WO2012049540A1 - Crème médicinale à base d'acide fusidique réalisée au moyen de fusidate de sodium, d'un corticostéroïde et d'un agent anti-fongique, et par incorporation d'un biopolymère, procédé permettant de fabriquer une telle crème - Google Patents

Crème médicinale à base d'acide fusidique réalisée au moyen de fusidate de sodium, d'un corticostéroïde et d'un agent anti-fongique, et par incorporation d'un biopolymère, procédé permettant de fabriquer une telle crème Download PDF

Info

Publication number
WO2012049540A1
WO2012049540A1 PCT/IB2010/056129 IB2010056129W WO2012049540A1 WO 2012049540 A1 WO2012049540 A1 WO 2012049540A1 IB 2010056129 W IB2010056129 W IB 2010056129W WO 2012049540 A1 WO2012049540 A1 WO 2012049540A1
Authority
WO
WIPO (PCT)
Prior art keywords
cream
vessel
amount
mixture
fusidic acid
Prior art date
Application number
PCT/IB2010/056129
Other languages
English (en)
Inventor
Sulur Subramaniam Vanangamudi
Madhavan Srinivasan
Neelakandan Narayanan Chulliel
Balkrishnana Selvaraj
Original Assignee
Sulur Subramaniam Vanangamudi
Madhavan Srinivasan
Neelakandan Narayanan Chulliel
Balkrishnana Selvaraj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulur Subramaniam Vanangamudi, Madhavan Srinivasan, Neelakandan Narayanan Chulliel, Balkrishnana Selvaraj filed Critical Sulur Subramaniam Vanangamudi
Publication of WO2012049540A1 publication Critical patent/WO2012049540A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles

Definitions

  • a medicinal fusidic acid cream made using sodium fusidate and incorporating a biopolymer, a corticosteroid, and an antifungal agent.
  • the present invention relates to primary and secondary bacterial skin infections, skin inflammations, fungal skin infections and wounds including burn wounds.
  • a cream incorporating fusidic acid and a biopolymer in the form of chitosan, a corticosteroid in the form of Hydrocortisone acetate, and an antifungal agent in the form of Miconazole nitrate, and the process of making it and using it in treating these infections, inflammations and wounds.
  • Fusidic acid in the said cream has been created in situ using Sodium Fusidate as the starting Active Pharmaceutical Ingredient (API).
  • Topical and systemic bacterial infection treatment compositions typically employ at least one active pharmaceutical ingredient (API) in combination with a base component.
  • API active pharmaceutical ingredient
  • the APIs typically comprise an antibiotic/antibacterial such as Fusidic acid and the like.
  • Fusidic acid creams Fusidic acid in fine powder form is used as source API. The small particle size enhances its dermal contact by providing a large specific surface area and penetration, and provides a smooth feel on application to skin.
  • Stabilization of medicaments containing Fusidic acid against oxidation involves observing a number of stringent precautionary procedures during manufacture and storage. These include:
  • Antibacterial or antifungal compositions are applied in turn and response monitored and treatment modified.
  • a major disadvantage of this approach is that treatment needs to be applied many times a day during the treatment period. This is greatly inconvenient and also not cost effective for a majority of human population, particularly in the under-developed countries.
  • such compositions use steroids, antibacterial agents or antifungal agents, (or a fixed dose combination of these) and focus on these pharmaceutically active ingredients.
  • the composition of such formulations is such as to enhance their physical/chemical/bio-release profile.
  • the word healing as related to compromised skin conditions are not only about prevention, control, elimination of the source cause such as bacteria or fungi but also to restore the skin to its pre-infection state.
  • the current approaches of skin treatment can be broadly categorized into two stages, a. healing b. restoration of skin to pre-ailment state.
  • the healing part comprises elimination, to the best possible extent, of the root cause of the disorder. This may be elimination of bacteria or fungi causing the infection through a suitable treatment of antibacterial or antifungal agents or reducing the inflammation through steroid treatment. While this treatment is under way, the ongoing compromised condition of the skin continues to be susceptible to secondary infections which can be of quite serious nature. In the case of scratched or wounded skin, it is important for blood clotting to occur quickly as it reduces chances of secondary infections.
  • the focus of such treatments, which are administered through creams, lotions, ointments is on the action of active pharmaceutical ingredients. Cream bases or ointment bases are merely viewed as carriers to take APIs to the sites of disorder.
  • Topical skin formulations can deliver skin healing or regeneration beyond the activity of the main APIs such that the therapeutic outcome of the main APIs
  • APIs is enhanced.
  • biopolymers biologically active polymers
  • topical pharmaceutical compositions comprising a combination of fusidic acid and corticosteroid such as Mometasone furoate useful in treatment of infected eczema's such as secondarily infected dermatitis, including secondarily infected contact dermatitis, psoriasis, allergic contact dermatitis and atopic dermatitis with secondary bacterial infections of skin.
  • topical pharmaceutical compositions comprising a combination of fusidic acid and corticosteroid such as Mometasone furoate useful in prevention of infection in cases of dermatitis, especially atopic dermatitis sufferers who are at risk of getting secondary bacterial infection.
  • WO 2009063493 also apparently surprisingly found that antibiotic action of fusidic acid and the anti-inflammatory effect of a corticosteroid such as Halobetasol, both play important roles in prevention of secondary bacterial infections in patients with non-infected dermatoses and in treatment of infected steroid responsive dermatoses such as secondarily infected dermatoses including secondarily infected contact dermatitis, allergic contact dermatitis, atopic dermatitis, psoriasis and other corticosteroid responsive dermatoses (CRD) with secondary bacterial infections of skin.
  • infected steroid responsive dermatoses such as secondarily infected dermatitis including secondarily infected contact dermatitis, allergic contact dermatitis, atopic dermatitis, psoriasis and other corticosteroid responsive dermatoses (CRD) with secondary bacterial infections of skin.
  • CCD corticosteroid responsive dermatoses
  • the invention disclosed in WO 2009063493 relates to a combination therapy of a topical antibiotic and a topical steroid for the treatment of inflammatory dermatoses associated with secondary bacterial infections.
  • topical pharmaceutical compositions comprising a combination of fusidic acid and corticosteroid such as Mometasone furoate useful in treatment of infected eczema's such as secondarily infected dermatitis, including secondarily infected contact dermatitis, psoriasis, allergic contact dermatitis and atopic dermatitis with secondary bacterial infections of skin.
  • the present invention also relates to topical pharmaceutical compositions comprising a combination of fusidic acid and corticosteroid such as Mometasone furoate useful in prevention of infection in cases of dermatitis, especially atopic dermatitis sufferers who are at risk of getting secondary bacterial infection.
  • a combination of fusidic acid and corticosteroid such as Mometasone furoate useful in prevention of infection in cases of dermatitis, especially atopic dermatitis sufferers who are at risk of getting secondary bacterial infection.
  • CN 1931164 deals with the nanometer miconazole nitrate emulsion medicine which consists of surfactant, oil, miconazole nitrate and distilled water.
  • US 5,461,068 pertains to improved formulations for topical treatment of fungal diseases, and more particularly to solutions of imidazole derivatives such as miconazole nitrate of sufficient strength and stability for pharmaceutical use
  • the said composition can accommodate a therapeutically significant concentration of the antifungal agents; thereby increasing the stability of the antifungal agents in solution for extended periods of time.
  • the solvent system comprises a primary carboxylic acid, a polar solvent, a solubilizer, a non-ionic or amphoteric surfactant, and water, in which imidazole derivatives can be dissolved.
  • US 6,001,864 deals with an antifungal composition wherein an imidazole-type antifungal compound in the form of miconazole nitrate is combined with a quaternary ammonium salt. It is claimed that the miconazole nitrate is more potentiated active and has higher therapeutic effect. The composition is effective against both Trichophyton and Candida. The applicant also claims on the bases that combination disclosed in the present application has never been used before.
  • US 4,911,932 relates to skin care composition which can be applied topically to prevent or treat acute inflammatory skin conditions, especially in young children.
  • the composition is a synergistic combination of active ingredients which effectively prevent and/or treat inflammatory skin conditions such as diaper rash comprising a synergistic mixture of miconazole nitrate and zinc oxide.
  • US 5,023,251 discloses a oil in water cream comprising hydrocortisone diester, oil in water emulsifier based on polyoxyethylene fatty acid esters and fatty alcohols, stearyl alcohol, white Vaseline, benzyl alcohol and water.
  • US 5,023,251 claims novelty on the basis that the ointments with no water or very low water are creams and are not always satisfactory in respect of absorption of the active ingredient, while the claimed invention provide an OAV cream which contains a hydrocortisone diester and which ensures satisfactory storage stability and high absorption of the active ingredient through the skin.
  • the composition is used for the treatment of eczemas, dermatitis, psoriasis and inflammations.
  • US 5,961,997 disclose antipruritic composition
  • the composition preferably further comprises lidocaine and pramoxine and more preferably further comprise lidocaine, pramoxine and hydrocortisone acetate.
  • the composition relieves itching in patients suffering from a variety of dermatoses or pruritis.
  • US 5,961,997 claims novelty on the basis that the pharmaceutical composition contains effective concentrations of relevant chemicals, while helping in avoiding components which causes allergenic, irritating, acne-causing, comedogenic, irritant dermatitis, photosensitivity, or allergic contact sensitization and yet is aesthetically pleasing.
  • the antipruritic composition of the invention is oil-free, fragrance-free, lanolin-free and free of formaldehyde-releasing preservatives
  • US 6,352,691 disclose a therapeutic after-shave care lotion comprising Aloe Vera gel, Vitamin C (Ascorbic acid), Vitamin E (tocopherol), and Hydrocortisone
  • US 2002111298 relates to a moisturizing skin ointment composition consisting of polymyxin B Sulfate, bacitracin zinc, neomycin, hydrocortisone acetate and white petrolatum.
  • hydrocortisone present in the composition alleviates problems associated with itching of dry skin because the ointment penetrates the dermis almost immediately, the moisturizing properties of petrolatum allows the full benefit of the antibiotic products and hydrocortisone to remain on/in the skin through several washings thereby alleviating the need to reapply several times a day.
  • US 6,767,534 deals with a post hair removal skin lotion composition for use in reducing inflammation and irritation of skin immediately following hair removal by shaving, waxing, tweezing, electrolysis, or use of depilatory products, and for repairing skin damage resulting from these methods.
  • the composition comprises deionized water, Aloe vera gel, soybean oil, alpha lipoic acid, stearic acid, glyceryl monostearate, propylene glycol, lauramide DEA, vitamin E (tocopherol), hydrocortisone acetate, vitamin C (ascorbic acid), carbomer, hydroxymethylcellulose, methylparaben, propylparaben, and polyquaternium-15.
  • the composition claims novelty over the existing prior art on the assumption that the current composition is more suitable for the prevention and treatment of skin damage caused by shaving and other processes used for hair removal. It also claims to provide an effective treatment for pseudofolliculitis and to prevent long- term damage to the skin.
  • cream base matrix as a functional element of the cream rather than a mere carrier for the main APIs
  • Fusidate, Hydrocortisone acetate & Miconazole nitrate such that the therapeutic outcome of the main APIs are enhanced.
  • Figure 1 Non-homogeneous nature of creams containing chitosan with non- compatible excipient such as carbomer
  • the present invention is directed to a medicinal composition for treating skin inflammations, fungal/bacterial skin infections and related wounds, and also other skin wounds including those caused by burns.
  • the cream also causes skin rejuvenation through an epithelisation process.
  • the cream comprises:
  • APIs Active Pharmaceutical Ingredients
  • fusidic acid that has been generated in situ from sodium fusidate, Hydrocortisone acetate & Miconazole nitrate
  • a cream base containing primary and secondary emulsifiers, waxy materials, co-solvents, acids, preservatives, buffering agents, anti oxidants, chelating agents, and humectants.
  • the active ingredients namely chitosan, Hydrocortisone acetate, Miconazole nitrate and fusidic acid, are incorporated in cream base for use in treating skin inflammations, fungal/ bacterial skin infections with allergy & itching, & wounds on human skin involving contacting human skin with the above identified composition.
  • the invention also discloses a process to make the medicinal cream containing Fusidic acid which is formed in situ from Sodium Fusidate as the starting raw material, wherein Sodium Fusidate is converted into Fusidic acid under oxygen- free environment created using inert gas, preferably nitrogen, and chitosan.
  • the cream produced by the process of the present invention has greater shelf-life stability and the finer particle size of the API than the conventional creams containing Fusidic acid.
