WO2012046597A1 - Method for producing ceramic tube and ceramic tube - Google Patents

Method for producing ceramic tube and ceramic tube Download PDF

Info

Publication number
WO2012046597A1
WO2012046597A1 PCT/JP2011/072112 JP2011072112W WO2012046597A1 WO 2012046597 A1 WO2012046597 A1 WO 2012046597A1 JP 2011072112 W JP2011072112 W JP 2011072112W WO 2012046597 A1 WO2012046597 A1 WO 2012046597A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
molded body
joining
ceramic molded
protrusion
Prior art date
Application number
PCT/JP2011/072112
Other languages
French (fr)
Japanese (ja)
Inventor
宮澤杉夫
渡邊敬一郎
大橋玄章
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN2011800481735A priority Critical patent/CN103155087A/en
Priority to EP11830530.9A priority patent/EP2626882A4/en
Priority to JP2012537646A priority patent/JPWO2012046597A1/en
Publication of WO2012046597A1 publication Critical patent/WO2012046597A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/002Producing shaped prefabricated articles from the material assembled from preformed elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/22Tubulations therefor, e.g. for exhausting; Closures therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/265Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps
    • H01J9/266Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps specially adapted for gas-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/395Filling vessels

Definitions

  • the present invention relates to a method for producing a ceramic tube used for a high-intensity discharge lamp such as a high-pressure sodium lamp or a metal halide lamp, and a ceramic tube.
  • a ceramic metal halide lamp ionizes a metal halide with a pair of electrodes inserted in a ceramic tube for a high-intensity discharge lamp, thereby obtaining discharge light emission.
  • This type of ceramic tube has a pair of tubules formed so that each axis is positioned so as to face the light emitting portion. Each thin tube is provided with an electrode insertion hole, and an electrode is inserted through these electrode insertion holes.
  • Various types of ceramic tubes are disclosed, such as those produced by assembling a plurality of members, those produced integrally as a single member, and those produced by joining two members (for example, JP 63-143738, JP 5-334962, JP 7-21990, JP 8-55606, JP 2010-514125, JP 2010-514127, US (See Japanese Patent Application Publication No. 2006/0001346, JP-T 2009-530127, JP-A 2008-44344).
  • the electrode is inserted into one electrode insertion hole and sealed with frit glass or the like, and then the luminescent substance is introduced through the remaining electrode insertion hole.
  • an electrode is inserted into the other electrode insertion hole and sealed with frit glass or the like to assemble the luminous tube.
  • the third capillaries for introducing the luminescent substance into the luminescent container in order to introduce the luminescent substance after sealing the electrode or A structure is also known in which pores are provided separately from the thin tubes for inserting electrodes.
  • Japanese Patent Application Laid-Open No. 63-143738 discloses that both ends of an arc tube bulb made of translucent ceramic are sealed by solid-phase bonding with a closed body made of a conductive cermet that supports the electrodes.
  • Japanese Patent Laid-Open No. 5-334962 discloses that closed bodies are respectively attached to cylindrical openings at both ends of a translucent valve made of polycrystalline alumina, and holes through which electrodes pass respectively are provided at the central positions of the closed bodies.
  • An example is disclosed in which an opening for introducing a luminescent substance into a translucent bulb is formed at a position that is formed and decentered from the center of one closing member.
  • Japanese Patent Application Laid-Open No. 7-21990 discloses an example in which pin-shaped current conductors having a diameter of 300 ⁇ m are inserted into both ends of a discharge tube, and plugs at both ends are directly joined to both ends by sintering.
  • 3 and 4 show an example in which a filling hole having a diameter of 1 mm or more for introducing a luminescent material into the discharge tube is formed in the wall portion of the discharge tube or the second plug near the second end portion. .
  • a small-diameter tube whose lower end is closed downward from the center portion of the funnel-shaped portion of the arc tube is integrally suspended to provide a lower portion in the small-diameter tube (during lighting).
  • the liquid metal halide that remains in the arc tube without being evaporated is stored in the coldest part: the coldest part).
  • one of the openings provided in the flange-shaped intermediate part that is removed from the coldest part is used as an inlet for sealing the metal halide and mercury in the arc tube, and the small-diameter pipe is used as the inlet pipe.
  • the inlet pipe There is a description that it can also be used.
  • one end of the discharge vessel and the wall of the tube are made as an integral part of the discharge vessel, and the other end of the discharge vessel is sealed with a ceramic end plug.
  • a ceramic burner is disclosed.
  • a tube is provided on the ceramic wall of the discharge vessel for introducing the ionized filler into the discharge vessel during the production of the ceramic burner and which projects outwardly from the ceramic wall of the discharge vessel. Examples have been disclosed.
  • the tube is hermetically sealed.
  • the discharge vessel is made, for example, substantially spherical or substantially elliptical by two different parts (separated by a broken line in FIG. 2A of the publication) Only a portion of one discharge vessel is provided with a tube for introducing an ionized filler into the discharge vessel during the production of the ceramic burner and protruding outward from the ceramic wall of the discharge vessel Examples have been disclosed.
  • the tube is hermetically sealed.
  • U.S. Patent Application Publication No. 2006/0001346 has a cylindrical portion and end members respectively coupled to both ends of the cylindrical portion, and inward of the cylindrical portion at the center of each end member.
  • An example in which an electrode extending in the direction is provided is disclosed, and in particular, one end member is provided with an introduction hole penetrating from the outer surface of the end member to the inner surface (the surface facing the inside of the tube portion). Yes.
  • the introduction of the metal halide or the like into the cylindrical portion is performed through the introduction hole, and then the introduction hole is sealed with a plug member.
  • a slurry can be applied to the joint surfaces of a plurality of inorganic powder compacts, and a plurality of compacts can be butted together to be integrated and sintered, whereby a strong joint sintered body can be obtained.
  • JP-T-2009-530127 structures capable of obtaining a bonded inorganic powder molded body while suppressing or avoiding deformation of the bonded portion and increase in surface roughness (for example, JP, 2008-44344, A).
  • JP-T-2009-530127 discloses a method for producing a sintered body suitable for use in an arc tube of a discharge lamp, containing an inorganic powder, an organic dispersion medium having a reactive functional group, and a gelling agent.
  • Japanese Patent Application Laid-Open No. 2008-44344 discloses a sintered body suitable for use in an arc tube of a discharge lamp, and a sintered body of a joined body of two or more inorganic powder molded bodies is used as two or more of the joined bodies.
  • the second component has a surface roughness equal to or less than that of the first component.
  • the second constituent part has a light transmission greater than that of the first constituent part in the vicinity of the width center thereof.
  • the pores are located at or near the coldest portion of the arc tube.
  • all of the metal halide does not evaporate, and a part of it becomes liquid and accumulates in the coldest part in the arc tube.
  • the sealing portion (seal) of the pores may corrode.
  • the thin tube When a thin tube is provided in a ceramic tube, especially when the axial direction of the thin tube is set perpendicular to the tangent to the outer diameter of the ceramic tube, the thin tube is very thin and easily breaks. In addition, since it is away from the light emitting part, it is likely to be the coldest point and is easily corroded.
  • the present invention has been made in consideration of such problems, and it is not necessary to perform hole processing or additional processing for providing a thin tube, and it is possible to provide pores or thin tubes in a ceramic tube with a simple process.
  • Another object of the present invention is to provide a method for producing a ceramic tube for a high-intensity discharge lamp, which can reduce production costs and improve productivity.
  • Another object of the present invention is to prevent the thin tube from being damaged and to prevent the thin tube from being arranged at the coldest point, thereby improving yield and reliability.
  • An object of the present invention is to provide a ceramic tube for a high-intensity discharge lamp.
  • a method of manufacturing a ceramic tube according to the first aspect of the present invention is a method of manufacturing a ceramic tube in which a plurality of ceramic molded bodies are bonded to produce one ceramic tube for a high-intensity discharge lamp.
  • a molded body producing step for producing a plurality of ceramic molded bodies including at least one ceramic molded body having a molded body joining step for joining the joining surfaces of the plurality of ceramic molded bodies.
  • a ceramic tube in which a through hole is formed is produced.
  • the molded body manufacturing step includes manufacturing one first ceramic molded body having a groove on the joint surface and one second ceramic molded body having no groove on the joint surface.
  • the molded body joining step is characterized by joining one first ceramic molded body and one second ceramic molded body.
  • the molded body producing step produces two first ceramic molded bodies having grooves on the joining surfaces
  • the molded body joining step comprises two first ceramic molded bodies. In joining, the grooves formed on the joining surfaces of the first ceramic molded body are joined together and joined.
  • a method for manufacturing a ceramic tube according to the second aspect of the present invention is a method for manufacturing a ceramic tube in which a plurality of ceramic molded bodies are bonded to produce a ceramic tube for a high-intensity discharge lamp.
  • a plurality of ceramic molded bodies including at least one ceramic molded body having first protrusions constituting a portion and having through-grooves formed continuously from the end portion of the first protrusion to the inside on the joint surface And forming a ceramic tube in which a through hole is formed by the through groove.
  • one third ceramic molded body having the first protrusion and a part of the joining surface are formed, and no through groove is formed.
  • the molded body production step for producing at least one fourth ceramic molded body having a second projection, and the molded body joining step are performed such that the first projection and the second projection are respectively aligned with the joining surface.
  • the third ceramic molded body and the fourth ceramic molded body are joined together.
  • the molded body manufacturing step includes the molded body manufacturing process for manufacturing at least two third ceramic molded bodies having the first protrusions, and the molded body joining step includes the first molded body manufacturing process.
  • the third ceramic molded body is bonded so that the protrusions are aligned with the bonding surfaces.
  • the joint surface having the first protrusion and the axis of the through groove in the first protrusion is the base point of the first protrusion
  • the joint surface The angle formed by the tangential direction at the base point and the axis of the through groove on the outer periphery is 30 ° to 60 °.
  • the joint surface of the ceramic molded body is parallel to a surface orthogonal to the axial direction.
  • a ceramic tube according to a third aspect of the present invention is formed by joining a plurality of ceramic molded bodies, and is provided with a light emitting portion that emits light inside, and on both sides of the light emitting portion, and each electrode is introduced and sealed.
  • a ceramic tube for a high-intensity discharge lamp integrally having an electrode introduction part for stopping a through hole for introducing a luminescent substance into the light emission part is provided in the light emission part separately from the electrode introduction part.
  • the protrusion is provided so that the axis of the protrusion is directed to the axis of the ceramic tube, and the angle formed by the axis of the protrusion and the axis of the ceramic tube is 90 °;
  • the protrusion amount of the protrusion is in a range of 1/20 to 10/20 of the maximum diameter of the light emitting part.
  • the ceramic tube according to the fourth aspect of the present invention is configured by joining a plurality of ceramic molded bodies, and is provided with a light emitting portion that emits light inside and on both sides of the light emitting portion, and each electrode is inserted therethrough.
  • a ceramic tube for a high-intensity discharge lamp integrally having an electrode introduction portion for providing a light-emitting substance, a through-hole for introducing a luminescent substance is provided in the light-emitting portion, separately from the electrode introduction portion.
  • the method for manufacturing a ceramic tube according to the present invention there is no need to perform hole processing or additional processing for providing a thin tube, and it is possible to provide pores or thin tubes in the ceramic tube in a simple process. Therefore, the manufacturing cost can be reduced and the productivity can be improved.
  • the ceramic tube according to the present invention can prevent the thin tube from being damaged and can avoid the thin tube from being disposed at the coldest point, thereby improving the yield and the reliability. be able to.
  • FIG. 3A is a sectional view showing the first casting mold with a part omitted
  • FIG. 3B is a sectional view showing the second casting mold with a part omitted
  • FIG. 4A is a cross-sectional view showing the first joined body
  • FIG. 4B is a perspective view showing the first ceramic tube.
  • FIG. 6A is a cross-sectional view showing another example of the first joined body
  • FIG. 6B is a cross-sectional view showing another example of the first joined body
  • FIG. 6B is a perspective view showing another example of the first ceramic tube. It is a process block diagram showing the 2nd manufacturing method. It is a disassembled perspective view which shows the example of a combination of a pair of 1st ceramic molded object.
  • FIG. 9A is a cross-sectional view showing the second joined body, and
  • FIG. 9B is a perspective view showing the second ceramic tube.
  • It is a process block diagram showing the 3rd manufacturing method.
  • It is a disassembled perspective view which shows the example of a combination of a 3rd ceramic molded object and a 4th ceramic molded object.
  • 12A is a cross-sectional view showing the third casting mold with a part thereof omitted, and FIG.
  • FIG. 12B is a cross-sectional view showing a part of the fourth casting mold with a part omitted. It is a disassembled perspective view which shows the other example of a combination of a 3rd ceramic molded body and a 4th ceramic molded body.
  • FIG. 14 is a diagram for explaining a protruding direction of the first protrusion and the second protrusion in the combination example of FIG. 13.
  • FIG. 15A is a cross-sectional view showing a third joined body
  • FIG. 15B is a perspective view showing a third ceramic tube based on the combination example of FIG.
  • FIG. 16A is a perspective view showing a third ceramic tube based on the combination example of FIG. 13, and FIG.
  • 16B is a diagram for explaining a protruding direction of a cylindrical protrusion. It is a process block diagram which shows the conventional manufacturing method for producing the ceramic tube which has a cylindrical protrusion.
  • 18A is a diagram for explaining the protrusion amount of the cylindrical protrusion in the third ceramic tube shown in FIG. 15B, and FIG. 18B shows the protrusion amount of the cylindrical protrusion in the third ceramic tube shown in FIG. 16A. It is a figure for demonstrating.
  • FIG. 22A is a cross-sectional view showing a fourth joined body
  • FIG. 22B is a perspective view showing a third ceramic tube based on the combination example of FIG. It is a perspective view which shows the 3rd ceramic tube based on the example of a combination of FIG.
  • FIG. 3 is a diagram showing a pattern of screen plate making used in Example 1.
  • 5 is a diagram showing a pattern of screen plate making used in Example 2.
  • in the numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the ceramic tube is preferably used as an arc tube of a discharge lamp.
  • the high pressure discharge lamp can be applied to various lighting devices such as road lighting, store lighting, automobile headlamps, and liquid crystal projectors.
  • the arc tube includes an arc tube for a metal halide lamp and an arc tube for a high pressure sodium lamp.
  • the method of manufacturing a ceramic tube according to the first embodiment includes a molded body manufacturing step of manufacturing a plurality of ceramic molded bodies including at least one ceramic molded body having a groove on a joint surface, and each of the plurality of ceramic molded bodies. And forming a ceramic tube having a hole formed by a groove.
  • a manufacturing method according to a first specific example includes a first ceramic molded body 10A and a second ceramic molded body 10B, as shown in FIG. Is made.
  • a groove 14 is formed on the joint surface 12a.
  • the groove 14 is not formed on the joint surface 12b of the second ceramic molded body 10B.
  • step S1a a ceramic powder, a dispersion medium, a gelling agent, and the like are mixed to prepare a gel casting slurry (referred to as a forming slurry).
  • step S1b as shown in FIGS. 3A and 3B, the molding slurry 16 is fed into the first casting mold 18A for the first ceramic molded body 10A (see FIG. 3A) and the second for the second ceramic molded body 10B. After casting into a casting mold 18B (see FIG. 3B), it solidifies.
  • a projection 20 having a shape obtained by inverting the groove 14 is formed at a portion where the joining surface 12a is formed.
  • step S1c the first casting mold 18A and the second casting mold 18B are released to obtain the first ceramic molded body 10A and the second ceramic molded body 10B as shown in FIG.
  • Both the first ceramic molded body 10 ⁇ / b> A and the second ceramic molded body 10 ⁇ / b> B are formed in a cylindrical shape having a hollow portion 22.
  • the first ceramic tube 24A (see FIG. 4B), which is a finished product, has a similar shape in which the first ceramic tube 24A is separated into two at the center in the longitudinal direction of the axis m1, and includes a cylindrical portion 26 and a curved portion 28 (a bowl shape). ) are integrally formed. That is, the shape of the first bonded body 30A (see FIG. 4A) obtained by bonding the first ceramic molded body 10A and the second ceramic molded body 10B, and the first obtained by firing the first bonded body 30A.
  • the shape of the ceramic tube 24A is similar, and the first ceramic tube 24A has a shape obtained by reducing the first joined body 30A.
  • the joining surfaces 12a and 12b of the first ceramic molded body 10A and the second ceramic molded body 10B are located on the end surfaces of the curved portions 28, and are in the axial direction of the first ceramic molded body 10A and the second ceramic molded body 10B. Parallel to the orthogonal plane.
  • One groove 14 is formed on the joint surface 12a of the first ceramic molded body 10A.
  • the groove 14 has a semi-cylindrical shape, a prism shape, or a combination shape of a prism and a semi-cylindrical shape, and its axis n1 is directed to the axis m2 of the first ceramic molded body 10A, and an angle formed between the axis n1 and the axis m2 is set.
  • the length along the axis n1 of the groove 14 is the same as the thickness of the curved portion 28 of the first ceramic molded body 10A, and the length (width) orthogonal to the axis n1 of the groove 14 is inserted in a solid state. Therefore, the diameter of the inscribed circle is set to ⁇ 0.25 mm to ⁇ 0.9 mm.
  • the outer peripheral portion and the inner peripheral portion of each joint surface 12a and 12b of the first ceramic molded body 10A and the second ceramic molded body 10B are chamfered (for example, R surface, C surface). Also good.
  • step S2 of FIG. 1 the first ceramic molded body 10A and the second ceramic molded body 10B are bonded to produce a first bonded body 30A.
  • step S2a ceramic powder, a solvent, a binder, and the like are mixed to prepare a joining slurry (referred to as joining slurry 32).
  • step S2b the joining slurry 32 is applied (supplied) to a portion excluding the groove 14 in the joining surface 12a of the first ceramic molded body 10A.
  • step S2c the first bonded body 30A shown in FIG. 4A is obtained by pressure bonding together with the bonded surface 12b of the second ceramic molded body 10B.
  • the first bonded body 30A is fired to obtain a sintered body (first ceramic tube 24A).
  • the first ceramic tube 24A has a bulging portion (light emitting portion 34) formed by joining and firing the curved portion 28 at the center, and electrode sealing formed integrally at both ends of the light emitting portion 34, respectively.
  • a hollow portion 37 communicating from one electrode introduction portion 36 to the other electrode introduction portion 36 is formed therein.
  • a first through hole 38a (pore) is formed in the middle portion of the light emitting portion 34 of the first ceramic tube 24A by the groove 14 formed in the joining surface 12a of the first ceramic molded body 10A.
  • the first through hole 38a is used as an introduction hole for introducing a luminescent substance into the light emitting portion 34 in the process of manufacturing the first ceramic tube 24A as an arc tube, for example. Therefore, the first through hole 38a is sealed after the introduction of the luminescent substance or the like.
  • the inert start gas such as argon, mercury and a metal halide additive are enclosed inside the light emitting unit 34. However, it is not always necessary to enclose mercury.
  • step S11 of FIG. 5 two second ceramic molded bodies 10B having no grooves 14 on the joining surface 12b are produced.
  • a molding slurry 16 is prepared by mixing ceramic powder, a dispersion medium, a gelling agent, and the like.
  • the molding slurry 16 is cast into a second casting mold 18B for the second ceramic molded body 10B (see FIG. 3B), solidified, and then released from the second casting mold 18B. A second ceramic molded body 10B is obtained.
  • a through hole is provided in the curved portion 28 of one second ceramic molded body 10B by, for example, drilling with a drill.
  • step S13 of FIG. 5 the two second ceramic molded bodies 10B are joined.
  • step S13a a ceramic powder, a solvent, a binder, and the like are mixed to prepare a joining slurry.
  • step S13b the bonding slurry 32 is applied (supplied) to the bonding surface 12b of one second ceramic molded body 10B.
  • step S13c the joined surfaces 12b of the two second ceramic molded bodies 10B are put together and bonded together to obtain a joined body.
  • step S14 of FIG. 5 the joined body is fired to obtain a sintered body (ceramic tube) in which through holes are formed.
  • the second ceramic molded body 10B is moved by the rotational vibration of the drill, In some cases, a through hole having a desired diameter cannot be formed. Therefore, the second ceramic molded body 10B is held and fixed with a jig or the like. However, it is necessary to hold and fix the second ceramic molded body 10B with such a strength that the second ceramic molded body 10B is not broken. is there. Moreover, it is necessary to prepare a jig and a drill in advance according to the size of the second ceramic molded body 10B, and there is a problem that the manufacturing cost is increased. In addition, since the second ceramic molded body 10B is damaged due to rotational vibration by a drill, collision of cutting waste, or the like, there is a possibility that cracks are likely to occur after the ceramic tube is formed.
  • the first ceramic molded body 10A having the groove 14 on the joining surface 12a and the second ceramic molded body 10B having no groove 14 on the joining surface 12b are joined, and the groove 14 is used. Since the first ceramic tube 24A in which the first through hole 38a is formed is manufactured, it is not necessary to perform drilling with a drill, simplifying the manufacturing process, reducing the number of steps, improving the throughput, and improving the yield. The improvement can be achieved, and the productivity of the first ceramic tube 24A having the first through hole 38a for introducing the luminescent material can be improved.
  • die for obtaining the 1st ceramic molded object 10A is needed, when compared with the metal mold
  • the example in which the first through holes 38a are formed in the intermediate portion of the light emitting portion 34 with the heights of the curved portions 28 of the first ceramic molded body 10A and the second ceramic molded body 10B being the same is shown.
  • the height of the curved portion 28 of the first ceramic molded body 10A may be larger than the height of the curved portion 28 of the second ceramic molded body 10B.
  • the first through hole 38a is located closer to one electrode introduction portion 36 or closer to the other electrode introduction portion 36 from the intermediate portion of the light emitting portion 34. It will be formed at an eccentric position.
  • step S101 of FIG. 7 as shown in FIG. A ceramic molded body 10A is produced.
  • step S101a ceramic powder, a dispersion medium, a gelling agent, and the like are mixed to prepare a molding slurry 16 (step S101a in FIG. 7), and then the molding slurry 16 is cast into the first casting mold 18A ( Step S101b) solidifies. Thereafter, the first ceramic mold 10A is obtained by releasing the first casting mold 18A (step S101c).
  • the length along the axis n1 of the groove 14 formed in the joint surface 12a of the first ceramic molded body 10A is the same as the thickness of the curved portion 28 of the first ceramic molded body 10A.
  • the length (width) orthogonal to the axis n1 of the groove 14 needs to be 1 to 3 times the diameter of the luminescent material inserted in the solid state, so the diameter of the inscribed circle is ⁇ 0.25 mm. It is set to ⁇ 0.9mm.
  • step S102 of FIG. 7 the two first ceramic molded bodies 10A are joined together. Specifically, after mixing ceramic powder, a solvent, a binder, and the like to prepare a bonding slurry 32 (step S102a), the bonding surface 12a of one first ceramic molded body 10A is bonded to a portion excluding the groove 14. The slurry 32 is applied (supplied) (step S102b). Thereafter, as shown in FIG. 9A, the joined surfaces 12a of the two first ceramic molded bodies 10A are bonded together to obtain a second joined body 30B (step S102c).
  • the second bonded body 30B is fired to obtain a sintered body (second ceramic tube 24B).
  • the second ceramic tube 24B has a light emitting part 34 formed by joining and firing a curved part 28 at the center part, and electrode introducing parts 36 integrally formed at both ends of the light emitting part 34, respectively.
  • the hollow portion 37 that communicates from one electrode introduction portion 36 to the other electrode introduction portion 36 is formed inside.
  • a second through hole 38b (a through hole formed by the grooves 14 facing each other) is formed in the middle portion of the light emitting portion 34 of the second ceramic tube 24B by the grooves 14 formed in the joint surfaces 12a of the two first ceramic molded bodies 10A. ) Is formed.
  • the second through hole 38b is used as an introduction hole for introducing a luminescent substance into the light emitting portion 34 in the process of manufacturing the second ceramic tube 24B as, for example, a light emitting tube.
  • the second manufacturing method similarly to the first manufacturing method described above, it is not necessary to perform drilling with a drill, and the manufacturing process is simplified, man-hours are reduced, throughput is improved, and yield is improved. Thus, the productivity of the second ceramic tube 24B having the second through hole 38b for introducing the luminescent material can be improved.
  • the productivity of the second ceramic tube 24B having the second through hole 38b for introducing the luminescent material can be improved.
  • this second manufacturing method since only the first casting mold 18B for producing the first ceramic molded body 10A is required as the casting mold to be prepared, the cost is further reduced.
  • the example in which the second through-holes 38b are formed in the intermediate portion of the light-emitting portion 34 with the heights of the curved portions 28 of the first ceramic molded body 10A being the same is shown.
  • the height of the curved portion 28 of one first ceramic molded body 10A may be larger than the height of the curved portion 28 of the other first ceramic molded body 10A.
  • the second through hole 38b is formed at an eccentric position near the one electrode introduction portion 36 or the other electrode introduction portion 36 from the intermediate portion of the light emitting portion 34. It will be.
  • the second embodiment has at least one ceramic having a first protrusion that constitutes a part of the joint surface, and a through groove is continuously formed on the joint surface from the end of the first protrusion to the inside.
  • a hole formed by the through groove is formed, which includes a molded body manufacturing step for manufacturing a plurality of ceramic molded bodies including a molded body, and a molded body bonding step for bonding the bonding surfaces of the plurality of ceramic molded bodies. It is characterized by producing a ceramic tube.
  • a manufacturing method includes one third ceramic molded body 10C and one first ceramic body as shown in FIG. 4 ceramic molded body 10D is produced.
  • the third ceramic molded body 10C has a first protrusion 40a that constitutes a part of the joint surface 12c, and is continuous with the joint surface 12c from the end of the first protrusion 40a to the inside of the third ceramic molded body 10C.
  • a through groove 42 is formed.
  • the fourth ceramic molded body 10D has a second protrusion 40b that constitutes a part of the bonding surface 12d.
  • the through-groove 42 is not formed on the joining surface 12d of the fourth ceramic molded body 10D from the end of the second protrusion 40b to the inner side of the fourth ceramic molded body 10D, and is a flat surface.
  • a molding slurry 16 is prepared by mixing ceramic powder, a dispersion medium, a gelling agent, and the like.
  • step S201b as shown in FIGS. 12A and 12B, the molding slurry 16 is fed into the third casting mold 18C for the third ceramic molded body 10C (see FIG. 12A) and the fourth for the fourth ceramic molded body 10D. After casting into a casting mold 18D (see FIG. 12B), it solidifies. Thereafter, the third casting mold 10C and the fourth ceramic molding 10D are obtained by releasing the third casting mold 18C and the fourth casting mold 18D.
  • a first space 44a for forming the first protrusion 40a and the through groove 42 is formed in a portion where the joining surface 12c is formed, and the joining surface 12d is formed in the fourth casting mold 18D.
  • a second space 44b for forming the second protrusion 40b is formed in the part to be molded.
  • the third ceramic molded body 10 ⁇ / b> C and the fourth ceramic molded body 10 ⁇ / b> D are both formed in a cylindrical shape having a hollow portion 22. More specifically, the third ceramic molded body 10C and the fourth ceramic molded body 10D are similar in shape in which the third ceramic tube 24C (see FIG. 15B), which is a finished product, is separated into two at the longitudinal center of the axis m1.
  • the third ceramic molded body 10C has a shape in which the cylindrical portion 26, the curved portion 28 (saddle shape), and the first protrusion 40a are integrally formed
  • the fourth ceramic molded body 10D has a shape.
  • the cylindrical portion 26, the curved portion 28 (saddle shape), and the second protrusion 40 b are integrally formed.
  • the joint surfaces 12c and 12d of the third ceramic molded body 10C and the fourth ceramic molded body 10D are located on the end surfaces of the curved portions 28, and are axial with respect to the third ceramic molded body 10C and the fourth ceramic molded body 10D. Parallel to the orthogonal plane.
  • the joint surface 12c of the third ceramic molded body 10C is formed with the above-described through groove 42 formed continuously from the end of the first protrusion 40a toward the inside of the third ceramic molded body 10C. . As shown in FIG.
  • the first protrusion 40a is projected in a direction in which the axis line n2 is directed to the axis line m3 of the third ceramic molded body 10C and the angle formed between the axis line n2 and the axis line m3 is 90 °.
  • the intersection of the outer periphery of the joint surface 12c having the first protrusion 40a and the axis n2 of the first protrusion 40a is the base point 46 of the first protrusion 40a.
  • angle ⁇ formed by the direction of the tangent line K1 at the base point 46 on the outer periphery of the joint surface 12c and the axis n2 of the first protrusion 40a may be protruded in a direction of 30 ° to 60 °. The same applies to the second protrusion 40b.
  • the length along the axis n2 of the through groove 42 is the same as the sum of the height of the first protrusion 40a and the thickness of the curved portion 28 of the third ceramic molded body 10C, and is a length orthogonal to the axis n2 of the through groove 42.
  • the length (width) is required to be 1 to 3 times the diameter of the light-emitting substance to be inserted, so that the diameter of the inscribed circle is set to ⁇ 0.25 mm to ⁇ 0.9 mm.
  • the outer peripheral portion and the inner peripheral portion of each joint surface 12c and 12d of the third ceramic molded body 10C and the fourth ceramic molded body 10D may be chamfered (for example, C surface).
  • step S202 of FIG. 10 the third ceramic molded body 10C and the fourth ceramic molded body 10D are joined.
  • step S202a a ceramic powder, a solvent, a binder and the like are mixed to prepare a joining slurry.
  • step S202b the bonding slurry is applied (supplied) to a portion of the bonding surface 12c of the third ceramic molded body 10C excluding the through groove 42.
  • step S202c the bonding surface 12c of the third ceramic molded body 10C and the bonding surface 12d of the fourth ceramic molded body 10D are bonded together to obtain a third bonded body 30C (see FIG. 15A).
  • the bonding surface 12c of the first protrusion 40a and the bonding surface 12d of the second protrusion 40b are opposed to each other.
  • the third bonded body 30C is fired to obtain a sintered body (third ceramic tube 24C).
  • the third ceramic tube 24C includes a light emitting part 34 formed by joining and firing a curved part 28 at the center part, and an electrode introducing part 36 integrally formed at both ends of the light emitting part 34, respectively. And has a shape in which a hollow part 37 communicating from one electrode introduction part 36 to the other electrode introduction part 36 is formed.
  • the light emitting portion 34 of the third ceramic tube 24C is formed with a cylindrical protrusion 50 (a thin tube) that protrudes outward from a part of the light emitting portion 34.
  • a cylindrical protrusion 50 shown in FIG. 15B is formed by joining and firing the first protrusion 40a and the second protrusion 40b shown in FIG. 11, and the axis n3 thereof is the third ceramic tube 24C. It faces the axis m1 and protrudes in a direction in which the angle formed by the axis n3 and the axis m1 is 90 °.
  • the cylindrical protrusion 50 shown in FIG. 16A is formed by joining and firing the first protrusion 40a and the second protrusion 40b shown in FIG. 13, and as shown in FIG. 16B, the light emitting portion 34 is formed.
  • the contour line 52 at the intersection 54 of the contour line 52 and the axis n3 is obtained.
  • the angle formed by the direction of the tangent line K2 and the axis line n3 projects in a direction of 30 ° to 60 °.
  • the cylindrical protrusion 50 has a third through hole 38c formed by the through groove 42 of the first protrusion 40a along the axis n3.
  • the third through hole 38c is used as an introduction hole for introducing a luminescent substance into the light emitting portion 34 in the process of manufacturing the third ceramic tube 24C as an arc tube, for example.
  • step S211 steps S211a to S211c in FIG. 17
  • two second ceramic molded bodies 10B having no groove 14 on the joining surface 12b are produced.
  • step S212 a through hole is provided in the curved portion 28 of one second ceramic molded body 10B, for example, by drilling with a drill.
  • step S213 steps S213a to S213c
  • the two second ceramic molded bodies 10B are joined.
  • step S214 a joining slurry is applied to the end face of the pipe formed of the ceramic molded body, and the pipe is joined so as to close the through hole to obtain a joined body.
  • step S215 the joined body is fired to obtain a sintered body (ceramic tube) on which cylindrical protrusions are formed.
  • the third manufacturing method as in the first manufacturing method described above, it is not necessary to perform drilling with a drill, simplifying the manufacturing process, reducing the number of steps, improving the throughput, and improving the yield. Improvement can be achieved, and improvement in the productivity of the third ceramic tube 24C having the third through hole 38c for introducing the luminescent material can be realized.
  • the first protrusion 40a having the through groove 42 and the second protrusion 40b are joined to form the cylindrical protrusion 50 having the third through hole 38c for introducing the luminescent material.
  • the projection 50 acts as a guide for the introduction of the luminescent material and the exhaust of the gas, and the introduction of the luminescent material and the exhaust of the gas become easy.
  • the third through hole 38c can be easily sealed.
  • the protrusion amount La (of the light emitting portion 34) of the protrusion 50 is obtained.
  • the distance between the line segment connecting the center Oa and the tip point Pa of the projection 50 and the outer periphery of the light emitting portion 34 is large (distance from the tip point Pa to the tip point Pa)
  • the completed arc tube is put into an outer sphere and ramped. It is necessary to increase the diameter of the outer sphere, which makes it difficult to reduce the size of the lamp.
  • the tip portion (the portion to be sealed) of the protrusion 50 is far from the light emitting portion 34, and the tip portion becomes the coldest point. For this reason, corrosive luminescent substances are likely to accumulate, and when used as an arc tube, corrosion or the like may occur in the sealed portion.
  • the protrusion amount La of the protrusion 50 is preferably in the range of 1/20 to 10/20 of the maximum diameter of the light emitting portion 34, more preferably 2/20 to 5/20.
  • the protrusion amount La of the protrusion 50 can be shortened as shown in FIG. 18B. It is difficult to cause contact or damage to the object. Moreover, since the tip portion is closer to the light emitting portion 34 than in the case of FIG. 18A, it is possible to avoid the tip portion from becoming the coldest point, and when used as an arc tube, Corrosion and the like can be prevented, leading to improved reliability.
  • the example in which the cylindrical protrusions 50 are formed in the intermediate portion of the light emitting portion 34 with the heights of the curved portions 28 of the third ceramic molded body 10C and the fourth ceramic molded body 10D being the same is shown.
  • the height of the curved portion 28 of the third ceramic molded body 10C may be larger than the height of the curved portion 28 of the fourth ceramic molded body 10D.
  • the cylindrical protrusion 50 is formed at an eccentric position near the one electrode introduction portion 36 or the other electrode introduction portion 36 from the intermediate portion of the light emitting portion 34. It will be.
  • the manufacturing method according to the fourth specific example includes two third ceramic molded bodies 10C as shown in FIGS. 20 and 21 in step S301 of FIG. Make it.
  • step S301a in FIG. 19 After mixing a ceramic powder, a dispersion medium, a gelling agent and the like to prepare a molding slurry (step S301a in FIG. 19), the molding slurry is cast into the third casting mold 18C (step S301b). ), Solidify. Thereafter, the third ceramic molded body 10C is obtained by releasing from the third casting mold 18C (step S301c).
  • the length along the axis n2 of the through groove 42 formed on the joint surface 12c of the third ceramic molded body 10C is the sum of the height of the first protrusion 40a and the thickness of the curved portion 28 of the third ceramic molded body 10C. Since the length (width) orthogonal to the axis n2 of the through groove 42 is required to be 1 to 3 times the diameter of the light emitting material to be inserted, the diameter of the inscribed circle is ⁇ 0. 25 mm to ⁇ 0.9 mm.
  • step S302 of FIG. 19 two third ceramic molded bodies 10C are joined. Specifically, after mixing a ceramic powder, a solvent, a binder, and the like to prepare a bonding slurry 32 (step S302a), a portion of the bonding surface 12c of one third ceramic molded body 10C excluding the through groove 42 is prepared. The joining slurry 32 is applied (supplied) (step S302b). After that, the fourth bonded body 30D (see FIG. 22A) is obtained by bonding and bonding the bonding surfaces 12c of the two third ceramic molded bodies 10C together (step S302c).
  • the fourth bonded body 30D is fired to obtain a sintered body (fourth ceramic tube 24D).
  • the fourth ceramic tube 24D includes a light emitting part 34 formed by joining and firing a curved part 28 at the center part, and an electrode introducing part 36 integrally formed at both ends of the light emitting part 34, respectively. And has a shape in which a hollow part 37 communicating from one electrode introduction part 36 to the other electrode introduction part 36 is formed.
  • the light emitting portion 34 of the fourth ceramic tube 24D has a fourth through hole 38d formed by a through groove 42 formed in each joint surface 12c of the two third ceramic molded bodies 10C (through hole due to the through grooves 42 facing each other). Is formed.
  • the fourth through hole 38d is used as an introduction hole for introducing a luminescent substance into the light emitting unit 30 in the process of manufacturing the fourth ceramic tube 24D as an arc tube, for example.
  • the protrusion amount of the protrusion 50 is preferably in the range of 1/20 to 10/20 of the maximum diameter of the light emitting portion 34, more preferably 2 / 20 to 5/20.
  • the protrusion amount of the protrusion 50 can be shortened, and when the lamp is formed, the size can be reduced, and contact with or damage to other objects hardly occurs.
  • the tip portion is closer to the light emitting portion 34 than in the case of FIG. 22B, it is possible to avoid the tip portion from becoming the coldest point, and when used as a light emitting tube, Corrosion and the like can be prevented, leading to improved reliability.
  • the fourth manufacturing method similarly to the first manufacturing method described above, it is not necessary to perform drilling with a drill, and the manufacturing process is simplified, man-hours are reduced, throughput is improved, and yield is improved. Thus, the productivity of the fourth ceramic tube 24D having the fourth through hole 38d for introducing the luminescent material can be improved. Further, similarly to the third manufacturing method described above, the introduction of the luminescent material and the exhaust of the gas are facilitated, and the fourth through hole 38d can be easily sealed. In particular, in the fourth manufacturing method, since only the third casting mold 18C for producing the third ceramic molded body 10C is required as the casting mold to be prepared, the cost is further reduced.
  • the example in which the cylindrical protrusions 50 are formed in the intermediate portion of the light emitting unit 34 with the heights of the curved portions 28 of the two third ceramic molded bodies 10C being the same is shown.
  • the height of the curved portion 28 of one third ceramic molded body 10C may be made larger than the height of the curved portion 28 of the other third ceramic molded body 10C.
  • the cylindrical protrusion 50 is formed at an eccentric position near the one electrode introduction portion 36 or the other electrode introduction portion 36 from the intermediate portion of the light emitting portion 34. It will be.
  • first to fourth manufacturing methods are collectively referred to as “manufacturing method”.
  • first ceramic molded body 10A to the fourth ceramic molded body 10D are not distinguished and referred to, they are simply referred to as “ceramic molded body 10”, and when the joint surfaces 12a to 12d are not distinguished and referred to,
  • first through hole 38a to the fourth through hole 38d are not distinguished and referred to simply as “joining surface 12”, they are simply referred to as “through hole 38”.
  • the ceramic molded body 10 is prepared.
  • Various methods are conventionally known for producing the ceramic molded body 10 and can be easily obtained using such methods.
  • a manufacturing method of the ceramic molded body 10 for example, a molding slurry 16 containing an inorganic powder and an organic compound is cast into a casting mold, and a chemical reaction between organic compounds, for example, a chemical reaction between a dispersion medium and a gelling agent or a gelling agent. After solidifying, it can be prepared by a gel casting method for releasing the mold.
  • Such a forming slurry 16 contains a dispersion medium and a gelling agent in addition to the raw material powder, and may contain a dispersing agent and a catalyst for adjusting viscosity and solidification reaction.
  • a dispersing agent and a catalyst for adjusting viscosity and solidification reaction may contain a dispersing agent and a catalyst for adjusting viscosity and solidification reaction.
  • Ceramic powder examples of the ceramic powder contained in the ceramic molded body 10 include alumina, aluminum nitride, zirconia, YAG, and a mixture of two or more thereof.
  • the sintering aid for improving the sinterability and characteristics include magnesium oxide, and ZrO 2 , Y 2 O 3 , La 2 O 3 and Sc 2 O 3 are preferable.
  • Dispersion medium As the dispersion medium, it is preferable to use a reactive dispersion medium.
  • a reactive dispersion medium For example, it is preferable to use an organic dispersion medium having a reactive functional group.
  • the organic dispersion medium having a reactive functional group is chemically bonded to a gelling agent to be described later, that is, a liquid substance capable of solidifying the molding slurry 16, and a highly fluid molding slurry 16 that is easy to cast. It is preferable to satisfy the two conditions of being any liquid substance that can be formed.
  • a reactive functional group that is, a functional group capable of forming a chemical bond with the gelling agent such as a hydroxyl group, a carboxyl group, or an amino group is formed in the molecule. It is preferable to have.
  • an organic dispersion medium having a viscosity as low as possible and in particular, a substance having a viscosity of 20 cps or less at a temperature of 20 ° C. is used. It is preferable to do.
  • the amount of polyhydric alcohol or polybasic acid is an amount that does not greatly increase the viscosity of the molding slurry 16, it is effective to use it for strength reinforcement.
  • the gelling agent reacts with a reactive functional group contained in the dispersion medium to cause a solidification reaction, and is described in, for example, International Publication No. 2002/085590 pamphlet. Can do.
  • the molding slurry 16 for producing the ceramic molded body 10 can be exemplified by the contents described in Japanese Patent Application Laid-Open No. 2008-44344 and International Publication No. 2002/085590, for example, prepared as follows. can do. That is, first, the raw material powder is dispersed in the dispersion medium to form the molding slurry 16, and then the gelling agent is added, or the raw material powder and the gelling agent are added to the dispersion medium simultaneously and dispersed to form the molding slurry 16. It can be.
  • a bonding slurry 32 for bonding the ceramic molded bodies 10 to each other is prepared.
  • the joining slurry 32 is preferably a non-self-curing slurry that does not solidify due to a chemical reaction. Since it is a non-self-curing slurry, a layer of the bonding slurry 32 is formed in a state in which surface tension is applied. Therefore, the shape of the layer of the bonding slurry 32 is easily controlled to clog pores obtained after bonding. , It will be possible to prevent deformation.
  • various binders such as polyvinyl acetal resin and ethyl cellulose can be used in addition to the raw material powder and the non-reactive dispersion medium that can be used for the molding slurry 16 described above.
  • the joining slurry 32 can be obtained by mixing the raw material powder, the solvent, and the binder by using a normal ceramic paste or slurry manufacturing method using a tri-roll mill, a pot mill, or the like.
  • a dispersant and an organic solvent can be appropriately mixed.
  • butyl carbitol, butyl carbitol acetate, terpineol, or the like can be used.
  • the viscosity of the bonding slurry 32 at a temperature of 20 ° C. is preferably 10,000 cps or more and 400,000 cps or less. Within this range, the bonding slurry 32 layer is appropriately deformed during bonding, so that bubbles can be prevented from remaining in the bonding slurry 32 layer.
  • the bonding slurry 32 layer it is convenient for forming the bonding slurry 32 layer. This is because a good surface tension can be maintained, so that the groove of the ceramic molded body 10 can be avoided from being filled. More preferably, it is 30000 cps or more and 200000 cps or less. In this range, since the supply shape of the joining slurry 32 can be made clear, even when the diameter of the through hole 38 is ⁇ 0.6 mm or less, the through hole 38 after joining is deformed of the joining slurry 32, By protruding, it is not buried and can be controlled to a desired shape.
  • a layer of the bonding slurry 32 is formed by maintaining a state in which surface tension acts between the bonding surfaces 12 of the two or more ceramic molded bodies 10 to be bonded to each other. Form. At this time, it is desirable not to supply the joining slurry 32 to the groove portion provided in the ceramic molded body 10 from the viewpoint of preventing clogging or deformation of the through hole 38 after joining.
  • the thickness of the layer of the bonding slurry 32 supplied onto the bonding surface 12 of the ceramic molded body 10 is 200 ⁇ m or less (preferably 10 ⁇ m or more)
  • the joining slurry 32 can be supplied with high precision and uniform thickness, and the joining slurry 32 can be formed in the groove portion of the molded body by appropriately designing the screen plate-making pattern.
  • the supply location such as no supply can be selected, and clogging or deformation of the through hole 38 can be prevented. For this reason, it is possible to obtain an accurate through-hole 38 that is free from clogging and deformation due to protrusion of the joining slurry 32.
  • the thickness of the layer of the bonding slurry 32 after bonding is preferably 5 ⁇ m to 100 ⁇ m, and the amount of the bonding slurry 32 to be supplied is preferably adjusted so as to be within this range.
  • the thickness of the layer of the bonding slurry 32 after bonding is preferably 5 ⁇ m to 40 ⁇ m, and the bonding slurry 32 supplied so as to fall within this range is used. It is preferable to adjust the amount.
  • the bonding slurry 32 In order to maintain the surface tension of the bonding slurry 32 and to form a layer of the bonding slurry 32 without generating bubbles, the bonding slurry 32 needs to be deformed to some extent during bonding. What is necessary is just to hold
  • the thickness of the layer of the bonding slurry 32 by securing the degree of the load applied in the direction orthogonal to the bonding surface 12 and / or the distance between the bonding surfaces 12, and the bonding slurry 32 having a desired thickness. This makes it easier to obtain a through hole 38 having a desired shape without clogging or deformation.
  • the layer of the bonding slurry 32 is dried.
  • the drying process can be appropriately set according to the composition and supply amount of the bonding slurry 32. Usually, it can be carried out at a temperature of 40 ° C. or more and 200 ° C. or less for about 5 to 120 minutes. Further, by applying a load in a direction orthogonal to the bonding surface 12 during drying, it is easy to obtain a layer of the bonding slurry 32 having a desired thickness while suppressing generation of bubbles due to drying shrinkage of the layer of the bonding slurry 32.
  • the thus obtained joined body is a state in which at least two ceramic molded bodies 10 are joined by a joined portion (after drying) in which the layer of the joining slurry 32 is dried, and through holes are provided in advance by grooves provided in the ceramic molded body 10. It has become.
  • the case where two ceramic molded bodies 10 are joined has been described.
  • the present invention is not limited to this, and three or more ceramic molded bodies 10 can be joined simultaneously or sequentially.
  • a layer of the slurry 32 can be formed and bonded to obtain a bonded body.
  • the joined body is fired to sinter the sinterable component in the ceramic molded body 10 and the joined portion (after drying) to obtain a sintered body.
  • the joined body Prior to the sintering step, the joined body can be degreased or calcined.
  • Example 1 Based on the second manufacturing method shown in FIG. 7, ten second ceramic tubes 24B shown in FIG. 9B were produced.
  • a molding slurry 16 for producing the first ceramic molded body 10A was prepared as follows. That is, 100 parts by weight of alumina powder as a raw material powder and 0.025 part by weight of magnesia, 30 parts by weight of a polybasic acid ester as a dispersion medium, 4 parts by weight of MDI resin as a gelling agent, 2 parts by weight of a dispersant, 0. 2 parts by weight were mixed to form a molding slurry 16.
  • the molding slurry 16 was cast in an aluminum alloy first casting mold 18A (see FIG. 3A) at room temperature, left at room temperature for 1 hour, solidified, and then released. Further, it was allowed to stand at room temperature and then at a temperature of 90 ° C. for 2 hours to obtain 20 first ceramic molded bodies 10A.
  • the chamfering (for example, the R surface) of the outer peripheral portion and the inner peripheral portion of each joint surface 12a of the first ceramic molded body 10A was performed within a radius of 0.05 to 0.15 mm.
  • the joining slurry 32 was prepared as follows. That is, 100 parts by weight of alumina powder, 0.025 parts by weight of magnesia, 100 parts by weight of terpineol, 30 parts by weight of butyl carbitol, and 8 parts by weight of polyvinyl acetal resin were mixed as a raw material powder to form a joining slurry 32.
  • the screen plate making As the screen plate making, an emulsion thickness of 100 ⁇ m, # 290 mesh, and a ring-shaped pattern 62 (inner diameter 12.8 mm) having notches 60 corresponding to the grooves 14 of the first ceramic molded body 10A as shown in FIG. And a screen plate having an outer diameter of 13.7 mm). Then, the screen plate was fixed to the stage of the screen printing machine so as to be parallel to the joining surface 12a (inner diameter 12.5 mm, outer diameter 14.0 mm) of the first ceramic molded body 10A, and was aligned with the screen plate making. . Next, the prepared bonding slurry 32 was supplied to the bonding surface 12a of the first ceramic molded body 10A using a screen printing machine with a screen printing machine.
  • the bonding surfaces 12a of the pair of first ceramic molded bodies 10A were respectively pressure-bonded and dried for 15 minutes with a drier at a temperature of 95 ° C., thereby producing ten second bonded bodies 30B (see FIG. 9A).
  • the light emitting portion 34 has a second through hole 38b, the light emitting portion 34 has an outer diameter of 11 mm, and the electrode introduction portion 36 has a length of 17 mm (second ceramic tube). 24B) was obtained.
  • Example 1 None of the ten sintered bodies (second ceramic tube 24B) obtained in Example 1 were found to be cracked or deformed. When the thermal shock resistance was evaluated by an underwater quenching method, each sintered body did not generate cracks even at a temperature of 150 ° C., and was at the same level as a ceramic tube having the same shape without the second through hole 38b. Further, for these sintered bodies, after the thermal shock resistance evaluation, the second through-hole 38b formed in the light emitting portion 34 is blocked, and the leakage amount of the light emitting portion 34 is measured with a He (helium) leak measuring machine. , Both were 1 ⁇ 10 ⁇ 8 atm ⁇ cc / sec or less.
  • Example 2 Based on the 4th manufacturing method shown in FIG. 19, the 10 sintered compacts (4th ceramic tube 24D) which concern on Example 2 shown to FIG. 22B were produced.
  • a molding slurry 16 was prepared in the same manner as in Example 1 described above, and this molding slurry 16 was cast into a third casting mold 18C (see FIG. 12A) made of an aluminum alloy at room temperature and left at room temperature for 1 hour. Then, after solidifying, the mold was released. Furthermore, it was left to stand at room temperature and then at a temperature of 90 ° C. for 2 hours to obtain 20 third ceramic molded bodies 10C.
  • the first protrusions 40a of each third ceramic molded body 10C were adjusted so that the projecting amount was 4.0 mm, the outer width was 0.9 mm, and the width of the through groove 42 was 0.3 mm in the dimensions after firing shrinkage. . Also in this case, the outer peripheral portion and the inner peripheral portion of each joint surface 12c of the third ceramic molded body 10C were chamfered.
  • the joining slurry 32 was prepared in the same manner as in Example 1 described above, and the prepared joining slurry 32 was supplied to the joining surface 12a of the third ceramic molded body 10C using a screen printing machine with a screen printing machine.
  • the screen plate making was made with an emulsion thickness of 100 ⁇ m and # 290 mesh.
  • the screen plate-making pattern has a notch 64 corresponding to the through groove 42 of the third ceramic molded body 10C, and the joining surface 12c of the third ceramic molded body 10C (the through groove 42 is formed).
  • a ring-shaped pattern 68 in which protrusions 66 are formed at opposite ends.
  • the second bonded body 30B produced as described above was preliminarily fired and fired in the same manner as in Example 1 to be densified and translucent.
  • the outer diameter of the light emitting portion 34 is 11 mm
  • the length of the electrode introducing portion 36 is 17 mm
  • the light emitting portion 34 protrudes outward from the intermediate portion of the light emitting portion 34.
  • a sintered body (fourth ceramic tube 24D) having a cylindrical projection 50 (projection amount is 4.0 mm and the diameter of the fourth through hole 38d is 0.4 mm) was obtained.
  • each sintered body according to Example 2 did not generate cracks even at a temperature of 150 ° C., and was at the same level as the arc tube having the same shape without the cylindrical protrusion 50. Furthermore, after evaluating the thermal shock resistance of these sintered bodies, the amount of leak was measured with a He leak measuring machine, and all of them were 1 ⁇ 10 ⁇ 8 atm ⁇ cc / sec or less.
  • Example 3 In the same manner as in Example 2, a fourth ceramic tube 24D was produced. However, in Example 3, two cylindrical ceramic bodies 10C each having a different height of the curved portion 28 are joined, so that the cylindrical protrusion 50 is moved from the intermediate portion of the light emitting portion 34 to one electrode introduction portion. It was formed at a position eccentric by 1 mm toward 36.
  • each sintered body did not generate cracks even at a temperature of 150 ° C., and was at the same level as the arc tube having the same shape without the cylindrical protrusion 50. Furthermore, after evaluating the thermal shock resistance of these sintered bodies, the amount of leak was measured with a He leak measuring machine, and all of them were 1 ⁇ 10 ⁇ 8 atm ⁇ cc / sec or less.
  • Example 4 In the same manner as in Example 2, a fourth ceramic tube 24D was produced. However, in Example 4, the two third ceramic molded bodies 10C shown in FIG. 13 are joined, so that the cylindrical protrusion 50 is formed as shown in FIGS. 16A and 16B.
  • each sintered body did not generate cracks even at a temperature of 160 ° C., and was at the same level as the arc tube having the same shape without the cylindrical protrusion 50. Furthermore, after evaluating the thermal shock resistance of these sintered bodies, the amount of leak was measured with a He leak measuring machine, and all of them were 1 ⁇ 10 ⁇ 8 atm ⁇ cc / sec or less.
  • Comparative Example 1 Ten sintered bodies according to Comparative Example 1 were produced based on the manufacturing method shown in FIG.
  • a molding slurry 16 was prepared in the same manner as in Example 1 described above, and this molding slurry 16 was cast into a second casting mold 18B (see FIG. 3B) made of aluminum alloy at room temperature and left at room temperature for 1 hour. Then, after solidifying, the mold was released. Furthermore, it was allowed to stand at room temperature and then at a temperature of 90 ° C. for 2 hours to obtain 20 second ceramic molded bodies 10B. Next, each curved portion 28 of one of the second ceramic molded bodies 10B was provided with a through hole that was drilled to adjust the diameter after firing shrinkage to be ⁇ 0.4 mm.
  • the joining slurry 32 was prepared in the same manner as in Example 1 described above, and the prepared joining slurry 32 was applied to the joining surface 12b of one second ceramic molded body 10B by using a screen printing machine with a screen printer. Supplied. And each joined surface 12b of a pair of 2nd ceramic molded object 10B was crimped
  • Comparative Example 2 Based on the manufacturing method shown in FIG. 17, ten sintered bodies according to Comparative Example 2 were produced.
  • each curved portion 28 of one of the second ceramic molded bodies 10B was provided with a through-hole adjusted so that the diameter after firing shrinkage was 0.9 mm by drilling with a drill, for example.
  • Example 12 Ten sintered bodies according to Example 12 were produced in the same manner as Example 2 described above. Except that the protrusion amount of the cylindrical protrusion 50 is 2D / 20, it is the same as the sintered body according to the second embodiment.
  • Example 13 Ten sintered bodies according to Example 13 were produced in the same manner as Example 2 described above. Except that the protrusion amount of the cylindrical protrusion 50 is 3D / 20, it is the same as the sintered body according to the second embodiment.
  • Example 14 Ten sintered bodies according to Example 14 were produced in the same manner as Example 2 described above. Except for the amount of protrusion of the cylindrical protrusion 50 being 5D / 20, it is the same as the sintered body according to Example 2.
  • Example 15 Ten sintered bodies according to Example 15 were produced in the same manner as Example 2 described above. Except for the amount of protrusion of the cylindrical protrusion 50 being 10D / 20, this is the same as the sintered body according to Example 2.
  • Reference Example 1 Ten sintered bodies according to Reference Example 1 were produced in the same manner as Example 2 described above. Except for the amount of protrusion of the cylindrical protrusion 50 being 0.5 D / 20, this is the same as the sintered body according to Example 2.
  • Reference Example 2 Ten sintered bodies according to Reference Example 2 were produced in the same manner as Example 2 described above. Except for the amount of protrusion of the cylindrical protrusion 50 being 12D / 20, it is the same as the sintered body according to Example 2.
  • Example 21 Ten sintered bodies according to Example 21 were produced in the same manner as Example 4 described above. Except that the angle ⁇ formed by the direction of the tangent line K2 at the intersection 54 and the axis n3 of the protrusion 50 is 30 °, it is the same as the sintered body according to the fourth embodiment.
  • Example 22 Ten sintered bodies according to Example 22 were produced in the same manner as Example 4 described above.
  • the sintered body according to Example 4 is the same as the sintered body except that the formed angle ⁇ is 40 °.
  • Example 23 Ten sintered bodies according to Example 23 were produced in the same manner as Example 4 described above. As in Example 4, the angle ⁇ formed was 45 °.
  • Example 24 Ten sintered bodies according to Example 24 were produced in the same manner as Example 4 described above.
  • the sintered body according to Example 4 is the same as the sintered body except that the formed angle ⁇ is 50 °.
  • Example 25 Ten sintered bodies according to Example 25 were produced in the same manner as Example 4 described above.
  • the sintered body according to Example 4 is the same as the sintered body except that the formed angle ⁇ is 60 °.
  • Reference Example 11 Ten sintered bodies according to Reference Example 11 were produced in the same manner as in Example 4 described above.
  • the sintered body according to Example 4 is the same as the sintered body except that the formed angle ⁇ is 20 °.
  • Reference Example 12 Ten sintered bodies according to Reference Example 12 were produced in the same manner as in Example 4 described above.
  • the sintered body according to Example 4 is the same as the sintered body except that the formed angle ⁇ is 70 °.
  • the ceramic tube manufacturing method and the ceramic tube according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

