WO2012046917A1 - (meth)acrylate-based polymer and photosensitive resin composition including same - Google Patents

(meth)acrylate-based polymer and photosensitive resin composition including same Download PDF

Info

Publication number
WO2012046917A1
WO2012046917A1 PCT/KR2010/008804 KR2010008804W WO2012046917A1 WO 2012046917 A1 WO2012046917 A1 WO 2012046917A1 KR 2010008804 W KR2010008804 W KR 2010008804W WO 2012046917 A1 WO2012046917 A1 WO 2012046917A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
meth
acrylate
photosensitive resin
Prior art date
Application number
PCT/KR2010/008804
Other languages
French (fr)
Korean (ko)
Inventor
김태호
양영수
이준호
최승집
최상준
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2012046917A1 publication Critical patent/WO2012046917A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate

Definitions

  • the present disclosure relates to a (meth) acrylate polymer and a photosensitive resin composition comprising the same.
  • the resin of the chemically amplified resist using deep ultraviolet ray must be transparent to the light source used and the resin having a good protection reaction
  • a polyhydroxy styrene is used for the KrF (248 nm) resist
  • ArF An acrylate polymer is used for the (193 nm) resist
  • a polymer including a hydrocarbon ring compound such as adamantyl in the side chain portion of the ester group is used to compensate for the insufficient etch resistance compared to the KrF resist.
  • One aspect of the present invention is to provide a (meth) acrylate-based polymer that can produce a resin film that is excellent in adhesion to a substrate and excellent in implant resistance without generating scum even at a high film thickness. .
  • Another aspect of the present invention is to provide a photosensitive resin composition comprising the (meth) acrylate-based polymer.
  • One aspect of the present invention provides a (meth) acrylate-based polymer comprising a repeating unit represented by the following formula (1) to (3).
  • R 1 includes hydrogen or a methyl group
  • R 10 includes a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C2 to C20 heterocycloalkyl group
  • n is an integer from 0 to 3.
  • R 2 comprises hydrogen or a methyl group
  • R 20 comprises an ester group and comprises a substituted or unsubstituted C3 to C20 cycloalkyl group.
  • R 3 contains hydrogen or a methyl group
  • R 30 includes a t-butyl group, triethylcarbyl group, 1-methyl cyclohexyl group, 1-ethylcyclopentyl group, t-amyl group or acetal group.
  • the repeating unit represented by Formula 1 may include any one of the repeating units represented by the following Formulas 4 to 23.
  • the heterocycloalkyl group may include a hetero atom of oxygen (O) or nitrogen (N).
  • R 20 in Formula 2 is a gamma-butyrolactonyl group, a valerolactonyl group, a 1,3-cyclohexanecarbolactonyl group, 2,6 Norbornanecarbolacton-5-yl (2,6-norbornanecarbolacton-5-yl) or 7-oxa-2,6-norbornanecarbolactone-5-yl (7-oxa-2,6-norbornanecarbolacton -5-yl) group.
  • the (meth) acrylate-based polymer may have a weight average molecular weight of 3,000 to 20,000 g / mol, dispersion degree may be 1.3 to 2.5.
  • the (meth) acrylate-based polymer 10 to 40 mol% of repeating units represented by Formula 1; 20 to 60 mol% of repeating units represented by Formula 2; And it may include 20 to 50 mol% of the repeating unit represented by the formula (3).
  • the (meth) acrylate-based polymer comprises Photo acid generator (PAG); And it provides a photosensitive resin composition comprising a solvent.
  • PAG Photo acid generator
  • the (meth) acrylate-based polymer may be included in 5 to 15% by weight based on the total amount of the photosensitive resin composition.
  • the photoacid generator is triarylsulfonium perfluoroalkylsulfonate, triarylsulfonium triflate, diaryliodonium triflate, triarylsulfonium nonaplate, diaryliodonium nonaplate, succinimidyl tri It may include a plate, 2,6-dinitrobenzyl sulfonate or a combination thereof, the photoacid generator may be included in 1 to 15 parts by weight based on 100 parts by weight of the (meth) acrylate-based polymer.
  • the photosensitive resin composition may further include 0.1 to 5 parts by weight of an organic amine based on 100 parts by weight of the (meth) acrylate-based polymer, wherein the organic amine is triethylamine, triisobutylamine, trioctylamine, tri Isodecylamine, triethanolamine, hydroxypiperidine or combinations thereof.
  • the (meth) acrylate-based polymer is excellent in solubility in a developer, does not generate scum, and is excellent in implant resistance and dry etch resistance, and has good hydrophilic property, which is excellent in adhesion to a substrate. Less occurrence of lifting. Thereby, the resin film suitable for an ion implantation process can be provided.
  • FIG. 1A is a CD-SEM photograph of a 150 nm pattern (optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1.
  • FIG. 1A is a CD-SEM photograph of a 150 nm pattern (optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1.
  • FIG. 1B is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1.
  • FIG. 1B is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1.
  • FIG. 1C is a CD-SEM photograph of a 150 nm pattern (4 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1.
  • FIG. 1C is a CD-SEM photograph of a 150 nm pattern (4 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1.
  • FIG. 2A is a CD-SEM photograph of a 150 nm pattern (optimum energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 1.
  • FIG. 2A is a CD-SEM photograph of a 150 nm pattern (optimum energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 1.
  • FIG. 2B is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy E op ) obtained using the photosensitive resin composition according to Comparative Example 1.
  • FIG. 2B is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy E op ) obtained using the photosensitive resin composition according to Comparative Example 1.
  • FIG. 2C is a CD-SEM photograph of a 150 nm pattern (4 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 1.
  • FIG. 2C is a CD-SEM photograph of a 150 nm pattern (4 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 1.
  • FIG. 3A is a CD-SEM photograph of a 150 nm pattern (optimum energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2.
  • FIG. 3A is a CD-SEM photograph of a 150 nm pattern (optimum energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2.
  • 3B is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2.
  • FIG. 1 is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2.
  • 3C is a CD-SEM photograph of a 150 nm pattern (4 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2.
  • E op optimal energy
  • FIG. 5 shows the exposure latitude (EL) margin of the 150 nm pattern (optimum energy (E op ): 36 mJ / cm 2 ) obtained using the photosensitive resin composition according to Example 1 with respect to the pattern center and edges.
  • heterocycloalkyl group each have at least one hetero atom of N, O, S or P in the ring compound. It means to be included.
  • the (meth) acrylate-based polymer includes a repeating unit represented by the following Chemical Formulas 1 to 3.
  • R 1 contains hydrogen or a methyl group
  • R 10 comprises a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C2 to C20 heterocycloalkyl group,
  • n is an integer of 0 to 3)
  • R 2 contains hydrogen or a methyl group
  • R 20 includes an ester group and includes a substituted or unsubstituted C3 to C20 cycloalkyl group.
  • R 3 contains hydrogen or a methyl group
  • R 30 includes t-butyl group, triethylcarbyl group, 1-methyl cyclohexyl group, 1-ethylcyclopentyl group, t-amyl group or acetal group.
  • the repeating unit represented by Formula 1 has a cyclic alkyl group, thereby improving the etch resistance of the (meth) acrylate-based polymer.
  • the cyclic alkyl group is a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C2 to C20 heterocycloalkyl group, wherein the substitution may specifically mean substituted with a C1 to C4 alkyl group, more Specifically, it may mean that a methyl group, an ethyl group, n-propyl group, iso-propyl group or the like is substituted.
  • heterocycloalkyl group may specifically include a hetero atom of oxygen (O) or nitrogen (N).
  • repeating unit represented by Formula 1 include any one of the repeating units represented by the following Formulas 4 to 23.
  • the repeating unit represented by Formula 1 may be included in 10 to 40 mol%, specifically, 20 to 30 mol% based on the total amount of the (meth) acrylate-based polymer.
  • the repeating unit represented by Chemical Formula 1 is included in the above range, the etch resistance and the lifting resistance are excellent.
  • the repeating unit represented by Formula 2 is a monocyclic or polycyclic (meth) acrylate repeating unit including an ester group, which may improve the hydrophilicity of the photosensitive resin composition and improve adhesion to the substrate.
  • R 20 in Formula 2 may be a lactone derivative.
  • lactone derivatives include gamma butyrolactonyl groups, valerolactonyl groups, 1,3-cyclohexanecarbolactonyl groups, and 2,6- Norbornane carbolactone-5-yl (2,6-norbornanecarbolacton-5-yl) group, 7-oxa-2,6-norbornanecarbolactone-5-yl (7-oxa-2,6-norbornanecarbolacton- 5-yl) group etc. are mentioned.
  • the repeating unit represented by Formula 2 may be included in 20 to 60 mol%, specifically 30 to 50 mol% based on the total amount of the (meth) acrylate-based polymer. When the repeating unit represented by Formula 2 is included in the above range, the adhesion to the substrate is excellent.
  • the repeating unit represented by Chemical Formula 3 is a (meth) acrylate repeating unit including an acid labile group in which decomposition occurs in the presence of a acidic catalyst, and is decomposed by an acid catalyst generated during exposure to (meth) acrylic acid.
  • the rate-based polymer may help to dissolve well in the alkaline developer.
  • Examples of the acid-decomposable group include t-butyl group, triethylcarbyl group, 1-methyl cyclohexyl group, 1-ethylcyclopentyl group, t-amyl group, acetal group, and the like, and among them, development speed T-butyl group may be used in the aspect.
  • the repeating unit represented by Formula 3 may be included in 20 to 50 mol%, specifically 30 to 40 mol% based on the total amount of the (meth) acrylate-based polymer.
  • the repeating unit represented by Formula 1 is included in the above range, the development speed is excellent.
  • the (meth) acrylate-based polymer comprising a repeating unit represented by Formula 1 to 3 may be a terpolymer, or may be a multipart copolymer further including the same type or different types of repeating units. , Random copolymers, block copolymers, alternating copolymers, branched copolymers, or the like can be used.
  • the (meth) acrylate-based polymer may have a weight average molecular weight of 3,000 to 20,000 g / mol, specifically 5,000 to 10,000 g / mol. When it has the said weight average molecular weight range, the surface edge roughness (LER) characteristic of the resin film obtained from the photosensitive resin composition is excellent.
  • LER surface edge roughness
  • Dispersion degree of the (meth) acrylate-based polymer may be 1.3 to 2.5, specifically, may be 1.5 to 2.0.
  • the dispersion degree is a value obtained by dividing the weight average molecular weight by the number average molecular weight.
  • the (meth) acrylate polymer is a general radical polymerization method using a repeating unit derivative monomer represented by Formula 1, a repeating unit derivative monomer represented by Formula 2, and a repeating unit derivative monomer represented by Formula 3 By polymerization.
  • Another embodiment includes a photosensitive resin composition including the (meth) acrylate-based polymer described above.
  • the photosensitive resin composition includes the (meth) acrylate-based polymer, a photo acid generator, and a solvent.
  • the (meth) acrylate-based polymer may be included in 5 to 15% by weight, specifically, 7 to 12% by weight based on the total amount of the photosensitive resin composition.
  • the (meth) acrylate-based polymer is included in the above range can be obtained excellent etch resistance and adhesion.
  • the photoacid generator may be an inorganic onium salt, organic triflate, organic sulfonate, or a combination thereof.
  • inorganic onium salt examples include triarylsulfonium salt, diaryl iodonium salt, and the like.
  • the photoacid generator include triarylsulfonium perfluoroalkylsulfonate, triarylsulfonium triflate, diaryliononium triflate, triarylsulfonium nonaplate, diaryliodonium nonaplate, Succinimidyl triflate, 2,6-dinitrobenzyl sulfonate or combinations thereof.
  • the photoacid generator may be included in an amount of 1 to 15 parts by weight, specifically 3 to 8 parts by weight, based on 100 parts by weight of the (meth) acrylate polymer.
  • an excellent exposure amount and transmittance of the photosensitive resin composition can be obtained.
  • propyleneglycol monomethylether acetate PGMEA
  • propyleneglycol monomethylether PGME
  • EL ethyl lactate
  • cyclohexanone 2-heptanone (2 -heptanone) etc.
  • the solvent may be included in the remainder with respect to 100 parts by weight of the (meth) acrylate-based polymer, specifically, may be included in 80 to 95 parts by weight.
  • the film thickness uniformity of the photosensitive resin composition may be excellent when applied to a wafer, and coating failure may be reduced.
  • the photosensitive resin composition may further include an organic amine as a quencher for the purpose of controlling the exposure dose and forming an excellent profile together with the constituent components.
  • the organic amine may be an amine compound, and examples thereof include triethylamine, triisobutylamine, trioctylamine, triisodecylamine, triethanolamine, hydroxypiperidine, or a mixture thereof.
  • the organic amine may be included in an amount of 0.1 to 5 parts by weight, and specifically 0.5 to 3 parts by weight, based on 100 parts by weight of the (meth) acrylate-based polymer.
  • DOF depth of focus
  • EL energy latitude
  • a bare silicon wafer, or a silicon wafer having a silicon oxide film, a silicon nitride film, or a lower film quality of a silicon oxynitride film formed on a top surface thereof, is prepared, and the silicon wafer is hexamethyl disilazane (HMDS). Treatment or by forming a bottom anti-reflective coating (BARC). Thereafter, the photosensitive resin composition is coated on the silicon wafer to a thickness of about 3800 kPa to about 4000 kPa to form a photosensitive resin film.
  • HMDS hexamethyl disilazane
  • BARC bottom anti-reflective coating
  • the silicon wafer on which the photosensitive resin film was formed was soft-baked (SB, pre-baking) for about 60 seconds to about 90 seconds in a temperature range of about 90 ° C to about 120 ° C.
  • the solvent is removed and exposed using ArF or extreme UV (EUV), E-beam, and the like.
  • a post-exposure baking for about 60 seconds to about 90 seconds in a temperature range of about 90 ° C to about 120 ° C, in order to cause the exposed wafer to undergo a chemical reaction in the exposure region of the photosensitive resin film. PEB).
  • the photosensitive resin film is developed with an aqueous alkali solution which is a developer.
  • an aqueous alkali solution which is a developer.
  • the exposed portion exhibits a very large solubility characteristic with respect to the developer, so that it is well dissolved and removed during development.
  • Tetramethylammonium hydroxide (TMAH) aqueous solution may be used as the developer.
  • TMAH Tetramethylammonium hydroxide
  • L / S line and space pattern of about 80 nm to about 300 nm at a dose of about 20 mJ / cm 2 to about 50 mJ / cm 2 Can be formed.
  • the lower film quality such as a silicon oxide film is etched by using a photosensitive resin pattern thus obtained as a mask and using a plasma of a specific etching gas, for example, a halogen gas or a fluorocarbon gas. Subsequently, a stripper may be used to remove the photosensitive resin pattern remaining on the wafer to form a desired silicon oxide film pattern.
  • a specific etching gas for example, a halogen gas or a fluorocarbon gas.
  • reaction product was diluted with 250 ml of dichloromethane, washed once with 250 ml of brine and three times with 250 ml of deionized water (DIW). The organic layer was taken up, dried over Na 2 SO 4 , and the solvent was removed to obtain 13.14 g of tetrahydro-2H-pyran-2-yl methacrylate (THP2M). Yield 83%.
  • reaction product was quenched with NaHCO 3 , diluted with 100 ml of ethyl acetate, washed three times with 100 ml of saturated NaHCO 3 , once with 150 ml of brine, and twice with 150 ml of deionized water (DIW). It was.
  • Cyclohexyl methacrylate (CHMA) (TCI), ⁇ -butyrolactonyl methacrylate (GBLMA) (aldrich) and t-butyl methacrylate (tert-butylmethacrylate, t) -BMA) (TCI Co., Ltd.) were each mixed in a molar ratio of 3: 3: 4, and azobisisobutyronitrile (AIBN) (Cafe Gold Co., Ltd.) was used as an initiator. 5 mole% together of the total amount of CHMA, GBLMA 'and t-BMA).
  • MEK methyl ethyl ketone
  • a (meth) acrylate polymer was obtained in the same manner as in Example 1 except that CHMA, GBLMA ', and t-BMA were each used at a molar ratio of 3: 4: 3.
  • a (meth) acrylate polymer was obtained in the same manner as in Example 1, except that CHMA, GBLMA ', and t-BMA were used in a molar ratio of 2: 5: 3, respectively.
  • Example 1 Except for using CHMA in Example 1 except that tetrahydro-2H-pyran-2-yl methacrylate (THP2M) prepared in Synthesis Example 1 was used, A (meth) acrylate polymer was obtained in the same manner as in Example 1.
  • THP2M tetrahydro-2H-pyran-2-yl methacrylate
  • Example 1 Except for using CHMA in Example 1 except that tetrahydrofuran-2-yl methacrylate (tetrahydrofuran-2-yl methacrylate, THFM) prepared in the same manner as in Example 1 ( A meta) acrylate type polymer was obtained.
  • tetrahydrofuran-2-yl methacrylate tetrahydrofuran-2-yl methacrylate, THFM
  • a (meth) acrylate polymer was obtained in the same manner as in Example 1, except that tetrahydrofurfuryl methacrylate (THFFMA) (TCI, Inc.) was used in place of CHMA.
  • THFFMA tetrahydrofurfuryl methacrylate
  • a (meth) acrylate polymer was obtained in the same manner as in Example 1, except that hydroxyadamantyl methacrylate (HAMA) (TCI, Inc.) was used in place of CHMA.
  • HAMA hydroxyadamantyl methacrylate
  • Example 1 and 1 except that 2-methyladamantan-2-yl methacrylate (MAMA) (TCI, Inc.) was used in place of t-BMA in Comparative Example 1 In the same manner, a (meth) acrylate polymer was obtained.
  • MAMA 2-methyladamantan-2-yl methacrylate
  • (Meta) acrylate-based polymer was obtained in the same manner as in Example 1 except that HAMA, GBLMA ', and MAMA were used in a molar ratio of 3: 4: 3, respectively.
  • (Meta) acrylate-based polymer was obtained in the same manner as in Example 1 except that HAMA, GBLMA ', and EAMA were each used in a molar ratio of 3: 4: 3.
  • Example 1 and 2 except that 2-methyladamantan-2-yl methacrylate (MAMA) (TCI Co., Ltd.) was used in place of t-BMA. In the same manner, a (meth) acrylate polymer was obtained.
  • MAMA 2-methyladamantan-2-yl methacrylate
  • PGMEA propyleneglycol monomethylether acetate
  • a 8 "bare silicon wafer is baked at 150 ° C./60 s with hexamethyl disilazane (HMDS), and the photosensitive resin compositions according to Examples 1 to 8 and Comparative Examples 1 to 6, respectively, are baked. After spin coating to a thickness of 4,000 kPa, soft baking (SB) was performed at 110 ° C. for 60 seconds.
  • HMDS hexamethyl disilazane
  • Each of the photosensitive resin compositions according to Examples 1 to 8 and Comparative Examples 1 to 6 was spin coated to a thickness of 4,000 kPa on an 8 "bare silicon wafer, and then baked at 110 ° C for 60 seconds, which was then applied for about 1 minute.
  • the thickness of the wafer coated with the photosensitive resin composition was measured by using a thickness gauge (K-MAC Co., Ltd.)
  • the wafer coated with the photosensitive resin composition was then 2.38% by weight of tetramethylammonium hydroxide.
  • Each of the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 5 was applied to an 8 "bare silicon wafer and baked at 110 ° C. for 60 seconds. The resultant was cooled to room temperature for about 1 minute again, respectively, 300 ⁇ and 500 ⁇ A wafer coated with a photosensitive resin composition having a thickness of 1,000 ⁇ , 2,000 ⁇ , 3,000 ⁇ and 4,000.
  • a photosensitive resin composition having a thickness of 1,000 ⁇ , 2,000 ⁇ , 3,000 ⁇ and 4,000.
  • BF boron monofluoride
  • 5 ⁇ 10 13 boron / cm 2 doses were implanted, and the remaining photosensitive resin composition was then O 2 ashed using PSK DAS2000 equipment and thoroughly cleaned with Hitachi NXWET.
  • boron (B) permeated to the wafer was carried out using secondary ion mass spectrometry (SIMS) using an IMS-6f Magnetic Sector device from CAMECA, O 2 + Gun, impact energy: 7.5 keV, 300nA Measured by current.
  • SIMS secondary ion mass spectrometry
  • the photosensitive resin composition had a high intensity of boron (B) measured in the wafer after the implant at a thickness lower than the high thickness, boron penetrated the wafer through the photosensitive resin film during the implant. Therefore, as the minimum thickness of the boron in the wafer after the ion implantation is not different, the implant resistance was evaluated as good.
  • the minimum thickness is shown in Table 1 below.
  • the 8 "bare silicon wafer was spin-coated each of the photosensitive resin compositions of Examples 1-8 and Comparative Examples 1-6 with the thickness of 5,000 kPa, and soft-baked at 110 degreeC for 60 second.
  • the coated wafer was subjected to a phase shift mask (PSM) using an NSR-S308F (LENS NA: 0.85, ILLUMINATION NA: 0.68, Conv. (Large), sigma: 0.80), an NIKON ArF scanner.
  • PSM phase shift mask
  • NSR-S308F LENS NA: 0.85, ILLUMINATION NA: 0.68, Conv. (Large), sigma: 0.80
  • PEM phase shift mask
  • NSR-S308F LENS NA: 0.85, ILLUMINATION NA: 0.68, Conv. (Large), sigma: 0.80
  • PEB post exposure baking
  • TMAH tetramethyl ammonium hydroxide
  • CD-SEM was used to observe the scum at the end of the trench pattern. The edge of the pattern was developed, but the scum performance was evaluated to the extent that no scum remained inside. That is, despite the evaluation of the thick film thickness, it was determined that less scum occurred as the inside of the fine trench pattern melted well.
  • FIG. 1A is a CD-SEM photograph of a 150 nm pattern (optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1
  • FIG. 1B is 150 nm obtained using the photosensitive resin composition according to Example 1 CD-SEM photograph of the pattern (2 mJ / cm 2 less than the optimal energy (E op )
  • FIG. 1C is 4 nm than the 150 nm pattern (optimal energy (E op ) obtained using the photosensitive resin composition according to Example 1 mJ / cm 2 less) CD-SEM photo.
  • FIG. 2A is a CD-SEM photograph of a 150 nm pattern (optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 1
  • FIG. 2B is 150 nm obtained using the photosensitive resin composition according to Comparative Example 1
  • Figure 2c is a 150 nm pattern obtained by using the photosensitive resin composition according to Comparative Example 1 (4 than the optimal energy (E op ) mJ / cm 2 less) CD-SEM photo.
  • FIG. 3A is a CD-SEM photograph of a 150 nm pattern (optimum energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2
  • FIG. 3B is 150 nm obtained using the photosensitive resin composition according to Comparative Example 2.
  • Figure 3c is 4 nm than the 150 nm pattern (optimal energy (E op ) obtained using the photosensitive resin composition according to Comparative Example 2 mJ / cm 2 less) CD-SEM photo.
  • the pattern of Example 1 using the (meth) acrylate-based polymer according to one embodiment, the phenomenon is clear to the inside, the pattern is formed in a straight line can be seen not only excellent scum performance but also patternability have.
  • Figures 2a and 3a it can be seen that the patterns of Comparative Examples 1 and 2 are not well formed due to scum.
  • Comparative Examples 1 and 2 have a maximum trench pattern width of 130 nm, but Example 1 has a depth of focus (DOF) margin and exposure latitude (EL) of up to 110 nm. Margin and the like can be excellently implemented.
  • DOF depth of focus
  • EL exposure latitude
  • the depth of focus margin refers to the allowable focus range of the resultant pattern even when the focus at the optimal energy E op is out of the best focus.
  • the acceptable focus range typically represents ⁇ 10% of the CD size.
  • the best condition is -0.05 um, and the depth of focus margin is 0.25 um (-0.15 um to 0.1 um).
  • both the center and the edge of the pattern are developed cleanly, so it can be confirmed that the scum surface is clean.
  • FIG. 5 shows the exposure latitude (EL) margin of the 150 nm pattern (optimum energy (E op ): 36 mJ / cm 2 ) obtained using the photosensitive resin composition according to Example 1 with respect to the pattern center and edges.
  • the exposure allowance margin indicates an allowable exposure range of the resultant pattern even when the exposure energy is out of the optimum energy E op at the best focus, and the allowable energy range is optimal energy. Divided by (E op ).
  • the acceptable exposure range typically represents ⁇ 10% of the CD size.
  • the exposure allowance margin is 22% (32 mJ to 8 mJ from 40 mJ).
  • the center and the edge of the pattern are developed cleanly from the under dose to the over dose, it can be confirmed that the scum surface is also clean.