  • the cream produced by the process of the present invention contains Fusidic acid as the API that has been formed in situ from Sodium Fusidate, Hydrocortisone acetate & Miconazole nitrate in a cream base comprising a preservative, an acid, a co-solvent, an emulsifier and a waxy material along with water, preferably purified water.
  • the cream produced by the process of the present invention further optionally contains an ingredient selected from a group comprising, a buffering agent, an anti oxidant, a chelating agent, and a humectant, or any combination thereof.
  • Creams containing Fusidic acid that is made using Sodium Fusidate as starting API are not available.
  • Creams containing Fusidic acid that are made using Sodium Fusidate as starting API along with Hydrocortisone acetate as a steroid, and Miconazole nitrate as antifungal are not available.
  • Creams containing chitosan and fusidic acid which has been created in situ from sodium fusidate is not commercially available.
  • fusidic acid has very labile trans, sys, trans arrangement of these rings which forces ring B into a boat conformation.
  • fusidic acid readily undergoes acid mediated dehydration of C-l l hydroxy group to generate a C9-C11 double bond which on further isomerization followed by oxidization in the presence of oxygen leads to a mixture of biologically inactive fusidic acid derivatives.
  • carboxylic acid functional group present in the fusidic acid facilitates the above process more readily upon storage.
  • carboxylic acid promoted decomposition is not feasible.
  • sodium fusidate has superior solid state stability when compared to fusidic acid. This discovery of the inventor has also been corroborated through stability assessment of sodium fusidate and fusidic acid.
  • Tables 1 and 2 also show the comparison between the stability of the Fusidic acid and Sodium Fusidate as raw APIs. The study was carried out using an in-house UPLC method developed by the applicant, which the applicant believes is a true stability-indicating method as opposed to the titration method suggested in British
  • BP Pharmacopoeia
  • a dermaceutical cream that uses Sodium Fusidate would exploit the benefit of the fact that Sodium Fusidate is more stable than Fusidic acid and it would also provide a cream formulation which is far superior in its application qualities than an ointment. It would thus fill an existing need for a cream that has better stability than currently available creams containing Fusidic acid.
  • Sodium Fusidate rather than Fusidic acid may be used as the starting API during the cream's manufacture.
  • Using Sodium Fusidate as starting material eliminates the drawback associated with the manufacture and storage of existing Fusidic acid creams.
  • the application discloses a process of making a cream containing a biopolymer -
  • Fusidic acid (the API) that has been prepared using Sodium Fusidate as the starting API, in which Fusidic acid forms in-situ under totally oxygen-free environment created using inert gas, preferably nitrogen, by slow addition of an acid, into a molecular dispersion form (due to the presence of a co- solvent) at the intermediate stage, and which Fusidic acid regenerates as an extremely fine dispersion when added to a final cream base, thereby resulting in a finely and homogeneously dispersed Fusidic acid in the final cream.
  • the cream made using the process of the present invention contains Fusidic acid as the API that has been formed in situ from Sodium Fusidate, a biopolymer - Chitosan, Hydrocortisone acetate as a steroid, and Miconazole nitrate as an antifungal in a cream base comprising a preservative, an acid, a co-solvent, an emulsifier and a waxy material along with water, preferably purified water.
  • the active compounds Sodium Fusidate, Hydrocortisone acetate & Miconazole nitrate which may be employed in the process of the present invention as starting APIs are well known in the art of treating bacterial primary & secondary bacterial skin infections, skin inflammations and fungal skin infections.
  • the active compounds Sodium Fusidate Hydrocortisone acetate & Miconazole nitrate require a base component to be used in the pharmaceutical composition that uses the compound, since the compound cannot, by themselves, be deposited directly on to human skin due to their harshness.
  • the base component usually contains a biopolymer, primary and secondary emulsifiers, waxy materials, co-solvents, acids, preservatives, purified water and the like.
  • the cream base of the cream made using the process of the present invention optionally further comprises an ingredient selected from a group comprising a buffering agent, an anti oxidant, a chelating agent, and a humectant, or any combination thereof.
  • the present invention provides a process to make a novel cream that has been produced using Sodium Fusidate as the starting raw material, and which cream contains Fusidic acid of high therapeutic efficacy and of chemical stability that is generally superior to the commercially available creams containing Fusidic acid.
  • the Fusidic acid cream made using the process of the present invention has been manufactured in a totally oxygen free environment under purging with inert gas and applying vacuum, the inert gas being preferably nitrogen. Under these conditions, the Sodium Fusidate is converted in situ into Fusidic acid and to which Hydrocortisone acetate as a steroid, and Miconazole nitrate as an antifungal are added.
  • the cream of the present invention is used in the treatment of bacterial skin infections fungal infections and inflammations.
  • Topical skin formulations can deliver skin healing or regeneration beyond the activity of the main APIs such that the therapeutic outcomes of the main APIs are enhanced.
  • biopolymers biologically active polymers
  • Suitable topical antibacterial agents include, but are not limited to Neomycin Sulphate, Sodium Fusidate, Calcium Mupirocin, Gentamycin, Silver Sulphadiazine, Ciprofloxacin, Framycetin Sulphate, Quinidochlor, Povidone-Iodine, Sisomicin, Nitrofural and the like.
  • Corticosteroids which may be used, include, but are not limited to Betamethasone Valerate, Fluticasone Propionate, Mometasone Furoate, Dexamethasone Acetate, Hydrocortisone Acetate, Clobetasol Propionate, Beclomethasone Dipropionate, Betamethasone Dipropionate and the like.
  • Antifungals include, but are not limited to Miconazole Nitrate, Terbinafine Hydrochloride, Ketoconazole, Clotrimazole and the like.
  • suitable biopolymer which may be used, include, but are not limited to chitosan and the like.
  • Chitosan Chitosan is a linear polysaccharide composed of randomly distributed ⁇ -(1 -4)- linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). It is known to have a number of commercial uses in agriculture and horticulture, water treatment, chemical industry, pharmaceuticals and biomedics. It's known properties include accelerated blood clotting. However, it is not known to a person skilled in the art that chitosan' s behaviour with a pharmaceutical active ingredient such as an antibacterial or antifungal agent needs to be treated with caution.
  • Chitosan generally absorbs moisture from the atmosphere / environment and the amount absorbed depends upon the initial moisture content, temperature and relative humidity of the environment.
  • Chitosan due to its unique physical property accelerates wound healing and wound repair. It is positively charged and soluble in acidic to neutral solution. Chitosan is bioadhesive and readily binds to negatively charged surfaces such as mucosal membranes. Chitosan enhances the transport of polar drugs across epithelial surfaces. Chitosan's properties allow it to rapidly clot blood, and it has recently gained approval in the USA for use in bandages and other hemostatic agents.
  • Chitosan is no nailer genie, and has natural anti-bacterial properties, further supporting its use. As a micro-film forming biomaterial, chitosan helps in reducing the width of the wound, controls the oxygen permeability at the site, absorbs wound discharge and gets degraded by tissue enzymes which are very much required for healing at a faster rate. It also reduces the itching by providing a soothing effect. It also acts like a moisturizer. It is also useful in treatment of routine minor cuts and wounds, burns, keloids, diabetic ulcers and venous ulcers. Chitosan used in the present invention comes in various molecular weights ranging from lkdal to 5000kdal.
  • Chitosan is discussed in the US Pharmacopoeia forum with regard to its functional excipient category. Since chitosan is basically a polymer, it is available in various grades depending upon the molecular weight.
  • the various grades of chitosan include chitosan long chain, chitosan medium chain & chitosan short chain.
  • the grades long, medium & short chain directly corresponds to the molecular weight of the chitosan.
  • the long chain grade has a molecular weight in the range of 500,000- 5,000,000 Da
  • the medium chain grade has a molecular weight in the range of 1,00,000-2,000,000 Da
  • the short chain grade has a molecular weight in the range of 50,000-1,000,000 Da.
  • the molecular weight of the chitosan plays an important role in the formulation.
  • the inventors finalized the chitosan medium chain grade for the present invention since it imparted the required rheologic properties to the cream without compromising the therapeutic activity of the actives, ie Sodium Fusidate, Hydrocortisone acetate & Miconazole nitrate as the starting actives and chitosan.
  • the concentration of chitosan medium chain grade was carefully arrived based on several in house trials and Preclinical animal studies for efficacy.
  • Topical anti-fungals are intended to target skin for fungal infections caused by fungi such as Tinea pedis, Tinea cruris, and Tinea corporis.
  • Typical antifungal agents include drugs like Clotrimazole, Ketoconazole, Miconazole nitrate, Terbinafine Hydrochloride etc.
  • Fungal infections are generally manifested with itching at the site.
  • Anti-fungals act by altering the permeability of the fungal membrane by inhibiting the synthesis of sterols.
  • Miconazole Nitrate is an antifungal agent with similar antimicrobial activity to ketoconazole. Chemically, Miconazole Nitrate is l-[2-(2,4-Dichlorophenyl)-2- [(2,4- dichlorophenyl)methoxy]ethyl]-lH-irnidazole with the empirical formula CI S HMC NZC.HNO S , and a molecular weight of 479.15.
  • Miconazole Nitrate is a White or almost white, crystalline or micro -crystalline powder, freely soluble in methanol; slightly soluble in ethanol (95%) and in chloroform; very slightly soluble in water and in ether.
  • Miconozole may be given by mouth for the treatment of oral and intestinal candidiasis. It has been given prophylactically to patients at high risk of opportunistic fungal infections. In fungal meningitis, intravenous treatment may be supplemented with intrathecal injections of Miconazole. Miconazole nitrate is used locally for treating various fungal skin infections.
  • Miconazole nitrate is a synthetic antifungal agent which inhibits the growth of the common dermatophytes, Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum, the yeast-like fungus, Candida albicans, and the organism responsible for tinea versicolor (Malassezia furfur).
  • Mechanism of Action Miconazole nitrate inhibits biosynthesis of ergosterol, damaging the fungal cell wall membrane, which increases permeability causing leaking of nutrients
  • mice nitrate Absorption of Miconazole nitrate is negligible by topical route. Miconazole nitrate is widely distributed to body tissues; penetrates well into inflamed joints, vitreous humor of eye, and peritoneal cavity, but poorly into saliva and sputum; crosses blood-brain barrier but only to a small extent. Protein binding of Miconazole nitrate is about 91 % to 93%. Miconazole nitrate is metabolized in liver and is excreted in feces (-50%) and urine ( ⁇ 1% as unchanged drug)
  • Topical corticosteroids are a powerful tool for treating skin diseases.
  • Corticosteroids include drugs such as Betamethasone dipropionate, Beclomethasone dipropionate, , Clobetasol propionate, Clobetasone butyrate, Halobetasol propionate, Mometasone furoate, Halcinonide, Fluocinonide, Triamcinolone acetonide, Fluticasone propionate, Amcinonide, Hydrocortisone acetate, Diflorasone diacetate, Prednicarbate, etc. Topical corticosteroids are classified by their potency, ranging from weak to extremely potent.
  • the high potency steroids include Betamethasone Dipropionate, Betamethasone Valerate, Diflorasone Diacetate, Clobetasol Propionate, Halobetasol Propionate,
  • Low potency topical steroids include Desonide, Fluocinolone acetate, and Hydrocortisone acetate, etc.
  • Topical corticosteroid is indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid responsive dermatoses.
  • Hydrocortisone is a member of synthetic steroids used as anti-inflammatory and antipruritic agent. Hydrocortisone has the chemical name Pregn-4-ene-3,20-dione, 11,17,21- trihydroxy-, (1 1 ⁇ )-. Its molecular formula is C21H30O5 and molecular weight 362.47. It is a white to off-white crystalline powder insoluble in water and slightly soluble in alcohol and in chloroform. Hydrocortisone Acetate is a low potency corticosteroid indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid- responsive dermatoses.