This method for producing a ceramic tube produces a single ceramic tube for a high-brightness discharge lamp by joining a plurality of ceramic compacts, and has: a compact-producing step (step S1) for producing a plurality of ceramic compacts including at least one ceramic compact having a groove on the joining surface; and a compact-joining step (step S2) for joining the joining surfaces of the plurality of ceramic compacts to each other. The method for producing a ceramic tube produces a ceramic tube having a hole formed by means of the groove.

Description

セラミックチューブの製造方法及びセラミックチューブManufacturing method of ceramic tube and ceramic tube
 本発明は、高圧ナトリウムランプやメタルハライドランプ等の高輝度放電灯に使用されるセラミックチューブの製造方法及びセラミックチューブに関する。 The present invention relates to a method for producing a ceramic tube used for a high-intensity discharge lamp such as a high-pressure sodium lamp or a metal halide lamp, and a ceramic tube.
 セラミックメタルハライドランプは、高輝度放電灯用のセラミックチューブの内部に挿入された一対の電極で金属ハロゲン化物をイオン化し、これにより放電発光を得るものである。 A ceramic metal halide lamp ionizes a metal halide with a pair of electrodes inserted in a ceramic tube for a high-intensity discharge lamp, thereby obtaining discharge light emission.
 この種のセラミックチューブは、それぞれ軸線が発光部に対向するように位置決めされて形成された一対の細管を有する。各細管にはそれぞれ電極挿入孔が設けられ、これら電極挿入孔を介して電極が挿入されるようになっている。セラミックチューブは、複数の部材を組み立てて作製したものや、単一の部材として一体的に作製したもの、2個の部材を接合して作製したもの等、各種のものが開示されている(例えば特開昭63-143738号公報、特開平5-334962号公報、特開平7-21990号公報、特開平8-55606号公報、特表2010-514125号公報、特表2010-514127号公報、米国特許出願公開第2006/0001346号明細書、特表2009-530127号公報、特開2008-44344号公報参照)。 This type of ceramic tube has a pair of tubules formed so that each axis is positioned so as to face the light emitting portion. Each thin tube is provided with an electrode insertion hole, and an electrode is inserted through these electrode insertion holes. Various types of ceramic tubes are disclosed, such as those produced by assembling a plurality of members, those produced integrally as a single member, and those produced by joining two members (for example, JP 63-143738, JP 5-334962, JP 7-21990, JP 8-55606, JP 2010-514125, JP 2010-514127, US (See Japanese Patent Application Publication No. 2006/0001346, JP-T 2009-530127, JP-A 2008-44344).
 そして、例えばセラミックチューブに設けられた2本の細管(細孔)のうち、一方の電極挿入孔に電極を挿入してフリットガラス等で封止した後、残る他方の電極挿入孔より発光物質を発光容器内に導入し、その後、該他方の電極挿入孔に電極を挿入してフリットガラス等で封止して発光管の組立を行うようにしている。また、他の構造として、セラミックチューブに上述した2本の細管のほか、電極を封止した後に、発光物質の導入を行うため、発光物質を発光容器内に導入するための第3の細管又は細孔を電極挿入用の細管とは別に設けた構造も知られている。 For example, of the two narrow tubes (pores) provided in the ceramic tube, the electrode is inserted into one electrode insertion hole and sealed with frit glass or the like, and then the luminescent substance is introduced through the remaining electrode insertion hole. After introducing into the luminous container, an electrode is inserted into the other electrode insertion hole and sealed with frit glass or the like to assemble the luminous tube. As another structure, in addition to the above-described two capillaries in the ceramic tube, the third capillaries for introducing the luminescent substance into the luminescent container in order to introduce the luminescent substance after sealing the electrode or A structure is also known in which pores are provided separately from the thin tubes for inserting electrodes.
 具体的に、特開昭63-143738号公報には、透光性セラミックからなる発光管バルブの両端開口部が、それぞれ電極を支持する導電性サーメットからなる閉塞体で固相接合により封止されたセラミック放電灯であって、発光管バルブに、管内の排気用及び封入物の供給用として使用される小孔を設けた例が開示されている。この小孔は、セラミック栓体を溶着することにより閉塞される。 Specifically, Japanese Patent Application Laid-Open No. 63-143738 discloses that both ends of an arc tube bulb made of translucent ceramic are sealed by solid-phase bonding with a closed body made of a conductive cermet that supports the electrodes. An example of a ceramic discharge lamp in which a small hole used for exhaust in a tube and for supplying an enclosure is provided in an arc tube bulb is disclosed. This small hole is closed by welding a ceramic plug.
 特開平5-334962号公報には、多結晶アルミナから構成された透光性バルブの両端の筒状開口部にそれぞれ閉塞体が装着され、各閉塞体の中心位置にそれぞれ電極が貫通する孔が形成され、一方の閉塞体の中心から偏心した位置に発光物質を透光性バルブ内に導入するための開口が形成された例が開示されている。 Japanese Patent Laid-Open No. 5-334962 discloses that closed bodies are respectively attached to cylindrical openings at both ends of a translucent valve made of polycrystalline alumina, and holes through which electrodes pass respectively are provided at the central positions of the closed bodies. An example is disclosed in which an opening for introducing a luminescent substance into a translucent bulb is formed at a position that is formed and decentered from the center of one closing member.
 特開平7-21990号公報には、直径300μmのピン状電流導体が放電管の両端部に挿入され、両端のプラグがそれら両端部に焼結によって直接接合された例が開示され、特に、図3及び図4には、第二端部の近傍の放電管の壁部或いは第二プラグに発光物質を放電管内に導入するための直径1mm以上の充填孔が形成された例が記載されている。 Japanese Patent Application Laid-Open No. 7-21990 discloses an example in which pin-shaped current conductors having a diameter of 300 μm are inserted into both ends of a discharge tube, and plugs at both ends are directly joined to both ends by sintering. 3 and 4 show an example in which a filling hole having a diameter of 1 mm or more for introducing a luminescent material into the discharge tube is formed in the wall portion of the discharge tube or the second plug near the second end portion. .
 特開平8-55606号公報には、発光管の漏斗状部の中心部から下方に向けて下端部を閉じた小径管を一体的に垂下して設けることで、この小径管内の下部(点灯時に最冷部となる部分:最冷部)に、蒸発しないで発光管内に残る液状の金属ハロゲン化物を溜めるようにした例が開示されている。特に、最冷部から外れたフランジ状をなす中間部に設けられた開口のうち一方は、発光管内に金属ハロゲン化物及び水銀を封入する際の導入口として用いるが、前記小径管を導入管として用いることも可能である、との記載がある。 In JP-A-8-55606, a small-diameter tube whose lower end is closed downward from the center portion of the funnel-shaped portion of the arc tube is integrally suspended to provide a lower portion in the small-diameter tube (during lighting). An example is disclosed in which the liquid metal halide that remains in the arc tube without being evaporated is stored in the coldest part: the coldest part). In particular, one of the openings provided in the flange-shaped intermediate part that is removed from the coldest part is used as an inlet for sealing the metal halide and mercury in the arc tube, and the small-diameter pipe is used as the inlet pipe. There is a description that it can also be used.
 特表2010-514125号公報には、放電容器の一方の端部と管の壁とが放電容器の一体化した部分として作られ、放電容器の他方の端部がセラミック端部プラグによって封止されたセラミックバーナが開示されている。特に、放電容器のセラミック壁に、セラミックバーナの製造の間、イオン化充填材を放電容器内に導入するための管であって、且つ、放電容器のセラミック壁の外方に突出している管を設けた例が開示されている。なお、管は気密に封止されている。 In Japanese Translation of PCT International Application No. 2010-514125, one end of the discharge vessel and the wall of the tube are made as an integral part of the discharge vessel, and the other end of the discharge vessel is sealed with a ceramic end plug. A ceramic burner is disclosed. In particular, a tube is provided on the ceramic wall of the discharge vessel for introducing the ionized filler into the discharge vessel during the production of the ceramic burner and which projects outwardly from the ceramic wall of the discharge vessel. Examples have been disclosed. The tube is hermetically sealed.
 特表2010-514127号公報には、放電容器が、2つの異なる一部(当該公報の図2Aにおいて破線によって分離されている)によって、例えば実質的に球形あるいは実質的に楕円形とされ、第1の放電容器の部分のみに、セラミックバーナの製造の間、イオン化充填材を放電容器内に導入するための管であって、且つ、放電容器のセラミック壁の外方に突出している管が設けられた例が開示されている。なお、管は気密に封止されている。 In Japanese Translation of PCT International Publication No. 2010-514127, the discharge vessel is made, for example, substantially spherical or substantially elliptical by two different parts (separated by a broken line in FIG. 2A of the publication) Only a portion of one discharge vessel is provided with a tube for introducing an ionized filler into the discharge vessel during the production of the ceramic burner and protruding outward from the ceramic wall of the discharge vessel Examples have been disclosed. The tube is hermetically sealed.
 米国特許出願公開第2006/0001346号明細書には、筒部と、該筒部の両端にそれぞれ結合された端部部材とを有し、各端部部材の中心部に筒部の内方に向かって延びる電極が設けられた例が開示され、特に、一方の端部部材には、該端部部材の外面から内面(筒部の内部に対向する面)にかけて貫通する導入孔が設けられている。筒部内への金属ハロゲン化物等の導入は、導入孔を介して行われ、その後、導入孔はプラグ部材にて封止されるようになっている。 U.S. Patent Application Publication No. 2006/0001346 has a cylindrical portion and end members respectively coupled to both ends of the cylindrical portion, and inward of the cylindrical portion at the center of each end member. An example in which an electrode extending in the direction is provided is disclosed, and in particular, one end member is provided with an introduction hole penetrating from the outer surface of the end member to the inner surface (the surface facing the inside of the tube portion). Yes. The introduction of the metal halide or the like into the cylindrical portion is performed through the introduction hole, and then the introduction hole is sealed with a plug member.
 また、従来においては、複数の無機粉末成形体の接合面にスラリーを塗布し、複数の成形体を突き合わせて一体化させ、焼結させることで、強固な接合焼結体を得ることができる製造方法(例えば特表2009-530127号公報)や、接合部の変形や表面粗さの増大を抑制又は回避しつつ、無機粉末成形体の接合体を得ることができる構造が知られている(例えば特開2008-44344号公報参照)。 In addition, conventionally, a slurry can be applied to the joint surfaces of a plurality of inorganic powder compacts, and a plurality of compacts can be butted together to be integrated and sintered, whereby a strong joint sintered body can be obtained. There are known methods (for example, JP-T-2009-530127) and structures capable of obtaining a bonded inorganic powder molded body while suppressing or avoiding deformation of the bonded portion and increase in surface roughness (for example, JP, 2008-44344, A).
 すなわち、特表2009-530127号公報には、放電灯の発光管に用いて好適な焼結体の製造方法が開示され、無機粉末、反応性官能基を有する有機分散媒及びゲル化剤を含有し、有機分散媒とゲル化剤との化学反応により固化した第一の無機粉末成形体及び第二の無機粉末成形体を得るステップと、第一の無機粉末成形体の接合面に、粉末成分と有機分散媒とを含むスラリーを塗布するステップと、無機粉末成形体ととを、スラリーを介在させた状態で接触させて一体の接合体を得るステップと、この接合体を焼結させて焼結体を得るステップとを有する。 That is, JP-T-2009-530127 discloses a method for producing a sintered body suitable for use in an arc tube of a discharge lamp, containing an inorganic powder, an organic dispersion medium having a reactive functional group, and a gelling agent. And a step of obtaining a first inorganic powder molded body and a second inorganic powder molded body solidified by a chemical reaction between an organic dispersion medium and a gelling agent, and a powder component on a bonding surface of the first inorganic powder molded body And a step of applying a slurry containing the organic dispersion medium and an inorganic powder molded body in contact with the slurry interposed therebetween to obtain an integral joined body, and sintering and sintering the joined body. Obtaining a ligation.
 特開2008-44344号公報には、放電灯の発光管に用いて好適な焼結体が開示され、2以上の無機粉末成形体の接合体の焼結体を、前記接合体における2以上の前記無機粉末成形体に対応する第1の構成部分と、前記接合体における接合部に対応する第2の構成部分と、を備えるようにすると共に、以下の特徴(a)及び(b)のいずれかあるいは双方を有する。 Japanese Patent Application Laid-Open No. 2008-44344 discloses a sintered body suitable for use in an arc tube of a discharge lamp, and a sintered body of a joined body of two or more inorganic powder molded bodies is used as two or more of the joined bodies. A first component corresponding to the inorganic powder molded body and a second component corresponding to a bonded portion in the bonded body, and any of the following features (a) and (b) Or have both.
(a)前記第2の構成部分は前記第1の構成部分以下の表面粗さを有する。 (A) The second component has a surface roughness equal to or less than that of the first component.
(b)前記第2の構成部分は、その幅中心近傍において前記第1の構成部分以上の透光度を有する。 (B) The second constituent part has a light transmission greater than that of the first constituent part in the vicinity of the width center thereof.
 ところで、特開昭63-143738号公報、特開平5-334962号公報、特開平7-21990号公報、特開平8-55606号公報、特表2010-514125号公報、特表2010-514127号公報、米国特許出願公開第2006/0001346号明細書においては、この種のセラミックチューブに発光物質を導入するための細管又は細孔を形成する場合、予め成形されたセラミックチューブの側面やセラミックチューブの一方の端部に封止されるプラグに細孔の加工を施したり、その細孔に細管を組み立てる方法が採用されるが、この場合、孔加工や組み立てに、多くの工数が必要になるといった問題がある。 By the way, Japanese Patent Laid-Open Nos. 63-143738, 5-334962, 7-21990, 8-55606, 2010-514125, 2010-514127. In US Patent Application Publication No. 2006/0001346, when a thin tube or pore for introducing a luminescent material is formed in this type of ceramic tube, either the side surface of the pre-formed ceramic tube or one of the ceramic tubes is used. A method is employed in which pores are processed in the plugs sealed at the ends of the pipes, or a method of assembling capillaries in the pores. However, in this case, there is a problem that a lot of man-hours are required for drilling and assembly. There is.
 もちろん、鋳込み成形や射出成形、ゲルキャストといった方法を採用すれば、細管も同時に成形することが可能であるが、成形体が単純な軸対称形状とならないため、金型の構造が複雑になり、金型の作製コストが増大する、といった問題がある。 Of course, by adopting methods such as casting, injection molding, and gel casting, it is possible to mold a thin tube at the same time, but since the molded body does not have a simple axisymmetric shape, the structure of the mold becomes complicated, There is a problem that the manufacturing cost of the mold increases.
 特開平5-334962号公報及び特開平7-21990号公報に記載の構造は、細孔が発光管の最冷部又はその近傍に位置することになる。発光管を点灯すると、金属ハロゲン化物は全部蒸発せず、その一部は液状となって発光管内の最冷部に溜まる。その結果、細孔の封止部(シール)が腐食するおそれがある。 In the structures described in Japanese Patent Laid-Open Nos. 5-334962 and 7-21990, the pores are located at or near the coldest portion of the arc tube. When the arc tube is turned on, all of the metal halide does not evaporate, and a part of it becomes liquid and accumulates in the coldest part in the arc tube. As a result, the sealing portion (seal) of the pores may corrode.
 セラミックチューブに細管を設ける場合、特に、細管の軸方向を、セラミックチューブの外径の接線に対して垂直方向に立てると、細管は非常に細いため、破損し易くなる。また、発光部から遠ざかるため最冷点と成り易く、腐食され易くなる。 When a thin tube is provided in a ceramic tube, especially when the axial direction of the thin tube is set perpendicular to the tangent to the outer diameter of the ceramic tube, the thin tube is very thin and easily breaks. In addition, since it is away from the light emitting part, it is likely to be the coldest point and is easily corroded.
 本発明はこのような課題を考慮してなされたものであり、孔加工や細管を設けるための追加加工を行う必要がなく、簡単な工程で、セラミックチューブに細孔や細管を設けることができ、製造コストの低減、生産性の向上を図ることができる高輝度放電灯用のセラミックチューブの製造方法を提供することを目的とする。 The present invention has been made in consideration of such problems, and it is not necessary to perform hole processing or additional processing for providing a thin tube, and it is possible to provide pores or thin tubes in a ceramic tube with a simple process. Another object of the present invention is to provide a method for producing a ceramic tube for a high-intensity discharge lamp, which can reduce production costs and improve productivity.
 また、本発明の他の目的は、細管の破損を防止することができると共に、細管が最冷点の位置に配置されることを回避することができ、歩留まりの向上、信頼性の向上を図ることができる高輝度放電灯用のセラミックチューブを提供することにある。 Another object of the present invention is to prevent the thin tube from being damaged and to prevent the thin tube from being arranged at the coldest point, thereby improving yield and reliability. An object of the present invention is to provide a ceramic tube for a high-intensity discharge lamp.
[1] 第1の本発明に係るセラミックチューブの製造方法は、複数のセラミック成形体を接合して1つの高輝度放電灯用のセラミックチューブを作製するセラミックチューブの製造方法において、接合面に溝を有する少なくとも1つのセラミック成形体を含む複数のセラミック成形体を作製する成形体作製工程と、前記複数のセラミック成形体の各接合面同士を接合する成形体接合工程とを有し、前記溝による貫通孔が形成されたセラミックチューブを作製することを特徴とする。 [1] A method of manufacturing a ceramic tube according to the first aspect of the present invention is a method of manufacturing a ceramic tube in which a plurality of ceramic molded bodies are bonded to produce one ceramic tube for a high-intensity discharge lamp. A molded body producing step for producing a plurality of ceramic molded bodies including at least one ceramic molded body having a molded body joining step for joining the joining surfaces of the plurality of ceramic molded bodies. A ceramic tube in which a through hole is formed is produced.
[2] 第1の本発明において、前記成形体作製工程は、接合面に溝を有する1つの第1セラミック成形体と、接合面に溝を有しない1つの第2セラミック成形体とを作製し、前記成形体接合工程は、1つの前記第1セラミック成形体と1つの前記第2セラミック成形体とを接合することを特徴とする。 [2] In the first aspect of the present invention, the molded body manufacturing step includes manufacturing one first ceramic molded body having a groove on the joint surface and one second ceramic molded body having no groove on the joint surface. The molded body joining step is characterized by joining one first ceramic molded body and one second ceramic molded body.
[3] 第1の本発明において、前記成形体作製工程は、接合面に溝を有する2つの第1セラミック成形体を作製し、前記成形体接合工程は、2つの前記第1セラミック成形体を接合する際に、前記第1セラミック成形体の各接合面に形成された溝同士を合わせて接合することを特徴とする。 [3] In the first aspect of the present invention, the molded body producing step produces two first ceramic molded bodies having grooves on the joining surfaces, and the molded body joining step comprises two first ceramic molded bodies. In joining, the grooves formed on the joining surfaces of the first ceramic molded body are joined together and joined.
[4] 第2の本発明に係るセラミックチューブの製造方法は、複数のセラミック成形体を接合して1つの高輝度放電灯用のセラミックチューブを作製するセラミックチューブの製造方法において、接合面の一部を構成する第1突起を有し、前記接合面に前記第1突起の端部から内方にかけて連続して貫通溝が形成された少なくとも1つのセラミック成形体を含む複数のセラミック成形体を作製する成形体作製工程と、前記複数のセラミック成形体の各接合面同士を接合する成形体接合工程とを有し、前記貫通溝による貫通孔が形成されたセラミックチューブを作製することを特徴とする。 [4] A method for manufacturing a ceramic tube according to the second aspect of the present invention is a method for manufacturing a ceramic tube in which a plurality of ceramic molded bodies are bonded to produce a ceramic tube for a high-intensity discharge lamp. A plurality of ceramic molded bodies including at least one ceramic molded body having first protrusions constituting a portion and having through-grooves formed continuously from the end portion of the first protrusion to the inside on the joint surface And forming a ceramic tube in which a through hole is formed by the through groove. The forming body manufacturing step and the forming body joining step of joining the joint surfaces of the plurality of ceramic molded bodies to each other. .
[5] 第2の本発明において、前記成形体作製工程は、前記第1突起を有する1つの第3セラミック成形体と、接合面の一部を構成し、且つ、貫通溝が形成されていない第2突起を有する1つの第4セラミック成形体とを少なくとも作製する成形体作製工程と、前記成形体接合工程は、前記第1突起と前記第2突起とをそれぞれ接合面を合わせるようにして、前記第3セラミック成形体と前記第4セラミック成形体とを接合することを特徴とする。 [5] In the second aspect of the present invention, in the molded body manufacturing step, one third ceramic molded body having the first protrusion and a part of the joining surface are formed, and no through groove is formed. The molded body production step for producing at least one fourth ceramic molded body having a second projection, and the molded body joining step are performed such that the first projection and the second projection are respectively aligned with the joining surface. The third ceramic molded body and the fourth ceramic molded body are joined together.
[6] 第2の本発明において、前記成形体作製工程は、前記第1突起を有する2つの第3セラミック成形体を少なくとも作製する成形体作製工程と、前記成形体接合工程は、前記第1突起同士をそれぞれ接合面を合わせるようにして、前記第3セラミック成形体を接合することを特徴とする。 [6] In the second aspect of the present invention, the molded body manufacturing step includes the molded body manufacturing process for manufacturing at least two third ceramic molded bodies having the first protrusions, and the molded body joining step includes the first molded body manufacturing process. The third ceramic molded body is bonded so that the protrusions are aligned with the bonding surfaces.
[7] 第2の本発明において、前記第1突起を有する前記接合面の外周と前記第1突起における前記貫通溝の軸線との交点を、前記第1突起の基点としたとき、前記接合面の外周における前記基点での接線方向と前記貫通溝の軸線とのなす角が30°~60°であることを特徴とする。 [7] In the second aspect of the present invention, when the intersection of the outer periphery of the joint surface having the first protrusion and the axis of the through groove in the first protrusion is the base point of the first protrusion, the joint surface The angle formed by the tangential direction at the base point and the axis of the through groove on the outer periphery is 30 ° to 60 °.
[8] 第2の本発明において、前記セラミック成形体の接合面は、軸方向に対して直交する面に平行であることを特徴とする。 [8] In the second aspect of the present invention, the joint surface of the ceramic molded body is parallel to a surface orthogonal to the axial direction.
[9] 第3の本発明に係るセラミックチューブは、複数のセラミック成形体が接合されて構成され、内部において発光がなされる発光部と、該発光部の両側に設けられ、それぞれ電極を導入封止するための電極導入部とを一体に有する高輝度放電灯用のセラミックチューブにおいて、前記発光部に前記電極導入部とは別に設けられ、前記発光部内に発光物質を導入するための貫通孔が設けられた突起を有し、前記突起は、該突起の軸線が前記セラミックチューブの軸線に向かい、且つ、前記突起の軸線と前記セラミックチューブの軸線とのなす角が90°となる方向に突出し、前記突起の突出量が前記発光部の最大直径の1/20~10/20の範囲であることを特徴とする。 [9] A ceramic tube according to a third aspect of the present invention is formed by joining a plurality of ceramic molded bodies, and is provided with a light emitting portion that emits light inside, and on both sides of the light emitting portion, and each electrode is introduced and sealed. In a ceramic tube for a high-intensity discharge lamp integrally having an electrode introduction part for stopping, a through hole for introducing a luminescent substance into the light emission part is provided in the light emission part separately from the electrode introduction part. The protrusion is provided so that the axis of the protrusion is directed to the axis of the ceramic tube, and the angle formed by the axis of the protrusion and the axis of the ceramic tube is 90 °; The protrusion amount of the protrusion is in a range of 1/20 to 10/20 of the maximum diameter of the light emitting part.
[10] 第4の本発明に係るセラミックチューブは、複数のセラミック成形体が接合されて構成され、内部において発光がなされる発光部と、該発光部の両側に設けられ、それぞれ電極を挿通するための電極導入部とを一体に有する高輝度放電灯用のセラミックチューブにおいて、前記発光部に前記電極導入部とは別に設けられ、前記発光部内に発光物質を導入するための貫通孔が設けられた突起を有し、前記発光部の外面を前記突起の軸線を含む面で切断した輪郭線と、前記軸線との関係をみたとき、前記輪郭線における前記輪郭線と前記軸線との交点での接線方向と前記軸線とのなす角が30°~60°であることを特徴とする。 [10] The ceramic tube according to the fourth aspect of the present invention is configured by joining a plurality of ceramic molded bodies, and is provided with a light emitting portion that emits light inside and on both sides of the light emitting portion, and each electrode is inserted therethrough. In a ceramic tube for a high-intensity discharge lamp integrally having an electrode introduction portion for providing a light-emitting substance, a through-hole for introducing a luminescent substance is provided in the light-emitting portion, separately from the electrode introduction portion. When the relationship between the contour line and the contour line obtained by cutting the outer surface of the light-emitting portion by a surface including the axis line of the projection and the axis line is seen at the intersection of the contour line and the axis line in the contour line The angle between the tangential direction and the axis is 30 ° to 60 °.
 以上説明したように、本発明に係るセラミックチューブの製造方法によれば、孔加工や細管を設けるための追加加工を行う必要がなく、簡単な工程で、セラミックチューブに細孔や細管を設けることができ、製造コストの低減、生産性の向上を図ることができる。 As described above, according to the method for manufacturing a ceramic tube according to the present invention, there is no need to perform hole processing or additional processing for providing a thin tube, and it is possible to provide pores or thin tubes in the ceramic tube in a simple process. Therefore, the manufacturing cost can be reduced and the productivity can be improved.
 また、本発明に係るセラミックチューブは、細管の破損を防止することができると共に、細管が最冷点の位置に配置されることを回避することができ、歩留まりの向上、信頼性の向上を図ることができる。 In addition, the ceramic tube according to the present invention can prevent the thin tube from being damaged and can avoid the thin tube from being disposed at the coldest point, thereby improving the yield and the reliability. be able to.
