transmission rate.
  • the frequency resources are tight and the use of high frequencies is also being studied.
  • attenuation due to transmission distance is larger than when using a low-frequency radio band, so high-quality communication can be expected in the area near the base station, As the distance from the base station increases, the communication quality deteriorates. Alternatively, even in the vicinity of the base station, the communication quality may be deteriorated due to the influence of shielding by the outer wall of the building.
  • Communicating quality can be improved by reducing the communication range per base station and increasing the number of base stations installed. Since installation of a large number of base stations requires a considerable cost, a system capable of realizing high-quality communication while suppressing the number of base stations installed is required.
  • the base station cooperative transmission technology is called CoMP (Coordinated Multi-Point Tx / Rx) in 3GPP (3rd Generation Partnership Project) LTE-Advanced (Release 10), and is also called Collaborative MIMO or Network MIMO.
  • Coordinated transmission means MIMO (Multiple Input Multiple Output) transmission technology that cooperates between geographically distant transmission points.
  • MIMO Multiple Input Multiple Output
  • the conventional system has a one-to-one relationship such as a single base station and a single terminal, multiple base stations increase the communication quality and cell capacity of the terminal relative to a single terminal.
  • it means a technology for sharing information necessary for transmission and transmitting while cooperating with each other.
  • Non-Patent Document 1 describes, as a category in the CoMP technology discussed in LTE-Advanced, JP (Joint Processing) in which all base stations participating in cooperative transmission transmit data to terminals and data transmission are one.
  • CB / CS Coordinatd Beamforming / Scheduling
  • Fig. 1 is a conceptual diagram of JP.
  • the base stations eNB # 1 and eNB # 2 return the propagation path information estimated by the terminals UE (User) Equipment) #A and UE # B to the transmission side to obtain a high cooperative transmission effect.
  • JP includes “data to be transmitted to a terminal” as one piece of information shared among a plurality of base stations participating in base station cooperative transmission.
  • FIG. 2 is a conceptual diagram of CB / CS.
  • JP Beam Forming for interference suppression in cognitive radio systems, etc. are methods based on high-accuracy channel information feedback from the terminal. For this reason, there is a problem that the amount of feedback from the terminal is large and the line used for return is compressed.
  • JP and CB / CS it is possible to improve the throughput of cell edge terminals and to perform interference suppression transmission to other base stations (including interference suppression to other systems).
  • Notification of accurate channel estimation information is essential.
  • the amount of channel estimation information used for notification is proportional to the size of the transmission bandwidth. That is, the wider the transmission, the greater the amount of feedback per time.
  • the channel estimation information is instantaneous information that sequentially varies depending on the moving speed of the terminal and the reception propagation environment, ideal JP and CB / CS can be realized as the return period is shorter.
  • Non-Patent Document 2 pays attention to the channel Doppler spectrum from the propagation analysis result based on the actual measurement result, and reduces the feedback amount by returning only the frequency component where the power is concentrated.
  • the Doppler spectrum has side lobe components. If a steep Doppler spectrum can be obtained by suppressing the side lobe component, a further feedback amount reduction effect can be expected.
  • An object of the present invention is to provide a communication system, a base station, a terminal, and a communication method capable of achieving both improvement of the base station cooperative transmission effect and reduction of the return amount.
  • a communication system of the present invention is a communication system including a base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission, and the base station transmits Doppler returned as feedback information from the terminal.
  • the terminal includes: a receiving unit that receives a transmission signal corrected on the base station side; a channel estimation unit that calculates a channel estimation value from the corrected signal; and a propagation from the calculated channel estimation value.
  • Doppler spectrum calculation means for calculating the Doppler spectrum indicating the fluctuation of the road, and a special feature from the calculated Doppler spectrum. Selection means for selecting a finite number of frequency components in which power is concentrated on frequency components of the frequency, a Doppler frequency calculation means for calculating a Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum, and the calculated Doppler frequency And a return means for returning the selected frequency component as feedback information of base station cooperative transmission.
  • the base station of the present invention is a base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission, and is a Doppler frequency returned as feedback information from the terminal, and / or in the vicinity of the Doppler frequency.
  • a configuration is provided that includes a receiving unit that receives a frequency component, a correcting unit that corrects a transmission signal based on a reception result from the terminal, and a transmitting unit that transmits the corrected signal to the terminal.
  • the terminal of the present invention is a terminal used in a communication system including a base station that performs base station cooperative transmission, and is based on a Doppler frequency returned as feedback information from the terminal and / or a frequency component in the vicinity of the Doppler frequency.
  • a communication method of the present invention is a communication method including a base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission, and is returned as feedback information from the terminal on the base station side Receiving a Doppler frequency and / or a frequency component near the Doppler frequency, correcting a transmission signal based on the Doppler frequency returned from the terminal, and transmitting the corrected signal to the terminal; The terminal receives a transmission signal corrected on the base station side, calculates a channel estimation value from the corrected signal, and changes a propagation path from the calculated channel estimation value.
  • the step of calculating the Doppler spectrum to be shown and the power concentrated on the specific frequency component from the calculated Doppler spectrum A step of selecting a limited number of frequency components, a step of calculating a Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum, and the base station cooperative transmission of the calculated Doppler frequency and the selected frequency component Returning as feedback information.
  • FIG. 1 Conceptual diagram of JP CB / CS conceptual diagram Diagram showing the arrival of elementary waves and Doppler spectrum in the Jake's model explaining the principle Figure showing propagation environment analysis results based on actual field measurements of the principle explanation
  • FIG. The figure which shows the detailed structure of the base station transmission part of the mobile communication system which concerns on this Embodiment 1.
  • FIG. The figure which shows the radio
  • FIG. The figure which shows the radio
  • FIG. The figure which shows the detailed structure of the compression part of the terminal receiver of the mobile communication system which concerns on this Embodiment 1.
  • FIG. The figure which shows the comparison of the desired signal power and interference signal power of the mobile communication system which concerns on this Embodiment 1.
  • FIG. It is a figure which shows an example of Beam Forming of the mobile communication system according to the first embodiment.
  • Block diagram showing transfer function restoration processing of the transfer function restoration unit of the mobile communication system according to the first embodiment The figure which compares and shows the downlink channel estimation information notification method in the base station cooperation transmission of the mobile communication system which concerns on this Embodiment 1, and a conventional system.
  • the flowchart which shows the feedback information return process of the terminal receiver of the mobile communication system which concerns on this Embodiment 1.
  • FIG. The figure which shows an example of the feedback information reply format in the terminal transmission part of the mobile communication system which concerns on this Embodiment 1.
  • FIG. The figure which shows an example of the feedback information reply format in the terminal transmission part of the mobile communication system which concerns on this Embodiment 1.
  • the figure which compares and shows the Doppler frequency analysis result in the receiving side at the time of performing a correction process based on the Doppler frequency which received the feedback of the mobile communication system which concerns on this Embodiment 1, and without phase correction The figure which shows the detailed structure of the terminal receiver of the mobile radio terminal of the mobile communication system which concerns on Embodiment 2 of this invention.
  • the inventors focused on the channel Doppler spectrum.
  • the radio propagation environment of mobile terminals in wireless communication system development is transmission path modeling based on the Jake's model, which has uniform scatterers around it and uniform waves with random phase differences from all directions. Is used.
  • FIG. 3 is a diagram showing a state of arrival of an elementary wave and a Doppler spectrum in the Jake's model
  • FIG. 3 (a) is an elementary wave arrival modeling of the Jake's model
  • FIG. 3 (b) is a Doppler spectrum thereof.
  • the Doppler spectrum in FIG. 3B shows the case where the Doppler frequency is 500 Hz. As shown in FIG. 3, it can be seen that the power spectrum in the Jake's model is widely distributed in frequency components within ⁇ 500 Hz.
  • the Doppler spectrum has a spectrum where power is concentrated near the Doppler frequency, unlike that of the Jake's model. This means that an elementary wave does not arrive from all directions but an incoming wave within a specific angle.
  • FIG. 4A and 4B are diagrams showing the propagation environment analysis results based on the results actually measured in the field
  • FIG. 4A is an elementary wave arrival model based on the analysis results of measured data
  • FIG. 4B is the Doppler spectrum. It is.
  • the present inventors pay attention to the fact that the Doppler spectrum of a channel is concentrated near a specific frequency component due to the arrival of an elementary wave within a certain angle difference, and returns only a specific frequency component. That is, the terminal analyzes the propagation path fluctuation for each path and returns only the frequency component near the Doppler frequency. This realizes highly accurate feedback of channel information while reducing the amount of feedback.
  • FIG. 5 is a diagram showing a Doppler frequency analysis result on the terminal reception side.
  • the base station transmission side performs signal correction processing based on information fed back from the terminal.
  • the transmission signal is corrected based on the Doppler frequency.
  • FIG. 6 is a diagram showing a Doppler spectrum in the terminal receiving unit when signal correction processing is performed on the base station transmission side.
  • FIG. 6 shows the Doppler spectrum observation result on the terminal reception side when the signal correction processing is performed on the base station transmission side so that the Doppler frequency becomes 0 Hz on the terminal reception side.
  • the spectrum has a steeper spectrum.
  • This method returns a specific frequency component from a sharper Doppler spectrum obtained by introducing a correction process on the base station transmission side, so that the amount of feedback can be increased compared to when the mismatch is not resolved. Achieves highly accurate feedback of channel information while reducing.
  • FIG. 7 is a block diagram showing a configuration of the mobile communication system according to Embodiment 1 of the present invention. This embodiment is an example applied to a mobile communication system including a 3GPP LTE radio base station and a mobile radio terminal. In FIG. 7, description of functional blocks not directly related to the power saving control is omitted.
  • the mobile communication system includes a base station 100 that participates in base station cooperative transmission, and a mobile radio terminal 200 that notifies the base station 100 of downlink channel estimation information in base station cooperative transmission.
  • Base station 100 includes a base station transmission unit 110 and a base station reception unit 160.
  • the base station transmission unit 110 includes a transmission antenna 111, a transmission digital signal processing unit 120, and a wireless transmission unit 150.
  • the transmission digital signal processing unit 120 includes a signal correction processing unit 130 and an OFDM (Orthogonal Frequency Division Division Multiplexing) modulation unit. 140.
  • the base station receiving unit 160 includes a receiving antenna 161, a wireless receiving unit 170, and a received digital signal processing unit 180.
  • the signal correction processing unit 130 corrects the transmission signal based on the reception result. Specifically, the signal correction processing unit 130 corrects the phase of the transmission signal based on the Doppler frequency returned from the terminal. By correcting the transmission signal in the base station transmitter 110, the center frequency of the Doppler shift can be shifted to around 0 Hz on the receiving side.
  • the signal correction processing unit 130 only needs to correct the transmission signal based on the Doppler frequency returned from the terminal. That is, when the physical quantity to be corrected is a phase, it is a case where correction is performed in the time domain, and this depends on the area (time or frequency) to be corrected.
  • the signal correction processing unit 130 corrects the transmission signal in the time domain, it can be referred to as phase correction.
  • the base station receiving unit 160 receives feedback information from the terminal.
  • the base station receiving unit 160 demodulates / decodes the received feedback information and acquires feedback information from the terminal.
  • the base station transmission side performs signal correction based on the feedback information and transmits it.
  • FIG. 8 is a diagram showing a detailed configuration of the transmission digital signal processing unit 120.
  • the transmission digital signal processing unit 120 includes an IQ modulation unit 121, a mapping unit 122, a signal correction processing unit 130, and an OFDM modulation unit 140.
  • the signal correction processing unit 130 performs signal correction processing based on information fed back from the terminal. In order to eliminate the frequency resolution mismatch on the reception side, for example, the transmission signal is corrected based on the Doppler frequency.
  • FIG. 9 is a diagram showing a detailed configuration of the base station transmission unit 110.
  • FIG. 9A shows a functional block of the transmission digital signal processing unit 120 when the base station transmission unit 110 performs Doppler frequency correction, which is a feature of the present embodiment, and FIG. The functional block of the transmission digital signal processing part 120 when the station transmission part 110 performs base station cooperation transmission is shown.
  • the Doppler frequency correction processing unit 130A executes signal correction processing.
  • the Doppler frequency correction processing unit 130A is a part of the function of the signal correction processing unit 130 that performs signal correction processing based on information fed back from the terminal. Details of the Doppler frequency correction processing will be described later using equations (1) to (3).
  • the base station transmission unit 110 performs the transmission digital signal processing unit 120 when performing cooperative transmission (including BeamBeForming) on the transmission side based on the feedback result from the mobile radio terminal 200.
  • the Beam Forming processing unit 130B is a part of the function of the signal correction processing unit 130. Details of the Beam-Forming process will be described later with reference to FIG.
  • the transfer function restoration unit 131 restores the transfer function based on the information fed back from the terminal, and converts it into weight necessary for base station cooperation and Beam Forming processing.
  • the mobile radio terminal 200 includes a terminal receiver 210 and a terminal transmitter 260 that receive / transmit radio waves between base stations.
  • the mobile radio terminal 200 is an LTE terminal.
  • the terminal reception unit 210 includes a reception antenna 211, a wireless reception unit 220, and a reception digital signal processing unit 230.
  • the reception digital signal processing unit 230 includes a channel estimation unit 240 and a compression unit 250.
  • the terminal transmission unit 260 includes a transmission antenna 261, a wireless transmission unit 270, and a transmission digital signal processing unit 280.
  • the received digital signal processing unit 230 compresses the channel estimation result and generates feedback information.
  • the channel estimation unit 240 estimates channel information between the base station and the terminal from the signal transmitted from the wireless transmission device. Specifically, the channel estimation unit 240 performs channel estimation processing for calculating a channel estimation value from a transmitted signal by using RS (Reference Signal) in LTE and LTE-Advanced in 3GPP. The channel estimation unit 240 performs channel estimation processing using RS, and obtains channel estimation values between the base station and the terminal by the number of transmission / reception antenna combinations.
  • RS Reference Signal
  • the compression unit 250 compresses and reduces the channel information estimated by the channel estimation unit 240.
  • the configuration of the compression unit 250 will be described later with reference to FIG.
  • the terminal transmission unit 260 transmits the compressed channel information.
  • the transmission digital signal processing unit 280 encodes / modulates the feedback information and transmits it to the base station side through the wireless transmission unit 270.
  • 10 and 11 are diagrams showing RS radio frame formats, showing RS signal arrangement in LTE and LTE-Advanced.
  • MU-MIMO Multiple User-Multiple ⁇ ⁇ Input Multiple Output
  • DM-RS Demodulation RS: reference signal for data demodulation
  • CS cyclic shift
  • CRS Cell-specific reference signal
  • FIG. 12 is a diagram illustrating a detailed configuration of the compression unit 250 of the terminal reception unit 210.
  • the compression unit 250 includes an impulse response calculation unit 251, a path separation unit 252, Doppler spectrum calculation units 253-1 to 253-N corresponding to the number of paths (hereinafter collectively referred to as “253”), a selection unit 254-1 to 254-N (hereinafter collectively referred to as 254) and a Doppler frequency calculation unit 255.
  • the impulse response calculation unit 251 performs time domain signal conversion processing such as IFFT on the input channel estimation value to calculate an impulse response.
  • the path separation unit 252 performs path separation processing from the impulse response calculated by the impulse response calculation unit 251, and acquires a complex channel gain for each path.