  • Hydrocortisone Acetate is a low potency synthetic corticosteroid with antiinflammatory, antipruritic, and vasoconstrictive properties. Hydrocortisone Acetate depresses formation, release, and activity of endogenous mediators of inflammation, including prostaglandins, kinins, histamine, liposomal enzymes, and complement system; modifies body's immune response.
  • Hydrocortisone Acetate has been shown to have a wide range of inhibitory effects on multiple cell types (e.g. mast cells, eosinophils, neutrophils, macrophages and lymphocytes) and mediators (e.g. histamine, eicosanoids, leukotrienes, and cytokines) involved in inflammation and in the asthmatic response.
  • mediators e.g. histamine, eicosanoids, leukotrienes, and cytokines
  • Mechanism Of Action They enter cells where they combine with steroid receptors in cytoplasm and then the combination enters nucleus where it controls synthesis of protein, including enzymes that regulate vital cell activities over a wide range of metabolic functions including all aspects of inflammation formation of a protein that inhibits the enzyme phospholipase A 2 which is needed to allow the supply of arachidonic acid.
  • Arachidonic acid is essential for the formation of inflammatory mediators. They also act on cell membranes to alter ion
  • Pharmacokinetics The extent of percutaneous absorption of topical corticosteroids is determined by many factors including the vehicle, the integrity of the epidermal barrier, and the use of occlusive dressings.
  • Topical corticosteroids can be absorbed from normal intact skin. Inflammation and/or other disease processes in the skin increase percutaneous absorption. Occlusive dressings substantially increase the percutaneous absorption of topical corticosteroids. Thus, occlusive dressings may be a valuable therapeutic adjunct for treatment of resistant dermatoses.
  • topical corticosteroids are handled through pharmacokinetic pathways similar to systemically administered corticosteroids.
  • Corticosteroids are bound to plasma proteins in varying degrees.
  • Corticosteroids are metabolized primarily in the liver and are then excreted by the kidneys. Some of the topical corticosteroids and their metabolites are also excreted into the bile. Indications
  • Hydrocortisone Acetate is a low potency corticosteroid indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid- responsive dermatoses.
  • Topical Anti-bacterials are intended to target skin for bacterial infections caused by Staphylococcus aureus, Staphylococcus epidermidis, Methicillin Resistance Staphylococcus Aureus (MRSA) etc.
  • Anti-bacterials act by inhibiting cell wall synthesis by combining with bacterial ribosomes and interfering with mRNA ribosome combination.
  • Sodium Fusidate belongs to the group of medicines known as antibiotics.
  • the molecular formula of Sodium Fusidate is C31H47.
  • the chemical name is 3 ⁇ ,11 ⁇ ,16 ⁇ - ⁇ ( ⁇ 29- nor- ⁇ , 9 ⁇ , 13 ⁇ , 146-dammara-17(20) [10,21-cis], 24-dien-21-oic acid 16-acetate, sodium salt. It is a white colour crystalline powder soluble in one part of water at 20 °C.
  • Sodium Fusidate inhibits bacterial protein synthesis by interfering with amino acid transfer from amino acyl-sRNA to protein on the ribosomes.
  • Sodium Fusidate may be bacteriostatic or bactericidal depending on inoculum size. Although bacterial cells stop dividing almost within 2 minutes after contact with the antibiotic in vitro, DNA and RNA synthesis continue for 45 minutes and 1 to 2 hours, respectively.
  • Sodium Fusidate is virtually inactive against gram-negative bacteria. The differences in activity against gram-negative and gram-positive organisms are believed to be due to a difference in cell wall permeability.
  • Mammalian cells are much less susceptible to inhibition of protein synthesis by Sodium Fusidate than sensitive bacterial cells. These differences are believed to be due primarily to a difference in cell wall permeability.
  • Sodium Fusidate is indicated for the treatment of primary and secondary skin infections caused by sensitive strains of S. aureus, Streptococcus species and C. minutissimum.
  • Primary skin infections that may be expected to respond to treatment with Sodium Fusidate topical include: impetigo contagiosa, erythrasma and secondary skin infections such as infected wounds and infected burns.
  • Creams are topical preparation used for application on the skin.
  • Creams are semi- solid emulsions which are mixtures of oil and water in which APIs (Active
  • Oil-in-water (O/W) creams which compose of small droplets of oil dispersed in a continuous water phase
  • water-in-oil (W/O) creams which compose of small droplets of water dispersed in a continuous oily phase.
  • Oil-in-water creams are user-friendly and hence cosmetically acceptable as they are less greasy and more easily washed with water.
  • An ointment is a viscous semisolid preparation containing APIs, which are used topically on a variety of body surfaces.
  • the vehicle of an ointment is known as ointment base. The choice of a base depends upon the clinical indication of the ointment, and the different types of ointment bases normally used are:
  • Hydrocarbon bases e.g. hard paraffin, soft paraffin
  • Absorption bases e.g. wool fat, bees wax
  • the acidic scale of pH is from 1 to 7, and the base scale of pH is from 7 to 14.
  • Human skins pH value is some where between 4.5 and 6. Newborn baby's skin pH is closer to neutral (pH 7), but it quickly turns acidic. Nature has designed this probably to protect young children's skin, since acidity kills bacteria. As people become older, the skin becomes more and more neutral, and won't kill as many bacteria as before. This is why the skin gets weak and starts having problems.
  • the pH value goes beyond 6 when a person actually has a skin problem or skin disease. This shows that it is necessary to choose topicals that have a pH value close to that of skin of a young adult.
  • cream formulations are available as creams. Active compounds in cream formulations are available in ionized state, whereas in case of ointments these are present in non -ionized state.
  • the cream formulations are the first choice of the formulators in design and development of topical dosage forms, as the cream formulations are cosmetically elegant, and also as the active compound is available in ionized state, and the drug can penetrate the skin layer fast which makes the formulation totally patient friendly.
  • the pH of the Chitosan Cream with antibacterial agent - Sodium Fusidate, Hydrocortisone acetate as a steroid, Miconazole nitrate as an antifungal of the present invention is from about 3 to 6.
  • ointments that are commercially available are greasy and cosmetically non elegant.
  • the penetration of skin is slow.
  • the active drug penetrates the skin for the optimum bio-dermal efficacy.
  • the particle size of the active drug plays an important role here. It is necessary that the active drug is available in colloidal or molecular dispersed state for the product being highly efficacious form. Also this is to be achieved in the safe pH compatible environment of skin (4.0 to 6.0). To achieve all these, it is essential to choose proper vehicles or co-solvents for the dissolution or dispersion of the drug.
  • the product of the present invention is highly efficacious due to the pronounced antibacterial & wound healing activity of the active ingredients, which are available in ultra micro-size, colloidal form, which enhances skin penetration.
  • Topical Sodium Fusidate & Miconazole nitrate have profound efficacy in primary & secondary bacterial/fungal skin infections of varied etiology due to their antibacterial/antifungal properties.
  • a drawback of the monotherapy with any topical antibacterial/antifungal has been the relatively slow onset of the effect.
  • fusidic acid along with Hydrocortisone acetate and Miconazole nitrate & chitosan in a formulation, the properties of antibacterial, antifungal, and anti- inflammatory agents as well as chitosan are optimized.
  • chitosan is film forming, biocompatible, non-allergenic material it helps in protecting the skin by acting as a barrier. It further controls the superficial bleeding caused by scratching and also arrests the mobility of pathogens due to its cationic charge.
  • chitosan in the formulation takes care of many attributes, which are considered to be very much essential in treating skin ailments.
  • Miconazole nitrate is unique and novel since this is not available commercially across the globe.
  • Another inventive aspect of the present invention is that the addition of a functional excipient in the cream base is not a straight forward process of mere addition.
  • the inventor has found that the compatibility of the functional excipient such as chitosan with other agents in the cream is of critical importance. This is because incompatibility would compromise the stability of the final product.
  • the inventors have found that well known excipients such as Xanthan Gum and carbomer which have been variously used as stabilizing agents, cannot be used in combination with functional biopolymers such as chitosan.
  • Excipients for topical dosage forms include Polymers, Surfactants, Waxy Materials, and Emulsifiers etc. Polymers are used as gelling agents, suspending agents, viscosity builders, release modifiers, diluents, etc. Surfactants are used as wetting agents, emulsifiers, solubilising agents release enhancers, etc.
  • polymers & surfactants may or may not possess ionic charge. They may be anionic or cationic or non-ionic in nature. If anionic excipients are included in the formulation they interact with cationic formulation excipients and produce products which are not homogenous, aesthetically not appealing and give rise to unwanted by products, possible allergens, impurities, toxic substances etc due to incompatibility. Since the dosage is for the treatment of ailing patients, these incompatibilities in the products cannot be accepted and these add more complication to the patients.
  • the inventors carefully screened the excipients which included the polymers and surfactants for developing a formulation. A thorough study was performed after screening the short listed excipients. The possible interactions between the excipients were given much focus and detailed experiments were done.
  • Fusidic acid provides relief against bacterial infections
  • Hydrocortisone acetate provides relief against skin inflammations
  • Miconazole nitrate provides relief against fungal infections
  • the aspects such as like skin protection, bleeding at the site, mobility of pathogens from one site to another, etc are not addressed so far in a single dose therapy that includes fusidic acid generated in situ from sodium fusidate.
  • This present invention with its single-dose application fills this gap by incorporating chitosan and tapping the required benefits of skin protection (by way of film forming property), stopping the bleeding (by way of blood clotting property) and immobilization of pathogenic microbes (due to its cationic electrostatic property).
  • Therapeutic value addition by incorporation of a functional excipient in the form of a chitosan which is a biopolymer in the cream matrix is an integrated sub-set of the following functional attributes of the biopolymer:
  • the present invention with its single-dose therapy reduces the overall treatment time of a serious skin disorder significantly.
  • Preferred embodiment no. 1 A medicinal cream for topical treatment of bacterial skin infections, fungal skin infections, inflammations and for related wound healing including burns wound, wherein said cream comprises an antibacterial agent, Sodium Fusidate, an antifungal agent Miconazole nitrate, a corticosteroid Hydrocortisone acetate and a biopolymer provided in a cream base, said cream base comprising at least one of each of a preservative, a primary and a secondary emulsifier, a waxy material, a co-solvent, an acid, and water, preferably purified water.
  • said cream base comprising at least one of each of a preservative, a primary and a secondary emulsifier, a waxy material, a co-solvent, an acid, and water, preferably purified water.
  • Embodiment no. 1 A medicinal cream as disclosed in the preferred embodiment no 1 , wherein said cream further comprising any of a group comprising a buffering agent, an antioxidant, a chelating agent, a humectant, or any
  • Embodiment no. 2 A novel dermaceutical cream as disclosed in the preferred embodiment no 1 and the embodiment no. 1 , wherein
  • said Fusidic acid is present in an amount from about 0.1% (w/w) to about 25% (w/w), preferably from about 0.5% (w/w) to about 5%(w/w), and more preferably about 2.00 % (w/w), and in which the amount of said Sodium Fusidate used to form in situ said Fusidic acid is in the range between about 0.1 % (w/w) to about 25% (w/w), preferably from about 0.5% (w/w) to about 5% (w/w) and more preferably about 2.08 % (w/w), and