第1製造方法を示す工程ブロック図である。It is a process block diagram showing the 1st manufacturing method. 第1セラミック成形体と第2セラミック成形体との組み合わせ例を示す分解斜視図である。It is a disassembled perspective view which shows the example of a combination of a 1st ceramic molded object and a 2nd ceramic molded object. 図3Aは第1鋳込み型の一部省略して示す断面図であり、図3Bは第2鋳込み型の一部省略して示す断面図である。FIG. 3A is a sectional view showing the first casting mold with a part omitted, and FIG. 3B is a sectional view showing the second casting mold with a part omitted. 図4Aは第1接合体を示す断面図であり、図4Bは第1セラミックチューブを示す斜視図である。FIG. 4A is a cross-sectional view showing the first joined body, and FIG. 4B is a perspective view showing the first ceramic tube. 貫通孔を有するセラミックチューブを作製するための従来の製造方法を示す工程ブロック図である。It is a process block diagram which shows the conventional manufacturing method for producing the ceramic tube which has a through-hole. 図6Aは第1接合体の他の例を示す断面図であり、図6Bは第1セラミックチューブの他の例を示す斜視図である。FIG. 6A is a cross-sectional view showing another example of the first joined body, and FIG. 6B is a perspective view showing another example of the first ceramic tube. 第2製造方法を示す工程ブロック図である。It is a process block diagram showing the 2nd manufacturing method. 一対の第1セラミック成形体の組み合わせ例を示す分解斜視図である。It is a disassembled perspective view which shows the example of a combination of a pair of 1st ceramic molded object. 図9Aは第2接合体を示す断面図であり、図9Bは第2セラミックチューブを示す斜視図である。FIG. 9A is a cross-sectional view showing the second joined body, and FIG. 9B is a perspective view showing the second ceramic tube. 第3製造方法を示す工程ブロック図である。It is a process block diagram showing the 3rd manufacturing method. 第3セラミック成形体と第4セラミック成形体の組み合わせ例を示す分解斜視図である。It is a disassembled perspective view which shows the example of a combination of a 3rd ceramic molded object and a 4th ceramic molded object. 図12Aは第3鋳込み型の一部省略して示す断面図であり、図12Bは第4鋳込み型の一部省略して示す断面図である。12A is a cross-sectional view showing the third casting mold with a part thereof omitted, and FIG. 12B is a cross-sectional view showing a part of the fourth casting mold with a part omitted. 第3セラミック成形体と第4セラミック成形体のその他の組み合わせ例を示す分解斜視図である。It is a disassembled perspective view which shows the other example of a combination of a 3rd ceramic molded body and a 4th ceramic molded body. 図13の組み合わせ例において、第1突起及び第2突起の突出方向を説明するための図である。FIG. 14 is a diagram for explaining a protruding direction of the first protrusion and the second protrusion in the combination example of FIG. 13. 図15Aは第3接合体を示す断面図であり、図15Bは図11の組み合わせ例に基づく第3セラミックチューブを示す斜視図である。FIG. 15A is a cross-sectional view showing a third joined body, and FIG. 15B is a perspective view showing a third ceramic tube based on the combination example of FIG. 図16Aは図13の組み合わせ例に基づく第3セラミックチューブを示す斜視図であり、図16Bは円筒状の突起の突出方向を説明するための図である。FIG. 16A is a perspective view showing a third ceramic tube based on the combination example of FIG. 13, and FIG. 16B is a diagram for explaining a protruding direction of a cylindrical protrusion. 円筒状の突起を有するセラミックチューブを作製するための従来の製造方法を示す工程ブロック図である。It is a process block diagram which shows the conventional manufacturing method for producing the ceramic tube which has a cylindrical protrusion. 図18Aは図15Bに示す第3セラミックチューブにおいて、円筒状の突起の突出量を説明するための図であり、図18Bは図16Aに示す第3セラミックチューブにおいて、円筒状の突起の突出量を説明するための図である。18A is a diagram for explaining the protrusion amount of the cylindrical protrusion in the third ceramic tube shown in FIG. 15B, and FIG. 18B shows the protrusion amount of the cylindrical protrusion in the third ceramic tube shown in FIG. 16A. It is a figure for demonstrating. 第4製造方法を示す工程ブロック図である。It is a process block diagram showing the 4th manufacturing method. 2つの第3セラミック成形体の組み合わせ例を示す分解斜視図である。It is a disassembled perspective view which shows the example of a combination of two 3rd ceramic molded bodies. 2つの第3セラミック成形体の組み合わせ例の他の例を示す分解斜視図である。It is a disassembled perspective view which shows the other example of the combination example of two 3rd ceramic molded bodies. 図22Aは第4接合体を示す断面図であり、図22Bは図20の組み合わせ例に基づく第3セラミックチューブを示す斜視図である。22A is a cross-sectional view showing a fourth joined body, and FIG. 22B is a perspective view showing a third ceramic tube based on the combination example of FIG. 図21の組み合わせ例に基づく第3セラミックチューブを示す斜視図である。It is a perspective view which shows the 3rd ceramic tube based on the example of a combination of FIG. 実施例1で使用されるスクリーン製版のパターンを示す図である。FIG. 3 is a diagram showing a pattern of screen plate making used in Example 1. 実施例2で使用されるスクリーン製版のパターンを示す図である。5 is a diagram showing a pattern of screen plate making used in Example 2. FIG.
 以下、本発明に係るセラミックチューブの製造方法及びセラミックチューブの実施の形態例を図1~図25を参照しながら説明する。なお、本明細書において数値範囲の「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。 Hereinafter, a method for manufacturing a ceramic tube and an embodiment of the ceramic tube according to the present invention will be described with reference to FIGS. In the present specification, “˜” in the numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 以下の実施の形態では、1つのセラミックチューブを作製することを想定して説明してある。もちろん、多数のセラミックチューブを作製する場合にも適用することができる。 In the following embodiment, it is assumed that one ceramic tube is manufactured. Of course, the present invention can also be applied to the production of a large number of ceramic tubes.
 また、セラミックチューブは、放電灯の発光管として用いるのが好ましい。高圧放電灯は、道路照明、店舗照明、自動車用ヘッドランプ、液晶プロジェクター等の各種の照明装置に適用可能である。発光管は、メタルハライドランプ用の発光管や高圧ナトリウムランプ用の発光管を含む。 Further, the ceramic tube is preferably used as an arc tube of a discharge lamp. The high pressure discharge lamp can be applied to various lighting devices such as road lighting, store lighting, automobile headlamps, and liquid crystal projectors. The arc tube includes an arc tube for a metal halide lamp and an arc tube for a high pressure sodium lamp.
 第1の実施の形態に係るセラミックチューブの製造方法は、接合面に溝を有する少なくとも1つのセラミック成形体を含む複数のセラミック成形体を作製する成形体作製工程と、複数のセラミック成形体の各接合面同士を接合する成形体接合工程とを有し、溝による孔が形成されたセラミックチューブを作製することを特徴とする。 The method of manufacturing a ceramic tube according to the first embodiment includes a molded body manufacturing step of manufacturing a plurality of ceramic molded bodies including at least one ceramic molded body having a groove on a joint surface, and each of the plurality of ceramic molded bodies. And forming a ceramic tube having a hole formed by a groove.
 第1の実施の形態に係るセラミックチューブの製造方法のいくつかの具体例を図1~図9を参照しながら説明する。 Several specific examples of the method for manufacturing a ceramic tube according to the first embodiment will be described with reference to FIGS.
 先ず、第1の具体例に係る製造方法(以下、第1製造方法と記す)は、図1のステップS1において、図2に示すように、第1セラミック成形体10Aと第2セラミック成形体10Bを作製する。第1セラミック成形体10Aは接合面12aに溝14が形成されている。第2セラミック成形体10Bの接合面12bには溝14は形成されていない。 First, a manufacturing method according to a first specific example (hereinafter referred to as a first manufacturing method) includes a first ceramic molded body 10A and a second ceramic molded body 10B, as shown in FIG. Is made. In the first ceramic molded body 10A, a groove 14 is formed on the joint surface 12a. The groove 14 is not formed on the joint surface 12b of the second ceramic molded body 10B.
 具体的には、ステップS1aにおいて、セラミック粉末、分散媒、ゲル化剤等を混合してゲルキャスト用のスラリー(成形スラリーと記す)を調製する。ステップS1bにおいて、図3A及び図3Bに示すように、成形スラリー16を、第1セラミック成形体10A用の第1鋳込み型18A(図3A参照)内、並びに第2セラミック成形体10B用の第2鋳込み型18B(図3B参照)内に注型した後、固化する。第1鋳込み型18Aには、接合面12aを成形する部分に、溝14を反転した形状の突起20が形成されている。その後、ステップS1cにおいて、第1鋳込み型18A及び第2鋳込み型18Bを離型することで、図2に示すように、第1セラミック成形体10A及び第2セラミック成形体10Bを得る。 Specifically, in step S1a, a ceramic powder, a dispersion medium, a gelling agent, and the like are mixed to prepare a gel casting slurry (referred to as a forming slurry). In step S1b, as shown in FIGS. 3A and 3B, the molding slurry 16 is fed into the first casting mold 18A for the first ceramic molded body 10A (see FIG. 3A) and the second for the second ceramic molded body 10B. After casting into a casting mold 18B (see FIG. 3B), it solidifies. In the first casting mold 18A, a projection 20 having a shape obtained by inverting the groove 14 is formed at a portion where the joining surface 12a is formed. Thereafter, in step S1c, the first casting mold 18A and the second casting mold 18B are released to obtain the first ceramic molded body 10A and the second ceramic molded body 10B as shown in FIG.
 第1セラミック成形体10A及び第2セラミック成形体10Bは共に、中空部22を有する筒状に形成されている。さらに詳しくは、完成品である第1セラミックチューブ24A(図4B参照)を軸線m1の長さ方向中心で2つに分離した形状の相似形を有し、円筒部26と湾曲部28(椀形状)とが一体に形成された形状を有する。つまり、第1セラミック成形体10Aと第2セラミック成形体10Bとを接合して得られる第1接合体30A(図4A参照)の形状と、第1接合体30Aを焼成することによって得られる第1セラミックチューブ24Aの形状は相似形であり、第1セラミックチューブ24Aは第1接合体30Aを縮小した形状を有する。 Both the first ceramic molded body 10 </ b> A and the second ceramic molded body 10 </ b> B are formed in a cylindrical shape having a hollow portion 22. More specifically, the first ceramic tube 24A (see FIG. 4B), which is a finished product, has a similar shape in which the first ceramic tube 24A is separated into two at the center in the longitudinal direction of the axis m1, and includes a cylindrical portion 26 and a curved portion 28 (a bowl shape). ) Are integrally formed. That is, the shape of the first bonded body 30A (see FIG. 4A) obtained by bonding the first ceramic molded body 10A and the second ceramic molded body 10B, and the first obtained by firing the first bonded body 30A. The shape of the ceramic tube 24A is similar, and the first ceramic tube 24A has a shape obtained by reducing the first joined body 30A.
 第1セラミック成形体10A及び第2セラミック成形体10Bの接合面12a及び12bは、各湾曲部28の端面に位置し、第1セラミック成形体10A及び第2セラミック成形体10Bの軸方向に対して直交する面に平行である。そして、第1セラミック成形体10Aの接合面12aには1つの溝14が形成されている。溝14は、半円柱状、角柱状、または角柱と半円柱の組み合わせ形状とされ、その軸線n1が第1セラミック成形体10Aの軸線m2に向かい、且つ、軸線n1と軸線m2とのなす角が90°とされている。溝14の軸線n1に沿った長さは、第1セラミック成形体10Aの湾曲部28の厚みと同じとされ、溝14の軸線n1と直交する長さ(幅)は、固体の状態で挿入される発光物質の径の1倍~3倍の長さが必要であるため、内接する円の直径がφ0.25mm~φ0.9mmとされている。なお、図示していないが、第1セラミック成形体10A及び第2セラミック成形体10Bの各接合面12a及び12bの外周部分及び内周部分は面取り(例えばR面、C面)を施すようにしてもよい。 The joining surfaces 12a and 12b of the first ceramic molded body 10A and the second ceramic molded body 10B are located on the end surfaces of the curved portions 28, and are in the axial direction of the first ceramic molded body 10A and the second ceramic molded body 10B. Parallel to the orthogonal plane. One groove 14 is formed on the joint surface 12a of the first ceramic molded body 10A. The groove 14 has a semi-cylindrical shape, a prism shape, or a combination shape of a prism and a semi-cylindrical shape, and its axis n1 is directed to the axis m2 of the first ceramic molded body 10A, and an angle formed between the axis n1 and the axis m2 is set. It is 90 °. The length along the axis n1 of the groove 14 is the same as the thickness of the curved portion 28 of the first ceramic molded body 10A, and the length (width) orthogonal to the axis n1 of the groove 14 is inserted in a solid state. Therefore, the diameter of the inscribed circle is set to φ0.25 mm to φ0.9 mm. Although not shown, the outer peripheral portion and the inner peripheral portion of each joint surface 12a and 12b of the first ceramic molded body 10A and the second ceramic molded body 10B are chamfered (for example, R surface, C surface). Also good.
 図1のステップS2において、第1セラミック成形体10Aと第2セラミック成形体10Bとを接合して第1接合体30Aを作製する。 In step S2 of FIG. 1, the first ceramic molded body 10A and the second ceramic molded body 10B are bonded to produce a first bonded body 30A.
 具体的には、ステップS2aにおいて、セラミック粉末、溶媒、バインダ等を混合して接合用のスラリー(接合スラリー32と記す)を調製する。ステップS2bにおいて、第1セラミック成形体10Aの接合面12aのうち、溝14を除く部分に接合スラリー32を塗布(供給)する。その後、ステップS2cにおいて、第2セラミック成形体10Bの接合面12bと合わせて圧着することで、図4Aに示す第1接合体30Aを得る。 Specifically, in step S2a, ceramic powder, a solvent, a binder, and the like are mixed to prepare a joining slurry (referred to as joining slurry 32). In step S2b, the joining slurry 32 is applied (supplied) to a portion excluding the groove 14 in the joining surface 12a of the first ceramic molded body 10A. Thereafter, in step S2c, the first bonded body 30A shown in FIG. 4A is obtained by pressure bonding together with the bonded surface 12b of the second ceramic molded body 10B.
 そして、図1のステップS3において、第1接合体30Aを焼成して焼結体(第1セラミックチューブ24A)を得る。第1セラミックチューブ24Aは、図4Bに示すように、中央部に湾曲部28の接合及び焼成による膨出部(発光部34)と、発光部34の両端にそれぞれ一体に形成された電極封止用の細管(電極導入部36)とを有し、内部に一方の電極導入部36から他方の電極導入部36にかけて連通する中空部37が形成された形状を有する。第1セラミックチューブ24Aの発光部34の中間部分には第1セラミック成形体10Aの接合面12aに形成された溝14による第1貫通孔38a(細孔)が形成される。この第1貫通孔38aは、第1セラミックチューブ24Aを例えば発光管として作製する過程において、発光部34内に発光物質を導入するための導入孔として使用される。従って、第1貫通孔38aは発光物質等の導入後において封止される。なお、発光部34の内部には、アルゴン等の不活性なスタートガスに加えて、水銀及びメタルハライド添加物が封入される。但し、水銀は、必ずしも、封入する必要はない。 Then, in step S3 of FIG. 1, the first bonded body 30A is fired to obtain a sintered body (first ceramic tube 24A). As shown in FIG. 4B, the first ceramic tube 24A has a bulging portion (light emitting portion 34) formed by joining and firing the curved portion 28 at the center, and electrode sealing formed integrally at both ends of the light emitting portion 34, respectively. And a hollow portion 37 communicating from one electrode introduction portion 36 to the other electrode introduction portion 36 is formed therein. A first through hole 38a (pore) is formed in the middle portion of the light emitting portion 34 of the first ceramic tube 24A by the groove 14 formed in the joining surface 12a of the first ceramic molded body 10A. The first through hole 38a is used as an introduction hole for introducing a luminescent substance into the light emitting portion 34 in the process of manufacturing the first ceramic tube 24A as an arc tube, for example. Therefore, the first through hole 38a is sealed after the introduction of the luminescent substance or the like. In addition to the inert start gas such as argon, mercury and a metal halide additive are enclosed inside the light emitting unit 34. However, it is not always necessary to enclose mercury.
 ここで、比較のために、貫通孔を有するセラミックチューブを作製するための従来の製造方法について図5を参照しながら説明する。 Here, for comparison, a conventional manufacturing method for producing a ceramic tube having a through hole will be described with reference to FIG.
 図5のステップS11において、接合面12bに溝14を有しない2つの第2セラミック成形体10Bを作製する。 In step S11 of FIG. 5, two second ceramic molded bodies 10B having no grooves 14 on the joining surface 12b are produced.
 具体的には、ステップS11aにおいて、セラミック粉末、分散媒、ゲル化剤等を混合して成形スラリー16を調製する。ステップS11bにおいて、成形スラリー16を、第2セラミック成形体10B用の第2鋳込み型18B(図3B参照)内に注型した後、固化し、その後、第2鋳込み型18Bから離型することで第2セラミック成形体10Bを得る。 Specifically, in step S11a, a molding slurry 16 is prepared by mixing ceramic powder, a dispersion medium, a gelling agent, and the like. In step S11b, the molding slurry 16 is cast into a second casting mold 18B for the second ceramic molded body 10B (see FIG. 3B), solidified, and then released from the second casting mold 18B. A second ceramic molded body 10B is obtained.
 図5のステップS12において、一方の第2セラミック成形体10Bの湾曲部28に例えばドリルによる孔空け加工を行って貫通孔を設ける。 In step S12 of FIG. 5, a through hole is provided in the curved portion 28 of one second ceramic molded body 10B by, for example, drilling with a drill.
 図5のステップS13において、2つの第2セラミック成形体10Bを接合する。 In step S13 of FIG. 5, the two second ceramic molded bodies 10B are joined.
 具体的には、ステップS13aにおいて、セラミック粉末、溶媒、バインダ等を混合して接合スラリーを調製する。ステップS13bにおいて、一方の第2セラミック成形体10Bの接合面12bに接合スラリー32を塗布(供給)する。その後、ステップS13cにおいて、2つの第2セラミック成形体10Bの接合面12b同士を合わせて圧着することで接合体を得る。 Specifically, in step S13a, a ceramic powder, a solvent, a binder, and the like are mixed to prepare a joining slurry. In step S13b, the bonding slurry 32 is applied (supplied) to the bonding surface 12b of one second ceramic molded body 10B. Thereafter, in step S13c, the joined surfaces 12b of the two second ceramic molded bodies 10B are put together and bonded together to obtain a joined body.
 そして、図5のステップS14において、接合体を焼成して、貫通孔が形成された焼結体(セラミックチューブ)を得る。 Then, in step S14 of FIG. 5, the joined body is fired to obtain a sintered body (ceramic tube) in which through holes are formed.
 この従来の製造方法では、1つの第2セラミック成形体10Bの湾曲部28に対して、ドリルで貫通孔を加工することから、ドリルの回転振動によって第2セラミック成形体10Bが移動してしまい、所望の径の貫通孔を形成することができない場合がある。そこで、第2セラミック成形体10Bを治具等で保持固定することになるが、第2セラミック成形体10Bが破壊しない程度の強度で保持固定する必要があり、その調整に時間がかかるという問題がある。また、第2セラミック成形体10Bのサイズに応じて治具やドリルを予め用意する必要があり、製造コストが高価格化するという問題もある。また、ドリルによる回転振動や切削くずの衝突等によって、第2セラミック成形体10Bに傷が生じることから、セラミックチューブとした後、クラックが生じやすくなるおそれがある。 In this conventional manufacturing method, since the through-hole is processed with a drill for the curved portion 28 of one second ceramic molded body 10B, the second ceramic molded body 10B is moved by the rotational vibration of the drill, In some cases, a through hole having a desired diameter cannot be formed. Therefore, the second ceramic molded body 10B is held and fixed with a jig or the like. However, it is necessary to hold and fix the second ceramic molded body 10B with such a strength that the second ceramic molded body 10B is not broken. is there. Moreover, it is necessary to prepare a jig and a drill in advance according to the size of the second ceramic molded body 10B, and there is a problem that the manufacturing cost is increased. In addition, since the second ceramic molded body 10B is damaged due to rotational vibration by a drill, collision of cutting waste, or the like, there is a possibility that cracks are likely to occur after the ceramic tube is formed.
 これに対して、第1製造方法では、接合面12aに溝14を有する第1セラミック成形体10Aと接合面12bに溝14を有しない第2セラミック成形体10Bとを接合して、溝14による第1貫通孔38aが形成された第1セラミックチューブ24Aを作製するようにしたので、ドリルで孔空け加工をする必要がなくなり、製造工程の簡略化、工数の低減化、スループットの向上、歩留まりの向上を図ることができ、発光物質を導入するための第1貫通孔38aを有する第1セラミックチューブ24Aの生産性の向上を実現することができる。しかも、ドリルを用いないことから、第1セラミックチューブ24Aとした場合に、クラックやリークの発生原因となる傷の発生を回避することができる。なお、第1セラミック成形体10Aを得るための金型が必要になるが、この金型の形状は第2セラミック成形体10Bを得るための金型と比べた場合、溝14を反転した形状の突起20があるだけで、形状が単純であるため、安価に型を作製でき、上述した製造工程の簡略化、工数の低減化、スループットの向上、歩留まりの向上等を考慮した場合、コストアップにはつながらない。 On the other hand, in the first manufacturing method, the first ceramic molded body 10A having the groove 14 on the joining surface 12a and the second ceramic molded body 10B having no groove 14 on the joining surface 12b are joined, and the groove 14 is used. Since the first ceramic tube 24A in which the first through hole 38a is formed is manufactured, it is not necessary to perform drilling with a drill, simplifying the manufacturing process, reducing the number of steps, improving the throughput, and improving the yield. The improvement can be achieved, and the productivity of the first ceramic tube 24A having the first through hole 38a for introducing the luminescent material can be improved. And since a drill is not used, when it is set as the 1st ceramic tube 24A, generation | occurrence | production of the damage | wound which becomes a cause of generation | occurrence | production of a crack or a leak can be avoided. In addition, although the metal mold | die for obtaining the 1st ceramic molded object 10A is needed, when compared with the metal mold | die for obtaining the 2nd ceramic molded object 10B, the shape of this metal mold | die is the shape which reversed the groove | channel 14. Since the shape is simple with only the protrusions 20, the mold can be manufactured at low cost, and the cost can be increased when considering the above-described simplification of the manufacturing process, reduction in man-hours, improvement in throughput, improvement in yield, etc. Not connected.
 上述の例では、第1セラミック成形体10Aと第2セラミック成形体10Bの各湾曲部28の高さを同じにして、発光部34の中間部分に第1貫通孔38aを形成した例を示したが、その他、図6Aに示すように、例えば第1セラミック成形体10Aの湾曲部28の高さを、第2セラミック成形体10Bの湾曲部28の高さよりも大きくしてもよい。その逆でもよい。この場合、図6Bに示すように、第1セラミックチューブ24Aとした際に、第1貫通孔38aは、発光部34の中間部分から一方の電極導入部36寄りあるいは他方の電極導入部36寄りの偏心した位置に形成されることになる。 In the above-described example, the example in which the first through holes 38a are formed in the intermediate portion of the light emitting portion 34 with the heights of the curved portions 28 of the first ceramic molded body 10A and the second ceramic molded body 10B being the same is shown. However, as shown in FIG. 6A, for example, the height of the curved portion 28 of the first ceramic molded body 10A may be larger than the height of the curved portion 28 of the second ceramic molded body 10B. The reverse is also possible. In this case, as shown in FIG. 6B, when the first ceramic tube 24A is formed, the first through hole 38a is located closer to one electrode introduction portion 36 or closer to the other electrode introduction portion 36 from the intermediate portion of the light emitting portion 34. It will be formed at an eccentric position.
 次に、第2の具体例に係る製造方法(以下、第2製造方法と記す)は、図7のステップS101において、図8に示すように、接合面12aに溝14を有する2つの第1セラミック成形体10Aを作製する。 Next, in the manufacturing method according to the second specific example (hereinafter referred to as the second manufacturing method), in step S101 of FIG. 7, as shown in FIG. A ceramic molded body 10A is produced.
 具体的には、セラミック粉末、分散媒、ゲル化剤等を混合して成形スラリー16を調製(図7のステップS101a)した後、成形スラリー16を、第1鋳込み型18A内に注型し(ステップS101b)、固化する。その後、第1鋳込み型18Aを離型(ステップS101c)することで第1セラミック成形体10Aを得る。 Specifically, ceramic powder, a dispersion medium, a gelling agent, and the like are mixed to prepare a molding slurry 16 (step S101a in FIG. 7), and then the molding slurry 16 is cast into the first casting mold 18A ( Step S101b) solidifies. Thereafter, the first ceramic mold 10A is obtained by releasing the first casting mold 18A (step S101c).
 図8に示すように、第1セラミック成形体10Aの接合面12aに形成される溝14の軸線n1に沿った長さは、第1セラミック成形体10Aの湾曲部28の厚みと同じとされ、溝14の軸線n1と直交する長さ(幅)は、固体の状態で挿入される発光物質の径の1倍~3倍の長さが必要であるため、内接する円の直径がφ0.25mm~φ0.9mmとされている。 As shown in FIG. 8, the length along the axis n1 of the groove 14 formed in the joint surface 12a of the first ceramic molded body 10A is the same as the thickness of the curved portion 28 of the first ceramic molded body 10A. The length (width) orthogonal to the axis n1 of the groove 14 needs to be 1 to 3 times the diameter of the luminescent material inserted in the solid state, so the diameter of the inscribed circle is φ0.25 mm. It is set to ~ 0.9mm.
 図7のステップS102において、2つの第1セラミック成形体10A同士を接合する。具体的には、セラミック粉末、溶媒、バインダ等を混合して接合スラリー32を調製(ステップS102a)した後、一方の第1セラミック成形体10Aの接合面12aのうち、溝14を除く部分に接合スラリー32を塗布(供給)する(ステップS102b)。その後、図9Aに示すように、2つの第1セラミック成形体10Aの接合面12a同士を合わせて圧着することで第2接合体30Bを得る(ステップS102c)。 7 In step S102 of FIG. 7, the two first ceramic molded bodies 10A are joined together. Specifically, after mixing ceramic powder, a solvent, a binder, and the like to prepare a bonding slurry 32 (step S102a), the bonding surface 12a of one first ceramic molded body 10A is bonded to a portion excluding the groove 14. The slurry 32 is applied (supplied) (step S102b). Thereafter, as shown in FIG. 9A, the joined surfaces 12a of the two first ceramic molded bodies 10A are bonded together to obtain a second joined body 30B (step S102c).
 そして、図7のステップS103において、第2接合体30Bを焼成して焼結体(第2セラミックチューブ24B)を得る。図9Bに示すように、第2セラミックチューブ24Bは、中央部に湾曲部28の接合及び焼成による発光部34と、発光部34の両端にそれぞれ一体に形成された電極導入部36とを有し、内部に一方の電極導入部36から他方の電極導入部36にかけて連通する中空部37が形成された形状を有する。第2セラミックチューブ24Bの発光部34の中間部分には2つの第1セラミック成形体10Aの各接合面12aに形成された溝14による第2貫通孔38b(溝14同士が対向することによる貫通孔)が形成される。この第2貫通孔38bは、第2セラミックチューブ24Bを例えば発光管として作製する過程において、発光部34内に発光物質を導入するための導入孔として使用される。 Then, in step S103 of FIG. 7, the second bonded body 30B is fired to obtain a sintered body (second ceramic tube 24B). As shown in FIG. 9B, the second ceramic tube 24B has a light emitting part 34 formed by joining and firing a curved part 28 at the center part, and electrode introducing parts 36 integrally formed at both ends of the light emitting part 34, respectively. The hollow portion 37 that communicates from one electrode introduction portion 36 to the other electrode introduction portion 36 is formed inside. A second through hole 38b (a through hole formed by the grooves 14 facing each other) is formed in the middle portion of the light emitting portion 34 of the second ceramic tube 24B by the grooves 14 formed in the joint surfaces 12a of the two first ceramic molded bodies 10A. ) Is formed. The second through hole 38b is used as an introduction hole for introducing a luminescent substance into the light emitting portion 34 in the process of manufacturing the second ceramic tube 24B as, for example, a light emitting tube.