  • the path separation unit 252 includes a buffer (not shown), and the buffer performs the buffer processing for the complex channel gain for each path by the number necessary for frequency analysis, and then outputs it to the Doppler spectrum calculation unit 253.
  • the Doppler spectrum calculation unit 253 performs frequency domain conversion processing such as FFT for each path and performs Doppler frequency analysis.
  • the selection unit 254 selects a frequency component to be returned using the Doppler spectrum analysis result calculated by the Doppler spectrum calculation unit 253.
  • the selection unit 254 performs selection processing by determining that the frequency component in which power is concentrated has a higher contribution in configuring the channel.
  • the Doppler frequency calculation unit 255 estimates the Doppler frequency from the Doppler spectrum calculation result.
  • FIG. 7 shows a configuration for transmitting only to one UE, simultaneous transmission to a plurality of UEs is also possible.
  • the base station can apply this method even in an environment where there are a plurality of terminals by performing signal correction processing for each terminal based on the Doppler frequency received for each terminal.
  • the base station transmission unit 110 performs processing for correcting the transmission signal based on the value of the Doppler frequency fed back from the mobile radio terminal 200 and then based on feedback information from the mobile radio terminal 200. Start coordinated transmission.
  • the Doppler frequency correction processing unit 130A has a Doppler spectrum of 0 on the terminal reception side, for example.
  • the transmission signal is corrected so as to be observed as [Hz].
  • a steep Doppler spectrum is observed on the terminal reception side.
  • the Doppler spectrum in the terminal reception unit 210 when the signal correction processing is performed on the base station transmission side is shown in FIG.
  • S (k) is a frequency domain signal of subcarrier number k on the transmission side
  • n is a time domain sample index
  • N is the number of FFT points.
  • a represents the Doppler frequency normalized by the subcarrier interval.
  • the equation (1) is converted to a subcarrier component by performing FFT (see equation (2)).
  • the first term in the second row of the above equation (2) is a desired frequency component
  • the second term is an interference component (an interference component due to a frequency component other than the desired frequency component).
  • the desired frequency component is obtained by multiplying the desired subcarrier signal by a Sinc function shifted by a. From this, it is possible to correct the frequency shift of the desired signal component by performing an operation on the transmission signal so as to shift by ⁇ a.
  • the received signal S ⁇ (k) after the FFT when the transmission signal is transmitted so as to be shifted by -a is shown in Equation (3).
  • the first term in the last row on the right side of the above equation (3) is the desired signal component, and the second term is the interference component from other subcarrier signals.
  • numerical calculation is used to examine the influence of the interference component of the second term.
  • the numerical calculation parameters are fd (Doppler frequency): 500 Hz and N (FFT ⁇ Point number): 2048. The numerical calculation results are shown in FIG.
  • FIG. 13 is a diagram showing a comparison between desired signal power and interference signal power in the above equation (3).
  • the interference component is not completely zero, the influence is small because it is 20 dB or more lower than the signal power.
  • the center frequency of the Doppler shift on the receiving side can be shifted to around 0 Hz by providing the Doppler frequency correction process for the subcarrier signal on the transmitting side.
  • the transfer function restoring unit 131 restores the transfer function based on the information fed back from the mobile radio terminal 200, for base station cooperation and Beam Forming processing. Convert to the required weight. Thereafter, the beam forming processing unit 130B performs weight multiplication processing, performs 0FDM modulation processing, and generates a transmission signal.
  • FIG. 14 is a diagram showing an example of Beam Forming.
  • V is a vector notation
  • FIG. 15 is a block diagram showing transfer function restoration processing of the transfer function restoration unit 131.
  • the transfer function restoration unit 131 includes a complex channel gain restoration unit 1311, a rearrangement unit 1312, and an FFT unit 1313.
  • the transfer function restoration unit 131 first restores the complex channel gain (fading) by performing the FFT on the frequency component for each path fed back from the mobile radio terminal 200. Next, the impulse response is reproduced by rearranging them along the delay time of the channel. Finally, a transfer function is acquired by applying FFT.
  • the base station cooperative transmission of the base station transmission unit 110 has been described above.
  • FIG. 16 is a diagram showing a comparison between a downlink channel estimation information notification method (hereinafter referred to as the present method) and a conventional method in base station cooperative transmission according to the present embodiment.
  • FIG. 16A shows a conventional channel estimation information notification method, in which frequency f is taken on the X axis, time t is taken on the Y axis, and gain is taken on the Z axis.
  • the transfer function of the propagation path is returned.
  • all frequency transfer functions at times t0, t1, and t2 are fed back to the base station side as channel estimation information. For this reason, the amount of feedback in base station cooperative transmission is large, and there is a problem of compressing the line used for return.
  • this method pays attention to the nature of the arrival of an elementary wave and returns the frequency component near the Doppler frequency to reduce the feedback amount.
  • FIG. 16B shows the present method, and shows the fluctuation of the impulse response for each time when the number of paths is 3, and Doppler spectrum estimation.
  • An impulse response ⁇ that is an analysis result of the impulse response calculation unit 251 is taken on the X axis, a time t is taken on the Y axis, and a power spectrum is taken on the Z axis.
  • the Doppler spectrum is estimated from the fluctuation of the impulse response at each time t0, t1, and t2.
  • FIG. 16B shows one path obtained as a result of analyzing the transfer function of to, two paths obtained as a result of analyzing the transfer function of t1, and two paths obtained as a result of analyzing the transfer function of t2. .
  • Doppler frequency analysis is performed to determine how the time changes for each path. Then, only the frequency components near the Doppler frequency of each path are fed back. That is, this system analyzes propagation path fluctuations for each path and returns a finite number of frequency components with concentrated power.
  • FIG. 5 is a diagram showing a Doppler frequency analysis result when focusing on one path.
  • the frequency (Hz) is taken on the X axis, and the power spectrum (logarithmic notation) is taken on the Y axis.
  • the amount of information is reduced by returning frequency components with concentrated power.
  • the top X components are selected in descending order of the power.
  • the terminal receiving unit 210 receives radio waves from the base station by the receiving antenna 211 and the wireless receiving unit 220, and the received digital signal processing unit 230 compresses the channel estimation result and generates feedback information.
  • the transmission digital signal processing unit 280 of the terminal transmission unit 260 encodes / modulates the feedback information and transmits it to the base station side through the wireless transmission unit 270 and the transmission antenna 261.
  • the channel estimation unit 240 estimates channel information between the base station and the terminal.
  • channel estimation processing is performed using RS.
  • the received digital signal processing unit 230 calculates an impulse response from the channel estimation value, performs Doppler frequency analysis, and returns only the top X to the terminal transmission unit 260. This reduces the amount of information.
  • the channel estimation value is input from the channel estimation unit 240 to the compression unit 250.
  • the impulse response calculation unit 251 performs time domain signal conversion processing such as IFFT on the input channel estimation value, and calculates an impulse response.
  • the path separation unit 252 performs path separation processing from the impulse response calculated by the impulse response calculation unit 251, and acquires a complex channel gain for each path.
  • the path separation unit 252 includes a buffer (not shown). The buffer performs the buffer processing for the complex channel gain for each path by the number necessary for frequency analysis, and then outputs it to the Doppler spectrum calculation unit 253.
  • the Doppler spectrum calculation unit 253 performs frequency domain conversion processing such as FFT for each path and performs Doppler frequency analysis.
  • FIG. 16B shows a state of Doppler spectrum analysis when the number of passes is three.
  • FIG. 5 shows the Doppler frequency analysis result.
  • the selection unit 254 selects a frequency component to be returned using the Doppler spectrum analysis result calculated by the Doppler spectrum calculation unit 253.
  • the selection unit 254 determines that the frequency component in which power is concentrated has a higher contribution in configuring the channel, and, for example, sequentially selects the top X components from the frequency component having the larger power spectrum.
  • the present embodiment Prior to the process of returning a finite number of frequency components with concentrated power from the Doppler spectrum of the propagation path, the present embodiment performs the feedback process of returning the Doppler frequency in the initial operation.
  • FIG. 17 is a flowchart showing feedback information return processing of the terminal receiving unit 210.
  • a channel estimation value is input from the channel estimation unit 240 to the compression unit 250 in step S1.
  • step S2 the impulse response calculation unit 251 performs time domain signal conversion processing such as IFFT on the input channel estimation value, and calculates an impulse response.
  • step S3 the path separation unit 252 performs path separation processing from the impulse response calculated by the impulse response calculation unit 251, and acquires a complex channel gain for each path.
  • step S4 the Doppler spectrum calculation unit 253 performs frequency domain conversion processing such as FFT for each path and performs Doppler frequency analysis.
  • FIG. 16B shows a state of Doppler spectrum analysis when the number of passes is three.
  • FIG. 5 shows the Doppler frequency analysis result.
  • step S5 the Doppler frequency calculation unit 255 estimates the Doppler frequency from the Doppler spectrum calculation result. For example, in the case of FIG. 5 described above, the Doppler frequency calculation unit 255 estimates the Doppler frequency 500 [Hz] from the Doppler spectrum calculation result.
  • step S6 the terminal reception unit 210 determines whether or not the terminal process is the first operation.
  • step S7 the terminal reception unit 210 uses the Doppler frequency obtained in the previous stage as feedback information.
  • the terminal receiving unit 210 returns a Doppler frequency of 500 [Hz] as feedback information.
  • step S8 the terminal receiving unit 210 determines whether or not the difference between the frequency value transmitted by the first operation and the Doppler frequency at the report timing is within a specified value.
  • a specified value a frequency value that is half of the FFT resolution (for example, when the FFT resolution is 7.3 [Hz], approximately 3.7 [Hz]) is used.
  • the selection unit 254 uses the Doppler spectrum analysis result calculated by the Doppler spectrum calculation unit 253 in Step S9. Select the frequency component to be returned.
  • the selection unit 254 determines that the frequency component in which power is concentrated has a higher contribution in configuring the channel, and sequentially selects, for example, the top X components from the frequency component having the larger power spectrum. If it is not the first operation, the terminal reception unit 210 returns the top X frequency components selected by the selection unit 254.
  • the terminal reception unit 210 feeds back the value of the Doppler frequency in Step S11. This is because when the error from the first time is large, the mismatch of the Doppler frequency and the FFT resolution on the terminal reception side recurs, so that the Doppler spectrum spreads.
  • the estimation of the Doppler frequency is basically sufficient only for the first time unless the moving speed of the terminal changes greatly.
  • the processing flow after the Doppler spectrum calculation changes depending on whether or not the terminal processing is the first operation.
  • the Doppler frequency obtained in the previous stage is used as feedback information.
  • the frequency component to be fed back is selected.
  • the Doppler frequency value is fed back.
  • FIG. 18 is a diagram illustrating an example of a feedback information return format in the terminal transmission unit 260.
  • FIG. 18 is an example of a format related to feedback information in terminal transmission section 260 ⁇ base station reception section 160.
  • the elements constituting the common format are composed of a “Flg” part for determining a storage element of the Payload part and a “Payload” part for storing an information element.
  • Various formats can be defined depending on how they are defined. “Flg” for discriminating storage elements and “Payload” for storing information elements are basic elements.
  • FIG. 18 shows a case where the Doppler frequency value is stored in the Payload portion when the Flg bit logic is 0, and the frequency component value obtained by Doppler frequency analysis is stored in the Payload portion when the Flg bit logic is 1. An example is shown.
  • the storage element discrimination “Flg” “0” and the information “Bit # 1 to Bit # X” are defined.
  • the storage element discrimination “Flg” “1”, the information range “Bit # 1 to #A”, and the contents of the frequency component “ Bit # A + 1 to Bit # X ” are defined. Note that the above “Bits # 1 to #A” are unnecessary if they are shared by the UE and the base station NB #.
  • the processing block configuration and the processing flow are the same as those shown in FIGS.
  • the transmission format uses the configuration as shown in FIG.
  • FIG. 19 is a diagram illustrating an example of a feedback information return format in the terminal transmission unit 260.
  • the elements constituting the common format are composed of a “Flg” part for determining a storage element of the Payload part and a “Payload” part for storing an information element.
  • the “absolute value return mode” and the “difference value return mode” are determined based on the logical value of the Flg area.
  • the absolute value of the Doppler frequency is quantized and transmitted (same as in this embodiment).
  • the value returned in the “absolute value reply mode” Returns the difference value.
  • the base station 100 includes the base station receiving unit 160 that receives the Doppler frequency returned as feedback information from the terminal and / or a frequency component near the Doppler frequency. Prepare.
  • the base station transmission unit 110 of the base station 100 includes a signal correction processing unit 130 that corrects the phase of the transmission signal based on the Doppler frequency returned from the terminal.
  • the mobile radio terminal 200 also estimates a channel estimation unit 240 that estimates channel information from a transmitted signal that has been phase-corrected on the base station side, and calculates a Doppler spectrum that indicates a channel variation from the estimated channel estimation value.
  • a terminal transmission unit 260 that returns the calculated Doppler frequency and the selected frequency component as feedback information of base station cooperative transmission.
  • the mobile radio terminal 200 returns, for example, the value [Hz] of the Doppler frequency through the feedback line in the initial operation, and the base station 100 transmits the transmission signal based on the feedback Doppler frequency of the propagation path. Phase rotation processing is performed to correct the frequency shift and transmit. Then, the mobile radio terminal 200 side calculates propagation path fluctuation (Doppler spectrum) from the estimated channel estimation value, and returns a frequency component where power is concentrated. As the frequency components to be returned, for example, the top X components are selected in descending order of the power.
  • Doppler spectrum propagation path fluctuation
  • the amount of channel information notification required for realizing base station cooperative transmission can be greatly reduced.
  • FIG. 20 is a diagram showing a result of Doppler frequency analysis on the receiving side in the case of performing the correction process and transmitting based on the Doppler frequency that has received the feedback, and comparing it with / without phase correction.
  • FIG. 21 is a diagram showing a detailed configuration of the terminal reception unit of the mobile radio terminal according to Embodiment 2 of the present invention. The same components as those in FIG.
  • the basic configuration and operation of the mobile radio terminal in the second embodiment of the present invention are the same as those in the first embodiment.
  • the terminal reception unit 310 includes a channel estimation unit 240, a Doppler frequency estimation unit 320, and a compression unit 350.
  • This embodiment is different from FIG. 12 in that a Doppler frequency estimation unit 320, which is a dedicated block for estimating the Doppler frequency, is provided.
  • the Doppler frequency can be estimated without using the impulse response result.
  • the configuration is further simplified by configuring the Doppler frequency estimation unit 320 as a separate block from the compression unit 350.
  • an algorithm for detecting a specific frequency component such as a Goertzel algorithm, is applied in addition to an algorithm in which frequency resolution is equally spaced, such as DFT.
  • the names base station, communication system, terminal, and communication method are used.
  • the apparatus is a radio communication terminal, LTE terminal, mobile communication system, and method is base station cooperation.
  • a transmission method, a channel information notification method, or the like may be used.
  • each component constituting the mobile radio terminal for example, the type of transmission / reception unit, the selection unit, the Doppler frequency calculation unit, etc. is not limited to the above-described embodiment.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the communication system, base station, terminal, and communication method of the present invention are useful for mobile radio terminals and feedback information transmission methods used in mobile communication systems including 3GPP ⁇ 3LTE radio base stations and mobile radio terminals.
  • Base station 110 Base station transmission part 111,261 Transmission antenna 120,280 Transmission digital signal processing part 130 Signal correction processing part 131 Transfer function restoration part 140 OFDM modulation part 150,270 Wireless transmission part 160 Base station reception part 161, 211 Reception Antenna 170 Wireless receiver 180 Received digital signal processor 200 Mobile radio terminal 210, 310 Terminal receiver 220 Wireless receiver 230 Received digital signal processor 240 Channel estimation unit 250, 350 Compression unit 251 Impulse response calculation unit 252 Path separation unit 253 , 253-1 to 253-N Doppler spectrum calculation unit 254, 254-1 to 254-N selection unit 255 Doppler frequency calculation unit 260 terminal transmission unit 320 Doppler frequency estimation unit 1311 complex channel gain restoration unit 1312 Base instead of part 1313 FFT section