  • said hydrocortisone acetate is added from about 0.005% to about 2.5% by weight, preferably from about 0.05% to about 2.00% by weight, and most preferably from about 1 % by weight, and
  • said miconazole nitrate is added from about 0.5% to about 3.0% by weight, preferably from about 0.5% to about 3.0% by weight, and most preferably about 2.0% by weight; and - said chitosan is added in an amount between about 0.01 % and about 1 % by weight, preferably from about 0.01% w/w to about 0.5% w/w and most preferably about 0.25% w/w,
  • said primary and secondary emulsifiers are selected from a group comprising Cetostearyl alcohol, Cetomacrogol-1000, Polysorbate-80, Span-80 and the like and added in an amount from about 1% (w/w) to 20% (w/w); said waxy materials is selected from a group comprising white soft paraffin, liquid paraffin, hard paraffin and the like, or any combination thereof, and added in an amount from about 5% (w/w) to 30% (w/w); said co-solvent is selected from a group comprising Propylene Glycol, He xylene Glycol, PolyEthylene
  • Glycol-400 Isopropyl Myristate and the like, or any combination thereof, and added in an amount from about 5% (w/w) to 50% (w/w); said acid is selected from a group comprising HC1, H 2 SO 4 , HNO 3 , Lactic acid and the like, or any combination thereof, and added in an amount from about 0.005% (w/w) to 0.5% (w/w); said preservative is selected from a group comprising
  • Embodiment no.3 A novel medicinal cream as disclosed in the preferred embodiment
  • Embodiment no 1 and embodiment 2 further comprising a buffering agent which is selected from a group comprising Di Sodium Hydrogen Ortho Phosphate, Sodium Hydrogen Ortho Phosphate and the like, or any combination thereof, and added in an amount from about 0.001% (w/w) to 1.00% (w/w).
  • Embodiment no. 4 A novel medicinal cream as disclosed in the preferred embodiment no 1 and embodiments 2 and 3 further comprising an antioxidant which is selected from a group comprising Butylated Hydroxy Anisole, Butylated Hydroxy Toluene and the like, or any combination thereof, and added in an amount from about 0.001% (w/w) to 1 % (w/w).
  • Embodiment no. 5 A novel medicinal cream as disclosed in the preferred embodiment no 1 and embodiments nos.2 to 4 further comprising a chelating agent which is selected from a group comprising Disodium EDTA and the like, or any combination thereof, and added in an amount from about 0.05% (w/w) to 1 % (w/w).
  • a chelating agent which is selected from a group comprising Disodium EDTA and the like, or any combination thereof, and added in an amount from about 0.05% (w/w) to 1 % (w/w).
  • Embodiment no.6 A novel medicinal cream as disclosed in the preferred embodiment no 1, and embodiments nos. 2 to 5 further comprising a humectant which is selected from a group comprising Glycerin, Sorbitol, Propylene Glycol and the like, or any combination thereof, and added in an amount from about 5% (w/w) to 50% (w/w).
  • a humectant which is selected from a group comprising Glycerin, Sorbitol, Propylene Glycol and the like, or any combination thereof, and added in an amount from about 5% (w/w) to 50% (w/w).
  • Embodiment no. 7 A novel dermaceutical cream as described in the preferred embodiment 1 and embodiments nos. 1 to 6 wherein sodium fusidate is converted in-situ under totally oxygen free environment by slow addition of an acid, into Fusidic acid of a molecular dispersion form (due to the presence of a co-solvent) at the intermediate stage, and which Fusidic acid regenerates into an extremely finely dispersed form when added to a final cream base, thereby resulting in a finely and homogeneously dispersed Fusidic acid in the final cream; all operations of converting sodium fusidate into Fusidic acid carried out preferably in an environment free of atmospheric oxygen.
  • Embodiment no. 8 A novel dermaceutical cream as described in the preferred embodiment 1 and embodiments no. 1 to 7 wherein said conversion of Sodium Fusidate into said Fusidic acid and the following formation of said Fusidic acid in a finely dispersed form in the final cream base take place in an oxygen-free environment.
  • Embodiment no. 9 A novel dermaceutical cream as described in the preferred embodiment 1 and embodiments no. 7 and 8 wherein said oxygen- free environment comprises a gaseous environment formed of inert gas selected from a group comprising carbon dioxide, nitrogen, helium and the like.
  • Preferred embodiment 2 discloses a process to make a dermaceutical cream containing Fusidic acid, said process comprising the step of using sodium fusidate as the raw API and converting it in situ into Fusidic acid under oxygen-free environment in a cream base.
  • Embodiment No. 10 In an embodiment of the present invention the process of making the composition is disclosed, wherein the step of converting the sodium fusidate in situ into Fusidic acid of the preferred embodiment no. 2 comprises the steps of:
  • heating purified water in the range from 10% (w/w) to 50% (w/w), preferably 15% (w/w) to 40% (w/w), more preferably 20% (w/w) to 30% (w/w), in a water-phase vessel to 70 0 C to 80 0 C,
  • a preservative selected from a group comprising Methylparaben, Propylparaben, Chlorocresol, Potassium sorbate, Benzoic acid and the like, either singly or any combination thereof, in an amount between 0.05% (w/w) and 0.5% (w/w), preferably 0.3% (w/w), more preferably 0.2% (w/w), more preferably Benzoic acid, c. mixing the mixture using an agitator at 10 to 50 RPM while maintaining the temperature of the mixture at 70 0 C to 80 0 C,
  • waxy materials selected from a group comprising white soft paraffin, liquid paraffin, hard paraffin and the like, either singly or any combination thereof, in an amount between 5% (w/w) and 20% (w/w), preferably 15% (w/w), more preferablyl2.5% (w/w), to an oil-phase vessel and melting said wax by heating to 70 ° C to 80 ° C,
  • a primary emulsifier preferably in the form of a non ionic surfactant, selected from a group comprising
  • Cetostearyl alcohol, Cetomacrogo 1-1000 either singly or any combination thereof, wherein Cetostearyl alcohol is added in an amount between 1 % (w/w) and 15% (w/w), preferably 15% (w/w), more preferably 12.5% (w/w), and Cetomacrogo 1-1000 is added in an amount between 0.1 % (w/w) and 5% (w/w), preferably 1% (w/w), more preferably 0.5% (w/w), and optionally a secondary emulsifier selected from a group comprising Polysorbate-80, Span-80 and the like, preferably Polysorbate-80, in an amount between 1 and 5% w/w, more preferably 2% w/w and mixing the mixture thoroughly, preferably using an agitator, at 10 to 50 RPM while maintaining the temperature of the mixture at 70 °C to 80 0 C,
  • a co-solvent selected from a group comprising
  • an acid selected from a group comprising acids such as HC1, H 2 SO 4 , HNO 3 , Lactic acid and the like, either singly or any combination thereof, preferably Nitric acid in an amount from about 0.005% (w/w) to
  • a biopolymer-mixing vessel adding an acid, selected from a group comprising acids such as HC1, H2So4, HN03, Lactic acid and the like, either singly or any combination thereof, preferably Lactic acid to form a from about 0.005% (w/w) to 0.5% (w/w), preferably 0.3% (w/w), more preferably 0.1 % (w/w), and purified water from about 0.1 % (w/w) to 10% (w/w), preferably 8% (w/w), more preferably 5% (w/w) to form a mixture and dissolving a biopolymer, preferably Chitosan in an amount between about 0.01 % w/w and about 1% w/w, preferably from about 0.01% w/w to about 0.5% w/w and most preferably about 0.25% w/w,
  • an acid selected from a group comprising acids such as HC1, H2So4, HN03, Lactic acid and the like, either singly or any combination thereof
  • step g transferring the contents of the biopolymer-mixing vessel of step o to the mixing vessel of step g with continuous stirring at 10 to 50 RPM and homogenizing the mixture at 1000 to 3000 RPM under inert gas flushing and under vacuum of minus 1000 to minus 300 mm of mercury, said inert gas being preferably nitrogen, q. cooling the contents of the mixing vessel of step g to 30 °C to 37 °C using circulation of cooled water from a cooling tower at 8 °C to 15 °C into the jacket of mixing vessel,
  • Embodiment No. 11 In an embodiment of the present invention, the co- solvent of step h of the embodiment no. 10 above also serves as a humectant. However, in another embodiment of the invention, an additional humectant may be added, in the step a of embodiment 7, selected from a group comprising Glycerin, Sorbitol, Propylene glycol and the like, either singly or any combination thereof, to form a from about 5% (w/w) to 40% (w/w), preferably 30% (w/w), more preferably 25% (w/w).
  • Embodiment No. 12 In another embodiment of the present invention the process described in embodiment no.
  • 11 further incorporates adding a chelating agent, after the step of adding a preservative, selected from a group comprising Disodium EDTA and the like, either singly or any combination thereof, to form a from about 0.01 % (w/w) to 1 % (w/w), preferably 0.5% (w/w), more preferably 0.1 % (w/w).
  • a chelating agent selected from a group comprising Disodium EDTA and the like, either singly or any combination thereof, to form a from about 0.01 % (w/w) to 1 % (w/w), preferably 0.5% (w/w), more preferably 0.1 % (w/w).
  • Embodiment No. 13 In yet another embodiment of the present invention the process described in embodiments no. 11 and 12 further incorporate a buffering agent after the step of adding chelating agent selected from a group comprising Di Sodium Hydrogen Ortho Phosphate, Sodium Hydrogen Ortho Phosphate and the like from about 0.01 % (w/w) to 2.00% (w/w), preferably 1.0% (w/w), more preferably 0.5% (w/w).
  • a buffering agent selected from a group comprising Di Sodium Hydrogen Ortho Phosphate, Sodium Hydrogen Ortho Phosphate and the like from about 0.01 % (w/w) to 2.00% (w/w), preferably 1.0% (w/w), more preferably 0.5% (w/w).
  • Embodiment No. 14 In a further embodiment of the present invention the process described in embodiments no. 11 to 13 further incorporate an anti oxidants in the step h of embodiment 10 selected from a group comprising Butylated Hydroxy Anisole, Butylated Hydroxy Toluene and the like from about 0.001 % (w/w) to 5% (w/w), preferably 0.1% (w/w), more preferably 0.01 % (w/w).
  • an anti oxidants in the step h of embodiment 10 selected from a group comprising Butylated Hydroxy Anisole, Butylated Hydroxy Toluene and the like from about 0.001 % (w/w) to 5% (w/w), preferably 0.1% (w/w), more preferably 0.01 % (w/w).
  • Embodiment No. 15 Yet another process of making the composition as per the said earlier preferred embodiments & embodiments is disclosed, said process comprises the steps of: a. heating purified water in the range from 10% (w/w) to 50% (w/w), preferably 15% (w/w) to 40% (w/w), more preferably 20% (w/w) to 30% (w/w) in a water-phase vessel to 70 0 C to 80 0 C,
  • a preservative selected from a group comprising Methylparaben, Propylparaben, Chlorocresol, Potassium sorbate, Benzoic acid and the like, either singly or any combination thereof, added in an amount between 0.05% (w/w) and 0.5% (w/w), preferably 0.3% (w/w), more preferably 0.2% (w/w), the preferred preservative being Benzoic acid,
  • chelating agent is preferably Disodium edetate, added in an amount preferably between 0.01 and 1 %, more preferably 0.1%
  • buffering agent is preferably Di Sodium Hydrogen Ortho Phosphate, added in an amount preferably 0.01 % (w/w) to 2.00% (w/w), preferably 1.0% (w/w), more preferably 0.5% (w/w)
  • humectant is preferably Propylene Glycol, added in an amount preferably 5% (w/w) to 60% (w/w), more preferably 25% (w/w),
  • step c mixing the mixture of said water-phase vessel of step c using an agitator at 10 to 50 RPM while maintaining the temperature of the mixture at 70 0 C to 80 ° C,
  • an emulsifying wax preferably Cetostearyl alcohol, in an amount preferably between 1 and 15 %, more preferably 12.5 % and a waxy material, preferably white soft paraffin, in an amount preferably between 5 and 20 %, more preferably 12.5 %, and melting them by heating to 70 ° C to 80 ° C,
  • a non ionic surfactant or emulsifier in an amount preferably between 1 and 5 %, more preferably 2 % of Polysorbate 80 and 0.5% of Cetomacrogol 1000, and mixing the mixture thoroughly using an agitator at 10 to 50 RPM while maintaining the temperature of the mixture at 70 0 C to 80 0 C,
  • a co-solvent selected from a group comprising Propylene Glycol, Hexylene Glycol, PolyEthylene Glycol-400adding propylene glycol, or any mixture thereof, in an amount preferably between 5% (w/w) and 30% (w/w), more preferably 25% (w/w), and optionally adding and dissolving an antioxidant, selected from a group comprising Butylated Hydroxy Anisole, Butylated Hydroxy Toluene and the like, or any combination thereof, added in an amount preferably between 0.001 % (w/w) and 0.1 % (w/w), more preferably 0.01 % (w/w) Butylated Hydroxy Toluene in it by continuous mixing,