Abstract

Provided are a (meth)acrylate-based polymer and a photosensitive resin composition including same.

Description

(메타)아크릴레이트계 고분자 및 이를 포함하는 감광성 수지 조성물(Meth) acrylate type polymer and the photosensitive resin composition containing the same
본 기재는 (메타)아크릴레이트계 고분자 및 이를 포함하는 감광성 수지 조성물에 관한 것이다.The present disclosure relates to a (meth) acrylate polymer and a photosensitive resin composition comprising the same.
반도체 칩의 집적도가 증가함에 따라 리소그래피 공정에서 서브-마이크론 칩을 위한 미세 패턴의 형성이 요구되고 있다.  특히 초고집적 회로의 제조를 위한 리소그래피 공정에 있어서는 단파장(DUV 영역)을 사용하여 더욱 높은 해상도를 구현하고 있다.  이에 따라, 기존의 g-라인(436nm) 및 i-라인(365nm)보다 더욱 단파장의 심자외선을 이용하는 리소그래피 기술이 도입되었는데, 이를 위하여 고감광도, 고해상도의 화학 증폭형 레지스트라는 새로운 개념의 재료가 도입되었다.As the degree of integration of semiconductor chips increases, the formation of fine patterns for sub-micron chips in a lithography process is required. In particular, in the lithography process for fabricating ultra-high density circuits, shorter wavelengths (DUV regions) are used to achieve higher resolution. As a result, a lithography technology using shorter wavelengths of deep ultraviolet rays than the conventional g-line (436 nm) and i-line (365 nm) has been introduced. For this purpose, a new concept of material, a high sensitivity and high resolution chemically amplified resist, has been introduced. It became.
심자외선을 이용한 화학증폭형 레지스트의 수지는 사용하는 광원에 대해 투명하며 탈보호(protection) 반응이 잘되는 수지가 사용되어야 하므로 KrF(248nm) 레지스트에는 폴리하이드록시 스티렌(poly hydroxy styrene)이 사용되고, ArF(193nm) 레지스트에는 아크릴레이트 중합체가 사용되는데, KrF 레지스트에 비해 상대적으로 부족한 에치 내성 보완을 위하여 에스테르기의 측쇄부에 아다만틸(adamantyl)과 같은 탄화수소고리 화합물을 포함하는 중합체가 사용되었다.Since the resin of the chemically amplified resist using deep ultraviolet ray must be transparent to the light source used and the resin having a good protection reaction, a polyhydroxy styrene is used for the KrF (248 nm) resist, and ArF An acrylate polymer is used for the (193 nm) resist, and a polymer including a hydrocarbon ring compound such as adamantyl in the side chain portion of the ester group is used to compensate for the insufficient etch resistance compared to the KrF resist.
그러나, 종래와 같이 기존의 아다만틸(adamantyl)과 같은 탄화수소고리 화합물을 사용하면 수지의 용해도가 충분하지 않아 패턴 구현 후 scum이 발생하거나 기판과의 밀착성이 좋지 않아 패턴 형성이 잘 이루어지지 않는 경우가 있었다. However, when a hydrocarbon ring compound such as adamantyl is used as in the prior art, when the resin is not sufficiently soluble, scum occurs after the pattern is implemented or the pattern is not formed well due to poor adhesion with the substrate. There was.
본 발명의 일 측면은 높은 막 두께에도 스컴(scum)이 발생하지 않고, 기판에 대한 접착성이 우수하며, 임플란트 내성이 우수한 수지막을 제조할 수 있는 (메타)아크릴레이트계 고분자를 제공하기 위한 것이다.One aspect of the present invention is to provide a (meth) acrylate-based polymer that can produce a resin film that is excellent in adhesion to a substrate and excellent in implant resistance without generating scum even at a high film thickness. .
본 발명의 다른 일 측면은 상기 (메타)아크릴레이트계 고분자를 포함하는 감광성 수지 조성물을 제공하기 위한 것이다.  Another aspect of the present invention is to provide a photosensitive resin composition comprising the (meth) acrylate-based polymer.
본 발명의 일 측면은 하기 화학식 1 내지 3으로 표시되는 반복단위를 포함하는 (메타)아크릴레이트계 고분자를 제공한다.One aspect of the present invention provides a (meth) acrylate-based polymer comprising a repeating unit represented by the following formula (1) to (3).
[화학식 1][Formula 1]
Figure PCTKR2010008804-appb-I000001
Figure PCTKR2010008804-appb-I000001
(상기 화학식 1에서, (In Formula 1,
R1은 수소 또는 메틸기를 포함하고, R10은 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 또는 치환 또는 비치환된 C2 내지 C20 헤테로사이클로알킬기를 포함하고, n은 0 내지 3의 정수이다.)R 1 includes hydrogen or a methyl group, R 10 includes a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C2 to C20 heterocycloalkyl group, n is an integer from 0 to 3.)
[화학식 2][Formula 2]
Figure PCTKR2010008804-appb-I000002
Figure PCTKR2010008804-appb-I000002
(상기 화학식 2에서, (In Formula 2,
R2는 수소 또는 메틸기를 포함하고, R20은 에스테르기를 포함하고 치환 또는 비치환된 C3 내지 C20 사이클로알킬기를 포함한다.)R 2 comprises hydrogen or a methyl group, R 20 comprises an ester group and comprises a substituted or unsubstituted C3 to C20 cycloalkyl group.)
[화학식 3][Formula 3]
Figure PCTKR2010008804-appb-I000003
Figure PCTKR2010008804-appb-I000003
(상기 화학식 3에서, (In Chemical Formula 3,
R3은 수소 또는 메틸기를 포함하고, R30은 t-부틸기, 트리에틸카르빌기, 1-메틸 사이클로헥실기, 1-에틸사이클로펜틸기, t-아밀기 또는 아세탈기를 포함한다.)R 3 contains hydrogen or a methyl group, and R 30 includes a t-butyl group, triethylcarbyl group, 1-methyl cyclohexyl group, 1-ethylcyclopentyl group, t-amyl group or acetal group.)
상기 화학식 1로 표시되는 반복단위는 하기 화학식 4 내지 23으로 표시되는 반복단위 중 어느 하나를 포함할 수 있다.The repeating unit represented by Formula 1 may include any one of the repeating units represented by the following Formulas 4 to 23.
[화학식 4][Formula 4]
Figure PCTKR2010008804-appb-I000004
Figure PCTKR2010008804-appb-I000004
[화학식 5][Formula 5]
Figure PCTKR2010008804-appb-I000005
Figure PCTKR2010008804-appb-I000005
[화학식 6][Formula 6]
Figure PCTKR2010008804-appb-I000006
Figure PCTKR2010008804-appb-I000006
[화학식 7][Formula 7]
Figure PCTKR2010008804-appb-I000007
Figure PCTKR2010008804-appb-I000007
[화학식 8][Formula 8]
Figure PCTKR2010008804-appb-I000008
Figure PCTKR2010008804-appb-I000008
[화학식 9][Formula 9]
Figure PCTKR2010008804-appb-I000009
Figure PCTKR2010008804-appb-I000009
[화학식 10][Formula 10]
Figure PCTKR2010008804-appb-I000010
Figure PCTKR2010008804-appb-I000010
[화학식 11][Formula 11]
Figure PCTKR2010008804-appb-I000011
Figure PCTKR2010008804-appb-I000011
[화학식 12][Formula 12]
Figure PCTKR2010008804-appb-I000012
Figure PCTKR2010008804-appb-I000012
[화학식 13][Formula 13]
Figure PCTKR2010008804-appb-I000013
Figure PCTKR2010008804-appb-I000013
[화학식 14][Formula 14]
Figure PCTKR2010008804-appb-I000014
Figure PCTKR2010008804-appb-I000014
[화학식 15][Formula 15]
Figure PCTKR2010008804-appb-I000015
Figure PCTKR2010008804-appb-I000015
[화학식 16][Formula 16]
Figure PCTKR2010008804-appb-I000016
Figure PCTKR2010008804-appb-I000016
[화학식 17][Formula 17]
Figure PCTKR2010008804-appb-I000017
Figure PCTKR2010008804-appb-I000017
[화학식 18][Formula 18]
Figure PCTKR2010008804-appb-I000018
Figure PCTKR2010008804-appb-I000018
[화학식 19][Formula 19]
Figure PCTKR2010008804-appb-I000019
Figure PCTKR2010008804-appb-I000019
[화학식 20][Formula 20]
Figure PCTKR2010008804-appb-I000020
Figure PCTKR2010008804-appb-I000020
[화학식 21][Formula 21]
Figure PCTKR2010008804-appb-I000021
Figure PCTKR2010008804-appb-I000021
[화학식 22][Formula 22]
Figure PCTKR2010008804-appb-I000022
Figure PCTKR2010008804-appb-I000022
[화학식 23][Formula 23]
Figure PCTKR2010008804-appb-I000023
Figure PCTKR2010008804-appb-I000023
상기 화학식 1에서의 R10의 정의 중 상기 헤테로사이클로알킬기는 산소(O) 또는 질소(N)의 헤테로 원자를 포함할 수 있다. In the definition of R 10 in Formula 1, the heterocycloalkyl group may include a hetero atom of oxygen (O) or nitrogen (N).
상기 화학식 2에서의 R20은 감마부티로락토닐(γ-butyrolactonyl)기, 발레로락토닐(valerolactonyl)기, 1,3-사이클로헥산카르보락토닐(1,3-cyclohexanecarbolactonyl)기, 2,6-노르보난카르보락톤-5-일(2,6-norbornanecarbolacton-5-yl)기 또는 7-옥사-2,6-노르보난카르보락톤-5-일(7-oxa-2,6-norbornanecarbolacton-5-yl)기를 포함할 수 있다.R 20 in Formula 2 is a gamma-butyrolactonyl group, a valerolactonyl group, a 1,3-cyclohexanecarbolactonyl group, 2,6 Norbornanecarbolacton-5-yl (2,6-norbornanecarbolacton-5-yl) or 7-oxa-2,6-norbornanecarbolactone-5-yl (7-oxa-2,6-norbornanecarbolacton -5-yl) group.
상기 (메타)아크릴레이트계 고분자는 중량평균 분자량이 3,000 내지 20,000 g/mol 일 수 있고, 분산도가 1.3 내지 2.5 일 수 있다.The (meth) acrylate-based polymer may have a weight average molecular weight of 3,000 to 20,000 g / mol, dispersion degree may be 1.3 to 2.5.
상기 (메타)아크릴레이트계 고분자는, 상기 화학식 1로 표시되는 반복단위 10 내지 40 몰%; 상기 화학식 2로 표시되는 반복단위 20 내지 60 몰%; 및 상기 화학식 3으로 표시되는 반복단위 20 내지 50 몰%를 포함할 수 있다.The (meth) acrylate-based polymer, 10 to 40 mol% of repeating units represented by Formula 1; 20 to 60 mol% of repeating units represented by Formula 2; And it may include 20 to 50 mol% of the repeating unit represented by the formula (3).
본 발명의 다른 일 측면은 상기 (메타)아크릴레이트계 고분자; 광산발생제(photo acid generator, PAG); 및 용매를 포함하는 감광성 수지 조성물을 제공한다. Another aspect of the invention the (meth) acrylate-based polymer; Photo acid generator (PAG); And it provides a photosensitive resin composition comprising a solvent.
상기 (메타)아크릴레이트계 고분자는 상기 감광성 수지 조성물 총량에 대하여 5 내지 15 중량%로 포함될 수 있다.The (meth) acrylate-based polymer may be included in 5 to 15% by weight based on the total amount of the photosensitive resin composition.
상기 광산발생제는 트리아릴술포늄 퍼플루오로알킬술포네이트, 트리아릴술포늄 트리플레이트, 디아릴이오도늄 트리플레이트, 트리아릴술포늄 노나플레이트, 디아릴이오도늄 노나플레이트, 숙신이미딜 트리플레이트, 2,6-디니트로벤질 술포네이트 또는 이들의 조합을 포함할 수 있고, 상기 광산발생제는 상기 (메타)아크릴레이트계 고분자 100 중량부에 대하여 1 내지 15 중량부로 포함될 수 있다.The photoacid generator is triarylsulfonium perfluoroalkylsulfonate, triarylsulfonium triflate, diaryliodonium triflate, triarylsulfonium nonaplate, diaryliodonium nonaplate, succinimidyl tri It may include a plate, 2,6-dinitrobenzyl sulfonate or a combination thereof, the photoacid generator may be included in 1 to 15 parts by weight based on 100 parts by weight of the (meth) acrylate-based polymer.
상기 감광성 수지 조성물은 상기 (메타)아크릴레이트계 고분자 100 중량부에 대하여 0.1 내지 5 중량부의 유기 아민을 더 포함할 수 있고, 상기 유기 아민은 트리에틸아민, 트리이소부틸아민, 트리옥틸아민, 트리이소데실아민, 트리에탄올아민, 히드록시피페리딘 또는 이들의 조합을 포함할 수 있다. The photosensitive resin composition may further include 0.1 to 5 parts by weight of an organic amine based on 100 parts by weight of the (meth) acrylate-based polymer, wherein the organic amine is triethylamine, triisobutylamine, trioctylamine, tri Isodecylamine, triethanolamine, hydroxypiperidine or combinations thereof.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.  Other specific details of embodiments of the present invention are included in the following detailed description.
상기 (메타)아크릴레이트계 고분자는 현상액에 대한 용해도가 우수하여 스컴(scum)이 발생하지 않고, 임플란트 내성과 드라이 에치 내성이 우수하며, 친수성(hydrophilic)이 좋아 기판과의 밀착성이 우수하여 패턴의 쓰러짐(lifting) 발생이 적다.  이에 따라, 이온 임플란테이션 공정에 적합한 수지막을 제공할 수 있다. The (meth) acrylate-based polymer is excellent in solubility in a developer, does not generate scum, and is excellent in implant resistance and dry etch resistance, and has good hydrophilic property, which is excellent in adhesion to a substrate. Less occurrence of lifting. Thereby, the resin film suitable for an ion implantation process can be provided.
도 1a는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop))의 CD-SEM 사진이다.1A is a CD-SEM photograph of a 150 nm pattern (optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1. FIG.
도 1b는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 2 mJ/cm2 적음)의 CD-SEM 사진이다.FIG. 1B is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1. FIG.
도 1c는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 4 mJ/cm2 적음)의 CD-SEM 사진이다.FIG. 1C is a CD-SEM photograph of a 150 nm pattern (4 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1. FIG.
도 2a는 비교예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop))의 CD-SEM 사진이다.2A is a CD-SEM photograph of a 150 nm pattern (optimum energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 1. FIG.
도 2b는 비교예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 2 mJ/cm2 적음)의 CD-SEM 사진이다.FIG. 2B is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy E op ) obtained using the photosensitive resin composition according to Comparative Example 1. FIG.
도 2c는 비교예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 4 mJ/cm2 적음)의 CD-SEM 사진이다.2C is a CD-SEM photograph of a 150 nm pattern (4 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 1. FIG.
도 3a는 비교예 2에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop))의 CD-SEM 사진이다.3A is a CD-SEM photograph of a 150 nm pattern (optimum energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2. FIG.
도 3b는 비교예 2에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 2 mJ/cm2 적음)의 CD-SEM 사진이다.3B is a CD-SEM photograph of a 150 nm pattern (2 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2. FIG.
도 3c는 비교예 2에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 4 mJ/cm2 적음)의 CD-SEM 사진이다.3C is a CD-SEM photograph of a 150 nm pattern (4 mJ / cm 2 less than the optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2. FIG.
도 4는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop): 36 mJ/cm2)에서의 초점 심도(depth of focus, DOF) 마진을 패턴 중심과 가장자리에 대하여 보여주는 CD-SEM 사진이다.4 shows the depth of focus (DOF) margin at the 150 nm pattern (optimum energy (E op ): 36 mJ / cm 2 ) obtained using the photosensitive resin composition according to Example 1 at the center and the edge of the pattern. CD-SEM photo showing.
도 5는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop): 36 mJ/cm2)의 노광 허용(exposure latitude, EL) 마진을 패턴 중심과 가장자리에 대하여 보여주는 CD-SEM 사진이다.FIG. 5 shows the exposure latitude (EL) margin of the 150 nm pattern (optimum energy (E op ): 36 mJ / cm 2 ) obtained using the photosensitive resin composition according to Example 1 with respect to the pattern center and edges. FIG. CD-SEM picture.
이하에서 본 발명의 구현예를 보다 상세하게 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 명세서에서 특별한 언급이 없는 한 "치환"이란, 적어도 하나의 수소 원자가 할로겐 원자(F, Cl, Br 또는 I), 히드록시기, 니트로기, 시아노기, 이미노기(=NR, R은 수소 또는 C1 내지 C10 알킬기임), 아미노기(-NR'R'', R' 및 R''는 각각 독립적으로 수소 또는 C1 내지 C10 알킬기임), 아미디노기, 아지도기, 히드라진기, 히드라존기, 카르보닐기, 카르복실기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, 카르바밀기, 티올기, 에스테르기, C1 내지 C20 알킬기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C1 내지 C20 알콕시기, C3 내지 C30 사이클로알킬기, C3 내지 C30 사이클로알케닐기, C3 내지 C30 사이클로알키닐기, C2내지 C30 헤테로사이클로알킬기, C2 내지 C30 헤테로사이클로알케닐기, C2 내지 C30 헤테로사이클로알키닐기, C6 내지 C30 아릴기, C6 내지 C30 헤테로아릴기 또는 C6 내지 C30 아릴옥시기로 치환된 것을 의미한다.Unless otherwise specified herein, "substituted" means that at least one hydrogen atom is a halogen atom (F, Cl, Br or I), hydroxy group, nitro group, cyano group, imino group (= NR, R is hydrogen or C1 to C10 alkyl group), amino group (-NR'R '', R 'and R' 'are each independently hydrogen or C1 to C10'alkyl group), amidino group, azido group, hydrazine group, hydrazone group, carbonyl group, carboxyl group or Salts thereof, sulfonic acid groups or salts thereof, phosphoric acid groups or salts thereof, carbamyl groups, thiol groups, ester groups, C1 to C20 alkyl groups, C2 to C20 alkyl groups, C2 to C20 alkyl groups, C1 to C20 alkyl groups, C3 to C30 Cycloalkyl group, C3 to C30 cycloalkenyl group, C3 to C30 cycloalkynyl group, C2 to C30 heterocycloalkyl group, C2 to C30 heterocycloalkenyl group, C2 to C30 heterocycloalkynyl group, C6 to C30 aryl group, C6 to C30 It means for interrogating an aryl group or a C6 to C30 substituted aryloxy groups.
본 명세서에서 특별한 언급이 없는 한 "헤테로사이클로알킬기", "헤테로사이클로알케닐기", "헤테로사이클로알키닐기" 및 "헤테로아릴기"는 각각 고리 화합물에 N, O, S 또는 P의 헤테로 원자가 적어도 하나 포함된 것을 의미한다. Unless otherwise specified herein, "heterocycloalkyl group", "heterocycloalkenyl group", "heterocycloalkynyl group", and "heteroaryl group" each have at least one hetero atom of N, O, S or P in the ring compound. It means to be included.
 