Abstract

Provided are a communication system capable of balancing the improvement in effect of base station coordinated transmission and reduction in the amount of returns, a base station, a terminal and a communication method. A base station (100) is provided with a base station receiving unit (160) for receiving a Doppler frequency and/or a frequency component around the Doppler frequency that are returned as feedback information from a terminal. A base station transmission unit (110) of a base station (100) is provided with a signal correction processing unit (130) for phase correcting a transmission signal on the basis of the Doppler frequency returned from the terminal. In addition, a wireless mobile terminal (200) is provided with: a channel estimation unit (240) for estimating channel information from the transmitted signal that was phase corrected on the base station side; a Doppler frequency calculation unit (255) for calculating the Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum; and a terminal transmission unit (260) for returning the calculated Doppler frequency and a selected frequency component as base station coordinated transmission feedback information.

Description

通信システム、基地局、端末及び通信方法Communication system, base station, terminal and communication method
 本発明は、3GPP LTE方式の無線基地局、及び移動無線端末を含む移動通信システムに用いられる通信システム、基地局、端末及び通信方法に関し、特に、基地局協調送信における下りチャネル推定情報通知量の削減技術の改良に関する。 The present invention relates to a communication system, a base station, a terminal, and a communication method used in a mobile communication system including a 3GPP-LTE radio base station and a mobile radio terminal, and in particular, a downlink channel estimation information notification amount in base station cooperative transmission. It relates to improvement of reduction technology.
 近年、移動体通信システムにおいては、大容量・高伝送レートの通信が求められる。また、システムの広帯域化、複数のシステムの存在により、周波数リソースは逼迫し、高周波数の利用も検討されている。一般に、高周波数の無線帯域を利用した場合、低周波数の無線帯域を利用する場合に比べて、伝送距離による減衰が大きくなるため、基地局近傍のエリアでは高品質の通信が期待できる一方で、基地局からの距離が大きくなると通信品質が低下してしまう。あるいは、基地局近傍であっても、建造物の外壁等による遮蔽などの影響により、通信品質が低下してしまうことがある。 In recent years, a mobile communication system is required to have a large capacity and a high transmission rate. In addition, due to the wide band of the system and the existence of a plurality of systems, the frequency resources are tight and the use of high frequencies is also being studied. In general, when using a high-frequency radio band, attenuation due to transmission distance is larger than when using a low-frequency radio band, so high-quality communication can be expected in the area near the base station, As the distance from the base station increases, the communication quality deteriorates. Alternatively, even in the vicinity of the base station, the communication quality may be deteriorated due to the influence of shielding by the outer wall of the building.
 一基地局あたりの通信範囲を小さくし、基地局の設置数を増加することにより、通信品質を向上することができる。多数の基地局を設置するには相応のコストがかかるため、基地局設置数を抑制しつつ高品質の通信を実現できるシステムが求められる。 Communicating quality can be improved by reducing the communication range per base station and increasing the number of base stations installed. Since installation of a large number of base stations requires a considerable cost, a system capable of realizing high-quality communication while suppressing the number of base stations installed is required.
 前記要求に応え得る技術として、複数基地局による協調送信が多く検討されている。 As a technology that can meet the above requirements, cooperative transmission by a plurality of base stations has been studied in many cases.
 基地局協調送信技術は、3GPP(3rd Generation Partnership Project) LTE-Advanced(Release 10)では、CoMP(Coordinated Multi-Point Tx/Rx)と呼んでおり、その他Collaborative MIMOやNetwork MIMOなどとも呼ぶ。協調送信とは、地理的に離れた送信点間で協調するMIMO(Multiple Input Multiple Output)送信技術を意味する。具体的には、これまでのシステムが単数基地局と単数端末のような一対一の関係であるのに対し、複数の基地局が単数端末に対して、端末の通信品質やセル容量を高めるために、送信に必要な情報を共有し、互いに協調しあいながら送信する技術を意味する。 The base station cooperative transmission technology is called CoMP (Coordinated Multi-Point Tx / Rx) in 3GPP (3rd Generation Partnership Project) LTE-Advanced (Release 10), and is also called Collaborative MIMO or Network MIMO. Coordinated transmission means MIMO (Multiple Input Multiple Output) transmission technology that cooperates between geographically distant transmission points. Specifically, while the conventional system has a one-to-one relationship such as a single base station and a single terminal, multiple base stations increase the communication quality and cell capacity of the terminal relative to a single terminal. In addition, it means a technology for sharing information necessary for transmission and transmitting while cooperating with each other.
 例えば、非特許文献1は、LTE-Advancedにて議論されているCoMP技術におけるカテゴリとして、協調送信に参加する基地局全てが端末へ向けてデータを送信するJP(Joint Processing)及びデータ送信は一基地局のみに閉じるCB/CS(Coordinated Beamforming/Scheduling)について取り上げている。 For example, Non-Patent Document 1 describes, as a category in the CoMP technology discussed in LTE-Advanced, JP (Joint Processing) in which all base stations participating in cooperative transmission transmit data to terminals and data transmission are one. CB / CS (Coordinated Beamforming / Scheduling) which is closed only to the base station is taken up.
 図1及び図2は、JP及びCB/CSの概念について説明する。 1 and 2 explain the concept of JP and CB / CS.
 図1は、JPの概念図である。 Fig. 1 is a conceptual diagram of JP.
 図1に示すように、基地局eNB#1,eNB#2は、端末UE(User Equipment)#A,UE#Bで推定した伝搬路情報を送信側に返信し、高い協調送信効果を得る。JPは、基地局協調送信に参加する複数の基地局間で共有する情報の1つに、「端末へ送信するデータ」を含む。 As shown in FIG. 1, the base stations eNB # 1 and eNB # 2 return the propagation path information estimated by the terminals UE (User) Equipment) #A and UE # B to the transmission side to obtain a high cooperative transmission effect. JP includes “data to be transmitted to a terminal” as one piece of information shared among a plurality of base stations participating in base station cooperative transmission.
 図2は、CB/CSの概念図である。 FIG. 2 is a conceptual diagram of CB / CS.
 図2に示すように、CB/CSでは、基地局eNB#1,eNB#2から端末UE#A,UE#Bへのデータ送信は一基地局(サービングセル)からのみである。 As shown in FIG. 2, in CB / CS, data transmission from the base stations eNB # 1 and eNB # 2 to the terminals UE # A and UE # B is only from one base station (serving cell).
 JPや、コグニティブ無線システムにおける干渉抑圧のためのBeam Formingなどは端末からの高精度な伝搬路情報のフィードバックを前提とした方法である。このため、端末からのフィードバック量が多く、返送に用いる回線を圧迫する課題がある。 JP, Beam Forming for interference suppression in cognitive radio systems, etc. are methods based on high-accuracy channel information feedback from the terminal. For this reason, there is a problem that the amount of feedback from the terminal is large and the line used for return is compressed.
 すなわち、JP及びCB/CSを用いることでセルエッジ端末のスループットの向上や、他基地局への干渉抑圧送信(他システムへの干渉抑圧も含む)が可能であるが、これらは端末からの高精度なチャネル推定情報の通知が必須である。通知に用いるチャネル推定情報量は、伝送帯域幅の大きさに比例する。つまり広帯域伝送であるほど、1回あたりのフィードバック量はより多くなる。さらにチャネル推定情報は端末の移動速度や受信伝搬環境によって逐次変動する瞬時情報であるため、その返送周期が短いほど、理想的なJP及びCB/CSを実現することができる。 That is, by using JP and CB / CS, it is possible to improve the throughput of cell edge terminals and to perform interference suppression transmission to other base stations (including interference suppression to other systems). Notification of accurate channel estimation information is essential. The amount of channel estimation information used for notification is proportional to the size of the transmission bandwidth. That is, the wider the transmission, the greater the amount of feedback per time. Furthermore, since the channel estimation information is instantaneous information that sequentially varies depending on the moving speed of the terminal and the reception propagation environment, ideal JP and CB / CS can be realized as the return period is shorter.
 つまり、JP及びCB/CSによる基地局協調送信効果と、フィードバック量には比例関係が成り立つ。しかしフィードバック量の増大は、フィードバック回線の圧迫に繋がるため、むやみにフィードバック量を増やすのはシステムスループットの観点では悪影響を及ぼす。フィードバック回線への負担を考えると、返送すべき情報量は少ないほどよい。 That is, a proportional relationship is established between the base station cooperative transmission effect by JP and CB / CS and the feedback amount. However, an increase in the amount of feedback leads to a pressure on the feedback line, so increasing the amount of feedback unnecessarily has an adverse effect on the system throughput. Considering the burden on the feedback line, the smaller the amount of information to be returned, the better.
 したがって、基地局協調送信効果と返送量削減の間にはトレードオフが存在する。 Therefore, there is a trade-off between the base station cooperative transmission effect and the return amount reduction.
 フィードバックに用いる情報量削減方法について、多く検討されている。 Many studies have been made on methods for reducing the amount of information used for feedback.
 例えば、非特許文献2は、実測結果に基づいた伝搬解析結果からチャネルのドップラスペクトラムに着目し、電力が集中した周波数成分のみ返送することでフィードバック量を削減している。 For example, Non-Patent Document 2 pays attention to the channel Doppler spectrum from the propagation analysis result based on the actual measurement result, and reduces the feedback amount by returning only the frequency component where the power is concentrated.
 しかし、周波数解析に用いるFFTの分解能が有限であるため、ドップラスペクトラムはサイドローブ成分を有する。このサイドローブ成分を抑圧することで、より急峻なドップラスペクトラムを得ることができれば、更なるフィードバック量削減効果が期待できる。 However, since the resolution of the FFT used for frequency analysis is finite, the Doppler spectrum has side lobe components. If a steep Doppler spectrum can be obtained by suppressing the side lobe component, a further feedback amount reduction effect can be expected.
 本発明の目的は、基地局協調送信効果の向上と返送量削減の両立を図ることができる通信システム、基地局、端末及び通信方法を提供することである。 An object of the present invention is to provide a communication system, a base station, a terminal, and a communication method capable of achieving both improvement of the base station cooperative transmission effect and reduction of the return amount.
 本発明の通信システムは、端末から通知されたチャネル推定情報を共有し、基地局協調送信を行う基地局を備える通信システムであって、前記基地局は、前記端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分を受信する受信手段と、前記端末から返送されたドップラ周波数に基づいて、送信信号を補正する補正手段と、補正した信号を前記端末に送信する送信手段と、を備え、前記端末は、前記基地局側で補正された送信信号を受信する受信手段と、前記補正された信号からチャネル推定値を算出するチャネル推定手段と、算出したチャネル推定値から伝搬路の変動を示すドップラスペクトラムを算出するドップラスペクトラム算出手段と、算出したドップラスペクトラムから特定の周波数成分に電力が集中した有限個の周波数成分を選択する選択手段と、前記推定したチャネル推定値、又は前記算出したドップラスペクトラムからドップラ周波数を算出するドップラ周波数算出手段と、前記算出したドップラ周波数及び前記選択した周波数成分を、基地局協調送信のフィードバック情報として返送する返送手段と、を備える構成を採る。 A communication system of the present invention is a communication system including a base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission, and the base station transmits Doppler returned as feedback information from the terminal. Receiving means for receiving a frequency and / or a frequency component in the vicinity of the Doppler frequency, correcting means for correcting the transmission signal based on the Doppler frequency returned from the terminal, and transmitting means for transmitting the corrected signal to the terminal The terminal includes: a receiving unit that receives a transmission signal corrected on the base station side; a channel estimation unit that calculates a channel estimation value from the corrected signal; and a propagation from the calculated channel estimation value. Doppler spectrum calculation means for calculating the Doppler spectrum indicating the fluctuation of the road, and a special feature from the calculated Doppler spectrum. Selection means for selecting a finite number of frequency components in which power is concentrated on frequency components of the frequency, a Doppler frequency calculation means for calculating a Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum, and the calculated Doppler frequency And a return means for returning the selected frequency component as feedback information of base station cooperative transmission.
 本発明の基地局は、端末から通知されたチャネル推定情報を共有し、基地局協調送信を行う基地局であって、前記端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分を受信する受信手段と、前記端末からの受信結果に基づいて、送信信号を補正する補正手段と、補正した信号を前記端末に送信する送信手段と、を備える構成を採る。 The base station of the present invention is a base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission, and is a Doppler frequency returned as feedback information from the terminal, and / or in the vicinity of the Doppler frequency. A configuration is provided that includes a receiving unit that receives a frequency component, a correcting unit that corrects a transmission signal based on a reception result from the terminal, and a transmitting unit that transmits the corrected signal to the terminal.
 本発明の端末は、基地局協調送信を行う基地局を備える通信システムに用いられる端末であって、端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分に基づいて、基地局側で補正された送信信号を受信する受信手段と、前記補正された信号からチャネル推定値を算出するチャネル推定手段と、算出したチャネル推定値から伝搬路の変動を示すドップラスペクトラムを算出するドップラスペクトラム算出手段と、算出したドップラスペクトラムから特定の周波数成分に電力が集中した有限個の周波数成分を選択する選択手段と、前記推定したチャネル推定値、又は前記算出したドップラスペクトラムからドップラ周波数を算出するドップラ周波数算出手段と、前記算出したドップラ周波数及び前記選択した周波数成分を、基地局協調送信のフィードバック情報として返送する返送手段と、を備える構成を採る。 The terminal of the present invention is a terminal used in a communication system including a base station that performs base station cooperative transmission, and is based on a Doppler frequency returned as feedback information from the terminal and / or a frequency component in the vicinity of the Doppler frequency. Receiving means for receiving a transmission signal corrected on the base station side, channel estimating means for calculating a channel estimation value from the corrected signal, and calculating a Doppler spectrum indicating propagation path fluctuation from the calculated channel estimation value Doppler spectrum calculating means, selecting means for selecting a finite number of frequency components in which power is concentrated on a specific frequency component from the calculated Doppler spectrum, and calculating the Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum Doppler frequency calculating means for performing the calculation, and the calculated Doppler circumference The number and the selected frequency component, taking a returning means for returning the feedback information of the base station cooperative transmission, the arrangement comprising a.
 本発明の通信方法は、端末から通知されたチャネル推定情報を共有し、基地局協調送信を行う基地局を備える通信方法であって、前記基地局側では、前記端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分を受信するステップと、前記端末から返送されたドップラ周波数に基づいて、送信信号を補正するステップと、補正した信号を前記端末に送信するステップと、を有し、前記端末では、前記基地局側で補正された送信信号を受信するステップと、前記補正された信号からチャネル推定値を算出するステップと、算出したチャネル推定値から伝搬路の変動を示すドップラスペクトラムを算出するステップと、算出したドップラスペクトラムから特定の周波数成分に電力が集中した有限個の周波数成分を選択するステップと、前記推定したチャネル推定値、又は前記算出したドップラスペクトラムからドップラ周波数を算出するステップと、前記算出したドップラ周波数及び前記選択した周波数成分を、基地局協調送信のフィードバック情報として返送するステップと、を有する。 A communication method of the present invention is a communication method including a base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission, and is returned as feedback information from the terminal on the base station side Receiving a Doppler frequency and / or a frequency component near the Doppler frequency, correcting a transmission signal based on the Doppler frequency returned from the terminal, and transmitting the corrected signal to the terminal; The terminal receives a transmission signal corrected on the base station side, calculates a channel estimation value from the corrected signal, and changes a propagation path from the calculated channel estimation value. The step of calculating the Doppler spectrum to be shown and the power concentrated on the specific frequency component from the calculated Doppler spectrum A step of selecting a limited number of frequency components, a step of calculating a Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum, and the base station cooperative transmission of the calculated Doppler frequency and the selected frequency component Returning as feedback information.