  • said inert gas preferably being nitrogen and adding Sodium Fusidate to the mixture and dissolving it in the mixture, said sodium fusidate being added in an amount between 0.1% (w/w) and about 25% (w/w), preferably between 0.5% (w/w) and about 5% (w/w) and more preferably about 2.08 % (w/w),
  • step j adjusting the pH of the mixture in said first API- vessel of step j to below 2 by using an acid, selected from a group comprising acids such as HCL, H 2 SO 4 , HNO 3 , lactic acid and the like, either singly or any combination thereof, preferably Nitric acid in an amount preferably between 0.005% (w/w) and 0.5 % (w/w), preferably 0.3 % (w/w), more preferably 0.25% (w/w),
  • an acid selected from a group comprising acids such as HCL, H 2 SO 4 , HNO 3 , lactic acid and the like, either singly or any combination thereof, preferably Nitric acid in an amount preferably between 0.005% (w/w) and 0.5 % (w/w), preferably 0.3 % (w/w), more preferably 0.25% (w/w),
  • step h transferring the contents of said first API-vessel of step k to said mixing vessel of step h with continuous stirring at 10 to 50 RPM and homogenizing the mixture at 1000 to 3000 RPM under inert gas flushing and under vacuum of minus 1000 to minus 300 mm of mercury, said inert gas preferably being nitrogen,
  • an acid selected from a group comprising acids such as HC1, H 2 S0 4 , HNO 3 , Lactic acid and the like, either singly or any combination thereof, preferably Lactic acid to form a from about 0.005% (w/w) to 0.5% (w/w), preferably 0.3% (w/w), more preferably 0.1 % (w/w), and purified water from about 0.1 % (w/w) to 10% (w/w), preferably 8% (w/w), more preferably 5% (w/w) to form a mixture and dissolving the said biopolymer, Chitosan in an amount between about 0.01% and about 1% by weight, preferably from about 0.01% w/w to about 0.5% w/w and most preferably about 0.25% w/w,
  • an acid selected from a group comprising acids such as HC1, H 2 S0 4 , HNO 3 , Lactic acid and the like, either singly or any combination thereof, preferably Lactic acid to form a from about
  • step h transferring the contents of the biopolymer mixture of step q to the mixing vessel of step h with continuous stirring at 10 to 50 RPM and homogenizing the mixture at 1000 to 3000 RPM under inert gas flushing and under vacuum of minus 1000 to minus 300 mm of mercury, said inert gas being preferably nitrogen, s. cooling the contents of said mixing vessel of step h to 30 0 C to 37 0 C using circulation of cooled water from cooling tower at 8 ° C to l5 ° C into the jacket of mixing vessel,
  • the co-solvent of step i also serves as a humectant.
  • an additional humectant may be added, selected from a group comprising Glycerin, Sorbitol, Propylene glycol and the like, either singly or any combination thereof, to form a from about 5% (w/w) to 40% (w/w), preferably 30% (w/w), more preferably 25% (w/w).
  • Embodiment no. 16 A method of treating primary & secondary bacterial & fungal skin infections and inflammations said method comprising applying of a cream containing at least one corticosteroid Hydrocortisone acetate, one antifungal Miconazole nitrate and Fusidic acid which is made in situ under oxygen-free environment using Sodium Fusidate, wherein said cream comprises Fusidic acid made using Sodium Fusidate, a cream base containing a preservative, primary and secondary emulsifiers, waxy materials, co-solvents, acids, and water.
  • Embodiment no. 17 A method of treating primary & secondary bacterial & fungal skin infections and inflammations said method comprising applying of a cream as described in the preferred embodiment 1 and any of embodiments 1 to 9.
  • the cream obtained using the process of the present invention is homogenous and white to off white in colour and viscous in consistency.
  • the pH of the product made using the process of the present invention is from about 3 to 6.
  • Sodium Fusidate ointments that are commercially available are greasy and cosmetically non elegant.
  • the active drug penetrates the skin for the optimum bio -dermal efficacy.
  • the particle size of the active drug plays an important role here. It is necessary that the active drug is available in a finely dispersed form for the product to be being efficacious. Also this is to be achieved in the safe pH compatible environment of skin (4.0 to 6.0). To achieve all these, it is essential to choose proper vehicles or co-solvents for the dissolution or dispersion of the drug.
  • the product of the present invention is efficacious due to the pronounced antibacterial activity of the regenerated Fusidic acid, antifungal activity of the Miconazole nitrate, antiinflammatory activity of the Hydrocortisone acetate which are available in reduced particle size than the conventional products, and in a finely dispersed form.
  • the average size of the fusidic acid particles in the present invention has been found to be less than 2 ⁇ whereas that for the existing creams varies between 14 ⁇ to 22 ⁇ . Equally importantly, the minimum particle size observed was approx. 0.5 ⁇ whereas the minimum particle size observed for existing creams ranged between 4 ⁇ and 10 ⁇ . The cream of the present invention is therefore physically distinct from any of the existing creams and easily distinguishable.
  • the reduced particle size of the fusidic acid of the present invention is of particular significance as it has been achieved without compromising the stability of fusidic acid.
  • products such as those disclosed in WO2007087806 by Leo Pharma have employed mechanical means such as mortar and pestle to mechanically grind fusidic acid for adding to a cream base.
  • WO2007087806 is silent on the particle size achieved, it will be known to a person skilled in the art that its particle size of fusidic acid cannot be finer than that of the present invention.
  • the inventor has screened different co-solvents such as Propylene Glycol, Hexylene Glycol, PolyEthyleneGlycol-400 & the like and dissolved the Sodium Fusidate in one of above co-solvents varying from about 5% (w/w) to 40% (w/w) under inert gas purging and under vacuum and converted to Fusidic acid in- situ by adding an acid such as HC1, H 2 SO 4 , HNO 3 , Lactic acid and the like from about 0.005% (w/w) to about 0.5% (w/w) under stirring and obtained Fusidic acid in more stabilized and solution form, which makes our final product in a cream base which easily penetrates the skin and highly efficacious, and also highly derma compatible by having a pH of about 3.0 to about 6.0.
  • the stability of the product is confirmed by the stability studies performed for 6 months as per ICH guidelines and a comparison of stress studies done for in- house product with those on samples of commercially available comparable products.
  • API-stability experiments were carried out (see tables 9 - 11 ) using the product of the present invention and products currently commercially available. Tests were carried out to observe (or measure as appropriate) the physical appearance of the product, the pH value and assay of the API over a period of time. Tests were also carried out to assess the stability by subjecting the product to stress studies such as autoclave test and oxydative degradation test. Further, in vitro antimicrobial zone of inhibition studies and preclinical studies such as blood clotting studies & burns wound healing studies were also carried out over a period of time.
  • Each gram of product of the present invention used for the tests contained Sodium Fusidate as the starting raw material in the amount required to produce approximately 2% (w/w) Fusidic acid, 1% (w/w) Hydrocortisone acetate & 2%(w/w) Miconazole nitrate in the finished product.
  • the product used for the Stability Studies tests contained approximately 10% extra API (overages).
  • the product of the present invention used for studies contained Fusidic acid cream prepared using Sodium Fusidate as starting material.
  • composition of the final cream is given in the table 8 below.
  • Example- Table 9 Composition :Fusidic acid 2% (equivalent of Sodium Fusidate 2.08% w/w) + Hydrocortisone acetate (l %w/w) + Miconazole nitrate (2% w/w) + Chitosan 0.25% (w/w) Cream
  • PRODUCT SODIUM FUSIDATE + HYDROCORTISONE ACETATE + MICONAZOLE NITRATE CREAM PACK: Aluminum Collapsible tube Composition:
  • Each gm contains: i) Sodium Fusidate BP equivalent to Fusidic Acid BP 2.0 % ii) Hydrocortisone Acetate IPl .0 % iii) Miconazole Nitrate IP 2.0 %
  • the cream is applied after thorough cleansing and drying the affected area. Sufficient cream should be applied to cover the affected skin and surrounding area. The cream should be applied two - four times a day depending upon the skin conditions for the full treatment period, even though symptoms may have improved.
  • Excision wound healing activity of the cream of the present invention was determined through animal testing. An excision wound 2.5 cm in diameter was inflicted by cutting away full thickness of the skin. The amount of contraction of the wound observed over a period indicated that the cream of present invention provides significantly improved wound contraction than a control(untreated wound).
  • Blood clotting time was observed in both groups of animals, untreated control group and the test group of animals treated with the product of the present invention. Statistically significant decrease in the blood clotting time in treated group animals was observed when compared with that of the control group animals. The mean percent reduction of 60 - 70% was observed for the blood clotting time using the product of the present invention.
  • the therapeutic efficacy of topically applied cream of the present invention is due to the pronounced antibacterial / antifungal activity of the Sodium Fusidate & Miconazole nitrate against the organisms responsible for skin infections, pronounced antiinflammatory activity of the Hydrocortisone acetate against inflammations, the unique ability of actives to penetrate intact skin and wound healing & soothing properties of chitosan.
  • the cream of the present invention incorporates a skin-friendly biopolymer in the form of chitosan provides enhanced therapeutic outcomes. This is evident from the reduced blood clotting time, increased epithelial effect, and faster relief from infection and inflammation and wound contraction.
  • the cream of the present invention incorporates a biopolymer without compromising the stability of the cream matrix and without adversely affecting the functioning of known active pharmaceutical ingredients. This has been achieved through a careful selection of functional excipients to bypass undesirable aspects of physio- chemical compatibility/stability and bio-release.
  • the cream of the present invention provides an integrated uni-dose or a single-dose therapy hitherto unavailable in prescription dermaceutical formulations.
  • the novel cream of the present invention is adequately stable/efficacious at ambient conditions and does not need special temperature control during transportation/storage - hence will go a long way in achieving these social objectives.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention concerne une composition médicinale pour traiter des inflammations cutanées, des infections cutanées bactériennes/fongiques et des plaies associées ainsi que d'autres plaies cutanées y compris les plaies provoquées par des brûlures. La crème permet également la réjuvénation cutanée grâce à un processus d'épithélisation. La crème comprend: a) un biopolymère sous la forme de chitosane, b) des principes actifs pharmaceutiques (API) sous la forme d'acide fusidique généré in situ à partir de fusidate de sodium, d'acétate d'hydrocortisone et de nitrate de miconazole, c) une base de crème contenant des émulsifiants primaires et secondaires, des matériaux cireux, des co-solvants, des acides, des conservateurs, des tampons, des anti-oxydants, des chélateurs, et des humectants et d) de l'eau. L'invention concerne également un procédé permettant de réaliser la crème médicinale contenant l'acide fusidique formé in situ à partir de fusidate de sodium par transformation de celui-ci en acide fusidique dans un environnement exempt d'oxygène crée au moyen d'un gaz inerte. La crème présente une meilleure durée de conservation et une granulométrie plus fine des principes actifs pharmaceutiques par rapport aux crèmes classiques contenant de l'acide fusidique.
PCT/IB2010/056129 2010-10-15 2010-12-30 Crème médicinale à base d'acide fusidique réalisée au moyen de fusidate de sodium, d'un corticostéroïde et d'un agent anti-fongique, et par incorporation d'un biopolymère, procédé permettant de fabriquer une telle crème WO2012049540A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN2865MU2010 2010-10-15
IN2865/MUM/2010 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012049540A1 true WO2012049540A1 (fr) 2012-04-19

