WO2012048563A1 - 利用室内无线信号覆盖系统进行多天线传输的系统和方法 - Google Patents

利用室内无线信号覆盖系统进行多天线传输的系统和方法 Download PDF

Info

Publication number
WO2012048563A1
WO2012048563A1 PCT/CN2011/073459 CN2011073459W WO2012048563A1 WO 2012048563 A1 WO2012048563 A1 WO 2012048563A1 CN 2011073459 W CN2011073459 W CN 2011073459W WO 2012048563 A1 WO2012048563 A1 WO 2012048563A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signals
frequency
frequency conversion
channel signals
Prior art date
Application number
PCT/CN2011/073459
Other languages
English (en)
French (fr)
Inventor
郭俊峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012048563A1 publication Critical patent/WO2012048563A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of cellular mobile communications, and more particularly to a system and method for multi-antenna transmission using an indoor wireless signal overlay system.
  • the channel bandwidth and signal-to-noise ratio of the communication system determine the transmission rate of the information, which is called the Shannon channel capacity.
  • Increasing the information transmission rate can be achieved by increasing the channel bandwidth and/or increasing the signal to noise ratio.
  • the researchers have thought of using multiple transmitting and receiving antennas on one or both sides of the communication, and actively utilizing the spatial orientation information of the user or the redundancy of the spatial channel to increase the capacity of the system. It is the origin of MIMO (Multiple Input Multiple Output) system.
  • MIMO Multiple Input Multiple Output
  • ⁇ technology The basic idea of ⁇ technology is: Multiple antennas are used in the transmission and reception of dual-end antennas to simultaneously transmit and receive signals, and space-time signal processing technology is utilized to make full use of spatial channel resources without increasing spectrum resources and transmitting power. Multiply the capacity and reliability of communication systems and increase spectrum utilization to achieve higher data rates, better transmission quality or greater system coverage.
  • the development of mobile communication technology from the second generation to the third generation, support for high-speed data services is an important feature of the third generation mobile communication network.
  • the trend of mobile communication networks is that the proportion of data services is increasing.
  • the data services of the fourth generation mobile communication networks will account for a larger proportion than the second and third generation mobile communication networks.
  • indoor wireless coverage is the key to current and future mobile communication network coverage.
  • the first method is to cover the indoors through the outdoor cellular network signal
  • the second method is to provide indoor wireless signal coverage through the indoor distribution system.
  • the signal strength of the outdoor cellular network is reduced after the signal is transmitted to the room, and the quality of the signal is also reduced, so the coverage effect is very poor.
  • the use of outdoor base station signal coverage indoors will not effectively meet indoor signal coverage requirements.
  • the indoor distribution system transmits the RF signal output by the base station to the area to be covered through the RF cable, and then transmits it through a miniaturized antenna (usually an indoor ceiling antenna), and transmits the RF signal received by the antenna through the RF cable.
  • the base station is configured to complete the transmission and reception of the wireless signal to achieve coverage of the indoor wireless signal.
  • the wireless signal coverage quality of the indoor distribution system is better than that of the outdoor base station signal coverage room.
  • RF cables and antennas For wireless signal coverage of indoor distribution systems, two or more RF cables and antennas are required to form a MIMO channel.
  • the existing indoor distribution systems of mobile operators are all RF cables and antennas.
  • To support MIMO technology it is necessary to retrofit existing indoor distribution systems, and add more than one RF cable and antenna.
  • the workload and difficulty of the renovation project are very large.
  • the renovation project will also cause a certain degree of damage to the appearance of the original property, and may face the difficulty of the property owner's refusal to transform the original property.
  • the technical problem to be solved by the present invention is to provide a system and method for multi-antenna transmission using an indoor wireless signal coverage system to overcome the drawbacks of the prior art indoor distribution system that are difficult to implement and costly.
  • the present invention provides a method for transmitting multiple antennas by using an indoor wireless signal coverage system, which is applied to a process in which a base station and an indoor wireless signal coverage system transmit signals through an RF cable, including:
  • the signal sender determines the N signals to be transmitted, and performs frequency conversion processing to obtain N signals that do not overlap each other in the frequency band, and then combines the N signals into one signal, and sends the signal to the signal through the RF cable.
  • Number receiver determines the N signals to be transmitted, and performs frequency conversion processing to obtain N signals that do not overlap each other in the frequency band, and then combines the N signals into one signal, and sends the signal to the signal through the RF cable.
  • the signal receiving party divides the received one-way signal into N-channel signals, performs frequency conversion and filtering processing, and obtains N-channel signals before the signal transmitting party performs frequency-conversion processing, and then sends the corresponding signals to the local N antennas; Where N is a natural number greater than one.
  • the above method may also have the following features:
  • the frequency conversion process is performed to obtain N-channel signals whose frequency bands do not overlap each other, including:
  • the signal sender performs frequency conversion processing on the N-1 channel signals in the N channel signals to be transmitted, and converts the N-1 channel signals into N-1 channel signals whose frequency bands do not overlap each other.
  • the above method may also have the following features:
  • the frequency conversion process is performed to obtain N-channel signals whose frequency bands do not overlap each other, and the method includes: the signal sender performs frequency conversion processing to obtain an N-channel signal having the same center frequency difference between the adjacent two-way signals.
  • the above method may also have the following features:
  • the signal receiving party splits the received one-way signal into an N-channel signal, and obtains an N-way signal before the frequency conversion processing by the signal transmitting unit by using frequency conversion and filtering processing, including:
  • the signal receiving party performs filtering processing on one of the obtained N-channel signals after the branching, and performs frequency conversion processing on the remaining N-1 road signals, and then performs filtering processing;
  • the signal is filtered out of the frequency band outside the frequency band in which the carrier center frequency of the base station is the center frequency and the carrier bandwidth of the base station is the bandwidth.
  • the above method may also have the following features:
  • the signal sender separately performs frequency conversion processing on the N-1 channel signals in the N channel signals to be transmitted, wherein: the signal sender performs up-conversion processing on the N-1 channel signals respectively;
  • the signal receiving party separately performs frequency conversion processing on the remaining N-1 channel signals, wherein the signal receiving party performs down-conversion processing on the remaining N-1 channel signals.
  • the above method may also have the following features:
  • the method further includes:
  • the invention also provides a system for multi-antenna transmission by using an indoor wireless signal coverage system, which is applied to a signal transmission process between a base station and an indoor wireless signal coverage system, including: a signal sender and a signal receiver connected through a radio frequency cable ;