 本発明によれば、基地局協調送信を実現するために必要なチャネル情報通知量を削減することができる。 According to the present invention, it is possible to reduce the amount of channel information notification necessary for realizing base station cooperative transmission.
JPの概念図Conceptual diagram of JP CB/CSの概念図CB / CS conceptual diagram 原理説明のJake'sモデルにおける素波到来の様子とドップラスペクトラムを示す図Diagram showing the arrival of elementary waves and Doppler spectrum in the Jake's model explaining the principle 原理説明の実際にフィールドで実測した結果に基づく伝搬環境解析結果を示す図Figure showing propagation environment analysis results based on actual field measurements of the principle explanation 本発明の実施の形態に係る移動無線システムの端末受信側におけるドップラ周波数解析結果を示す図The figure which shows the Doppler frequency analysis result in the terminal receiving side of the mobile radio | wireless system which concerns on embodiment of this invention 本実施の形態に係る移動無線システムの基地局送信側で信号補正処理を行った場合の端末受信部でのドップラスペクトラムを示す図The figure which shows the Doppler spectrum in a terminal receiving part at the time of performing signal correction processing by the base station transmission side of the mobile radio | wireless system which concerns on this Embodiment 本発明の実施の形態1に係る移動通信システムの構成を示すブロック図Block diagram showing the configuration of the mobile communication system according to the first embodiment of the present invention. 本実施の形態1に係る移動通信システムの送信デジタル信号処理部の詳細な構成を示す図The figure which shows the detailed structure of the transmission digital signal processing part of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムの基地局送信部の詳細な構成を示す図The figure which shows the detailed structure of the base station transmission part of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムのRSの無線フレームフォーマットを示す図The figure which shows the radio | wireless frame format of RS of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムのRSの無線フレームフォーマットを示す図The figure which shows the radio | wireless frame format of RS of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムの端末受信部の圧縮部の詳細な構成を示す図The figure which shows the detailed structure of the compression part of the terminal receiver of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムの希望信号電力対干渉信号電力の比較を示す図The figure which shows the comparison of the desired signal power and interference signal power of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムのBeam Formingの一例を示す図である。It is a figure which shows an example of Beam Forming of the mobile communication system according to the first embodiment. 本実施の形態1に係る移動通信システムの伝達関数復元部の伝達関数復元処理を示すブロック図Block diagram showing transfer function restoration processing of the transfer function restoration unit of the mobile communication system according to the first embodiment. 本実施の形態1に係る移動通信システムの基地局協調送信における下りチャネル推定情報通知方法と従来方式を比較して示す図The figure which compares and shows the downlink channel estimation information notification method in the base station cooperation transmission of the mobile communication system which concerns on this Embodiment 1, and a conventional system. 本実施の形態1に係る移動通信システムの端末受信部のフィードバック情報返送処理を示すフロー図The flowchart which shows the feedback information return process of the terminal receiver of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムの端末送信部におけるフィードバック情報返信フォーマットの一例を示す図The figure which shows an example of the feedback information reply format in the terminal transmission part of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムの端末送信部におけるフィードバック情報返信フォーマットの一例を示す図The figure which shows an example of the feedback information reply format in the terminal transmission part of the mobile communication system which concerns on this Embodiment 1. FIG. 本実施の形態1に係る移動通信システムのフィードバックを受けたドップラ周波数に基づき、補正処理を行い送信した場合の受信側におけるドップラ周波数解析結果を、位相補正あり/位相補正なしで比較して示す図The figure which compares and shows the Doppler frequency analysis result in the receiving side at the time of performing a correction process based on the Doppler frequency which received the feedback of the mobile communication system which concerns on this Embodiment 1, and without phase correction 本発明の実施の形態2に係る移動通信システムの移動無線端末の端末受信部の詳細な構成を示す図The figure which shows the detailed structure of the terminal receiver of the mobile radio terminal of the mobile communication system which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (原理説明)
 本発明の基本的な考え方について説明する。
(Principle explanation)
The basic concept of the present invention will be described.
 本発明者らは、チャネルのドップラスペクトラムに着目した。 The inventors focused on the channel Doppler spectrum.
 従来、無線通信の方式開発における移動端末の無線伝搬環境は、周囲に一様な散乱体を持ち全方位から位相差がランダムな素波が一様に到来するJake'sモデルを前提とした伝送路モデリングが用いられている。 Conventionally, the radio propagation environment of mobile terminals in wireless communication system development is transmission path modeling based on the Jake's model, which has uniform scatterers around it and uniform waves with random phase differences from all directions. Is used.
 このJake'sモデルでは、移動端末がある速度である方向へ移動を開始すると、定在波の影響を受けて移動方向とのなす角θとの余弦の重みで電力分布し、ドップラースペクトルという電力分布が生じる。 In this Jake's model, when the mobile terminal starts moving in a certain direction, the power is distributed by the cosine weight with the angle θ formed by the moving direction under the influence of the standing wave, and the power distribution called Doppler spectrum is Arise.
 図3は、Jake'sモデルにおける素波到来の様子とドップラスペクトラムを示す図であり、図3(a)はJake'sモデルの素波到来モデリング、図3(b)はそのドップラスペクトラムである。 FIG. 3 is a diagram showing a state of arrival of an elementary wave and a Doppler spectrum in the Jake's model, FIG. 3 (a) is an elementary wave arrival modeling of the Jake's model, and FIG. 3 (b) is a Doppler spectrum thereof.
 図3(b)のドップラスペクトラムは、ドップラ周波数が500Hzの場合を示している。図3に示すように、Jake'sモデルにおける電力スペクトルは±500Hz内の周波数成分に広く分布していることがわかる。 The Doppler spectrum in FIG. 3B shows the case where the Doppler frequency is 500 Hz. As shown in FIG. 3, it can be seen that the power spectrum in the Jake's model is widely distributed in frequency components within ± 500 Hz.
 しかし、LTE及び現在検討が進められているLTE-Advancedなどの次世代無線通信では、広帯域な周波数帯域幅の利用を前提としているため、素波の分解能がより細かくなることにより、必ずしもJake'sモデルのような一様散乱モデルが前提条件とはならないケースも増えてきていると考えられる。 However, in the next generation wireless communication such as LTE and LTE-Advanced which is currently under investigation, it is premised on the use of a wide frequency bandwidth. It is considered that the number of cases where such a uniform scattering model is not a prerequisite.
 実測データの伝搬解析の結果、ドップラスペクトラムは、Jake'sモデルのそれとは異なり、ドップラ周波数近傍に電力が集中するスペクトルを有することがわかった。これは、全方位から素波が到来するのではなく、ある特定の角度内で素波が到来することを意味している。 As a result of the propagation analysis of the measured data, it was found that the Doppler spectrum has a spectrum where power is concentrated near the Doppler frequency, unlike that of the Jake's model. This means that an elementary wave does not arrive from all directions but an incoming wave within a specific angle.
 図4は、実際にフィールドで実測した結果に基づく伝搬環境解析結果を示す図であり、図4(a)は実測データの解析結果に基づく素波到来モデル、図4(b)はそのドップラスペクトラムである。 4A and 4B are diagrams showing the propagation environment analysis results based on the results actually measured in the field, FIG. 4A is an elementary wave arrival model based on the analysis results of measured data, and FIG. 4B is the Doppler spectrum. It is.
 図4(b)は、便宜上ドップラ周波数で正規化を行っているため、電力スペクトルのピークが0Hzとなる。 In FIG. 4B, normalization is performed at the Doppler frequency for convenience, so the peak of the power spectrum is 0 Hz.
 図3のJake'sモデルにおけるドップラスペクトラムと図4の実測データの解析結果に基づくドップラスペクトラムの、ピーク対ピーク近傍の電力スペクトルの比を比較する。図3及び図4に示すように、実測に基づくスペクトルはピーク周波数から離れることによる、電力減衰量がより大きいことがわかる。これは素波到来モデルで考えると、図3(a)のように素波が全方位から到来するのではなく、図4(a)ある角度差内で到来していることを意味する。 3) Compare the ratio of peak-to-peak power spectrum between the Doppler spectrum in the Jake's model in FIG. 3 and the Doppler spectrum based on the analysis result of the measured data in FIG. As shown in FIGS. 3 and 4, it is understood that the spectrum based on the actual measurement has a larger amount of power attenuation due to separation from the peak frequency. This means that the elementary wave does not arrive from all directions as shown in FIG. 3A, but comes within an angle difference shown in FIG.
 本発明者らは、ある角度差内で素波が到来することで、チャネルのドップラスペクトラムが特定の周波数成分近傍に集中する事実に着目し、特定の周波数成分のみを返送する。すなわち、端末は、パスごとに伝搬路変動を解析し、ドップラ周波数近傍の周波数成分のみを返送する。これにより、フィードバック量を削減しつつ、高精度なチャネル情報のフィードバックを実現する。 The present inventors pay attention to the fact that the Doppler spectrum of a channel is concentrated near a specific frequency component due to the arrival of an elementary wave within a certain angle difference, and returns only a specific frequency component. That is, the terminal analyzes the propagation path fluctuation for each path and returns only the frequency component near the Doppler frequency. This realizes highly accurate feedback of channel information while reducing the amount of feedback.
 上記ドップラ周波数近傍の周波数成分のみを返送する場合、ドップラスペクトラムのサイドローブの広がりを抑えることができれば、より効率的なフィードバックが可能となる。 When returning only the frequency component near the Doppler frequency, if the spread of the side lobe of the Doppler spectrum can be suppressed, more efficient feedback becomes possible.
 図5は、端末受信側におけるドップラ周波数解析結果を示す図である。 FIG. 5 is a diagram showing a Doppler frequency analysis result on the terminal reception side.
 到来する角度差(図4(a)のΘ)が30度(±15度)、ドップラ周波数が+500[Hz]とした場合における、端末受信側でのドップラ周波数解析結果である。 This is the Doppler frequency analysis result on the terminal reception side when the incoming angle difference (Θ in FIG. 4A) is 30 degrees (± 15 degrees) and the Doppler frequency is +500 [Hz].
 図5に示すように、Jake'sモデルにおけるドップラスペクトラムに比べると、ドップラ周波数から離れるにつれて電力スペクトルが急激に減少していることがわかる。但し、ある程度の漏れ出し電力が存在している。これは、ドップラスペクトラム解析に用いた周波数分解能と実際のドップラ周波数の値の不一致によって発生すると考えられる。 As shown in FIG. 5, it can be seen that the power spectrum rapidly decreases as the distance from the Doppler frequency becomes larger than the Doppler spectrum in the Jake's model. However, a certain amount of leakage power exists. This is considered to be caused by a discrepancy between the frequency resolution used for Doppler spectrum analysis and the actual Doppler frequency value.
 例えば、ドップラ周波数fD=500Hz、LTEの10FDMシンボル単位をドップラスペクトラム解析に用いる1サンプル単位とし、2048PointのFFTによって周波数解析を行うと、その周波数分解能fresは(15kHz/2048)=7.3[Hz]となる。fD=7.3×Xを満たす整数Xが存在しないため、その電力スペクトラムはドップラ周波数fDを中心に左右に広がるスペクトラムとなる。 For example, when a Doppler frequency fD = 500 Hz and a 10 FDM symbol unit of LTE as one sample unit used for Doppler spectrum analysis and frequency analysis is performed by 2048 Point FFT, the frequency resolution fres is (15 kHz / 2048) = 7.3 [Hz It becomes. Since there is no integer X that satisfies fD = 7.3 × X, the power spectrum is a spectrum that spreads left and right around the Doppler frequency fD.
 そこで、この周波数分解能の不一致を解消することでドップラスペクトラムの広がりを抑圧すれば、更なるフィードバック情報量の削減が可能と考えられる。 Therefore, if the spread of the Doppler spectrum is suppressed by eliminating the discrepancy in frequency resolution, it is possible to further reduce the amount of feedback information.
 基地局送信側では、端末からフィードバックされた情報を基に信号補正処理を行う。受信側での周波数分解能不一致を解消するには、例えばドップラ周波数に基づいて送信信号を補正する。 The base station transmission side performs signal correction processing based on information fed back from the terminal. In order to eliminate the frequency resolution mismatch on the reception side, for example, the transmission signal is corrected based on the Doppler frequency.
 図6は、基地局送信側で信号補正処理を行った場合の端末受信部でのドップラスペクトラムを示す図である。 FIG. 6 is a diagram showing a Doppler spectrum in the terminal receiving unit when signal correction processing is performed on the base station transmission side.
 図6に、端末受信側にてドップラ周波数が0Hzになるように基地局送信側にて信号補正処理を行った場合の、端末受信側でのドップラスペクトラムの観測結果を示す。 FIG. 6 shows the Doppler spectrum observation result on the terminal reception side when the signal correction processing is performed on the base station transmission side so that the Doppler frequency becomes 0 Hz on the terminal reception side.
 図6に示すように、周波数分解能とドップラ周波数(この場合は、0[Hz])が一致する場合、より急峻なスペクトラムを有する。 As shown in FIG. 6, when the frequency resolution matches the Doppler frequency (in this case, 0 [Hz]), the spectrum has a steeper spectrum.
 本方式は、基地局送信側で補正処理を導入することで得られる、より急峻なドップラスペクトラから特定の周波数成分のみを返送することで、不一致を解消していない場合に比べ、フィードバック量をより削減しつつ、高精度なチャネル情報のフィードバックを実現する。 This method returns a specific frequency component from a sharper Doppler spectrum obtained by introducing a correction process on the base station transmission side, so that the amount of feedback can be increased compared to when the mismatch is not resolved. Achieves highly accurate feedback of channel information while reducing.
 (実施の形態1)
 図7は、本発明の実施の形態1に係る移動通信システムの構成を示すブロック図である。本実施の形態は、3GPP LTE方式の無線基地局、及び移動無線端末を含む移動通信システムに適用した例である。図7においては、省電力制御に直接関係しない機能ブロックの記載は省略されている。
(Embodiment 1)
FIG. 7 is a block diagram showing a configuration of the mobile communication system according to Embodiment 1 of the present invention. This embodiment is an example applied to a mobile communication system including a 3GPP LTE radio base station and a mobile radio terminal. In FIG. 7, description of functional blocks not directly related to the power saving control is omitted.
 図7に示すように、移動通信システムは、基地局協調送信に参加する基地局100と、基地局100に基地局協調送信における下りチャネル推定情報通知を行う移動無線端末200と、を備える。 As shown in FIG. 7, the mobile communication system includes a base station 100 that participates in base station cooperative transmission, and a mobile radio terminal 200 that notifies the base station 100 of downlink channel estimation information in base station cooperative transmission.
 〔基地局100〕
 基地局100は、基地局送信部110及び基地局受信部160を備える。
[Base station 100]
Base station 100 includes a base station transmission unit 110 and a base station reception unit 160.
 基地局送信部110は、送信アンテナ111、送信デジタル信号処理部120、及び無線送信部150を備え、送信デジタル信号処理部120は、信号補正処理部130と、OFDM(Orthogonal Frequency Division Multiplexing)変調部140とから構成される。 The base station transmission unit 110 includes a transmission antenna 111, a transmission digital signal processing unit 120, and a wireless transmission unit 150. The transmission digital signal processing unit 120 includes a signal correction processing unit 130 and an OFDM (Orthogonal Frequency Division Division Multiplexing) modulation unit. 140.
 基地局受信部160は、受信アンテナ161、無線受信部170、及び受信デジタル信号処理部180を備える。 The base station receiving unit 160 includes a receiving antenna 161, a wireless receiving unit 170, and a received digital signal processing unit 180.
 信号補正処理部130は、受信結果を基に送信信号の補正を行う。具体的には、信号補正処理部130は、端末から返送されたドップラ周波数に基づいて、送信信号を位相補正する。基地局送信部110において送信信号を補正することで、受信側ではドップラシフトの中心周波数を0Hz近傍へシフトさせることが可能になる。 The signal correction processing unit 130 corrects the transmission signal based on the reception result. Specifically, the signal correction processing unit 130 corrects the phase of the transmission signal based on the Doppler frequency returned from the terminal. By correcting the transmission signal in the base station transmitter 110, the center frequency of the Doppler shift can be shifted to around 0 Hz on the receiving side.
 ここで、信号補正処理部130は、端末から返送されたドップラ周波数に基づいて、送信信号を補正するものであればよい。すなわち、補正する物理量が位相である場合は、時間領域で補正する場合であり、これは補正を行う領域(時間なのか、周波数なのか)に依存する。信号補正処理部130が、送信信号を時間領域で補正する場合、位相補正ということができる。 Here, the signal correction processing unit 130 only needs to correct the transmission signal based on the Doppler frequency returned from the terminal. That is, when the physical quantity to be corrected is a phase, it is a case where correction is performed in the time domain, and this depends on the area (time or frequency) to be corrected. When the signal correction processing unit 130 corrects the transmission signal in the time domain, it can be referred to as phase correction.
