WO2012047071A9 - Method for manufacturing flexible nanogenerator and flexible nanogenerator manufactured thereby - Google Patents

Method for manufacturing flexible nanogenerator and flexible nanogenerator manufactured thereby Download PDF

Info

Publication number
WO2012047071A9
WO2012047071A9 PCT/KR2011/007473 KR2011007473W WO2012047071A9 WO 2012047071 A9 WO2012047071 A9 WO 2012047071A9 KR 2011007473 W KR2011007473 W KR 2011007473W WO 2012047071 A9 WO2012047071 A9 WO 2012047071A9
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
piezoelectric element
layer
flexible
nanogenerator
Prior art date
Application number
PCT/KR2011/007473
Other languages
French (fr)
Korean (ko)
Other versions
WO2012047071A2 (en
WO2012047071A3 (en
Inventor
이건재
박귀일
구민
황건태
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100098331A external-priority patent/KR101207075B1/en
Priority claimed from KR1020100111651A external-priority patent/KR101203176B1/en
Priority claimed from KR1020110069203A external-priority patent/KR101340060B1/en
Priority claimed from KR1020110082437A external-priority patent/KR101336196B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012047071A2 publication Critical patent/WO2012047071A2/en
Publication of WO2012047071A3 publication Critical patent/WO2012047071A3/en
Publication of WO2012047071A9 publication Critical patent/WO2012047071A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00357Creating layers of material on a substrate involving bonding one or several substrates on a non-temporary support, e.g. another substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/032Bimorph and unimorph actuators, e.g. piezo and thermo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0191Transfer of a layer from a carrier wafer to a device wafer
    • B81C2201/0194Transfer of a layer from a carrier wafer to a device wafer the layer being structured