일 구현예에 따른 (메타)아크릴레이트계 고분자는 하기 화학식 1 내지 3으로 표시되는 반복단위를 포함한다.The (meth) acrylate-based polymer according to one embodiment includes a repeating unit represented by the following Chemical Formulas 1 to 3.
[화학식 1][Formula 1]
Figure PCTKR2010008804-appb-I000024
Figure PCTKR2010008804-appb-I000024
(상기 화학식 1에서, (In Formula 1,
R1은 수소 또는 메틸기를 포함하고, R 1 contains hydrogen or a methyl group,
R10은 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 또는 치환 또는 비치환된 C2 내지 C20 헤테로사이클로알킬기를 포함하고, R 10 comprises a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C2 to C20 heterocycloalkyl group,
n은 0 내지 3의 정수이다.)n is an integer of 0 to 3)
[화학식 2][Formula 2]
Figure PCTKR2010008804-appb-I000025
Figure PCTKR2010008804-appb-I000025
(상기 화학식 2에서, (In Formula 2,
R2는 수소 또는 메틸기를 포함하고, R 2 contains hydrogen or a methyl group,
R20은 에스테르기를 포함하고 치환 또는 비치환된 C3 내지 C20 사이클로알킬기를 포함한다.)R 20 includes an ester group and includes a substituted or unsubstituted C3 to C20 cycloalkyl group.)
[화학식 3][Formula 3]
Figure PCTKR2010008804-appb-I000026
Figure PCTKR2010008804-appb-I000026
(상기 화학식 3에서, (In Chemical Formula 3,
R3은 수소 또는 메틸기를 포함하고, R 3 contains hydrogen or a methyl group,
R30은 t-부틸기, 트리에틸카르빌기, 1-메틸 사이클로헥실기, 1-에틸사이클로펜틸기, t-아밀기 또는 아세탈기를 포함한다.)R 30 includes t-butyl group, triethylcarbyl group, 1-methyl cyclohexyl group, 1-ethylcyclopentyl group, t-amyl group or acetal group.)
상기 화학식 1로 표시되는 반복단위는 고리형 알킬기를 가짐으로써, (메타)아크릴레이트계 고분자의 에치 내성을 높일 수 있다.  The repeating unit represented by Formula 1 has a cyclic alkyl group, thereby improving the etch resistance of the (meth) acrylate-based polymer.
상기 고리형 알킬기는 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 또는 치환 또는 비치환된 C2 내지 C20 헤테로사이클로알킬기이며, 이때 상기 치환은 구체적으로 C1 내지 C4 알킬기로 치환된 것을 의미할 수 있으며, 더욱 구체적으로는 메틸기, 에틸기, n-프로필기, iso-프로필기 등이 치환된 것을 의미할 수 있다. The cyclic alkyl group is a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C2 to C20 heterocycloalkyl group, wherein the substitution may specifically mean substituted with a C1 to C4 alkyl group, more Specifically, it may mean that a methyl group, an ethyl group, n-propyl group, iso-propyl group or the like is substituted.
또한 상기 헤테로사이클로알킬기는 구체적으로 산소(O) 또는 질소(N)의 헤테로 원자가 포함된 것일 수 있다.In addition, the heterocycloalkyl group may specifically include a hetero atom of oxygen (O) or nitrogen (N).
상기 화학식 1로 표시되는 반복단위의 구체적인 예로는, 하기 화학식 4 내지 23으로 표시되는 반복단위 중 어느 하나를 들 수 있다.  Specific examples of the repeating unit represented by Formula 1 include any one of the repeating units represented by the following Formulas 4 to 23.
[화학식 4][Formula 4]
Figure PCTKR2010008804-appb-I000027
Figure PCTKR2010008804-appb-I000027
[화학식 5][Formula 5]
Figure PCTKR2010008804-appb-I000028
Figure PCTKR2010008804-appb-I000028
[화학식 6][Formula 6]
Figure PCTKR2010008804-appb-I000029
Figure PCTKR2010008804-appb-I000029
[화학식 7][Formula 7]
Figure PCTKR2010008804-appb-I000030
Figure PCTKR2010008804-appb-I000030
[화학식 8][Formula 8]
Figure PCTKR2010008804-appb-I000031
Figure PCTKR2010008804-appb-I000031
[화학식 9][Formula 9]
Figure PCTKR2010008804-appb-I000032
Figure PCTKR2010008804-appb-I000032
[화학식 10][Formula 10]
Figure PCTKR2010008804-appb-I000033
Figure PCTKR2010008804-appb-I000033
[화학식 11][Formula 11]
Figure PCTKR2010008804-appb-I000034
Figure PCTKR2010008804-appb-I000034
[화학식 12][Formula 12]
Figure PCTKR2010008804-appb-I000035
Figure PCTKR2010008804-appb-I000035
[화학식 13][Formula 13]
Figure PCTKR2010008804-appb-I000036
Figure PCTKR2010008804-appb-I000036
[화학식 14][Formula 14]
Figure PCTKR2010008804-appb-I000037
Figure PCTKR2010008804-appb-I000037
[화학식 15][Formula 15]
Figure PCTKR2010008804-appb-I000038
Figure PCTKR2010008804-appb-I000038
[화학식 16][Formula 16]
Figure PCTKR2010008804-appb-I000039
Figure PCTKR2010008804-appb-I000039
[화학식 17][Formula 17]
Figure PCTKR2010008804-appb-I000040
Figure PCTKR2010008804-appb-I000040
[화학식 18][Formula 18]
Figure PCTKR2010008804-appb-I000041
Figure PCTKR2010008804-appb-I000041
 