Family

ID=43896843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/056129 WO2012049540A1 (fr) 2010-10-15 2010-12-30 Crème médicinale à base d'acide fusidique réalisée au moyen de fusidate de sodium, d'un corticostéroïde et d'un agent anti-fongique, et par incorporation d'un biopolymère, procédé permettant de fabriquer une telle crème

Country Status (1)

Country Link
WO (1) WO2012049540A1 (fr)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911932A (en) 1984-01-18 1990-03-27 Johnson And Johnson Consumer Products, Inc. Skin care compositions
US5023251A (en) 1985-09-28 1991-06-11 Beiersdorf Ag O/W cream containing hydrocortisone diester
US5461068A (en) 1993-09-29 1995-10-24 Corwood Laboratories, Inc. Imidazole derivative tincture and method of manufacture
US5961997A (en) 1997-03-25 1999-10-05 Swinehart; James M. Antipruritic composition
US6001864A (en) 1995-06-07 1999-12-14 Taisho Pharmaceutical Co., Ltd. Antifungal agent
WO2001045645A1 (fr) * 1999-12-23 2001-06-28 Ivrea, Inc. Biopolymere de chitosane utilise dans l'administration par voie topique d'agents actifs
US6352691B1 (en) 1999-05-12 2002-03-05 Robert Ortiz Therapeutic after-shave care lotion
US20020111298A1 (en) 2000-12-18 2002-08-15 Meeks Joyce Ann Moisturizing skin ointment - composition consisting of polymyxin B Sulfate, bacitracin zinc, neomycin (the combination of which totals 1 ounce), hydrocortisone acetate (1 ounce) and white petrolatum (13 ounces)
US6767534B1 (en) 2002-09-20 2004-07-27 Robert Ortiz Post hair removal skin care lotion
CN1931164A (zh) 2006-09-20 2007-03-21 西北农林科技大学 一种硝酸咪康唑纳米乳液药物及其制备方法
WO2007087806A1 (fr) 2006-02-02 2007-08-09 Leo Pharma A/S Composition topique comprenant une substance antibactérienne
WO2009063493A2 (fr) 2007-09-10 2009-05-22 Glenmark Pharmaceuticals Limited Composition pharmaceutique topique pour la combinaison de l'acide fusidique avec un corticostéroïde
WO2010084458A1 (fr) * 2009-01-21 2010-07-29 Sulur Subramaniam Vanangamudi Nouvelle crème dermaceutique fabriquée à partir de fusidate de sodium, d'antifongiques et de stéroïdes
WO2010106460A1 (fr) * 2009-03-17 2010-09-23 Sulur Subramaniam Vanangamudi Crème dermaceutique fabriquée à l'aide de fusidate de sodium, de nitrate de miconazole et de propionate de fluticasone