Definitions

  • the present invention relates to a method for manufacturing a flexible nanogenerator and a flexible nanogenerator manufactured by the present invention. More specifically, since power is produced as the substrate is bent, the power can be continuously produced according to the movement of the human body. Therefore, a highly efficient biocompatible nanogenerator relates to a method for manufacturing a flexible nanogenerator which can be produced by the present invention, and a flexible nanogenerator produced thereby.
  • Energy harvesting technology that converts external energy sources (for example, thermal energy, animal movements or vibrations and mechanical energy generated from nature such as wind and waves) into electrical energy has been widely studied as an environmentally friendly technology.
  • many research groups are working on techniques for producing usable nanogenerators, because these nanogenerators combine the harvesting technology into small implantable human devices that can recycle biological energy in the human body. Because there is an advantage.
  • Piezoelectric harvesting technology is being studied by many research groups, Chen et al.
  • a nanogenerator using lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) nanofibers on silver bulk silicon substrates is disclosed.
  • PZT nanofibers engaged with the electrodes facing each other generated a significant voltage by the pressure applied perpendicularly to the nanogenerator surface.
  • an object of the present invention is to provide a method of manufacturing a flexible nanogenerator implemented on a flexible substrate. Another object of the present invention is to provide a flexible nanogenerator manufactured by the above method.
  • the present invention comprises the steps of stacking a piezoelectric element layer including a piezoelectric material layer on a sacrificial substrate; Crystallizing the piezoelectric element layer by heat treatment at a high temperature; Separating the unit piezoelectric elements from the substrate by removing the sacrificial substrate; It provides a method for manufacturing a flexible nano-generator comprising the step of transferring the separated unit piezoelectric element to a flexible substrate.
  • the method includes exposing the electrode of the unit piezoelectric element to the outside; And connecting the electrode and the electrode line.
  • the present invention comprises the steps of stacking a piezoelectric element layer of the lower electrode / piezoelectric material layer / upper electrode layer on the substrate; Patterning the piezoelectric element layer in a predetermined form to define a unit device region of the piezoelectric element and to expose an external substrate region; Separating the piezoelectric element from the silicon substrate by boiling the exposed external substrate region; Attaching the piezoelectric element to the transfer layer after contacting the transfer layer to the separated piezoelectric element; Transferring the piezoelectric element adhered to the transfer layer onto a flexible substrate; Etching a portion of the transferred piezoelectric element to expose a lower electrode to the outside; Stacking a passivation layer on the piezoelectric element and patterning the semiconductor substrate to expose the contact regions of the lower electrode and the upper electrode to the outside; And laminating a metal layer on the passivation layer, and then patterning the electrode layer to form an electrode line connected to the lower electrode and the upper electrode, respectively.
  • the piezoelectric element layer is patterned in the form of a narrow bridge, a photocurable resin is coated on the flexible substrate, and the piezoelectric element adhered to the transfer layer is brought into contact with the flexible substrate. Is irradiated to cure the photocurable resin. In addition, contact regions of the upper electrode and the lower electrode are exposed to the outside through holes of a predetermined size through the passivation layer.
  • the transfer layer includes polydimethylsiloxane, and a plurality of unit device regions of the piezoelectric element are provided on the substrate, and the plurality of unit devices are transferred to the flexible substrate through the same transfer layer.
  • the present invention provides a flexible nanogenerator manufactured by the above-described method in order to solve the another problem.
  • the present invention comprises the steps of laminating a piezoelectric element layer of platinum / BaTiO 3 / gold on the silicon oxide layer on the bulk silicon; Patterning the piezoelectric element layer in the form of a narrow bridge, defining a piezoelectric element formed of the piezoelectric element layer, and exposing a silicon substrate outside the piezoelectric element; Separating the piezoelectric element from the silicon substrate by boiling the exposed external silicon substrate; Adhering a piezoelectric element to the transfer layer by contacting the transfer layer to the separated piezoelectric element; Transferring the piezoelectric element adhered to the transfer layer onto a flexible substrate; Etching a portion of the transferred piezoelectric element to expose a lower electrode to the outside; Stacking a passivation layer on the piezoelectric element and then patterning the semiconductor substrate to expose contact holes of the lower electrode and the upper electrode to the outside; Laminating a metal layer on the passivation layer, and then patterning, to provide a flexible
  • the passivation layer comprises an epoxy resin
  • UV-curable resin is applied to the flexible substrate
  • the piezoelectric element adhered to the transfer layer is contacted with the flexible substrate, and then irradiated with light To harden the photocurable resin.
  • the transfer layer includes a polydimethylsiloxane
  • the piezoelectric elements are provided on a plurality of substrates
  • the plurality of piezoelectric elements may be simultaneously transferred to the flexible substrate through the same transfer layer.
  • the metal line includes a separate metal line connected to the lower electrode and the upper electrode of the piezoelectric element, respectively.
  • the present invention provides a flexible nanogenerator manufactured by the above-described method, wherein the flexible nanogenerator includes a plurality of nanogenerator unit elements provided on a plastic substrate, and the unit element is a piezoelectric element of platinum / BaTiO 3 / gold. It consists of an element layer.
  • the present invention also comprises the steps of manufacturing a piezoelectric element on the sacrificial substrate; After removing the sacrificial substrate, there is provided a plastic piezoelectric device manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
  • the present invention comprises the steps of manufacturing a piezoelectric element on a layered substrate; Removing the layered substrate by peeling the layer of the layered substrate; And it provides a plastic piezoelectric element manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
  • the layered substrate is a mica substrate, and the removal of the mica substrate is performed in a physical manner.
  • the physical method is a method of attaching an adhesive tape to the mica substrate and then detaching the adhesive tape.
  • the process of detaching and attaching an adhesive tape to the mica substrate is performed a plurality of times.
  • the piezoelectric element is composed of a lower electrode, a piezoelectric material layer, and an upper electrode, which are sequentially stacked, and the piezoelectric element has a film form, that is, a thin film form.
  • the present invention provides a method for manufacturing a piezoelectric element on a sacrificial substrate; Bonding a support substrate onto the piezoelectric element; Removing the sacrificial substrate; And it provides a plastic piezoelectric element manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
  • the sacrificial substrate is a silicon substrate on which silicon oxide is stacked, and the support substrate is a silicon substrate coated with an adhesive layer.
  • the piezoelectric element is composed of a lower electrode, a piezoelectric material layer, and an upper electrode sequentially stacked, an adhesive layer is provided on the plastic substrate, and the adhesive layer and the lower electrode of the piezoelectric element are contacted and bonded. do.
  • the piezoelectric element is heat-treated after the lower electrode-piezoelectric material layer-top electrode are sequentially stacked.
  • the present invention also provides a plastic piezoelectric element manufactured by the method described above.
  • Another embodiment of the present invention provides the following method to solve the above problems.
  • the present invention is a plastic substrate; And a first piezoelectric element and a second piezoelectric element provided on both sides of the plastic substrate, wherein the first piezoelectric element and the first piezoelectric element are made of a piezoelectric material layer and a metal layer, respectively.
  • a generator Provides a generator.
  • the plastic substrate, the first piezoelectric element and the second piezoelectric element is provided in a sealing member, a metal wire is connected to the metal layer of the first piezoelectric element and the second piezoelectric element, the sealing member Is a flexible member.
  • a positive voltage is generated in the first piezoelectric element above the substrate and a negative voltage is generated in the second piezoelectric element below the substrate according to the bending of the plastic substrate.
  • the present invention in order to solve the above another problem, a method of manufacturing a plastic nanogenerator, manufacturing a first piezoelectric element by laminating a piezoelectric material layer and a metal layer sequentially on a layered plate; Bonding a transfer substrate onto the twenty-first piezoelectric element; Removing the layer plate; And transferring the first piezoelectric element to one surface of the plastic substrate.
  • the method further includes transferring a second piezoelectric element to an opposite surface of one surface of the plastic substrate on which the first piezoelectric element is transferred, wherein the second piezoelectric element is the method described above. Is produced on the layered substrate and then transferred to the opposite surface of the plastic substrate, wherein the layered substrate is a mica substrate, and the layered substrate removal can be performed by physical peeling.
  • the method comprises the steps of: connecting a metal wire to the metal layer of the first piezoelectric element and the second piezoelectric element; And sealing the first piezoelectric element and the second piezoelectric element with a sealing member.
  • the present invention is a medical electronic device comprising the plastic nano-generator described above, wherein the current generated by the bending of the plastic substrate of the plastic nano-generator is provided to the electronic device. At this time, a positive voltage is generated in the first piezoelectric element of the upper portion of the substrate, and a negative voltage is generated in the second piezoelectric element of the lower portion according to the bending of the plastic substrate of the plastic nanogenerator.
  • the present invention also provides a lithium secondary battery charging method comprising charging a solid state lithium secondary battery using the above-described plastic nanogenerator, the output current amount of the plastic nanogenerator is 100nA or more.
  • the present invention comprises the steps of manufacturing a piezoelectric element on the sacrificial substrate; After removing the sacrificial substrate, there is provided a plastic piezoelectric device manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
  • the present invention comprises the steps of manufacturing a piezoelectric element on a layered substrate; Removing the layered substrate by peeling the layer of the layered substrate; And it provides a plastic piezoelectric element manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
  • the layered substrate is a mica substrate, and the removal of the mica substrate is performed in a physical manner.
  • the physical method is a method of attaching an adhesive tape to the mica substrate and then detaching the adhesive tape.
  • the process of detaching and attaching an adhesive tape to the mica substrate is performed a plurality of times.
  • the piezoelectric element is composed of a lower electrode, a piezoelectric material layer, and an upper electrode, which are sequentially stacked, and the piezoelectric element has a film form, that is, a thin film form.
  • the present invention provides a method for manufacturing a piezoelectric element on a sacrificial substrate; Bonding a support substrate onto the piezoelectric element; Removing the sacrificial substrate; And it provides a plastic piezoelectric element manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
  • the sacrificial substrate is a silicon substrate on which silicon oxide is stacked
  • the support substrate is a silicon substrate coated with an adhesive layer.
  • the piezoelectric element is composed of a lower electrode, a piezoelectric material layer, and an upper electrode sequentially stacked, an adhesive layer is provided on the plastic substrate, and the adhesive layer and the lower electrode of the piezoelectric element are contacted and bonded. do.
  • the piezoelectric element is heat-treated after the lower electrode-piezoelectric material layer-top electrode are sequentially stacked.
  • the present invention provides a plastic piezoelectric element manufactured by the above-described method.
  • Another embodiment of the present invention combines the bending of the piezoelectric material and the flexible plastic substrate, to provide a bio-generator for the generation of a high current can be generated according to the bending of the substrate.
  • the present invention is inserted into a living body, and generates a current according to the movement of the organ in vivo, the nanogenerator, the nanogenerator is a flexible substrate; And a BTO thin film provided on both sides of the flexible substrate.
  • the flexible substrate and the BTO thin film are provided in a sealing member, and a metal wire that transmits current generated from the BTO thin film to the outside is connected to the nanogenerator.
  • a positive voltage is generated in the BTO thin film on one surface of the substrate, and a negative voltage is generated in the BTO thin film on the other surface according to the bending of the plastic substrate.
  • a bio-generator comprising a flexible substrate and a BTO thin film provided on the flexible substrate; And a communication means for receiving power generated from the bio-generator according to the movement of the living body into which the bio-generator is inserted and communicating with the outside.
  • the BTO thin film is provided on both sides of the flexible substrate.
  • a lithium secondary battery charging method comprising charging a solid-state lithium secondary battery using a bio-generator including a flexible substrate and a BTO thin film provided on the flexible substrate.
  • the BTO thin film is provided on both sides of the flexible substrate, the output current amount of the bio-generator is more than 100nA.
  • the cardiac pacemaker as a cardiac pacemaker using a biogenerator, the cardiac pacemaker includes a flexible substrate and a BTO thin film provided on the flexible substrate, and generates a bio-generator in accordance with the movement of the living body. ; And an electrical signal providing unit for providing an electrical signal to the heart from the generated power.
  • the electrical signal is generated from a battery or a capacitor which is generated by the bio-generator and then stored, wherein the biomechanical energy is generated by a heartbeat.
  • the biomechanical energy is generated by the relaxation and contraction of the diaphragm.
  • the present invention also comprises the steps of sequentially stacking the piezoelectric material layer and the metal layer on the layer plate to produce a first piezoelectric element; Bonding a transfer substrate onto the first piezoelectric element; Removing the layer plate; And transferring the first piezoelectric element to one surface of the plastic substrate.
  • the method further comprises the step of transferring the second piezoelectric element on the opposite surface of one surface of the plastic substrate on which the first piezoelectric element is transferred, wherein the second piezoelectric element is described above.
  • the layered substrate is transferred to the opposite surface of the plastic substrate, the layered substrate is a mica substrate, and the layered substrate removal proceeds by physical peeling.
  • the method includes the steps of connecting a metal wire to the metal layers of the first piezoelectric element and the second piezoelectric element; And sealing the first piezoelectric element and the second piezoelectric element with a sealing member.
  • the flexible nanogenerator manufacturing method and the flexible nanogenerator manufactured according to the present invention have the advantage that the power is produced as the substrate is bent, so that the power can be continuously produced according to the movement of the human body. Therefore, a highly efficient biocompatible nanogenerator can be produced by the present invention.
  • FIG. 1A to 1I are schematic step-by-step schematic diagrams of a method for manufacturing a flexible nanogenerator according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a flexible nanogenerator.
  • FIG. 3 is a photograph showing successful transfer of a microstructured MIM device of about 1 cm 2 from a bulk silicon substrate to a microstructured MIM device of 1 cm 2 without any cracking
  • FIG. 4 is flexible with a fill-factor of 16.4%. Magnified optical image of a BaTiO3 nanogenerator device.
  • 6 and 7 are graphs showing the output voltage and current measured as the nanogenerator having about 1350 MIM structures continued to bend and unfold by the bending device.
  • FIGS. 8 to 12 are diagrams illustrating a piezoelectric device manufacturing method according to an embodiment of the present invention.
  • FIGS. 13 to 15 are diagrams illustrating a method of manufacturing a piezoelectric element according to an embodiment of the present invention.
  • 16 to 21 are steps of a piezoelectric device manufacturing method according to an embodiment of the present invention.
  • 22 and 23 are views showing an application concept of the flexible nanogenerator according to the present invention.
  • a piezoelectric element layer including a piezoelectric material layer is first stacked on a sacrificial substrate in order to manufacture a flexible nanogenerator.
  • the sacrificial substrate refers to a temporary substrate on which a piezoelectric device manufacturing process under high temperature is performed, and may be separated from the device after completion of the device.
  • the piezoelectric element layer was crystallized by heat treatment at a high temperature, and the unit piezoelectric element was separated from the sacrificial substrate by removing the sacrificial substrate prepared above.
  • the separation from the sacrificial substrate was a method of boiling the sacrificial substrate, but the scope of the present invention is not limited thereto. Thereafter, the separated unit piezoelectric element was transferred to the flexible substrate. In an embodiment of the present invention, the unit piezoelectric element is contacted and bonded to the transfer layer, and then the transfer to the flexible substrate is performed.
  • the present invention also provides a novel method for manufacturing a plastic piezoelectric element, and for this purpose, a method of manufacturing a piezoelectric element, which is a high temperature extreme condition, is manufactured on a sacrificial substrate such as a silicon substrate or a mica substrate and then transferred to a plastic substrate. .
  • the piezoelectric element may be transferred to the plastic substrate using a separate transfer means (ie, a transfer layer or a transfer substrate), or a method of directly bonding the plastic substrate and the element.
  • One embodiment of the present invention is a method for manufacturing a plastic piezoelectric element using a sacrificial substrate having a layered structure.
  • each layer of the sacrificial substrate is easily peeled off and removed in a physical manner, not a wet etching process or a dry etching process.
  • the piezoelectric element from which the lower sacrificial substrate is removed is transferred to the plastic substrate. Therefore, the present invention for removing the lower substrate in a physical manner (ie, a peeling method) has an advantage that is much more economical and stable than the prior art of chemically removing the lower substrate using an etchant or the like.
  • an embodiment of the present invention uses a mica substrate.
  • the scope of the present invention is not limited thereto, and any material having a layered structure and enduring in a high temperature environment may be used as the sacrificial substrate.
  • mica (mica) used as the main material of the layered sacrificial substrate is an important coarse mineral in granite, and refers to a layered silicate mineral.
  • Mica usually has a layered structure and forms a hexagonal crystalline form. In addition, it forms impression, fibrous and columnar shape, and any shape or bottom can be completely cracked and can be peeled off very thinly. It has excellent heat and chemical resistance. Accordingly, the present invention provides a method of manufacturing a flexible piezoelectric element by using a mica having such characteristics to manufacture a piezoelectric element on a mica substrate and then peeling off the lower mica in a physical manner.
  • a piezoelectric element including a piezoelectric material layer is laminated on a rigid substrate such as silicon, and patterned to manufacture a plurality of unit piezoelectric elements on a substrate. Thereafter, the substrates exposed between the unit piezoelectric elements were boiled off to separate the unit piezoelectric elements from the substrate, and then transferred to the flexible substrate through the transfer layer. Then, a flexible piezoelectric element was manufactured by connecting a separate electrode line to the electrode layer of each piezoelectric element.
  • the piezoelectric element layer of the lower electrode / piezoelectric material layer / upper electrode layer is laminated on a substrate,
  • the piezoelectric element layer is again patterned into a predetermined shape (for example, a narrow bridge shape) to define a unit device region of the piezoelectric element.
  • the piezoelectric element was separated from the substrate by boiling the external substrate region of the exposed unit device region, and the piezoelectric element was adhered to the transfer layer by contacting the transfer layer to the separated piezoelectric element.
  • the piezoelectric element adhered to the transfer layer was transferred to the flexible substrate, and a portion of the transferred piezoelectric element was etched to expose the lower electrode to the outside.
  • the transfer layer was polydimethylsiloxane (PDMS).
  • a passivation layer was stacked on the piezoelectric element and then patterned to expose the contact regions of the lower electrode and the upper electrode to the outside.
  • the lower electrode and the upper electrode were platinum and gold, respectively, and the contact region is exposed to the outside through a hole patterned in the passivation layer.
  • a metal layer is stacked on the passivation layer and then patterned to form electrode lines respectively connected to the lower electrode and the upper electrode.
  • An embodiment of the present invention uses a perovskite thin film (PZT, BaTiO 3 ) laminated on a silicon substrate as a piezoelectric element layer, annealing at high temperature, and remove the sacrificial layers (MgO, TiO 2 ), respectively, the flexible substrate The thin film was transferred onto the phase.
  • a nanogenerator was also fabricated on a flexible substrate using biocompatible BaTiO 3 microstructured material (ms-BaTiO 3 ), which was initially free of lead.
  • the perovskite ceramic-BaTiO 3 thin film deposited by RF magnetron sputtering on a Pt / Ti / SiO 2 / (111) Si substrate is annealed at 700 ° C. To proceed with the crystallization process, and then a polling process for obtaining high piezoelectric properties.
  • the BaTiO 3 thin film is a tetramethylammonium hydroxide (TMAH), the lower silicon layer is boiling-etched, and again the MIM structure including the BaTiO 3 thin film according to the microstructure manufacturing method and soft lithography process (bottom electrode / piezoelectric element) Layer / top electrode) is transferred to the flexible substrate.
  • TMAH tetramethylammonium hydroxide
  • FIGS. 1A to 1J are schematic step-by-step diagrams of a method of manufacturing a flexible nanogenerator according to an embodiment of the present invention.
  • a silicon substrate (620 mm) is oxidized to form a SiO 2 layer having a 150 nm level.
  • a lower electrode of the Pt (130 nm) and Ti (20 nm) layers is manufactured by an RF sputtering process.
  • a 300 nm thick amorphous BaTiO 3 thin film was deposited on the Pt / Ti / SiO 2 / Si substrate by RF magnetron sputtering in an argon atmosphere for 2 hours.
  • the BaTiO 3 thin film is then crystallized by RTA (Rapid Thermal Annealing) in an oxygen atmosphere at 700 ° C. for 15 minutes.
  • a chromium (Cr, 10 nm) / gold (Au, 100 nm) layer is stacked on the upper electrode by RF sputtering.
  • a piezoelectric element layer of Pt / BaTiO 3 / Au that is, a MIM structure, is manufactured on the silicon substrate.
  • a 2.4 mm thick SiO 2 (PEO) layer was deposited by plasma-enhanced chemical vapor deposition (PECVD, 400 mTorr, 20 SCCM 9.5% SiH 4, 10 SCCM N 2 O, 300 ° C., 20 W) and 600 nm thick.
  • PECVD plasma-enhanced chemical vapor deposition
  • a thin film of aluminum (Al) is deposited by RF sputtering. Wet etching for 10 min, AL-12 SK, CYANTEK Co.) and PEO layer (ICP-RIE etching, 25 mTorr, 50 SCCM CF) to obtain a mask for the subsequent coupled coupled plasma (ICP) reactive ion etching process.
  • a mask having a narrow bridge shape ie, a mask in which the device core region is connected to the outer mask axis
  • the unit device region of the piezoelectric element is defined according to the shape of the mask.
  • the Au / Cr / BaTiO3 / Pt / Ti layers of the MIM structure are based on chlorine gas (ICP-RIE etching, 25 mTorr, 5 SCCM Ar / 100 SCCM Cl 2 , 400 W power). / 200 W bias, 22 min). This exposes the underlying silicon substrate.
  • the residual PEO layer on the MIM structure is removed by an ICP-RIE process based on fluorine gas (10 mTorr, 25 SCCM SF6, 150 W power / 40 W bias, 12 min).
  • the lower silicon substrate is again anisotropic etched using 5% tetramethylammonium hydroxide (TMAH, 80 ° C. for 18 minutes), thereby separating the same MIM structure as the mask of FIG. 1B from the silicon substrate.
  • TMAH 5% tetramethylammonium hydroxide
  • a transfer layer such as polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) stamp is uniformly contacted with the MIM structure separated from the lower silicon substrate. Then, by quickly detaching the PDMS transfer layer from the silicon substrate, the narrow bridge type MIM structure is transferred to the transfer layer of the PDMS.
  • PDMS polydimethylsiloxane
  • the transfer layer PDMS on which the MIM structure is transferred is placed on the plastic substrate again.
  • the plastic substrate is in the form of a curable resin such as polyurethane that can be cured by UV, and after the MIM structure of the transfer layer (PDMS) is in contact with the plastic substrate, the PU on the plastic substrate Is optionally cured by UV.
  • the MIM structure (Pt / BaTiO 3 / Au) is stably transferred to the plastic substrate by peeling off the PDMS in contact with the plastic substrate.
  • the residual PU on the plastic substrate is removed by an oxygen RIE etching process (10 mTorr, 100 SCCM O2, 200 W, 15 minutes).
  • the PR Photoresist, AZ 5214
  • the Au / Cr metal layer Au / Cr etchant, Transene Inc.
  • BaTiO 3 layer is partially etched.
  • the lower platinum Pt is exposed, and the exposed lower platinum functions as a lower electrode of the nanogenerator of the present invention.
  • an epoxy layer (SU8-5 photoresist), which is a passivation layer, is stacked and a contact region for connecting the lower electrode Pt and the upper electrode Au of the device is patterned.
  • the contact region is in the form of a hole connected to the lower electrode and the upper electrode layer, but the scope of the present invention is not limited thereto.
  • a metal layer (for example, gold) is stacked and patterned on the passivation layer where the contact region is patterned, so that the lower electrode and the upper electrode of the plurality of nanogenerator elements connect the lower electrode and the upper electrode in common. It is commonly connected to the line and the upper electrode line (see FIG. 1J). Then, the polling process is performed by applying an electric field of 100 kV / cm using a Keithley 237 High-Voltage Source-Measure Unit for about 15 hours at 140 ° C.
  • the lower electrode Pt and the upper electrode Au are connected to each electrode line Au, and a voltage is applied between the upper electrode Pt and the lower electrode Au by pressure.
  • This generated piezoelectric layer (BaTiO 3 ) is provided.
  • a soluble MIM piezoelectric element is manufactured by a flexible substrate, and electrons generated in the piezoelectric layer provided therein (for example, electrons generated from bending of the flexible element) go out through the lower electrode or the upper electrode. An energy harvest that recovers pressure energy as electrical energy is possible.
  • FIG. 2 is a cutaway cross-sectional view of a nanogenerator piezoelectric element manufactured according to the present invention.
  • the flexible nanogenerator according to the present invention includes a plurality of nanogenerator unit elements 210 provided on the plastic substrate 200.
  • the unit device has a MIM structure of the piezoelectric device layer, and the lower electrode of a portion of the device is exposed to the outside.
  • the lower electrode and the upper electrode of the unit device exposed between the passivation layer 220 such as epoxy are respectively connected to the lower electrode line 230a and the upper electrode line 230b provided on the passivator layer 220.
  • the photograph of FIG. 3 is a photograph showing that the microstructured MIM device of about 1 cm 2 was successfully transferred from the bulk silicon substrate to the microstructured MIM device of 1 cm 2 without any cracking.
  • the portion inserted in FIG. 3 is an enlarged image of the MIM device on the PDMS stamp, and the rest is an image after the microstructure MIM device has twisted the PDMS stamp (transfer layer).
  • the inserted portion is an image of the lower and upper electrodes of the MIM element respectively connected to the upper electrode line and the lower electrode line Au, which cross each other. Also, copper wires are connected to the metal pads of the electrode lines by silver paste to measure output voltage and current.
  • the inventors analyzed the crystal structure of the layer using XRD and Raman spectroscopy to characterize the flexible nanogenerator device according to the present invention.
  • piezoelectric reaction was measured with a piezoelectric force microscope (PFM).
  • PFM piezoelectric force microscope
  • XRD and Raman migration results show that the annealed BaTiO3 film (layer) on bulk silicon and flexible substrates exhibits excellent crystalline properties.
  • the piezoelectric constant d33 of the BaTiO 3 thin film on the silicon substrate was measured by PFM method.
  • 5 is a graph showing PFM results for a BaTiO 3 thin film and a non-polled BaTiO 3 thin film on a silicon substrate.
  • the result amplified by the piezoelectric reaction shows a hysteresis loop over the applied voltage range.
  • the piezoelectric coefficient (d 33 ) is determined by the slope of the curve (piezoelectric reaction / applied voltage).
  • the effective piezoelectric coefficient of BaTiO 3 was 40 pm/V, but after the above-described polling process, d 33 is 105pm. Increased to / V (see FIG. 5).
  • This d 33 value is a significantly higher value compared to conventionally known values.
  • the fact that such a high piezoelectric efficiency device is implemented in the flexible substrate means that the nanogenerator and the manufacturing method according to the present invention are very effective in terms of energy harvesting.
  • the nanogenerator When the nanogenerator repeated the bending and unfolding process with a finger, it produced an output voltage of about 1.0 V and a current of 26 nA. Considering the area and volume of the nanogenerator, a current density of about 0.2 mA / cm 2 and a power density of 6.96 mW / cm 3 were calculated.
  • the biocompatible BaTiO 3 thin film is used to implement a high performance flexible nanogenerator.
  • the BaTiO 3 nanogenerator implemented on the flexible substrate converts the mechanical energy into electrical energy of 1.0 V output voltage and 26 nA current pulse level.
  • Another embodiment of the present invention provides a piezoelectric device manufacturing method using a layered plate such as mica.
  • FIG. 8 illustrates a lower electrode 200 of a piezoelectric element on a mica substrate 100, a piezoelectric material layer 300 on the lower electrode 200, and an upper electrode 400 on the piezoelectric material layer 300. do.
  • the basic structure of the piezoelectric element 200 including the lower electrode 200, the piezoelectric material layer 300, and the upper electrode 400 is completed according to the stacking of the upper electrode 400.
  • the transfer layer 500 is contacted on the piezoelectric element 200 to physically bond the upper electrode 400 and the transfer layer 500 of the piezoelectric element, thereby lowering the piezoelectric element.
  • a piezoelectric element composed of a material layer-upper electrode is bonded to the transfer layer 500 as a whole and fixed.
  • the transfer layer 300 includes all the planar members in the form of a substrate or a layer capable of transferring the piezoelectric element to a plastic substrate by adhering to the piezoelectric element 200 from which the lower sacrificial substrate is removed.
  • each layer of the layered structure of the lower mica substrate 100 is peeled off.
  • the separation of the mica substrate 100 is performed in a physical manner, which is a method of attaching the adhesive tape 600 to the mica substrate 100 and then detaching it.
  • the plural peeling and peeling physical peeling processes are performed a plurality of times, the lower mica substrate is continuously peeled off. This leaves the device bonded to the transfer layer as shown in FIG. 21, where the removal of the mica substrate at the bottom removes all of the substrate under the device, or leaves the mica substrate at a thickness that is flexible. It includes all of the steps to remove.
  • the device may be maintained in a stable state without special structural deformation by the transfer layer 500 adhered to the device 200.
  • the plastic piezoelectric element is directly manufactured according to the removal of the physical peeling method of the lower layered substrate. Can be. Referring to FIG. 12, the piezoelectric element is transferred to the plastic substrate 800 by using the transfer layer 500 bonded to the piezoelectric element.
  • Another embodiment of the present invention uses a silicon substrate as a sacrificial substrate, and unlike the above-described embodiment, the lower sacrificial substrate is removed by a wet etching method.
  • FIGS. 13 to 15 are diagrams for explaining a method of manufacturing a piezoelectric element using a silicon substrate as a sacrificial substrate.
  • a silicon substrate 101 and a silicon oxide layer 201 provided on the silicon substrate 101 are provided.
  • the silicon oxide layer 201 functions as an etch stop layer in the etching process for removing the silicon substrate 101, and protects the piezoelectric element provided on the upper portion from the etching liquid.
  • the piezoelectric element 301 is manufactured on the silicon oxide layer 201, and a heat treatment-polling process performed after the upper electrode is formed according to the related art.
  • the adhesive layer 401 is applied to the silicon oxide layer 201 in which the piezoelectric element 301 is manufactured. At this time, the adhesive layer 401 may be a thermosetting resin epoxy resin, the adhesive layer 401 is applied to a height sufficient to cover the piezoelectric element 301.
  • another silicon substrate 111 is stacked on the adhesive layer 401, whereby the lower piezoelectric element 301 is sandwiched between the lower silicon substrate 101 and the upper silicon substrate 111. It is fixed.
  • the upper silicon substrate 111 is distinguished from the lower silicon substrate 101, hereinafter, the lower silicon substrate 101 is referred to as a first silicon substrate, and the upper silicon substrate 111 is referred to as a second silicon substrate.
  • the second silicon substrate 111 is physically bonded to the piezoelectric element 301 and prevents physical deformation of the piezoelectric element 301 in the form of a thin film generated by removing the lower substrate 101.
  • the silicon substrate 111 is placed on the bonding layer 401 slightly hardened on a heating plate, thereby completely hardening. Thereafter, the first silicon substrate 101 under the piezoelectric element 301 is removed.
  • the removal of the lower silicon substrate 101 is performed by a wet etching method.
  • the lower substrate provided with the battery by the wet etching becomes the silicon oxide layer 201 instead of the first silicon substrate 101. This is due to the slow etching speed of the silicon oxide layer 201 in the wet etching process. If the silicon oxide layer 201 is absent, the piezoelectric element 301 is directly exposed to the etchant.
  • the first silicon substrate 101 is disposed in order to prevent the etching solution from penetrating between the piezoelectric elements. Was taken to leave part out of the substrate. That is, in the case of wet etching, an etching solution (eg, KOH, tetramethylammonium hydroxide (TMAH), etc.) may leak into the silicon oxide layer 201 and the piezoelectric element 301. Since the first silicon substrate 101 was left at the periphery of the substrate at a predetermined height, the etchant did not pass to the side of the substrate.
  • the scope of the present invention is not limited thereto, and as long as at least the lower silicon substrate 101 in the piezoelectric element 301 region is removed through an etching process, all of them fall within the scope of the present invention.
  • the piezoelectric element is transferred to a plastic substrate coated with an adhesive layer 501 such as epoxy or SU-8 by using a transfer layer (not shown) capable of bonding with the second silicon substrate.
  • an adhesive layer such as epoxy in a predetermined organic solvent (eg, acetone)
  • the upper second silicon substrate is removed to expose the piezoelectric element to the outside.
  • 16 to 21 are steps of a piezoelectric device manufacturing method according to an embodiment of the present invention.
  • the layered substrate 100 is a mica substrate, the mica substrate may be physically peeled off using an adhesive material. That is, the present invention uses a mica substrate that is easily peeled off as a layer structure as a sacrificial substrate, but the scope of the present invention is not limited thereto, and any substrate to which layers can be sequentially peeled off due to the interlayer structure may be layered. It can be used as a substrate.
  • the upper piezoelectric material layer 200 and the upper metal layer 300 are stacked on the layered substrate 100. As a result, a first piezoelectric element including the piezoelectric material layer 200 and the upper metal layer 300 is provided.
  • the transfer substrate 400 is stacked on the upper metal layer 300, and the transfer substrate 400 is the upper piezoelectric material layer 200 and the upper metal layer 300 as the lower layer upper plate 100 is removed. It is fixed to, and serves to transfer to the flexible substrate.
  • the transfer substrate 400 was a PDMS substrate coated with a predetermined adhesive layer, but the scope of the present invention is not limited thereto.
  • the adhesive means 500 such as an adhesive tape, is attached to the back of the layered substrate, and then peeled off for each layer of the mica substrate by peeling.
  • the present invention physically removes the sacrificial substrate by using a mica substrate that can be peeled off in a layered form, unlike a general technique of removing the sacrificial substrate by a wet etching process.
  • the device layer (upper piezoelectric material layer-upper metal layer) fixed by the transfer substrate 400 remains fixed and arranged.
  • the device layer (the upper piezoelectric material layer 200 and the upper metal layer 300) from which the layered substrate 100 is removed is transferred to the plastic substrate 700 provided with the adhesive layer 600.
  • the piezoelectric material layer 700 and the metal layer 300 are provided on the plastic substrate 700 which is a flexible substrate.
  • the lower piezoelectric material layer 201 and the lower metal layer 301 are stacked on the layered substrate 101 in the same manner, so that the first piezoelectric element is formed on the opposite side of the plastic substrate 700.
  • a second piezoelectric element is formed.
  • the transfer substrate 401 is brought into contact with the lower metal layer 301 to fix it.
  • the layered plate 101 such as mica is removed in a physical manner.
  • the lower piezoelectric material layer 201 and the lower metal layer 301 are transferred to the plastic substrate 600.
  • the lower piezoelectric material layer 200 and the lower metal layer 301 are bonded to opposite surfaces of the plastic substrate 200 to which the upper piezoelectric material layer 200 and the upper metal layer 300 are bonded. Therefore, both surfaces of the plastic substrate 200 are provided with a bonding layer.
  • a flexible energy harvesting device including piezoelectric material layers 200 and 201 and metal layers 300 and 301 on both surfaces of the plastic substrate 700 is completed through the transfer process of FIG. 11. Accordingly, as the plastic substrate 700 is warped, the upper piezoelectric material layer of the substrate 700 generates a positive voltage on the upper surface of the piezoelectric material and a negative voltage on the lower surface of the lower piezoelectric material. Thereafter, a metal metal wire 801 for inducing a current generated from the piezoelectric material layers 200 and 201 is connected to the metal layers 300 and 301 stacked on the piezoelectric material layer.
  • a conductive adhesive 800 is provided at the connection portion between the metal wire 801 and the metal layer to physically fix the metal wire 801 and the metal layers 300 and 301.
  • the scope of the present invention is not limited thereto, and the external wires may be connected to the metal layers 300 and 301 in various ways.
  • An energy harvesting device having piezoelectric elements on both sides of the plastic substrate is sealed with a sealing member 401.
  • the sealing member 401 is a flexible member free of warpage.
  • the sealing member 401 is polydimethylsiloxane (PDMS). Therefore, as the sealing member 401 is bent, the plastic substrate 700 sealed therein is also bent. At this time, current is generated in the piezoelectric elements provided on both sides of the substrate, and flows to the outside through the metal wire 801.
  • PDMS polydimethylsiloxane
  • the flexible piezoelectric element according to the present invention can be used as a kind of flexible nanogenerator that generates electric current according to physical bending, and in particular, can produce current with high efficiency by BTO thin films attached to both surfaces (output current amount of 100nA or more).
  • 22 and 23 are views showing an application concept of the flexible nanogenerator according to the present invention.
  • a plastic nanogenerator according to the present invention may be used as a nano self-generator for an electronic device inserted into a human body such as a heart to supply power. That is, the small plastic nanogenerator inserted and attached in the human body to generate power according to the heartbeat or diaphragm movement occurring in the human body supplies power to a wireless transmitter, which is a medical device and a communication means, and progresses in the human body. Allow external monitoring.
  • the rectified current generated from the flexible nano self-generator according to the present invention can be utilized as a battery device. That is, the current produced by the BTO device provided on both sides can be used to charge the solid state lithium secondary battery. In this case, the current generated by the nanogenerator passes through a current device, such as a battery device such as a solid state lithium secondary battery. Charge 903.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Provided are a method for manufacturing a flexible nanogenerator and a flexible nanogenerator manufactured thereby. The method for manufacturing the flexible nanogenerator of the present invention includes the steps of: laminating a piezoelectric element layer having a piezoelectric material layer on a sacrificial substrate; crystallizing the piezoelectric element layer by thermally processing the piezoelectric element layer at a high temperature; separating unit piezoelectric elements from the sacrificial substrate by removing the sacrificial substrate; and transferring the separated unit piezoelectric elements onto a flexible substrate. The method for manufacturing the flexible nanogenerator and the flexible nanogenerator manufactured thereby of the present invention can continuously produce electric power from the movement of a human body and the like by producing electric power according to the bending of the substrate.