[화학식 19][Formula 19]
Figure PCTKR2010008804-appb-I000042
Figure PCTKR2010008804-appb-I000042
[화학식 20][Formula 20]
Figure PCTKR2010008804-appb-I000043
Figure PCTKR2010008804-appb-I000043
[화학식 21][Formula 21]
Figure PCTKR2010008804-appb-I000044
Figure PCTKR2010008804-appb-I000044
[화학식 22][Formula 22]
Figure PCTKR2010008804-appb-I000045
Figure PCTKR2010008804-appb-I000045
[화학식 23][Formula 23]
Figure PCTKR2010008804-appb-I000046
Figure PCTKR2010008804-appb-I000046
상기 화학식 1로 표시되는 반복단위는 상기 (메타)아크릴레이트계 고분자 총량에 대하여 10 내지 40 몰%로 포함될 수 있고, 구체적으로 20 내지 30 몰%로 포함될 수 있다.  상기 화학식 1로 표시되는 반복단위가 상기 범위 내로 포함될 경우 에치 내성 및 리프팅(lifting) 내성이 우수하다. The repeating unit represented by Formula 1 may be included in 10 to 40 mol%, specifically, 20 to 30 mol% based on the total amount of the (meth) acrylate-based polymer. When the repeating unit represented by Chemical Formula 1 is included in the above range, the etch resistance and the lifting resistance are excellent.
상기 화학식 2로 표시되는 반복단위는 에스테르기를 포함하는 단환식 또는 다환식 (메타)아크릴레이트 반복단위이며, 이는 감광성 수지 조성물의 친수성을 높여 기판과의 밀착성을 향상시킬 수 있다.The repeating unit represented by Formula 2 is a monocyclic or polycyclic (meth) acrylate repeating unit including an ester group, which may improve the hydrophilicity of the photosensitive resin composition and improve adhesion to the substrate.
상기 화학식 2에서의 R20은 락톤(lactone) 유도체일 수 있다.  상기 락톤 유도체의 예로는, 감마부티로락토닐(γ-butyrolactonyl)기, 발레로락토닐(valerolactonyl)기, 1,3-사이클로헥산카르보락토닐(1,3-cyclohexanecarbolactonyl)기, 2,6-노르보난카르보락톤-5-일(2,6-norbornanecarbolacton-5-yl)기, 7-옥사-2,6-노르보난카르보락톤-5-일(7-oxa-2,6-norbornanecarbolacton-5-yl)기 등을 들 수 있다.R 20 in Formula 2 may be a lactone derivative. Examples of the lactone derivatives include gamma butyrolactonyl groups, valerolactonyl groups, 1,3-cyclohexanecarbolactonyl groups, and 2,6- Norbornane carbolactone-5-yl (2,6-norbornanecarbolacton-5-yl) group, 7-oxa-2,6-norbornanecarbolactone-5-yl (7-oxa-2,6-norbornanecarbolacton- 5-yl) group etc. are mentioned.
상기 화학식 2로 표시되는 반복단위는 상기 (메타)아크릴레이트계 고분자 총량에 대하여 20 내지 60 몰%로 포함될 수 있고, 구체적으로 30 내지 50 몰%로 포함될 수 있다.  상기 화학식 2로 표시되는 반복단위가 상기 범위 내로 포함될 경우 기판과의 밀착성이 우수하다. The repeating unit represented by Formula 2 may be included in 20 to 60 mol%, specifically 30 to 50 mol% based on the total amount of the (meth) acrylate-based polymer. When the repeating unit represented by Formula 2 is included in the above range, the adhesion to the substrate is excellent.
상기 화학식 3으로 표시되는 반복단위는 산 촉매 존재 하에서 분해가 일어나는 산 분해성기(acid labile group)를 포함하는 (메타)아크릴레이트 반복단위로, 노광시 발생된 산 촉매에 의하여 분해되어 (메타)아크릴레이트계 고분자가 알칼리 현상액에 잘 용해되도록 도울 수 있다.The repeating unit represented by Chemical Formula 3 is a (meth) acrylate repeating unit including an acid labile group in which decomposition occurs in the presence of a acidic catalyst, and is decomposed by an acid catalyst generated during exposure to (meth) acrylic acid. The rate-based polymer may help to dissolve well in the alkaline developer.
상기 산 분해성기의 예로는 t-부틸기, 트리에틸카르빌기, 1-메틸 사이클로헥실기, 1-에틸사이클로펜틸기, t-아밀기, 아세탈기 등을 들 수 있으며, 이 중 좋게는 현상 속도 측면에서 t-부틸기가 사용될 수 있다.  Examples of the acid-decomposable group include t-butyl group, triethylcarbyl group, 1-methyl cyclohexyl group, 1-ethylcyclopentyl group, t-amyl group, acetal group, and the like, and among them, development speed T-butyl group may be used in the aspect.  
상기 화학식 3으로 표시되는 반복단위는 상기 (메타)아크릴레이트계 고분자 총량에 대하여 20 내지 50 몰%로 포함될 수 있고, 구체적으로 30 내지 40 몰%로 포함될 수 있다.  상기 화학식 1로 표시되는 반복단위가 상기 범위 내로 포함될 경우 현상 속도가 우수하다. The repeating unit represented by Formula 3 may be included in 20 to 50 mol%, specifically 30 to 40 mol% based on the total amount of the (meth) acrylate-based polymer. When the repeating unit represented by Formula 1 is included in the above range, the development speed is excellent.
상기 화학식 1 내지 3으로 표시되는 반복단위를 포함하는 (메타)아크릴레이트계 고분자는 3원 공중합체(terpolymer)일 수 있고, 같은 형태 또는 다른 형태의 반복단위를 더욱 포함하는 다원 공중합체일 수도 있으며, 랜덤 공중합체, 블록 공중합체, 교호 공중합체, 가지형 공중합체 등 어떠한 형태라도 가능하다. The (meth) acrylate-based polymer comprising a repeating unit represented by Formula 1 to 3 may be a terpolymer, or may be a multipart copolymer further including the same type or different types of repeating units. , Random copolymers, block copolymers, alternating copolymers, branched copolymers, or the like can be used.
상기 (메타)아크릴레이트계 고분자는 중량평균 분자량이 3,000 내지 20,000 g/mol 일 수 있고, 구체적으로는 5,000 내지 10,000 g/mol 일 수 있다.  상기 중량평균 분자량 범위를 가질 경우 감광성 수지 조성물로부터 얻어지는 수지막의 표면 거칠기(line edge roughness, LER) 특성이 우수하다.  The (meth) acrylate-based polymer may have a weight average molecular weight of 3,000 to 20,000 g / mol, specifically 5,000 to 10,000 g / mol. When it has the said weight average molecular weight range, the surface edge roughness (LER) characteristic of the resin film obtained from the photosensitive resin composition is excellent.
상기 (메타)아크릴레이트계 고분자는 분산도가 1.3 내지 2.5 일 수 있고, 구체적으로는 1.5 내지 2.0 일 수 있다.  상기 분산도는 중량평균 분자량을 수평균 분자량으로 나눈 값이다.  상기 (메타)아크릴레이트계 고분자가 상기 범위의 분산도를 가질 경우 에치 내성 및 현상성이 우수하다.Dispersion degree of the (meth) acrylate-based polymer may be 1.3 to 2.5, specifically, may be 1.5 to 2.0. The dispersion degree is a value obtained by dividing the weight average molecular weight by the number average molecular weight. When the (meth) acrylate-based polymer has a dispersion degree in the above range, it is excellent in etch resistance and developability.
상기 (메타)아크릴레이트계 고분자는 상기 화학식 1로 표시되는 반복단위 유도 단량체, 상기 화학식 2로 표시되는 반복단위 유도 단량체, 및 상기 화학식 3으로 표시되는 반복단위 유도 단량체를 이용하여 일반적인 라디칼 중합법에 의해 중합될 수 있다.The (meth) acrylate polymer is a general radical polymerization method using a repeating unit derivative monomer represented by Formula 1, a repeating unit derivative monomer represented by Formula 2, and a repeating unit derivative monomer represented by Formula 3 By polymerization.
다른 일 구현예는 전술한 (메타)아크릴레이트계 고분자를 포함하는 감광성 수지 조성물을 포함한다.  Another embodiment includes a photosensitive resin composition including the (meth) acrylate-based polymer described above.
상기 감광성 수지 조성물은 상기 (메타)아크릴레이트계 고분자, 광산발생제(photo acid generator) 및 용매를 포함한다. The photosensitive resin composition includes the (meth) acrylate-based polymer, a photo acid generator, and a solvent.
상기 (메타)아크릴레이트계 고분자는 상기 감광성 수지 조성물 총량에 대하여 5 내지 15 중량%로 포함될 수 있고, 구체적으로는 7 내지 12 중량%로 포함될 수 있다.  상기 (메타)아크릴레이트계 고분자가 상기 범위 내로 포함될 경우 우수한 에치 내성 및 접착성을 얻을 수 있다.The (meth) acrylate-based polymer may be included in 5 to 15% by weight, specifically, 7 to 12% by weight based on the total amount of the photosensitive resin composition. When the (meth) acrylate-based polymer is included in the above range can be obtained excellent etch resistance and adhesion.
상기 광산발생제는 무기 오늄염(inorganic onium salt), 유기 트리플레이트(organic triflate), 유기 술포네이트(organic sulfonate) 또는 이들의 조합이 사용될 수 있다.The photoacid generator may be an inorganic onium salt, organic triflate, organic sulfonate, or a combination thereof.
상기 무기 오늄염의 예로는 트리아릴술포늄염(triarylsulfonium salt), 디아릴이오도늄염(diaryliodonium salt) 등을 들 수 있다. Examples of the inorganic onium salt include triarylsulfonium salt, diaryl iodonium salt, and the like.
상기 광산발생제의 구체적인 예로는, 트리아릴술포늄 퍼플루오로알킬술포네이트, 트리아릴술포늄 트리플레이트, 디아릴이오도늄 트리플레이트, 트리아릴술포늄 노나플레이트, 디아릴이오도늄 노나플레이트, 숙신이미딜 트리플레이트, 2,6-디니트로벤질 술포네이트 또는 이들의 조합을 들 수 있다. Specific examples of the photoacid generator include triarylsulfonium perfluoroalkylsulfonate, triarylsulfonium triflate, diaryliononium triflate, triarylsulfonium nonaplate, diaryliodonium nonaplate, Succinimidyl triflate, 2,6-dinitrobenzyl sulfonate or combinations thereof.
상기 화합물을 광산발생제로 사용할 경우, 발생하는 산의 세기, 산 확산 속도, 흡광 정도 등을 조절하여 공정 마진과 패턴 모양을 향상시킬 수 있다.When using the compound as a photoacid generator, it is possible to improve the process margin and pattern shape by adjusting the strength of the generated acid, acid diffusion rate, absorbance.
상기 광산발생제는 상기 (메타)아크릴레이트계 고분자 100 중량부에 대하여 1 내지 15 중량부로 포함될 수 있고, 구체적으로는 3 내지 8 중량부로 포함될 수 있다.  상기 광산발생제가 상기 범위 내로 포함될 경우 감광성 수지 조성물의 우수한 노광량 및 투과도를 얻을 수 있다.The photoacid generator may be included in an amount of 1 to 15 parts by weight, specifically 3 to 8 parts by weight, based on 100 parts by weight of the (meth) acrylate polymer. When the photoacid generator is included in the above range, an excellent exposure amount and transmittance of the photosensitive resin composition can be obtained.
상기 용매로는 프로필렌글리콜 모노메틸에테르 아세테이트(propyleneglycol monomethylether acetate, PGMEA), 프로필렌글리콜 모노메틸에테르(PGME), 에틸 락테이트(ethyl lactate, EL), 사이클로헥사논(cyclohexanone), 2-헵타논(2-heptanone) 등을 1종 또는 1종 이상 혼합하여 사용할 수 있다.  As the solvent, propyleneglycol monomethylether acetate (PGMEA), propyleneglycol monomethylether (PGME), ethyl lactate (EL), cyclohexanone, 2-heptanone (2 -heptanone) etc. can be used 1 type or in mixture of 1 or more types.
상기 용매는 상기 (메타)아크릴레이트계 고분자 100 중량부에 대하여 잔부로 포함될 수 있고, 구체적으로 80 내지 95 중량부로 포함될 수 있다.  상기 용매가 상기 범위 내로 포함될 경우 웨이퍼에 도포시 감광성 수지 조성물의 막두께 균일성이 우수하고 도포 불량이 감소될 수 있다. The solvent may be included in the remainder with respect to 100 parts by weight of the (meth) acrylate-based polymer, specifically, may be included in 80 to 95 parts by weight. When the solvent is included in the above range, the film thickness uniformity of the photosensitive resin composition may be excellent when applied to a wafer, and coating failure may be reduced.
상기 감광성 수지 조성물은 상기 구성 성분과 함께 노광량 조절 및 우수한 프로파일(profile) 형성의 목적으로 유기 아민을 퀀처(quencher)로 더욱 포함할 수 있다.  The photosensitive resin composition may further include an organic amine as a quencher for the purpose of controlling the exposure dose and forming an excellent profile together with the constituent components.