  • the signal sender is configured to: determine N signals to be transmitted, perform frequency conversion processing to obtain N signals with non-overlapping frequency bands, combine the N signals into one signal, and send the signal to the signal through the RF cable.
  • the signal receiving party is configured to: divide the received one-way signal into N-channel signals, perform frequency conversion and filtering processing, and obtain N signals that are sent by the signal sender before performing frequency conversion processing, and correspondingly send to the local N roots.
  • N is a natural number greater than one.
  • the above system can also have the following features:
  • the signal sender includes N-1 sender RF converters and combiners;
  • Each of the transmitter RF converters is respectively configured to: perform frequency conversion processing on the N-1 channel signals of the N signals to be transmitted, and convert the N-1 channel signals into N-1 road signals whose frequency bands do not overlap each other;
  • the combiner is configured to: combine the N-1 road signal obtained by frequency conversion of the N-1 transmitter RF converters and the one channel signal not subjected to frequency conversion processing into one way.
  • the above system can also have the following features:
  • the signal receiver includes N receiver filters and N-1 receiver RF converters; one of the receiver filters is configured to: filter one of the obtained N signals after the splitting ;
  • the N-1 receiving RF converters are respectively set to: perform frequency conversion processing on the remaining N-1 signals;
  • the remaining N-1 receiver filters are set to: filter the N-1 signals obtained after the frequency conversion processing of the N-1 receiver RF converters respectively;
  • the N receiver filters are further configured to: when performing filtering processing, at a frequency The signal outside the frequency band range with the carrier center frequency of the base station as the center frequency point and the carrier bandwidth of the base station as the bandwidth is filtered out.
  • the above system can also have the following features:
  • the signal sender further includes N sender filters;
  • the N transmitter filters are configured to: respectively filter the N signals to be transmitted before the frequency conversion, and set the frequency to be at a center frequency of the base station, and the carrier bandwidth of the base station. Filter out signals outside the bandwidth range of the bandwidth.
  • the method and system of the present invention overcome the shortcomings of the prior art that need to add more RF cables and antennas, and the difficulty of reconstruction is improved, and the indoor distribution system using existing operators is achieved. Supporting the effect of MIMO technology, saving the transformation cost of the indoor distribution system, and improving the network service rate and spectrum utilization.
  • FIG. 1 is a structural diagram of a system for performing multi-antenna transmission using an indoor wireless signal coverage system in an embodiment of the present invention
  • FIG. 2 is a structural diagram of a first radio frequency converter in an embodiment of the present invention
  • FIG. 3 is a structural diagram of a second radio frequency converter in the embodiment of the present invention. Preferred embodiment of the invention
  • the RF cable Since the RF cable has a very wide passband, it can transmit with a small loss from a DC signal to a signal of up to 20 GHz. After frequency division multiplexing of the RF signals of multiple antennas, it can be simultaneously transmitted on one RF cable.
  • the signals of each antenna can be transmitted without interference in the sub-bands in the non-overlapping frequency band of the radio frequency cable, that is, the problem that the indoor distribution and the multi-antenna technology need to increase the construction of the radio frequency cable and the owner's permission can be solved.
  • the method of the present invention comprises: 1) In the process of transmitting signals by the base station and the indoor wireless signal coverage system through a radio frequency cable, the signal sender determines the N signals to be transmitted, performs frequency conversion processing, and obtains N signals with non-overlapping frequency bands, and then N The road signals are combined into one signal and sent to the signal receiving party through the above radio frequency cable;
  • the signal sender may perform frequency conversion processing only on the N-1 channel signals of the N signals to be transmitted, and convert the N-1 channel signals into N-1 road signals whose frequency bands do not overlap each other, and then, after frequency conversion, N The frequency bands of the road signals must not overlap each other.
  • the signal sender obtains an N-channel signal having the same center frequency difference between the adjacent two signals by frequency conversion processing.
  • the center frequency difference between the adjacent two signals may also be different, as long as the channels of the N signals do not overlap each other.
  • the signal sender Before the signal sender converts the N-channel signals to be transmitted into N-channel signals whose frequency bands do not overlap each other, the signal sender can also filter the N-channel signals to be transmitted, and set the frequency to be centered on the carrier center frequency of the base station. The signal outside the frequency range of the base station whose carrier bandwidth is the bandwidth is filtered out.
  • the signal receiver splits the received signal into N signals, performs frequency conversion and filtering processing, and obtains N signals before the signal sender performs the frequency conversion processing, and then sends the corresponding signals to the local N antennas; N is a natural number greater than one.
  • the signal receiving party obtains the N signal before the frequency conversion processing by the signal transmitting unit through frequency conversion and filtering processing, and specifically includes: the signal receiving party filters and processes one of the obtained N signals after the splitting, The remaining N-1 signals are separately subjected to frequency conversion processing and then subjected to filtering processing.
  • the frequency is outside the frequency range of the carrier center frequency of the base station and the carrier bandwidth of the base station as the bandwidth. Signal filtering.
  • the signal transmitting party separately performs up-conversion processing on the N-1 way signals; and the signal receiving side performs down-conversion processing on the remaining N-1 way signals respectively.
  • the invention also provides a system for multi-antenna transmission by using an indoor wireless signal coverage system, which is applied to a signal transmission process between a base station and an indoor wireless signal coverage system, including: a signal sender and a signal receiver connected through a radio frequency cable ;
  • the signal sender is used to determine the N signals to be transmitted, and the frequency conversion process is performed to obtain the frequency bands not heavy. After stacking the N signals, the N signals are combined into one signal and sent to the signal receiver through the RF cable;
  • the signal receiver is configured to split the received signal into N signals, perform frequency conversion and filtering processing, and obtain N signals before the frequency converter performs the frequency conversion processing, and then send them to the local N antennas; N is a natural number greater than one.
  • the signal sender may include N-1 sender RF converters and combiners; each transmitter RF converter is respectively used for frequency conversion processing of N-1 signals in the N signals to be transmitted, and the N is -1 channel signal is converted into N-1 signal with non-overlapping frequency bands;
  • the combiner is used to combine the N-1 signal obtained by frequency conversion of N-1 transmitting RF converters and the one signal without over-frequency processing.