Description

플렉서블 나노제너레이터 제조방법 및 이에 의하여 제조된 플렉서블 나노제너레이터Flexible nanogenerator manufacturing method and flexible nanogenerator manufactured thereby
본 발명은 플렉서블 나노제너레이터 제조방법 및 이에 의하여 제조된 플렉서블 나노제너레이터에 관한 것으로, 보다 상세하게는 기판의 구부러짐에 따라 전력이 생산되므로, 인체의 움직임 등에 따라 지속적인 전력생산이 가능하다는 장점이 있다. 따라서, 고효율의 생체적합성의 나노제너레이터가 본 발명에 의하여 제조가능한 플렉서블 나노제너레이터 제조방법 및 이에 의하여 제조된 플렉서블 나노제너레이터에 관한 것이다.The present invention relates to a method for manufacturing a flexible nanogenerator and a flexible nanogenerator manufactured by the present invention. More specifically, since power is produced as the substrate is bent, the power can be continuously produced according to the movement of the human body. Therefore, a highly efficient biocompatible nanogenerator relates to a method for manufacturing a flexible nanogenerator which can be produced by the present invention, and a flexible nanogenerator produced thereby.
외부 에너지원(예를 들면 열에너지, 동물 움직임 또는 바람과 파도 등의 자연으로부터 발생하는 진동, 기계적 에너지)를 전기 에너지로 변환시키는 에너지 하비스트(energy harvest) 기술은 최근 친환경 기술로서 널리 연구되고 있다. 특히, 사용가능한 나노제너레이터(nanogenerator)를 제조하는 기술에 대하여 많은 연구그룹들이 연구하고 있는데, 왜냐하면 이러한 나노제너레이터는 하비스트 기술을 이식가능한 작은 인체소자로 집약하여, 인체 내에서의 생물학적 에너지를 재활용할 수 있는 장점이 있기 때문이다. Energy harvesting technology that converts external energy sources (for example, thermal energy, animal movements or vibrations and mechanical energy generated from nature such as wind and waves) into electrical energy has been widely studied as an environmentally friendly technology. In particular, many research groups are working on techniques for producing usable nanogenerators, because these nanogenerators combine the harvesting technology into small implantable human devices that can recycle biological energy in the human body. Because there is an advantage.
외부 진동의 기계적 에너지로부터 에너지를 하비스트(수집)하는 기술 중 하나는 강유전체 물질의 압전성질을 활용하는 것이다. 압전 하비스트 기술은 많은 연구 그룹들에 의하여 연구되고 있는데, Chen et al. 은 벌크 실리콘 기판 상의 납 지르코네이트 티타네이트(lead zirconate titanate (PbZrxTi1-xO3, PZT)) 나노섬유를 이용하는 나노제너레이터를 개시하였다. 상기 기술에 따르면 서로 대향하는 전극에 맞물린 PZT 나노섬유는 나노제너레이터 표면에 수직으로 가해지는 압력에 의하여 상당한 전압을 생성하였다.One technique for harvesting energy from the mechanical energy of external vibrations is to utilize the piezoelectric properties of ferroelectric materials. Piezoelectric harvesting technology is being studied by many research groups, Chen et al. A nanogenerator using lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) nanofibers on silver bulk silicon substrates is disclosed. According to the technique, the PZT nanofibers engaged with the electrodes facing each other generated a significant voltage by the pressure applied perpendicularly to the nanogenerator surface.
Wang 등은 압전특성을 나타내는 ZnO 나노와이어를 이용하여, 플라스틱 기판 상에 구현된 다중 수평 나노와이어 어레이가 집적된 나노제너레이터(lateral-nanowire-array intergrated nanogenerator (LING)) 및 고출력 나노제너레이터(high-output nanogenerator (HONG))를 개시한다. 상기 기술은 동물의 호흡 및 심박의 진동에너지를 이용하여 살아있는 동물 내에서 구현된 자가발전형의 나노제너레이터를 개시한다. Wang et al. Used ZnO nanowires exhibiting piezoelectric properties to produce lateral-nanowire-array intergrated nanogenerators (LINGs) and high-output nanogenerators that incorporate multiple horizontal nanowire arrays implemented on plastic substrates. nanogenerator (HONG)). The technique discloses self-powered nanogenerators implemented in living animals using the vibrational energy of the animal's breathing and heart rate.
따라서, 본 발명이 해결하려는 과제는 플렉서블 기판에 구현된 플렉서블 나노제너레이터의 제조방법을 제공하는 것이다. 본 발명이 해결하려는 또 다른 과제는 상기 방법에 의하여 제조된 플렉서블 나노제너레이터를 제공하는 것이다.Accordingly, an object of the present invention is to provide a method of manufacturing a flexible nanogenerator implemented on a flexible substrate. Another object of the present invention is to provide a flexible nanogenerator manufactured by the above method.
상기 과제를 해결하기 위하여, 본 발명은 희생 기판상에 압전물질층을 포함하는 압전소자층을 적층하는 단계; 상기 압전소자층을 고온에서 열처리하여 결정화하는 단계; 상기 희생 기판을 제거하여 상기 기판으로부터 단위 압전소자들을 분리하는 단계; 상기 분리된 단위 압전소자를 플렉서블 기판에 전사하는 단계를 포함하는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법을 제공한다. In order to solve the above problems, the present invention comprises the steps of stacking a piezoelectric element layer including a piezoelectric material layer on a sacrificial substrate; Crystallizing the piezoelectric element layer by heat treatment at a high temperature; Separating the unit piezoelectric elements from the substrate by removing the sacrificial substrate; It provides a method for manufacturing a flexible nano-generator comprising the step of transferring the separated unit piezoelectric element to a flexible substrate.
상기 방법은 상기 단위 압전소자의 전극을 외부로 노출시키는 단계; 및 상기 전극과 전극라인을 연결시키는 단계를 더 포함할 수 있다. The method includes exposing the electrode of the unit piezoelectric element to the outside; And connecting the electrode and the electrode line.
상기 과제를 해결하기 위하여, 본 발명은 기판상에 하부전극/압전물질층/상부전극층의 압전소자층을 적층하는 단계; 상기 압전소자층을 소정 형태로 패터닝하여, 상기 압전소자의 단위소자 영역을 정의하고, 외부의 기판 영역을 노출시키는 단계; 상기 노출된 외부 기판 영역을 비등방식각하여 압전소자를 실리콘 기판으로부터 분리하는 단계; 상기 분리된 압전소자에 전사층을 접촉시킨 후, 상기 압전소자를 상기 전사층에 접착시키는 단계; 상기 전사층에 접착된 압전소자를 플렉서블 기판으로 전사시키는 단계; 상기 전사된 압전소자의 일부 영역을 식각하여 하부 전극을 외부로 노출시키는 단계; 상기 압전소자상에 페시베이션층을 적층한 후, 패터닝하여 상기 하부전극 및 상부전극의 컨택 영역을 외부로 노출시키는 단계; 및 상기 페시베이션층 상에 금속층을 적층한 후, 패터닝하여, 상기 하부 전극 및 상부 전극에 각각 연결되는 전극 라인을 형성하는 단계를 포함하는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법을 제공한다. In order to solve the above problems, the present invention comprises the steps of stacking a piezoelectric element layer of the lower electrode / piezoelectric material layer / upper electrode layer on the substrate; Patterning the piezoelectric element layer in a predetermined form to define a unit device region of the piezoelectric element and to expose an external substrate region; Separating the piezoelectric element from the silicon substrate by boiling the exposed external substrate region; Attaching the piezoelectric element to the transfer layer after contacting the transfer layer to the separated piezoelectric element; Transferring the piezoelectric element adhered to the transfer layer onto a flexible substrate; Etching a portion of the transferred piezoelectric element to expose a lower electrode to the outside; Stacking a passivation layer on the piezoelectric element and patterning the semiconductor substrate to expose the contact regions of the lower electrode and the upper electrode to the outside; And laminating a metal layer on the passivation layer, and then patterning the electrode layer to form an electrode line connected to the lower electrode and the upper electrode, respectively.
본 발명의 일 실시예에서 상기 압전소자층은 내로우 브릿지 형태로 패터닝되며, 상기 플렉서블 기판에는 광경화성 수지가 도포되어 있으며, 상기 전사층에 접착된 압전소자를 상기 플렉서블 기판에 접촉시킨 후, 광을 조사하여 상기 광경화성 수지를 경화시킨다. 또한, 상기 상부전극 및 하부전극의 컨택영역은 상기 페시베이션층을 통하여 소정 크기의 홀을 통하여 외부로 노출된다.  In one embodiment of the present invention, the piezoelectric element layer is patterned in the form of a narrow bridge, a photocurable resin is coated on the flexible substrate, and the piezoelectric element adhered to the transfer layer is brought into contact with the flexible substrate. Is irradiated to cure the photocurable resin. In addition, contact regions of the upper electrode and the lower electrode are exposed to the outside through holes of a predetermined size through the passivation layer.
본 발명의 일 실시예에서 상기 전사층은 폴리디메틸실록산을 포함하며, 상기 압전소자의 단위소자 영역은 기판상에 복수 개 구비되며, 상기 복수개의 단위소자는 동일한 전사층을 통하여 플렉서블 기판에 전사된다. In an embodiment of the present invention, the transfer layer includes polydimethylsiloxane, and a plurality of unit device regions of the piezoelectric element are provided on the substrate, and the plurality of unit devices are transferred to the flexible substrate through the same transfer layer. .
본 발명은 상기 또 다른 과제를 해결하기 위하여, 상술한 방법에 의하여 제조된 플렉서블 나노제너레이터를 제공한다. The present invention provides a flexible nanogenerator manufactured by the above-described method in order to solve the another problem.
상기 과제를 해결하기 위하여, 본 발명은 벌크 실리콘 상의 실리콘 산화물층상에 백금/BaTiO3/금의 압전소자층을 적층하는 단계; 상기 압전소자층을 내로우 브릿지 형태로 패터닝하여, 상기 압전소자층으로 이루어진 압전소자를 정의하고, 상기 압전소자 외부의 실리콘 기판을 노출시키는 단계; 상기 노출된 외부 실리콘 기판을 비등방식각하여 상기 압전소자를 실리콘 기판으로부터 분리하는 단계; 상기 분리된 압전소자에 전사층을 접촉시킴으로써, 압전소자를 상기 전사층에 접착시키는 단계; 상기 전사층에 접착된 압전소자를 플렉서블 기판으로 전사시키는 단계; 상기 전사된 압전소자의 일부 영역을 식각하여 하부 전극을 외부로 노출시키는 단계; 상기 압전소자 상에 페시베이션층을 적층한 후, 패터닝하여 상기 하부 전극 및 상부 전극의 컨택 홀을 외부로 노출시키는 단계; 상기 페시베이션층 상에 금속층을 적층한 후, 패터닝하여, 상기 하부 전극 및 상부 전극에 각각 연결되는 전극 라인을 형성하는 단계를 포함하는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법을 제공한다.In order to solve the above problems, the present invention comprises the steps of laminating a piezoelectric element layer of platinum / BaTiO 3 / gold on the silicon oxide layer on the bulk silicon; Patterning the piezoelectric element layer in the form of a narrow bridge, defining a piezoelectric element formed of the piezoelectric element layer, and exposing a silicon substrate outside the piezoelectric element; Separating the piezoelectric element from the silicon substrate by boiling the exposed external silicon substrate; Adhering a piezoelectric element to the transfer layer by contacting the transfer layer to the separated piezoelectric element; Transferring the piezoelectric element adhered to the transfer layer onto a flexible substrate; Etching a portion of the transferred piezoelectric element to expose a lower electrode to the outside; Stacking a passivation layer on the piezoelectric element and then patterning the semiconductor substrate to expose contact holes of the lower electrode and the upper electrode to the outside; Laminating a metal layer on the passivation layer, and then patterning, to provide a flexible nano-generator manufacturing method comprising the step of forming an electrode line connected to each of the lower electrode and the upper electrode.
본 발명의 일 실시예에서 상기 페시베이션층은 에폭시 수지를 포함하며, 상기 플렉서블 기판에는 UV 경화성 수지가 도포되어 있으며, 상기 전사층에 접착된 압전소자를 상기 플렉서블 기판에 접촉시킨 후, 광을 조사하여 상기 광경화성 수지를 경화시킨다.  In one embodiment of the present invention, the passivation layer comprises an epoxy resin, UV-curable resin is applied to the flexible substrate, the piezoelectric element adhered to the transfer layer is contacted with the flexible substrate, and then irradiated with light To harden the photocurable resin.
본 발명의 일 실시예에서 상기 전사층은 폴리디메틸실록산을 포함하며, 상기 압전소자는 기판 상에 복수 개 구비되며, 상기 복수개의 압전소자는 동일한 전사층을 통하여 플렉서블 기판에 동시에 전사될 수 있다. In one embodiment of the present invention, the transfer layer includes a polydimethylsiloxane, the piezoelectric elements are provided on a plurality of substrates, the plurality of piezoelectric elements may be simultaneously transferred to the flexible substrate through the same transfer layer.
또한, 상기 금속라인은 상기 압전소자의 하부전극 및 상부전극에 각각 연결되는 별도의 금속 라인을 포함한다. In addition, the metal line includes a separate metal line connected to the lower electrode and the upper electrode of the piezoelectric element, respectively.
본 발명은 상술한 방법에 의하여 제조된 플렉서블 나노제너레이터를 제공하며, 상기 플렉서블 나노제너레이터는 플라스틱 기판 상에 구비된 복수 개의 나노제너레이터 단위소자를 포함하며, 상기 단위 소자는 백금/BaTiO3 /금의 압전소자층으로 이루어진다. The present invention provides a flexible nanogenerator manufactured by the above-described method, wherein the flexible nanogenerator includes a plurality of nanogenerator unit elements provided on a plastic substrate, and the unit element is a piezoelectric element of platinum / BaTiO 3 / gold. It consists of an element layer.
상기 과제를 해결하기 위하여, 본 발명은 또한 희생기판 상에 압전소자를 제조하는 단계; 상기 희생기판을 제거한 후, 상기 압전소자를 플라스틱 기판으로 옮기는 단계를 포함하는 것을 특징으로 하는 플라스틱 압전소자 제조방법을 제공한다. In order to solve the above problems, the present invention also comprises the steps of manufacturing a piezoelectric element on the sacrificial substrate; After removing the sacrificial substrate, there is provided a plastic piezoelectric device manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
상기 과제를 해결하기 위하여, 본 발명은 층상구조 기판에 압전소자를 제조하는 단계; 상기 층상구조 기판의 층을 박리시켜, 상기 층상구조 기판을 제거하는 단계; 및 상기 압전소자를 플라스틱 기판으로 전사시키는 단계를 포함하는 것을 특징으로 하는 플라스틱 압전소자 제조방법을 제공한다. In order to solve the above problems, the present invention comprises the steps of manufacturing a piezoelectric element on a layered substrate; Removing the layered substrate by peeling the layer of the layered substrate; And it provides a plastic piezoelectric element manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
본 발명의 일 실시예에서 상기 층상구조 기판은 운모기판이며, 상기 운모기판의 제거는 물리적인 방식으로 수행된다. 여기에서 상기 물리적인 방식은 접착용 테이프를 상기 운모기판에 붙인 후, 떼어내는 방식이며, 본 발명의 일 실시예에서는 접착용 테이프를 상기 운모기판에 붙인 후, 떼어내는 상기 공정은 복수 회 수행된다. 본 발명의 일 실시예에서 상기 압전소자는 순차적으로 적층된 하부전극-압전물질층-상부전극으로 이루어지며, 상기 압전소자는 필름 형태, 즉 박막 형태를 이루게 된다.  In one embodiment of the present invention, the layered substrate is a mica substrate, and the removal of the mica substrate is performed in a physical manner. Herein, the physical method is a method of attaching an adhesive tape to the mica substrate and then detaching the adhesive tape. In an embodiment of the present invention, the process of detaching and attaching an adhesive tape to the mica substrate is performed a plurality of times. . In one embodiment of the present invention, the piezoelectric element is composed of a lower electrode, a piezoelectric material layer, and an upper electrode, which are sequentially stacked, and the piezoelectric element has a film form, that is, a thin film form.
본 발명은 상기 과제를 해결하기 위하여, 희생 기판상에 압전소자를 제조하는 단계; 상기 압전소자 상에 지지 기판을 접합시키는 단계; 상기 희생 기판을 제거하는 단계; 및 상기 압전소자를 플라스틱 기판으로 전사시키는 단계를 포함하는 것을 특징으로 하는 플라스틱 압전소자 제조방법을 제공한다. In order to solve the above problems, the present invention provides a method for manufacturing a piezoelectric element on a sacrificial substrate; Bonding a support substrate onto the piezoelectric element; Removing the sacrificial substrate; And it provides a plastic piezoelectric element manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate.
본 발명의 일 실시예에서 상기 희생기판은 상부에 실리콘 산화물이 적층된 실리콘 기판이며, 상기 지지 기판은 접착층이 도포된 실리콘 기판이다. In one embodiment of the present invention, the sacrificial substrate is a silicon substrate on which silicon oxide is stacked, and the support substrate is a silicon substrate coated with an adhesive layer.
본 발명의 일 실시예에서 상기 압전소자는 순차적으로 적층된 하부전극-압전물질층-상부전극으로 이루어지며, 상기 플라스틱 기판상에는 접착층이 구비되며, 상기 접착층과 압전소자의 하부전극은 접촉하여, 접합된다. In one embodiment of the present invention, the piezoelectric element is composed of a lower electrode, a piezoelectric material layer, and an upper electrode sequentially stacked, an adhesive layer is provided on the plastic substrate, and the adhesive layer and the lower electrode of the piezoelectric element are contacted and bonded. do.
본 발명의 일 실시예에서 상기 압전소자는 하부전극-압전물질층-상부전극이 순차적으로 적층된 후 열처리된다. 상기 본 발명은 또한 상술한 방법에 의하여 제조된 플라스틱 압전소자를 제공한다. In one embodiment of the present invention, the piezoelectric element is heat-treated after the lower electrode-piezoelectric material layer-top electrode are sequentially stacked. The present invention also provides a plastic piezoelectric element manufactured by the method described above.
본 발명의 또 다른 일 실시예는 상기 과제를 해결하기 위하여, 하기의 방법을 제공한다.  Another embodiment of the present invention provides the following method to solve the above problems.
본 발명은 플라스틱 기판; 및 상기 플라스틱 기판의 양면에 구비되며, 제1 압전소자 및 제 2 압전소자를 포함하며, 여기에서 상기 제 1 압전소자 및 제 1 압전소자는 각각 압전물질층 및 금속층으로 이루어진 것을 특징으로 하는 플라스틱 나노제너레이터를 제공한다. The present invention is a plastic substrate; And a first piezoelectric element and a second piezoelectric element provided on both sides of the plastic substrate, wherein the first piezoelectric element and the first piezoelectric element are made of a piezoelectric material layer and a metal layer, respectively. Provide a generator.
본 발명의 일 실시예에 따르면, 상기 플라스틱 기판, 제 1 압전소자 및 제 2 압전소자는 밀봉부재 내에 구비되며, 상기 제 1 압전소자 및 제 2 압전소자의 금속층에는 금속선이 연결되며, 상기 밀봉부재는 가요성 부재이다. According to one embodiment of the invention, the plastic substrate, the first piezoelectric element and the second piezoelectric element is provided in a sealing member, a metal wire is connected to the metal layer of the first piezoelectric element and the second piezoelectric element, the sealing member Is a flexible member.
본 발명의 일 실시예에서 상기 플라스틱 기판 휨에 따라 상기 기판 상부의 제 1 압전소자에서는 양의 전압이 발생하고, 기판 하부 제 2 압전소자에서는 음의 전압이 발생한다. 본 발명은 상기 또 다른 과제를 해결하기 위하여, 플라스틱 나노제너레이터 제조방법으로, 층상기판 상에 순차적으로 압전물질층 및 금속층을 적층시켜 제 1 압전소자를 제조하는 단계; 상기 제 21 압전소자 상에 전사기판을 접합시키는 단계; 상기 층상기판을 제거하는 단계; 및 상기 제 1 압전소자를 플라스틱 기판의 일 면에 전사시키는 단계를 포함하는 것을 특징으로 하는 플라스틱 나노제너레이터 제조방법을 제공한다. 본 발명의 일 실시예에서 상기 방법은 상기 제 1 압전소자가 전사된 플라스틱 기판 일 면의 대향면에 제 2 압전소자를 전사시키는 단계를 더 포함하며, 여기에서 상기 제 2 압전소자는 상술한 방법에 의하여 층상 기판 상에서 제조된 후 상기 플라스틱 기판의 대향면에 전사되며, 이때 상기 층상 기판은 운모 기판이며, 상기 층상 기판 제거는 물리적 방식의 박리에 의하는 수행될 수 있다. 본 발명의 일 실시에에 따르면, 상기 방법은 상기 제 1 압전소자 및 제 2 압전소자의 금속층에 금속선을 연결시키는 단계; 및 상기 제 1 압전소자 및 제 2 압전소자를 밀봉부재로 밀봉시키는 단계를 더 포함한다. According to an embodiment of the present invention, a positive voltage is generated in the first piezoelectric element above the substrate and a negative voltage is generated in the second piezoelectric element below the substrate according to the bending of the plastic substrate. The present invention, in order to solve the above another problem, a method of manufacturing a plastic nanogenerator, manufacturing a first piezoelectric element by laminating a piezoelectric material layer and a metal layer sequentially on a layered plate; Bonding a transfer substrate onto the twenty-first piezoelectric element; Removing the layer plate; And transferring the first piezoelectric element to one surface of the plastic substrate. In one embodiment of the present invention, the method further includes transferring a second piezoelectric element to an opposite surface of one surface of the plastic substrate on which the first piezoelectric element is transferred, wherein the second piezoelectric element is the method described above. Is produced on the layered substrate and then transferred to the opposite surface of the plastic substrate, wherein the layered substrate is a mica substrate, and the layered substrate removal can be performed by physical peeling. According to one embodiment of the invention, the method comprises the steps of: connecting a metal wire to the metal layer of the first piezoelectric element and the second piezoelectric element; And sealing the first piezoelectric element and the second piezoelectric element with a sealing member.
상기 또 다른 과제를 해결하기 위하여, 본 발명은 상술한 플라스틱 나노제너레이터를 포함하는 의료용 전자기기로서, 여기에서 상기 플라스틱 나노제너레이터의 플라스틱 기판의 휨에 따라 발생한 전류가 상기 전자기기로 제공된다. 이때, 상기 플라스틱 나노제너레이터의 플라스틱 기판 휨에 따라 상기 기판의 상부의 제 1 압전소자에서는 양의 전압이 발생하고, 하부의 제 2 압전소자에서는 음의 전압이 발생한다. 본 발명은 또한 상술한 플라스틱 나노제너레이터를 이용하여 고상의 리튬이차전지를 충전하는 것을 특징으로 하는 리튬이차전지 충전방법을 제공하며, 상기 플라스틱 나노제너레이터 의 출력 전류량은 100nA이상이다. In order to solve the another problem, the present invention is a medical electronic device comprising the plastic nano-generator described above, wherein the current generated by the bending of the plastic substrate of the plastic nano-generator is provided to the electronic device. At this time, a positive voltage is generated in the first piezoelectric element of the upper portion of the substrate, and a negative voltage is generated in the second piezoelectric element of the lower portion according to the bending of the plastic substrate of the plastic nanogenerator. The present invention also provides a lithium secondary battery charging method comprising charging a solid state lithium secondary battery using the above-described plastic nanogenerator, the output current amount of the plastic nanogenerator is 100nA or more.