상기 유기 아민은 아민계 화합물을 사용할 수 있으며, 그 예로는 트리에틸아민, 트리이소부틸아민, 트리옥틸아민, 트리이소데실아민, 트리에탄올아민, 히드록시피페리딘 또는 이들의 혼합물을 들 수 있다. The organic amine may be an amine compound, and examples thereof include triethylamine, triisobutylamine, trioctylamine, triisodecylamine, triethanolamine, hydroxypiperidine, or a mixture thereof.
상기 유기 아민은 상기 (메타)아크릴레이트계 고분자 100 중량부에 대하여 0.1 내지 5 중량부로 포함될 수 있고, 구체적으로 0.5 내지 3 중량부로 포함될 수 있다.  상기 유기 아민이 상기 범위 내로 포함될 경우 노광량을 과도하게 증가시키지 않으면서, DOF(depth of focus) 마진, EL(energy latitude) 마진 등의 조절 및 우수한 프로파일(profile) 형성이 가능하다. The organic amine may be included in an amount of 0.1 to 5 parts by weight, and specifically 0.5 to 3 parts by weight, based on 100 parts by weight of the (meth) acrylate-based polymer. When the organic amine is included in the above range, it is possible to control the depth of focus (DOF) margin, the energy latitude (EL) margin and to form an excellent profile without excessively increasing the exposure dose.
전술한 감광성 수지 조성물을 이용하여 원하는 패턴을 형성하기 위하여 다음과 같은 공정을 이용한다.  In order to form a desired pattern using the photosensitive resin composition mentioned above, the following process is used.
베어 실리콘 웨이퍼(bare silicon wafer), 또는 상면에 실리콘 산화막, 실리콘 질화막 또는 실리콘 산화질화막의 하부 막질이 형성되어 있는 실리콘 웨이퍼를 준비하고, 상기 실리콘 웨이퍼를 헥사메틸 디실라잔(hexamethyl disilazane, HMDS)으로 처리하거나 유기 반사방지막(bottom anti-reflective coating, BARC)을 형성하여 처리한다.  그 후, 상기 실리콘 웨이퍼 위에 상기 감광성 수지 조성물을 약 3800Å 내지 약 4000Å의 두께로 코팅하여 감광성 수지막을 형성한다.A bare silicon wafer, or a silicon wafer having a silicon oxide film, a silicon nitride film, or a lower film quality of a silicon oxynitride film formed on a top surface thereof, is prepared, and the silicon wafer is hexamethyl disilazane (HMDS). Treatment or by forming a bottom anti-reflective coating (BARC). Thereafter, the photosensitive resin composition is coated on the silicon wafer to a thickness of about 3800 kPa to about 4000 kPa to form a photosensitive resin film.
상기 감광성 수지막이 형성된 상기 실리콘 웨이퍼를 약 90℃ 내지 약 120℃의 온도 범위에서 약 60초 내지 약 90초 동안 소프트-베이킹(soft-baking, SB, 프리-베이킹이라고도 함(pre-baking))하여 용매를 제거하고, ArF 또는 EUV(extreme UV), E-빔 등을 이용하여 노광한다.  이어서, 노광이 완료된 웨이퍼를 상기 감광성 수지막의 노광 영역에서 화학 반응을 일으키도록 하기 위하여 약 90℃ 내지 약 120℃의 온도 범위에서 약 60초 내지 약 90초 동안 포스트-익스포저 베이킹(post-exposure baking, PEB)를 실시한다.The silicon wafer on which the photosensitive resin film was formed was soft-baked (SB, pre-baking) for about 60 seconds to about 90 seconds in a temperature range of about 90 ° C to about 120 ° C. The solvent is removed and exposed using ArF or extreme UV (EUV), E-beam, and the like. Subsequently, a post-exposure baking, for about 60 seconds to about 90 seconds in a temperature range of about 90 ° C to about 120 ° C, in order to cause the exposed wafer to undergo a chemical reaction in the exposure region of the photosensitive resin film. PEB).
이후, 상기 감광성 수지막을 현상액인 알칼리 수용액으로 현상한다.  이때, 노광부에서는 현상액에 대하여 매우 큰 용해도 특성을 보임으로써, 현상시 잘 용해되어 제거된다.  상기 현상액으로는 테트라메틸암모늄히드록사이드(tetramethylammonium hydroxide, TMAH) 수용액을 사용할 수 있다.  사용된 노광원이 ArF 엑시머 레이저인 경우, 약 20 mJ/㎠ 내지 약 50 mJ/㎠의 도즈(dose)에서 약 80 nm 내지 약 300 nm의 라인 앤 스페이스 패턴(line and space pattern, L/S)을 형성할 수 있다.  Thereafter, the photosensitive resin film is developed with an aqueous alkali solution which is a developer. At this time, the exposed portion exhibits a very large solubility characteristic with respect to the developer, so that it is well dissolved and removed during development. Tetramethylammonium hydroxide (TMAH) aqueous solution may be used as the developer. When the exposure source used is an ArF excimer laser, a line and space pattern (L / S) of about 80 nm to about 300 nm at a dose of about 20 mJ / cm 2 to about 50 mJ / cm 2 Can be formed.
이와 같이 얻어진 감광성 수지 패턴을 마스크로 사용하고, 특정한 식각 가스, 예를 들면 할로겐 가스, 플루오로카본 가스 등의 플라즈마를 사용하여 실리콘 산화막과 같은 상기 하부 막질을 식각한다.  이어서, 스트립퍼(stripper)를 사용하여 웨이퍼 상에 남아 있는 감광성 수지 패턴을 제거하여 원하는 실리콘 산화막 패턴을 형성할 수 있다.  The lower film quality such as a silicon oxide film is etched by using a photosensitive resin pattern thus obtained as a mask and using a plasma of a specific etching gas, for example, a halogen gas or a fluorocarbon gas. Subsequently, a stripper may be used to remove the photosensitive resin pattern remaining on the wafer to form a desired silicon oxide film pattern.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, but these Examples are for illustrative purposes only and are not to be construed as limiting the present invention.
((메타)아크릴레이트 단량체 합성)((Meth) acrylate monomer synthesis)
합성예 1: THP2M 합성Synthesis Example 1 THP2M Synthesis
[반응식 1]Scheme 1
Figure PCTKR2010008804-appb-I000047
Figure PCTKR2010008804-appb-I000047
메타크릴산(methacrylic acid)(TCI社) 7.9ml(0.0931mol) 및 피리디늄 파라톨루엔 술포네이트(pyridinium para-toluene sulfonate, PPTS)(Aldrich社) 1.01g(0.004mol)을 80ml의 디클로로메탄(dichloromethane, DCM)(TCI社)에 투입한 후, 3,4-디히드로-2H-피란(3,4-dihydro-2H-pyran, DHP)(TCI社) 14.7ml(0.162mol)를 넣고 상온에서 1일 동안 교반하였다.  반응 종료 후, 반응 결과물을 디클로로메탄 250ml로 희석하고, 간수(brine) 250ml로 1회, 탈이온수(diionized water, DIW) 250ml로 3회 세척하였다.  여기에서 유기층을 취한 후 Na2SO4로 건조하고 용매를 제거하여, 테트라히드로-2H-피란-2-일 메타크릴레이트(tetrahydro-2H-pyran-2-yl methacrylate, THP2M) 13.14g을 얻었다.  수율은 83%이었다. 7.9 ml (0.0931 mol) of methacrylic acid (TCI) and 1.01 g (0.004 mol) of pyridinium para-toluene sulfonate (PPTS) (Aldrich) were added to 80 ml of dichloromethane. , DCM) (TCI Co., Ltd.), 3,4-dihydro-2H-pyran (3,4-dihydro-2H-pyran, DHP) (TCI Co.) 14.7ml (0.162mol) was added to room temperature 1 Stir for days. After completion of the reaction, the reaction product was diluted with 250 ml of dichloromethane, washed once with 250 ml of brine and three times with 250 ml of deionized water (DIW). The organic layer was taken up, dried over Na 2 SO 4 , and the solvent was removed to obtain 13.14 g of tetrahydro-2H-pyran-2-yl methacrylate (THP2M). Yield 83%.
합성예 2: THFM 합성Synthesis Example 2: THFM Synthesis
[반응식 2]Scheme 2
Figure PCTKR2010008804-appb-I000048
Figure PCTKR2010008804-appb-I000048
상기 합성예 1에서 3,4-디히드로-2H-피란(3,4-dihydro-2H-pyran, DHP)(TCI社) 14.7ml(0.162mol)를 대신하여 2,3-디히드로푸란(2,3-dihydrofuran, DHF)(TCI社) 12.239ml(0.162mol)를 사용한 것을 제외하고는, 상기 합성예 1과 동일한 방법으로 테트라히드로푸란-2-일 메타크릴레이트(tetrahydrofuran-2-yl methacrylate, THFM) 10.46g을 얻었다.  수율은 72%이었다. 2,3-dihydrofuran (2) in place of 14.7 ml (0.162 mol) of 3,4-dihydro-2H-pyran (DHP) (TCI) in Synthesis Example 1 Tetrahydrofuran-2-yl methacrylate (tetrahydrofuran-2-yl methacrylate) in the same manner as in Synthesis Example 1, except that 12.239 ml (0.162 mol) of 3-dihydrofuran, DHF) (TCI) was used. THFM) 10.46 g was obtained. Yield 72%.
합성예 3: THP4M 합성Synthesis Example 3 THP4M Synthesis
[반응식 3] Scheme 3
Figure PCTKR2010008804-appb-I000049
Figure PCTKR2010008804-appb-I000049
테트라히드로-4-피라놀(tetrahydro-4-pyranol, THP)(Aldrich社) 5.0g(0.049mol) 및 트리에틸아민(triethylamine, Et3N)(Aldrich社) 8.2ml(0.0587mol)을 0℃의 온도에서 50ml의 디클로로메탄(dichloromethane, DCM)(TCI社)에 투입한 후, 메타크릴로일 클로라이드(methacryloyl chloride)(Aldrich社) 5.3ml(0.0539mol)를 넣고 상온에서 1일 동안 교반하였다.  반응 종료 후, 반응 결과물을 NaHCO3로 퀀칭하고, 에틸아세테이트 100ml로 희석하고, 포화 NaHCO3 100ml로 3회, 간수(brine) 150ml로 1회, 탈이온수(diionized water, DIW) 150ml로 2회 세척하였다.  여기에서 유기층을 취한 후 Na2SO4로 건조하고, 칼럼크로마토그래피(1:19=EA:Hex)를 통해 화합물을 정제한 후, 용매를 제거하여, 테트라히드로-2H-피란-4-일 메타크릴레이트(tetrahydro-2H-pyran-4-yl methacrylate, THP4M) 4.64g을 얻었다.  수율은 55.7%이었다. 5.0 g (0.049 mol) of tetrahydro-4-pyranol (THP) (Aldrich) and 8.2 ml (0.0587 mol) of triethylamine (Et 3 N) (Aldrich) at 0 ° C In 50ml of dichloromethane (DCM) (TCI Co., Ltd.) at a temperature of 5.3ml (0.0539mol) of methacryloyl chloride (Aldrich Co.) was added and stirred at room temperature for 1 day. After the completion of the reaction, the reaction product was quenched with NaHCO 3 , diluted with 100 ml of ethyl acetate, washed three times with 100 ml of saturated NaHCO 3 , once with 150 ml of brine, and twice with 150 ml of deionized water (DIW). It was. The organic layer was taken up and dried over Na 2 SO 4 , purified through column chromatography (1: 19 = EA: Hex), and then the solvent was removed to remove tetrahydro-2H-pyran-4-yl meta. 4.64 g of methacrylate (tetrahydro-2H-pyran-4-yl methacrylate, THP4M) was obtained. The yield was 55.7%.
합성예 4: PP4M 합성Synthesis Example 4 PP4M Synthesis
[반응식 4] Scheme 4
Figure PCTKR2010008804-appb-I000050
Figure PCTKR2010008804-appb-I000050
메타크로일 클로라이드(methacryloyl chloride)(Aldrich社) 9.51g(0.091mol)을 에탄올 60ml에 넣고, 3N 농도의 염산을 10ml 넣고 4시간 환류(reflux)하며 교반하였다.  이후 연속하여(in-situ) 디옥산(dioxane) 200ml를 넣고, t-부틸-4-히드록시피페리딘-1-카르복실레이트(tert-butyl-4-hydroxypiperidine-1-carboxylate)(TCI社) 21.98g(0.109mol)을 넣은 후, 피리딘 8.62g(0.109mol)을 넣은 후 2시간 동안 상온에서 교반하였다.  이후 용매를 건조한 후, 500ml의 클로로포름으로 녹인 후 0.1N 염산(300ml)으로 3회 수세하여 정제한다.  이후 유기층을 취한 후 Na2SO4로 건조하고, 칼럼크로마토그래피(1:5=EA:Hex)를 통해 화합물을 정제한 후, 용매를 제거하여, 피페리딘-4-일 메타크릴레이트(piperidin-4-yl methacrylate, PP4M) 5.08g을 얻었다.  수율은 33%이었다.9.51 g (0.091 mol) of methacryloyl chloride (Aldrich) was added to 60 ml of ethanol, and 10 ml of 3N hydrochloric acid was added thereto and refluxed under stirring for 4 hours. Then 200 ml of dioxane (in-situ) was added, t-butyl-4-hydroxypiperidine-1-carboxylate (tert-butyl-4-hydroxypiperidine-1-carboxylate) (TCI company ) 21.98 g (0.109 mol) was added thereto, followed by 8.62 g pyridine (0.109 mol), followed by stirring at room temperature for 2 hours. After drying the solvent, it is dissolved in 500ml of chloroform and purified by washing three times with 0.1N hydrochloric acid (300ml). After taking the organic layer, and dried over Na 2 SO 4 , to purify the compound through column chromatography (1: 5 = EA: Hex), the solvent was removed, piperidin-4-yl methacrylate (piperidin -4-yl methacrylate, PP4M) was obtained 5.08 g. Yield 33%.
 
((메타)아크릴레이트계 고분자 중합)((Meth) acrylate polymer polymerization)
실시예 1Example 1
시클로헥실 메타크릴레이트(cyclohexyl methacrylate, CHMA)(TCI社), γ-부티로락토닐 메타크릴레이트(γ-butyrolactonyl methacrylate, GBLMA)(aldrich社) 및 t-부틸 메타크릴레이트(tert-butylmethacrylate, t-BMA)(TCI社)를 각각 3:3:4의 몰비로 혼합하고, 개시제로서 아조비스이소부티로니트릴(2,2'-azobis isobutyronitrile, AIBN)(대정화금社)을 위 단량체 총량(CHMA, GBLMA 및 t-BMA의 총량)에 대하여 5 몰%를 함께 혼합하였다.  Cyclohexyl methacrylate (CHMA) (TCI), γ-butyrolactonyl methacrylate (GBLMA) (aldrich) and t-butyl methacrylate (tert-butylmethacrylate, t) -BMA) (TCI Co., Ltd.) were each mixed in a molar ratio of 3: 3: 4, and azobisisobutyronitrile (AIBN) (Cafe Gold Co., Ltd.) was used as an initiator. 5 mole% together of the total amount of CHMA, GBLMA 'and t-BMA).
이들을 단량체 총 중량의 2배에 해당하는 중량의 메틸에틸케톤(methyl ethyl ketone, MEK)에 녹이고, 미리 80℃로 가열해 놓은 단량체 총 중량의 1배에 해당하는 중량의 MEK에 3시간 동안 적하시킨다.  적하 종료 후 같은 온도에서 3시간 동안 중합하였다.  그리고 나서, n-헥산(n-hexane)을 이용하여 침전하고 진공 건조하여 가루 상태의 (메타)아크릴레이트계 고분자를 얻었다.They are dissolved in methyl ethyl ketone (MEK), which is twice the total weight of the monomer, and added dropwise to MEK, which is 1 times the total weight of the monomer previously heated to 80 ° C., for 3 hours. . After completion of dropping, polymerization was carried out at the same temperature for 3 hours. Then, it was precipitated using n-hexane (n-hexane) and dried under vacuum to obtain a powdery (meth) acrylate polymer.
실시예 2Example 2
실시예 1에서 CHMA, GBLMA 및 t-BMA를 각각 3:4:3의 몰비로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다. A (meth) acrylate polymer was obtained in the same manner as in Example 1 except that CHMA, GBLMA ', and t-BMA were each used at a molar ratio of 3: 4: 3.
실시예 3Example 3
실시예 1에서 CHMA, GBLMA 및 t-BMA를 각각 2:5:3의 몰비로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다. A (meth) acrylate polymer was obtained in the same manner as in Example 1, except that CHMA, GBLMA ', and t-BMA were used in a molar ratio of 2: 5: 3, respectively.
실시예 4Example 4
실시예 1에서 CHMA를 대신하여 상기 합성예 1에서 제조한 테트라히드로-2H-피란-2-일 메타크릴레이트(tetrahydro-2H-pyran-2-yl methacrylate, THP2M)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다. Except for using CHMA in Example 1 except that tetrahydro-2H-pyran-2-yl methacrylate (THP2M) prepared in Synthesis Example 1 was used, A (meth) acrylate polymer was obtained in the same manner as in Example 1.
실시예 5Example 5
실시예 1에서 CHMA를 대신하여 상기 합성예 2에서 제조한 테트라히드로푸란-2-일 메타크릴레이트(tetrahydrofuran-2-yl methacrylate, THFM)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다. Except for using CHMA in Example 1 except that tetrahydrofuran-2-yl methacrylate (tetrahydrofuran-2-yl methacrylate, THFM) prepared in the same manner as in Example 1 ( A meta) acrylate type polymer was obtained.
실시예 6Example 6
실시예 1에서 CHMA를 대신하여 상기 합성예 3에서 제조한 테트라히드로-2H-피란-4-일 메타크릴레이트(tetrahydro-2H-pyran-4-yl methacrylate, THP4M)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다. Except for using CHMA in Example 1 except that tetrahydro-2H-pyran-4-yl methacrylate prepared in Synthesis Example 3 (tetrahydro-2H-pyran-4-yl methacrylate, THP4M) A (meth) acrylate polymer was obtained in the same manner as in Example 1.
실시예 7Example 7
실시예 1에서 CHMA를 대신하여 테트라히드로퍼퓨릴 메타크릴레이트(tetrahydrofurfuryl methacrylate, THFFMA)(TCI社)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다. A (meth) acrylate polymer was obtained in the same manner as in Example 1, except that tetrahydrofurfuryl methacrylate (THFFMA) (TCI, Inc.) was used in place of CHMA.
실시예 8Example 8
실시예 1에서 CHMA를 대신하여 상기 합성예 4에서 제조한 피페리딘-4-일 메타크릴레이트(piperidin-4-yl methacrylate, PP4M)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다.Except for using CHMA in Example 1 except that piperidin-4-yl methacrylate (PP4M) prepared in Synthesis Example 4 in the same manner as in Example 1 ( A meta) acrylate type polymer was obtained.
비교예 1Comparative Example 1
실시예 1에서 CHMA를 대신하여 히드록시아다만틸 메타크릴레이트(hydroxyadamantyl methacrylate, HAMA)(TCI社)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다.A (meth) acrylate polymer was obtained in the same manner as in Example 1, except that hydroxyadamantyl methacrylate (HAMA) (TCI, Inc.) was used in place of CHMA.
비교예 2Comparative Example 2
비교예 1에서 t-BMA를 대신하여 2-메틸아다만탄-2-일 메타크릴레이트(2-methyladamantan-2-yl methacrylate, MAMA)(TCI社)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다.Example 1 and 1 except that 2-methyladamantan-2-yl methacrylate (MAMA) (TCI, Inc.) was used in place of t-BMA in Comparative Example 1 In the same manner, a (meth) acrylate polymer was obtained.
비교예 3Comparative Example 3
비교예 2에서 HAMA, GBLMA 및 MAMA를 각각 3:4:3의 몰비로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다.(Meta) acrylate-based polymer was obtained in the same manner as in Example 1 except that HAMA, GBLMA ', and MAMA were used in a molar ratio of 3: 4: 3, respectively.
비교예 4Comparative Example 4
비교예 1에서 t-BMA를 대신하여 2-에틸아다만탄-2-일 메타크릴레이트(2-ethyladamantan-2-yl methacrylate, EAMA)(TCI社)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다.Example 1 and 2 except that 2-ethyladamantan-2-yl methacrylate (EAMA) (TCI, Inc.) was used instead of t-BMA in Comparative Example 1 In the same manner, a (meth) acrylate polymer was obtained.
비교예 5Comparative Example 5
비교예 4에서 HAMA, GBLMA 및 EAMA를 각각 3:4:3의 몰비로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다.(Meta) acrylate-based polymer was obtained in the same manner as in Example 1 except that HAMA, GBLMA ', and EAMA were each used in a molar ratio of 3: 4: 3.
비교예 6Comparative Example 6
실시예 1에서 t-BMA를 대신하여 2-메틸아다만탄-2-일 메타크릴레이트(2-methyladamantan-2-yl methacrylate, MAMA)(TCI社)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 (메타)아크릴레이트계 고분자를 얻었다.Example 1 and 2 except that 2-methyladamantan-2-yl methacrylate (MAMA) (TCI Co., Ltd.) was used in place of t-BMA. In the same manner, a (meth) acrylate polymer was obtained.
 
(감광성 수지 조성물 제조)(Photosensitive resin composition production)
실시예 1 내지 8 및 비교예 1 내지 6에서 제조된 각각의 (메타)아크릴레이트계 고분자, 광산발생제로서 상기 (메타)아크릴레이트계 고분자 100 중량부에 대하여 6 중량부의 트리페닐술포늄 퍼플루오로부틸술포네이트(triphenylsulfonium perfluorobutylsulfonate)(SMC社의 SP-104), 그리고 퀀처로서 상기 광산발생제 100 중량부에 대하여 25 중량부의 N-t-부톡시카르보닐-4-히드록시피페리딘(N-t-butoxycarbonyl-4-hydroxypiperidine)을, 프로필렌글리콜 모노메틸에테르 아세테이트(propyleneglycol monomethylether acetate, PGMEA) 용매에 10 중량%가 되도록 녹여, 각각의 감광성 수지 조성물을 제조하였다.Each (meth) acrylate polymer prepared in Examples 1 to 8 and Comparative Examples 1 to 6, 6 parts by weight of triphenylsulfonium perfluor based on 100 parts by weight of the (meth) acrylate polymer as a photoacid generator Triphenylsulfonium perfluorobutylsulfonate (SP-104 from SMC), and 25 parts by weight of Nt-butoxycarbonyl-4-hydroxypiperidine (Nt-butoxycarbonyl) based on 100 parts by weight of the photoacid generator as a quencher -4-hydroxypiperidine),   It was dissolved in a propyleneglycol monomethylether acetate (PGMEA) solvent to 10% by weight to prepare each photosensitive resin composition.
 