 基地局受信部160は、端末からのフィードバック情報を受信する。 The base station receiving unit 160 receives feedback information from the terminal.
 基地局受信部160は、受信したフィードバック情報を復調/復号して、端末からのフィードバック情報を取得する。 The base station receiving unit 160 demodulates / decodes the received feedback information and acquires feedback information from the terminal.
 基地局送信側にて、フィードバック情報に基づく信号補正を行い、送信する。 The base station transmission side performs signal correction based on the feedback information and transmits it.
 図8は、上記送信デジタル信号処理部120の詳細な構成を示す図である。 FIG. 8 is a diagram showing a detailed configuration of the transmission digital signal processing unit 120.
 図8に示すように、送信デジタル信号処理部120は、IQ変調部121、マッピング部122、信号補正処理部130、及びOFDM変調部140とから構成される。 As shown in FIG. 8, the transmission digital signal processing unit 120 includes an IQ modulation unit 121, a mapping unit 122, a signal correction processing unit 130, and an OFDM modulation unit 140.
 信号補正処理部130は、端末からフィードバックされた情報を基に信号補正処理を行う。受信側での周波数分解能不一致を解消するには、例えばドップラ周波数に基づいて送信信号を補正する。 The signal correction processing unit 130 performs signal correction processing based on information fed back from the terminal. In order to eliminate the frequency resolution mismatch on the reception side, for example, the transmission signal is corrected based on the Doppler frequency.
 図9は、上記基地局送信部110の詳細な構成を示す図である。図9(a)は、基地局送信部110が、本実施の形態の特徴であるドップラ周波数補正を行う場合の、送信デジタル信号処理部120の機能ブロックを示し、図9(b)は、基地局送信部110が、基地局協調送信を行う場合の、送信デジタル信号処理部120の機能ブロックを示す。 FIG. 9 is a diagram showing a detailed configuration of the base station transmission unit 110. FIG. 9A shows a functional block of the transmission digital signal processing unit 120 when the base station transmission unit 110 performs Doppler frequency correction, which is a feature of the present embodiment, and FIG. The functional block of the transmission digital signal processing part 120 when the station transmission part 110 performs base station cooperation transmission is shown.
 図9(a)に示すように、基地局送信部110は、移動無線端末200からのドップラ周波数に基づく補正処理を行う場合、ドップラ周波数補正処理部130Aが信号補正処理を実行する。ドップラ周波数補正処理部130Aは、端末からフィードバックされた情報を基に信号補正処理を行う信号補正処理部130の機能の一部である。ドップラ周波数補正処理の詳細については、式(1)-(3)を用いて後述する。 As shown in FIG. 9A, when the base station transmission unit 110 performs correction processing based on the Doppler frequency from the mobile radio terminal 200, the Doppler frequency correction processing unit 130A executes signal correction processing. The Doppler frequency correction processing unit 130A is a part of the function of the signal correction processing unit 130 that performs signal correction processing based on information fed back from the terminal. Details of the Doppler frequency correction processing will be described later using equations (1) to (3).
 図9(b)に示すように、基地局送信部110は、移動無線端末200からのフィードバック結果を基に、送信側で協調送信(Beam Formingを含む)を行う場合、送信デジタル信号処理部120は、Beam Forming処理部130B、及び伝達関数復元部131を備える。 As illustrated in FIG. 9B, the base station transmission unit 110 performs the transmission digital signal processing unit 120 when performing cooperative transmission (including BeamBeForming) on the transmission side based on the feedback result from the mobile radio terminal 200. Includes a Beam Forming processing unit 130 </ b> B and a transfer function restoring unit 131.
 Beam Forming処理部130Bは、信号補正処理部130の機能の一部である。Beam Forming処理の詳細については、図14により後述する。 The Beam Forming processing unit 130B is a part of the function of the signal correction processing unit 130. Details of the Beam-Forming process will be described later with reference to FIG.
 伝達関数復元部131は、端末からフィードバックされた情報を基に伝達関数を復元し、基地局協調やBeam Forming処理に必要なWeightに変換する。 The transfer function restoration unit 131 restores the transfer function based on the information fed back from the terminal, and converts it into weight necessary for base station cooperation and Beam Forming processing.
 〔移動無線端末200〕
 前記図7に示すように、移動無線端末200は、基地局間で電波を受信/送信する端末受信部210及び端末送信部260を備える。
[Mobile radio terminal 200]
As shown in FIG. 7, the mobile radio terminal 200 includes a terminal receiver 210 and a terminal transmitter 260 that receive / transmit radio waves between base stations.
 移動無線端末200は、LTE端末である。 The mobile radio terminal 200 is an LTE terminal.
 端末受信部210は、受信アンテナ211、無線受信部220、及び受信デジタル信号処理部230を備え、受信デジタル信号処理部230は、チャネル推定部240と、圧縮部250とから構成される。 The terminal reception unit 210 includes a reception antenna 211, a wireless reception unit 220, and a reception digital signal processing unit 230. The reception digital signal processing unit 230 includes a channel estimation unit 240 and a compression unit 250.
 端末送信部260は、送信アンテナ261、無線送信部270、及び送信デジタル信号処理部280を備える。 The terminal transmission unit 260 includes a transmission antenna 261, a wireless transmission unit 270, and a transmission digital signal processing unit 280.
 受信デジタル信号処理部230は、チャネル推定結果を圧縮し、フィードバック情報を生成する。 The received digital signal processing unit 230 compresses the channel estimation result and generates feedback information.
 チャネル推定部240は、無線送信装置から送信された信号から基地局と端末間のチャネル情報を推定する。具体的には、チャネル推定部240は、3GPPにおけるLTE及びLTE-AdvancedではRS(Reference Signal)を利用して、送信された信号からチャネル推定値を算出するチャネル推定処理を行う。チャネル推定部240は、RSを使ってチャネル推定処理を行い、基地局と端末間のチャネル推定値を送受信アンテナの組み合わせの数だけ求める。 The channel estimation unit 240 estimates channel information between the base station and the terminal from the signal transmitted from the wireless transmission device. Specifically, the channel estimation unit 240 performs channel estimation processing for calculating a channel estimation value from a transmitted signal by using RS (Reference Signal) in LTE and LTE-Advanced in 3GPP. The channel estimation unit 240 performs channel estimation processing using RS, and obtains channel estimation values between the base station and the terminal by the number of transmission / reception antenna combinations.
 圧縮部250は、チャネル推定部240により推定されたチャネル情報を圧縮して削減する。圧縮部250の構成については、図8により後述する。 The compression unit 250 compresses and reduces the channel information estimated by the channel estimation unit 240. The configuration of the compression unit 250 will be described later with reference to FIG.
 端末送信部260は、圧縮されたチャネル情報を送信する。送信デジタル信号処理部280は、フィードバック情報を符号化/変調し、無線送信部270を通して基地局側へ送信する。 The terminal transmission unit 260 transmits the compressed channel information. The transmission digital signal processing unit 280 encodes / modulates the feedback information and transmits it to the base station side through the wireless transmission unit 270.
 図10及び図11は、RSの無線フレームフォーマットを示す図であり、LTE及びLTE-AdvancedにおけるRSの信号配置を示す。 10 and 11 are diagrams showing RS radio frame formats, showing RS signal arrangement in LTE and LTE-Advanced.
 LTE及びLTE-Advancedの上り回線では、MU-MIMO(Multiple User-Multiple Input Multiple Output)が適用される。MU-MIMOでは、各端末の送信データを基地局側で分離するために、DM-RS(Demodulation RS:データ復調用参照信号)を端末間で直交化させる必要がある。LTEでは、DM-RS用系列の巡回シフト(CS:Cyclic Shift)量を端末間で異ならせることで、端末間のDM-RSを直交化させている。また、セル間で異なる周波数シフト量としたCRS(Cell-specific reference signal:セル固有参照信号)を送信する。 In the uplink of LTE and LTE-Advanced, MU-MIMO (Multiple User-Multiple 上 り Input Multiple Output) is applied. In MU-MIMO, it is necessary to orthogonalize DM-RS (Demodulation RS: reference signal for data demodulation) between terminals in order to separate transmission data of each terminal on the base station side. In LTE, DM-RSs between terminals are orthogonalized by varying the amount of cyclic shift (CS) of DM-RS sequences between terminals. Also, a CRS (Cell-specific reference signal) with different frequency shift amounts between cells is transmitted.
 図12は、端末受信部210の圧縮部250の詳細な構成を示す図である。 FIG. 12 is a diagram illustrating a detailed configuration of the compression unit 250 of the terminal reception unit 210.
 図12に示すように、圧縮部250は、インパルス応答算出部251、パス分離部252、パス数に対応するドップラスペクトラム算出部253-1~253-N(以下、253と総称する)、選択部254-1~254-N(以下、254と総称する)、及びドップラ周波数算出部255を備える。 As shown in FIG. 12, the compression unit 250 includes an impulse response calculation unit 251, a path separation unit 252, Doppler spectrum calculation units 253-1 to 253-N corresponding to the number of paths (hereinafter collectively referred to as “253”), a selection unit 254-1 to 254-N (hereinafter collectively referred to as 254) and a Doppler frequency calculation unit 255.
 インパルス応答算出部251は、入力となるチャネル推定値にIFFTなどの時間領域信号変換処理を行い、インパルス応答を算出する。 The impulse response calculation unit 251 performs time domain signal conversion processing such as IFFT on the input channel estimation value to calculate an impulse response.
 パス分離部252は、インパルス応答算出部251により算出されたインパルス応答からパス分離処理を行い、パスごとの複素チャネル利得を取得する。 The path separation unit 252 performs path separation processing from the impulse response calculated by the impulse response calculation unit 251, and acquires a complex channel gain for each path.
 パス分離部252は、図示しないバッファを備え、バッファはパスごとの複素チャネル利得を、周波数解析に必要な数分バッファ処理を行った後、ドップラスペクトラム算出部253に出力する。 The path separation unit 252 includes a buffer (not shown), and the buffer performs the buffer processing for the complex channel gain for each path by the number necessary for frequency analysis, and then outputs it to the Doppler spectrum calculation unit 253.
 ドップラスペクトラム算出部253は、パスごとにFFTなどの周波数領域変換処理を行い、ドップラ周波数解析を行う。 The Doppler spectrum calculation unit 253 performs frequency domain conversion processing such as FFT for each path and performs Doppler frequency analysis.
 選択部254は、ドップラスペクトラム算出部253により算出されたドップラスペクトラム解析結果を用いて、返送すべき周波数成分を選択する。選択部254は、電力が集中する周波数成分ほどチャネルを構成する上で寄与度が大きいと判断して選択処理を実行する。 The selection unit 254 selects a frequency component to be returned using the Doppler spectrum analysis result calculated by the Doppler spectrum calculation unit 253. The selection unit 254 performs selection processing by determining that the frequency component in which power is concentrated has a higher contribution in configuring the channel.
 ドップラ周波数算出部255は、ドップラスペクトラム算出結果から、ドップラ周波数を推定する。 The Doppler frequency calculation unit 255 estimates the Doppler frequency from the Doppler spectrum calculation result.
 なお、ドップラ周波数算出部255は、1つのドップラスペクトラム算出部253-1とのみ接続した例を示したが、パスごとに求めたドップラスペクトラム算出結果から、その平均値をドップラ周波数として用いる方法も考えられる。 Although the example in which the Doppler frequency calculation unit 255 is connected to only one Doppler spectrum calculation unit 253-1 is shown, a method of using the average value as the Doppler frequency from the Doppler spectrum calculation result obtained for each path is also considered. It is done.
 また、図7では、1UEのみへ送信する構成を示したが、複数UEへの同時送信も可能である。この場合、基地局は、端末ごとに受信したドップラ周波数を基に、端末ごとに信号補正処理を行うことで複数端末が存在する環境でも本方式を適用することができる。 Further, although FIG. 7 shows a configuration for transmitting only to one UE, simultaneous transmission to a plurality of UEs is also possible. In this case, the base station can apply this method even in an environment where there are a plurality of terminals by performing signal correction processing for each terminal based on the Doppler frequency received for each terminal.
 以下、上述のように構成された移動通信システムの動作について説明する。 Hereinafter, the operation of the mobile communication system configured as described above will be described.
 〔基地局100の動作〕
 まず、基地局協調送信における下りチャネル推定情報通知量の、基地局側の削減動作について説明する。
[Operation of base station 100]
First, the base station side reduction operation of the downlink channel estimation information notification amount in base station cooperative transmission will be described.
 図7に示すように、基地局送信部110は、移動無線端末200からフィードバックされたドップラ周波数の値に基づき、送信信号を補正する処理を行った後、移動無線端末200からのフィードバック情報に基づく協調送信を開始する。 As illustrated in FIG. 7, the base station transmission unit 110 performs processing for correcting the transmission signal based on the value of the Doppler frequency fed back from the mobile radio terminal 200 and then based on feedback information from the mobile radio terminal 200. Start coordinated transmission.
 [図9(a)のドップラ周波数補正処理]
 図9(a)に示すように、基地局送信部110は、移動無線端末200からのドップラ周波数に基づく補正処理を行う場合、ドップラ周波数補正処理部130Aは、例えば端末受信側でドップラスペクトラムが0[Hz]と観測されるように送信信号の補正処理を行う。これにより、端末受信側では急峻なドップラスペクトラムが観測される。基地局送信側で信号補正処理を行った場合の端末受信部210でのドップラスペクトラムは、図6により示した。
[Doppler frequency correction processing of FIG. 9A]
As illustrated in FIG. 9A, when the base station transmission unit 110 performs correction processing based on the Doppler frequency from the mobile radio terminal 200, the Doppler frequency correction processing unit 130A has a Doppler spectrum of 0 on the terminal reception side, for example. The transmission signal is corrected so as to be observed as [Hz]. As a result, a steep Doppler spectrum is observed on the terminal reception side. The Doppler spectrum in the terminal reception unit 210 when the signal correction processing is performed on the base station transmission side is shown in FIG.
 ここで、ドップラ周波数補正処理部130Aについて説明する。 Here, the Doppler frequency correction processing unit 130A will be described.
 1受信信号区間内(例えば、10FDMシンボル区間内)である一定のドップラシフトを受けた場合の受信側におけるFFT後の周波数領域信号を観察する。このために、まずはドップラシフトを受けた場合の時間領域の受信信号を式(1)として表す。 • Observe the frequency domain signal after FFT on the receiving side when a certain Doppler shift is received within one received signal interval (for example, within 10 FDM symbol interval). For this purpose, first, the received signal in the time domain when subjected to the Doppler shift is expressed as Expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 S(k)は、送信側におけるサブキャリア番号kの周波数領域信号、nは時間領域のサンプルindexを表し、NはFFTポイント数を表す。aはサブキャリア間隔で正規化したドップラ周波数を表す。 S (k) is a frequency domain signal of subcarrier number k on the transmission side, n is a time domain sample index, and N is the number of FFT points. a represents the Doppler frequency normalized by the subcarrier interval.
 受信側では式(1)をFFTすることで、サブキャリア成分へ変換する(式(2)参照)。 On the receiving side, the equation (1) is converted to a subcarrier component by performing FFT (see equation (2)).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式(2)の2行目の第1項は、希望周波数成分であり、第2項は干渉成分(希望周波数成分以外の周波数成分による干渉成分)となる。希望周波数成分は、希望サブキャリア信号にaだけシフトしたSinc関数が掛け合わされた形となる。これより、-aだけシフトするように送信信号に演算を施すことで、希望信号成分の周波数シフトを補正することが可能となる。送信信号を-aだけシフトするように送信した場合のFFT後の受信信号S^(k)を式(3)に示す。 The first term in the second row of the above equation (2) is a desired frequency component, and the second term is an interference component (an interference component due to a frequency component other than the desired frequency component). The desired frequency component is obtained by multiplying the desired subcarrier signal by a Sinc function shifted by a. From this, it is possible to correct the frequency shift of the desired signal component by performing an operation on the transmission signal so as to shift by −a. The received signal S ^ (k) after the FFT when the transmission signal is transmitted so as to be shifted by -a is shown in Equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式(3)の右辺最終行の第1項は、希望信号成分、第2項は他サブキャリア信号からの干渉成分となる。ここで、第2項の干渉成分の影響を調べるために数値計算を用いる。数値計算パラメータは、fd(ドップラ周波数):500Hz、N(FFT Point数):2048である。数値計算結果を図13に示す。 The first term in the last row on the right side of the above equation (3) is the desired signal component, and the second term is the interference component from other subcarrier signals. Here, numerical calculation is used to examine the influence of the interference component of the second term. The numerical calculation parameters are fd (Doppler frequency): 500 Hz and N (FFT 数 Point number): 2048. The numerical calculation results are shown in FIG.
 図13は、上記式(3)における希望信号電力対干渉信号電力の比較を示す図である。 FIG. 13 is a diagram showing a comparison between desired signal power and interference signal power in the above equation (3).
 図13に示すように、干渉成分は完全には0にはならないものの、信号電力に比べて、20dB以上低いためその影響は小さいことがわかる。 As shown in FIG. 13, although the interference component is not completely zero, the influence is small because it is 20 dB or more lower than the signal power.