 この第2製造方法においても、上述した第1製造方法と同様に、ドリルで孔空け加工をする必要がなくなり、製造工程の簡略化、工数の低減化、スループットの向上、歩留まりの向上を図ることができ、発光物質を導入するための第2貫通孔38bを有する第2セラミックチューブ24Bの生産性の向上を実現することができる。特に、この第2製造方法では、用意する鋳込み型として、第1セラミック成形体10Aを作製するための第1鋳込み型18Bのみでよいため、さらにコストの低廉化につながる。 In the second manufacturing method, similarly to the first manufacturing method described above, it is not necessary to perform drilling with a drill, and the manufacturing process is simplified, man-hours are reduced, throughput is improved, and yield is improved. Thus, the productivity of the second ceramic tube 24B having the second through hole 38b for introducing the luminescent material can be improved. In particular, in this second manufacturing method, since only the first casting mold 18B for producing the first ceramic molded body 10A is required as the casting mold to be prepared, the cost is further reduced.
 上述の例では、第1セラミック成形体10Aの各湾曲部28の高さを同じにして、発光部34の中間部分に第2貫通孔38bを形成した例を示したが、その他、上述した図6Aの場合と同様に、例えば一方の第1セラミック成形体10Aの湾曲部28の高さを、他方の第1セラミック成形体10Aの湾曲部28の高さよりも大きくしてもよい。その逆でもよい。この場合、第2セラミックチューブ24Bとした際に、第2貫通孔38bは、発光部34の中間部分から一方の電極導入部36寄りあるいは他方の電極導入部36寄りの偏心した位置に形成されることになる。 In the above-described example, the example in which the second through-holes 38b are formed in the intermediate portion of the light-emitting portion 34 with the heights of the curved portions 28 of the first ceramic molded body 10A being the same is shown. Similarly to the case of 6A, for example, the height of the curved portion 28 of one first ceramic molded body 10A may be larger than the height of the curved portion 28 of the other first ceramic molded body 10A. The reverse is also possible. In this case, when the second ceramic tube 24B is formed, the second through hole 38b is formed at an eccentric position near the one electrode introduction portion 36 or the other electrode introduction portion 36 from the intermediate portion of the light emitting portion 34. It will be.
 次に、第2の実施の形態に係るセラミックチューブの製造方法について説明する。 Next, a method for manufacturing a ceramic tube according to the second embodiment will be described.
 この第2の実施の形態は、接合面の一部を構成する第1突起を有し、接合面に第1突起の端部から内方にかけて連続して貫通溝が形成された少なくとも1つのセラミック成形体を含む複数のセラミック成形体を作製する成形体作製工程と、前記複数のセラミック成形体の各接合面同士を接合する成形体接合工程とを有し、前記貫通溝による孔が形成されたセラミックチューブを作製することを特徴とする。 The second embodiment has at least one ceramic having a first protrusion that constitutes a part of the joint surface, and a through groove is continuously formed on the joint surface from the end of the first protrusion to the inside. A hole formed by the through groove is formed, which includes a molded body manufacturing step for manufacturing a plurality of ceramic molded bodies including a molded body, and a molded body bonding step for bonding the bonding surfaces of the plurality of ceramic molded bodies. It is characterized by producing a ceramic tube.
 第2の実施の形態に係るセラミックチューブの製造方法のいくつかの具体例を図10~図23を参照しながら説明する。 Some specific examples of the method of manufacturing a ceramic tube according to the second embodiment will be described with reference to FIGS.
 先ず、第3の具体例に係る製造方法(以下、第3製造方法と記す)は、図10のステップS201において、図11に示すように、1つの第3セラミック成形体10Cと、1つの第4セラミック成形体10Dとを作製する。第3セラミック成形体10Cは、接合面12cの一部を構成する第1突起40aを有し、接合面12cに第1突起40aの端部から該第3セラミック成形体10Cの内方にかけて連続して貫通溝42が形成されている。第4セラミック成形体10Dは、接合面12dの一部を構成する第2突起40bを有する。第4セラミック成形体10Dの接合面12dには、第2突起40bの端部から該第4セラミック成形体10Dの内方にかけて貫通溝42は形成されておらず、平坦面とされている。 First, a manufacturing method according to a third specific example (hereinafter referred to as a third manufacturing method) includes one third ceramic molded body 10C and one first ceramic body as shown in FIG. 4 ceramic molded body 10D is produced. The third ceramic molded body 10C has a first protrusion 40a that constitutes a part of the joint surface 12c, and is continuous with the joint surface 12c from the end of the first protrusion 40a to the inside of the third ceramic molded body 10C. Thus, a through groove 42 is formed. The fourth ceramic molded body 10D has a second protrusion 40b that constitutes a part of the bonding surface 12d. The through-groove 42 is not formed on the joining surface 12d of the fourth ceramic molded body 10D from the end of the second protrusion 40b to the inner side of the fourth ceramic molded body 10D, and is a flat surface.
 具体的には、図10のステップS201aにおいて、セラミック粉末、分散媒、ゲル化剤等を混合して成形スラリー16を調製する。ステップS201bにおいて、図12A及び図12Bに示すように、成形スラリー16を、第3セラミック成形体10C用の第3鋳込み型18C(図12A参照)内、並びに第4セラミック成形体10D用の第4鋳込み型18D(図12B参照)内に注型した後、固化する。その後、第3鋳込み型18C及び第4鋳込み型18Dを離型することで第3セラミック成形体10C及び第4セラミック成形体10Dを得る。第3鋳込み型18Cには、接合面12cを成形する部分に、第1突起40a及び貫通溝42を形成するための第1空間44aが形成され、第4鋳込み型18Dには、接合面12dを成形する部分に、第2突起40bを形成するための第2空間44bが形成されている。 Specifically, in step S201a of FIG. 10, a molding slurry 16 is prepared by mixing ceramic powder, a dispersion medium, a gelling agent, and the like. In step S201b, as shown in FIGS. 12A and 12B, the molding slurry 16 is fed into the third casting mold 18C for the third ceramic molded body 10C (see FIG. 12A) and the fourth for the fourth ceramic molded body 10D. After casting into a casting mold 18D (see FIG. 12B), it solidifies. Thereafter, the third casting mold 10C and the fourth ceramic molding 10D are obtained by releasing the third casting mold 18C and the fourth casting mold 18D. In the third casting mold 18C, a first space 44a for forming the first protrusion 40a and the through groove 42 is formed in a portion where the joining surface 12c is formed, and the joining surface 12d is formed in the fourth casting mold 18D. A second space 44b for forming the second protrusion 40b is formed in the part to be molded.
 第3セラミック成形体10C及び第4セラミック成形体10Dは共に、中空部22を有する筒状に形成されている。さらに詳しくは、第3セラミック成形体10C及び第4セラミック成形体10Dは、完成品である第3セラミックチューブ24C(図15B参照)を軸線m1の長さ方向中心で2つに分離した形状の相似形を有し、特に、第3セラミック成形体10Cは、円筒部26と湾曲部28(椀形状)と第1突起40aとが一体に形成された形状を有し、第4セラミック成形体10Dは、円筒部26と湾曲部28(椀形状)と第2突起40bとが一体に形成された形状を有する。 The third ceramic molded body 10 </ b> C and the fourth ceramic molded body 10 </ b> D are both formed in a cylindrical shape having a hollow portion 22. More specifically, the third ceramic molded body 10C and the fourth ceramic molded body 10D are similar in shape in which the third ceramic tube 24C (see FIG. 15B), which is a finished product, is separated into two at the longitudinal center of the axis m1. In particular, the third ceramic molded body 10C has a shape in which the cylindrical portion 26, the curved portion 28 (saddle shape), and the first protrusion 40a are integrally formed, and the fourth ceramic molded body 10D has a shape. The cylindrical portion 26, the curved portion 28 (saddle shape), and the second protrusion 40 b are integrally formed.
 第3セラミック成形体10C及び第4セラミック成形体10Dの接合面12c及び12dは、各湾曲部28の端面に位置し、第3セラミック成形体10C及び第4セラミック成形体10Dの軸方向に対して直交する面に平行である。そして、第3セラミック成形体10Cの接合面12cは、第1突起40aの端部から第3セラミック成形体10Cの内方に向かって連続して形成された上述の貫通溝42が形成されている。第1突起40aは、図11に示すように、その軸線n2が第3セラミック成形体10Cの軸線m3に向かい、且つ、軸線n2と軸線m3とのなす角が90°となる方向に突出させてもよいし、あるいは、図13及び図14に示すように、第1突起40aを有する接合面12cの外周と第1突起40aの軸線n2との交点を、第1突起40aの基点46としたとき、接合面12cの外周における基点46での接線K1の方向と第1突起40aの軸線n2とのなす角θが30°~60°となる方向に突出させてもよい。第2突起40bについても同様である。 The joint surfaces 12c and 12d of the third ceramic molded body 10C and the fourth ceramic molded body 10D are located on the end surfaces of the curved portions 28, and are axial with respect to the third ceramic molded body 10C and the fourth ceramic molded body 10D. Parallel to the orthogonal plane. The joint surface 12c of the third ceramic molded body 10C is formed with the above-described through groove 42 formed continuously from the end of the first protrusion 40a toward the inside of the third ceramic molded body 10C. . As shown in FIG. 11, the first protrusion 40a is projected in a direction in which the axis line n2 is directed to the axis line m3 of the third ceramic molded body 10C and the angle formed between the axis line n2 and the axis line m3 is 90 °. Alternatively, as shown in FIGS. 13 and 14, when the intersection of the outer periphery of the joint surface 12c having the first protrusion 40a and the axis n2 of the first protrusion 40a is the base point 46 of the first protrusion 40a. Further, the angle θ formed by the direction of the tangent line K1 at the base point 46 on the outer periphery of the joint surface 12c and the axis n2 of the first protrusion 40a may be protruded in a direction of 30 ° to 60 °. The same applies to the second protrusion 40b.
 貫通溝42の軸線n2に沿った長さは、第1突起40aの高さと第3セラミック成形体10Cの湾曲部28の厚みとの合計と同じとされ、貫通溝42の軸線n2と直交する長さ(幅)は、挿入される発光物質の径の1倍~3倍の長さが必要であるため、内接する円の直径がφ0.25mm~φ0.9mmとされている。なお、図示しないが、第3セラミック成形体10C及び第4セラミック成形体10Dの各接合面12c及び12dの外周部分及び内周部分は面取り(例えばC面)を施すようにしてもよい。 The length along the axis n2 of the through groove 42 is the same as the sum of the height of the first protrusion 40a and the thickness of the curved portion 28 of the third ceramic molded body 10C, and is a length orthogonal to the axis n2 of the through groove 42. The length (width) is required to be 1 to 3 times the diameter of the light-emitting substance to be inserted, so that the diameter of the inscribed circle is set to φ0.25 mm to φ0.9 mm. Although not shown, the outer peripheral portion and the inner peripheral portion of each joint surface 12c and 12d of the third ceramic molded body 10C and the fourth ceramic molded body 10D may be chamfered (for example, C surface).
 図10のステップS202において、第3セラミック成形体10Cと第4セラミック成形体10Dとを接合する。 In step S202 of FIG. 10, the third ceramic molded body 10C and the fourth ceramic molded body 10D are joined.
 具体的には、ステップS202aにおいて、セラミック粉末、溶媒、バインダ等を混合して接合スラリーを調製する。ステップS202bにおいて、第3セラミック成形体10Cの接合面12cのうち、貫通溝42を除く部分に接合スラリーを塗布(供給)する。その後、ステップS202cにおいて、第3セラミック成形体10Cの接合面12cと第4セラミック成形体10Dの接合面12dと合わせて圧着することで第3接合体30C(図15A参照)を得る。このとき、第1突起40aの接合面12cと第2突起40bの接合面12dとを互いに対向させて合わせるようにする。 Specifically, in step S202a, a ceramic powder, a solvent, a binder and the like are mixed to prepare a joining slurry. In step S202b, the bonding slurry is applied (supplied) to a portion of the bonding surface 12c of the third ceramic molded body 10C excluding the through groove 42. Thereafter, in step S202c, the bonding surface 12c of the third ceramic molded body 10C and the bonding surface 12d of the fourth ceramic molded body 10D are bonded together to obtain a third bonded body 30C (see FIG. 15A). At this time, the bonding surface 12c of the first protrusion 40a and the bonding surface 12d of the second protrusion 40b are opposed to each other.
 そして、図10のステップS203において、第3接合体30Cを焼成して焼結体(第3セラミックチューブ24C)を得る。第3セラミックチューブ24Cは、図15B又は図16Aに示すように、中央部に湾曲部28の接合及び焼成による発光部34と、発光部34の両端にそれぞれ一体に形成された電極導入部36とを有し、内部に一方の電極導入部36から他方の電極導入部36にかけて連通する中空部37が形成された形状を有する。第3セラミックチューブ24Cの発光部34には、該発光部34の一部から外方に突出する円筒状の突起50(細管)が形成されている。 Then, in step S203 of FIG. 10, the third bonded body 30C is fired to obtain a sintered body (third ceramic tube 24C). As shown in FIG. 15B or FIG. 16A, the third ceramic tube 24C includes a light emitting part 34 formed by joining and firing a curved part 28 at the center part, and an electrode introducing part 36 integrally formed at both ends of the light emitting part 34, respectively. And has a shape in which a hollow part 37 communicating from one electrode introduction part 36 to the other electrode introduction part 36 is formed. The light emitting portion 34 of the third ceramic tube 24C is formed with a cylindrical protrusion 50 (a thin tube) that protrudes outward from a part of the light emitting portion 34.
 図15Bに示す円筒状の突起50は、図11に示す第1突起40aと第2突起40bとが接合し、焼成されて形成されたものであって、その軸線n3が第3セラミックチューブ24Cの軸線m1に向かい、且つ、軸線n3と軸線m1とのなす角が90°となる方向に突出している。図16Aに示す円筒状の突起50は、図13に示す第1突起40aと第2突起40bとが接合し、焼成されて形成されたものであって、図16Bに示すように、発光部34の外面を円筒状の突起50の軸線n3を含む面で切断した輪郭線52と突起50の軸線n3との関係でみたとき、輪郭線52における該輪郭線52と軸線n3との交点54での接線K2の方向と軸線n3とのなす角が30°~60°となる方向に突出している。 A cylindrical protrusion 50 shown in FIG. 15B is formed by joining and firing the first protrusion 40a and the second protrusion 40b shown in FIG. 11, and the axis n3 thereof is the third ceramic tube 24C. It faces the axis m1 and protrudes in a direction in which the angle formed by the axis n3 and the axis m1 is 90 °. The cylindrical protrusion 50 shown in FIG. 16A is formed by joining and firing the first protrusion 40a and the second protrusion 40b shown in FIG. 13, and as shown in FIG. 16B, the light emitting portion 34 is formed. When the outer surface of the contour line 52 is cut by a plane including the axis n3 of the cylindrical projection 50 and the relationship between the contour line 52 and the axis n3 of the projection 50, the contour line 52 at the intersection 54 of the contour line 52 and the axis n3 is obtained. The angle formed by the direction of the tangent line K2 and the axis line n3 projects in a direction of 30 ° to 60 °.
 また、円筒状の突起50は、その軸線n3に沿って第1突起40aの貫通溝42による第3貫通孔38cが形成されている。この第3貫通孔38cは、第3セラミックチューブ24Cを例えば発光管として作製する過程において、発光部34内に発光物質を導入するための導入孔として使用される。 Further, the cylindrical protrusion 50 has a third through hole 38c formed by the through groove 42 of the first protrusion 40a along the axis n3. The third through hole 38c is used as an introduction hole for introducing a luminescent substance into the light emitting portion 34 in the process of manufacturing the third ceramic tube 24C as an arc tube, for example.
 ここで、比較のために、円筒状の突起を有する焼結体を作製するための従来の製造方法について図17を参照しながら説明する。 Here, for comparison, a conventional manufacturing method for producing a sintered body having a cylindrical protrusion will be described with reference to FIG.
 図17のステップS211(ステップS211a~ステップS211c)において、接合面12bに溝14を有しない2つの第2セラミック成形体10Bを作製する。ステップS212において、一方の第2セラミック成形体10Bの湾曲部28に例えばドリルによる孔空け加工を行って貫通孔を設ける。ステップS213(ステップS213a~ステップS213c)において、2つの第2セラミック成形体10Bを接合する。その後、ステップS214において、セラミック成形体にて構成されたパイプの端面に接合スラリーを塗布し、貫通孔を塞ぐようにしてパイプを接合して接合体を得る。そして、ステップS215において、接合体を焼成して、円筒状の突起が形成された焼結体(セラミックチューブ)を得る。 In step S211 (steps S211a to S211c) in FIG. 17, two second ceramic molded bodies 10B having no groove 14 on the joining surface 12b are produced. In step S212, a through hole is provided in the curved portion 28 of one second ceramic molded body 10B, for example, by drilling with a drill. In step S213 (steps S213a to S213c), the two second ceramic molded bodies 10B are joined. Thereafter, in step S214, a joining slurry is applied to the end face of the pipe formed of the ceramic molded body, and the pipe is joined so as to close the through hole to obtain a joined body. In step S215, the joined body is fired to obtain a sintered body (ceramic tube) on which cylindrical protrusions are formed.
 この従来の製造方法では、1つの第2セラミック成形体10Bの湾曲部28に対して、ドリルで貫通孔を加工することから、上述した不都合を有するほか、パイプを作製する工程及びパイプを接合する工程が必要になることから、全体の製造工程が複雑になり、製造コストの高価格化するという問題がある。 In this conventional manufacturing method, since the through-hole is processed with a drill in the curved portion 28 of one second ceramic molded body 10B, in addition to the disadvantages described above, a step of manufacturing a pipe and a pipe are joined. Since a process is required, the entire manufacturing process becomes complicated, and there is a problem that the manufacturing cost is increased.
 これに対して、第3製造方法においては、上述した第1製造方法と同様に、ドリルで孔空け加工をする必要がなくなり、製造工程の簡略化、工数の低減化、スループットの向上、歩留まりの向上を図ることができ、発光物質を導入するための第3貫通孔38cを有する第3セラミックチューブ24Cの生産性の向上を実現することができる。特に、貫通溝42を有する第1突起40aと第2突起40bとを接合して、発光物質を導入するための第3貫通孔38cを有する円筒状の突起50を形成するようにしたので、円筒状の突起50が発光物質の導入やガスの排気のためのガイドとして作用し、発光物質の導入やガスの排気が容易になる。また、容易に第3貫通孔38cを封止することもできる。例えば円筒状の突起50の先端部をレーザ光等で熱融着して封止したり、第3貫通孔38cのうち、円筒状の突起50の先端部分に封止部材を詰め込む等を好ましく採用でき、封止作業が簡単になる。 On the other hand, in the third manufacturing method, as in the first manufacturing method described above, it is not necessary to perform drilling with a drill, simplifying the manufacturing process, reducing the number of steps, improving the throughput, and improving the yield. Improvement can be achieved, and improvement in the productivity of the third ceramic tube 24C having the third through hole 38c for introducing the luminescent material can be realized. In particular, the first protrusion 40a having the through groove 42 and the second protrusion 40b are joined to form the cylindrical protrusion 50 having the third through hole 38c for introducing the luminescent material. The projection 50 acts as a guide for the introduction of the luminescent material and the exhaust of the gas, and the introduction of the luminescent material and the exhaust of the gas become easy. Further, the third through hole 38c can be easily sealed. For example, it is preferable to employ a method in which the tip of the cylindrical projection 50 is sealed by thermal fusion with a laser beam or the like, or a sealing member is packed into the tip of the cylindrical projection 50 in the third through hole 38c. And the sealing work is simplified.
 図15Bに示す円筒状の突起50は、第3セラミック成形体10Cの軸線m1に対して直交する方向に突出することから、図18Aに示すように、突起50の突出量La(発光部34の中心Oaと突起50の先端点Paとを結ぶ線分と発光部34の外周との交点Caから先端点Paまでの距離)が大きいと完成した発光管を外球に納めてランプ化する際、外球の径を大きくする必要があり、ランプの小型化が難しくなる。また、外球内のリード線等の他の物体に接触し易くなり、破損し易くなる。また、突起50の先端部(封止される部分)が発光部34から遠くなり、該先端部が最冷点になる。そのため腐食性のある発光物質が溜まりやすくなり、発光管として使用した際に、封止部分に腐食等を引き起こすおそれがある。突起50の突出量Laが反対に小さすぎると、第3貫通孔38cを熱融着する場合に、溶解する容積が不足したり、封止部材を詰め込む場合においても封止距離が短くなり、リークが発生する等、封止が困難になるおそれがある。そこで、突起50の突出量Laは、発光部34の最大直径の1/20~10/20の範囲が好ましく、さらに好ましくは2/20~5/20である。 Since the cylindrical protrusion 50 shown in FIG. 15B protrudes in a direction perpendicular to the axis m1 of the third ceramic molded body 10C, as shown in FIG. 18A, the protrusion amount La (of the light emitting portion 34) of the protrusion 50 is obtained. When the distance between the line segment connecting the center Oa and the tip point Pa of the projection 50 and the outer periphery of the light emitting portion 34 is large (distance from the tip point Pa to the tip point Pa), the completed arc tube is put into an outer sphere and ramped. It is necessary to increase the diameter of the outer sphere, which makes it difficult to reduce the size of the lamp. Moreover, it becomes easy to contact other objects, such as a lead wire in an outer sphere, and it becomes easy to break. Further, the tip portion (the portion to be sealed) of the protrusion 50 is far from the light emitting portion 34, and the tip portion becomes the coldest point. For this reason, corrosive luminescent substances are likely to accumulate, and when used as an arc tube, corrosion or the like may occur in the sealed portion. On the contrary, if the protrusion amount La of the protrusion 50 is too small, when the third through-hole 38c is heat-sealed, the volume to be dissolved is insufficient, or the sealing distance is shortened even when the sealing member is stuffed. There is a risk that sealing will be difficult, such as the occurrence of spillage. Therefore, the protrusion amount La of the protrusion 50 is preferably in the range of 1/20 to 10/20 of the maximum diameter of the light emitting portion 34, more preferably 2/20 to 5/20.
 一方、図16Aに示す円筒状の突起50を形成した場合には、図18Bに示すように、突起50の突出量Laを短くすることができ、ランプ化する際、小型化が可能となり、他の物体への接触や破損が生じ難くなる。しかも、先端部が図18Aの場合よりも発光部34に近くなることから、該先端部が最冷点となることを回避することができ、発光管として使用した際に、封止部分への腐食等を防止することができ、信頼性の向上につながる。 On the other hand, when the cylindrical protrusion 50 shown in FIG. 16A is formed, the protrusion amount La of the protrusion 50 can be shortened as shown in FIG. 18B. It is difficult to cause contact or damage to the object. Moreover, since the tip portion is closer to the light emitting portion 34 than in the case of FIG. 18A, it is possible to avoid the tip portion from becoming the coldest point, and when used as an arc tube, Corrosion and the like can be prevented, leading to improved reliability.
 上述の例では、第3セラミック成形体10Cと第4セラミック成形体10Dの各湾曲部28の高さを同じにして、発光部34の中間部分に円筒状の突起50を形成した例を示したが、その他、上述した図6Aの場合と同様に、例えば第3セラミック成形体10Cの湾曲部28の高さを、第4セラミック成形体10Dの湾曲部28の高さよりも大きくしてもよい。その逆でもよい。この場合、第3セラミックチューブ24Cとした際に、円筒状の突起50は、発光部34の中間部分から一方の電極導入部36寄りあるいは他方の電極導入部36寄りの偏心した位置に形成されることになる。 In the above-described example, the example in which the cylindrical protrusions 50 are formed in the intermediate portion of the light emitting portion 34 with the heights of the curved portions 28 of the third ceramic molded body 10C and the fourth ceramic molded body 10D being the same is shown. However, similarly to the case of FIG. 6A described above, for example, the height of the curved portion 28 of the third ceramic molded body 10C may be larger than the height of the curved portion 28 of the fourth ceramic molded body 10D. The reverse is also possible. In this case, when the third ceramic tube 24C is formed, the cylindrical protrusion 50 is formed at an eccentric position near the one electrode introduction portion 36 or the other electrode introduction portion 36 from the intermediate portion of the light emitting portion 34. It will be.
 次に、第4の具体例に係る製造方法(以下、第4製造方法と記す)は、図19のステップS301において、図20及び図21に示すように、2つの第3セラミック成形体10Cを作製する。 Next, the manufacturing method according to the fourth specific example (hereinafter referred to as the fourth manufacturing method) includes two third ceramic molded bodies 10C as shown in FIGS. 20 and 21 in step S301 of FIG. Make it.
 具体的には、セラミック粉末、分散媒、ゲル化剤等を混合して成形スラリーを調製(図19のステップS301a)した後、成形スラリーを、第3鋳込み型18C内に注型し(ステップS301b)、固化する。その後、第3鋳込み型18Cから離型することで第3セラミック成形体10Cを得る(ステップS301c)。 Specifically, after mixing a ceramic powder, a dispersion medium, a gelling agent and the like to prepare a molding slurry (step S301a in FIG. 19), the molding slurry is cast into the third casting mold 18C (step S301b). ), Solidify. Thereafter, the third ceramic molded body 10C is obtained by releasing from the third casting mold 18C (step S301c).
 第3セラミック成形体10Cの接合面12cに形成される貫通溝42の軸線n2に沿った長さは、第1突起40aの高さと第3セラミック成形体10Cの湾曲部28の厚みとの合計と同じとされ、貫通溝42の軸線n2と直交する長さ(幅)は、挿入される発光物質の径の1倍~3倍の長さが必要であるため、内接する円の直径がφ0.25mm~φ0.9mmとされている。 The length along the axis n2 of the through groove 42 formed on the joint surface 12c of the third ceramic molded body 10C is the sum of the height of the first protrusion 40a and the thickness of the curved portion 28 of the third ceramic molded body 10C. Since the length (width) orthogonal to the axis n2 of the through groove 42 is required to be 1 to 3 times the diameter of the light emitting material to be inserted, the diameter of the inscribed circle is φ0. 25 mm to φ0.9 mm.
 図19のステップS302において、2つの第3セラミック成形体10Cを接合する。具体的には、セラミック粉末、溶媒、バインダ等を混合して接合スラリー32を調製(ステップS302a)した後、一方の第3セラミック成形体10Cの接合面12cのうち、貫通溝42を除く部分に接合スラリー32を塗布(供給)する(ステップS302b)。その後、2つの第3セラミック成形体10Cの接合面12c同士を合わせて圧着することで第4接合体30D(図22A参照)を得る(ステップS302c)。 In step S302 of FIG. 19, two third ceramic molded bodies 10C are joined. Specifically, after mixing a ceramic powder, a solvent, a binder, and the like to prepare a bonding slurry 32 (step S302a), a portion of the bonding surface 12c of one third ceramic molded body 10C excluding the through groove 42 is prepared. The joining slurry 32 is applied (supplied) (step S302b). After that, the fourth bonded body 30D (see FIG. 22A) is obtained by bonding and bonding the bonding surfaces 12c of the two third ceramic molded bodies 10C together (step S302c).