  • the signal receiver may include N receiver filters and N-1 receiver RF converters; a receiver filter is used to filter one of the obtained N signals after the branching;
  • N-1 receiver RF converters are respectively used for frequency conversion processing on the remaining N-1 road signals; the remaining N-1 receiver filters are used for frequency conversion processing of the above N-1 receiver RF converters respectively The obtained N-1 signal is filtered.
  • the N receiver filters are used to filter out signals whose frequency is outside the frequency range of the base station with the carrier center frequency as the center frequency and the base station's carrier bandwidth as the bandwidth. .
  • the signal sender may further include N sender filters;
  • the N sender filters are used to filter the N signals to be transmitted before the frequency conversion, and filter the signals outside the frequency range of the base station with the carrier center frequency as the center frequency and the base station's carrier bandwidth as the bandwidth. .
  • the system for multi-antenna transmission using the indoor wireless signal coverage system of the present invention includes the following components:
  • the indoor wireless signal coverage system includes: an integrated antenna B, a first RF converter, a first splitter/combiner D, a first filter G, and a second filter H; the base station includes: a plurality of antennas, a second Split/combiner E, second RF converter? The third filter J, the fourth filter K, and the base station DC power supply I.
  • the integrated antenna B includes two antennas, that is, a first antenna B1 and a second antenna B2.
  • the two antennas are packaged in one housing;
  • the first antenna B1 of the integrated antenna B is connected to one end of the first filter G;
  • the other end of the first filter G is connected to the port D1 of the first splitter/combiner D; the port D1 of the first splitter/combiner D is connected to the first antenna B1 of the integrated antenna B through the first filter G;
  • the second antenna B2 is connected to one end of the second filter H; the other end of the second filter H is connected to the port C1 of the first RF converter C;
  • Port C2 of the first RF converter C is connected to port D2 of the first sub/combiner D;
  • RF cable A is connected to the port D3 of the first sub/combiner D and the port E3 of the second sub/combiner E;
  • Port E2 of the second sub-combiner E is connected to the fourth filter K;
  • the fourth filter K is connected to the base station antenna port 1;
  • the port E1 of the second splitter/combiner E is connected to the port F1 of the second RF converter F;
  • the port F2 of the second RF converter F is connected to the third filter J;
  • the third filter J is connected to the base station antenna port 2;
  • the base station DC power supply I is connected to the RF cable A, and the first RF converter C and the second RF converter F are powered by the RF cable A.
  • the first RF converter C of the present invention comprises: a port Cl, a port C2, a circulator C3, a circulator C4, an up converter C5, and a down converter C6;
  • the input/output port C1 of the first RF converter C is connected to the input and output port C4-3 of the circulator C4; Port C4-1 of circulator C4 is connected to one end of upconverter C5;
  • the other end of the up-converter C5 is connected to the port C3-2 of the circulator C3;
  • the port C3-3 of the circulator C3 is connected to the port C2 of the first RF converter C;
  • the port C3-1 of the circulator C3 is connected to one end of the down converter C6;
  • the other end of the down converter C6 is connected to the input port C4-2 of the circulator C4.
  • the second RF converter F of the present invention includes a port F1, a port F2, a circulator F3, a circulator F4, an up-converter F5, and a down-converter F6;
  • the input/output port F1 of the second RF converter F is connected to the port F3-3 of the circulator F3;
  • the port F3-1 of the circulator F3 is connected to one end of the down converter F6;
  • the other end of the down converter F6 is connected to the port F4-2 of the circulator F4;
  • the port F4-3 of the circulator F4 is connected to the input/output port F2 of the second RF converter F; the port F4-1 of the circulator F3 is connected to one end of the up-converter F5;
  • the other end of the up-converter F5 is output to port F3-2 of circulator F3.
  • the process of transmitting signals from the indoor wireless signal coverage system to the base station includes the following steps:
  • the first antenna B1 passes the received signal (hereinafter simply referred to as the received signal of the first antenna B1) through the first filter G, and then inputs the first splitter/combiner D; wherein the first filter G has a band pass characteristic , the center frequency is the carrier center frequency of the base transceiver station, and the bandwidth of the bandwidth of the transceiver station;
  • the second antenna B2 outputs the received signal (hereinafter referred to as the received signal of the second antenna B2) to the second filter H, and is filtered and input to the first RF converter C through the port C1, in the first radio frequency conversion.
  • the larger the fO the farther the frequency between fl and £2 is, the first filter to the fourth The lower the parameter requirements of the filter, the lower the cost.
  • the value of f0 should be large enough to ensure that the center frequency of the received signal of the second antenna B2 after frequency conversion is up to 2, which is the highest operating band of the RF cable.
  • the frequency of the difference between the frequency and the lowest frequency and fl is the largest, and the characteristic of the second filter H is the same as the characteristic of the first filter G;
  • the received signal of the second antenna B2 subjected to the up-conversion processing is input to the first sub/combiner D, combined with the received signal of the first antenna B1, and then transmitted to the base station portion through the radio frequency cable;
  • the second splitter/combiner E divides the signal received through the RF cable into two signals, sends one of the signals to the second RF converter F, and sends the other signal to the fourth filter K;
  • the fourth filter K filters out the received signal of the first antenna B1 and sends it to the corresponding antenna one base station antenna port 1;
  • step 22 it is also possible to down-convert the received signal in the first RF converter C in step 22); and correspondingly, in step 26), the received signal is received in the second RF converter F. The signal is upconverted.
  • the process of transmitting signals from a base station to an indoor wireless signal coverage system includes the following steps:
  • the transmit signal of the base station antenna port 1 is input to the second splitter/combiner E via the fourth filter K;
  • the transmitting signal of the base station antenna port 2 is filtered by the third filter J and input to the second RF converter F, and the up-conversion is performed inside the second RF converter F, and the spectrum of the transmitting signal of the base station antenna port 2 is linear.
  • the ground frequency is changed to another frequency band;
  • the second RF converter F inputs the transmission signal of the up-converted base station antenna port 2 to the second splitter/combiner E, combines with the transmit signal of the base station antenna port 1, and transmits it to the indoor via the RF cable.
  • Wireless signal coverage system
  • the first splitter/combiner E splits two signals from the transmit signal transmitted from the RF cable, one for the first filter G and the other for the first frequency converter C;
  • the first filter G filters out the transmit signal of the base station antenna port 1 and sends it to the first antenna B1;
  • the method and system of the present invention overcomes the shortcomings of the prior art that require more RF cables and antennas to be added and is difficult to retrofit, and achieves the advantages of utilizing existing operators.
  • the indoor distribution system supports the effect of MIMO technology, saves the transformation cost of the indoor distribution system, and improves the network service rate and spectrum utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