 以上より、送信側のサブキャリア信号に対して、ドップラ周波数補正処理を設けることで受信側におけるドップラシフトの中心周波数を0Hz近傍へシフトさせることが可能であることが分かる。 From the above, it can be seen that the center frequency of the Doppler shift on the receiving side can be shifted to around 0 Hz by providing the Doppler frequency correction process for the subcarrier signal on the transmitting side.
 [図9(b)の基地局協調送信処理]
 図9(b)に示すように、基地局送信部110は、伝達関数復元部131が、移動無線端末200からフィードバックされた情報を基に伝達関数を復元し、基地局協調やBeam Forming処理に必要なWeightに変換する。その後、Beam Forming処理部130Bは、Weight乗算処理を行い、0FDM変調処理を行い送信信号を生成する。
[Base Station Cooperative Transmission Processing in FIG. 9B]
As shown in FIG. 9B, in the base station transmission unit 110, the transfer function restoring unit 131 restores the transfer function based on the information fed back from the mobile radio terminal 200, for base station cooperation and Beam Forming processing. Convert to the required weight. Thereafter, the beam forming processing unit 130B performs weight multiplication processing, performs 0FDM modulation processing, and generates a transmission signal.
 ここで、Beam Forming処理部130Bについて説明する。 Here, the Beam Forming processing unit 130B will be described.
 図14は、Beam Formingの一例を示す図である。 FIG. 14 is a diagram showing an example of Beam Forming.
 図14に示すように、リンクAとBが同じ無線リソース(例えば周波数など)を利用している環境の場合、リンクBのInterfering Tx.の送信信号は、リンクAのVictim Rx.に対して干渉を与えることとなる。そこで、Victim Rx.に干渉を与えないようにInterfering Tx.にてBeam Formingを行うことを考える。 As shown in FIG. 14, when links A and B use the same radio resource (for example, frequency), the transmission signal of link B Interfering Tx. Interferes with link A Victim Rx. Will be given. Therefore, it is considered that Beam Forming is performed in Interfering Tx. So as not to interfere with Victim Rx.
 Interfering Tx.とVictim Rx.間のチャネル行列をH(Hはベクトル標記)とし、次式(4)に従って特異値分解する。 The channel matrix between Interfering Tx. And Victim Rx. Is H (H is a vector notation), and singular value decomposition is performed according to the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記式(4)のV(Vはベクトル標記)の3列目及び4列目となる。もし、V(Vはベクトル標記)の3列目をウェイトとして選択した場合、Victim Rx.での受信信号表現は次式(5)となる。 The third and fourth columns of V (V is a vector notation) in the above formula (4). If the third column of V (V is a vector notation) is selected as a weight, the received signal expression at Victim Rx.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このように、Interfering Tx.とVictim Rx.間のチャネル行列を利用して送信側でWeight制御を行うことで、干渉を抑圧することが可能である。 In this way, it is possible to suppress interference by performing weight control on the transmission side using the channel matrix between InterferingxTx. And Victim Rx.
 図15は、伝達関数復元部131の伝達関数復元処理を示すブロック図である。 FIG. 15 is a block diagram showing transfer function restoration processing of the transfer function restoration unit 131.
 図15に示すように、伝達関数復元部131は、複素チャネル利得復元部1311、並べ替え部1312、及びFFT部1313を備える。 As illustrated in FIG. 15, the transfer function restoration unit 131 includes a complex channel gain restoration unit 1311, a rearrangement unit 1312, and an FFT unit 1313.
 伝達関数復元部131は、移動無線端末200からフィードバックされたパスごとの周波数成分をFFTすることで複素チャネル利得(フェージング)を最初に復元する。次にそれらをチャネルの遅延時間に沿って並べ替えることで、インパルス応答を再生する。最後に、FFTを適用することで伝達関数を取得する。 The transfer function restoration unit 131 first restores the complex channel gain (fading) by performing the FFT on the frequency component for each path fed back from the mobile radio terminal 200. Next, the impulse response is reproduced by rearranging them along the delay time of the channel. Finally, a transfer function is acquired by applying FFT.
 以上、基地局送信部110の基地局協調送信について説明した。 The base station cooperative transmission of the base station transmission unit 110 has been described above.
 〔移動無線端末200の動作〕
 次に、基地局協調送信における下りチャネル推定情報通知量の、端末側の削減動作について説明する。
[Operation of Mobile Radio Terminal 200]
Next, the operation of reducing the downlink channel estimation information notification amount in base station cooperative transmission on the terminal side will be described.
 [端末側のフィードバック情報返送基本動作]
 図16は、本実施の形態の基地局協調送信における下りチャネル推定情報通知方法(以下、本方式という)と従来方式を比較して示す図である。図16(a)は、従来方式のチャネル推定情報通知方法であり、X軸に周波数f、Y軸に時刻t、Z軸にゲインをとる。従来方式では、伝搬路の伝達関数を返送する。図16(a)の場合、各時刻t0,t1,t2における周波数の伝達関数を全てチャネル推定情報として基地局側にフィードバックする。このため、基地局協調送信におけるフィードバック量が多く、返送に用いる回線を圧迫する問題がある。
[Basic feedback information return operation on the terminal side]
FIG. 16 is a diagram showing a comparison between a downlink channel estimation information notification method (hereinafter referred to as the present method) and a conventional method in base station cooperative transmission according to the present embodiment. FIG. 16A shows a conventional channel estimation information notification method, in which frequency f is taken on the X axis, time t is taken on the Y axis, and gain is taken on the Z axis. In the conventional method, the transfer function of the propagation path is returned. In the case of FIG. 16A, all frequency transfer functions at times t0, t1, and t2 are fed back to the base station side as channel estimation information. For this reason, the amount of feedback in base station cooperative transmission is large, and there is a problem of compressing the line used for return.
 これに対して、本方式は、素波が到来する性質に着目し、ドップラ周波数近傍の周波数成分を返送することで、フィードバック量を削減する。 On the other hand, this method pays attention to the nature of the arrival of an elementary wave and returns the frequency component near the Doppler frequency to reduce the feedback amount.
 図16(b)は、本方式であり、パス数が3の場合の時刻ごとのインパルス応答の変動と、ドップラスペクトラム推定を示す。X軸にインパルス応答算出部251の解析結果であるインパルス応答τ、Y軸に時刻t、Z軸に電力スペクトルをとる。各時刻t0,t1,t2におけるインパルス応答の変動からドップラスペクトラムを推定する。図16(b)では、toの伝達関数を解析した結果得られる1パス、t1の伝達関数を解析した結果得られる2パス、t2の伝達関数を解析した結果得られる2パスが示されている。パスごとに時間的にどのような変化をするかドップラ周波数解析する。そして、各パスのドップラ周波数近傍の周波数成分のみをフィードバックする。すなわち、本方式は、パスごとに伝搬路変動を解析し、電力が集中した有限個の周波数成分を返送する。 FIG. 16B shows the present method, and shows the fluctuation of the impulse response for each time when the number of paths is 3, and Doppler spectrum estimation. An impulse response τ that is an analysis result of the impulse response calculation unit 251 is taken on the X axis, a time t is taken on the Y axis, and a power spectrum is taken on the Z axis. The Doppler spectrum is estimated from the fluctuation of the impulse response at each time t0, t1, and t2. FIG. 16B shows one path obtained as a result of analyzing the transfer function of to, two paths obtained as a result of analyzing the transfer function of t1, and two paths obtained as a result of analyzing the transfer function of t2. . Doppler frequency analysis is performed to determine how the time changes for each path. Then, only the frequency components near the Doppler frequency of each path are fed back. That is, this system analyzes propagation path fluctuations for each path and returns a finite number of frequency components with concentrated power.
 これにより、伝搬路の伝達関数を返送する従来方式に比べて、フィードバック量を削減することができる。 This makes it possible to reduce the amount of feedback compared with the conventional method of returning the transfer function of the propagation path.
 前記図5は、1つのパスに着目した場合のドップラ周波数解析結果を示す図である。X軸に周波数(Hz)、Y軸に電力スペクトル(対数表記)をとる。 FIG. 5 is a diagram showing a Doppler frequency analysis result when focusing on one path. The frequency (Hz) is taken on the X axis, and the power spectrum (logarithmic notation) is taken on the Y axis.
 図5に示すように、ドップラ周波数付近(ここでは500Hz付近)に電力が集中していることがわかる。なお電力集中のピークは、約30dBである。電力が集中したドップラ周波数近傍の成分が、チャネルに対する寄与度が大きく伝搬路を構成する上で重要な成分と考えらえれるので、これらの有限個を優先的にフィードバックすることで情報量を削減する。 As shown in FIG. 5, it can be seen that power is concentrated near the Doppler frequency (here, around 500 Hz). The peak of power concentration is about 30 dB. Components near the Doppler frequency, where power is concentrated, have a large contribution to the channel and can be considered as important components in configuring the propagation path. Therefore, the amount of information can be reduced by giving priority feedback to these finite elements. To do.
 このように、本実施の形態は、伝搬路の変動(ドップラスペクトラム)に着目し、電力が集中した周波数成分を返送することで情報量を削減する。また、返送する周波数成分は、電力が大きな成分から順に上位X個を選択する。 Thus, in this embodiment, paying attention to propagation path fluctuations (Doppler spectrum), the amount of information is reduced by returning frequency components with concentrated power. In addition, as the frequency components to be returned, the top X components are selected in descending order of the power.
 次に、伝搬路のドップラスペクトラムから、電力が集中した有限個の周波数成分を返送する移動無線端末200の基本動作について説明する。 Next, the basic operation of the mobile radio terminal 200 that returns a finite number of frequency components with concentrated power from the Doppler spectrum of the propagation path will be described.
 端末受信部210は、受信アンテナ211及び無線受信部220により基地局からの電波を受信し、受信デジタル信号処理部230は、チャネル推定結果を圧縮し、フィードバック情報を生成する。 The terminal receiving unit 210 receives radio waves from the base station by the receiving antenna 211 and the wireless receiving unit 220, and the received digital signal processing unit 230 compresses the channel estimation result and generates feedback information.
 端末送信部260の送信デジタル信号処理部280は、フィードバック情報を符号化/変調し、無線送信部270及び送信アンテナ261を通して基地局側へ送信する。 The transmission digital signal processing unit 280 of the terminal transmission unit 260 encodes / modulates the feedback information and transmits it to the base station side through the wireless transmission unit 270 and the transmission antenna 261.
 (1)受信デジタル信号処理部230について説明する。 (1) The received digital signal processing unit 230 will be described.
 チャネル推定部240は、基地局と端末間のチャネル情報を推定する。 The channel estimation unit 240 estimates channel information between the base station and the terminal.
 例えば、3GPPにおけるLTE及びLTE-AdvancedではRSを利用してチャネル推定処理を行う。 For example, in LTE and LTE-Advanced in 3GPP, channel estimation processing is performed using RS.
 本実施の形態では、受信デジタル信号処理部230は、チャネル推定値からインパルス応答を算出し、ドップラ周波数解析を行い、上位X個のみを、端末送信部260により返送する。これにより、情報量を削減する。 In the present embodiment, the received digital signal processing unit 230 calculates an impulse response from the channel estimation value, performs Doppler frequency analysis, and returns only the top X to the terminal transmission unit 260. This reduces the amount of information.
 (2)圧縮部250(図12)の処理について説明する。 (2) Processing of the compression unit 250 (FIG. 12) will be described.
 圧縮部250にチャネル推定部240からチャネル推定値が入力される。 The channel estimation value is input from the channel estimation unit 240 to the compression unit 250.
 まず、インパルス応答算出部251は、入力されたチャネル推定値にIFFTなどの時間領域信号変換処理を行い、インパルス応答の算出を行う。 First, the impulse response calculation unit 251 performs time domain signal conversion processing such as IFFT on the input channel estimation value, and calculates an impulse response.
 次に、パス分離部252は、インパルス応答算出部251により算出されたインパルス応答からパス分離処理を行い、パスごとの複素チャネル利得を取得する。パス分離部252は、図示しないバッファを備え、バッファはパスごとの複素チャネル利得を、周波数解析に必要な数分バッファ処理を行った後、ドップラスペクトラム算出部253に出力する。 Next, the path separation unit 252 performs path separation processing from the impulse response calculated by the impulse response calculation unit 251, and acquires a complex channel gain for each path. The path separation unit 252 includes a buffer (not shown). The buffer performs the buffer processing for the complex channel gain for each path by the number necessary for frequency analysis, and then outputs it to the Doppler spectrum calculation unit 253.
 次に、ドップラスペクトラム算出部253は、パスごとにFFTなどの周波数領域変換処理を行い、ドップラ周波数解析を行う。図16(b)は、パス数が3の場合におけるドップラスペクトラム解析の様子を示す。また、図5は、そのドップラ周波数解析結果を示す。 Next, the Doppler spectrum calculation unit 253 performs frequency domain conversion processing such as FFT for each path and performs Doppler frequency analysis. FIG. 16B shows a state of Doppler spectrum analysis when the number of passes is three. FIG. 5 shows the Doppler frequency analysis result.
 選択部254は、ドップラスペクトラム算出部253により算出されたドップラスペクトラム解析結果を用いて、返送すべき周波数成分を選択する。選択部254は、電力が集中する周波数成分ほどチャネルを構成する上で寄与度が大きいと判断し、例えば電力スペクトルが大きい周波数成分から上位X個を順に選択する。 The selection unit 254 selects a frequency component to be returned using the Doppler spectrum analysis result calculated by the Doppler spectrum calculation unit 253. The selection unit 254 determines that the frequency component in which power is concentrated has a higher contribution in configuring the channel, and, for example, sequentially selects the top X components from the frequency component having the larger power spectrum.
 上述した、伝搬路のドップラスペクトラムから、電力が集中した有限個の周波数成分を返送する処理に先立って、本実施の形態は、初回動作で前記ドップラ周波数を返送するフィードバック処理を行う。 Prior to the process of returning a finite number of frequency components with concentrated power from the Doppler spectrum of the propagation path, the present embodiment performs the feedback process of returning the Doppler frequency in the initial operation.
 [端末側のフィードバック情報返送詳細動作]
 図17に、端末受信部210のフィードバック情報返送処理を示すフローチャートである。
[Detailed operation of returning feedback information on the terminal side]
FIG. 17 is a flowchart showing feedback information return processing of the terminal receiving unit 210.
 まず、ステップS1で圧縮部250にチャネル推定部240からチャネル推定値が入力される。 First, a channel estimation value is input from the channel estimation unit 240 to the compression unit 250 in step S1.
 ステップS2でインパルス応答算出部251は、入力されたチャネル推定値にIFFTなどの時間領域信号変換処理を行い、インパルス応答の算出を行う。 In step S2, the impulse response calculation unit 251 performs time domain signal conversion processing such as IFFT on the input channel estimation value, and calculates an impulse response.
 ステップS3でパス分離部252は、インパルス応答算出部251により算出されたインパルス応答からパス分離処理を行い、パスごとの複素チャネル利得を取得する。 In step S3, the path separation unit 252 performs path separation processing from the impulse response calculated by the impulse response calculation unit 251, and acquires a complex channel gain for each path.
 ステップS4でドップラスペクトラム算出部253は、パスごとにFFTなどの周波数領域変換処理を行い、ドップラ周波数解析を行う。図16(b)は、パス数が3の場合におけるドップラスペクトラム解析の様子を示す。また、図5は、そのドップラ周波数解析結果を示す。 In step S4, the Doppler spectrum calculation unit 253 performs frequency domain conversion processing such as FFT for each path and performs Doppler frequency analysis. FIG. 16B shows a state of Doppler spectrum analysis when the number of passes is three. FIG. 5 shows the Doppler frequency analysis result.
 ステップS5でドップラ周波数算出部255は、ドップラスペクトラム算出結果から、ドップラ周波数を推定する。例えば前記図5の場合、ドップラ周波数算出部255は、ドップラスペクトラム算出結果から、ドップラ周波数500[Hz]を推定する。 In step S5, the Doppler frequency calculation unit 255 estimates the Doppler frequency from the Doppler spectrum calculation result. For example, in the case of FIG. 5 described above, the Doppler frequency calculation unit 255 estimates the Doppler frequency 500 [Hz] from the Doppler spectrum calculation result.
 ステップS6で端末受信部210は、端末の処理が初回目の動作か否かを判別する。 In step S6, the terminal reception unit 210 determines whether or not the terminal process is the first operation.
 初回動作の場合は、ステップS7で端末受信部210は、前段で求めたドップラ周波数をフィードバック情報とする。上記の初回動作の場合、端末受信部210は、フィードバック情報としてドップラ周波数500[Hz]を返送する。 In the case of the initial operation, in step S7, the terminal reception unit 210 uses the Doppler frequency obtained in the previous stage as feedback information. In the case of the initial operation described above, the terminal receiving unit 210 returns a Doppler frequency of 500 [Hz] as feedback information.
 初回動作でない場合は、ステップS8で端末受信部210は、初回動作により送信した周波数の値と、報告タイミングでのドップラ周波数の差が規定値以内か否かを判別する。上記規定値は、FFT分解能の半分の周波数値(例えばFFT分解能が7.3[Hz]の場合、≒3.7[Hz])などを用いる。 If it is not the first operation, in step S8, the terminal receiving unit 210 determines whether or not the difference between the frequency value transmitted by the first operation and the Doppler frequency at the report timing is within a specified value. As the specified value, a frequency value that is half of the FFT resolution (for example, when the FFT resolution is 7.3 [Hz], approximately 3.7 [Hz]) is used.