 そして、図19のステップS303において、第4接合体30Dを焼成して焼結体(第4セラミックチューブ24D)を得る。第4セラミックチューブ24Dは、図22B又は図23に示すように、中央部に湾曲部28の接合及び焼成による発光部34と、発光部34の両端にそれぞれ一体に形成された電極導入部36とを有し、内部に一方の電極導入部36から他方の電極導入部36にかけて連通する中空部37が形成された形状を有する。第4セラミックチューブ24Dの発光部34には2つの第3セラミック成形体10Cの各接合面12cに形成された貫通溝42による第4貫通孔38d(貫通溝42同士が対向することによる貫通孔)が形成される。この第4貫通孔38dは、第4セラミックチューブ24Dを例えば発光管として作製する過程において、発光部30内に発光物質を導入するための導入孔として使用される。第4セラミックチューブ24Dの突起においても、図22Bに示す構成の場合は、突起50の突出量を、発光部34の最大直径の1/20~10/20の範囲が好ましく、さらに好ましくは2/20~5/20である。また、図23に示す構成の場合は、突起50の突出量を短くすることができ、ランプ化する際、小型化が可能となり、他の物体への接触や破損が生じ難くなる。しかも、先端部が図22Bの場合よりも発光部34に近くなることから、該先端部が最冷点となることを回避することができ、発光管として使用した際に、封止部分への腐食等を防止することができ、信頼性の向上につながる。 In step S303 in FIG. 19, the fourth bonded body 30D is fired to obtain a sintered body (fourth ceramic tube 24D). As shown in FIG. 22B or FIG. 23, the fourth ceramic tube 24D includes a light emitting part 34 formed by joining and firing a curved part 28 at the center part, and an electrode introducing part 36 integrally formed at both ends of the light emitting part 34, respectively. And has a shape in which a hollow part 37 communicating from one electrode introduction part 36 to the other electrode introduction part 36 is formed. The light emitting portion 34 of the fourth ceramic tube 24D has a fourth through hole 38d formed by a through groove 42 formed in each joint surface 12c of the two third ceramic molded bodies 10C (through hole due to the through grooves 42 facing each other). Is formed. The fourth through hole 38d is used as an introduction hole for introducing a luminescent substance into the light emitting unit 30 in the process of manufacturing the fourth ceramic tube 24D as an arc tube, for example. Also in the protrusion of the fourth ceramic tube 24D, in the case of the configuration shown in FIG. 22B, the protrusion amount of the protrusion 50 is preferably in the range of 1/20 to 10/20 of the maximum diameter of the light emitting portion 34, more preferably 2 / 20 to 5/20. In the case of the configuration shown in FIG. 23, the protrusion amount of the protrusion 50 can be shortened, and when the lamp is formed, the size can be reduced, and contact with or damage to other objects hardly occurs. Moreover, since the tip portion is closer to the light emitting portion 34 than in the case of FIG. 22B, it is possible to avoid the tip portion from becoming the coldest point, and when used as a light emitting tube, Corrosion and the like can be prevented, leading to improved reliability.
 この第4製造方法においても、上述した第1製造方法と同様に、ドリルで孔空け加工をする必要がなくなり、製造工程の簡略化、工数の低減化、スループットの向上、歩留まりの向上を図ることができ、発光物質を導入するための第4貫通孔38dを有する第4セラミックチューブ24Dの生産性の向上を実現することができる。また、上述した第3製造方法と同様に、発光物質の導入やガスの排気が容易になり、しかも、容易に第4貫通孔38dを封止することもできる。特に、この第4製造方法では、用意する鋳込み型として、第3セラミック成形体10Cを作製するための第3鋳込み型18Cのみでよいため、さらにコストの低廉化につながる。 In the fourth manufacturing method, similarly to the first manufacturing method described above, it is not necessary to perform drilling with a drill, and the manufacturing process is simplified, man-hours are reduced, throughput is improved, and yield is improved. Thus, the productivity of the fourth ceramic tube 24D having the fourth through hole 38d for introducing the luminescent material can be improved. Further, similarly to the third manufacturing method described above, the introduction of the luminescent material and the exhaust of the gas are facilitated, and the fourth through hole 38d can be easily sealed. In particular, in the fourth manufacturing method, since only the third casting mold 18C for producing the third ceramic molded body 10C is required as the casting mold to be prepared, the cost is further reduced.
 上述の例では、2つの第3セラミック成形体10Cの各湾曲部28の高さを同じにして、発光部34の中間部分に円筒状の突起50を形成した例を示したが、その他、上述した図6Aの場合と同様に、例えば一方の第3セラミック成形体10Cの湾曲部28の高さを、他方の第3セラミック成形体10Cの湾曲部28の高さよりも大きくしてもよい。その逆でもよい。この場合、第4セラミックチューブ24dとした際に、円筒状の突起50は、発光部34の中間部分から一方の電極導入部36寄りあるいは他方の電極導入部36寄りの偏心した位置に形成されることになる。 In the above-described example, the example in which the cylindrical protrusions 50 are formed in the intermediate portion of the light emitting unit 34 with the heights of the curved portions 28 of the two third ceramic molded bodies 10C being the same is shown. Similarly to the case of FIG. 6A, for example, the height of the curved portion 28 of one third ceramic molded body 10C may be made larger than the height of the curved portion 28 of the other third ceramic molded body 10C. The reverse is also possible. In this case, when the fourth ceramic tube 24d is formed, the cylindrical protrusion 50 is formed at an eccentric position near the one electrode introduction portion 36 or the other electrode introduction portion 36 from the intermediate portion of the light emitting portion 34. It will be.
 ここで、本実施の形態に係る製造方法に使用される材料等の好ましい態様について説明する。なお、上述した第1製造方法~第4製造方法を一括していう場合は、単に「製造方法」と記す。また、上述した第1セラミック成形体10A~第4セラミック成形体10Dを区別して称しない場合は、単に「セラミック成形体10」と記し、接合面12a~接合面12dを区別して称しない場合は、単に「接合面12」と記し、第1貫通孔38a~第4貫通孔38dを区別して称しない場合は、単に「貫通孔38」と記す。 Here, preferable modes of materials and the like used in the manufacturing method according to the present embodiment will be described. Note that the above-described first to fourth manufacturing methods are collectively referred to as “manufacturing method”. Further, when the first ceramic molded body 10A to the fourth ceramic molded body 10D are not distinguished and referred to, they are simply referred to as “ceramic molded body 10”, and when the joint surfaces 12a to 12d are not distinguished and referred to, When the first through hole 38a to the fourth through hole 38d are not distinguished and referred to simply as “joining surface 12”, they are simply referred to as “through hole 38”.
(セラミック成形体)
 上述した製造方法ではセラミック成形体10を用意する。セラミック成形体10の製法は従来各種の方法が公知であり、こうした方法を用いて容易に取得することができる。セラミック成形体10の製法としては、例えば鋳込み型に無機粉末と有機化合物とを含む成形スラリー16を鋳込み、有機化合物相互の化学反応、例えば分散媒とゲル化剤若しくはゲル化剤相互の化学反応により固化させた後、離型するゲルキャスト法により準備することができる。このような成形スラリー16は、原料粉末のほか、分散媒、ゲル化剤を含み、粘性や固化反応調整のため分散剤、触媒を含んでいてもよい。以下、これらの各種成分について説明する。
(Ceramic molded body)
In the manufacturing method described above, the ceramic molded body 10 is prepared. Various methods are conventionally known for producing the ceramic molded body 10 and can be easily obtained using such methods. As a manufacturing method of the ceramic molded body 10, for example, a molding slurry 16 containing an inorganic powder and an organic compound is cast into a casting mold, and a chemical reaction between organic compounds, for example, a chemical reaction between a dispersion medium and a gelling agent or a gelling agent. After solidifying, it can be prepared by a gel casting method for releasing the mold. Such a forming slurry 16 contains a dispersion medium and a gelling agent in addition to the raw material powder, and may contain a dispersing agent and a catalyst for adjusting viscosity and solidification reaction. Hereinafter, these various components will be described.
(原料粉末)
 セラミック成形体10に含まれるセラミック粉末としては、アルミナ、窒化アルミニウム、ジルコニア、YAG及びこれらの2種以上の混合物を例示することができる。焼結性や特性改善のための焼結助剤としては、酸化マグネシウムが挙げられるが、ZrO、Y、La及びScが好ましいものとして挙げられる。
(Raw material powder)
Examples of the ceramic powder contained in the ceramic molded body 10 include alumina, aluminum nitride, zirconia, YAG, and a mixture of two or more thereof. Examples of the sintering aid for improving the sinterability and characteristics include magnesium oxide, and ZrO 2 , Y 2 O 3 , La 2 O 3 and Sc 2 O 3 are preferable.
(分散媒)
 分散媒としては、反応性の分散媒を用いることが好ましい。例えば、反応性官能基を有する有機分散媒を用いることが好ましい。反応性官能基を有する有機分散媒は、後述するゲル化剤と化学結合し、すなわち、成形スラリー16を固化可能な液状物質であること、及び注型が容易な高流動性の成形スラリー16を形成できる液状いずれかの物質であること、の2つの条件を満たすことが好ましい。ゲル化剤と化学結合し、成形スラリー16を固化するためには、反応性官能基、すなわち、水酸基、カルボキシル基、アミノ基のようなゲル化剤と化学結合を形成し得る官能基を分子内に有していることが好ましい。
(Dispersion medium)
As the dispersion medium, it is preferable to use a reactive dispersion medium. For example, it is preferable to use an organic dispersion medium having a reactive functional group. The organic dispersion medium having a reactive functional group is chemically bonded to a gelling agent to be described later, that is, a liquid substance capable of solidifying the molding slurry 16, and a highly fluid molding slurry 16 that is easy to cast. It is preferable to satisfy the two conditions of being any liquid substance that can be formed. In order to chemically bond with the gelling agent and solidify the molding slurry 16, a reactive functional group, that is, a functional group capable of forming a chemical bond with the gelling agent such as a hydroxyl group, a carboxyl group, or an amino group is formed in the molecule. It is preferable to have.
 一方、注型が容易な高流動性のある成形スラリー16を形成するには、可能な限り粘性の低い有機分散媒を用いることが好ましく、特に、温度20℃における粘度が20cps以下の物質を使用することが好ましい。 On the other hand, in order to form the molding slurry 16 having high fluidity that can be easily cast, it is preferable to use an organic dispersion medium having a viscosity as low as possible, and in particular, a substance having a viscosity of 20 cps or less at a temperature of 20 ° C. is used. It is preferable to do.
 また、多価アルコールや多塩基酸も成形スラリー16を大きく増粘させない程度の量であれば、強度補強のために使用することは有効である。 Further, if the amount of polyhydric alcohol or polybasic acid is an amount that does not greatly increase the viscosity of the molding slurry 16, it is effective to use it for strength reinforcement.
(ゲル化剤)
 ゲル化剤は、分散媒に含まれる反応性官能基と反応して固化反応を引き起こすものであり、例えば国際公開第2002/085590号パンフレットに記載されているが、以下を例示するものも用いることができる。
(Gelling agent)
The gelling agent reacts with a reactive functional group contained in the dispersion medium to cause a solidification reaction, and is described in, for example, International Publication No. 2002/085590 pamphlet. Can do.
 ゲル化剤の反応性官能基は、溝形状を維持しつつ接合を行うために、固化反応を引き起こした後、後に述べる接合スラリー等に溶解して溝形状が変形したりせず、接合の際の荷重で変形しないだけの強度が得られるものが望ましい。こういった観点より、特に固化反応後の耐溶剤性の高く、加えて反応性分散材との反応性が高いイソシアナート基(-N=C=O)、及び/又はイソチオシアナート基(-N=C=S)を有するゲル化剤を選択することが好ましい。 The reactive functional group of the gelling agent does not cause deformation of the groove shape by causing a solidification reaction and then deforming the groove shape in order to perform bonding while maintaining the groove shape. It is desirable to have a strength sufficient to prevent deformation with a load of. From this point of view, an isocyanate group (—N═C═O) and / or an isothiocyanate group (—having a high solvent resistance after the solidification reaction and a high reactivity with the reactive dispersion material in particular. It is preferred to select a gelling agent having N = C = S).
 セラミック成形体10を製造するための成形スラリー16は、特開2008-44344号公報や、国際公開第2002/085590号パンフレットに記載されている内容を例示できるが、例えば、以下のようにして調製することができる。すなわち、まず、分散媒に原料粉末を分散させて成形スラリー16とした後、ゲル化剤を添加するか、あるいは分散媒に原料粉末とゲル化剤とを同時に添加して分散して成形スラリー16とすることができる。 The molding slurry 16 for producing the ceramic molded body 10 can be exemplified by the contents described in Japanese Patent Application Laid-Open No. 2008-44344 and International Publication No. 2002/085590, for example, prepared as follows. can do. That is, first, the raw material powder is dispersed in the dispersion medium to form the molding slurry 16, and then the gelling agent is added, or the raw material powder and the gelling agent are added to the dispersion medium simultaneously and dispersed to form the molding slurry 16. It can be.
(接合スラリー)
 接合体を得るには、セラミック成形体10同士を接合するための接合スラリー32を用意する。接合スラリー32は、化学反応により固化しない非自己硬化性のスラリーであることが好ましい。非自己硬化性のスラリーであることにより、表面張力が作用した状態で接合スラリー32の層を形成するため、容易に接合スラリー32の層の形状を制御して、接合後に得られる細孔の詰まり、変形を防止できるようになる。
(Joining slurry)
In order to obtain a bonded body, a bonding slurry 32 for bonding the ceramic molded bodies 10 to each other is prepared. The joining slurry 32 is preferably a non-self-curing slurry that does not solidify due to a chemical reaction. Since it is a non-self-curing slurry, a layer of the bonding slurry 32 is formed in a state in which surface tension is applied. Therefore, the shape of the layer of the bonding slurry 32 is easily controlled to clog pores obtained after bonding. , It will be possible to prevent deformation.
 接合スラリー32には、既に説明した成形スラリー16に用いることのできる原料粉末、非反応性分散媒のほか、ポリビニルアセタール樹脂及びエチルセルロース等の各種バインダを用いることができる。 As the joining slurry 32, various binders such as polyvinyl acetal resin and ethyl cellulose can be used in addition to the raw material powder and the non-reactive dispersion medium that can be used for the molding slurry 16 described above.
 接合スラリー32は、原料粉末、溶媒、バインダをトリロールミル、ポットミル等を用いる通常のセラミックスペーストやスラリーの製造方法を用いて混合することにより得ることができる。分散剤や有機溶剤は適宜混合することができる。具体的には、ブチルカルビトール、酢酸ブチルカルビトール及びテルピネオール等を用いることができる。温度20℃における接合スラリー32の粘度は、10000cps以上、400000cps以下であることが好ましい。この範囲であると、接合の際、接合スラリー32の層が適度に変形するため、接合スラリー32の層に気泡が残ることを防止でき、加えて、接合スラリー32の層を形成するのに都合がよい表面張力を維持できるため、セラミック成形体10の溝が埋まってしまうことを回避できるからである。より好ましくは30000cps以上、200000cps以下である。この範囲であると、接合スラリー32の供給形状を鮮明にできるため、特に貫通孔38の径がφ0.6mm以下であるような場合においても、接合後の貫通孔38が接合スラリー32の変形、はみ出しにより、埋まってしまうことがなくなり、所望の形状に制御することが可能となる。 The joining slurry 32 can be obtained by mixing the raw material powder, the solvent, and the binder by using a normal ceramic paste or slurry manufacturing method using a tri-roll mill, a pot mill, or the like. A dispersant and an organic solvent can be appropriately mixed. Specifically, butyl carbitol, butyl carbitol acetate, terpineol, or the like can be used. The viscosity of the bonding slurry 32 at a temperature of 20 ° C. is preferably 10,000 cps or more and 400,000 cps or less. Within this range, the bonding slurry 32 layer is appropriately deformed during bonding, so that bubbles can be prevented from remaining in the bonding slurry 32 layer. In addition, it is convenient for forming the bonding slurry 32 layer. This is because a good surface tension can be maintained, so that the groove of the ceramic molded body 10 can be avoided from being filled. More preferably, it is 30000 cps or more and 200000 cps or less. In this range, since the supply shape of the joining slurry 32 can be made clear, even when the diameter of the through hole 38 is φ0.6 mm or less, the through hole 38 after joining is deformed of the joining slurry 32, By protruding, it is not buried and can be controlled to a desired shape.
(接合体の作製)
 次に、用意した2以上のセラミック成形体10を接合スラリー32を用いて接合して、接合体を作製する。
(Preparation of joined body)
Next, the prepared two or more ceramic molded bodies 10 are joined using the joining slurry 32 to produce a joined body.
(接合スラリーの層の形成工程)
 接合体を得るには、先ず、接合しようとする2以上のセラミック成形体10の互いに接合しようとする接合面12の間に、表面張力が作用する状態を維持して、接合スラリー32の層を形成する。また、その際、セラミック成形体10に設けた溝部分には接合スラリー32を供給しないことが接合後に貫通孔38の詰まりや変形を防止する観点から望ましい。
(Joint slurry layer forming process)
In order to obtain a bonded body, first, a layer of the bonding slurry 32 is formed by maintaining a state in which surface tension acts between the bonding surfaces 12 of the two or more ceramic molded bodies 10 to be bonded to each other. Form. At this time, it is desirable not to supply the joining slurry 32 to the groove portion provided in the ceramic molded body 10 from the viewpoint of preventing clogging or deformation of the through hole 38 after joining.
 セラミック成形体10の接合面12間に接合スラリー32を供給するには、ディスペンサー、ディッピング、スプレー、スクリーン印刷、メタルマスク印刷等の公知の手法を利用できる。 In order to supply the bonding slurry 32 between the bonding surfaces 12 of the ceramic molded body 10, known methods such as dispenser, dipping, spraying, screen printing, and metal mask printing can be used.
 例えば、セラミック成形体10の接合面12上に供給される接合スラリー32の層の厚みが200μm以下(好ましくは10μm以上)であるときには、スクリーン印刷によって接合スラリー32を供給することが好ましい。スクリーン印刷によれば接合スラリー32を高精度に、且つ、均一厚さに供給することができ、また、スクリーン製版のパターンを適宜設計することで、成形体の溝の部分には接合スラリー32を供給しないといった供給箇所の選択ができ、貫通孔38の詰まりや変形を防止することができる。このために、接合スラリー32のはみ出しによる詰まりや変形のない精度の良い貫通孔38を得ることができる。接合スラリー32の層の厚みは、薄すぎると気泡が残り易く、また厚すぎると接合の際の接合スラリー32の変形により貫通孔38が詰まり易くなるため、これらを回避し、所望の形状とするためには、接合後の接合スラリー32の層の厚みは5μm~100μmとすることが好ましく、この範囲に収まるよう供給する接合スラリー32の量を調整することが好ましい。特に貫通孔38の径がφ0.6mm以下であるような場合においては、接合後の接合スラリー32の層の厚みが5μm~40μmとすることが好ましく、この範囲に収まるよう供給する接合スラリー32の量を調整することが好ましい。 For example, when the thickness of the layer of the bonding slurry 32 supplied onto the bonding surface 12 of the ceramic molded body 10 is 200 μm or less (preferably 10 μm or more), it is preferable to supply the bonding slurry 32 by screen printing. According to the screen printing, the joining slurry 32 can be supplied with high precision and uniform thickness, and the joining slurry 32 can be formed in the groove portion of the molded body by appropriately designing the screen plate-making pattern. The supply location such as no supply can be selected, and clogging or deformation of the through hole 38 can be prevented. For this reason, it is possible to obtain an accurate through-hole 38 that is free from clogging and deformation due to protrusion of the joining slurry 32. If the thickness of the layer of the joining slurry 32 is too thin, bubbles are likely to remain. If the thickness is too thick, the through-holes 38 are likely to be clogged due to deformation of the joining slurry 32 during joining. Therefore, the thickness of the layer of the bonding slurry 32 after bonding is preferably 5 μm to 100 μm, and the amount of the bonding slurry 32 to be supplied is preferably adjusted so as to be within this range. In particular, when the diameter of the through hole 38 is φ0.6 mm or less, the thickness of the layer of the bonding slurry 32 after bonding is preferably 5 μm to 40 μm, and the bonding slurry 32 supplied so as to fall within this range is used. It is preferable to adjust the amount.
 接合スラリー32の表面張力が作用する状態を維持して、気泡の発生のない該接合スラリー32による層を形成するには、接合の際、接合スラリー32をある程度変形させる必要があるため、セラミック成形体10の接合面12間あるいは接合面12に接合スラリー32を供給した後、乾燥することなく、セラミック成形体10の接合面12間を意図した距離に保持すればよい。接合スラリー32が非自己硬化性である場合には、接合面12等に接合スラリー32を供給後、乾燥前にあっては、一定期間、表面張力によって保持されるが、外からの力によって変形可能な状態が維持され易いからである。 In order to maintain the surface tension of the bonding slurry 32 and to form a layer of the bonding slurry 32 without generating bubbles, the bonding slurry 32 needs to be deformed to some extent during bonding. What is necessary is just to hold | maintain between the joining surfaces 12 of the ceramic molded body 10 at the intended distance, without drying, after supplying the joining slurry 32 between the joining surfaces 12 of the body 10, or the joining surface 12. FIG. When the bonding slurry 32 is non-self-curing, after being supplied to the bonding surface 12 and the like and before drying, it is held for a certain period by surface tension, but deformed by external force. This is because a possible state is easily maintained.
 特に、接合面12に直交する方向に負荷する荷重の程度及び/又は接合面12間に距離を確保することで、容易に接合スラリー32の層の厚みを制御でき、所望の厚みの接合スラリー32の層が得られ易くなり、詰まりや変形のない所望形状の貫通孔38が得られ易くなる。 In particular, it is possible to easily control the thickness of the layer of the bonding slurry 32 by securing the degree of the load applied in the direction orthogonal to the bonding surface 12 and / or the distance between the bonding surfaces 12, and the bonding slurry 32 having a desired thickness. This makes it easier to obtain a through hole 38 having a desired shape without clogging or deformation.
(乾燥工程)
 接合スラリー32の層を対向配置したセラミック成形体10の接合面12間に形成したら、この接合スラリー32の層を乾燥する。乾燥工程は、接合スラリー32の組成や供給量等に応じて適宜設定することができる。通常、温度40℃以上200℃以下で5~120分程度行うことができる。また、乾燥中、接合面12に直交する方向に荷重を負荷することで、接合スラリー32の層の乾燥収縮による気泡発生を抑えつつ、所望の厚みの接合スラリー32の層が得られ易くなる。
(Drying process)
When the layer of the bonding slurry 32 is formed between the bonding surfaces 12 of the ceramic molded body 10 arranged to face each other, the layer of the bonding slurry 32 is dried. The drying process can be appropriately set according to the composition and supply amount of the bonding slurry 32. Usually, it can be carried out at a temperature of 40 ° C. or more and 200 ° C. or less for about 5 to 120 minutes. Further, by applying a load in a direction orthogonal to the bonding surface 12 during drying, it is easy to obtain a layer of the bonding slurry 32 having a desired thickness while suppressing generation of bubbles due to drying shrinkage of the layer of the bonding slurry 32.
 こうして得られた接合体は、少なくとも2つのセラミック成形体10が接合スラリー32の層が乾燥した接合部(乾燥後)によって接合され、予めセラミック成形体10に設けられた溝によって貫通孔のある状態となっている。なお、以上説明した接合体の作製においては、2つのセラミック成形体10を接合する場合について説明したが、これに限定するものではなく、3つ以上のセラミック成形体10を、同時にあるいは逐次、接合スラリー32の層を形成して接合して接合体を得ることもできる。 The thus obtained joined body is a state in which at least two ceramic molded bodies 10 are joined by a joined portion (after drying) in which the layer of the joining slurry 32 is dried, and through holes are provided in advance by grooves provided in the ceramic molded body 10. It has become. In the production of the joined body described above, the case where two ceramic molded bodies 10 are joined has been described. However, the present invention is not limited to this, and three or more ceramic molded bodies 10 can be joined simultaneously or sequentially. A layer of the slurry 32 can be formed and bonded to obtain a bonded body.
(焼結体(セラミックチューブ)の作製)
 次に、接合体を焼成してセラミック成形体10及び接合部(乾燥後)中の焼結性成分を焼結させて焼結体を得る。焼結工程に先立って、接合体を脱脂又は仮焼することができる。
(Production of sintered body (ceramic tube))
Next, the joined body is fired to sinter the sinterable component in the ceramic molded body 10 and the joined portion (after drying) to obtain a sintered body. Prior to the sintering step, the joined body can be degreased or calcined.
[第1実施例]
 実施例1~4、比較例1及び2に係る製造方法で作製した焼結体(セラミックチューブ)のクラックの発生状況、発光部のリーク量を測定した。
[First embodiment]
The occurrence of cracks in the sintered bodies (ceramic tubes) produced by the production methods according to Examples 1 to 4 and Comparative Examples 1 and 2 and the amount of leakage of the light emitting part were measured.
(実施例1)
 図7に示す第2製造方法に基づいて、図9Bに示す10個の第2セラミックチューブ24Bを作製した。
Example 1
Based on the second manufacturing method shown in FIG. 7, ten second ceramic tubes 24B shown in FIG. 9B were produced.
 先ず、第1セラミック成形体10A(図8参照)を作製するための成形スラリー16を以下のようにして調製した。すなわち、原料粉末としてアルミナ粉末100重量部及びマグネシア0.025重量部、分散媒として多塩基酸エステル30重量部、ゲル化剤としてMDI樹脂4重量部、分散剤2重量部、触媒としてトリエチルアミン0.2重量部を混合して成形スラリー16とした。 First, a molding slurry 16 for producing the first ceramic molded body 10A (see FIG. 8) was prepared as follows. That is, 100 parts by weight of alumina powder as a raw material powder and 0.025 part by weight of magnesia, 30 parts by weight of a polybasic acid ester as a dispersion medium, 4 parts by weight of MDI resin as a gelling agent, 2 parts by weight of a dispersant, 0. 2 parts by weight were mixed to form a molding slurry 16.
 この成形スラリー16を、アルミニウム合金製の第1鋳込み型18A(図3A参照)に室温で注型後、室温で1時間放置し、固化してから離型した。さらに、室温、次いで温度90℃のそれぞれの温度にて2時間放置して、20個の第1セラミック成形体10Aを得た。なお、第1セラミック成形体10Aの各接合面12aの外周部分及び内周部分に対する面取り(例えばR面)は、半径0.05~0.15mmの範囲で実施した。 The molding slurry 16 was cast in an aluminum alloy first casting mold 18A (see FIG. 3A) at room temperature, left at room temperature for 1 hour, solidified, and then released. Further, it was allowed to stand at room temperature and then at a temperature of 90 ° C. for 2 hours to obtain 20 first ceramic molded bodies 10A. The chamfering (for example, the R surface) of the outer peripheral portion and the inner peripheral portion of each joint surface 12a of the first ceramic molded body 10A was performed within a radius of 0.05 to 0.15 mm.
 接合スラリー32は次のようにして調製した。すなわち、原料粉末としてアルミナ粉末100重量部、マグネシア0.025重量部、テルピネオール100重量部、ブチルカルビトール30重量部、ポリビニルアセタール樹脂8重量部を混合して接合スラリー32とした。 The joining slurry 32 was prepared as follows. That is, 100 parts by weight of alumina powder, 0.025 parts by weight of magnesia, 100 parts by weight of terpineol, 30 parts by weight of butyl carbitol, and 8 parts by weight of polyvinyl acetal resin were mixed as a raw material powder to form a joining slurry 32.
 スクリーン製版として、乳剤厚さ100μm、#290メッシュを有し、図24に示すように、第1セラミック成形体10Aの溝14に対応した切欠き60を有するリング形状のパターン62(内径12.8mm、外径13.7mm)を有するスクリーン製版を用いた。そして、スクリーン製版が第1セラミック成形体10Aの接合面12a(内径12.5mm、外径14.0mm)に平行になるようにスクリーン印刷機のステージに固定し、スクリーン製版との位置合わせをした。次いで、調製した接合スラリー32を、スクリーン製版を用いてスクリーン印刷機にて第1セラミック成形体10Aの接合面12aに供給した。その後、それぞれ一対の第1セラミック成形体10Aの接合面12aを圧着し、温度95℃の乾燥器で15分乾燥させて、10個の第2接合体30B(図9A参照)を作製した。 As the screen plate making, an emulsion thickness of 100 μm, # 290 mesh, and a ring-shaped pattern 62 (inner diameter 12.8 mm) having notches 60 corresponding to the grooves 14 of the first ceramic molded body 10A as shown in FIG. And a screen plate having an outer diameter of 13.7 mm). Then, the screen plate was fixed to the stage of the screen printing machine so as to be parallel to the joining surface 12a (inner diameter 12.5 mm, outer diameter 14.0 mm) of the first ceramic molded body 10A, and was aligned with the screen plate making. . Next, the prepared bonding slurry 32 was supplied to the bonding surface 12a of the first ceramic molded body 10A using a screen printing machine with a screen printing machine. Thereafter, the bonding surfaces 12a of the pair of first ceramic molded bodies 10A were respectively pressure-bonded and dried for 15 minutes with a drier at a temperature of 95 ° C., thereby producing ten second bonded bodies 30B (see FIG. 9A).