利用室内无线信号覆盖系统进行多天线传输的系统和方法
技术领域
本发明涉及一种蜂窝移动通讯领域, 尤其涉及一种利用室内无线信号覆 盖系统进行多天线传输的系统和方法。
背景技术
到二十一世纪初, 移动通信技术已经发展到第三代。 伴随着互联网的飞 速发展, 通过移动通信网络接入互联网获取互联网服务的业务, 对移动通信 网络的传输速率提出了很高的要求。 根据香农公式, 通信系统的信道带宽和 信噪比决定了信息的传输速率, 称之为香农信道容量。 提高信息传输速率可 以通过增加信道带宽和 /或提高信噪比来实现。
但是, 无线频谱资源是有限的, 目前可供移动通信系统使用的无线频谱 资源已经非常稀缺。 而为了提高信号的信噪比, 增大发射功率也面临着成本 增加、 干扰增大、 不够环保等方面的诸多限制。
为了进一步提高移动通信系统频谱的利用效率, 研究者们想到在通信的 一方或双方釆用多个收发天线, 主动地利用用户的空间方位信息或空间信道 的冗余来提高系统的容量, 这便是 MIMO ( Multiple Input Multiple Output , 多 输入多输出) 系统的由来。 ΜΙΜΟ技术的基本思想是: 在收发双端釆用多根天线, 分别同时发射与 接收信号, 通过空 -时信号处理技术, 充分利用空间信道资源, 在无需增加频 谱资源和发射功率的情况下, 成倍地提升通信系统的容量与可靠性, 提高频 谱利用率, 从而获得更高的数据率、 更好的传输品质或更大的系统覆盖范围。
移动通信技术从第二代发展到第三代, 对高速数据业务的支持是第三代 移动通信网络一个重要特点。 移动通信网络发展的趋势是数据业务所占的比 重越来越大, 未来第四代移动通信网络的数据业务将比第二代和第三代移动 通信网络所占的比重更大。
据统计,在典型的第三代移动通信网络中, 80% ~ 90%的移动数据业务会 发生在室内。 因此, 室内无线覆盖是当前和未来移动通信网络覆盖的关键。 室内无线覆盖主要有两种方式: 方式一是通过室外的蜂窝网络信号来覆 盖室内, 方式二是通过室内分布系统专门提供室内无线信号的覆盖。
由于建筑物对无线信号的衰减非常大, 室外蜂窝网络的信号传播到室内 后信号强度降低, 信号的质量也随之下降, 因此覆盖效果非常差。 对于一些 特殊区域, 例如高楼或单层面积很大的建筑等, 使用室外基站信号覆盖室内 将不能有效地满足室内信号覆盖的要求。
釆用室内分布系统将基站输出的射频信号通过射频电缆传输到需要覆盖 的区域, 然后通过小型化的天线(通常是室内吸顶天线)发射出去, 同时把 天线接收到的射频信号通过射频电缆传输给基站,从而完成无线信号的收发, 实现室内无线信号的覆盖。 同室外基站信号覆盖室内的方式相比, 室内分布 系统的无线信号覆盖质量更好。
对于室内分布系统的无线信号覆盖方式, 要求配备两路以上的射频电缆 和天线才能构成 MIMO信道。 移动运营商已有的室内分布系统都是一路射频 电缆和天线。 要想支持 MIMO技术, 就需改造现有的室内分布系统, 另外再 增加一路以上的射频电缆和天线。 对于已经建好的室内分布系统, 改造工程 的工作量和难度都非常大。 此外, 改造工程还会对原有物业的外观造成一定 程度的破坏, 可能会面临物业业主拒绝对原物业进行改造的难题。
发明内容
本发明所要解决的技术问题是提供一种利用室内无线信号覆盖系统进行 多天线传输的系统和方法, 以克服现有技术中存在的现有室内分布系统改造 难度大、 成本高的缺陷。
为解决上述问题, 本发明提供了一种利用室内无线信号覆盖系统进行多 天线传输的方法, 应用于基站与室内无线信号覆盖系统通过一射频电缆进行 信号传输的过程中, 包括:
信号发送方确定待发送的 N路信号, 进行变频处理得到频带互不重叠的 N路信号后, 将该 N路信号合并为一路信号, 并通过所述射频电缆发送到信 号接收方;
所述信号接收方将接收到的所述一路信号分路为 N路信号, 进行变频和 滤波处理, 得到信号发送方进行变频处理前的 N路信号后, 对应发送到本地 的 N根天线上; 其中, N为大于 1的自然数。
上述方法还可具有以下特征:
所述进行变频处理得到频带互不重叠的 N路信号, 包括:
所述信号发送方对所述待发送的 N路信号中的 N-1路信号分别进行变频 处理, 将该 N-1路信号变频为频带互不重叠的 N-1路信号。
上述方法还可具有以下特征:
所述进行变频处理得到频带互不重叠的 N路信号, 包括: 信号发送方通 过变频处理, 得到各相邻两路信号间的中心频率差值均相同的 N路信号。
上述方法还可具有以下特征:
所述信号接收方将接收到的所述一路信号分路为 N路信号, 通过变频和 滤波处理, 得到信号发送方进行变频处理前的 N路信号, 包括:
所述信号接收方对分路后的得到的 N路信号中的一路信号进行滤波处 理, 对其余 N-1路信号分别进行变频处理后再进行滤波处理;
进行滤波处理时, 将频率处于以所述基站的载波中心频率为中心频点、 以所述基站的载波带宽为带宽的频段范围外的信号滤除。
上述方法还可具有以下特征:
所述信号发送方对所述待发送的 N路信号中的 N-1路信号分别进行变频 处理是指: 所述信号发送方对所述 N-1路信号分别进行上变频处理;
所述信号接收方对其余 N-1路信号分别进行变频处理是指: 所述信号接 收方对所述其余 N-1路信号分别进行下变频处理。
上述方法还可具有以下特征:
在所述信号发送方将待发送的 N路信号变频为频带互不重叠的 N路信号 之前, 所述方法还包括:
所述信号发送方对所述待发送的 N路信号进行滤波, 将频率处于以所述 基站的载波中心频率为中心频点、 以所述基站的载波带宽为带宽的频段范围 外的信号滤除。
本发明还提供了一种利用室内无线信号覆盖系统进行多天线传输的系 统, 应用于基站与室内无线信号覆盖系统进行信号传输的过程中, 包括: 通 过射频电缆相连的信号发送方和信号接收方;
信号发送方设置为: 确定待发送的 N路信号, 进行变频处理得到频带互 不重叠的 N路信号后, 将该 N路信号合并为一路信号, 并通过所述射频电缆 发送到所述信号接收方;
所述信号接收方设置为: 将接收到的所述一路信号分路为 N路信号, 进 行变频和滤波处理, 得到信号发送方进行变频处理前的 N路信号后, 对应发 送到本地的 N根天线上; 其中, N为大于 1的自然数。
上述系统还可具有以下特征:
所述信号发送方中包含 N-1个发送方射频变换器和合路器;