 初回動作により送信した周波数の値と、報告タイミングでのドップラ周波数の差が規定値以内の場合、ステップS9で選択部254は、ドップラスペクトラム算出部253により算出されたドップラスペクトラム解析結果を用いて、返送すべき周波数成分を選択する。そして、ステップS10で選択部254は、電力が集中する周波数成分ほどチャネルを構成する上で寄与度が大きいと判断し、例えば電力スペクトルが大きい周波数成分から上位X個を順に選択する。初回動作でない場合は、端末受信部210は、選択部254により選択された上位X個の周波数成分を返送する。 When the difference between the frequency value transmitted by the initial operation and the Doppler frequency at the report timing is within the specified value, the selection unit 254 uses the Doppler spectrum analysis result calculated by the Doppler spectrum calculation unit 253 in Step S9. Select the frequency component to be returned. In step S <b> 10, the selection unit 254 determines that the frequency component in which power is concentrated has a higher contribution in configuring the channel, and sequentially selects, for example, the top X components from the frequency component having the larger power spectrum. If it is not the first operation, the terminal reception unit 210 returns the top X frequency components selected by the selection unit 254.
 初回動作により送信した周波数の値と、報告タイミングでのドップラ周波数の差が規定値より大きい場合、ステップS11で端末受信部210は、ドップラ周波数の値をフィードバックする。これは初回との誤差が大きい場合、端末受信側におけるドップラ周波数とFFT分解能の不一致が再発することで、ドップラスペクトラムが広がるためである。但し、ドップラ周波数の推定は端末の移動速度が大きく変わらない限り、基本的に初回のみで事足りる。 When the difference between the frequency value transmitted by the initial operation and the Doppler frequency at the report timing is larger than the specified value, the terminal reception unit 210 feeds back the value of the Doppler frequency in Step S11. This is because when the error from the first time is large, the mismatch of the Doppler frequency and the FFT resolution on the terminal reception side recurs, so that the Doppler spectrum spreads. However, the estimation of the Doppler frequency is basically sufficient only for the first time unless the moving speed of the terminal changes greatly.
 上述したように、端末の処理が初回目の動作か否かでドップラスペクトラム算出以降の処理フローが変わる。初回目では、前段で求めたドップラ周波数をフィードバック情報とする。2回目以降では、フィードバックすべき周波数成分を選択する処理となる。但し初回動作にて送信した周波数の値と、報告タイミングでのドップラ周波数の差が規定値より大きい場合は、ドップラ周波数の値をフィードバックする。 As described above, the processing flow after the Doppler spectrum calculation changes depending on whether or not the terminal processing is the first operation. At the first time, the Doppler frequency obtained in the previous stage is used as feedback information. From the second time on, the frequency component to be fed back is selected. However, if the difference between the frequency value transmitted in the initial operation and the Doppler frequency at the reporting timing is greater than the specified value, the Doppler frequency value is fed back.
 図18は、端末送信部260におけるフィードバック情報返信フォーマットの一例を示す図である。また、図18は、端末送信部260⇔基地局受信部160でのフィードバック情報に関するフォーマットの一例である。 FIG. 18 is a diagram illustrating an example of a feedback information return format in the terminal transmission unit 260. FIG. 18 is an example of a format related to feedback information in terminal transmission section 260 ⇔ base station reception section 160.
 図18(a)に示すように、共通フォーマットを構成する要素は、Payload部の格納要素を判別する「Flg」部と情報要素を格納する「Payload」部からなる。規定の仕方により種々のフォーマットの定義が可能である。格納要素判別用の「Flg」と情報要素を格納する「Payload」が基本要素となる。 As shown in FIG. 18A, the elements constituting the common format are composed of a “Flg” part for determining a storage element of the Payload part and a “Payload” part for storing an information element. Various formats can be defined depending on how they are defined. “Flg” for discriminating storage elements and “Payload” for storing information elements are basic elements.
 図18は、Flgのビット論理が0の場合、Payload部にドップラ周波数の値を格納し、Flgのビット論理が1の場合、Payload部にドップラ周波数解析によって得た周波数成分の値を格納する場合の例を示している。 FIG. 18 shows a case where the Doppler frequency value is stored in the Payload portion when the Flg bit logic is 0, and the frequency component value obtained by Doppler frequency analysis is stored in the Payload portion when the Flg bit logic is 1. An example is shown.
 例えば、図18(b)に示すようにドップラ周波数の値を返送する場合、格納要素判別用「Flg」“0”、情報「Bit#1~Bit#X」を定義する。 For example, when returning the value of the Doppler frequency as shown in FIG. 18B, the storage element discrimination “Flg” “0” and the information “Bit # 1 to Bit # X” are defined.
 図18(c)に示すようにドップラ解析結果を返送する場合、格納要素判別用「Flg」“1”、情報の範囲を示す「Bit#1~#A」、及び周波数成分の中身である「Bit#A+1~Bit#X」を定義する。なお、上記「Bit#1~#A」は、UEと基地局NB#で共有していれば不要である。 When the Doppler analysis result is returned as shown in FIG. 18C, the storage element discrimination “Flg” “1”, the information range “Bit # 1 to #A”, and the contents of the frequency component “ Bit # A + 1 to Bit # X ”are defined. Note that the above “Bits # 1 to #A” are unnecessary if they are shared by the UE and the base station NB #.
 (変形例)
 ドップラ周波数報告に関して、絶対値返信モードと差分値返信モードを設けることで、より精度のよいドップラ周波数値の返送を実現する。
(Modification)
By providing an absolute value reply mode and a difference value reply mode for the Doppler frequency report, a more accurate Doppler frequency value can be returned.
 処理ブロック構成及び処理フローは、図17乃至図18と同様である。但し、送信フォーマットは図18のような構成を用いる。 The processing block configuration and the processing flow are the same as those shown in FIGS. However, the transmission format uses the configuration as shown in FIG.
 図19は、端末送信部260におけるフィードバック情報返信フォーマットの一例を示す図である。 FIG. 19 is a diagram illustrating an example of a feedback information return format in the terminal transmission unit 260.
 図19(a)に示すように、共通フォーマットを構成する要素は、Payload部の格納要素を判別する「Flg」部と情報要素を格納する「Payload」部からなる。 As shown in FIG. 19A, the elements constituting the common format are composed of a “Flg” part for determining a storage element of the Payload part and a “Payload” part for storing an information element.
 図19(b)(c)に示すように、「絶対値返信モード」と「差分値返信モード」は、Flg領域の論理値によって判断する。「絶対値返信モード」の場合はドップラ周波数の絶対値を量子化して送信し(本実施の形態と同じ)、「差分値返信モード」の場合は「絶対値返信モード」で返信した値との差分値を返信する。差分値を規定することで、絶対値の場合に比べ、より細かな粒度での周波数表現が可能となる。また、情報量を減らすことができる。 As shown in FIGS. 19B and 19C, the “absolute value return mode” and the “difference value return mode” are determined based on the logical value of the Flg area. In the “absolute value reply mode”, the absolute value of the Doppler frequency is quantized and transmitted (same as in this embodiment). In the “difference value reply mode”, the value returned in the “absolute value reply mode” Returns the difference value. By defining the difference value, it is possible to express the frequency with a finer granularity than in the case of the absolute value. In addition, the amount of information can be reduced.
 図19(d)に示すように、ドップラ解析結果を返送する場合、格納要素判別用「Flg」“1”、「Bit#1~#A」、及び周波数成分の中身である「Bit#A+1~Bit#X」を定義する。 As shown in FIG. 19D, when returning the Doppler analysis result, “Flg” “1”, “Bit # 1 to #A” for determining the storage element, and “Bit # A + 1 to“ Bit # A + 1 to Bit # X "is defined.
 以上詳細に説明したように、本実施の形態によれば、基地局100は、端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分を受信する基地局受信部160を備える。また、基地局100の基地局送信部110は、端末から返送されたドップラ周波数に基づいて、送信信号を位相補正する信号補正処理部130を備える。 As described above in detail, according to the present embodiment, the base station 100 includes the base station receiving unit 160 that receives the Doppler frequency returned as feedback information from the terminal and / or a frequency component near the Doppler frequency. Prepare. The base station transmission unit 110 of the base station 100 includes a signal correction processing unit 130 that corrects the phase of the transmission signal based on the Doppler frequency returned from the terminal.
 また、移動無線端末200は、基地局側で位相補正された送信された信号からチャネル情報を推定するチャネル推定部240と、推定したチャネル推定値から伝搬路の変動を示すドップラスペクトラムを算出するドップラスペクトラム算出部253と、算出したドップラスペクトラムから特定の周波数成分に電力が集中した有限個の周波数成分を選択する選択部254と、推定したチャネル推定値、又は前記算出したドップラスペクトラムからドップラ周波数を算出するドップラ周波数算出部255と、算出したドップラ周波数及び前記選択した周波数成分を、基地局協調送信のフィードバック情報として返送する端末送信部260とを備える。 The mobile radio terminal 200 also estimates a channel estimation unit 240 that estimates channel information from a transmitted signal that has been phase-corrected on the base station side, and calculates a Doppler spectrum that indicates a channel variation from the estimated channel estimation value. Spectrum calculating unit 253, selecting unit 254 for selecting a finite number of frequency components in which power is concentrated on a specific frequency component from the calculated Doppler spectrum, and calculating the Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum And a terminal transmission unit 260 that returns the calculated Doppler frequency and the selected frequency component as feedback information of base station cooperative transmission.
 これにより、移動無線端末200側では、例えば初回動作でフィードバック回線にてドップラ周波数の値[Hz]を返送し、基地局100側では、フィードバックされた伝搬路のドップラ周波数に基づいて、送信信号に位相回転処理を施し、周波数ズレを補正して送信する。そして、移動無線端末200側では、推定したチャネル推定値から伝搬路の変動(ドップラスペクトラム)を算出し、電力が集中した周波数成分を返送する。返送する周波数成分は、例えば電力が大きな成分から順に上位X個を選択する。 As a result, the mobile radio terminal 200 returns, for example, the value [Hz] of the Doppler frequency through the feedback line in the initial operation, and the base station 100 transmits the transmission signal based on the feedback Doppler frequency of the propagation path. Phase rotation processing is performed to correct the frequency shift and transmit. Then, the mobile radio terminal 200 side calculates propagation path fluctuation (Doppler spectrum) from the estimated channel estimation value, and returns a frequency component where power is concentrated. As the frequency components to be returned, for example, the top X components are selected in descending order of the power.
 伝搬路の伝達関数を返送する従来の方法に比べ、基地局協調送信を実現するために必要なチャネル情報通知量を大幅に削減することができる。 Compared with the conventional method of returning the transfer function of the propagation path, the amount of channel information notification required for realizing base station cooperative transmission can be greatly reduced.
 図20は、フィードバックを受けたドップラ周波数に基づき、補正処理を行い送信した場合の受信側におけるドップラ周波数解析結果を、位相補正あり/位相補正なしで比較して示す図である。 FIG. 20 is a diagram showing a result of Doppler frequency analysis on the receiving side in the case of performing the correction process and transmitting based on the Doppler frequency that has received the feedback, and comparing it with / without phase correction.
 図20に示すように、送信側で位相補正を行うことで、0Hz近傍(位相補正後のドップラ周波数とみなせる)により電力が集中し、これにより更に効率的なフィードバックが可能になる。すなわち、ドップラ周波数に基づき送信側で補正処理を行うことで、送信補正処理を行わない場合に比べて、ドップラスペクトラムのサイドローブが抑圧される。これにより、更なるフィードバック量の削減が可能になる。換言すれば、ドップラスペクトラムのサイドローブが抑圧されることで、返送量が同じの場合、より高精度なフィードバックが可能になる。 As shown in FIG. 20, by performing phase correction on the transmission side, power is concentrated in the vicinity of 0 Hz (which can be regarded as the Doppler frequency after phase correction), thereby enabling more efficient feedback. That is, by performing the correction process on the transmission side based on the Doppler frequency, the side lobe of the Doppler spectrum is suppressed compared to the case where the transmission correction process is not performed. As a result, the amount of feedback can be further reduced. In other words, by suppressing the side lobes of the Doppler spectrum, more accurate feedback is possible when the return amount is the same.
 (実施の形態2)
 図21は、本発明の実施の形態2に係る移動無線端末の端末受信部の詳細な構成を示す図である。図12と同一構成部分には同一符号を付して重複箇所の説明を省略する。
(Embodiment 2)
FIG. 21 is a diagram showing a detailed configuration of the terminal reception unit of the mobile radio terminal according to Embodiment 2 of the present invention. The same components as those in FIG.
 本発明の実施の形態2における移動無線端末の基本的な構成及び動作は、実施の形態1と同様である。 The basic configuration and operation of the mobile radio terminal in the second embodiment of the present invention are the same as those in the first embodiment.
 図21に示すように、端末受信部310は、チャネル推定部240、ドップラ周波数推定部320、及び圧縮部350を備える。 21, the terminal reception unit 310 includes a channel estimation unit 240, a Doppler frequency estimation unit 320, and a compression unit 350.
 本実施の形態は、ドップラ周波数を推定する専用のブロックであるドップラ周波数推定部320を設けているのが、図12と異なる。ドップラ周波数は、インパルス応答結果を用いなくても推定することができる。本実施の形態は、ドップラ周波数推定部320を、圧縮部350と別ブロックで構成することで、より構成を簡素にする。 This embodiment is different from FIG. 12 in that a Doppler frequency estimation unit 320, which is a dedicated block for estimating the Doppler frequency, is provided. The Doppler frequency can be estimated without using the impulse response result. In the present embodiment, the configuration is further simplified by configuring the Doppler frequency estimation unit 320 as a separate block from the compression unit 350.
 ドップラ周波数推定に用いるアルゴリズムには、DFTなど周波数分解能が等間隔になるアルゴリズムのほかにgoertzelアルゴリズムなどのある特定周波数成分を検出するアルゴリズムが適用される。 As an algorithm used for Doppler frequency estimation, an algorithm for detecting a specific frequency component, such as a Goertzel algorithm, is applied in addition to an algorithm in which frequency resolution is equally spaced, such as DFT.
 これにより、インパルス応答を求めるためのIFFTなどの時間領域信号への変換処理が不要となり、さらにパス分離のための値判定処理を省くことができるため、演算量を減らすことが可能となる。 This eliminates the need for conversion to a time domain signal such as IFFT for obtaining an impulse response, and further eliminates the value determination process for path separation, thereby reducing the amount of calculation.
 以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。 The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.
 上記各実施の形態では、基地局、通信システム、端末及び通信方法という名称を用いたが、これは説明の便宜上であり、装置は無線通信端末、LTE端末、移動通信システム、方法は基地局協調送信方法、チャネル情報通知方法等であってもよい。 In the above embodiments, the names base station, communication system, terminal, and communication method are used. However, this is for convenience of explanation, and the apparatus is a radio communication terminal, LTE terminal, mobile communication system, and method is base station cooperation. A transmission method, a channel information notification method, or the like may be used.
 さらに、上記移動無線端末を構成する各構成部、例えば送受信部の種類、選択部、ドップラ周波数算出部などは前述した実施の形態に限られない。 Further, each component constituting the mobile radio terminal, for example, the type of transmission / reception unit, the selection unit, the Doppler frequency calculation unit, etc. is not limited to the above-described embodiment.
 上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。 Although cases have been described with the above embodiments as examples where the present invention is configured by hardware, the present invention can also be realized by software.
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。例えば、バイオ技術の適用等が可能である。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. For example, biotechnology can be applied.
 2010年10月14日出願の特願2010-232006の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2010-232006 filed on Oct. 14, 2010 is incorporated herein by reference.
 本発明の通信システム、基地局、端末及び通信方法は、3GPP LTE方式の無線基地局、及び移動無線端末を含む移動通信システムに用いられる移動無線端末及びフィードバック情報送信方法に有用である。 The communication system, base station, terminal, and communication method of the present invention are useful for mobile radio terminals and feedback information transmission methods used in mobile communication systems including 3GPP 、 3LTE radio base stations and mobile radio terminals.
 100 基地局
 110 基地局送信部
 111,261 送信アンテナ
 120,280 送信デジタル信号処理部
 130 信号補正処理部
 131 伝達関数復元部
 140 OFDM変調部
 150,270 無線送信部
 160 基地局受信部
 161,211 受信アンテナ
 170 無線受信部
 180 受信デジタル信号処理部
 200 移動無線端末
 210,310 端末受信部
 220 無線受信部
 230 受信デジタル信号処理部
 240 チャネル推定部
 250,350 圧縮部
 251 インパルス応答算出部
 252 パス分離部
 253,253-1~253-N ドップラスペクトラム算出部
 254,254-1~254-N 選択部
 255 ドップラ周波数算出部
 260 端末送信部
 320 ドップラ周波数推定部
 1311 複素チャネル利得復元部
 1312 並べ替え部
 1313 FFT部
 