본 발명의 또 다른 일 실시예는 상기 과제를 해결하기 위하여, 하기의 방법을 제공한다. 본 발명은 희생기판 상에 압전소자를 제조하는 단계; 상기 희생기판을 제거한 후, 상기 압전소자를 플라스틱 기판으로 옮기는 단계를 포함하는 것을 특징으로 하는 플라스틱 압전소자 제조방법을 제공한다. 상기 과제를 해결하기 위하여, 본 발명은 층상구조 기판에 압전소자를 제조하는 단계; 상기 층상구조 기판의 층을 박리시켜, 상기 층상구조 기판을 제거하는 단계; 및 상기 압전소자를 플라스틱 기판으로 전사시키는 단계를 포함하는 것을 특징으로 하는 플라스틱 압전소자 제조방법을 제공한다. 본 발명의 일 실시예에서 상기 층상구조 기판은 운모기판이며, 상기 운모기판의 제거는 물리적인 방식으로 수행된다. 여기에서 상기 물리적인 방식은 접착용 테이프를 상기 운모기판에 붙인 후, 떼어내는 방식이며, 본 발명의 일 실시예에서는 접착용 테이프를 상기 운모기판에 붙인 후, 떼어내는 상기 공정은 복수 회 수행된다. 본 발명의 일 실시예에서 상기 압전소자는 순차적으로 적층된 하부전극-압전물질층-상부전극으로 이루어지며, 상기 압전소자는 필름 형태, 즉 박막 형태를 이루게 된다. 본 발명은 상기 과제를 해결하기 위하여, 희생 기판상에 압전소자를 제조하는 단계; 상기 압전소자 상에 지지 기판을 접합시키는 단계; 상기 희생 기판을 제거하는 단계; 및 상기 압전소자를 플라스틱 기판으로 전사시키는 단계를 포함하는 것을 특징으로 하는 플라스틱 압전소자 제조방법을 제공한다. 본 발명의 일 실시예에서 상기 희생기판은 상부에 실리콘 산화물이 적층된 실리콘 기판이며, 상기 지지 기판은 접착층이 도포된 실리콘 기판이다.  Another embodiment of the present invention provides the following method to solve the above problems. The present invention comprises the steps of manufacturing a piezoelectric element on the sacrificial substrate; After removing the sacrificial substrate, there is provided a plastic piezoelectric device manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate. In order to solve the above problems, the present invention comprises the steps of manufacturing a piezoelectric element on a layered substrate; Removing the layered substrate by peeling the layer of the layered substrate; And it provides a plastic piezoelectric element manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate. In one embodiment of the present invention, the layered substrate is a mica substrate, and the removal of the mica substrate is performed in a physical manner. Herein, the physical method is a method of attaching an adhesive tape to the mica substrate and then detaching the adhesive tape. In an embodiment of the present invention, the process of detaching and attaching an adhesive tape to the mica substrate is performed a plurality of times. . In one embodiment of the present invention, the piezoelectric element is composed of a lower electrode, a piezoelectric material layer, and an upper electrode, which are sequentially stacked, and the piezoelectric element has a film form, that is, a thin film form. In order to solve the above problems, the present invention provides a method for manufacturing a piezoelectric element on a sacrificial substrate; Bonding a support substrate onto the piezoelectric element; Removing the sacrificial substrate; And it provides a plastic piezoelectric element manufacturing method comprising the step of transferring the piezoelectric element to a plastic substrate. In one embodiment of the present invention, the sacrificial substrate is a silicon substrate on which silicon oxide is stacked, and the support substrate is a silicon substrate coated with an adhesive layer.
본 발명의 일 실시예에서 상기 압전소자는 순차적으로 적층된 하부전극-압전물질층-상부전극으로 이루어지며, 상기 플라스틱 기판상에는 접착층이 구비되며, 상기 접착층과 압전소자의 하부전극은 접촉하여, 접합된다. 본 발명의 일 실시예에서 상기 압전소자는 하부전극-압전물질층-상부전극이 순차적으로 적층된 후 열처리된다. In one embodiment of the present invention, the piezoelectric element is composed of a lower electrode, a piezoelectric material layer, and an upper electrode sequentially stacked, an adhesive layer is provided on the plastic substrate, and the adhesive layer and the lower electrode of the piezoelectric element are contacted and bonded. do. In one embodiment of the present invention, the piezoelectric element is heat-treated after the lower electrode-piezoelectric material layer-top electrode are sequentially stacked.
상기 또 다른 과제를 해결하기 위하여, 본 발명은 상술한 방법에 의하여 제조된 플라스틱 압전소자를 제공한다. In order to solve the above another problem, the present invention provides a plastic piezoelectric element manufactured by the above-described method.
본 발명의 또 다른 일 실시예는 압전물질과 플렉서블한 플라스틱 기판의 휨을 결합시켜, 기판의 휨에 따라 전류가 고효율로 생성될 수 있는 생체용 나노제너레이터를 제공한다. 이를 위하여, 본 발명은 생체 내에 삽입된 후, 생체 내 기관의 움직임에 따라 전류를 생성하는 생체용 나노제너레이터로, 상기 나노제너레이터는 플렉서블 기판; 및 상기 플렉서블 기판 양면에 구비된 BTO 박막을 포함하는 구성을 제공한다. 본 발명의 일 실시예에 따르면, 상기 플렉서블기판, 상기 BTO 박막은 밀봉부재 내에 구비되며, 상기 BTO 박막으로부터 생성된 전류를 외부로 전달되는 금속선이 상기 나노제너레이터에 연결된다. 본 발명의 일 실시예에 따르면, 상기 플라스틱 기판 휨에 따라 상기 기판 일면의 BTO 박막에서는 양의 전압이 발생하고, 타면의 BTO박막에서는 음의 전압이 발생한다. 본 발명의 일 실시예에 따르면, 플렉서블 기판과 상기 플렉서블 기판에 구비된 BTO 박막을 포함하는 생체용 나노제너레이터; 및 상기 생체용 나노제너레이터가 삽입된 생체의 움직임에 따라 상기 생체용 나노제너레이터로부터 발생한 전력을 공급받아, 외부와 통신하는 통신수단을 포함하는 것을 특징으로 하는 생체 통신 시스템이 제공된다. 본 발명의 일 실시예에 따르면, 상기 BTO 박막은 상기 플렉서블 기판의 양면에 구비된다. 본 발명의 일 실시예에 따르면, 플렉서블 기판과 상기 플렉서블 기판에 구비된 BTO 박막을 포함하는 생체용 나노제너레이터를 이용하여 고상의 리튬이차전지를 충전하는 것을 특징으로 하는 리튬이차전지 충전방법이 제공된다. 본 발명의 일 실시예에 따르면, 상기 BTO 박막은 상기 플렉서블 기판의 양면에 구비되며, 상기 생체용 나노제너레이터의 출력 전류량은 100nA 이상이다. 본 발명의 일 실시예에 따르면, 생체용 나노제너레이터를 이용한 심장박동기로서, 상기 심장박동기는 플렉서블 기판과 상기 플렉서블 기판에 구비된 BTO 박막을 포함하고, 생체 움직임에 따라 전력을 생성하는 생체용 나노제너레이터; 및 상기 생성된 전력으로부터 상기 심장에 전기 신호를 제공하는 전기신호 제공부를 포함하는 것을 특징으로 하는 심장 박동기가 제공된다. Another embodiment of the present invention combines the bending of the piezoelectric material and the flexible plastic substrate, to provide a bio-generator for the generation of a high current can be generated according to the bending of the substrate. To this end, the present invention is inserted into a living body, and generates a current according to the movement of the organ in vivo, the nanogenerator, the nanogenerator is a flexible substrate; And a BTO thin film provided on both sides of the flexible substrate. According to an embodiment of the present invention, the flexible substrate and the BTO thin film are provided in a sealing member, and a metal wire that transmits current generated from the BTO thin film to the outside is connected to the nanogenerator. According to one embodiment of the present invention, a positive voltage is generated in the BTO thin film on one surface of the substrate, and a negative voltage is generated in the BTO thin film on the other surface according to the bending of the plastic substrate. According to an embodiment of the present invention, a bio-generator comprising a flexible substrate and a BTO thin film provided on the flexible substrate; And a communication means for receiving power generated from the bio-generator according to the movement of the living body into which the bio-generator is inserted and communicating with the outside. According to an embodiment of the present invention, the BTO thin film is provided on both sides of the flexible substrate. According to an embodiment of the present invention, there is provided a lithium secondary battery charging method comprising charging a solid-state lithium secondary battery using a bio-generator including a flexible substrate and a BTO thin film provided on the flexible substrate. . According to one embodiment of the invention, the BTO thin film is provided on both sides of the flexible substrate, the output current amount of the bio-generator is more than 100nA. According to an embodiment of the present invention, as a cardiac pacemaker using a biogenerator, the cardiac pacemaker includes a flexible substrate and a BTO thin film provided on the flexible substrate, and generates a bio-generator in accordance with the movement of the living body. ; And an electrical signal providing unit for providing an electrical signal to the heart from the generated power.
본 발명의 일 실시예에 따르면, 상기 전기신호는 상기 생체용 나노제너레이터에 의하여 생성된 후 축전된 전지 또는 커패시터로부터 제공되며, 이때 상기 생체역학적 에너지는 심장박동에 의해 생성된다. 본 발명의 일 실시예에 따르면, 상기 생체역학적 에너지는 횡격막의 이완 및 수축에 의해 생성된다. 본 발명은 또한 층상기판 상에 순차적으로 압전물질층 및 금속층을 적층시켜 제 1 압전소자를 제조하는 단계; 상기 제 1 압전소자 상에 전사기판을 접합시키는 단계; 상기 층상기판을 제거하는 단계; 및 상기 제 1 압전소자를 플라스틱 기판의 일 면에 전사시키는 단계를 포함하는 것을 특징으로 하는 생체용 나노제너레이터 제조방법을 제공한다. 본 발명의 일 실시예에 따르면, 상기 방법은 상기 제 1 압전소자가 전사된 플라스틱 기판 일 면의 대향면에 제 2 압전소자를 전사시키는 단계를 더 포함하며, 여기에서 상기 제 2 압전소자는 상술한 방법에 의하여 층상 기판상에서 제조된 후 상기 플라스틱 기판의 대향면에 전사되며, 상기 층상 기판은 운모 기판이며, 상기 층상 기판 제거는 물리적 방식의 박리에 의하는 것을 진행된다. 더 나아가, 상기 방법은 상기 제 1 압전소자 및 제 2 압전소자의금속층에 금속선을 연결시키는 단계; 및 상기 제 1 압전소자 및 제 2 압전소자를 밀봉부재로 밀봉시키는 단계를 더 포함한다. According to an embodiment of the present invention, the electrical signal is generated from a battery or a capacitor which is generated by the bio-generator and then stored, wherein the biomechanical energy is generated by a heartbeat. According to one embodiment of the invention, the biomechanical energy is generated by the relaxation and contraction of the diaphragm. The present invention also comprises the steps of sequentially stacking the piezoelectric material layer and the metal layer on the layer plate to produce a first piezoelectric element; Bonding a transfer substrate onto the first piezoelectric element; Removing the layer plate; And transferring the first piezoelectric element to one surface of the plastic substrate. According to one embodiment of the invention, the method further comprises the step of transferring the second piezoelectric element on the opposite surface of one surface of the plastic substrate on which the first piezoelectric element is transferred, wherein the second piezoelectric element is described above. After being manufactured on the layered substrate by one method, the layered substrate is transferred to the opposite surface of the plastic substrate, the layered substrate is a mica substrate, and the layered substrate removal proceeds by physical peeling. Furthermore, the method includes the steps of connecting a metal wire to the metal layers of the first piezoelectric element and the second piezoelectric element; And sealing the first piezoelectric element and the second piezoelectric element with a sealing member.
본 발명에 따른 플렉서블 나노제너레이터 제조방법 및 이에 따라 제조된 플렉서블 나노제너레이터는 기판의 구부러짐에 따라 전력이 생산되므로, 인체의 움직임 등에 따라 지속적인 전력생산이 가능하다는 장점이 있다. 따라서, 고효율의 생체적합성의 나노제너레이터가 본 발명에 의하여 제조가능하다. The flexible nanogenerator manufacturing method and the flexible nanogenerator manufactured according to the present invention have the advantage that the power is produced as the substrate is bent, so that the power can be continuously produced according to the movement of the human body. Therefore, a highly efficient biocompatible nanogenerator can be produced by the present invention.
도 1a 내지 1i는 본 발명의 일 실시예에 따른 플렉서블 나노제너레이터 제조방법의 단계별 모식도이고, 도 2는 플렉서블 나노제너레이터 모식도이다.1A to 1I are schematic step-by-step schematic diagrams of a method for manufacturing a flexible nanogenerator according to an embodiment of the present invention, and FIG. 2 is a schematic view of a flexible nanogenerator.
도 3은 약 1 cm2의 미세구조 MIM 소자가 어떠한 균열 없이 벌크 실리콘 기판으로부터 1 cm2의 미세구조 MIM 소자로 성공적으로 전사되는 것을 나타내는 사진이고, 도 4는 16.4%의 필-팩터를 갖는 플렉서블 BaTiO3 나노제너레이터 소자의 확대된 광학 이미지이다. FIG. 3 is a photograph showing successful transfer of a microstructured MIM device of about 1 cm 2 from a bulk silicon substrate to a microstructured MIM device of 1 cm 2 without any cracking, and FIG. 4 is flexible with a fill-factor of 16.4%. Magnified optical image of a BaTiO3 nanogenerator device.
도 6 및 7은 약 1350개의 MIM 구조체를 가지는 나노제너레이터가 굽힘장치에 의해 지속적인 굽힘과 펴짐에 따라 측정된 출력 전압 및 전류를 나타내는 그래프이다.6 and 7 are graphs showing the output voltage and current measured as the nanogenerator having about 1350 MIM structures continued to bend and unfold by the bending device.
도 8 내지 12는 본 발명의 일 실시예에 따른 압전소자 제조방법을 설명하는 도면이다.8 to 12 are diagrams illustrating a piezoelectric device manufacturing method according to an embodiment of the present invention.
도 13 내지 15는 본 발명의 일 실시예에 따른 압전소자 제조방법을 설명하는 도면이다.13 to 15 are diagrams illustrating a method of manufacturing a piezoelectric element according to an embodiment of the present invention.
도 16 내지 21은 본 발명의 일 실시예에 따른 압전소자 제조방법의 단계도이다.16 to 21 are steps of a piezoelectric device manufacturing method according to an embodiment of the present invention.
도 22 및 23은 본 발명에 따른 플렉서블 나노발전기의 응용 개념을 나타내는 도면이다.22 and 23 are views showing an application concept of the flexible nanogenerator according to the present invention.
이하, 본 발명을 도면을 참조하여 상세하게 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, the present invention will be described in detail with reference to the drawings. The following embodiments are provided as examples to ensure that the spirit of the present invention to those skilled in the art will fully convey. Therefore, the present invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. Like numbers refer to like elements throughout.
본 발명은 플렉서블 나노제너레이터를 제조하기 위하여, 희생 기판상에 압전물질층을 포함하는 압전소자층을 먼저 적층하였다. 여기에서 희생 기판이라함은 고온 조건의 압전소자 제조공정이 진행되는 임시 기판을 의미하며, 소자 완성 후 다시 소자로부터 분리될 수 있는 기판이다. 이후, 상기 압전소자층을 고온에서 열처리하여 결정화하고, 다시 소자가 상부에서 제조된 희생기판을 제거하여 상기 희생기판으로부터 단위 압전소자를 분리하였다. 본 발명의 일 실시예에서 상기 희생 기판과의 분리는 상기 희생 기판을 비등방식각하는 방식이었으나, 본 발명의 범위는 이에 제한되지 않는다. 이후, 상기 분리된 단위 압전소자를 플렉서블 기판에 전사하였는데, 본 발명의 일 실시예에서는 전사층에 단위 압전소자를 접촉, 접합시킨 후, 플렉서블 기판으로의 전사를 진행하였다.According to the present invention, a piezoelectric element layer including a piezoelectric material layer is first stacked on a sacrificial substrate in order to manufacture a flexible nanogenerator. Herein, the sacrificial substrate refers to a temporary substrate on which a piezoelectric device manufacturing process under high temperature is performed, and may be separated from the device after completion of the device. Subsequently, the piezoelectric element layer was crystallized by heat treatment at a high temperature, and the unit piezoelectric element was separated from the sacrificial substrate by removing the sacrificial substrate prepared above. In one embodiment of the present invention, the separation from the sacrificial substrate was a method of boiling the sacrificial substrate, but the scope of the present invention is not limited thereto. Thereafter, the separated unit piezoelectric element was transferred to the flexible substrate. In an embodiment of the present invention, the unit piezoelectric element is contacted and bonded to the transfer layer, and then the transfer to the flexible substrate is performed.
본 발명은 또한 새로운 플라스틱 압전소자 제조방법을 제공하는데, 이를 위하여, 고온의 극심한 조건인 압전소자 제조공정을 실리콘 기판 또는 운모 기판과 같은 희생기판에서 제조한 후, 이를 플라스틱 기판으로 옮기는 방식을 제안한다. 상기 플라스틱 기판으로 압전소자를 옮기는 방식은 별도의 전사수단(즉, 전사층 또는 전사기판)을 사용하거나, 또는 직접 플라스틱 기판과 소자를 접합시키는 방식이 사용될 수 있다. The present invention also provides a novel method for manufacturing a plastic piezoelectric element, and for this purpose, a method of manufacturing a piezoelectric element, which is a high temperature extreme condition, is manufactured on a sacrificial substrate such as a silicon substrate or a mica substrate and then transferred to a plastic substrate. . The piezoelectric element may be transferred to the plastic substrate using a separate transfer means (ie, a transfer layer or a transfer substrate), or a method of directly bonding the plastic substrate and the element.
이하 각각의 실시예를 통하여 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail through each embodiment.
본 발명의 일 실시예는 층상구조를 가지는 희생기판을 이용하여, 플라스틱 압전소자를 제조하는 방식이다. 이 경우, 습식식각이나 건식식각 공정이 아닌, 물리적인 방식으로 희생기판의 각 층들은 용이하게 박리되어, 제거된다. 이후 박리 방식으로 하부 희생기판이 제거된 압전소자는 플라스틱 기판으로 전사된다. 따라서, 물리적인 방식(즉, 박리 방식)으로 하부 기판을 제거하는 본 발명은, 식각액 등을 사용하여 화학적으로 하부기판을 제거하는 종래 기술에 비하여, 월등히 경제적이고, 안정적인 장점이 있다. One embodiment of the present invention is a method for manufacturing a plastic piezoelectric element using a sacrificial substrate having a layered structure. In this case, each layer of the sacrificial substrate is easily peeled off and removed in a physical manner, not a wet etching process or a dry etching process. After that, the piezoelectric element from which the lower sacrificial substrate is removed is transferred to the plastic substrate. Therefore, the present invention for removing the lower substrate in a physical manner (ie, a peeling method) has an advantage that is much more economical and stable than the prior art of chemically removing the lower substrate using an etchant or the like.
압전소자가 제조되는 층상구조 기판의 일 예로, 본 발명의 일 실시예는 운모기판을 사용하였다. 하지만, 본 발명의 범위는 이에 제한되지 않으며, 층상구조를 가지며 고온 환경에서 견딜 수 있는 임의의 모든 물질이 상기 희생기판으로 사용될 수 있다. As an example of a layered substrate in which a piezoelectric element is manufactured, an embodiment of the present invention uses a mica substrate. However, the scope of the present invention is not limited thereto, and any material having a layered structure and enduring in a high temperature environment may be used as the sacrificial substrate.
본 발명의 일 실시예에서 층상구조인 희생기판의 주요 물질로 사용된 운모(mica, 雲母)는 화강암 중의 중요한 조암광물로서, 층상 규산염광물을 의미한다. 운모는 보통 층상구조를 가지며, 육각 판상의 결정형을 이룬다. 또한 인상 ·섬유상 ·주상을 이루는데, 어느 형태나 밑면에 완전한 쪼개짐이 있어서 아주 엷게 벗겨질 수 있으며, 우수한 내열, 내화학성을 갖는다. 따라서, 본 발명은 이러한 특성의 운모를 이용, 운모기판에서 압전소자를 제조한 후, 하부 운모를 물리적인 방식으로 박리시키는 방식의 플렉서블 압전소자 제조방법을 제공한다. In one embodiment of the present invention, mica (mica) used as the main material of the layered sacrificial substrate is an important coarse mineral in granite, and refers to a layered silicate mineral. Mica usually has a layered structure and forms a hexagonal crystalline form. In addition, it forms impression, fibrous and columnar shape, and any shape or bottom can be completely cracked and can be peeled off very thinly. It has excellent heat and chemical resistance. Accordingly, the present invention provides a method of manufacturing a flexible piezoelectric element by using a mica having such characteristics to manufacture a piezoelectric element on a mica substrate and then peeling off the lower mica in a physical manner.
본 발명의 또 다른 일 실시예는 플렉서블 나노제너레이터를 제조하기 위하여, 실리콘 등과 같은 경성의 기판에 압전물질층을 포함하는 압전소자를 적층하고, 이를 패턴하여 복수 개의 단위 압전소자를 기판에 제조하였다. 이후, 단위 압전소자 사이로 노출된 기판을 비등방식각하여 상기 기판으로부터 단위 압전소자들을 분리한 후, 이를 전사층을 통하여, 플렉서블 기판에 전사하는 방식을 취하였다. 이후, 각 압전소자의 전극층에 별도의 전극라인을 연결함으로써, 플렉서블 압전소자를 제조하였다. According to another embodiment of the present invention, in order to manufacture a flexible nanogenerator, a piezoelectric element including a piezoelectric material layer is laminated on a rigid substrate such as silicon, and patterned to manufacture a plurality of unit piezoelectric elements on a substrate. Thereafter, the substrates exposed between the unit piezoelectric elements were boiled off to separate the unit piezoelectric elements from the substrate, and then transferred to the flexible substrate through the transfer layer. Then, a flexible piezoelectric element was manufactured by connecting a separate electrode line to the electrode layer of each piezoelectric element.
본 발명의 또 다른 일 실시예에 따른 플렉서블 나노제너레이터 제조방법을 살펴보면, 상기 실시예는 플렉서블 나노제너레이터를 제조하기 위하여, 기판상에 하부전극/압전물질층/상부전극층의 압전소자층을 적층하고, 다시 상기 압전소자층을 소정 형태(예를 들면 내로우 브릿지 형태)로 패터닝하여, 압전소자의 단위소자 영역을 정의한다. 이후 상기 노출된 단위소자 영역의 외부 기판 영역을 비등방식각하여 압전소자를 기판으로부터 분리하고, 다시 분리된 압전소자에 전사층을 접촉시킴으로써, 압전소자를 상기 전사층에 접착시켰다. 다시, 상기 전사층에 접착된 압전소자를 플렉서블 기판으로 전사시키고, 상기 전사된 압전소자의 일부 영역을 식각하여 하부 전극을 외부로 노출시켰다. 본 발명의 일 실시예에서 상기 전사층은 폴리디메틸실록산(PDMS)이었다.  Looking at a method of manufacturing a flexible nanogenerator according to another embodiment of the present invention, in order to manufacture a flexible nanogenerator, the piezoelectric element layer of the lower electrode / piezoelectric material layer / upper electrode layer is laminated on a substrate, The piezoelectric element layer is again patterned into a predetermined shape (for example, a narrow bridge shape) to define a unit device region of the piezoelectric element. Subsequently, the piezoelectric element was separated from the substrate by boiling the external substrate region of the exposed unit device region, and the piezoelectric element was adhered to the transfer layer by contacting the transfer layer to the separated piezoelectric element. Again, the piezoelectric element adhered to the transfer layer was transferred to the flexible substrate, and a portion of the transferred piezoelectric element was etched to expose the lower electrode to the outside. In one embodiment of the invention the transfer layer was polydimethylsiloxane (PDMS).
이후, 상기 압전소자상에 페시베이션층을 적층한 후, 패터닝하여 상기 하부전극 및 상부전극의 컨택 영역을 외부로 노출시켰다. 본 발명의 일 실시예에서 상기 하부전극 및 상부전극은 각각 백금, 금이었으며, 상기 컨택영역은 상기 페시베이션층에 패터닝된 홀을 통하여 외부로 노출된다. Thereafter, a passivation layer was stacked on the piezoelectric element and then patterned to expose the contact regions of the lower electrode and the upper electrode to the outside. In an embodiment of the present invention, the lower electrode and the upper electrode were platinum and gold, respectively, and the contact region is exposed to the outside through a hole patterned in the passivation layer.
이후, 상기 페시베이션층 상에 금속층을 적층한 후, 패터닝하여, 상기 하부 전극 및 상부 전극에 각각 연결되는 전극 라인을 형성한다. Thereafter, a metal layer is stacked on the passivation layer and then patterned to form electrode lines respectively connected to the lower electrode and the upper electrode.
본 발명의 일 실시예는 실리콘 기판 상에 적층된 페로브스카이트 박막(PZT, BaTiO3)을 압전소자층으로 사용, 고온에서 어닐링하고, 각각 희생층(MgO, TiO2)을 제거함으로써 플렉서블 기판 상에 상기 박막을 전사시켰다. 본 발명의 일 실시예에서는 또한 최초로 납을 사용하지 않은, 생체적합성의 BaTiO3 미세구조 물질(ms-BaTiO3)를 사용하여 플렉서블 기판상에 나노제너레이터를 제조하였다. An embodiment of the present invention uses a perovskite thin film (PZT, BaTiO 3 ) laminated on a silicon substrate as a piezoelectric element layer, annealing at high temperature, and remove the sacrificial layers (MgO, TiO 2 ), respectively, the flexible substrate The thin film was transferred onto the phase. In one embodiment of the present invention, a nanogenerator was also fabricated on a flexible substrate using biocompatible BaTiO 3 microstructured material (ms-BaTiO 3 ), which was initially free of lead.
이하, 본 발명의 일 실시예를 통하여 본 발명에 따른 나노제너레이터 제조방법을 상세히 설명한다. 하지만, 하기의 실시예는 모두 본 발명을 예시하기 위한 것으로, 본 발명의 범위는 이에 제한되지 않는다. Hereinafter, a method of manufacturing a nanogenerator according to the present invention through one embodiment of the present invention will be described in detail. However, the following examples are all intended to illustrate the invention, the scope of the present invention is not limited thereto.
본 발명의 일 실시예에 따른 나노제너레이터 제조방법에 따르면, Pt/Ti/SiO2/(111) Si 기판상에 RF 마그네트론 스퍼터링 방식으로 증착된 페로브스카이트 세라믹-BaTiO3 박막을 700℃로 어닐링하여 결정화 공정을 진행하고, 이후 높은 압전특성을 얻기 위한 폴링 공정을 진행한다. BaTiO3 박막은 테트라메틸암모늄 하이드록사이드(TMAH)를 이용, 하부 실리콘 층이 비등방식각되고, 다시 미세구조 제조방법 및 소프트 리소그래피 공정에 따라 상기 BaTiO3 박막을 포함하는 MIM 구조체(하부전극/압전소자층/상부전극)는 플렉서블 기판으로 전사된다. According to a method of manufacturing a nanogenerator according to an embodiment of the present invention, the perovskite ceramic-BaTiO 3 thin film deposited by RF magnetron sputtering on a Pt / Ti / SiO 2 / (111) Si substrate is annealed at 700 ° C. To proceed with the crystallization process, and then a polling process for obtaining high piezoelectric properties. The BaTiO 3 thin film is a tetramethylammonium hydroxide (TMAH), the lower silicon layer is boiling-etched, and again the MIM structure including the BaTiO 3 thin film according to the microstructure manufacturing method and soft lithography process (bottom electrode / piezoelectric element) Layer / top electrode) is transferred to the flexible substrate.
도 1a 내지 1j는 본 발명의 일 실시예에 따른 플렉서블 나노제너레이터 제조방법의 단계별 모식도이다. 1A to 1J are schematic step-by-step diagrams of a method of manufacturing a flexible nanogenerator according to an embodiment of the present invention.
도 1a를 참조하면, 먼저 실리콘 기판(620 mm)을 산화시켜 150nm 수준의 SiO2 층을 형성시킨다. 이후 RF 스퍼터링 공정으로 Pt(130nm) 및 Ti(20nm) 층의 하부전극을 제조한다. 이후, 상기 Pt/Ti/SiO2/Si 기판 상에 300nm 두께의 비정질 BaTiO3 박막을 2시간 동안 아르곤 분위기에서 RF 마그네트론 스퍼터링 공정으로 적층시킨다. BaTiO3 박막은 이후 700℃에서 15분간 산소 분위기에서 RTA(Rapid Thermal Annealing)되어 결정화된다. 이후 RF 스퍼터링법으로 크롬(Cr, 10nm)/금(Au, 100nm) 층을 상부 전극으로 적층한다. 이로써 Pt/BaTiO3/Au의 압전소자층, 즉, MIM 구조체(MIM structure)가 실리콘 기판 상에 제조된다. Referring to FIG. 1A, first, a silicon substrate (620 mm) is oxidized to form a SiO 2 layer having a 150 nm level. Thereafter, a lower electrode of the Pt (130 nm) and Ti (20 nm) layers is manufactured by an RF sputtering process. Thereafter, a 300 nm thick amorphous BaTiO 3 thin film was deposited on the Pt / Ti / SiO 2 / Si substrate by RF magnetron sputtering in an argon atmosphere for 2 hours. The BaTiO 3 thin film is then crystallized by RTA (Rapid Thermal Annealing) in an oxygen atmosphere at 700 ° C. for 15 minutes. Thereafter, a chromium (Cr, 10 nm) / gold (Au, 100 nm) layer is stacked on the upper electrode by RF sputtering. As a result, a piezoelectric element layer of Pt / BaTiO 3 / Au, that is, a MIM structure, is manufactured on the silicon substrate.
도 1b를 참조하면, 2.4 mm 두께의 SiO2 (PEO) 층을 플라즈마-향상 화학기상증착법(PECVD, 400 mTorr, 20 SCCM 9.5 % SiH4, 10 SCCM N2O, 300℃, 20W)로 증착하고, 600nm 두께의 알루미늄(Al) 박막을 RF 스퍼터링으로 증착한다. 이어지는 ICP(induced coupled plasma) 반응성 이온식각 공정에 대한 마스크를 얻기 위하여, Al(wet etching for 10 min, AL-12 SK, CYANTEK Co.) 및 PEO 층(ICP-RIE etching, 25 mTorr, 50 SCCM CF4, 150 W Power/40 W bias, 65 min)은 일반적인 포토리소그래피 공정 및 식각 공정에 의하여 패터닝된다. 이로써 내로우 브릿지 형태(즉, 소자 핵심 영역의 마스크가 외부 마스크 축에 연결된 형태)의 마스크가 MIM 구조체 상에 형성되며, 상기 마스크의 형태에 따라 압전소자의 단위소자 영역이 정의된다.Referring to FIG. 1B, a 2.4 mm thick SiO 2 (PEO) layer was deposited by plasma-enhanced chemical vapor deposition (PECVD, 400 mTorr, 20 SCCM 9.5 % SiH 4, 10 SCCM N 2 O, 300 ° C., 20 W) and 600 nm thick. A thin film of aluminum (Al) is deposited by RF sputtering. Wet etching for 10 min, AL-12 SK, CYANTEK Co.) and PEO layer (ICP-RIE etching, 25 mTorr, 50 SCCM CF) to obtain a mask for the subsequent coupled coupled plasma (ICP) reactive ion etching process. 4 , 150 W Power / 40 W bias, 65 min) is patterned by conventional photolithography and etching processes. As a result, a mask having a narrow bridge shape (ie, a mask in which the device core region is connected to the outer mask axis) is formed on the MIM structure, and the unit device region of the piezoelectric element is defined according to the shape of the mask.
도 1c를 참조하면, MIM 구조체의 Au/Cr/BaTiO3/Pt/Ti 층들은 염소 가스에 기반한 ICP-RIE 식각공정(ICP-RIE etching, 25 mTorr, 5 SCCM Ar/100 SCCM Cl2, 400 W power/200 W bias, 22 min)에 의하여 식각된다. 이로써 하부의 실리콘 기판이 노출된다. Referring to FIG. 1C, the Au / Cr / BaTiO3 / Pt / Ti layers of the MIM structure are based on chlorine gas (ICP-RIE etching, 25 mTorr, 5 SCCM Ar / 100 SCCM Cl 2 , 400 W power). / 200 W bias, 22 min). This exposes the underlying silicon substrate.
도 1d를 참조하면, MIM 구조체 상의 잔류 PEO 층(residual PEO)은 불소 가스에 기반한 ICP-RIE 공정(10 mTorr, 25 SCCM SF6, 150 W power/40 W bias, 12min)에 의하여 제거된다. 또한 하부의 실리콘 기판은 다시 5% 테트라메틸암모늄 하이드록사이드(TMAH, 18분간 80℃)를 이용하여 비등방식각(anisotropic etching)되며, 이로써 도 1b의 마스크와 동일한 MIM 구조체가 실리콘 기판으로부터 분리된다. Referring to FIG. 1D, the residual PEO layer on the MIM structure is removed by an ICP-RIE process based on fluorine gas (10 mTorr, 25 SCCM SF6, 150 W power / 40 W bias, 12 min). In addition, the lower silicon substrate is again anisotropic etched using 5% tetramethylammonium hydroxide (TMAH, 80 ° C. for 18 minutes), thereby separating the same MIM structure as the mask of FIG. 1B from the silicon substrate.
도 1e를 참조하면, 하부 실리콘 기판으로부터 분리된 MIM 구조체에 폴리디메틸실록산(PDMS, Sylgard 184, Dow Corning) 스탬프와 같은 전사층을 균일하게 접촉시킨다. 이후 실리콘 기판으로부터 PDMS 전사층을 신속히 떼어냄으로써 내로우 브리지 형태의 MIM 구조체는 PDMS의 전사층에 전사된다. Referring to FIG. 1E, a transfer layer such as polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) stamp is uniformly contacted with the MIM structure separated from the lower silicon substrate. Then, by quickly detaching the PDMS transfer layer from the silicon substrate, the narrow bridge type MIM structure is transferred to the transfer layer of the PDMS.
도 1f를 참조하면, MIM 구조체(MIM Structure)가 전사된 상기 전사층(PDMS)을 다시 플라스틱 기판에 올린다. 본 발명의 일 실시예에서 상기 플라스틱 기판은 UV에 의하여 경화될 수 있는 폴리우레탄과 같은 경화성 수지가 도포된 형태이며, 전사층(PDMS)의 MIM 구조를 플라스틱 기판에 접촉한 후, 플라스틱 기판 상의 PU는 선택적으로 UV에 의하여 경화된다. Referring to FIG. 1F, the transfer layer PDMS on which the MIM structure is transferred is placed on the plastic substrate again. In one embodiment of the present invention, the plastic substrate is in the form of a curable resin such as polyurethane that can be cured by UV, and after the MIM structure of the transfer layer (PDMS) is in contact with the plastic substrate, the PU on the plastic substrate Is optionally cured by UV.
도 1g를 참조하면, 플라스틱 기판에 접촉시킨 PDMS를 벗겨냄으로써 MIM 구조체(Pt/BaTiO3/Au)를 플라스틱 기판에 안정적으로 전사시킨다. Referring to FIG. 1G, the MIM structure (Pt / BaTiO 3 / Au) is stably transferred to the plastic substrate by peeling off the PDMS in contact with the plastic substrate.
도 1h를 참조하면, 플라스틱 기판 상의 잔류 PU는 산소 RIE 식각공정(10mTorr, 100 SCCM O2, 200W, 15분)에 의하여 제거된다. 이후 MIM 구조체의 Au/Cr/BaTiO3 층에는 PR(Photoresist, AZ 5214)이 적층되고 패터닝된 후, Au/Cr 금속층(Au/Cr 식각액, Transene Inc.) 및 BaTiO3층이 부분적으로 식각된다. 이로써 하부의 백금(Pt)이 노출되게 되며, 상기 노출된 하부 백금은 본 발명의 나노제너레이터의 하부 전극으로 기능하게 된다. Referring to FIG. 1H, the residual PU on the plastic substrate is removed by an oxygen RIE etching process (10 mTorr, 100 SCCM O2, 200 W, 15 minutes). After the PR (Photoresist, AZ 5214) is laminated and patterned on the Au / Cr / BaTiO 3 layer of the MIM structure, the Au / Cr metal layer (Au / Cr etchant, Transene Inc.) and BaTiO 3 layer is partially etched. As a result, the lower platinum Pt is exposed, and the exposed lower platinum functions as a lower electrode of the nanogenerator of the present invention.
도 1i를 참조하면, 페시베이션층인 에폭시층(SU8-5 포토레지스트)이 적층되고, 상기 소자의 하부전극(Pt) 및 상부전극(Au)를 연결하기 위한 컨택 영역이 패턴된다. 본 발명의 일 실시예에서 상기 컨택 영역은 하부전극과 상부전극 층과 연결된 홀 형태이나, 본 발명의 범위는 이에 제한되지 않는다. 상기 컨택 영역이 패턴된 페시베이션층 상에 금속층(예를 들면 금)이 적층되고 패터닝되어, 복수 개의 나노제너레이터 소자의 하부 전극과 상부 전극은 각각의 하부 전극과 상부 전극을 공통으로 연결하는 하부 전극 라인 및 상부 전극 라인에 공통으로 연결된다(도 1j 참조). 이후, 140℃에서 약 15시간동안 Keithley 237 High-Voltage Source-Measure Unit을 이용하여 100kV/cm의 전기장을 인가하여 폴링 공정을 진행한다.Referring to FIG. 1I, an epoxy layer (SU8-5 photoresist), which is a passivation layer, is stacked and a contact region for connecting the lower electrode Pt and the upper electrode Au of the device is patterned. In one embodiment of the present invention, the contact region is in the form of a hole connected to the lower electrode and the upper electrode layer, but the scope of the present invention is not limited thereto. A metal layer (for example, gold) is stacked and patterned on the passivation layer where the contact region is patterned, so that the lower electrode and the upper electrode of the plurality of nanogenerator elements connect the lower electrode and the upper electrode in common. It is commonly connected to the line and the upper electrode line (see FIG. 1J). Then, the polling process is performed by applying an electric field of 100 kV / cm using a Keithley 237 High-Voltage Source-Measure Unit for about 15 hours at 140 ° C.
즉, 도 1i에서 제조된 나노제너레이터는 하부전극(Pt)와 상부전극(Au)이 각각의 전극 라인(Au)에 연결되며, 상부전극(Pt)과 하부전극(Au) 사이에는 압력에 의하여 전압이 발생하는 압전층(BaTiO3)가 구비된다. 이로써 기판의 플렉서블에 의한 가용성 MIM 압전소자가 제조되며, 내부에 구비된 압전층에서 발생한 전자(예를 들면 플렉서블 소자의 구부러짐으로부터 발생한 전자)는 상기 하부전극 또는 상부전극을 통하여 외부로 나가게 되며, 이로써 압력에너지를 전기적 에너지로 회수하는 에너지 하비스트가 가능해진다. That is, in the nanogenerator manufactured in FIG. 1I, the lower electrode Pt and the upper electrode Au are connected to each electrode line Au, and a voltage is applied between the upper electrode Pt and the lower electrode Au by pressure. This generated piezoelectric layer (BaTiO 3 ) is provided. As a result, a soluble MIM piezoelectric element is manufactured by a flexible substrate, and electrons generated in the piezoelectric layer provided therein (for example, electrons generated from bending of the flexible element) go out through the lower electrode or the upper electrode. An energy harvest that recovers pressure energy as electrical energy is possible.
도 2는 본 발명에 따라 제조된 나노제너레이터 압전소자의 절개단면도이다.2 is a cutaway cross-sectional view of a nanogenerator piezoelectric element manufactured according to the present invention.
도 2를 참조하면, 본 발명에 따른 플렉서블 나노제너레이터는 플라스틱 기판(200) 상에 구비된 복수 개의 나노제너레이터 단위소자(210)를 포함한다. 이때, 상기 단위 소자는 압존소자층의 MIM 구조를 가지며 소자의 일부 영역의 하부 전극은 외부로 노출된 형태이다. 에폭시와 같은 페시베이션층(220) 사이로 노출된 단위 소자의 하부전극 및 상부전극은 패시베이셔층(220) 상부에 구비된 하부전극라인(230a)과 상부전극라인(230b)에 각각 연결된다. 2, the flexible nanogenerator according to the present invention includes a plurality of nanogenerator unit elements 210 provided on the plastic substrate 200. In this case, the unit device has a MIM structure of the piezoelectric device layer, and the lower electrode of a portion of the device is exposed to the outside. The lower electrode and the upper electrode of the unit device exposed between the passivation layer 220 such as epoxy are respectively connected to the lower electrode line 230a and the upper electrode line 230b provided on the passivator layer 220.
도 3의 사진은 약 1 cm2의 미세구조 MIM 소자가 어떠한 균열 없이 벌크 실리콘 기판으로부터 1 cm2의 미세구조 MIM 소자로 성공적으로 전사되는 것을 나타내는 사진이다. 도 3에 삽입된 부분은 PDMS 스탬프 상의 MIM 소자의 확대된 이미지이고, 나머지는 미세구조 MIM 소자가 전사된 PDMS 스탬프(전사층)을 뒤튼 후의 이미지이다. The photograph of FIG. 3 is a photograph showing that the microstructured MIM device of about 1 cm 2 was successfully transferred from the bulk silicon substrate to the microstructured MIM device of 1 cm 2 without any cracking. The portion inserted in FIG. 3 is an enlarged image of the MIM device on the PDMS stamp, and the rest is an image after the microstructure MIM device has twisted the PDMS stamp (transfer layer).
도 4는 16.4%의 필-팩터를 갖는 플렉서블 BaTiO3 나노제너레이터 소자의 확대된 광학 이미지이다. 삽입된 부분은 서로 교차반복하는 상부 전극 라인 및 하부 전극 라인(Au)에 각각 연결된 MIM 소자의 하부 및 상부 전극의 이미지이다. 또한 출력전압 및 전류를 측정하기 위하여 구리와이어가 은 페이스트에 의하여 상기전극 라인의 금속 패드에 연결된다. 4 is an enlarged optical image of a flexible BaTiO 3 nanogenerator device with a fill-factor of 16.4%. The inserted portion is an image of the lower and upper electrodes of the MIM element respectively connected to the upper electrode line and the lower electrode line Au, which cross each other. Also, copper wires are connected to the metal pads of the electrode lines by silver paste to measure output voltage and current.
본 발명자는 본 발명에 따른 플렉서블 나노제너레이터 소자의 특성을 분석하고자 XRD와 라만 스펙트로스코피를 사용하여 층의 결정구조를 분석하였다. 또한 압전반응력 마이크로스코프(PFM)으로 압전반응을 측정하였다. XRD 및 라만 이동 결과는 벌크 실리콘 및 플렉서블 기판 상의 열처리된 BaTiO3 필름(층)은 우수한 결정 특성을 나타낸다. 실리콘 기판 상의 BaTiO3 박막이 가지는 압전상수 d33는 PFM 방식으로 측정되었다. 또한 도 5는 실리콘 기판상에 폴링된 BaTiO3 박막과 폴링되지 않은 BaTiO3 박막에 대한 PFM 결과를 나타내는 그래프이다. The inventors analyzed the crystal structure of the layer using XRD and Raman spectroscopy to characterize the flexible nanogenerator device according to the present invention. In addition, piezoelectric reaction was measured with a piezoelectric force microscope (PFM). XRD and Raman migration results show that the annealed BaTiO3 film (layer) on bulk silicon and flexible substrates exhibits excellent crystalline properties. The piezoelectric constant d33 of the BaTiO 3 thin film on the silicon substrate was measured by PFM method. 5 is a graph showing PFM results for a BaTiO 3 thin film and a non-polled BaTiO 3 thin film on a silicon substrate.
상기 그래프를 참조하면, 압전반응에 따라 증폭된 결과치는 인가된 전압범위에 대하여 이력 곡선(hysteresis loop)를 보인다. 또한 압전계수(d33)는 곡선(압전반응/인가전압)의 기울기로 결정되는데, 폴링공정이 없는 경우, BaTiO3의 유효 압전계수는 40pm/V 수준이었으나, 상술한 폴링공정 후 d33은 105pm/V까지 증가하였다(도 5 참조). 이러한 d33 수치는 종래의 알려진 수치와 비교하여 볼 때 상당히 높게 증가한 수치이다. 특히 이와 같은 높은 압전 효율의 소자가 플렉서블 기판에 구현되었다는 점은 본 발명에 따른 나노제너레이터 및 그 제조방법이 에너지 하비스트 측면에서 매우 효과적이다는 것을 의미한다. Referring to the graph, the result amplified by the piezoelectric reaction shows a hysteresis loop over the applied voltage range. In addition, the piezoelectric coefficient (d 33 ) is determined by the slope of the curve (piezoelectric reaction / applied voltage). When there is no polling process, the effective piezoelectric coefficient of BaTiO 3 was 40 pm/V, but after the above-described polling process, d 33 is 105pm. Increased to / V (see FIG. 5). This d 33 value is a significantly higher value compared to conventionally known values. In particular, the fact that such a high piezoelectric efficiency device is implemented in the flexible substrate means that the nanogenerator and the manufacturing method according to the present invention are very effective in terms of energy harvesting.
도 6 및 7을 참조하면, 전류 측정기가 나노제너레이터에 정상 상태로 연결될 때, 기판의 빠른 구부러짐에 따라 양의 전압과 전류 펄스가 생성되었다(도 6 참조). 역으로 연결된 경우(도 7 참조), 음의 출력 신호가 검출되었다. 반복되는 굽힘/펴짐에 따라, 총 면적 82mm2, 16.4%의 필-팩터를 갖는 플렉서블 BaTiO3 나노제너레이터는 반복적으로 0.320 ~ 0.400 V의 출력전압, 8 ~ 12 nA의 전류 펄스를 생성하였다. 출력 전압 및 전류는 구부러짐의 각 속도에 따라 결정되며, 최대 출력 전압은 0.404V이었다. 하지만, 이 결과는 BaTiO3의 필-팩터 증가에 따라 향상될 수 있음은 자명하다. 손가락에 의해 나노제너레이터가 굽힘과 펴짐 과정을 반복하였을 때, 약 1.0 V의 출력전압과 26 nA의 전류를 생성하였다. 나노제너레이터의 면적과 부피를 고려하여, 약 0.2 mA/cm2의 전류 밀도와 6.96 mW/cm3의 전력 밀도가 계산되었다. 6 and 7, when the current meter is connected to the nanogenerator in a normal state, the positive bending of the substrate generates a positive voltage and a current pulse (see FIG. 6). In the reverse connection (see FIG. 7), a negative output signal was detected. With repeated bending / unfolding, the flexible BaTiO 3 nanogenerator with a total area of 82 mm 2 , 16.4% fill-factor, repeatedly produced an output voltage of 0.320-0.400 V and a current pulse of 8-12 nA. The output voltage and current were determined by the angular rate of bending and the maximum output voltage was 0.404V. However, it is obvious that this result can be improved by increasing the fill factor of BaTiO 3 . When the nanogenerator repeated the bending and unfolding process with a finger, it produced an output voltage of about 1.0 V and a current of 26 nA. Considering the area and volume of the nanogenerator, a current density of about 0.2 mA / cm 2 and a power density of 6.96 mW / cm 3 were calculated.
본 발명은 이상 살펴본 바와 같이, 생체 적합적인 BaTiO3 박막을 사용하여, 고성능의 플렉서블 나노제너레이터를 구현하였다. 플렉서블 기판에 구현된 BaTiO3 나노제너레이터는 기계적 에너지를 1.0 V의 출력전압, 26 nA 전류펄스 수준의 전기 에너지로 전환하였다.As described above, the biocompatible BaTiO 3 thin film is used to implement a high performance flexible nanogenerator. The BaTiO 3 nanogenerator implemented on the flexible substrate converts the mechanical energy into electrical energy of 1.0 V output voltage and 26 nA current pulse level.
본 발명의 또 다른 일 실시예는 운모와 같은 층상기판을 이용한 압전소자 제조방법을 제공한다.  Another embodiment of the present invention provides a piezoelectric device manufacturing method using a layered plate such as mica.
도 8은 운모기판(100) 상에 압전소자의 하부전극(200), 상기 하부전극(200) 상에 압전물질층(300), 상기 압전물질층(300) 상에 상부전극(400)이 적층된다. 이로써 상기 상부전극(400) 적층에 따라 하부전극(200)-압전물질층(300)-상부전극(400)으로 이루어진 압전소자(200)의 기본구조가 완성된다.  8 illustrates a lower electrode 200 of a piezoelectric element on a mica substrate 100, a piezoelectric material layer 300 on the lower electrode 200, and an upper electrode 400 on the piezoelectric material layer 300. do. Thus, the basic structure of the piezoelectric element 200 including the lower electrode 200, the piezoelectric material layer 300, and the upper electrode 400 is completed according to the stacking of the upper electrode 400.
도 9를 참조하면, 상기 압전소자(200) 상에 전사층(500)을 접촉시켜, 상기 압전소자의 상부전극(400)과 전사층(500)을 물리적으로 접합시켰으며, 이로써 하부전극-압전물질층-상부전극으로 이루어진 압전소자가 전사층(500)에 전체적으로 접합되어, 고정된다. 본 명세서에서 전사층(300)이란, 하부 희생기판이 제거된 압전소자(200)와 접착하여, 플라스틱 기판으로 상기 압전소자를 전사시킬 수 있는 기판 또는 층 형태의 평면 부재를 모두 포함한다.  Referring to FIG. 9, the transfer layer 500 is contacted on the piezoelectric element 200 to physically bond the upper electrode 400 and the transfer layer 500 of the piezoelectric element, thereby lowering the piezoelectric element. A piezoelectric element composed of a material layer-upper electrode is bonded to the transfer layer 500 as a whole and fixed. In the present specification, the transfer layer 300 includes all the planar members in the form of a substrate or a layer capable of transferring the piezoelectric element to a plastic substrate by adhering to the piezoelectric element 200 from which the lower sacrificial substrate is removed.
도 10을 참조하면, 하부 운모기판(100)은 층상구조의 각 층은 박리된다. 본 발명의 일 실시예에서 상기 운모기판(100)의 박리는 물리적인 방식으로 수행되며, 이는 접착용 테이프(600)를 상기 운모기판(100)에 붙인 후, 이를 떼어내는 방식이었다. 특히 붙이고, 떼어내는 물리적 박리 공정을 복수 회 수행함에 따라 하부의 운모기판은 연속적으로 박리된다. 이로써 도 21에서 도시된 바와 같이 전사층에 접착된 소자가 남게 되고, 여기에서 하부의 운모기판 제거는 소자 하부의 기판을 모두 제거하거나, 또는 플렉서블 특성을 가지는 수준의 두께로 운모 기판을 남기고, 나머지를 제거하는 공정을 모두 포함한다. 어떠한 경우라고 하여도, 운모기판 제거 후에도 소자(200) 상부에 접착된 전사층(500)에 의하여 상기 소자는 특별한 구조변형 없이 안정된 상태를 유지할 수 있다. 하지만, 별도의 전사층(500)을 사용하는 대신, 상기 압전소자 상부에 바로 플라스틱 기판을 접촉시켜, 접합시키는 경우, 하부 층상구조 기판의 물리적인 박리 방식의 제거에 따라, 바로 플라스틱 압전소자가 제조될 수 있다. 도 12를 참조하면, 압전소자가 하부에 접합된 상기 전사층(500)을 이용, 상기 압전소자를 플라스틱 기판(800)에 전사된다.  Referring to FIG. 10, each layer of the layered structure of the lower mica substrate 100 is peeled off. In one embodiment of the present invention, the separation of the mica substrate 100 is performed in a physical manner, which is a method of attaching the adhesive tape 600 to the mica substrate 100 and then detaching it. In particular, as the plural peeling and peeling physical peeling processes are performed a plurality of times, the lower mica substrate is continuously peeled off. This leaves the device bonded to the transfer layer as shown in FIG. 21, where the removal of the mica substrate at the bottom removes all of the substrate under the device, or leaves the mica substrate at a thickness that is flexible. It includes all of the steps to remove. In any case, even after removal of the mica substrate, the device may be maintained in a stable state without special structural deformation by the transfer layer 500 adhered to the device 200. However, instead of using a separate transfer layer 500, when the plastic substrate is directly contacted and bonded to the upper portion of the piezoelectric element, the plastic piezoelectric element is directly manufactured according to the removal of the physical peeling method of the lower layered substrate. Can be. Referring to FIG. 12, the piezoelectric element is transferred to the plastic substrate 800 by using the transfer layer 500 bonded to the piezoelectric element.
본 발명의 또 다른 일 실시예는 실리콘 기판을 희생기판으로 사용하며, 상술한 실시예와는 달리 습식 식각의 방식으로 하부 희생기판을 제거한다. Another embodiment of the present invention uses a silicon substrate as a sacrificial substrate, and unlike the above-described embodiment, the lower sacrificial substrate is removed by a wet etching method.
도 13 내지 15는 실리콘 기판을 희생기판으로 사용하여, 압전소자를 제조하는 방법을 설명하는 도면이다.13 to 15 are diagrams for explaining a method of manufacturing a piezoelectric element using a silicon substrate as a sacrificial substrate.
도 13을 참조하면, 실리콘 기판(101), 상기 실리콘 기판(101) 상에 구비된 실리콘 산화물층(201)이 구비된다. 본 발명의 일 실시예에서 상기 실리콘 산화물층(201)은 실리콘 기판(101)을 제거하기 위한 식각공정에서 식각멈춤층으로 기능하며, 상부에 구비되는 압전소자를 식각액으로부터 보호한다. 또한, 상기 실리콘 산화물층(201) 상에 압전소자(301)가 제조되며, 상기 상부전극 형성 후 진행되는 열처리-폴링 공정 등은 종래 기술에 따른다. 또한, 상기 압전소자(301)가 제조된 실리콘 산화물층(201)으로 접착층(401)이 도포된다. 이때 상기 접착층(401)은 열경화성 수지인 에폭시 수지가 사용될 수 있으며, 상기 접착층(401)은 압전소자(301)를 충분히 덮을 수 있는 높이로 도포된다. Referring to FIG. 13, a silicon substrate 101 and a silicon oxide layer 201 provided on the silicon substrate 101 are provided. In one embodiment of the present invention, the silicon oxide layer 201 functions as an etch stop layer in the etching process for removing the silicon substrate 101, and protects the piezoelectric element provided on the upper portion from the etching liquid. In addition, the piezoelectric element 301 is manufactured on the silicon oxide layer 201, and a heat treatment-polling process performed after the upper electrode is formed according to the related art. In addition, the adhesive layer 401 is applied to the silicon oxide layer 201 in which the piezoelectric element 301 is manufactured. At this time, the adhesive layer 401 may be a thermosetting resin epoxy resin, the adhesive layer 401 is applied to a height sufficient to cover the piezoelectric element 301.
도 14를 참조하면, 상기 접착층(401) 위로 또 다른 실리콘 기판(111)이 적층되며, 이로써 하부의 압전소자(301)은 하부 실리콘 기판(101)과 상부 실리콘 기판(111) 사이에 끼워진 상태로 고정된다. 이때 상기 상부 실리콘 기판(111)은 하부 실리콘 기판(101)과 구분되며, 이하 하부 실리콘 기판(101)은 제 1 실리콘 기판, 상부 실리콘 기판(111)은 제 2 실리콘 기판이라 지칭한다. 상술한 바와 같이 제 2 실리콘 기판(111)은 압전소자(301)과 물리적으로 접합되며, 하부 기판(101)의 제거에 따라 발생하는 박막 형태의 압전소자 (301)의 물리적 변형을 방지한다. 본 발명의 일 실시예에서는 열판(heating plate) 위에서 약간 굳힌 접합층(401) 위로 상기 실리콘 기판(111)을 얹어 완전히 굳히는 방식을 취하였다. 이후, 압전소자(301) 하부의 제 1 실리콘 기판(101)은 제거되는데, 본 발명의 일 실시예에서 상기 하부 실리콘 기판(101) 제거는 습식식각 방식으로 수행되었다. 상기 습식식각에 의하여 전지가 구비되는 하부 기판은 제 1 실리콘 기판(101)이 아닌 실리콘 산화물층(201)이 된다. 이는 습식식각 공정에서의 실리콘 산화물층(201)의 느린 식각속도에 기인하며, 만약, 실리콘 산화물층(201)이 없는 경우, 압전소자(301)는 바로 식각액에 노출되는 문제가 발생한다. 더 나아가, 본 발명의 일 실시예는 실리콘 산화물층(201)만으로 전지층 하부기판을 구성하는 경우, 식각액이 압전소자 사이로 침투할 수 있다는 문제를 방지하기 위하여, 하부의 제 1 실리콘 기판(101)을 기판 바깥쪽으로 일부 남기는 방식을 취하였다. 즉, 습식식각의 경우, 식각액(예를 들어, KOH, 테트라메틸암모늄히드록사이드(Tetramethylammonium hydroxide (TMAH)) 등)이 실리콘 산화물층(201)과 압전소자(301) 사이로 스며들어 가는 문제가 발생할 수 없으므로, 소정 높이로 제 1 실리콘 기판(101)을 기판 주변부에 남겨 식각액이 기판 측면으로 넘어가지 못하도록 하였다. 하지만, 본 발명의 범위는 이에 제한되지 않으며, 적어도 압전소자(301) 영역의 하부 실리콘 기판(101)이 식각 공정을 통하여 제거되는 한, 이는 모두 본 발명의 범위에 속한다. Referring to FIG. 14, another silicon substrate 111 is stacked on the adhesive layer 401, whereby the lower piezoelectric element 301 is sandwiched between the lower silicon substrate 101 and the upper silicon substrate 111. It is fixed. In this case, the upper silicon substrate 111 is distinguished from the lower silicon substrate 101, hereinafter, the lower silicon substrate 101 is referred to as a first silicon substrate, and the upper silicon substrate 111 is referred to as a second silicon substrate. As described above, the second silicon substrate 111 is physically bonded to the piezoelectric element 301 and prevents physical deformation of the piezoelectric element 301 in the form of a thin film generated by removing the lower substrate 101. In an embodiment of the present invention, the silicon substrate 111 is placed on the bonding layer 401 slightly hardened on a heating plate, thereby completely hardening. Thereafter, the first silicon substrate 101 under the piezoelectric element 301 is removed. In one embodiment of the present invention, the removal of the lower silicon substrate 101 is performed by a wet etching method. The lower substrate provided with the battery by the wet etching becomes the silicon oxide layer 201 instead of the first silicon substrate 101. This is due to the slow etching speed of the silicon oxide layer 201 in the wet etching process. If the silicon oxide layer 201 is absent, the piezoelectric element 301 is directly exposed to the etchant. Furthermore, in an embodiment of the present invention, when the lower layer of the battery layer is formed of only the silicon oxide layer 201, the first silicon substrate 101 is disposed in order to prevent the etching solution from penetrating between the piezoelectric elements. Was taken to leave part out of the substrate. That is, in the case of wet etching, an etching solution (eg, KOH, tetramethylammonium hydroxide (TMAH), etc.) may leak into the silicon oxide layer 201 and the piezoelectric element 301. Since the first silicon substrate 101 was left at the periphery of the substrate at a predetermined height, the etchant did not pass to the side of the substrate. However, the scope of the present invention is not limited thereto, and as long as at least the lower silicon substrate 101 in the piezoelectric element 301 region is removed through an etching process, all of them fall within the scope of the present invention.
도 15를 참조하면, 상기 제 2 실리콘 기판과 결합할 수 있는 전사층(미도시)을 이용, 상기 압전소자를 에폭시나 SU-8과 같은 접착층(501)이 상부에 도포된 플라스틱 기판을 전사하고, 상기 에폭시 등의 접착층을 소정의 유기용매(예를 들면 아세톤)에 녹임으로써 상기 상부의 제 2 실리콘 기판을 제거, 압전소자를 외부로 노출시킨다. Referring to FIG. 15, the piezoelectric element is transferred to a plastic substrate coated with an adhesive layer 501 such as epoxy or SU-8 by using a transfer layer (not shown) capable of bonding with the second silicon substrate. By dissolving an adhesive layer such as epoxy in a predetermined organic solvent (eg, acetone), the upper second silicon substrate is removed to expose the piezoelectric element to the outside.
도 16 내지 21은 본 발명의 일 실시예에 따른 압전소자 제조방법의 단계도이다. 16 to 21 are steps of a piezoelectric device manufacturing method according to an embodiment of the present invention.
도 16을 참조하면, 층상기판(100)이 개시된다. 본 발명의 일 실시예에서 상기 층상기판(100)은 운모기판이며, 상기 운모기판은 접착물질을 이용하여 물리적으로 박리될 수 있다. 즉, 본 발명은 층상구조로서 박리가 용이한 운모기판을 희생기판으로 이용하였으나, 본 발명의 범위는 이에 제한되지 않으며, 층간 구조로 인하여 층들이 순차적으로 벗겨질 수 있는 임의의 모든 기판이 상기 층상기판으로 사용될 수 있다. 상기 상기 층상기판(100) 상에 상부압전물질층(200), 상부금속층(300)이 적층된다. 이로써 압전물질층(200) 및 상부금속층(300)으로 이루어진 제 1 압전소자가 구비된다. Referring to FIG. 16, a layered plate 100 is disclosed. In one embodiment of the present invention, the layered substrate 100 is a mica substrate, the mica substrate may be physically peeled off using an adhesive material. That is, the present invention uses a mica substrate that is easily peeled off as a layer structure as a sacrificial substrate, but the scope of the present invention is not limited thereto, and any substrate to which layers can be sequentially peeled off due to the interlayer structure may be layered. It can be used as a substrate. The upper piezoelectric material layer 200 and the upper metal layer 300 are stacked on the layered substrate 100. As a result, a first piezoelectric element including the piezoelectric material layer 200 and the upper metal layer 300 is provided.
도 17을 참조하면, 상기 상부금속층(300) 상에는 전사기판(400)이 적층되며, 상기 전사기판은 하부 층상기판(100)이 제거됨에 따라 상기 상부압전물질층(200) 및 상부금속층(300)을 고정시켜, 플렉서블 기판으로 전사시키는 역할을 수행한다. 본 발명의 일 실시예에서 상기 전사기판(400)은 소정의 접착층이 도포된 PDMS 기판이었으나, 본 발명의 범위는 이에 제한되지 않는다. 이후 접착용 테이프 등과 같은 접착 수단(500)을 층상 기판 후면에 붙인 후, 떼어내는 방식으로 운모 기판의 층별로 박리시킨다. 즉, 본 발명은 희생기판을 습식식각 공정으로 제거하는 일반적인 기술과 달리 층상 형태로 박리될 수 있는 운모기판을 이용, 물리적으로 희생기판을 제거한다. 특히, 본 발명에서 물리적인 방식의 희생기판 제거에도 불구하고, 전사기판(400)에 의하여 고정된 소자층(상부압전물질층-상부금속층)은 고정되고, 배열된 상태를 유지한다. 상기 물리적 박리 공정을 계속 진행함에 따라 층상기판(100)은 모두 제거된다. 이후, 층상기판(100)이 모두 제거된 소자층(상부압전물질층(200)-상부금속층(300))은 접착층(600)이 구비된 플라스틱 기판(700)에 전사된다. 이로써 플렉서블 기판인 플라스틱 기판(700)상에 압전물질층(700)과 금속층(300)이 구비된다. Referring to FIG. 17, the transfer substrate 400 is stacked on the upper metal layer 300, and the transfer substrate 400 is the upper piezoelectric material layer 200 and the upper metal layer 300 as the lower layer upper plate 100 is removed. It is fixed to, and serves to transfer to the flexible substrate. In one embodiment of the present invention, the transfer substrate 400 was a PDMS substrate coated with a predetermined adhesive layer, but the scope of the present invention is not limited thereto. Then, the adhesive means 500, such as an adhesive tape, is attached to the back of the layered substrate, and then peeled off for each layer of the mica substrate by peeling. That is, the present invention physically removes the sacrificial substrate by using a mica substrate that can be peeled off in a layered form, unlike a general technique of removing the sacrificial substrate by a wet etching process. In particular, in the present invention, despite the removal of the sacrificial substrate in a physical manner, the device layer (upper piezoelectric material layer-upper metal layer) fixed by the transfer substrate 400 remains fixed and arranged. As the physical peeling process continues, all of the layer plates 100 are removed. Subsequently, the device layer (the upper piezoelectric material layer 200 and the upper metal layer 300) from which the layered substrate 100 is removed is transferred to the plastic substrate 700 provided with the adhesive layer 600. As a result, the piezoelectric material layer 700 and the metal layer 300 are provided on the plastic substrate 700 which is a flexible substrate.
도 19 및 20을 참조하면, 동일한 방식으로 층상기판(101) 상에 하부압전물질층(201)과 하부금속층(301)을 적층하여, 제 1 압전소자가 제조된 플라스틱 기판(700)의 반대 쪽에 제 2 압전소자를 형성시킨다. 이후, 상기 하부금속층(301)에 전사기판(401)을 접촉시켜, 고정시킨다. 이후, 운모와 같은 층상기판(101)을 물리적인 방식으로 제거한다. 이후, 상기 하부압전물질층(201)과 하부금속층(301)을 플라스틱 기판(600)에 전사시킨다. 이때 상기 하부압전물질층(200)과 하부금속층(301)은 상부압전물질층(200)과 상부금속층(300)이 접합된 플라스틱 기판(200)의 반대면에 접합된다. 따라서, 상기 플라스틱 기판(200)의 양 면에는 모두 접합층이 구비된다. Referring to FIGS. 19 and 20, the lower piezoelectric material layer 201 and the lower metal layer 301 are stacked on the layered substrate 101 in the same manner, so that the first piezoelectric element is formed on the opposite side of the plastic substrate 700. A second piezoelectric element is formed. After that, the transfer substrate 401 is brought into contact with the lower metal layer 301 to fix it. Then, the layered plate 101 such as mica is removed in a physical manner. Thereafter, the lower piezoelectric material layer 201 and the lower metal layer 301 are transferred to the plastic substrate 600. In this case, the lower piezoelectric material layer 200 and the lower metal layer 301 are bonded to opposite surfaces of the plastic substrate 200 to which the upper piezoelectric material layer 200 and the upper metal layer 300 are bonded. Therefore, both surfaces of the plastic substrate 200 are provided with a bonding layer.
도 21을 참조하면, 도 11의 전사공정을 통하여, 플라스틱 기판(700)의 양 면에 압전물질층(200, 201)과 금속층(300, 301)이 구비된 플렉서블 에너지 하베스트 소자가 완성된다. 따라서, 플라스틱 기판(700)의 휨에 따라 기판(700) 상부 압전물질층은 인장하중에 의해 위 표면에는 양의 전압이 발생하고, 하부 압전물질의 아래 표면에는 음의 전압이 발생하게 된다. 이후, 압전물질층(200, 201)으로부터 발생한 전류를 유도하는 금속 금속선(801)이 압전물질층 상에 적층된 금속층(300, 301)에 연결된다. 이로써 기판(700)의 휨에 따라 발생한 전류는 금속층(300, 301)과 금속선(801)을 통하여 외부로 흐르게 된다. 이때 발생되는 전압 및 전류는 위쪽과 아래쪽의 압전물질 에서 발생되는 값을 합한 것이 되므로, 단일 층으로 제작된 경우에 비해 높은 출력전압 및 전류값을 나타낸다. 본 발명의 일 실시예에서 상기 금속선(801)과 금속층의 연결부위에는 전도성 접착제(800)가 구비되어, 금속선(801)과 금속층(300, 301)을 물리적으로 고정시킨다. 하지만, 본 발명의 범위는 이에 제한되지 않으며, 다양한 방식으로 외부 전선을 금속층(300, 301)에 연결시킬 수 있다.Referring to FIG. 21, a flexible energy harvesting device including piezoelectric material layers 200 and 201 and metal layers 300 and 301 on both surfaces of the plastic substrate 700 is completed through the transfer process of FIG. 11. Accordingly, as the plastic substrate 700 is warped, the upper piezoelectric material layer of the substrate 700 generates a positive voltage on the upper surface of the piezoelectric material and a negative voltage on the lower surface of the lower piezoelectric material. Thereafter, a metal metal wire 801 for inducing a current generated from the piezoelectric material layers 200 and 201 is connected to the metal layers 300 and 301 stacked on the piezoelectric material layer. As a result, current generated due to the warpage of the substrate 700 flows to the outside through the metal layers 300 and 301 and the metal lines 801. At this time, the generated voltage and current is the sum of the values generated from the piezoelectric material of the upper and lower, showing a higher output voltage and current value compared to the case of manufacturing a single layer. In one embodiment of the present invention, a conductive adhesive 800 is provided at the connection portion between the metal wire 801 and the metal layer to physically fix the metal wire 801 and the metal layers 300 and 301. However, the scope of the present invention is not limited thereto, and the external wires may be connected to the metal layers 300 and 301 in various ways.
상기 플라스틱 기판의 양면에 압전소자를 구비한 에너지 하베스트 소자를 밀봉부재(401)로 밀봉시킨다. 상기 밀봉부재(401)는 휨이 자유로운 가요성 부재인 것이 바람직한데, 본 발명의 일 실시예에서 상기 밀봉부재(401)는 폴리디메틸실록산(PDMS)이었다. 따라서, 밀봉부재(401)가 휨에 따라 내부에 밀봉된 플라스틱 기판(700) 또한 휘게 되며, 이때 기판 양쪽에 구비된 압전소자에서는 전류가 발생, 금속선(801)을 통하여 외부로 흐르게 된다.An energy harvesting device having piezoelectric elements on both sides of the plastic substrate is sealed with a sealing member 401. Preferably, the sealing member 401 is a flexible member free of warpage. In one embodiment of the present invention, the sealing member 401 is polydimethylsiloxane (PDMS). Therefore, as the sealing member 401 is bent, the plastic substrate 700 sealed therein is also bent. At this time, current is generated in the piezoelectric elements provided on both sides of the substrate, and flows to the outside through the metal wire 801.
본 발명에 따른 플렉서블 압전소자는 물리적인 휨에 따라 전류를 발생시키는, 일종의 플렉서블 나노발전기로 사용가능하며, 특히 양면에 부착된 BTO 박막에 의하여 고효율로 전류를 생산할 수 있다(100nA 이상의 출력 전류량). The flexible piezoelectric element according to the present invention can be used as a kind of flexible nanogenerator that generates electric current according to physical bending, and in particular, can produce current with high efficiency by BTO thin films attached to both surfaces (output current amount of 100nA or more).
도 22 및 23은 본 발명에 따른 플렉서블 나노발전기의 응용 개념을 나타내는 도면이다.22 and 23 are views showing an application concept of the flexible nanogenerator according to the present invention.
도 22를 참조하면, 심장과 같은 인체 내에 삽입되는 전자기기에 본 발명에 따른 플라스틱 나노제너레이터가 나노자가발전기로 사용되어, 전력을 공급할 수 있다. 즉, 인체 내에서 발생하는 심장박동이나 횡경막의 움직임에 따라 전력을 발생하도록 인체 내에 삽입, 부착된 소형 플라스틱 나노제너레이터는 의료기기 및 통신수단인 무선 송신기에 전력을 공급하여, 인체 내에서 진행되는 상황을 외부에서 모니터링할 수 있게 한다. 또한, 본 발명에 따른 플렉서블 나노자가발전기로부터 발생한 전류를 정류하여, 배터리 장치로 활용할 수 있다. 즉, 양면에 구비된 BTO 소자에 의하여 생산된 전류는 고상의 리튬이차전지를 충전하기 위하여 사용될 수 있는데, 이 경우 나노제너레이터에 의하여 생성된 전류는 전류 장치를 거쳐, 고상 리튬이차전지와 같은 배터리 장치(903)를 충전시킨다. Referring to FIG. 22, a plastic nanogenerator according to the present invention may be used as a nano self-generator for an electronic device inserted into a human body such as a heart to supply power. That is, the small plastic nanogenerator inserted and attached in the human body to generate power according to the heartbeat or diaphragm movement occurring in the human body supplies power to a wireless transmitter, which is a medical device and a communication means, and progresses in the human body. Allow external monitoring. In addition, the rectified current generated from the flexible nano self-generator according to the present invention can be utilized as a battery device. That is, the current produced by the BTO device provided on both sides can be used to charge the solid state lithium secondary battery. In this case, the current generated by the nanogenerator passes through a current device, such as a battery device such as a solid state lithium secondary battery. Charge 903.
다.All.
본 발명에 따르면, 플렉서블 소자, 특히 전력 발생이 가능한 플렉서블 소자의 제조가 가능하므로, 산업상 이용가능성이 있다. According to the present invention, since it is possible to manufacture a flexible device, especially a flexible device capable of generating power, there is industrial applicability.

Claims (19)

  1. 희생 기판상에 압전물질층을 포함하는 압전소자층을 적층하는 단계;Stacking a piezoelectric element layer including a piezoelectric material layer on the sacrificial substrate;
    상기 압전소자층을 고온에서 열처리하여 결정화하는 단계;Crystallizing the piezoelectric element layer by heat treatment at a high temperature;
    상기 희생 기판을 제거하여 상기 기판으로부터 단위 압전소자들을 분리하는 단계; 및Separating the unit piezoelectric elements from the substrate by removing the sacrificial substrate; And
    상기 분리된 단위 압전소자를 플렉서블 기판에 전사하는 단계를 포함하는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법.Flexible nanogenerator manufacturing method comprising the step of transferring the separated unit piezoelectric element to a flexible substrate.
  2. 제 1항에 있어서, 상기 방법은 상기 단위 압전소자의 전극을 외부로 노출시키는 단계; 상기 전극과 전극라인을 연결시키는 단계를 더 포함하는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법.The method of claim 1, wherein the method further comprises exposing the electrode of the unit piezoelectric element to the outside; Flexible nanogenerator manufacturing method comprising the step of connecting the electrode and the electrode line.
  3. 기판상에 하부전극/압전물질층/상부전극층의 압전소자층을 적층하는 단계;Stacking a piezoelectric element layer of a lower electrode / piezoelectric material layer / upper electrode layer on a substrate;
    상기 압전소자층을 소정 형태로 패터닝하여, 상기 압전소자의 단위소자 영역을 정의하고, 외부의 기판 영역을 노출시키는 단계;Patterning the piezoelectric element layer in a predetermined form to define a unit device region of the piezoelectric element and to expose an external substrate region;
    상기 노출된 외부 기판 영역을 비등방식각하여 압전소자를 실리콘 기판으로부터 분리하는 단계;Separating the piezoelectric element from the silicon substrate by boiling the exposed external substrate region;
    상기 분리된 압전소자에 전사층을 접촉시킨 후, 상기 압전소자를 상기 전사층에 접착시키는 단계;Attaching the piezoelectric element to the transfer layer after contacting the transfer layer to the separated piezoelectric element;
    상기 전사층에 접착된 압전소자를 플렉서블 기판으로 전사시키는 단계; Transferring the piezoelectric element adhered to the transfer layer onto a flexible substrate;
    상기 전사된 압전소자의 일부 영역을 식각하여 하부 전극을 외부로 노출시키는 단계;Etching a portion of the transferred piezoelectric element to expose a lower electrode to the outside;
    상기 압전소자상에 페시베이션층을 적층한 후, 패터닝하여 상기 하부전극 및 상부전극의 컨택 영역을 외부로 노출시키는 단계; 및Stacking a passivation layer on the piezoelectric element and patterning the semiconductor substrate to expose the contact regions of the lower electrode and the upper electrode to the outside; And
    상기 페시베이션층 상에 금속층을 적층한 후, 패터닝하여, 상기 하부 전극 및 상부 전극에 각각 연결되는 전극 라인을 형성하는 단계를 포함하는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법.Stacking a metal layer on the passivation layer and patterning the electrode layer to form an electrode line connected to the lower electrode and the upper electrode, respectively.
  4. 제 3항에 있어서, 상기 압전소자층은 내로우 브릿지 형태로 패터닝되는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법.The method of claim 3, wherein the piezoelectric element layer is patterned in the form of a narrow bridge.
  5. 제 4항에 있어서, 상기 플렉서블 기판에는 광경화성 수지가 도포되어 있으며, 상기 전사층에 접착된 압전소자를 상기 플렉서블 기판에 접촉시킨 후, 광을 조사하여 상기 광경화성 수지를 경화시키는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법.The method of claim 4, wherein the flexible substrate is coated with a photocurable resin, and the piezoelectric element adhered to the transfer layer is brought into contact with the flexible substrate, and then irradiated with light to cure the photocurable resin. Flexible nanogenerator manufacturing method.
  6. 제 3항에 있어서, 상기 상부전극 및 하부전극의 컨택영역은 상기 페시베이션층을 통하여 소정 크기의 홀을 통하여 외부로 노출되는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법. The method of claim 3, wherein the contact regions of the upper electrode and the lower electrode are exposed to the outside through holes of a predetermined size through the passivation layer.
  7. 제 3항에 있어서, 상기 전사층은 폴리디메틸실록산을 포함하는 것을 특징으로 하는 하는 플렉서블 나노제너레이터 제조방법.The method of claim 3, wherein the transfer layer comprises polydimethylsiloxane.
  8. 제 3항에 있어서, 상기 압전소자의 단위소자 영역은 기판 상에 복수 개 구비되며, 상기 복수개의 단위소자는 동일한 전사층을 통하여 플렉서블 기판에 전사되는 것을 특징으로 하는 플렉서블 나노제너레이터 제조방법.The method of claim 3, wherein a plurality of unit device regions of the piezoelectric element are provided on the substrate, and the plurality of unit devices are transferred to the flexible substrate through the same transfer layer.
  9. 플라스틱 기판; 및Plastic substrates; And
    상기 플라스틱 기판의 양면에 구비되며, 제1 압전소자 및 제 2 압전소자를 포함하며, 여기에서 상기 제 1 압전소자 및 제 1 압전소자는 각각 압전물질층 및 금속층으로 이루어진 것을 특징으로 하는 플라스틱 나노제너레이터.It is provided on both sides of the plastic substrate, and includes a first piezoelectric element and a second piezoelectric element, wherein the first piezoelectric element and the first piezoelectric element is a plastic nanogenerator, characterized in that consisting of a piezoelectric material layer and a metal layer, respectively .
  10. 제 9항에 있어서, 상기 플라스틱 기판, 제 1 압전소자 및 제 2 압전소자는 밀봉부재 내에 구비되며, 상기 제 1 압전소자 및 제 2 압전소자의 금속층에는 금속선이 연결된 것을 특징으로 하는 플라스틱 나노제너레이터.The plastic nanogenerator of claim 9, wherein the plastic substrate, the first piezoelectric element, and the second piezoelectric element are provided in a sealing member, and metal wires are connected to the metal layers of the first piezoelectric element and the second piezoelectric element.
  11. 제 10항에 있어서, 상기 밀봉부재는 가요성 부재인 것을 특징으로 하는 플라스틱 나노제너레이터.11. The plastic nanogenerator of claim 10, wherein the sealing member is a flexible member.
  12. 제 9항에 있어서, 상기 플라스틱 기판 휨에 따라 상기 기판 상부의 제 1 압전소자에서는 양의 전압이 발생하고, 기판 하부 제 2 압전소자에서는 음의 전압이 발생하는 것을 특징으로 하는 플라스틱 나노제너레이터.The plastic nanogenerator of claim 9, wherein a positive voltage is generated in the first piezoelectric element above the substrate and a negative voltage is generated in the second piezoelectric element below the substrate as the plastic substrate is bent.
  13. 플라스틱 압전소자 제조방법으로, 상기 방법은 Plastic piezoelectric element manufacturing method, the method
    희생기판 상에 압전소자를 제조하는 단계; Manufacturing a piezoelectric element on the sacrificial substrate;
    상기 희생기판을 제거한 후, 상기 압전소자를 플라스틱 기판으로 옮기는 단계를 포함하는 것을 특징으로 하는 플라스틱 압전소자 제조방법.And removing the sacrificial substrate and transferring the piezoelectric element to a plastic substrate.
  14. 플라스틱 압전소자 제조방법으로, 상기 방법은 Plastic piezoelectric element manufacturing method, the method
    층상구조 기판에 압전소자를 제조하는 단계; Manufacturing a piezoelectric element on the layered substrate;
    상기 층상구조 기판의 층을 박리시켜, 상기 층상구조 기판을 제거하는 단계; 및Removing the layered substrate by peeling the layer of the layered substrate; And
    상기 압전소자를 플라스틱 기판으로 전사시키는 단계를 포함하는 것을 특징으로 하는 플라스틱 압전소자 제조방법. Transmitting the piezoelectric element to a plastic substrate characterized in that it comprises a plastic piezoelectric element manufacturing method.
  15. 제 14항에 있어서, The method of claim 14,
    상기 층상구조 기판은 운모기판인 것을 특징으로 하는 플라스틱 압전소자 제조방법. The layered substrate is a plastic piezoelectric element manufacturing method, characterized in that the mica substrate.
  16. 생체 내에 삽입된 후, 생체 내 기관의 움직임에 따라 전류를 생성하는 생체용 나노제너레이터로, 상기 나노제너레이터는After being inserted into the living body, a bio-generator for generating a current according to the movement of the organ in vivo, the nanogenerator is
    플렉서블 기판; 및A flexible substrate; And
    상기 플렉서블 기판 양면에 구비된 BTO 박막을 포함하는 것을 특징으로 하는 생체용 나노제너레이터.A bio-generator comprising a BTO thin film provided on both sides of the flexible substrate.
  17. 제 16항에 있어서, 상기 플렉서블기판, 상기 BTO 박막은 밀봉부재 내에 구비되며, 상기 BTO 박막으로부터 생성된 전류를 외부로 전달되는 금속선이 상기 나노제너레이터에 연결된 것을 특징으로 하는 생체용 나노제너레이터.The biogenerator of claim 16, wherein the flexible substrate and the BTO thin film are provided in a sealing member, and a metal wire that transmits a current generated from the BTO thin film to the outside is connected to the nanogenerator.
  18. 플렉서블 기판과 상기 플렉서블 기판에 구비된 BTO 박막을 포함하는 생체용 나노제너레이터; 및 A biogenerator comprising a flexible substrate and a BTO thin film provided on the flexible substrate; And
    상기 생체용 나노제너레이터가 삽입된 생체의 움직임에 따라 상기 생체용 나노제너레이터로부터 발생한 전력을 공급받아, 외부와 통신하는 통신수단을 포함하는 것을 특징으로 하는 생체 통신 시스템. And a communication means for receiving power generated from the bio-generator according to the movement of the living body into which the bio-generator is inserted and communicating with the outside.
  19. 생체용 나노제너레이터를 이용한 심장박동기로서, 상기 심장박동기는A cardiac pacemaker using a nanogenerator for a living body, wherein the cardiac pacemaker is
    플렉서블 기판과 상기 플렉서블 기판에 구비된 BTO 박막을 포함하고, 생체 움직임에 따라 전력을 생성하는 생체용 나노제너레이터; 및 A bio-generator comprising a flexible substrate and a BTO thin film provided on the flexible substrate, the bio-generator generating power according to a living body movement; And
    상기 생성된 전력으로부터 상기 심장에 전기 신호를 제공하는 전기신호 제공부를 포함하는 것을 특징으로 하는 심장 박동기.And an electrical signal providing unit for providing an electrical signal to the heart from the generated power.
PCT/KR2011/007473 2010-10-08 2011-10-10 Method for manufacturing flexible nanogenerator and flexible nanogenerator manufactured thereby WO2012047071A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2010-0098331 2010-10-08
KR1020100098331A KR101207075B1 (en) 2010-10-08 2010-10-08 Manufacturing method for flexible nanogenerator and flexible nanogenerator manufactured by the same
KR10-2010-0111651 2010-11-10
KR1020100111651A KR101203176B1 (en) 2010-11-10 2010-11-10 A manufacturing method for plastic piezoelectric device using sacrificial substrate, plastic piezoelectric device manufactured by the same
KR1020110069203A KR101340060B1 (en) 2011-07-13 2011-07-13 Flexible Nanogenerator and manufacturing method for the same
KR10-2011-0069203 2011-07-13
KR1020110082437A KR101336196B1 (en) 2011-08-18 2011-08-18 Bio-Nanogenerator and manufacturing method for the same
KR10-2011-0082437 2011-08-18