 次いで、上述のようにして作製した第2接合体30Bを大気中において温度1200℃で仮焼した後、水素:窒素=3:1の雰囲気中において温度1800℃で焼成し、緻密化及び透光化させた。この結果、図9Bに示すように、発光部34に第2貫通孔38bを有し、発光部34の外径が11mm、電極導入部36の長さが17mmの焼結体(第2セラミックチューブ24B)を得た。 Next, the second bonded body 30B manufactured as described above is calcined in the atmosphere at a temperature of 1200 ° C., and then fired at a temperature of 1800 ° C. in an atmosphere of hydrogen: nitrogen = 3: 1, thereby densifying and translucent. Made it. As a result, as shown in FIG. 9B, the light emitting portion 34 has a second through hole 38b, the light emitting portion 34 has an outer diameter of 11 mm, and the electrode introduction portion 36 has a length of 17 mm (second ceramic tube). 24B) was obtained.
 得られた10個の実施例1に係る焼結体(第2セラミックチューブ24B)は、いずれもクラックや変形は認められなかった。水中急冷法で耐熱衝撃性を評価したところ、各焼結体は、温度150℃でもクラックが発生せず、第2貫通孔38bのない同形状のセラミックチューブと同じレベルであった。さらに、これらの焼結体について、耐熱衝撃性評価のあと、発光部34に形成された第2貫通孔38bをふさいでHe(ヘリウム)リーク測定機にて発光部34のリーク量を測定したところ、いずれも1×10-8atm・cc/秒以下であった。 None of the ten sintered bodies (second ceramic tube 24B) obtained in Example 1 were found to be cracked or deformed. When the thermal shock resistance was evaluated by an underwater quenching method, each sintered body did not generate cracks even at a temperature of 150 ° C., and was at the same level as a ceramic tube having the same shape without the second through hole 38b. Further, for these sintered bodies, after the thermal shock resistance evaluation, the second through-hole 38b formed in the light emitting portion 34 is blocked, and the leakage amount of the light emitting portion 34 is measured with a He (helium) leak measuring machine. , Both were 1 × 10 −8 atm · cc / sec or less.
(実施例2)
 図19に示す第4製造方法に基づいて、図22Bに示す10個の実施例2に係る焼結体(第4セラミックチューブ24D)を作製した。
(Example 2)
Based on the 4th manufacturing method shown in FIG. 19, the 10 sintered compacts (4th ceramic tube 24D) which concern on Example 2 shown to FIG. 22B were produced.
 先ず、成形スラリー16を上述した実施例1と同様にして調製し、この成形スラリー16を、アルミニウム合金製の第3鋳込み型18C(図12A参照)に室温で注型後、室温で1時間放置し、固化してから離型した。さらに、室温、次いで温度90℃のそれぞれの温度にて2時間放置して、20個の第3セラミック成形体10Cを得た。各第3セラミック成形体10Cの第1突起40aは、焼成収縮後の寸法において、突出量が4.0mm、外側の幅が0.9mm、貫通溝42の幅は0.3mmとなるよう調整した。この場合も、第3セラミック成形体10Cの各接合面12cの外周部分及び内周部分に対して面取りを行った。 First, a molding slurry 16 was prepared in the same manner as in Example 1 described above, and this molding slurry 16 was cast into a third casting mold 18C (see FIG. 12A) made of an aluminum alloy at room temperature and left at room temperature for 1 hour. Then, after solidifying, the mold was released. Furthermore, it was left to stand at room temperature and then at a temperature of 90 ° C. for 2 hours to obtain 20 third ceramic molded bodies 10C. The first protrusions 40a of each third ceramic molded body 10C were adjusted so that the projecting amount was 4.0 mm, the outer width was 0.9 mm, and the width of the through groove 42 was 0.3 mm in the dimensions after firing shrinkage. . Also in this case, the outer peripheral portion and the inner peripheral portion of each joint surface 12c of the third ceramic molded body 10C were chamfered.
 接合スラリー32を上述した実施例1と同様にして調製し、調製した接合スラリー32を、スクリーン製版を用いてスクリーン印刷機にて第3セラミック成形体10Cの接合面12aに供給した。スクリーン製版は、実施例1の場合と同様に、乳剤厚さ100μm、#290メッシュとした。但し、スクリーン製版のパターンは、図25に示すように、第3セラミック成形体10Cの貫通溝42に対応した切欠き64を有し、第3セラミック成形体10Cの接合面12c(貫通溝42を除く)の形状に合わせ、互いに対向する端部にそれぞれ突起66が形成されたリング形状のパターン68とした。 The joining slurry 32 was prepared in the same manner as in Example 1 described above, and the prepared joining slurry 32 was supplied to the joining surface 12a of the third ceramic molded body 10C using a screen printing machine with a screen printing machine. As in the case of Example 1, the screen plate making was made with an emulsion thickness of 100 μm and # 290 mesh. However, as shown in FIG. 25, the screen plate-making pattern has a notch 64 corresponding to the through groove 42 of the third ceramic molded body 10C, and the joining surface 12c of the third ceramic molded body 10C (the through groove 42 is formed). To form a ring-shaped pattern 68 in which protrusions 66 are formed at opposite ends.
 そして、それぞれ一対の第3セラミック成形体10Cの接合面12cを圧着し、温度95℃の乾燥器で15分乾燥させて、10個の第4接合体30D(図22A参照)を作製した。 Then, the joint surfaces 12c of the pair of third ceramic molded bodies 10C were respectively pressure-bonded and dried for 15 minutes with a dryer having a temperature of 95 ° C., thereby producing ten fourth joined bodies 30D (see FIG. 22A).
 次いで、上述のようにして作製した第2接合体30Bを、実施例1と同様にして、仮焼成及び焼成を行って、緻密化及び透光化させた。この結果、図22Bに示すように、発光部34の外径が11mm、電極導入部36の長さが17mmであって、発光部34に、該発光部34の中間部分から外方に突出する円筒状の突起50(突出量が4.0mm、第4貫通孔38dの径が0.4mm)を有する焼結体(第4セラミックチューブ24D)を得た。 Next, the second bonded body 30B produced as described above was preliminarily fired and fired in the same manner as in Example 1 to be densified and translucent. As a result, as shown in FIG. 22B, the outer diameter of the light emitting portion 34 is 11 mm, the length of the electrode introducing portion 36 is 17 mm, and the light emitting portion 34 protrudes outward from the intermediate portion of the light emitting portion 34. A sintered body (fourth ceramic tube 24D) having a cylindrical projection 50 (projection amount is 4.0 mm and the diameter of the fourth through hole 38d is 0.4 mm) was obtained.
 得られた10個の実施例2に係る焼結体は、いずれもクラックや変形は認められなかった。水中急冷法で耐熱衝撃性を評価したところ、各焼結体は、温度150℃でもクラックが発生せず、円筒状の突起50のない同形状の発光管と同じレベルであった。さらに、これらの焼結体について、耐熱衝撃性評価のあと、Heリーク測定機にてリーク量を測定したところ、いずれも1×10-8atm・cc/秒以下であった。 None of the ten obtained sintered bodies according to Example 2 were found to be cracked or deformed. When the thermal shock resistance was evaluated by an underwater quenching method, each sintered body did not generate cracks even at a temperature of 150 ° C., and was at the same level as the arc tube having the same shape without the cylindrical protrusion 50. Furthermore, after evaluating the thermal shock resistance of these sintered bodies, the amount of leak was measured with a He leak measuring machine, and all of them were 1 × 10 −8 atm · cc / sec or less.
(実施例3)
 実施例2と同様にして、第4セラミックチューブ24Dを作製した。但し、この実施例3では、それぞれ湾曲部28の高さが異なる2つの第3セラミック成形体10Cを接合させることで、円筒状の突起50を、発光部34の中間部分から一方の電極導入部36寄りに1mmだけ偏心した位置に形成した。
(Example 3)
In the same manner as in Example 2, a fourth ceramic tube 24D was produced. However, in Example 3, two cylindrical ceramic bodies 10C each having a different height of the curved portion 28 are joined, so that the cylindrical protrusion 50 is moved from the intermediate portion of the light emitting portion 34 to one electrode introduction portion. It was formed at a position eccentric by 1 mm toward 36.
 得られた10個の実施例3に係る焼結体においては、いずれもクラックや変形は認められなかった。水中急冷法で耐熱衝撃性を評価したところ、各焼結体は、温度150℃でもクラックが発生せず、円筒状の突起50のない同形状の発光管と同じレベルであった。さらに、これらの焼結体について、耐熱衝撃性評価のあと、Heリーク測定機にてリーク量を測定したところ、いずれも1×10-8atm・cc/秒以下であった。 In the ten sintered bodies obtained in Example 3, no cracks or deformations were observed. When the thermal shock resistance was evaluated by an underwater quenching method, each sintered body did not generate cracks even at a temperature of 150 ° C., and was at the same level as the arc tube having the same shape without the cylindrical protrusion 50. Furthermore, after evaluating the thermal shock resistance of these sintered bodies, the amount of leak was measured with a He leak measuring machine, and all of them were 1 × 10 −8 atm · cc / sec or less.
(実施例4)
 実施例2と同様にして、第4セラミックチューブ24Dを作製した。但し、この実施例4では、図13に示す2つの第3セラミック成形体10Cを接合させることで、円筒状の突起50を、図16A及び図16Bに示すように、発光部34の外面を円筒状の突起50の軸線n3を含む面で切断した輪郭線52と突起50の軸線n3との関係でみたとき、輪郭線52における該輪郭線52と軸線n3との交点54での接線K2の方向と軸線n3とのなす角が45°となる方向に突出させた。
Example 4
In the same manner as in Example 2, a fourth ceramic tube 24D was produced. However, in Example 4, the two third ceramic molded bodies 10C shown in FIG. 13 are joined, so that the cylindrical protrusion 50 is formed as shown in FIGS. 16A and 16B. Direction of the tangent line K2 at the intersection 54 of the contour line 52 and the axis n3 in the contour line 52 when viewed in relation to the contour line 52 cut by the plane including the axis line n3 of the projection 50 and the axis line n3 of the projection 50 And the axis n3 are projected in a direction of 45 °.
 得られた10個の実施例4に係る焼結体においては、いずれもクラックや変形は認められなかった。水中急冷法で耐熱衝撃性を評価したところ、各焼結体は、温度160℃でもクラックが発生せず、円筒状の突起50のない同形状の発光管と同じレベルであった。さらに、これらの焼結体について、耐熱衝撃性評価のあと、Heリーク測定機にてリーク量を測定したところ、いずれも1×10-8atm・cc/秒以下であった。 In the ten sintered bodies obtained in Example 4, no cracks or deformations were observed. When the thermal shock resistance was evaluated by an underwater quenching method, each sintered body did not generate cracks even at a temperature of 160 ° C., and was at the same level as the arc tube having the same shape without the cylindrical protrusion 50. Furthermore, after evaluating the thermal shock resistance of these sintered bodies, the amount of leak was measured with a He leak measuring machine, and all of them were 1 × 10 −8 atm · cc / sec or less.
(比較例1)
 図5に示す製造方法に基づいて、10個の比較例1に係る焼結体を作製した。
(Comparative Example 1)
Ten sintered bodies according to Comparative Example 1 were produced based on the manufacturing method shown in FIG.
 先ず、成形スラリー16を上述した実施例1と同様にして調製し、この成形スラリー16を、アルミニウム合金製の第2鋳込み型18B(図3B参照)に室温で注型後、室温で1時間放置し、固化してから離型した。さらに、室温、次いで温度90℃のそれぞれの温度にて2時間放置して、20個の第2セラミック成形体10Bを得た。次いで、それぞれ一方の第2セラミック成形体10Bの各湾曲部28にドリルによる孔空け加工を行って焼成収縮後の径がφ0.4mmとなるよう調整した貫通孔を設けた。 First, a molding slurry 16 was prepared in the same manner as in Example 1 described above, and this molding slurry 16 was cast into a second casting mold 18B (see FIG. 3B) made of aluminum alloy at room temperature and left at room temperature for 1 hour. Then, after solidifying, the mold was released. Furthermore, it was allowed to stand at room temperature and then at a temperature of 90 ° C. for 2 hours to obtain 20 second ceramic molded bodies 10B. Next, each curved portion 28 of one of the second ceramic molded bodies 10B was provided with a through hole that was drilled to adjust the diameter after firing shrinkage to be φ0.4 mm.
 その後、接合スラリー32を上述した実施例1と同様にして調製し、調製した接合スラリー32を、スクリーン製版を用いてスクリーン印刷機にて、それぞれ一方の第2セラミック成形体10Bの接合面12bに供給した。そして、それぞれ一対の第2セラミック成形体10Bの接合面12bを圧着し、温度95℃の乾燥器で15分乾燥させて、10個の接合体を作製した。次いで、上述のようにして作製した接合体を、実施例1と同様にして、仮焼成及び焼成を行って10個の比較例1に係る焼結体を得た。 Thereafter, the joining slurry 32 was prepared in the same manner as in Example 1 described above, and the prepared joining slurry 32 was applied to the joining surface 12b of one second ceramic molded body 10B by using a screen printing machine with a screen printer. Supplied. And each joined surface 12b of a pair of 2nd ceramic molded object 10B was crimped | bonded, and it dried for 15 minutes with the dryer of temperature 95 degreeC, and produced 10 joined bodies. Subsequently, the joined body produced as described above was pre-fired and fired in the same manner as in Example 1 to obtain 10 sintered bodies according to Comparative Example 1.
 得られた10個の比較例1に係る焼結体は、いずれもクラックや変形は認められなかった。しかし、水中急冷法で耐熱衝撃性を評価したところ、各焼結体は、温度150℃でクラックが発生した。さらに、これらの焼結体について、耐熱衝撃性評価のあと、Heリーク測定機にてリーク量を測定したところ、いずれも1×10-8atm・cc/秒以下であった。 None of the obtained 10 sintered bodies according to Comparative Example 1 were found to be cracked or deformed. However, when the thermal shock resistance was evaluated by an underwater quenching method, cracks occurred in each sintered body at a temperature of 150 ° C. Furthermore, after evaluating the thermal shock resistance of these sintered bodies, the amount of leak was measured with a He leak measuring machine, and all of them were 1 × 10 −8 atm · cc / sec or less.
(比較例2)
 図17に示す製造方法に基づいて、10個の比較例2に係る焼結体を作製した。
(Comparative Example 2)
Based on the manufacturing method shown in FIG. 17, ten sintered bodies according to Comparative Example 2 were produced.
 先ず、比較例1と同様にして、20個の第2セラミック成形体10Bを得た。次いで、それぞれ一方の第2セラミック成形体10Bの各湾曲部28に例えばドリルによる孔空け加工を行って焼成収縮後の直径が0.9mmとなるよう調整された貫通孔を設けた。 First, in the same manner as in Comparative Example 1, 20 second ceramic molded bodies 10B were obtained. Next, each curved portion 28 of one of the second ceramic molded bodies 10B was provided with a through-hole adjusted so that the diameter after firing shrinkage was 0.9 mm by drilling with a drill, for example.
 その後、それぞれ一対の第2セラミック成形体10Bを接合した後、セラミック成形体で構成された焼成収縮後の寸法が外径φ0.9mm、内径φ0.4mmとなるよう調整されたパイプを貫通孔の部分に接合して10個の接合体を得た。次いで、上述のようにして作製した接合体を、実施例1と同様にして、仮焼成及び焼成を行って10個の比較例2に係る焼結体を得た。 Thereafter, after each pair of second ceramic molded bodies 10B are joined, pipes adjusted to have an outer diameter φ0.9 mm and an inner diameter φ0.4 mm of the ceramic molded body after firing shrinkage are connected to the through holes. Ten bonded bodies were obtained by bonding to the portion. Subsequently, the joined body produced as described above was pre-fired and fired in the same manner as in Example 1 to obtain 10 sintered bodies according to Comparative Example 2.
 得られた10個の比較例2に係る焼結体は、いずれもクラックや変形は認められなかった。しかし、水中急冷法で耐熱衝撃性を評価したところ、各焼結体は、温度140℃でクラックが発生した。さらに、これらの焼結体について、耐熱衝撃性評価のあと、Heリーク測定機にてリーク量を測定したところ、10個の焼結体のうち、2つの焼結体でリークが発生した。 No cracks or deformations were observed in any of the obtained 10 sintered bodies according to Comparative Example 2. However, when the thermal shock resistance was evaluated by an underwater quenching method, cracks occurred in each sintered body at a temperature of 140 ° C. Furthermore, after the thermal shock resistance evaluation of these sintered bodies, the amount of leak was measured with a He leak measuring machine, and leakage occurred in two of the 10 sintered bodies.
[第2実施例]
 実施例11~15、参考例1及び2について、円筒状の突起の突出量を変化させた場合の特性を確認した。
[Second Embodiment]
For Examples 11 to 15 and Reference Examples 1 and 2, the characteristics when the protruding amount of the cylindrical protrusion was changed were confirmed.
(実施例11)
 上述した実施例2と同様にして10個の実施例11に係る焼結体を作製した。円筒状の突起50の突出量を発光部34の最大直径Dの1/20(=D/20)としたこと以外は、実施例2に係る焼結体と同じである。
(Example 11)
Ten sintered bodies according to Example 11 were produced in the same manner as Example 2 described above. Except that the protrusion amount of the cylindrical protrusion 50 is set to 1/20 (= D / 20) of the maximum diameter D of the light emitting portion 34, it is the same as the sintered body according to the second embodiment.
(実施例12)
 上述した実施例2と同様にして10個の実施例12に係る焼結体を作製した。円筒状の突起50の突出量を2D/20としたこと以外は、実施例2に係る焼結体と同じである。
(Example 12)
Ten sintered bodies according to Example 12 were produced in the same manner as Example 2 described above. Except that the protrusion amount of the cylindrical protrusion 50 is 2D / 20, it is the same as the sintered body according to the second embodiment.
(実施例13)
 上述した実施例2と同様にして10個の実施例13に係る焼結体を作製した。円筒状の突起50の突出量を3D/20としたこと以外は、実施例2に係る焼結体と同じである。
(Example 13)
Ten sintered bodies according to Example 13 were produced in the same manner as Example 2 described above. Except that the protrusion amount of the cylindrical protrusion 50 is 3D / 20, it is the same as the sintered body according to the second embodiment.
(実施例14)
 上述した実施例2と同様にして10個の実施例14に係る焼結体を作製した。円筒状の突起50の突出量を5D/20としたこと以外は、実施例2に係る焼結体と同じである。
(Example 14)
Ten sintered bodies according to Example 14 were produced in the same manner as Example 2 described above. Except for the amount of protrusion of the cylindrical protrusion 50 being 5D / 20, it is the same as the sintered body according to Example 2.
(実施例15)
 上述した実施例2と同様にして10個の実施例15に係る焼結体を作製した。円筒状の突起50の突出量を10D/20としたこと以外は、実施例2に係る焼結体と同じである。
(Example 15)
Ten sintered bodies according to Example 15 were produced in the same manner as Example 2 described above. Except for the amount of protrusion of the cylindrical protrusion 50 being 10D / 20, this is the same as the sintered body according to Example 2.
(参考例1)
 上述した実施例2と同様にして10個の参考例1に係る焼結体を作製した。円筒状の突起50の突出量を0.5D/20としたこと以外は、実施例2に係る焼結体と同じである。
(Reference Example 1)
Ten sintered bodies according to Reference Example 1 were produced in the same manner as Example 2 described above. Except for the amount of protrusion of the cylindrical protrusion 50 being 0.5 D / 20, this is the same as the sintered body according to Example 2.
(参考例2)
 上述した実施例2と同様にして10個の参考例2に係る焼結体を作製した。円筒状の突起50の突出量を12D/20としたこと以外は、実施例2に係る焼結体と同じである。
(Reference Example 2)
Ten sintered bodies according to Reference Example 2 were produced in the same manner as Example 2 described above. Except for the amount of protrusion of the cylindrical protrusion 50 being 12D / 20, it is the same as the sintered body according to Example 2.
<評価>
 評価項目は以下の通りである。
<Evaluation>
The evaluation items are as follows.
  ・クラック及び変形の有無
    焼結体を得た段階の焼結体にクラック、変形が生じているかどうかを確認
  ・耐熱衝撃性
    水中急冷法で評価し、温度140℃でクラックが発生したものがあれば「×」、温度150℃でクラックが発生したものがあれば「△」、温度160℃でクラックが発生したものがあれば「○」、温度160℃でもクラックが発生したものがなければ「◎」とした。
・ Check for cracks and deformations Check if the sintered body has cracks or deformations at the stage of obtaining the sintered body ・ Heat-resistant shock resistance If evaluated by an underwater quenching method and cracks occur at a temperature of 140 ℃ “X”, “△” if there was a crack generated at a temperature of 150 ° C., “◯” if there was a crack generated at a temperature of 160 ° C., “No” if there was no crack generated at a temperature of 160 ° C. ◎ ”.
  ・リーク検査
    耐熱衝撃性評価の後に、熱融着により貫通孔をふさいでHeリーク測定機にて発光部34のリーク量を測定
    10個のうち、1×10-8atm・cc/秒を超えた個数を確認
(評価結果)
 評価結果を表1に示す。
・ Leak inspection After thermal shock resistance evaluation, cover the through hole by thermal fusion and measure the leak amount of the light emitting part 34 with a He leak measuring machine. Out of 10 pieces, it exceeds 1 × 10 −8 atm · cc / sec. Confirm the number (evaluation result)
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この評価結果から、実施例11~15共に、良好な結果が得られ、特に、実施例12~14では、耐熱衝撃性が温度160℃でもクラックが発生しなかった。一方、参考例1は、実施例11~15と比して、貫通孔に対する封止が困難であり、10個の内、3個の焼結体にリークが発生した。また、耐熱衝撃性の評価において、温度150℃でクラックが発生した。これは、熱融着による変形が発光部34にまでおよんだため、その部分が弱くなったものと考えれられる。なお、参考例2は、耐熱衝撃性の評価において、温度150℃でクラックが発生し、10個のうち、2個の焼結体にリークが発生した。これは、円筒状の突起が長すぎた結果、根元の部分の剛性が疲労によって弱くなったものと考えられる。 From this evaluation result, good results were obtained in all of Examples 11 to 15. In particular, in Examples 12 to 14, cracks did not occur even when the thermal shock resistance was 160 ° C. On the other hand, in Reference Example 1, as compared with Examples 11 to 15, sealing with respect to the through hole was difficult, and leakage occurred in 3 of the 10 sintered bodies. In the evaluation of thermal shock resistance, cracks occurred at a temperature of 150 ° C. This is thought to be because the deformation due to heat fusion reached the light emitting portion 34 and the portion was weakened. In Reference Example 2, in the evaluation of thermal shock resistance, cracks occurred at a temperature of 150 ° C., and leaks occurred in two of the ten sintered bodies. This is presumably because the rigidity of the root portion was weakened by fatigue as a result of the cylindrical protrusion being too long.
[第3実施例]
 実施例21~25、参考例11及び12について、図16A及び図16Bに示すように、交点54での接線K2の方向と突起50の軸線n3とのなす角φを変化させた場合の特性を確認した。
[Third embodiment]
With respect to Examples 21 to 25 and Reference Examples 11 and 12, as shown in FIGS. 16A and 16B, characteristics when the angle φ formed by the direction of the tangent line K2 at the intersection 54 and the axis n3 of the protrusion 50 is changed are shown. confirmed.
(実施例21)
 上述した実施例4と同様にして10個の実施例21に係る焼結体を作製した。交点54での接線K2の方向と突起50の軸線n3とのなす角φを30°としたこと以外は、実施例4に係る焼結体と同じである。
(Example 21)
Ten sintered bodies according to Example 21 were produced in the same manner as Example 4 described above. Except that the angle φ formed by the direction of the tangent line K2 at the intersection 54 and the axis n3 of the protrusion 50 is 30 °, it is the same as the sintered body according to the fourth embodiment.
(実施例22)
 上述した実施例4と同様にして10個の実施例22に係る焼結体を作製した。なす角φを40°としたこと以外は、実施例4に係る焼結体と同じである。
(Example 22)
Ten sintered bodies according to Example 22 were produced in the same manner as Example 4 described above. The sintered body according to Example 4 is the same as the sintered body except that the formed angle φ is 40 °.
(実施例23)
 上述した実施例4と同様にして10個の実施例23に係る焼結体を作製した。実施例4と同様に、なす角φを45°とした。
(Example 23)
Ten sintered bodies according to Example 23 were produced in the same manner as Example 4 described above. As in Example 4, the angle φ formed was 45 °.
(実施例24)
 上述した実施例4と同様にして10個の実施例24に係る焼結体を作製した。なす角φを50°としたこと以外は、実施例4に係る焼結体と同じである。
(Example 24)
Ten sintered bodies according to Example 24 were produced in the same manner as Example 4 described above. The sintered body according to Example 4 is the same as the sintered body except that the formed angle φ is 50 °.
(実施例25)
 上述した実施例4と同様にして10個の実施例25に係る焼結体を作製した。なす角φを60°としたこと以外は、実施例4に係る焼結体と同じである。
(Example 25)
Ten sintered bodies according to Example 25 were produced in the same manner as Example 4 described above. The sintered body according to Example 4 is the same as the sintered body except that the formed angle φ is 60 °.
(参考例11)
 上述した実施例4と同様にして10個の参考例11に係る焼結体を作製した。なす角φを20°としたこと以外は、実施例4に係る焼結体と同じである。
(Reference Example 11)
Ten sintered bodies according to Reference Example 11 were produced in the same manner as in Example 4 described above. The sintered body according to Example 4 is the same as the sintered body except that the formed angle φ is 20 °.
(参考例12)
 上述した実施例4と同様にして10個の参考例12に係る焼結体を作製した。なす角φを70°としたこと以外は、実施例4に係る焼結体と同じである。
(Reference Example 12)
Ten sintered bodies according to Reference Example 12 were produced in the same manner as in Example 4 described above. The sintered body according to Example 4 is the same as the sintered body except that the formed angle φ is 70 °.
<評価>
 評価項目は、上述した第2実施例の場合(実施例11~15、参考例1及び2)と同じであるため、ここではその説明を省略する。
<Evaluation>
Since the evaluation items are the same as in the case of the second embodiment described above (Examples 11 to 15, Reference Examples 1 and 2), description thereof is omitted here.
(評価結果)
 評価結果を表2に示す。
(Evaluation results)
The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この評価結果から、実施例21~25共に、良好な結果が得られ、耐熱衝撃性が温度160℃でもクラックが発生しなかった。なお、参考例11は、耐熱衝撃性の評価において、温度150℃でクラックが発生し、10個のうち、2個の焼結体にリークが発生した。これは突起50と発光部34とが近すぎたため、熱融着時に発光部34が変形を起こしたためと考えられる。参考例12は、耐熱衝撃性の評価において、温度160℃でクラックが発生した。 From this evaluation result, good results were obtained in all of Examples 21 to 25, and no crack was generated even when the thermal shock resistance was 160 ° C. In Reference Example 11, in thermal shock resistance evaluation, cracks occurred at a temperature of 150 ° C., and two of the ten sintered bodies leaked. This is presumably because the protrusion 50 and the light emitting portion 34 were too close, and the light emitting portion 34 was deformed during heat fusion. In Reference Example 12, cracks occurred at a temperature of 160 ° C. in the evaluation of thermal shock resistance.
 なお、本発明に係るセラミックチューブの製造方法及びセラミックチューブは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 It should be noted that the ceramic tube manufacturing method and the ceramic tube according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