各发送方射频变换器分别设置为: 对所述待发送的 N路信号中的 N-1路 信号进行变频处理, 将该 N-1路信号变频为频带互不重叠的 N-1路信号; 所述合路器设置为: 将经过所述 N-1个发送方射频变换器变频后得到的 N-1路信号和未经过变频处理的一路信号合为一路。
上述系统还可具有以下特征:
所述信号接收方中包含 N个接收方滤波器及 N-1个接收方射频变换器; 其中一个接收方滤波器设置为: 对分路后的得到的 N路信号中的一路信 号进行滤波处理;
所述 N-1个接收方射频变换器分别设置为: 对其余 N-1路信号进行变频 处理;
其余 N-1个接收方滤波器设置为: 分别对经过所述 N-1个接收方射频变 换器的变频处理后得到的 N-1路信号进行滤波处理;
其中, 所述 N个接收方滤波器还设置为: 在进行滤波处理时, 将频率处 于以所述基站的载波中心频率为中心频点、 以所述基站的载波带宽为带宽的 频段范围外的信号滤除。
上述系统还可具有以下特征:
所述信号发送方中还包括 N个发送方滤波器;
所述 N个发送方滤波器设置为: 分别对变频前的所述待发送的 N路信号 进行滤波, 将频率处于以所述基站的载波中心频率为中心频点、 以所述基站 的载波带宽为带宽的频段范围外的信号滤除。
釆用本发明所述方法和系统, 与现有技术相比, 克服了现有技术中需要 增加更多的射频电缆和天线、 改造难度大的缺点, 达到了利用现有运营商的 室内分布系统支持 MIMO技术的效果, 节省了室内分布系统的改造成本, 提 高了网络业务速率及频谱利用率。
附图概述
图 1 是本发明实施例中利用室内无线信号覆盖系统进行多天线传输的系 统结构图;
图 2 是本发明实施例中第一射频变换器的结构图;
图 3 是本发明实施例中第二射频变换器的结构图。 本发明的较佳实施方式
下面结合附图对技术方案的实施作进一步的详细描述:
由于射频电缆的通频带非常宽, 可以对从直流信号到高达 20GHz的信号 以很小的损耗传输; 对多个天线的射频信号进行频分复用后, 可以在一根射 频电缆上同时传输, 每根天线的信号就可以在射频电缆的通频带内不重叠的 子频段内互不干扰地传输, 即可以解决室内分布支持多天线技术时需要增加 射频电缆带来的施工、 业主许可等问题。
本发明所述方法, 包括: 1 ) 基站在与室内无线信号覆盖系统通过一射频电缆进行信号传输的过 程中, 信号发送方确定待发送的 N路信号, 进行变频处理, 得到频带互不重 叠的 N路信号后, 将该 N路信号合并为一路信号, 并通过上述射频电缆发送 到信号接收方;
其中, 信号发送方可以仅对待发送的 N路信号中的 N-1路信号分别进行 变频处理, 将该 N-1路信号变频为频带互不重叠的 N-1路信号, 则变频后, N路信号的频带必然不会互相重叠。 优选地, 信号发送方通过变频处理, 得 到各相邻两路信号间的中心频率差值均相同的 N路信号。 当然, 各相邻两路 信号间的中心频率差值也可以不相同,只要 N路信号的频道不互相重叠即可。
在信号发送方将待发送的 N路信号变频为频带互不重叠的 N路信号之 前, 信号发送方还可以对待发送的 N路信号进行滤波, 将频率处于以基站的 载波中心频率为中心频点、 以基站的载波带宽为带宽的频段范围外的信号滤 除。
2 ) 信号接收方将接收到的一路信号分路为 N路信号, 进行变频和滤波 处理, 得到信号发送方进行变频处理前的 N路信号后, 对应发送到本地的 N 根天线上; 其中, N为大于 1的自然数。
其中, 信号接收方通过变频和滤波处理, 得到信号发送方进行变频处理 前的 N路信号的步骤, 具体包括: 信号接收方对分路后的得到的 N路信号中 的一路信号进行滤波处理, 对其余 N-1路信号分别进行变频处理后再进行滤 波处理; 在进行滤波处理时, 将频率处于以该基站的载波中心频率为中心频 点、 以基站的载波带宽为带宽的频段范围外的信号滤除。
优选地, 信号发送方对上述 N-1路信号分别进行上变频处理; 而信号接 收方对上述其余 N-1路信号分别进行下变频处理。
本发明还提供了一种利用室内无线信号覆盖系统进行多天线传输的系 统, 应用于基站与室内无线信号覆盖系统进行信号传输的过程中, 包括: 通 过射频电缆相连的信号发送方和信号接收方;
信号发送方用于确定待发送的 N路信号, 进行变频处理得到频带互不重 叠的 N路信号后, 将该 N路信号合并为一路信号, 并通过射频电缆发送到信 号接收方;
信号接收方用于将接收到的一路信号分路为 N路信号, 进行变频和滤波 处理, 得到信号发送方进行变频处理前的 N路信号后, 对应发送到本地的 N 根天线上; 其中, N为大于 1的自然数。
其中, 信号发送方中可包含 N-1个发送方射频变换器和合路器; 各发送方射频变换器分别用于对待发送的 N路信号中的 N-1路信号进行 变频处理, 将该 N-1路信号变频为频带互不重叠的 N-1路信号;
合路器用于将经过 N-1个发送方射频变换器变频后得到的 N-1路信号和 未经过变频处理的一路信号合为一路。
信号接收方中可包含 N个接收方滤波器及 N-1个接收方射频变换器; 一个接收方滤波器用于对分路后的得到的 N路信号中的一路信号进行滤 波处理;
N-1个接收方射频变换器分别用于对上述其余 N-1路信号进行变频处理; 其余 N-1个接收方滤波器用于分别对经过上述 N-1个接收方射频变换器 的变频处理后得到的 N-1路信号进行滤波处理;
其中, 所述 N个接收方滤波器用于在进行滤波处理时, 将频率处于以所 述基站的载波中心频率为中心频点、 以所述基站的载波带宽为带宽的频段范 围外的信号滤除。
所述信号发送方中还可包括 N个发送方滤波器;
该 N个发送方滤波器用于对变频前的待发送的 N路信号进行滤波,将频 率处于以基站的载波中心频率为中心频点、 以基站的载波带宽为带宽的频段 范围外的信号滤除。
如图 1所示, 以两天线为例 (即 Ν=2 ) , 本发明所述利用室内无线信号 覆盖系统进行多天线传输的系统, 包括以下组成部分:
基站、 室内无线信号覆盖系统及一路射频电缆 A, 其中基站与室内无线 信号覆盖系统通过上述射频电缆 A相连。 室内无线信号覆盖系统中包括: 集 成天线 B、 第一射频变换器〇、 第一分 /合路器 D、 第一滤波器 G及第二滤波 器 H; 基站中包括: 多根天线、 第二分 /合路器 E、 第二射频变换器?、 第三 滤波器 J、 第四滤波器 K及基站直流电源 I。
各组成部分之间的关系是:
集成天线 B中包含 2个天线, 即第一天线 B1及第二天线 B2, 为了美观 和便于安装, 2个天线封装在一个外壳内;
集成天线 B的第一天线 B1连接到第一滤波器 G的一端;
第一滤波器 G的另一端连接到第一分 /合路器 D的端口 D1 ; 第一分 /合路 器 D的端口 D1通过第一滤波器 G连接集成天线 B的第一天线 B1 ;
第二个天线 B2连接到第二滤波器 H的一端; 第二滤波器 H的另一端连 接到第一射频变频器 C的端口 C1 ;
第一射频变频器 C的端口 C2连接到第一分 /合路器 D的端口 D2;
射频电缆 A连接第一分 /合路器 D的端口 D3与第二分 /合路器 E的端口 E3;
第二分 /合路器 E的端口 E2连接第四滤波器 K;
第四滤波器 K连接基站天线端口 1 ;
第二分 /合路器 E的端口 E1连接第二射频变换器 F的端口 F1 ;
第二射频变换器 F的端口 F2连接第三滤波器 J;
第三滤波器 J连接基站天线端口 2;
基站直流电源 I连接到射频电缆 A, 通过射频电缆 A为第一射频变换器 C和第二射频变换器 F供电。
如图 2所示, 本发明所述第一射频变换器 C包括: 端口 Cl、 端口 C2、 环行器 C3、 环行器 C4、 上变频器 C5及下变频器 C6;
第一射频变换器 C的输入输出端口 C1连接环行器 C4的输入输出端口 C4-3; 环行器 C4的端口 C4-1连接到上变频器 C5的一端;
上变频器 C5的另一端连接到环行器 C3的端口 C3-2;
环行器 C3的端口 C3-3连接到第一射频变换器 C的端口 C2;
环行器 C3的端口 C3-1连接到下变频器 C6的一端;
下变频器 C6的另一端连接到环行器 C4的输入端口 C4-2。
如图 3所示, 本发明所述第二射频变换器 F的包括端口 Fl、 端口 F2、 环 行器 F3、 环行器 F4、 上变频器 F5及下变频器 F6;
第二射频变换器 F的输入输出端口 F1连接环行器 F3的端口 F3-3;
环行器 F3的端口 F3-1连接下变频器 F6的一端;
下变频器 F6的另一端连接到环行器 F4的端口 F4-2;
环行器 F4的端口 F4-3连接到第二射频变换器 F的输入输出端口 F2; 环行器 F3的端口 F4-1连接到上变频器 F5的一端;
上变频器 F5的另一端输出到环行器 F3的端口 F3-2。
利用上述系统, 将信号从室内无线信号覆盖系统传输到基站的流程, 包 括下列步骤:
21 )第一天线 B1将接收到的信号 (以下简称第一天线 B1的接收信号) 经过第一滤波器 G后输入第一分 /合路器 D; 其中,第一滤波器 G具有带通特 性, 其中心频率是基站收发信机的载波中心频率, 带宽^ ^站收发信机的载 波带宽;
22 )第二天线 B2将接收到的信号(以下简称第二天线 B2的接收信号), 输出到第二滤波器 H中经过滤波经过端口 C1输入到第一射频变换器 C, 在 第一射频变换器 C内部完成上变频, 将第二天线 B2的接收信号的频谱线性 地变换到另一个频段;记第二天线 B2的接收信号的中心频率为 fl ,则上变频 后的该信号的中心频率为 f2=fl+f0, 其中, fO的值是预配置在第一射频变换 器中的。 由于 fO越大, fl与 £2之间的频率相隔的越远, 对第一滤波器〜第四 滤波器的参数要求越低, 成本也就越低, 因此, f0的取值要足够大, 最好能 保证变频后的第二天线 B2的接收信号的中心频率 £2达到射频电缆工作频带 的最高频率或最低频率二者中与 fl之差最大的频率,第二滤波器 H的特性与 第一滤波器 G的特性相同;
23 )将经过上变频处理的第二天线 B2的接收信号, 输入到第一分 /合路 器 D, 与第一天线 B1的接收信号合路后, 通过射频电缆传输到基站部分;
24 )第二分 /合路器 E将通过射频电缆接收到的信号分为两路信号, 将其 中一路信号发送给第二射频变换器 F, 将另一路信号发送给第四滤波器 K;
25 )第四滤波器 K滤出第一天线 B1的接收信号送给对应的天线一一基 站天线端口 1 ;
26 )在第二射频变换器 F中, 进行下变频处理, 将变频后的第二天线 B2 的接收信号的频谱线性地变换回原频段, 变频后的射频信号的中心频率为 f2-f0=fl , 然后输出到过第三滤波器 J中进行滤波处理后发送到对应的基站天 线端口 2; 其中, f0的值是预配置在第二射频变换器 F中的, 其值应与第一 射频变换器 C中的 f0值相同。
当然, 还可以在步骤 22 )中在第一射频变换器 C内部对收到的信号进行 下变频处理; 而相应地, 则需要在步骤 26 ) 中在第二射频变换器 F内对接收 到的信号进行上变频处理。
利用本发明上述系统, 将信号从基站传输到室内无线信号覆盖系统的流 程, 包括下列步骤:
31 )基站天线端口 1的发射信号, 经过第四滤波器 K输入到第二分 /合路 器 E;
32 )基站天线端口 2的发射信号, 经过第三滤波器 J滤波后输入到第二 射频变换器 F, 在第二射频变换器 F内部完成上变频, 将基站天线端口 2的 发射信号的频谱线性地变换到另一个频段; 记基站天线端口 2的发射信号的 中心频率为 fl , 则上变频后的射频信号的中心频率为 f2=fl+f0, f0的取值足 够大; 33 )第二射频变换器 F将经过上变频处理的基站天线端口 2的发射信号 输入到第二分 /合路器 E, 与基站天线端口 1的发射信号合路后, 经过射频电 缆传输到室内无线信号覆盖系统;
34 )第一分 /合路器 E从射频电缆传输来的发射信号中分出两路信号, 一 路送给第一滤波器 G, 另一路送给第一频率变换器 C;
35 )第一滤波器 G滤出基站天线端口 1的发射信号送给第一天线 B1 ;
36 )在第一射频变换器 C中, 完成下变频处理, 将变频后的基站天线端 口 2的发射信号的频谱线性地变换回原频段, 变频后的射频信号的中心频率 为 f2-f0=fl , 经过第二滤波器 H滤波后发送给第二天线 B2。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性 釆用本发明所述方法和系统, 与现有技术相比, 克服了现有技术中需要 增加更多的射频电缆和天线、 改造难度大的缺点, 达到了利用现有运营商的 室内分布系统支持 MIMO技术的效果, 节省了室内分布系统的改造成本, 提 高了网络业务速率及频谱利用率。

Claims

权 利 要 求 书
1、 一种利用室内无线信号覆盖系统进行多天线传输的方法, 应用于基站 与室内无线信号覆盖系统通过一射频电缆进行信号传输的过程中, 包括: 信号发送方确定待发送的 N路信号, 进行变频处理得到频带互不重叠的 N路信号后, 将该 N路信号合并为一路信号, 并通过所述射频电缆发送到信 号接收方;
所述信号接收方将接收到的所述一路信号分路为 N路信号, 进行变频和 滤波处理, 得到信号发送方进行变频处理前的 N路信号后, 对应发送到本地 的 N根天线上; 其中, N为大于 1的自然数。
2、 如权利要求 1所述的方法, 其中,
所述进行变频处理得到频带互不重叠的 N路信号, 包括:
所述信号发送方对所述待发送的 N路信号中的 N-1路信号分别进行变频 处理, 将该 N-1路信号变频为频带互不重叠的 N-1路信号。
3、 如权利要求 1所述的方法, 其中,
所述进行变频处理得到频带互不重叠的 N路信号, 包括: 信号发送方通 过变频处理, 得到各相邻两路信号间的中心频率差值均相同的 N路信号。
4、 如权利要求 2或 3所述的方法, 其中,
所述信号接收方将接收到的所述一路信号分路为 N路信号, 通过变频和 滤波处理, 得到信号发送方进行变频处理前的 N路信号, 包括:
所述信号接收方对分路后的得到的 N路信号中的一路信号进行滤波处 理, 对其余 N-1路信号分别进行变频处理后再进行滤波处理;
进行滤波处理时, 将频率处于以所述基站的载波中心频率为中心频点、 以所述基站的载波带宽为带宽的频段范围外的信号滤除。
5、 如权利要求 4所述的方法, 其中,
所述信号发送方对所述待发送的 N路信号中的 N-1路信号分别进行变频 处理是指: 所述信号发送方对所述 N-1路信号分别进行上变频处理;
所述信号接收方对其余 N-1路信号分别进行变频处理是指: 所述信号接 收方对所述其余 N-l路信号分别进行下变频处理。
6、 如权利要求 1或 2所述的方法,
在所述信号发送方将待发送的 N路信号变频为频带互不重叠的 N路信号 之前, 所述方法还包括:
所述信号发送方对所述待发送的 N路信号进行滤波, 将频率处于以所述 基站的载波中心频率为中心频点、 以所述基站的载波带宽为带宽的频段范围 外的信号滤除。
7、 一种利用室内无线信号覆盖系统进行多天线传输的系统, 应用于基站 与室内无线信号覆盖系统进行信号传输的过程中, 包括: 通过射频电缆相连 的信号发送方和信号接收方;
所述信号发送方设置为: 确定待发送的 N路信号, 进行变频处理得到频 带互不重叠的 N路信号后, 将该 N路信号合并为一路信号, 并通过所述射频 电缆发送到所述信号接收方;
所述信号接收方设置为: 将接收到的所述一路信号分路为 N路信号, 进 行变频和滤波处理, 得到信号发送方进行变频处理前的 N路信号后, 对应发 送到本地的 N根天线上; 其中, N为大于 1的自然数。
8、 如权利要求 7所述的系统, 其中,
所述信号发送方中包含 N-1个发送方射频变换器和合路器;
各发送方射频变换器分别设置为: 对所述待发送的 N路信号中的 N-1路 信号进行变频处理, 将该 N-1路信号变频为频带互不重叠的 N-1路信号; 所述合路器设置为: 将经过所述 N-1个发送方射频变换器变频后得到的 N-1路信号和未经过变频处理的一路信号合为一路。
9、 如权利要求 8所述的系统, 其中,
所述信号接收方中包含 N个接收方滤波器及 N-1个接收方射频变换器; 其中一个接收方滤波器设置为: 对分路后的得到的 N路信号中的一路信 号进行滤波处理;
所述 N-1个接收方射频变换器分别设置为: 对其余 N-1路信号进行变频 处理;
其余 N-l个接收方滤波器设置为: 分别对经过所述 N-1个接收方射频变 换器的变频处理后得到的 N-1路信号进行滤波处理;
其中, 所述 N个接收方滤波器还设置为: 在进行滤波处理时, 将频率处 于以所述基站的载波中心频率为中心频点、 以所述基站的载波带宽为带宽的 频段范围外的信号滤除。
10、 如权利要求 8所述的系统, 其中,
所述信号发送方中还包括 N个发送方滤波器;
所述 N个发送方滤波器设置为: 分别对变频前的所述待发送的 N路信号 进行滤波, 将频率处于以所述基站的载波中心频率为中心频点、 以所述基站 的载波带宽为带宽的频段范围外的信号滤除。
PCT/CN2011/073459 2010-10-15 2011-04-28 利用室内无线信号覆盖系统进行多天线传输的系统和方法 WO2012048563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010513862.6 2010-10-15
CN2010105138626A CN102457316A (zh) 2010-10-15 2010-10-15 利用室内无线信号覆盖系统进行多天线传输的系统和方法