Publications (3)

Publication Number Publication Date
WO2012047071A2 WO2012047071A2 (en) 2012-04-12
WO2012047071A3 WO2012047071A3 (en) 2012-08-23
WO2012047071A9 true WO2012047071A9 (en) 2012-09-27

Family

ID=45928260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007473 WO2012047071A2 (en) 2010-10-08 2011-10-10 Method for manufacturing flexible nanogenerator and flexible nanogenerator manufactured thereby

Country Status (1)

Country Link
WO (1) WO2012047071A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217150A3 (en) * 2021-04-09 2022-11-17 Sakuu Corporation Ceramic lithium battery with piezoelectric compensation layers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898551B2 (en) * 2012-03-29 2016-04-06 富士フイルム株式会社 Semi-cured product, cured product and production method thereof, optical component, cured resin composition
JP6425941B2 (en) * 2014-08-11 2018-11-21 国立研究開発法人産業技術総合研究所 Electronic device and method of manufacturing electronic device
CN114203541A (en) * 2021-11-26 2022-03-18 华中科技大学 Method for transferring metal electrode to two-dimensional material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910019202A (en) * 1990-04-30 1991-11-30 서주인 Ni-Co thin film manufacturing method
KR101026040B1 (en) * 2008-11-13 2011-03-30 삼성전기주식회사 Fabrication method of thin film device
KR100894615B1 (en) * 2009-01-12 2009-04-22 한국산업기술평가원(관리부서:요업기술원) Unit for piezoelectric generator and generator system including the same
JP2010259664A (en) * 2009-05-08 2010-11-18 Olympus Corp Implanted device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217150A3 (en) * 2021-04-09 2022-11-17 Sakuu Corporation Ceramic lithium battery with piezoelectric compensation layers

Also Published As

Publication number Publication date
WO2012047071A2 (en) 2012-04-12
WO2012047071A3 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
US10383219B2 (en) Extremely stretchable electronics
Park et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates
US8633634B2 (en) MEMs-based cantilever energy harvester
US7999446B1 (en) Piezoelectronic device and method of fabricating the same
WO2012047071A2 (en) Method for manufacturing flexible nanogenerator and flexible nanogenerator manufactured thereby
CN104734564A (en) Full-interdigital electrode micro-piezoelectric thick film vibration energy collector and manufacturing method thereof
Liu et al. Transfer-free PZT thin films for flexible nanogenerators derived from a single-step modified sol–gel process on 2D mica
Yao et al. Recent progress on the fabrication and applications of flexible ferroelectric devices
KR20130023810A (en) Apparatus for harvesting and storaging piezoelectric energy and manufacturing method thereof
RU2627062C2 (en) Capacity transducer obtained by micromachining and method of its manufacture
CN1795700A (en) Sound detecting mechanism and process for manufacturing the same
TWI443959B (en) Vibration-powered generation element and vibration-powered generator comprising the same
CN111446359B (en) Piezoelectric device, manufacturing method thereof, electronic device and control method
WO2008067137A2 (en) A carbon nanotube film electrode and an electroactive device fabricated with the carbon nanotube film electrode and methods for making same
KR101207075B1 (en) Manufacturing method for flexible nanogenerator and flexible nanogenerator manufactured by the same
US20180351077A1 (en) Method for the Fabrication and Harvest of Piezoelectric Plates
Zhang et al. Controlled spalling and flexible integration of PZT film based on LaNiO3 buffer layer
WO2023068444A1 (en) Capacitive micromachined ultrasonic transducer having adjustable bending angle, and method for manufacturing same
KR101203176B1 (en) A manufacturing method for plastic piezoelectric device using sacrificial substrate, plastic piezoelectric device manufactured by the same
US20130020910A1 (en) Vibration power generation device and method of making the same
CN110459672B (en) Piezoelectric ceramic sensor and preparation method thereof
WO2015122727A1 (en) Flexible nanogenerator and method for manufacturing same
US11864465B2 (en) Integration of semiconductor membranes with piezoelectric substrates
CN110739880B (en) Preparation method of silicon carbide nanowire array-based piezoelectric nano-generator
JP7238546B2 (en) Piezoelectric laminated sheet, method for producing piezoelectric laminated sheet, piezoelectric sensor, and method for producing piezoelectric sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830956

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830956

Country of ref document: EP

Kind code of ref document: A2