평가 1: 패턴 쓰러짐(lifting) 측정Evaluation 1: Pattern Lifting Measurement
8"의 베어 실리콘 웨이퍼(bare silicon wafer)를 헥사메틸 디실라잔(hexamethyl disilazane, HMDS)으로 150℃/60s 베이킹하고, 상기 실시예 1 내지 8 및 비교예 1 내지 6에 따른 감광성 수지 조성물을 각각 4,000Å의 두께로 스핀 코팅한 후, 110℃에서 60초간 소프트 베이킹(soft baking, SB)하였다. A 8 "bare silicon wafer is baked at 150 ° C./60 s with hexamethyl disilazane (HMDS), and the photosensitive resin compositions according to Examples 1 to 8 and Comparative Examples 1 to 6, respectively, are baked. After spin coating to a thickness of 4,000 kPa, soft baking (SB) was performed at 110 ° C. for 60 seconds.
NIKON社의 ArF 스캐너(scanner)인 NSR-S308F(LENS NA: 0.85, ILLUMINATION NA: 0.68, Conv.(large), sigma: 0.80)을 이용하여 페이스 쉬프트 마스크(phase shift mask, PSM)로 250nm의 1:1 라인앤스페이스(L/S) 패턴을 노광한 후, 110℃에서 60초간 포스트 익스포저 베이킹(post exposure baking, PEB)하였다.  2.38%의 테트라메틸 암모늄 히드록사이드(tetramethyl ammonium hydroxide, TMAH) 현상액으로 60초 동안 퍼들링(puddling) 방식으로 현상하였다.250nm 1 phase shift mask (PSM) using NSR-S308F (LENS NA: 0.85, ILLUMINATION NA: 0.68, Conv. (Large), sigma: 0.80), an NIKON ArF scanner After exposing the: 1 line and space (L / S) pattern, post exposure baking (PEB) was performed at 110 ° C. for 60 seconds. It was developed by puddling method for 60 seconds with 2.38% of tetramethyl ammonium hydroxide (TMAH) developer.
최적 에너지(optimum energy, Eop) 및 최적 초점 심도(optimum depth of focus)에서도 패턴 쓰러짐(lifting)이 발생하는 최소의 패턴 크기를 측정하여, 그 결과를 하기 표 1에 나타내었다.The minimum pattern size at which pattern lifting occurs even at an optimum energy (E op ) and an optimum depth of focus was measured, and the results are shown in Table 1 below.
평가 2: 현상 속도(dissolution rate, DR) 측정Evaluation 2: measuring the development rate (DR)
8"의 베어 실리콘 웨이퍼에 상기 실시예 1 내지 8 및 비교예 1 내지 6에 따른 각각의 감광성 수지 조성물을 4,000Å의 두께로 스핀 코팅한 후, 110℃에서 60초간 베이킹하여, 이를 약 1분 동안 냉각하였다.  이에 따라 감광성 수지 조성물이 코팅된 웨이퍼의 두께를 두께 측정기(K-MAC社)를 이용하여 측정하였다.  이어서, 상기 감광성 수지 조성물이 코팅된 웨이퍼를 2.38 중량%의 테트라메틸암모늄 히드록사이드(tetramethyl ammonium hydroxide, TMAH)가 들어있는 RDA-760(Litho Tech Japan社)에 삽입하여 현상하였다.  측정이 끝난 각각의 웨이퍼에 대하여, 초기 두께와 나중 두께의 차이를 측정하여 시간당 현상되는 각 보호막의 현상 속도를 계산하고, 이를 하기 표 1에 나타내었다.Each of the photosensitive resin compositions according to Examples 1 to 8 and Comparative Examples 1 to 6 was spin coated to a thickness of 4,000 kPa on an 8 "bare silicon wafer, and then baked at 110 ° C for 60 seconds, which was then applied for about 1 minute. The thickness of the wafer coated with the photosensitive resin composition was measured by using a thickness gauge (K-MAC Co., Ltd.) The wafer coated with the photosensitive resin composition was then 2.38% by weight of tetramethylammonium hydroxide. It was developed by inserting it into RDA-760 (Litho Tech Japan Co., Ltd.) containing (tetramethyl ammonium hydroxide, TMAH) 웨이퍼 For each wafer that has been measured, the difference between the initial thickness and the later thickness was measured. The developing speed was calculated and shown in Table 1 below.
평가 3: 임플란트 내성 측정Evaluation 3: Implant Resistance Measurement
8"의 베어 실리콘 웨이퍼에 상기 실시예 1 내지 8 및 비교예 1 내지 5의 각 감광성 수지 조성물을 도포하고 110℃에서 60초간 베이킹하였다.  이를 다시 약 1분 동안 상온으로 냉각하여, 각각 300Å, 500Å, 1,000Å, 2,000Å, 3,000Å 및 4,000Å 두께의 감광성 수지 조성물이 코팅된 웨이퍼를 얻었다.  해당 두께로 코팅된 웨이퍼를 Varian社의 VIISta80-HP 장비를 사용하여 BF(boron monofluoride)를 impact energy: 8keV, 5x1013boron/cm2 도즈(dose)로 주입(implantation)하였다.  이후 잔존 감광성 수지 조성물을 PSK社의 DAS2000 장비를 이용하여 O2 에싱(ashing) 처리하고 Hitachi社의 NXWET으로 충분히 클리닝(cleaning)하여 제거하였다. 이후 웨이퍼에 투과된 붕소(boron, B)의 측정을 secondary ion mass spectrometry(SIMS)를 CAMECA社의 IMS-6f Magnetic Sector 장비를 이용하여 O2 + Gun, impact energy: 7.5keV, 300nA current로 측정하였다.  Each of the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 5 was applied to an 8 "bare silicon wafer and baked at 110 ° C. for 60 seconds. The resultant was cooled to room temperature for about 1 minute again, respectively, 300 Å and 500 Å A wafer coated with a photosensitive resin composition having a thickness of 1,000 Å, 2,000 Å, 3,000 Å and 4,000. Was obtained using Varian's VIISta80-HP equipment to convert boron monofluoride (BF) into impact energy: 8 keV, 5 × 10 13 boron / cm 2 doses were implanted, and the remaining photosensitive resin composition was then O 2 ashed using PSK DAS2000 equipment and thoroughly cleaned with Hitachi NXWET. Subsequently, the measurement of boron (B) permeated to the wafer was carried out using secondary ion mass spectrometry (SIMS) using an IMS-6f Magnetic Sector device from CAMECA, O 2 + Gun, impact energy: 7.5 keV, 300nA   Measured by current.
감광성 수지 조성물이 높은 두께보다 낮은 두께에서 임플란트 후 웨이퍼 내 측정한 붕소(boron, B)의 강도(intensity)가 높다면, 임플란트 도중에 붕소가 감광성 수지 막을 뚫고 웨이퍼 내에 침투한 것으로 보았다.  따라서 이온주입 후 웨이퍼 내 붕소의 강도가 차이나지 않는 최소 두께가 낮을수록 내임플란트 성능이 좋은 것으로 평가하였다.  그 최소 두께를 하기 표 1에 나타내었다.If the photosensitive resin composition had a high intensity of boron (B) measured in the wafer after the implant at a thickness lower than the high thickness, boron penetrated the wafer through the photosensitive resin film during the implant. Therefore, as the minimum thickness of the boron in the wafer after the ion implantation is not different, the implant resistance was evaluated as good. The minimum thickness is shown in Table 1 below.
표 1
  (메타)아크릴레이트계 고분자 조성비 중량평균 분자량(g/mol) 분산도 Eop(mJ) SIMS(Å) 현상 속도(DR)(nm/s) lifting 발생 최소 패턴 크기(nm)
실시예 1 CHMA:GBLMA:t-BMA(3:3:4) 8,100 1.6 24 300 82.4 130
실시예 2 CHMA:GBLMA:t-BMA(3:4:3) 7,700 1.6 23 300 91.2 130
실시예 3 CHMA:GBLMA:t-BMA(2:5:3) 8,300 1.6 24 300 93.2 130
실시예 4 THP2M:GBLMA:t-BMA(3:3:4) 8,800 1.6 23 500 85.5 130
실시예 5 THFM:GBLMA:t-BMA(3:3:4) 8,700 1.6 22 500 87.7 130
실시예 6 THP4M:GBLMA:t-BMA(3:3:4) 8,100 1.6 23 500 83.1 130
실시예 7 THFFMA:GBLMA:t-BMA(3:3:4) 7,900 1.8 28 500 96.0 130
실시예 8 PP4M:GBLMA:t-BMA(3:3:4) 8,400 1.7 35 500 74.5 130
비교예 1 HAMA:GBLMA:t-BMA(3:3:4) 8,500 1.6 25 500 42.3 150
비교예 2 HAMA:GBLMA:MAMA(3:3:4) 8,800 1.6 21 500 1.3 200
비교예 3 HAMA:GBLMA:MAMA(3:4:3) 8,600 1.6 20 500 2.1 200
비교예 4 HAMA:GBLMA:EAMA(3:3:4) 8,800 1.6 18 500 3.4 220
비교예 5 HAMA:GBLMA:EAMA(3:4:3) 8,400 1.6 18 500 2.3 220
비교예 6 CHMA:GBLMA:MAMA(3:3:4) 8,900 1.6 24 500 22.5 200
Table 1
(Meth) acrylate-based polymer composition ratio Weight average molecular weight (g / mol) Dispersion E op (mJ) SIMS (Å) Development speed (DR) (nm / s) lifting pattern minimum pattern size (nm)
Example 1 CHMA: GBLMA: t-BMA (3: 3: 4) 8,100 1.6 24 300 82.4 130
Example 2 CHMA: GBLMA: t-BMA (3: 4: 3) 7,700 1.6 23 300 91.2 130
Example 3 CHMA: GBLMA: t-BMA (2: 5: 3) 8,300 1.6 24 300 93.2 130
Example 4 THP2M: GBLMA: t-BMA (3: 3: 4) 8,800 1.6 23 500 85.5 130
Example 5 THFM: GBLMA: t-BMA (3: 3: 4) 8,700 1.6 22 500 87.7 130
Example 6 THP4M: GBLMA: t-BMA (3: 3: 4) 8,100 1.6 23 500 83.1 130
Example 7 THFFMA: GBLMA: t-BMA (3: 3: 4) 7,900 1.8 28 500 96.0 130
Example 8 PP4M: GBLMA: t-BMA (3: 3: 4) 8,400 1.7 35 500 74.5 130
Comparative Example 1 HAMA: GBLMA: t-BMA (3: 3: 4) 8,500 1.6 25 500 42.3 150
Comparative Example 2 HAMA: GBLMA: MAMA (3: 3: 4) 8,800 1.6 21 500 1.3 200
Comparative Example 3 HAMA: GBLMA: MAMA (3: 4: 3) 8,600 1.6 20 500 2.1 200
Comparative Example 4 HAMA: GBLMA: EAMA (3: 3: 4) 8,800 1.6 18 500 3.4 220
Comparative Example 5 HAMA: GBLMA: EAMA (3: 4: 3) 8,400 1.6 18 500 2.3 220
Comparative Example 6 CHMA: GBLMA: MAMA (3: 3: 4) 8,900 1.6 24 500 22.5 200
평가 4: 스컴(scum) 평가Evaluation 4: Scum Evaluation
8"의 베어 실리콘 웨이퍼에 상기 실시예 1 내지 8 및 비교예 1 내지 6에 따른 감광성 수지 조성물을 각각 5,000Å의 두께로 스핀 코팅하고, 110℃에서 60초간 소프트 베이킹하였다.The 8 "bare silicon wafer was spin-coated each of the photosensitive resin compositions of Examples 1-8 and Comparative Examples 1-6 with the thickness of 5,000 kPa, and soft-baked at 110 degreeC for 60 second.
코팅된 웨이퍼를 NIKON社의 ArF 스캐너(scanner)인 NSR-S308F(LENS NA: 0.85, ILLUMINATION NA: 0.68, Conv.(large), sigma: 0.80)을 이용하여 페이스 쉬프트 마스크(phase shift mask, PSM)로 150nm의 트렌치(trench) 패턴을 노광하고, 110℃/60s 포스트-익스포저 베이킹(post exposure baking, PEB)하였다.  2.38%의 테트라메틸 암모늄 히드록사이드(tetramethyl ammonium hydroxide, TMAH) 현상액으로 60초 동안 퍼들링(puddling) 방식으로 현상하였다. The coated wafer was subjected to a phase shift mask (PSM) using an NSR-S308F (LENS NA: 0.85, ILLUMINATION NA: 0.68, Conv. (Large), sigma: 0.80), an NIKON ArF scanner. A 150 nm trench pattern was exposed and then 110 ° C./60 s post exposure baking (PEB). It was developed by puddling method for 60 seconds with 2.38% of tetramethyl ammonium hydroxide (TMAH) developer.
CD-SEM을 이용하여 트렌치(trench) 패턴의 끝부분의 스컴을 관찰하였다.  패턴의 가장자리는 현상이 되었으나, 내부가 스컴(scum)이 남아 현상이 안 되는 정도로 스컴 성능을 평가하였다.  즉, 두꺼운 막 두께로 평가함에도 불구하고 미세한 트렌치 패턴의 내부가 잘 녹아나갈수록 스컴이 적게 발생한 것으로 판단하였다. CD-SEM was used to observe the scum at the end of the trench pattern. The edge of the pattern was developed, but the scum performance was evaluated to the extent that no scum remained inside. That is, despite the evaluation of the thick film thickness, it was determined that less scum occurred as the inside of the fine trench pattern melted well.
도 1a는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop))의 CD-SEM 사진이고, 도 1b는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 2 mJ/cm2 적음)의 CD-SEM 사진이고, 도 1c는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 4 mJ/cm2 적음)의 CD-SEM 사진이다.1A is a CD-SEM photograph of a 150 nm pattern (optimal energy (E op )) obtained using the photosensitive resin composition according to Example 1, and FIG. 1B is 150 nm obtained using the photosensitive resin composition according to Example 1 CD-SEM photograph of the pattern (2 mJ / cm 2 less than the optimal energy (E op )), FIG. 1C is 4 nm than the 150 nm pattern (optimal energy (E op ) obtained using the photosensitive resin composition according to Example 1 mJ / cm 2 less) CD-SEM photo.
도 2a는 비교예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop))의 CD-SEM 사진이고, 도 2b는 비교예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 2 mJ/cm2 적음)의 CD-SEM 사진이고, 도 2c는 비교예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 4 mJ/cm2 적음)의 CD-SEM 사진이다.FIG. 2A is a CD-SEM photograph of a 150 nm pattern (optimal energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 1, and FIG. 2B is 150 nm obtained using the photosensitive resin composition according to Comparative Example 1 CD-SEM photograph of the pattern (2 mJ / cm 2 less than the optimal energy (E op )), Figure 2c is a 150 nm pattern obtained by using the photosensitive resin composition according to Comparative Example 1 (4 than the optimal energy (E op ) mJ / cm 2 less) CD-SEM photo.
도 3a는 비교예 2에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop))의 CD-SEM 사진이고, 도 3b는 비교예 2에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 2 mJ/cm2 적음)의 CD-SEM 사진이고, 도 3c는 비교예 2에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop) 보다 4 mJ/cm2 적음)의 CD-SEM 사진이다.3A is a CD-SEM photograph of a 150 nm pattern (optimum energy (E op )) obtained using the photosensitive resin composition according to Comparative Example 2, and FIG. 3B is 150 nm obtained using the photosensitive resin composition according to Comparative Example 2. CD-SEM photograph of the pattern (2 mJ / cm 2 less than the optimal energy (E op )), Figure 3c is 4 nm than the 150 nm pattern (optimal energy (E op ) obtained using the photosensitive resin composition according to Comparative Example 2 mJ / cm 2 less) CD-SEM photo.
도 1a를 참고하면, 일 구현예에 따른 (메타)아크릴레이트계 고분자를 사용한 실시예 1의 패턴은, 안쪽까지 현상이 깨끗이 되었으며, 패턴이 일직선으로 형성되어 스컴 성능뿐 아니라 패턴성도 우수함을 볼 수 있다.  반면 도 2a 및 3a를 참고하면, 비교예 1 및 2 각각의 패턴은 스컴으로 인하여 패턴이 잘 형성되지 않음을 볼 수 있다.Referring to Figure 1a, the pattern of Example 1 using the (meth) acrylate-based polymer according to one embodiment, the phenomenon is clear to the inside, the pattern is formed in a straight line can be seen not only excellent scum performance but also patternability have. On the other hand, referring to Figures 2a and 3a, it can be seen that the patterns of Comparative Examples 1 and 2 are not well formed due to scum.
도 1b 및 1c, 도 2b 및 2c, 및 도 3b 및 3c를 참고하면, 스컴 성능을 좀 더 명확히 알기 위하여 최적 에너지(Eop) 보다 각각 2 mJ/cm2 및 4 mJ/cm2씩 적게 노광하여 비교하였다.  이때에도 실시예 1의 패턴이 비교예 1 및 2의 패턴보다 스컴 및 패턴 형태가 우수함을 볼 수 있다.  Referring to FIGS. 1B and 1C, 2B and 2C, and 3B and 3C, in order to more clearly understand scum performance, the exposure is performed by 2 mJ / cm 2 and 4 mJ / cm 2 less than the optimum energy (E op ), respectively. Compared. In this case, it can be seen that the pattern of Example 1 is superior to the scum and the pattern form than the patterns of Comparative Examples 1 and 2.
또한 비교예 1 및 2는 최대로 구현할 수 있는 트렌치 패턴의 너비가 130 nm 이나, 실시예 1은 110 nm 까지 스컴 없이 초점 심도(depth of focus, DOF) 마진, 노광 허용 범위(exposure latitude, EL) 마진 등이 우수하게 구현될 수 있다.In addition, Comparative Examples 1 and 2 have a maximum trench pattern width of 130 nm, but Example 1 has a depth of focus (DOF) margin and exposure latitude (EL) of up to 110 nm. Margin and the like can be excellently implemented.
도 4는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop): 36 mJ/cm2)에서의 초점 심도(depth of focus, DOF) 마진을 패턴 중심과 가장자리에 대하여 보여주는 CD-SEM 사진이다.4 shows the depth of focus (DOF) margin at the 150 nm pattern (optimum energy (E op ): 36 mJ / cm 2 ) obtained using the photosensitive resin composition according to Example 1 at the center and the edge of the pattern. CD-SEM photo showing.
상기 초점 심도 마진이란, 최적 에너지(Eop)에서의 초점이 최적 조건(best focus)을 벗어나는 경우에도 구현된 패턴 결과물의 허용 가능한 초점 범위를 나타낸다.  상기 허용 가능한 초점 범위는 통상 CD 크기의 ±10%를 나타낸다. The depth of focus margin refers to the allowable focus range of the resultant pattern even when the focus at the optimal energy E op is out of the best focus. The acceptable focus range typically represents ± 10% of the CD size.
도 4를 참고하면, 최적 조건(best focus)은 -0.05 um이며, 초점 심도 마진은 0.25 um(-0.15 um 부터 0.1 um 까지) 이다.   또한 패턴 중심과 가장자리가 모두 깨끗하게 현상되어 스컴 면에 있어서도 깨끗함을 확인할 수 있다. Referring to FIG. 4, the best condition is -0.05 um, and the depth of focus margin is 0.25 um (-0.15 um to 0.1 um). In addition, both the center and the edge of the pattern are developed cleanly, so it can be confirmed that the scum surface is clean.
도 5는 실시예 1에 따른 감광성 수지 조성물을 이용하여 얻어진 150 nm 패턴(최적 에너지(Eop): 36 mJ/cm2)의 노광 허용(exposure latitude, EL) 마진을 패턴 중심과 가장자리에 대하여 보여주는 CD-SEM 사진이다.FIG. 5 shows the exposure latitude (EL) margin of the 150 nm pattern (optimum energy (E op ): 36 mJ / cm 2 ) obtained using the photosensitive resin composition according to Example 1 with respect to the pattern center and edges. FIG. CD-SEM picture.
상기 노광 허용 마진이란, 초점 최적 조건(best focus)에서 노광량(exposure energy)이 최적 에너지(Eop)를 벗어나는 경우에도 구현된 패턴 결과물의 허용 가능한 노광 범위를 나타내며, 상기 허용 가능한 에너지 범위를 최적 에너지(Eop)로 나눈 값이다.  상기 허용 가능한 노광 범위는 통상 CD 크기의 ±10%를 나타낸다.  The exposure allowance margin indicates an allowable exposure range of the resultant pattern even when the exposure energy is out of the optimum energy E op at the best focus, and the allowable energy range is optimal energy. Divided by (E op ). The acceptable exposure range typically represents ± 10% of the CD size.
도 5를 참고하면, 노광 허용 마진은 22%(32mJ 부터 40mJ 까지 8mJ) 이다.  또한 부족 노광 부분(under dose)부터 과 노광 부분(over dose)까지 패턴 중심과 가장자리가 모두 깨끗하게 현상되어 스컴 면에 있어서도 깨끗함을 확인할 수 있다. Referring to FIG. 5, the exposure allowance margin is 22% (32 mJ to 8 mJ from 40 mJ). In addition, since both the center and the edge of the pattern are developed cleanly from the under dose to the over dose, it can be confirmed that the scum surface is also clean.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

Claims (13)

  1. 하기 화학식 1 내지 3으로 표시되는 반복단위를 포함하는 (메타)아크릴레이트계 고분자.(Meth) acrylate-based polymer comprising a repeating unit represented by the formula (1) to (3).
    [화학식 1][Formula 1]
    Figure PCTKR2010008804-appb-I000051
    Figure PCTKR2010008804-appb-I000051
    (상기 화학식 1에서, (In Formula 1,
    R1은 수소 또는 메틸기를 포함하고, R 1 contains hydrogen or a methyl group,
    R10은 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 또는 치환 또는 비치환된 C2 내지 C20 헤테로사이클로알킬기를 포함하고, R 10 comprises a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C2 to C20 heterocycloalkyl group,
    n은 0 내지 3의 정수이다.)n is an integer of 0 to 3)
    [화학식 2][Formula 2]
    Figure PCTKR2010008804-appb-I000052
    Figure PCTKR2010008804-appb-I000052
    (상기 화학식 2에서, (In Formula 2,
    R2는 수소 또는 메틸기를 포함하고, R 2 contains hydrogen or a methyl group,
    R20은 에스테르기를 포함하고 치환 또는 비치환된 C3 내지 C20 사이클로알킬기를 포함한다.)R 20 includes an ester group and includes a substituted or unsubstituted C3 to C20 cycloalkyl group.)
    [화학식 3][Formula 3]
    Figure PCTKR2010008804-appb-I000053
    Figure PCTKR2010008804-appb-I000053
    (상기 화학식 3에서, (In Chemical Formula 3,
    R3은 수소 또는 메틸기를 포함하고, R 3 contains hydrogen or a methyl group,
    R30은 t-부틸기, 트리에틸카르빌기, 1-메틸 사이클로헥실기, 1-에틸사이클로펜틸기, t-아밀기 또는 아세탈기를 포함한다.)R 30 includes t-butyl group, triethylcarbyl group, 1-methyl cyclohexyl group, 1-ethylcyclopentyl group, t-amyl group or acetal group.)
     