Publications (1)

Publication Number Publication Date
WO2012048563A1 true WO2012048563A1 (zh) 2012-04-19

Family

ID=45937858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073459 WO2012048563A1 (zh) 2010-10-15 2011-04-28 利用室内无线信号覆盖系统进行多天线传输的系统和方法

Country Status (2)

Country Link
CN (1) CN102457316A (zh)
WO (1) WO2012048563A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067095B (zh) * 2013-01-30 2015-10-14 北京全路通信信号研究设计院集团有限公司 基于波导管传输媒质的多频段wifi并行传输系统
CN103118425B (zh) * 2013-02-19 2016-08-03 中邮科通信技术股份有限公司 支持td-lte双通道传输的实现方法及有源微功率分布系统
CN103675753B (zh) * 2013-11-27 2016-08-17 北京邮电大学 用于室内定位的信号处理方法及系统
WO2021133243A1 (en) * 2019-12-23 2021-07-01 Aoao Global Pte Ltd Apparatuses, system and methods for mimo transmission in a wireless communication system
CN114335965B (zh) * 2020-09-29 2023-05-02 中国电信股份有限公司 双向分离耦合器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457205A (zh) * 2002-12-31 2003-11-19 北京信威通信技术股份有限公司 天线阵多阵元信号馈电的复用传送方法及装置
CN1795624A (zh) * 2003-03-28 2006-06-28 北方电讯网络有限公司 用于通过单条电缆处理多个公共频率信号的方法和装置
CN1816181A (zh) * 2005-02-03 2006-08-09 芯通科技(成都)有限公司 基站设备实现射频拉远的中频传输方法及中频接口

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424039B2 (en) * 2003-03-28 2008-09-09 Nortel Networks Limited Method and apparatus for processing multiple common frequency signals through a single cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457205A (zh) * 2002-12-31 2003-11-19 北京信威通信技术股份有限公司 天线阵多阵元信号馈电的复用传送方法及装置
CN1795624A (zh) * 2003-03-28 2006-06-28 北方电讯网络有限公司 用于通过单条电缆处理多个公共频率信号的方法和装置
CN1816181A (zh) * 2005-02-03 2006-08-09 芯通科技(成都)有限公司 基站设备实现射频拉远的中频传输方法及中频接口

Also Published As

Publication number Publication date
CN102457316A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
US10097257B2 (en) Wireless communications network using frequency conversion of MIMO signals
US9992757B2 (en) Donor unit, remote unit, and mobile communication base station system having same
CN110958617B (zh) 信号传送系统及信号传送方法
JP2012130021A (ja) マルチセクタオムニ基地局におけるコンバイナ損失を低減するための方法と装置
CN106357310B (zh) 多输入多输出信号传输方法和系统
WO2013097395A1 (zh) 有源天线装置及其收发信号的方法
TW201006155A (en) Remote distributed antenna
WO2012048563A1 (zh) 利用室内无线信号覆盖系统进行多天线传输的系统和方法
WO2014194442A1 (zh) 适于合并分布式天线系统的信号传输装置
US11617091B1 (en) Distributed antenna system
KR20180005996A (ko) 빌딩 내의 rf 케이블을 공유하는 5g 인빌딩 중계 시스템 및 5g 인빌딩 중계 방법
KR20170079615A (ko) 메인 유닛 및 이를 포함하는 분산 안테나 시스템
US9660698B2 (en) Leaky cable communication
KR20170111382A (ko) 기지국 신호 정합 장치, 이를 포함하는 기지국 인터페이스 유닛 및 분산 안테나 시스템
CN1203505A (zh) 用于个人通信系统的无线专用小交换机
JP4677610B2 (ja) デジタル信号処理による構内無線分散中継システム
US9608847B2 (en) Analog distributed antenna system for processing ethernet signal
CN111815927B (zh) 信号传输系统以及信号传输方法
CA2547649A1 (en) Method and apparatus for uplink coverage improvement
US20220200690A1 (en) Repeater system
CN100514883C (zh) 无线接入网络信号区域覆盖方法和无线接入网络
WO2024055327A1 (zh) 子带全双工通信系统、方法及基站
WO2023103989A1 (zh) 第一设备、第二设备、信号传输方法及无线接入系统
WO2010130080A1 (zh) 一种共享射频接收单元的方法、装置及系统
Naqvi et al. Effective indoor coverage via radio-over-cable fronthauls: Analog fronthauls come of age

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11831960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11831960

Country of ref document: EP

Kind code of ref document: A1