Claims (10)

  1.  複数のセラミック成形体を接合して1つの高輝度放電灯用のセラミックチューブを作製するセラミックチューブの製造方法において、
     接合面(12a)に溝(14)を有する少なくとも1つのセラミック成形体(10A)を含む複数のセラミック成形体(10)を作製する成形体作製工程と、
     前記複数のセラミック成形体(10)の各接合面(12)同士を接合する成形体接合工程とを有し、
     前記溝(14)による貫通孔(38)が形成されたセラミックチューブを作製することを特徴とするセラミックチューブの製造方法。
    In a method of manufacturing a ceramic tube, a ceramic tube for a high-intensity discharge lamp is manufactured by joining a plurality of ceramic molded bodies.
    A molded body producing step of producing a plurality of ceramic molded bodies (10) including at least one ceramic molded body (10A) having a groove (14) on the joining surface (12a);
    A molded body joining step for joining the joint surfaces (12) of the plurality of ceramic molded bodies (10),
    A method for producing a ceramic tube, comprising producing a ceramic tube having a through hole (38) formed by the groove (14).
  2.  請求項1記載のセラミックチューブの製造方法において、
     前記成形体作製工程は、前記接合面(12a)に前記溝(14)を有する1つの第1セラミック成形体(10A)と、接合面(12b)に前記溝(14)を有しない1つの第2セラミック成形体(10B)とを作製し、
     前記成形体接合工程は、1つの前記第1セラミック成形体(10A)と1つの前記第2セラミック成形体(10B)とを接合することを特徴とするセラミックチューブの製造方法。
    In the manufacturing method of the ceramic tube of Claim 1,
    In the molded body manufacturing step, one first ceramic molded body (10A) having the groove (14) on the joining surface (12a) and one first ceramic body (10A) not having the groove (14) on the joining surface (12b). 2 ceramic molded body (10B),
    The said molded object joining process joins one said 1st ceramic molded object (10A) and one said 2nd ceramic molded object (10B), The manufacturing method of the ceramic tube characterized by the above-mentioned.
  3.  請求項1記載のセラミックチューブの製造方法において、
     前記成形体作製工程は、前記接合面(12a)に前記溝(14)を有する2つの第1セラミック成形体(10A)を作製し、
     前記成形体接合工程は、2つの前記第1セラミック成形体(10A)を接合する際に、前記第1セラミック成形体(10A)の各接合面(12a)に形成された前記溝(14)同士を合わせて接合することを特徴とするセラミックチューブの製造方法。
    In the manufacturing method of the ceramic tube of Claim 1,
    In the molded body production step, two first ceramic molded bodies (10A) having the groove (14) on the joining surface (12a) are produced,
    In the molded body joining step, when the two first ceramic molded bodies (10A) are joined, the grooves (14) formed on each joint surface (12a) of the first ceramic molded body (10A) are joined together. A method for manufacturing a ceramic tube, characterized by joining together.
  4.  複数のセラミック成形体を接合して1つの高輝度放電灯用のセラミックチューブを作製するセラミックチューブの製造方法において、
     接合面(12a)の一部を構成する第1突起(40a)を有し、前記接合面(12a)に前記第1突起(40a)の端部から内方にかけて連続して貫通溝(42)が形成された少なくとも1つのセラミック成形体(10C)を含む複数のセラミック成形体(10)を作製する成形体作製工程と、
     前記複数のセラミック成形体(10)の各接合面(12)同士を接合する成形体接合工程とを有し、
     前記貫通溝(42)による孔が形成されたセラミックチューブを作製することを特徴とするセラミックチューブの製造方法。
    In a method of manufacturing a ceramic tube, a ceramic tube for a high-intensity discharge lamp is manufactured by joining a plurality of ceramic molded bodies.
    A first protrusion (40a) constituting a part of the joint surface (12a) is provided, and the through groove (42) is continuously formed on the joint surface (12a) from an end portion of the first protrusion (40a) to the inside. Forming a plurality of ceramic molded bodies (10) including at least one ceramic molded body (10C) formed with:
    A molded body joining step for joining the joint surfaces (12) of the plurality of ceramic molded bodies (10),
    A method for producing a ceramic tube, comprising producing a ceramic tube having a hole formed by the through groove (42).
  5.  請求項4記載のセラミックチューブの製造方法において、
     前記成形体作製工程は、前記第1突起(40a)を有する1つの第3セラミック成形体(10C)と、接合面(12d)の一部を構成し、且つ、前記貫通溝(42)が形成されていない第2突起(40b)を有する1つの第4セラミック成形体(10D)とを少なくとも作製する成形体作製工程と、
     前記成形体接合工程は、前記第1突起(40a)と前記第2突起(40b)とをそれぞれ前記接合面(12c、12d)を合わせるようにして、前記第3セラミック成形体(10C)と前記第4セラミック成形体(10D)とを接合することを特徴とするセラミックチューブの製造方法。
    In the manufacturing method of the ceramic tube of Claim 4,
    In the molded body manufacturing step, one third ceramic molded body (10C) having the first protrusion (40a) and a part of the joining surface (12d) are formed, and the through groove (42) is formed. A molded body producing step for producing at least one fourth ceramic molded body (10D) having a second protrusion (40b) that has not been formed;
    In the molded body joining step, the first projection (40a) and the second projection (40b) are aligned with the joining surfaces (12c, 12d), respectively, and the third ceramic molded body (10C) and the A method for producing a ceramic tube, comprising joining a fourth ceramic molded body (10D).
  6.  請求項4記載のセラミックチューブの製造方法において、
     前記成形体作製工程は、前記第1突起(40a)を有する2つの第3セラミック成形体(10C)を少なくとも作製する成形体作製工程と、
     前記成形体接合工程は、前記第1突起(40a)同士をそれぞれ前記接合面(12c)を合わせるようにして、前記第3セラミック成形体(10C)を接合することを特徴とするセラミックチューブの製造方法。
    In the manufacturing method of the ceramic tube of Claim 4,
    The molded body manufacturing step includes a molded body manufacturing process of manufacturing at least two third ceramic molded bodies (10C) having the first protrusions (40a),
    In the molded body joining step, the third ceramic molded body (10C) is joined so that the first protrusions (40a) are aligned with the joining surface (12c). Method.
  7.  請求項4~6のいずれか1項に記載のセラミックチューブの製造方法において、
     前記第1突起(40a)を有する前記接合面(12c)の外周と前記第1突起(40a)における前記貫通溝(42)の軸線(n2)との交点を、前記第1突起(40a)の基点(46)としたとき、
     前記接合面(12c)の外周における前記基点(46)での接線(K1)の方向と前記貫通溝(42)の軸線(n2)とのなす角(θ)が30°~60°であることを特徴とするセラミックチューブの製造方法。
    The method for manufacturing a ceramic tube according to any one of claims 4 to 6,
    The intersection of the outer periphery of the joint surface (12c) having the first protrusion (40a) and the axis (n2) of the through groove (42) in the first protrusion (40a) is defined as the intersection of the first protrusion (40a). As a base point (46),
    The angle (θ) between the direction of the tangent (K1) at the base point (46) on the outer periphery of the joint surface (12c) and the axis (n2) of the through groove (42) is 30 ° to 60 °. A method for producing a ceramic tube characterized by the above.
  8.  請求項1~7のいずれか1項に記載のセラミックチューブの製造方法において、
     前記セラミック成形体(10)の前記接合面(12)は、軸方向に対して直交する面に平行であることを特徴とするセラミックチューブの製造方法。
    The method for manufacturing a ceramic tube according to any one of claims 1 to 7,
    The method for manufacturing a ceramic tube, wherein the joint surface (12) of the ceramic molded body (10) is parallel to a surface orthogonal to the axial direction.
  9.  複数のセラミック成形体(10)が接合されて構成され、内部において発光がなされる発光部(34)と、該発光部(34)の両側に設けられ、それぞれ電極を導入封止するための電極導入部(36)とを一体に有する高輝度放電灯用のセラミックチューブ(24C)において、
     前記発光部(34)に前記電極導入部(36)とは別に設けられ、前記発光部(34)内に発光物質を導入するための貫通孔(38c)が設けられた突起(50)を有し、
     前記突起(50)は、該突起(50)の軸線(n3)が前記セラミックチューブ(24C)の軸線(m1)に向かい、且つ、前記突起(50)の軸線(n3)と前記セラミックチューブ(24C)の軸線(m1)とのなす角が90°となる方向に突出し、
     前記突起(50)の突出量が前記発光部(34)の最大直径の1/20~10/20の範囲であることを特徴とするセラミックチューブ。
    A plurality of ceramic molded bodies (10) joined to each other, and a light emitting portion (34) that emits light inside, and electrodes provided on both sides of the light emitting portion (34) for introducing and sealing electrodes, respectively. In the ceramic tube (24C) for a high-intensity discharge lamp integrally having the introduction portion (36),
    The light emitting part (34) is provided separately from the electrode introducing part (36), and has a protrusion (50) provided with a through hole (38c) for introducing a light emitting substance into the light emitting part (34). And
    The protrusion (50) has an axis (n3) of the protrusion (50) directed toward the axis (m1) of the ceramic tube (24C), and the axis (n3) of the protrusion (50) and the ceramic tube (24C). ) Protrudes in a direction where the angle formed with the axis (m1) is 90 °,
    The ceramic tube according to claim 1, wherein a protrusion amount of the protrusion (50) is in a range of 1/20 to 10/20 of a maximum diameter of the light emitting part (34).
  10.  複数のセラミック成形体(10)が接合されて構成され、内部において発光がなされる発光部(34)と、該発光部(34)の両側に設けられ、それぞれ電極を挿通するための電極導入部(36)とを一体に有する高輝度放電灯用のセラミックチューブにおいて、
     前記発光部(34)に前記電極導入部(36)とは別に設けられ、前記発光部(34)内に発光物質を導入するための貫通孔(38c)が設けられた突起(50)を有し、
     前記発光部(34)の外面を前記突起(50)の軸線(n3)を含む面で切断した輪郭線(52)と、前記軸線(n3)との関係をみたとき、
     前記輪郭線(52)における前記輪郭線(52)と前記軸線(n3)との交点(54)での接線(K2)の方向と前記軸線(n3)とのなす角が30°~60°であることを特徴とするセラミックチューブ。
    A plurality of ceramic molded bodies (10) are joined to each other, and a light emitting section (34) that emits light inside, and an electrode introduction section that is provided on both sides of the light emitting section (34) and through which an electrode is inserted. (36) in a ceramic tube for a high-intensity discharge lamp,
    The light emitting part (34) is provided separately from the electrode introducing part (36), and has a protrusion (50) provided with a through hole (38c) for introducing a light emitting substance into the light emitting part (34). And
    When the relationship between the contour line (52) obtained by cutting the outer surface of the light emitting section (34) with a surface including the axis (n3) of the protrusion (50) and the axis (n3) is viewed,
    The angle between the direction of the tangent line (K2) at the intersection (54) of the contour line (52) and the axis (n3) in the contour line (52) and the axis (n3) is 30 ° to 60 °. A ceramic tube characterized by being.
PCT/JP2011/072112 2010-10-08 2011-09-27 Method for producing ceramic tube and ceramic tube WO2012046597A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800481735A CN103155087A (en) 2010-10-08 2011-09-27 Method for producing ceramic tube and ceramic tube
EP11830530.9A EP2626882A4 (en) 2010-10-08 2011-09-27 Method for producing ceramic tube and ceramic tube
JP2012537646A JPWO2012046597A1 (en) 2010-10-08 2011-09-27 Manufacturing method of ceramic tube and ceramic tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010228536 2010-10-08
JP2010-228536 2010-10-08