  2. 제1항에 있어서, The method of claim 1,
    상기 화학식 1로 표시되는 반복단위는 하기 화학식 4 내지 23으로 표시되는 반복단위 중 어느 하나를 포함하는 것인 (메타)아크릴레이트계 고분자.  The repeating unit represented by Formula 1 is a (meth) acrylate-based polymer containing any one of the repeating units represented by the following formula 4 to 23.
    [화학식 4][Formula 4]
    Figure PCTKR2010008804-appb-I000054
    Figure PCTKR2010008804-appb-I000054
    [화학식 5][Formula 5]
    Figure PCTKR2010008804-appb-I000055
    Figure PCTKR2010008804-appb-I000055
    [화학식 6][Formula 6]
    Figure PCTKR2010008804-appb-I000056
    Figure PCTKR2010008804-appb-I000056
    [화학식 7][Formula 7]
    Figure PCTKR2010008804-appb-I000057
    Figure PCTKR2010008804-appb-I000057
    [화학식 8][Formula 8]
    Figure PCTKR2010008804-appb-I000058
    Figure PCTKR2010008804-appb-I000058
    [화학식 9][Formula 9]
    Figure PCTKR2010008804-appb-I000059
    Figure PCTKR2010008804-appb-I000059
    [화학식 10][Formula 10]
    Figure PCTKR2010008804-appb-I000060
    Figure PCTKR2010008804-appb-I000060
    [화학식 11][Formula 11]
    Figure PCTKR2010008804-appb-I000061
    Figure PCTKR2010008804-appb-I000061
    [화학식 12][Formula 12]
    Figure PCTKR2010008804-appb-I000062
    Figure PCTKR2010008804-appb-I000062
    [화학식 13][Formula 13]
    Figure PCTKR2010008804-appb-I000063
    Figure PCTKR2010008804-appb-I000063
    [화학식 14][Formula 14]
    Figure PCTKR2010008804-appb-I000064
    Figure PCTKR2010008804-appb-I000064
    [화학식 15][Formula 15]
    Figure PCTKR2010008804-appb-I000065
    Figure PCTKR2010008804-appb-I000065
    [화학식 16][Formula 16]
    Figure PCTKR2010008804-appb-I000066
    Figure PCTKR2010008804-appb-I000066
    [화학식 17][Formula 17]
    Figure PCTKR2010008804-appb-I000067
    Figure PCTKR2010008804-appb-I000067
    [화학식 18][Formula 18]
    Figure PCTKR2010008804-appb-I000068
    Figure PCTKR2010008804-appb-I000068
     
    [화학식 19][Formula 19]
    Figure PCTKR2010008804-appb-I000069
    Figure PCTKR2010008804-appb-I000069
    [화학식 20][Formula 20]
    Figure PCTKR2010008804-appb-I000070
    Figure PCTKR2010008804-appb-I000070
    [화학식 21][Formula 21]
    Figure PCTKR2010008804-appb-I000071
    Figure PCTKR2010008804-appb-I000071
    [화학식 22][Formula 22]
    Figure PCTKR2010008804-appb-I000072
    Figure PCTKR2010008804-appb-I000072
    [화학식 23][Formula 23]
    Figure PCTKR2010008804-appb-I000073
    Figure PCTKR2010008804-appb-I000073
     
  3. 제1항에 있어서, The method of claim 1,
    상기 화학식 1에서의 R10의 정의 중 상기 헤테로사이클로알킬기는 산소(O) 또는 질소(N)의 헤테로 원자를 포함하는 것인 (메타)아크릴레이트계 고분자.In the definition of R 10 in Formula 1, the heterocycloalkyl group is a (meth) acrylate-based polymer containing a hetero atom of oxygen (O) or nitrogen (N).
     
  4. 제1항에 있어서, The method of claim 1,
    상기 화학식 2에서의 R20은 감마부티로락토닐(γ-butyrolactonyl)기, 발레로락토닐(valerolactonyl)기, 1,3-사이클로헥산카르보락토닐(1,3-cyclohexanecarbolactonyl)기, 2,6-노르보난카르보락톤-5-일(2,6-norbornanecarbolacton-5-yl)기 또는 7-옥사-2,6-노르보난카르보락톤-5-일(7-oxa-2,6-norbornanecarbolacton-5-yl)기를 포함하는 것인 (메타)아크릴레이트계 고분자. R 20 in Formula 2 is a gamma-butyrolactonyl group, a valerolactonyl group, a 1,3-cyclohexanecarbolactonyl group, 2,6 Norbornanecarbolacton-5-yl (2,6-norbornanecarbolacton-5-yl) or 7-oxa-2,6-norbornanecarbolactone-5-yl (7-oxa-2,6-norbornanecarbolacton A (meth) acrylate type polymer containing a -5-yl) group.
     
  5. 제1항에 있어서, The method of claim 1,
    상기 (메타)아크릴레이트계 고분자는 중량평균 분자량이 3,000 내지 20,000 g/mol 인 것인 (메타)아크릴레이트계 고분자. The (meth) acrylate polymer is a (meth) acrylate polymer having a weight average molecular weight of 3,000 to 20,000 g / mol.
     
  6. 제1항에 있어서, The method of claim 1,
    상기 (메타)아크릴레이트계 고분자는 분산도가 1.3 내지 2.5인 것인 (메타)아크릴레이트계 고분자.The (meth) acrylate polymer is a (meth) acrylate polymer having a dispersity of 1.3 to 2.5.
     
  7. 제1항에 있어서, The method of claim 1,
    상기 (메타)아크릴레이트계 고분자는, The (meth) acrylate-based polymer,
    상기 화학식 1로 표시되는 반복단위 10 내지 40 몰%; 10 to 40 mol% of repeating units represented by Formula 1;
    상기 화학식 2로 표시되는 반복단위 20 내지 60 몰%; 및 20 to 60 mol% of repeating units represented by Formula 2; And
    상기 화학식 3으로 표시되는 반복단위 20 내지 50 몰%20 to 50 mol% of repeating units represented by Formula 3
    를 포함하는 것인 (메타)아크릴레이트계 고분자.A (meth) acrylate-based polymer comprising a.
     
  8. 제1항 내지 제7항 중 어느 한 항의 (메타)아크릴레이트계 고분자; The (meth) acrylate type polymer of any one of Claims 1-7;
    광산발생제(photo acid generator, PAG); 및 Photo acid generator (PAG); And
    용매menstruum
    를 포함하는 감광성 수지 조성물. Photosensitive resin composition comprising a.
     
  9. 제8항에 있어서, The method of claim 8,
    상기 (메타)아크릴레이트계 고분자는 상기 감광성 수지 조성물 총량에 대하여 5 내지 15 중량%로 포함되는 것인 감광성 수지 조성물.The (meth) acrylate-based polymer is 5 to 15% by weight based on the total amount of the photosensitive resin composition.
     
  10. 제8항에 있어서, The method of claim 8,
    상기 광산발생제는 트리아릴술포늄 퍼플루오로알킬술포네이트, 트리아릴술포늄 트리플레이트, 디아릴이오도늄 트리플레이트, 트리아릴술포늄 노나플레이트, 디아릴이오도늄 노나플레이트, 숙신이미딜 트리플레이트, 2,6-디니트로벤질 술포네이트 또는 이들의 조합을 포함하는 것인 감광성 수지 조성물.The photoacid generator is triarylsulfonium perfluoroalkylsulfonate, triarylsulfonium triflate, diaryliononium triflate, triarylsulfonium nonaplate, diaryliononium nonaplate, succinimidyl tri A photosensitive resin composition comprising a plate, 2,6-dinitrobenzyl sulfonate or a combination thereof.
     
  11. 제8항에 있어서, The method of claim 8,
    상기 광산발생제는 상기 (메타)아크릴레이트계 고분자 100 중량부에 대하여 1 내지 15 중량부로 포함되는 것인 감광성 수지 조성물.The photoacid generator is 1 to 15 parts by weight based on 100 parts by weight of the (meth) acrylate-based polymer photosensitive resin composition.
     
  12. 제8항에 있어서, The method of claim 8,
    상기 감광성 수지 조성물은 상기 (메타)아크릴레이트계 고분자 100 중량부에 대하여 0.1 내지 5 중량부의 유기 아민을 더 포함하는 것인 감광성 수지 조성물.The photosensitive resin composition further comprises 0.1 to 5 parts by weight of the organic amine based on 100 parts by weight of the (meth) acrylate-based polymer.
     
  13. 제12항에 있어서, The method of claim 12,
    상기 유기 아민은 트리에틸아민, 트리이소부틸아민, 트리옥틸아민, 트리이소데실아민, 트리에탄올아민, 히드록시피페리딘 또는 이들의 조합을 포함하는 것인 감광성 수지 조성물.Wherein the organic amine comprises triethylamine, triisobutylamine, trioctylamine, triisodecylamine, triethanolamine, hydroxypiperidine, or a combination thereof.
PCT/KR2010/008804 2010-10-07 2010-12-09 (meth)acrylate-based polymer and photosensitive resin composition including same WO2012046917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100097834A KR101413079B1 (en) 2010-10-07 2010-10-07 (meth)acrylate based polymer and photosensitive resist composition including the same
KR10-2010-0097834 2010-10-07

Publications (1)

Publication Number Publication Date
WO2012046917A1 true WO2012046917A1 (en) 2012-04-12

Family

ID=45927893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008804 WO2012046917A1 (en) 2010-10-07 2010-12-09 (meth)acrylate-based polymer and photosensitive resin composition including same

Country Status (3)

Country Link
KR (1) KR101413079B1 (en)
TW (1) TW201215623A (en)
WO (1) WO2012046917A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170042688A (en) * 2014-09-30 2017-04-19 후지필름 가부시키가이샤 Pattern forming method, resist pattern, and electronic device manufacturing method
WO2022037909A1 (en) * 2020-08-18 2022-02-24 Henkel IP & Holding GmbH Cure accelerators for anaerobic curable compositions

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180069185A (en) 2016-12-14 2018-06-25 삼성전자주식회사 Method for processing substrate and cleaner composition for adhension layer
KR102503675B1 (en) * 2020-12-24 2023-02-23 최상준 A composition of photoresist and photosensitive polymers
KR20230121331A (en) 2022-02-11 2023-08-18 동우 화인켐 주식회사 Colored photosensitive resin composition, color filter and display device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119992A (en) * 1998-10-14 2000-04-25 Nippon Kayaku Co Ltd Active energy ray-hardenable resin composition for paper and its hardened material
US6080524A (en) * 1998-06-02 2000-06-27 Samsung Electronics Co., Ltd. Photosensitive polymer having cyclic backbone and resist composition comprising the same
KR20050078320A (en) * 2004-01-29 2005-08-05 주식회사 동진쎄미켐 Photosensitive polymer and chemically amplified photoresist composition including the same
KR20070018251A (en) * 2005-08-09 2007-02-14 주식회사 동진쎄미켐 Photosensitive polymer and photoresist composition including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303975A (en) 2000-12-05 2002-10-18 Nippon Shokubai Co Ltd Photosensitive resin composition and its use
KR100933984B1 (en) * 2007-11-26 2009-12-28 제일모직주식회사 Novel copolymers and resist compositions comprising them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080524A (en) * 1998-06-02 2000-06-27 Samsung Electronics Co., Ltd. Photosensitive polymer having cyclic backbone and resist composition comprising the same
JP2000119992A (en) * 1998-10-14 2000-04-25 Nippon Kayaku Co Ltd Active energy ray-hardenable resin composition for paper and its hardened material
KR20050078320A (en) * 2004-01-29 2005-08-05 주식회사 동진쎄미켐 Photosensitive polymer and chemically amplified photoresist composition including the same
KR20070018251A (en) * 2005-08-09 2007-02-14 주식회사 동진쎄미켐 Photosensitive polymer and photoresist composition including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170042688A (en) * 2014-09-30 2017-04-19 후지필름 가부시키가이샤 Pattern forming method, resist pattern, and electronic device manufacturing method
KR101982556B1 (en) * 2014-09-30 2019-05-27 후지필름 가부시키가이샤 Pattern forming method, resist pattern, and method for manufacturing electronic device
WO2022037909A1 (en) * 2020-08-18 2022-02-24 Henkel IP & Holding GmbH Cure accelerators for anaerobic curable compositions

Also Published As

Publication number Publication date
TW201215623A (en) 2012-04-16
KR20120036126A (en) 2012-04-17
KR101413079B1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
WO2012125009A2 (en) Chemically amplified positive photosensitive composition for an organic insulation film, and method for forming an organic insulation film using same
WO2017057813A1 (en) Binder resin and photosensitive resin composition containing same
WO2020076122A1 (en) Compound, photoresist composition comprising same, photoresist pattern comprising same, and method for manufacturing photoresist pattern
WO2015108386A1 (en) Novel β-oximester fluorene compound, a photopolymerization initiator comprising same, and photoresist composition
WO2012046917A1 (en) (meth)acrylate-based polymer and photosensitive resin composition including same
WO2012064097A2 (en) Photoresist topcoat composition for extreme ultraviolet lithography, and pattern-forming method using same
WO2012067349A2 (en) Polymer compound, and resist-protecting film composition including same for a liquid immersion exposure process
WO2016043558A1 (en) Photo-acid generating agent
KR101790389B1 (en) Patterning process, resist composition, polymer, and monomer
WO2023027360A1 (en) Chemically amplified positive photoresist composition for improving pattern profile and resolution
WO2011081285A2 (en) Polymer containing an aromatic ring for a resist underlayer, and resist underlayer compound including the polymer
WO2019245172A1 (en) Chemically amplified positive photoresist composition for improving pattern profile
WO2017039235A1 (en) I-line negative type photoresist composition having excellent etching resistance
WO2015160229A1 (en) Polysilsesquioxane copolymer and photosensitive resin composition containing same
WO2019022394A1 (en) Novel polymer for formation of resist underlayer film, composition for formation of resist underlayer film comprising same and method for manufacturing semiconductor element by using same
WO2012064074A1 (en) Photosensitive resin composition, and dielectric insulating film and electronic device using the same
WO2013129864A1 (en) Chemically amplified positive photosensitive composition for highly sensitive organic dielectric layer, with excellent heat resistance, and method for forming organic dielectric layer using same
CN101522694A (en) Photoactive compounds
WO2011014011A9 (en) Photoresist composition comprising a crosslinkable curing substance
WO2012005418A1 (en) Compound containing an aromatic ring for a resist underlayer, resist underlayer composition including same, and method for forming a pattern of a device using same
WO2023195636A1 (en) Spin-on carbon hard mask composition with high planarization performance and patterning method using same
WO2022245014A1 (en) Spin-on carbon hard mask composition having low evaporation loss, and patterning method using same
WO2021080267A1 (en) Polysiloxane copolymer, method for producing same, and resin composition comprising same
WO2019093761A1 (en) Composition for hard mask
WO2021132865A1 (en) Polymer resin compound, method for producing same, and photosensitive resin composition comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858192

Country of ref document: EP

Kind code of ref document: A1