DESCRIPTION OF SYMBOLS 100 Base station 110 Base station transmission part 111,261 Transmission antenna 120,280 Transmission digital signal processing part 130 Signal correction processing part 131 Transfer function restoration part 140 OFDM modulation part 150,270 Wireless transmission part 160 Base station reception part 161, 211 Reception Antenna 170 Wireless receiver 180 Received digital signal processor 200 Mobile radio terminal 210, 310 Terminal receiver 220 Wireless receiver 230 Received digital signal processor 240 Channel estimation unit 250, 350 Compression unit 251 Impulse response calculation unit 252 Path separation unit 253 , 253-1 to 253-N Doppler spectrum calculation unit 254, 254-1 to 254-N selection unit 255 Doppler frequency calculation unit 260 terminal transmission unit 320 Doppler frequency estimation unit 1311 complex channel gain restoration unit 1312 Base instead of part 1313 FFT section

Claims (9)

  1.  端末から通知されたチャネル推定情報を共有し、基地局協調送信を行う基地局を備える通信システムであって、
     前記基地局は、
     前記端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分を受信する受信手段と、
     前記端末から返送されたドップラ周波数に基づいて、送信信号を補正する補正手段と、
     補正した信号を前記端末に送信する送信手段と、を備え、
     前記端末は、
     前記基地局側で補正された送信信号を受信する受信手段と、
     前記補正された信号からチャネル推定値を算出するチャネル推定手段と、
     算出したチャネル推定値から伝搬路の変動を示すドップラスペクトラムを算出するドップラスペクトラム算出手段と、
     算出したドップラスペクトラムから特定の周波数成分に電力が集中した有限個の周波数成分を選択する選択手段と、
     前記推定したチャネル推定値、又は前記算出したドップラスペクトラムからドップラ周波数を算出するドップラ周波数算出手段と、
     前記算出したドップラ周波数及び前記選択した周波数成分を、基地局協調送信のフィードバック情報として返送する返送手段と、
     を備える通信システム。
    A communication system including a base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission,
    The base station
    Receiving means for receiving a Doppler frequency returned as feedback information from the terminal and / or a frequency component near the Doppler frequency;
    Correction means for correcting the transmission signal based on the Doppler frequency returned from the terminal;
    Transmitting means for transmitting the corrected signal to the terminal,
    The terminal
    Receiving means for receiving a transmission signal corrected on the base station side;
    Channel estimation means for calculating a channel estimation value from the corrected signal;
    Doppler spectrum calculating means for calculating a Doppler spectrum indicating propagation path fluctuation from the calculated channel estimation value;
    A selection means for selecting a finite number of frequency components in which power is concentrated on a specific frequency component from the calculated Doppler spectrum;
    Doppler frequency calculation means for calculating a Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum;
    Returning means for returning the calculated Doppler frequency and the selected frequency component as feedback information of base station cooperative transmission;
    A communication system comprising:
  2.  端末から通知されたチャネル推定情報を共有し、基地局協調送信を行う基地局であって、
     前記端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分を受信する受信手段と、
     前記端末からの受信結果に基づいて、送信信号を補正する補正手段と、
     補正した信号を前記端末に送信する送信手段と、
     を備える基地局。
    A base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission,
    Receiving means for receiving a Doppler frequency returned as feedback information from the terminal and / or a frequency component near the Doppler frequency;
    Correction means for correcting a transmission signal based on a reception result from the terminal;
    Transmitting means for transmitting the corrected signal to the terminal;
    A base station comprising:
  3.  前記補正手段は、前記端末からフィードバック情報として返送されたドップラ周波数に基づいて、送信信号を位相補正する、請求項2記載の基地局。 The base station according to claim 2, wherein the correction unit corrects the phase of the transmission signal based on a Doppler frequency returned as feedback information from the terminal.
  4.  基地局協調送信を行う基地局を備える通信システムに用いられる端末であって、
     端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分に基づいて、基地局側で補正された送信信号を受信する受信手段と、
     前記補正された信号からチャネル推定値を算出するチャネル推定手段と、
     算出したチャネル推定値から伝搬路の変動を示すドップラスペクトラムを算出するドップラスペクトラム算出手段と、
     算出したドップラスペクトラムから特定の周波数成分に電力が集中した有限個の周波数成分を選択する選択手段と、
     前記推定したチャネル推定値、又は前記算出したドップラスペクトラムからドップラ周波数を算出するドップラ周波数算出手段と、
     前記算出したドップラ周波数及び前記選択した周波数成分を、基地局協調送信のフィードバック情報として返送する返送手段と、
     を備える端末。
    A terminal used in a communication system including a base station that performs base station cooperative transmission,
    Receiving means for receiving a transmission signal corrected on the base station side based on the Doppler frequency returned as feedback information from the terminal and / or a frequency component near the Doppler frequency;
    Channel estimation means for calculating a channel estimation value from the corrected signal;
    Doppler spectrum calculating means for calculating a Doppler spectrum indicating propagation path fluctuation from the calculated channel estimation value;
    A selection means for selecting a finite number of frequency components in which power is concentrated on a specific frequency component from the calculated Doppler spectrum;
    Doppler frequency calculation means for calculating a Doppler frequency from the estimated channel estimation value or the calculated Doppler spectrum;
    Returning means for returning the calculated Doppler frequency and the selected frequency component as feedback information of base station cooperative transmission;
    A terminal equipped with.
  5.  前記返送手段は、初回動作で前記ドップラ周波数を返送し、2回目以降の動作で前記周波数成分を返送する、請求項4記載の端末。 The terminal according to claim 4, wherein the return means returns the Doppler frequency in an initial operation and returns the frequency component in a second and subsequent operations.
  6.  前記返送手段は、初回動作により送信した周波数の値と報告タイミングにおけるドップラ周波数の差を規定値と比較し、前記差が規定値より大きい場合は、前記ドップラ周波数を返送する、請求項4記載の端末。 The return means compares the difference between the frequency value transmitted in the initial operation and the Doppler frequency at the report timing with a specified value, and returns the Doppler frequency if the difference is larger than the specified value. Terminal.
  7.  前記返送手段は、前記ドップラ周波数の絶対値を量子化して返送する、請求項4記載の端末。 The terminal according to claim 4, wherein the return means quantizes and returns the absolute value of the Doppler frequency.
  8.  前記返送手段は、前記返送したドップラ周波数の値との差分値を返送する、請求項7記載の端末。 The terminal according to claim 7, wherein the return means returns a difference value from the returned Doppler frequency value.
  9.  端末から通知されたチャネル推定情報を共有し、基地局協調送信を行う基地局を備える通信方法であって、
     前記基地局側では、
     前記端末からフィードバック情報として返送されたドップラ周波数、及び/又はドップラ周波数近傍の周波数成分を受信するステップと、
     前記端末から返送されたドップラ周波数に基づいて、送信信号を補正するステップと、
     補正した信号を前記端末に送信するステップと、を有し、
     前記端末では、
     前記基地局側で補正された送信信号を受信するステップと、
     前記補正された信号からチャネル推定値を算出するステップと、
     算出したチャネル推定値から伝搬路の変動を示すドップラスペクトラムを算出するステップと、
     算出したドップラスペクトラムから特定の周波数成分に電力が集中した有限個の周波数成分を選択するステップと、
     前記推定したチャネル推定値、又は前記算出したドップラスペクトラムからドップラ周波数を算出するステップと、
     前記算出したドップラ周波数及び前記選択した周波数成分を、基地局協調送信のフィードバック情報として返送するステップと、
     を有する通信方法。
     
    A communication method including a base station that shares channel estimation information notified from a terminal and performs base station cooperative transmission,
    On the base station side,
    Receiving a Doppler frequency returned as feedback information from the terminal and / or a frequency component near the Doppler frequency;
    Correcting the transmission signal based on the Doppler frequency returned from the terminal;
    Transmitting the corrected signal to the terminal,
    In the terminal,
    Receiving a corrected transmission signal on the base station side;
    Calculating a channel estimate from the corrected signal;
    Calculating a Doppler spectrum indicating the fluctuation of the propagation path from the calculated channel estimation value;
    Selecting a finite number of frequency components in which power is concentrated on a specific frequency component from the calculated Doppler spectrum;
    Calculating a Doppler frequency from the estimated channel estimate or the calculated Doppler spectrum;
    Returning the calculated Doppler frequency and the selected frequency component as feedback information of base station cooperative transmission;
    A communication method.
PCT/JP2011/005770 2010-10-14 2011-10-14 Communication system, base station, terminal and communication method WO2012049859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-232006 2010-10-14
JP2010232006A JP2012085237A (en) 2010-10-14 2010-10-14 Communication system, base station, terminal and communication method

Publications (1)

Publication Number Publication Date
WO2012049859A1 true WO2012049859A1 (en) 2012-04-19

Family

ID=45938100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005770 WO2012049859A1 (en) 2010-10-14 2011-10-14 Communication system, base station, terminal and communication method

Country Status (2)

Country Link
JP (1) JP2012085237A (en)
WO (1) WO2012049859A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919734A (en) * 2012-11-30 2015-09-16 Lg电子株式会社 Method and apparatus for relieving doppler broadening in wireless access system that supports super high frequency band
US9608852B2 (en) 2013-04-18 2017-03-28 Mitsubishi Electric Corporation Base-station control device, wireless communication system, and base station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021176783A1 (en) * 2020-03-04 2021-09-10

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081952A (en) * 2005-09-15 2007-03-29 Fujitsu Ltd Mobile communication system, and base station device and mobile station device used therefor
JP2008072225A (en) * 2006-09-12 2008-03-27 Sony Corp Ofdm receiver and ofdm signal reception method
JP2008546331A (en) * 2005-06-09 2008-12-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Doppler-dependent power control and subcarrier allocation in OFDM multiple access systems
JP2009177534A (en) * 2008-01-24 2009-08-06 Sharp Corp Radio communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546331A (en) * 2005-06-09 2008-12-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Doppler-dependent power control and subcarrier allocation in OFDM multiple access systems
JP2007081952A (en) * 2005-09-15 2007-03-29 Fujitsu Ltd Mobile communication system, and base station device and mobile station device used therefor
JP2008072225A (en) * 2006-09-12 2008-03-27 Sony Corp Ofdm receiver and ofdm signal reception method
JP2009177534A (en) * 2008-01-24 2009-08-06 Sharp Corp Radio communication device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUI HUU PHU ET AL.: "Considerations on MIMO Channel Characteristics and Performance of Spatial Multiplexing in Time-Varying Fading Environments, AP2008-59", IEICE TECHNICAL REPORT, vol. 108, no. 148, 16 July 2008 (2008-07-16), pages 129 - 134 *
DAICHI IMAMURA ET AL.: "3GPP LTE-Advanced Radio Access Interface, BP-1-3", 2009 NEN IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 1, 1 September 2009 (2009-09-01), pages SS-28 - SS-29 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919734A (en) * 2012-11-30 2015-09-16 Lg电子株式会社 Method and apparatus for relieving doppler broadening in wireless access system that supports super high frequency band
EP2928096A4 (en) * 2012-11-30 2016-09-21 Lg Electronics Inc Method and apparatus for relieving doppler broadening in wireless access system that supports super high frequency band
US9735842B2 (en) 2012-11-30 2017-08-15 Lg Electronics Inc. Method and apparatus for relieving doppler broadening in wireless access system that supports super high frequency band
CN104919734B (en) * 2012-11-30 2018-07-31 Lg 电子株式会社 Mitigate the method and apparatus of dopplerbroadening in the wireless access system for supporting SHF band
US9608852B2 (en) 2013-04-18 2017-03-28 Mitsubishi Electric Corporation Base-station control device, wireless communication system, and base station

Also Published As

Publication number Publication date
JP2012085237A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
CN107534626B (en) Channel impulse response estimation for full duplex communication networks
US20120195264A1 (en) Base station apparatus, mobile station apparatus and transmission power control method
US9432159B2 (en) Method, apparatus and computer program for providing sounding reference signals for coordinated multipoint transmissions
US8976882B2 (en) Precoding weight generation method and control apparatus
CN110800224B (en) Over-the-air calibration for reciprocity-based UL MIMO transmission
TWI638556B (en) Method for channel estimation in a wireless communication system, communication unit, terminal and communication system
CN113347718A (en) Method and apparatus for downlink tracking reference signal configuration
US11375342B2 (en) Apparatuses, methods and computer programs for grouping users in a non-orthogonal multiple access (NOMA) network
US20150207646A1 (en) Channel Spread Estimation
CN116134750A (en) Techniques for modifying values sent in beam managed measurement reports
US20220225146A1 (en) Techniques for demodulation reference signal based signal-to-noise ratio for demodulation processing
WO2012049859A1 (en) Communication system, base station, terminal and communication method
HUE027242T2 (en) Method and arrangement in a wireless communication system
US20220123971A1 (en) Coverage enhanced reciprocity-based precoding scheme
US11411632B2 (en) Method to estimate SNR for MU-MIMO based on channel orthogonality
CN109787727B (en) Method and device in user equipment and base station for wireless communication
WO2022267853A1 (en) Channel phase correction method and related apparatus
EP3616458B1 (en) Apparatuses, methods, computer programs, and computer program products for interference avoidance
WO2020150936A1 (en) Precoder matrix quantization for compressed csi feedback
CN115336193A (en) Method and apparatus for channel estimation and precoding through incomplete channel observation and channel state information feedback
EP3891901A1 (en) Methods and apparatuses for selecting the best transmit beams
WO2019173970A1 (en) Receive filter indication for downlink transmissions
WO2015188876A1 (en) Network assisted interference cancellation and suppression for cqi reports in communication network
WO2023097489A1 (en) Precoding combiners for reconfigurable intelligent surface (ris) aided communications
CN109714089B (en) Method and device in user equipment and base station for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832303

Country of ref document: EP

Kind code of ref document: A1