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911932A (en) 1984-01-18 1990-03-27 Johnson And Johnson Consumer Products, Inc. Skin care compositions
US5023251A (en) 1985-09-28 1991-06-11 Beiersdorf Ag O/W cream containing hydrocortisone diester
US5461068A (en) 1993-09-29 1995-10-24 Corwood Laboratories, Inc. Imidazole derivative tincture and method of manufacture
US6001864A (en) 1995-06-07 1999-12-14 Taisho Pharmaceutical Co., Ltd. Antifungal agent
US5961997A (en) 1997-03-25 1999-10-05 Swinehart; James M. Antipruritic composition
US6352691B1 (en) 1999-05-12 2002-03-05 Robert Ortiz Therapeutic after-shave care lotion
WO2001045645A1 (fr) * 1999-12-23 2001-06-28 Ivrea, Inc. Biopolymere de chitosane utilise dans l'administration par voie topique d'agents actifs
US20020111298A1 (en) 2000-12-18 2002-08-15 Meeks Joyce Ann Moisturizing skin ointment - composition consisting of polymyxin B Sulfate, bacitracin zinc, neomycin (the combination of which totals 1 ounce), hydrocortisone acetate (1 ounce) and white petrolatum (13 ounces)
US6767534B1 (en) 2002-09-20 2004-07-27 Robert Ortiz Post hair removal skin care lotion
WO2007087806A1 (fr) 2006-02-02 2007-08-09 Leo Pharma A/S Composition topique comprenant une substance antibactérienne
CN1931164A (zh) 2006-09-20 2007-03-21 西北农林科技大学 一种硝酸咪康唑纳米乳液药物及其制备方法
WO2009063493A2 (fr) 2007-09-10 2009-05-22 Glenmark Pharmaceuticals Limited Composition pharmaceutique topique pour la combinaison de l'acide fusidique avec un corticostéroïde
WO2010084458A1 (fr) * 2009-01-21 2010-07-29 Sulur Subramaniam Vanangamudi Nouvelle crème dermaceutique fabriquée à partir de fusidate de sodium, d'antifongiques et de stéroïdes
WO2010106460A1 (fr) * 2009-03-17 2010-09-23 Sulur Subramaniam Vanangamudi Crème dermaceutique fabriquée à l'aide de fusidate de sodium, de nitrate de miconazole et de propionate de fluticasone

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALSARRA ET AL: "Chitosan topical gel formulation in the management of burn wounds", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, ELSEVIER BV, NL, vol. 45, no. 1, 1 July 2009 (2009-07-01), pages 16 - 21, XP026116180, ISSN: 0141-8130, [retrieved on 20090402], DOI: 10.1016/J.IJBIOMAC.2009.03.010 *
RAMSAY C A ET AL: "The treatment of atopic dermatitis with topical fusidic acid and hydrocortisone acetate", JEADV. JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 7, no. SUPPL. I, 1 July 1996 (1996-07-01), pages S15 - S22, XP002582785, ISSN: 0926-9959, [retrieved on 20021011], DOI: 10.1016/0926-9959(96)00032-3 *
RAVI KUMAR M N V: "A review of chitin and chitosan applications", REACTIVE & FUNCTIONAL POLYMERS, ELSEVIER SCIENCE PUBLISHERS BV, NL, vol. 46, no. 1, 1 November 2000 (2000-11-01), pages 1 - 27, XP004224437, ISSN: 1381-5148, DOI: 10.1016/S1381-5148(00)00038-9 *

Similar Documents

Publication Publication Date Title
US20120028943A1 (en) Medicinal Cream Made Using Fluticasone Propionate And Chitosan And A Process To Make The Same
US20120035144A1 (en) Medicinal fusidic acid cream made using sodium fusidate and incorporating a biopolymer, a corticosteroid, and an antifungal agent, and a process to make it.
US20120270835A1 (en) Medicinal Cream Made Using Hydrocortisone Acetate and A Process To Make The Same
WO2010122475A1 (fr) Crème médicinale à base d'acide fusidique préparée avec du fusidate de sodium et incorporant un biopolymère, du clotrimazole et du mométasone, et son procédé de fabrication
WO2011101826A1 (fr) Crème médicinale contenant de l'acide fusidique fabriquée à l'aide de fusidate de sodium et incorporant un biopolymère, de la terbinafine et de la dexaméthasone et son procédé de fabrication
WO2010122493A1 (fr) Crème médicinale à base d'acide fusidique préparée avec du fusidate de sodium et incorporant un biopolymère, un corticostéroïde et un agent antifongique, et son procédé de fabrication
US20120040927A1 (en) Medicinal antifungal and steroid cream incorporating a biopolymer and a process to make it.
WO2012023082A1 (fr) Crème médicamenteuse à base d'acide fusidique préparée avec du fusidate de sodium et comprenant un biopolymère, un corticostéroïde - acétate d'hydrocortisone, et un agent antifongique - chlorhydrate de terbinafine, et procédé de préparation correspondant
WO2012017381A1 (fr) Crème médicinale à base d'acide fusidique fabriquée en utilisant du fusidate de sodium et en incorporant un biopolymère, du dipropionate de béclométhasone, du clotrimazole et son procédé de fabrication
WO2012017372A1 (fr) Crème médicinale à l'acide fusidique obtenue en utilisant du fusidate de sodium et incorporant un biopolymère, du propionate de clobétasol, et du nitrate de miconazole et procédé de fabrication de celle-ci
WO2011101824A1 (fr) Crème médicinale contenant de l'acide fusidique fabriquée à l'aide de fusidate de sodium et incorporant un biopolymère, du miconazole, de la dexaméthasone et son procédé de fabrication
WO2010122476A1 (fr) Crème médicinale à base d'acide fusidique préparée avec du fusidate de sodium et incorporant un biopolymère, du miconazole et du mométasone, et son procédé de fabrication
WO2011101825A1 (fr) Crème médicinale d'acide fusidique faite au moyen de fusidate de sodium et incorporant un biopolymère, du clotrimazole et de la clobétasone, et procédé de réalisation associé
WO2012017383A1 (fr) Crème médicinale à l'acide fusidique obtenue en utilisant du fusidate de sodium et incorporant un biopolymère, du dipropionate de béclométhasone, et du chlorhydrate de terbinafine et procédé de fabrication de celle-ci
WO2011101831A2 (fr) Crème médicinale à base d'acide fusidique préparée avec du fusidate de sodium et incorporant un biopolymère, un corticostéroïde - du butyrate de clobétasone, et un antifongique - du chlorhydrate de terbinafine, et son procédé de fabrication
US20120040944A1 (en) medicinal cream made using mometasone furoate and chitosan and a process to make the same
WO2010122494A1 (fr) Crème médicinale à base d'acide fusidique préparée avec du fusidate de sodium et incorporant un biopolymère et du mométasone, et son procédé de fabrication
US20120115828A1 (en) Medicinal cream containing miconazole nitrate, hydrocortisone acetate, and a biopolymer, and a process to make it
WO2011101828A1 (fr) Crème médicinale d'acide fusidique faite au moyen de fusidate de sodium et incorporant un biopolymère et de la bétaméthasone, et procédé de réalisation associé
WO2012049544A1 (fr) Crème médicinale à base d'acide fusidique réalisée au moyen de fusidate de sodium et par incorporation d'un biopolymère, d'un acétate d'hydrocortisone en tant que corticostéroïde, et de clotrimazole en tant q'agent antifongique, et procédé permettant de fabriquer une telle crème
WO2012049541A1 (fr) Crème médicinale à base d'acide fusidique réalisée au moyen de fusidate de sodium et par incorporation d'un biopolymère et d'un corticostéroïde, et procédé permettant de fabriquer une telle crème
WO2012049539A1 (fr) Crème médicinale à base d'acide fusidique réalisée au moyen de fusidate de sodium, d'un corticostéroïde et d'un agent anti-fongique, et par incorporation d'un biopolymère, procédé permettant de fabriquer une telle crème
WO2011101829A2 (fr) Crème médicinale à base d'acide fusidique préparée avec du fusidate de sodium et incorporant un biopolymère, un corticostéroïde - du dipropionate de bétaméthasone, et un antifongique - du nitrate de miconazole, et son procédé de fabrication
WO2012023081A1 (fr) Crème médicinale contenant de l'acide fusidique obtenue à l'aide de fusidate de sodium, et contenant un biopolymère, de l'acétate d'hydrocortisone (corticostéroïde), et du nitrate d'oxiconazole (agent antifongique), et son procédé de fabrication de cette crème
WO2010122492A1 (fr) Crème médicinale à base d'acide fusidique préparée avec du fusidate de sodium et incorporant un biopolymère et un corticostéroïde, et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816358

Country of ref document: EP

Kind code of ref document: A1