Publications (1)

Publication Number Publication Date
WO2012046597A1 true WO2012046597A1 (en) 2012-04-12

Family

ID=45927592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072112 WO2012046597A1 (en) 2010-10-08 2011-09-27 Method for producing ceramic tube and ceramic tube

Country Status (4)

Country Link
EP (1) EP2626882A4 (en)
JP (1) JPWO2012046597A1 (en)
CN (1) CN103155087A (en)
WO (1) WO2012046597A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020473A1 (en) * 2019-07-31 2021-02-04 京セラ株式会社 Ceramic package and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212156A1 (en) * 2017-05-15 2018-11-22 日本碍子株式会社 Fine particle count detector

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143738A (en) 1986-12-05 1988-06-16 Toshiba Corp Ceramic discharge lamp
JPH05334962A (en) 1992-05-29 1993-12-17 Toto Ltd Manufacture of metal vapor discharge lamp
JPH0721990A (en) 1993-02-05 1995-01-24 Ngk Insulators Ltd Ceramic discharge tube for high-pressure discharge lamp, and manufacture thereof, and sealing material used therein
JPH0855606A (en) 1994-08-15 1996-02-27 Toto Ltd Metal vapor luminous tube
WO2002085590A1 (en) 2001-04-17 2002-10-31 Ngk Insulators, Ltd. Method of manufacturing molded body, slurry for molding, core for molding, method of manufacturing core for molding, hollow ceramic molded body, and light emitting container
JP2003346723A (en) * 2002-05-30 2003-12-05 Toshiba Lighting & Technology Corp Discharge lamp and manufacturing method of the same
US20060001346A1 (en) 2004-06-30 2006-01-05 Vartuli James S System and method for design of projector lamp
JP2006164907A (en) * 2004-12-10 2006-06-22 Lecip Corp Flat type lighting system
JP2007080787A (en) * 2005-09-16 2007-03-29 Lecip Corp Flat discharge tube
JP2008021584A (en) * 2006-07-14 2008-01-31 Harison Toshiba Lighting Corp Planal fluorescent lamp
JP2008044344A (en) 2006-03-24 2008-02-28 Ngk Insulators Ltd Sintered article, luminous tube and its manufacturing method
JP2009530127A (en) 2006-03-24 2009-08-27 日本碍子株式会社 Method for producing sintered body and sintered body
JP2010514125A (en) 2006-12-20 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Metal halide lamps and ceramic burners for such lamps
JP2010514127A (en) 2006-12-20 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ceramic burner for ceramic metal halide lamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195830A (en) * 1986-02-24 1987-08-28 Ushio Inc Manufacture of discharge lamp
JP2010129442A (en) * 2008-11-28 2010-06-10 Harison Toshiba Lighting Corp Metal halide lamp
DE102008060780A1 (en) * 2008-12-05 2010-06-10 Osram Gesellschaft mit beschränkter Haftung Short arc discharge lamp and method for its manufacture

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143738A (en) 1986-12-05 1988-06-16 Toshiba Corp Ceramic discharge lamp
JPH05334962A (en) 1992-05-29 1993-12-17 Toto Ltd Manufacture of metal vapor discharge lamp
JPH0721990A (en) 1993-02-05 1995-01-24 Ngk Insulators Ltd Ceramic discharge tube for high-pressure discharge lamp, and manufacture thereof, and sealing material used therein
JPH0855606A (en) 1994-08-15 1996-02-27 Toto Ltd Metal vapor luminous tube
WO2002085590A1 (en) 2001-04-17 2002-10-31 Ngk Insulators, Ltd. Method of manufacturing molded body, slurry for molding, core for molding, method of manufacturing core for molding, hollow ceramic molded body, and light emitting container
JP2003346723A (en) * 2002-05-30 2003-12-05 Toshiba Lighting & Technology Corp Discharge lamp and manufacturing method of the same
US20060001346A1 (en) 2004-06-30 2006-01-05 Vartuli James S System and method for design of projector lamp
JP2006164907A (en) * 2004-12-10 2006-06-22 Lecip Corp Flat type lighting system
JP2007080787A (en) * 2005-09-16 2007-03-29 Lecip Corp Flat discharge tube
JP2008044344A (en) 2006-03-24 2008-02-28 Ngk Insulators Ltd Sintered article, luminous tube and its manufacturing method
JP2009530127A (en) 2006-03-24 2009-08-27 日本碍子株式会社 Method for producing sintered body and sintered body
JP2008021584A (en) * 2006-07-14 2008-01-31 Harison Toshiba Lighting Corp Planal fluorescent lamp
JP2010514125A (en) 2006-12-20 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Metal halide lamps and ceramic burners for such lamps
JP2010514127A (en) 2006-12-20 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ceramic burner for ceramic metal halide lamp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626882A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020473A1 (en) * 2019-07-31 2021-02-04 京セラ株式会社 Ceramic package and production method therefor
JPWO2021020473A1 (en) * 2019-07-31 2021-02-04
JP7174161B2 (en) 2019-07-31 2022-11-17 京セラ株式会社 Ceramic package and its manufacturing method

Also Published As

Publication number Publication date
EP2626882A4 (en) 2014-05-28
EP2626882A1 (en) 2013-08-14
JPWO2012046597A1 (en) 2014-02-24
CN103155087A (en) 2013-06-12

Similar Documents

Publication Publication Date Title
EP0751549B1 (en) High pressure discharge lamp and production method thereof
KR19990007361A (en) Ceramic sealing devices, lamps with such sealing devices, and methods of making such devices
WO2012046597A1 (en) Method for producing ceramic tube and ceramic tube
EP1568066B1 (en) High-pressure discharge lamp, and method of manufacture thereof
JP4454527B2 (en) Arc tube and high pressure discharge lamp
JP5079990B2 (en) Ceramic arc tube with integral susceptor
US6224449B1 (en) Method of forming lead-in seal in high pressure discharge lamps
JP4692617B2 (en) Discharge lamp
JP3709560B2 (en) High pressure discharge lamp assembly and high pressure discharge lamp
WO2012046598A1 (en) Ceramic tube and method for producing same
JP2012119129A (en) Luminous tube and manufacturing method of the same
US7301282B2 (en) High pressure mercury lamps and sealing members therefor
JP2004146306A (en) Electrode for cold cathode discharge tube
JP3576159B2 (en) High pressure discharge lamp
CN219673566U (en) Pipeline assembly and heat radiation module
JP2008076282A (en) Manufacturing method of gas sensor
US20100026181A1 (en) Ceramic discharge vessel and method of making same
JP2009129635A (en) Manufacturing method of electrode structural body
JP2003123697A (en) High pressure discharge lamp
KR20070011156A (en) Lamp with protective layer and process for producing a lamp of this type

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048173.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012537646

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011830530

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE