WO2012046478A1 - Laser lift-off method and laser lift-off device - Google Patents

Laser lift-off method and laser lift-off device Download PDF

Info

Publication number
WO2012046478A1
WO2012046478A1 PCT/JP2011/064643 JP2011064643W WO2012046478A1 WO 2012046478 A1 WO2012046478 A1 WO 2012046478A1 JP 2011064643 W JP2011064643 W JP 2011064643W WO 2012046478 A1 WO2012046478 A1 WO 2012046478A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
laser
irradiation
laser beam
substrate
Prior art date
Application number
PCT/JP2011/064643
Other languages
French (fr)
Japanese (ja)
Inventor
僚三 松田
恵司 鳴海
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010226233A external-priority patent/JP2012080020A/en
Priority claimed from JP2010227429A external-priority patent/JP2012081478A/en
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2012046478A1 publication Critical patent/WO2012046478A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic

Definitions

  • the present invention decomposes the material layer by irradiating the material layer formed on the substrate with a laser beam, and peels the material layer from the substrate (hereinafter referred to as the following).
  • the present invention relates to a laser lift-off method and a laser lift-off apparatus.
  • Laser for peeling a GaN-based compound material layer formed on a sapphire substrate by irradiating a laser beam from the back surface of the sapphire substrate in a manufacturing process of a semiconductor light-emitting device formed of a GaN (gallium nitride) -based compound semiconductor Lift-off technology is known.
  • the process of irradiating the material layer formed on the substrate with laser light and peeling the crystal layer from the substrate is referred to as laser lift-off.
  • a GaN layer is formed on a sapphire substrate, and laser light is irradiated from the back surface of the sapphire substrate, whereby GaN forming the GaN layer is decomposed, and the GaN layer is separated from the sapphire substrate.
  • a laser lift-off method for peeling is described.
  • a substrate in which a crystal layer is formed on a substrate is referred to as a workpiece.
  • the entire surface of the workpiece is irradiated with laser light having irradiation energy equal to or higher than the decomposition threshold necessary for decomposing the GaN-based compound into Ga and N 2. Becomes important.
  • Patent Document 2 describes that a workpiece is irradiated with a line-shaped laser beam through a sapphire substrate while the workpiece is conveyed. Specifically, in this document, as shown in FIG. 27, a laser beam 124 is formed so that an irradiation region 123 to the interface between the sapphire substrate 121 and the material layer 122 of the GaN-based compound is formed in a line shape, and the sapphire substrate 121 A laser lift-off method is disclosed in which the laser beam 124 is irradiated from the back surface of the sapphire substrate 121 while moving the laser beam 124 in a direction perpendicular to the longitudinal direction of the laser beam 124.
  • Patent Document 3 for example, a rectangular beam spot is formed using a laser, and the irradiated object is sequentially irradiated while moving the beam spot, and the material layer is laser lifted off from the substrate. Is described.
  • FIG. 17 of Patent Document 3 shows that the beam spot 132 is moved concentrically with respect to a circular workpiece (wafer 131) and laser lift-off is performed as shown in FIG.
  • the GaN-based compound material layer formed on the sapphire substrate is peeled off by irradiating the laser beam from the back surface of the sapphire substrate, the GaN is decomposed when irradiated with the laser beam.
  • the N 2 gas that is applied causes shear stress to the GaN layer, which may cause cracks at the boundary of the laser light irradiation region. In laser lift-off, it is important to prevent such cracks from occurring in the material layer after peeling.
  • the laser light is shaped so that the irradiation region to the interface of the material layer is in a line shape, and the substrate is formed in a direction perpendicular to the longitudinal direction of the laser light.
  • a method of irradiating a laser beam while scanning it, or scanning a rectangular beam spot concentrically with respect to a circular wafer as described in Patent Document 3, and irradiating while changing the irradiation area every time has been proposed. ing.
  • Patent Document 2 The method described in Patent Document 2 is to form an irradiation region in a line shape and irradiate while moving the irradiation region in the direction perpendicular to the longitudinal direction of the laser beam, and the laser beam corresponds to the width of the substrate.
  • the laser beam corresponds to the width of the substrate.
  • FIG. 17 of Patent Document 3 in order to scan the beam spot, a mechanism for moving the square beam spot relatively concentrically on the work is necessary, and overlapping is required.
  • the area of the irradiated region increases, and it is considered that a long time is required to irradiate the entire area of the workpiece with laser light, which is not efficient.
  • the inventors previously changed the position of the irradiation area of the laser beam having a small area formed in a square shape, while the end of each irradiation area overlaps the end of the adjacent irradiation area.
  • the laser lift-off method is proposed. In this way, as shown in Patent Document 2, the laser beam is efficiently and cracked without forming a long and narrow shape and using a special mechanism for scanning the beam spot concentrically. The laser lift-off can be realized without causing it.
  • the laser light having a small area formed into a quadrangular shape as described above is irradiated while changing the irradiation region, cracks may occur in the material layer after peeling from the substrate.
  • the time required for laser lift-off (that is, the time required for irradiating the entire surface of the workpiece with laser light) mainly depends on the laser light irradiation area and the workpiece conveyance speed. To do. Naturally, the irradiation time of the laser beam required for processing the workpiece becomes shorter if the irradiation area of the laser beam to the workpiece is large and the workpiece is conveyed at a high speed, and becomes longer if the workpiece is transferred at high speed. However, there is a limit to the workpiece transfer speed. Therefore, the time required for laser lift-off mainly depends on the irradiation area of the laser beam on the workpiece.
  • the laser light used for laser lift-off requires irradiation energy exceeding the decomposition threshold for decomposing the material constituting the material layer, but the laser light is maintained while maintaining the irradiation energy necessary for laser lift-off. It is difficult to increase the irradiation area.
  • damage such as cracks occurs in the material layer at the time of laser lift-off.
  • the material layer is irradiated with pulsed laser light, whereby GaN in the material layer is decomposed into Ga and N 2 .
  • N 2 gas is generated by the decomposition of GaN, shear stress is applied to the GaN layer, and cracks are generated at the boundary of the laser light irradiation region, thereby damaging the edge of the irradiation region. It is considered that the magnitude of damage due to this decomposition greatly depends on the irradiation area of the laser beam. That is, as the irradiation area S is larger, a larger force is applied to the edge portion of the irradiation region of the pulsed laser light, such as the generation amount of the N 2 gas is increased.
  • the irradiation area of the laser beam on the workpiece in order to reduce damage to the material layer at the time of laser lift-off.
  • the laser light irradiation area is reduced, there is a problem that the laser light irradiation time required for laser lift-off becomes longer.
  • the irradiation time of laser light required for laser lift-off of a workpiece of ⁇ 2 inches (50.8 mm) is about 25 seconds.
  • the irradiation time of the laser beam required for laser lift-off of the ⁇ 2 inch workpiece is about 625 seconds.
  • the laser light is applied to the workpiece so that the edge portion of the adjacent irradiation region overlaps in the energy region exceeding the decomposition threshold VE. It is necessary to irradiate the entire surface, but in addition to this, it is necessary to reduce the irradiation area of the laser beam. However, when the irradiation area of the laser beam is reduced, there is a problem that the time required for the laser lift-off process increases as described above. Further, even when the laser beam is irradiated in this manner, cracks may occur in the material layer after peeling from the substrate depending on the laser beam irradiation method as described above.
  • the present invention solves the above-mentioned problems, can prevent the generation of cracks in the material layer after peeling from the substrate as much as possible, and can perform laser lift-off processing in a short time with a laser beam having a small irradiation area. It is an object of the present invention to provide a laser lift-off method and apparatus capable of performing the above.
  • FIG. 6 shows that the material layer is formed by irradiating the workpiece with laser light so that the edge portions of the irradiation region of the laser beam are sequentially superimposed in accordance with the conveyance direction of the workpiece while changing the irradiation region with respect to the workpiece. Shows a method of laser lift-off from the substrate.
  • This figure shows the case where the irradiation area of the laser beam on the workpiece is square (square).
  • the black area in the figure is the irradiation area irradiated with the laser beam, and the shaded area is the laser beam.
  • the irradiated area and the white part are areas where the laser beam has not been irradiated, and the irradiated area is sequentially moved in the direction indicated by the arrow in the figure, and the laser beam is irradiated while changing the irradiation area every moment.
  • the peeling side of the material layer peeled for the first time from the substrate is two sides in the rectangular peeling region of the material layer peeled from the substrate (two-side peeling in FIG. 1A).
  • the case of three sides (three-side peeling in FIG. 1B) and the case of one side (one-side peeling in FIG. 1C) are shown.
  • FIG. 7 is an image showing the state of the material layer peeled off by the laser lift-off method shown in FIG. 6, and the state after peeling from the substrate when the laser lift-off is performed as shown in FIGS. It shows the presence or absence of occurrence of cracks in the material layer.
  • FIG. 7 shows a case where the GaN-based compound material layer formed on the sapphire substrate is peeled off by irradiating the rectangular laser beam shown in FIG. 6 from the back surface of the sapphire substrate.
  • (A) shows the case where the peeling side of the material layer peeled from the substrate for the first time is two sides (FIG. 6A), and FIG. 7B shows the case where there are three sides (FIG. 6B).
  • FIG. 7C shows the case of one side (FIG. 6C).
  • GaN which is a material layer
  • N 2 when irradiated with laser light.
  • the N 2 gas generated during the decomposition of GaN is not discharged from the side in contact with the undecomposed region of GaN in a rectangular separation region that is sequentially separated from the substrate.
  • N 2 gas cannot be sufficiently discharged, and stress generated by the pressure of N 2 gas accumulates on three sides in contact with the undecomposed region of GaN in the material layer peeled from the substrate, It is considered that cracks occur in the GaN after peeling from the substrate.
  • the irradiation region of the laser beam on the workpiece has a quadrangular shape having one side extending in a direction parallel to the movement direction of the workpiece, and the material layer peeled from the substrate by irradiating the workpiece with the laser beam.
  • the peeling is performed for the first time from the substrate.
  • the ratio of the total length X of the sides to the total length Y of the sides already peeled from the substrate is preferably about 1: 1.
  • the two sides that are peeled off from the substrate for the first time are always kept in harmony between ensuring the escape path of the gas generated during decomposition of the material layer and dispersing the stress generated during decomposition of the material layer. This can be achieved well, and the occurrence of cracks in the material layer after peeling from the substrate can be prevented or suppressed.
  • the sides to be peeled for the first time are two sides. Is irradiated with laser light, and the laser light is divided so that the plurality of irradiation regions separated from each other are formed on the workpiece while relatively moving the workpiece or the laser source (irradiation region). Irradiate light in a lump.
  • the workpiece is irradiated with laser light as follows.
  • a laser beam forming means provided with a plurality of laser beam emitting sections with a small area for dividing the laser beam, such as a mask
  • the laser beam emitted from the laser source is divided into a plurality of laser beams on the workpiece.
  • a plurality of irradiation regions with small areas separated from each other are formed.
  • the region irradiated with each laser beam emitted from the plurality of laser beam emitting units is referred to as an irradiation region.
  • the laser beam is collectively irradiated so that the plurality of irradiation regions separated from each other are formed on the workpiece.
  • the adjacent irradiation regions are spaced apart from each other so as to be arranged obliquely with respect to the movement direction of the workpiece, and the end portions extending in a direction parallel to the relative movement direction of the workpiece in the adjacent irradiation region,
  • the plurality of irradiation areas are arranged so as to be sequentially overlapped as they move.
  • the conveyance speed of the workpiece 3 and the irradiation interval of the pulse laser light are set so that the edge portions extending in the direction orthogonal to the workpiece conveyance direction in each irradiation region overlap each other. That is, the end portions (edge portions) of the respective irradiation regions overlap with the end portions (edge portions) of the adjacent irradiation regions. In this way, it is substantially the same as having a large laser irradiation area on the workpiece, and a laser lift-off process can be performed in a short time. Note that the laser beam that is superimposed and irradiated on the workpiece is irradiated with a slight interval since the workpiece is moved relative to the laser source.
  • the material layer has a very short time to return to room temperature after reaching the temperature at which the material layer decomposes.
  • the irradiation interval of the laser light that is superimposed and irradiated on the workpiece is much longer than the time required to return to room temperature after reaching the temperature at which the material layer is decomposed. Therefore, in the region where the laser beam is superimposed, the irradiation energy of each laser beam is not summed up, so the irradiation region of the laser beam emitted from each laser beam emitting section is substantially small, and damage to the material layer is reduced.
  • a workpiece having a material layer formed on a substrate is irradiated with a laser beam from a laser source through the substrate, and the material layer is decomposed at the interface between the substrate and the material layer.
  • the laser beam is irradiated to the workpiece while changing the irradiation region to the workpiece, and the irradiation region of the laser beam to the workpiece extends in a direction parallel to the moving direction of the workpiece.
  • the edges of the irradiation area are sequentially superimposed as the workpiece moves in one direction relative to the laser source, and the laser light is sequentially emitted from the substrate.
  • each irradiation region group is formed by laser light so as to be sequentially arranged from one end to the other end of the workpiece, and the irradiation region group formed first and last in the workpiece.
  • the irradiated region group is formed so as to extend from one edge portion and the other edge portion of the workpiece.
  • the laser beam emitted from the laser source is divided into a plurality of laser beams, and a plurality of irradiation regions separated from each other are formed on the workpiece by the divided pulse laser beams,
  • the plurality of irradiation areas are sequentially overlapped with the ends of the adjacent irradiation areas extending in a direction parallel to the movement direction of the work as the work moves in one direction relative to the laser source.
  • a laser lift-off device that irradiates a workpiece having a material layer formed on a substrate with laser light through the substrate and peels the material layer from the substrate at an interface between the substrate and the material layer.
  • a laser source that generates laser light in a wavelength region that passes through the substrate, a transport mechanism that relatively transports the work and the laser source, and the laser light changes the irradiation area of the work every moment, As the irradiation area is sequentially irradiated from one end to the other end of the work, the work is irradiated, and the edge of the irradiation area moves in one direction relative to the laser source.
  • the laser beam emitted from the laser source and the control unit for controlling the irradiation interval of the laser beam and the transfer operation of the workpiece by the transfer mechanism so as to be sequentially superimposed It is formed into a square shape having one sides extending in the moving direction and the direction parallel click, providing a laser optical system for irradiating the workpiece.
  • the control unit irradiates the workpiece with laser light so that an irradiation region group formed first and an irradiation region group formed last in the workpiece extend from one edge portion and the other edge portion of the workpiece.
  • the workpiece is irradiated with the laser light so that the material layer to be peeled for the first time from the substrate has two sides of the square peeled region of the material layer that has been sequentially peeled from the substrate.
  • the laser beam emitted from the laser source is divided into a plurality of laser beams, and a plurality of irradiation regions separated from each other are formed on the workpiece by the divided pulse laser beams.
  • a plurality of irradiation regions formed by the laser beam forming unit, the end portions extending in parallel to the moving direction of the workpiece in the adjacent irradiation regions, and the workpiece is relative to the laser source; Thus, they are arranged so that they are sequentially superimposed as they move in one direction.
  • a mask having a plurality of rectangular openings is used as the laser beam forming means.
  • the irradiation areas formed on the workpiece are arranged on a straight line inclined in the moving direction of the workpiece.
  • the mask includes one mask pattern arranged on a straight line on each of the virtual line and the virtual line intersecting the plurality of openings, and the other mask pattern.
  • the openings of the mask are arranged in an X shape.
  • a mask shutter that opens and closes the plurality of openings of the mask is provided, and the mask shutter opens only the opening of the one mask pattern when the workpiece is transported.
  • the opening of the other mask pattern is opened and closed so as to be closed, and the mask shutter is changed every 180 ° in the conveyance direction of the workpiece, Except for the opening located at the intersection of the one virtual line and the other virtual line, the open / closed states of the one mask pattern and the other mask pattern are switched.
  • the mask includes one mask pattern including a plurality of openings arranged on one imaginary line and the other mask pattern including a plurality of openings arranged on the other imaginary line. The openings of the mask are arranged in a V shape.
  • the mask includes a mask transport mechanism that transports the mask so that only one of the one mask pattern and the other mask pattern is disposed in the laser light irradiation region.
  • the mask transport mechanism switches the mask pattern arranged in the laser light irradiation region every time the work transport direction is switched by 180 °.
  • the following effects can be obtained. (1) Since the material layer peeled from the substrate for the first time in the square peeled region of the material layer peeled sequentially from the substrate has two peeled sides, N generated by the decomposition of GaN Two gases are discharged from the two sides already peeled from the substrate, and a sufficient escape path for N 2 gas can be secured. In addition, when there are two separated sides, the stress generated when GaN is decomposed by laser light irradiation is distributed and applied to the two sides in contact with the undecomposed region of GaN, preventing the generation of cracks. Is done.
  • the sides to be peeled are two sides, and the sides to be peeled can be always two sides in the entire area of the workpiece.
  • Laser light emitted from the laser source is divided into a plurality of laser beams by the laser beam forming means, and a plurality of irradiation areas separated from each other are formed on the workpiece by each of the divided laser beams. Since each of the irradiation areas is collectively irradiated with the laser beam, it is possible to irradiate the plurality of irradiation areas with a single laser beam irradiation. That is, since a plurality of irradiation regions can be irradiated with laser light at once, even if each irradiation region is small in area, laser lift-off processing can be performed in a short time, and throughput can be improved. .
  • each irradiation of the laser light irradiated on the overlap region is performed. Energy is never added up. Therefore, even if the respective irradiation regions are overlapped, the same effect as that obtained by irradiating the laser light substantially for each irradiation region can be obtained. For this reason, damage to the material layer when the material layer is peeled from the substrate can be reduced.
  • FIG. 3 is a diagram showing an outline of the configuration of a laser lift-off device according to second to fourth embodiments of the present invention.
  • FIG. 5 is a conceptual diagram of an optical system of a laser lift-off device according to second to fourth embodiments of the present invention. It is a figure which shows the mask used for the laser lift-off apparatus of the 2nd Example of this invention.
  • FIG. 1 It is a conceptual diagram of the optical system of the laser lift-off apparatus of the modification of a 2nd Example. It is a figure which shows the structural example of the laser beam formation means shown in FIG. It is a figure which shows the mask used for the laser lift-off apparatus of the 3rd Example of this invention. It is a figure which shows operation
  • FIG. 10 is a diagram showing a mask transport mechanism for moving a mask in the fourth embodiment. It is a time chart which shows the timing of the irradiation of a laser beam and a rest in a 4th Example. It is a figure explaining the manufacturing method of the semiconductor light-emitting device which can apply a laser lift-off process.
  • FIG. 1 is a conceptual diagram explaining the outline
  • the laser lift-off process is performed as follows.
  • a work 3 in which a material layer 2 is formed on a substrate 1 that transmits laser light is placed on a work stage 31.
  • the work stage 31 on which the work 3 is placed is placed on a transport mechanism 32 such as a conveyor, and is transported by the transport mechanism 32 at a predetermined speed.
  • the workpiece 3 is irradiated with a pulse laser beam L emitted from a pulse laser source (not shown) through the substrate 1 while being conveyed in the arrow AB direction in the figure together with the workpiece stage 31.
  • the workpiece 3 is formed by forming a material layer 2 of a GaN (gallium nitride) compound on the surface of a substrate 1 made of sapphire.
  • the substrate 1 may be any material that can satisfactorily form a GaN-based compound material layer and transmits laser light having a wavelength necessary for decomposing the GaN-based compound material layer.
  • a GaN-based compound can be used for the material layer 2 in order to efficiently output high-output blue light with low input energy.
  • a group III compound can be used, such as the GaN compound, indium gallium nitride (InGaN) compound, aluminum gallium nitride (AlGaN) compound, or the like.
  • the laser beam should be appropriately selected according to the substrate 1 and the substance constituting the material layer peeled from the substrate 1.
  • a KrF (krypton fluorine) excimer laser that emits a wavelength of 248 nm can be used.
  • the light energy (5 eV) with a laser wavelength of 248 nm is between the band gap of GaN (3.4 eV) and the band gap of sapphire (9.9 eV). Therefore, a laser beam having a wavelength of 248 nm is desirable for peeling the material layer of the GaN compound from the sapphire substrate.
  • GaN in the material layer 2 is decomposed into Ga and N 2 .
  • GaN decomposes a phenomenon as if it has exploded occurs, and the edge of the irradiation region of the pulse laser beam on the material layer 2 is damaged to some extent.
  • the laser lift-off process of the present invention since the material layer that is peeled off from the substrate for the first time is made to have two sides, the laser lift-off process is performed without damaging the material layer as described above. It can be carried out.
  • the shape of the irradiation region of the pulse laser beam irradiated to the workpiece is a quadrangle having one edge portion extending in parallel with the moving direction of the workpiece at the time of pulse laser beam irradiation.
  • the laser light irradiation region may have any shape as long as it has a rectangular shape.
  • the aspect ratio of the irradiation region is 1: X
  • X is 20 or less
  • the area of the irradiation region is It is desirable that it be 30 mm 2 or less.
  • FIG. 2 shows an irradiation region by the laser lift-off method of the present embodiment, in which pulsed laser light shaped so that the irradiation region on the workpiece is square is irradiated while the workpiece is conveyed in one direction with respect to the laser source. Show.
  • FIG. 1 shows the case where the workpiece is rectangular
  • FIG. 2 shows the case where the workpiece 3 is circular.
  • the pulse laser beam is sequentially irradiated so that each irradiation region is arranged in a line in the direction of HA on the paper surface so as to exceed the edge portion above the paper surface of the work 3.
  • Light irradiation regions S1 to S4 are formed.
  • each irradiation region emits the pulse laser light toward the HC direction on the paper surface. Irradiation is sequentially performed so as to form a line, and pulsed laser light irradiation regions S5 to S10 are formed.
  • the edge portions extending in the direction orthogonal to the moving direction of the workpiece 3 in the irradiation regions S1 to S10 adjacent in the moving direction of the workpiece 3 overlap each other.
  • the edge portions extending in the direction parallel to the moving direction of the work 3 in the irradiation areas S1 and S9, S2 and S8, S3 and S7, and S4 and S6 adjacent in the direction orthogonal to the moving direction of the work 3 overlap each other.
  • the irradiation regions of the respective pulse laser beams are overlapped in regions exceeding the decomposition threshold value of GaN as the material layer.
  • a plurality of irradiation region groups G1 to G6 are formed in which irradiation regions of a plurality of pulsed laser beams formed in sequence are formed in a line in one direction.
  • the irradiation of the pulse laser beam is started from the one end 3a of the workpiece 3, and the pulse laser beam is finally irradiated to the other end 3b of the workpiece 3. That is, the irradiation region groups G1 to G6 are sequentially arranged from the one end 3a to the other end 3b of the workpiece 3 in the direction orthogonal to the relative movement direction of the workpiece with respect to the laser source in the order in which the laser beams are irradiated.
  • Each irradiation region group is formed so as to line up.
  • the irradiation regions S1 to S4 are irradiated with pulsed laser light so as to extend from one edge portion (one end) 3a of the workpiece 3.
  • the pulse laser beam is irradiated so that each irradiation region extends from the other edge (other end) 3b of the workpiece 3.
  • N 2 gas generated during GaN decomposition is discharged from the outer edge portion. Is done.
  • the irradiated region S2 also, the first side of the non-edge portion of the two sides to be peeled from the substrate, the contact outer edge and the irradiation region S1 of the workpiece 3, N 2 gas generated during GaN decomposition from the outer edge Discharged.
  • the edge portion of the irradiation region is sequentially superimposed as the workpiece 3 moves in one direction relative to the laser source, and the laser light is sequentially emitted from the substrate.
  • the workpiece 3 is irradiated with the peeled side of the material layer peeled off from the substrate for two sides in the square peeled area of the peeled material layer.
  • the irradiation region group formed first and the irradiation region group formed last in the workpiece 3 are formed so as to extend from one edge portion and the other edge portion of the workpiece 3.
  • FIGS. 6B and 6C as shown in FIG.
  • the edge portion peeled off from the substrate for the first time is considered to be a value close to two sides, in this case, as described above, a special mechanism for scanning the beam spot concentrically is necessary, and there are many overlapping portions of the irradiation region, resulting in poor efficiency, and depending on how the beam spot is moved, As shown in FIG. 6C, the edge portion that is peeled off from the substrate for the first time may be one side, and there is a possibility that a crack will occur at this portion.
  • FIG. 4 is a conceptual diagram showing the configuration of the optical system of the laser lift-off device according to the first embodiment of the present invention.
  • a laser lift-off device 10 includes a laser source 20 that generates pulsed laser light, a laser optical system 40 for shaping the laser light into a predetermined shape, a work stage 31 on which the work 3 is placed, A transport mechanism 32 that transports the work stage 31 and a controller 33 that controls the irradiation interval of the laser light generated by the laser source 20 and the operation of the transport mechanism 32 are provided.
  • the laser optical system 40 includes cylindrical lenses 41 and 42, a mirror 43 that reflects the laser light in the direction of the workpiece, a mask 44 for shaping the laser light into a predetermined shape, and the laser light L that has passed through the mask 44. And a projection lens 45 for projecting an image onto the work 3.
  • the area and shape of the irradiation region of the pulse laser beam on the work 3 can be appropriately set by the laser optical system 40.
  • a workpiece 3 is disposed at the tip of the laser optical system 40. The work 3 is placed on the work stage 31. The work stage 31 is placed on the transport mechanism 32 and is transported by the transport mechanism 32. Thereby, the workpiece
  • the control unit 33 controls the pulse interval of the pulsed laser light generated by the laser source 20 so that the degree of superimposition of each laser light irradiated on the irradiation region adjacent to the workpiece 3 becomes a desired value.
  • the laser light L generated from the laser source 20 is, for example, a KrF excimer laser that generates ultraviolet light having a wavelength of 248 nm.
  • An ArF laser or a YAG laser may be used as the laser source.
  • the light incident surface 3 ⁇ / b> A of the work 3 is disposed farther in the optical axis direction of the laser light than the focal point F of the projection lens 45.
  • the light incident surface 3A of the workpiece 3 may be disposed closer to the projection lens 45 than the focal point F of the projection lens 45 in the optical axis direction of the laser light.
  • a laser beam having a trapezoidal light intensity distribution as shown in FIG. It is done.
  • the pulsed laser light L generated by the laser source 20 passes through the cylindrical lenses 41 and 42, the mirror 43, and the mask 44, and is then projected onto the work 3 by the projection lens 45.
  • the pulse laser beam L is irradiated to the interface between the substrate 1 and the material layer 2 through the substrate 1 as shown in FIG.
  • GaN near the interface between the material layer 2 and the substrate 1 is decomposed. In this way, the material layer 2 is peeled from the substrate 1.
  • FIG. 5 is a diagram showing the light intensity distribution of the laser beam irradiated to the workpiece 3 so as to overlap the regions S1 and S2 adjacent to each other of the workpiece 3 shown in FIG. 2, and aa ′ in FIG. It is line sectional drawing.
  • the vertical axis indicates the intensity (energy value) of the laser beam irradiated to each irradiation area of the workpiece
  • the horizontal axis indicates the conveyance direction of the workpiece.
  • L1 and L2 indicate the profiles of the laser beams irradiated to the workpiece irradiation areas S1 and S2, respectively.
  • the laser beams L1 and L2 are not irradiated at the same time, but the laser beam L2 is irradiated after one pulse interval from the irradiation of the laser beam L1.
  • the cross sections of the laser beams L1 and L2 are formed in a substantially trapezoidal shape having a flat surface on the top (peak energy PE) following the edge portion LE that gently spreads in the circumferential direction.
  • the laser beams L1 and L2 are superimposed in an energy region exceeding a decomposition threshold value VE necessary for decomposing and separating the material layer of the GaN-based compound from the sapphire substrate, as indicated by broken lines in FIG.
  • the intensity (energy value) CE of the laser beam at the intersection position C between the laser beams L1 and L2 is set to a value exceeding the decomposition threshold value VE. This is because, as described above, when the irradiation region is shifted from S1 to S2 after irradiating the irradiation region S1 of FIG. 2 with the laser beam, the temperature of the region S1 is already lowered to the room temperature level.
  • the irradiation amount of the pulse laser light irradiated to each of the irradiation regions S1 and S2 is not integrated.
  • FIG. 8 is a diagram showing an outline of the configuration of a laser lift-off device according to second to fourth embodiments of the present invention described below.
  • a work 3 in which a material layer 2 is formed on a substrate 1 that transmits laser light is placed on a work stage 31.
  • the work stage 31 on which the work 3 is placed is placed on a transport mechanism 32 such as a conveyor, and is transported by the transport mechanism 32 at a predetermined speed.
  • the workpiece 3 is irradiated with the laser beam L through the substrate 1 while being conveyed in a predetermined direction together with the workpiece stage 31.
  • the workpiece 3 is formed by forming a material layer 2 of a GaN (gallium nitride) compound on the surface of a substrate 1 made of sapphire.
  • the substrate 1 may be any material as long as it can form a GaN-based compound material layer satisfactorily and transmits laser light having a wavelength necessary for decomposing the GaN-based compound material layer.
  • a GaN-based compound is used for the material layer 2 in order to efficiently output high-output blue light or ultraviolet light with low input energy.
  • the laser beam should be appropriately selected according to the substrate 1 and the substance constituting the material layer peeled from the substrate 1.
  • a KrF (krypton fluorine) excimer laser that emits a pulsed laser beam having a wavelength of 248 nm can be used.
  • the light energy (5 eV) with a laser wavelength of 248 nm is between the band gap of GaN (3.4 eV) and the band gap of sapphire (9.9 eV). Therefore, a laser beam having a wavelength of 248 nm is desirable for peeling the material layer of the GaN compound from the sapphire substrate.
  • a mask 44 for forming a predetermined laser beam pattern on the laser beam L emitted from the laser source is disposed above the workpiece 3. In FIG. 8, a projection lens described later is omitted.
  • FIG. 9 is a conceptual diagram of the optical system of the laser lift-off device of the second to fourth embodiments of the present invention.
  • a laser lift-off device 10 includes a laser source 20 that generates pulsed laser light, a laser optical system 40 for shaping the laser light into a predetermined shape, a work stage 31 on which the work 3 is placed, A transport mechanism 32 that transports the work stage 31 and a controller 33 that controls the irradiation interval of the laser light generated by the laser source 20 and the operation of the transport mechanism 32 are provided.
  • the laser optical system 40 includes cylindrical lenses 41 and 42, a mirror 43 that reflects the laser light in the direction of the workpiece, a mask 44 having an opening that transmits the laser light, and an image of the laser light L that has passed through the mask 44. 3 is provided with a projection lens 45 for projecting onto the projector 3.
  • the mask 44 has a plurality of openings for dividing the laser beam, divides the laser beam emitted from the laser source 2 into a plurality of laser beams, and each of the divided laser beams causes each other to be placed on the workpiece. A plurality of spaced irradiation regions are formed. That is, the mask 44 functions as the laser beam forming means described above, and the plurality of openings serve as laser beam emitting portions.
  • the arrangement, shape, and area of the irradiation region of the pulse laser beam on the work 3 can be appropriately set by selecting the arrangement, shape, size, and the like of the opening of the mask 44 that functions as the laser beam forming unit. .
  • a workpiece 3 is disposed at the tip of the laser optical system 40. The work 3 is placed on the work stage 31. The work stage 31 is placed on the transport mechanism 32 and is transported by the transport mechanism 32.
  • the pulsed laser light L generated by the laser source 20 passes through the cylindrical lenses 41 and 42, the mirror 43, and the mask 44, and then is projected onto the work 3 by the projection lens 45.
  • the pulse laser beam L is applied to the interface between the substrate 1 and the material layer 2 through the substrate 1.
  • GaN near the interface between the material layer 2 and the substrate 1 is decomposed. In this way, the material layer 2 is peeled from the substrate 1.
  • FIG. 10 is a view showing a mask provided in a laser lift-off apparatus according to a second embodiment of the present invention.
  • the mask 44 of the present embodiment has a plurality of openings M1 to M5 as laser beam emitting portions spaced apart from each other in a metal plate portion, and as shown in FIG. It is drilled so as to be arranged on a straight line that is inclined with respect to the conveying direction of the workpiece 3 (arrow direction in the figure).
  • the openings M1 to M5 serving as the respective laser light emitting portions emit from the adjacent laser light emitting portions (each opening of the mask) when the work 3 is conveyed in one direction.
  • the light irradiation areas formed by the laser light are formed so as to be separated from each other without being continuous so that edge portions extending in a direction parallel to the conveyance direction of the workpiece 3 overlap.
  • the openings M1 to M5 formed in the mask 44 divide the laser beam emitted from the laser source to form a plurality of irradiation regions separated from each other.
  • the area of each irradiation region is, for example, the shape of the irradiation region. When close to a square, the size is set to be 0.25 mm 2 or less.
  • the shape of the openings M1 to M5 of the mask 44 is preferably a quadrangular shape having one side extending in a direction parallel to the moving direction of the workpiece 3, and particularly has two sides extending in a direction parallel to the moving direction of the workpiece 3. , Square and rectangular are preferable.
  • the irradiation area by the divided laser light is reduced as described above, damage applied to the material layer when the material layer is peeled from the substrate can be reduced. That is, as described above, when GaN is decomposed, shear stress is applied to the GaN layer, and cracks are generated at the boundary of the irradiation region of the laser light, which damages the edge of the irradiation region.
  • the magnitude of the damage is considered to largely depend on the irradiation area of the laser beam.
  • FIG. 11 to 14 are views showing a laser lift-off process of the second embodiment according to the laser lift-off apparatus of the present invention.
  • FIG. 11 is a diagram for explaining a laser beam irradiation method according to the laser lift-off apparatus of the present embodiment, where (a) shows a laser irradiation period, (b) shows a laser pause period, and (c) shows a laser irradiation period.
  • the numbers in parentheses in the figure indicate the procedure of laser light irradiation, the steps (2) and (5) are executed during the laser light irradiation period (see FIG. 13), and the steps (3) and (4) are performed by the laser.
  • FIG. 12 shows the scanning direction of the laser beam on the workpiece and the irradiation pattern of the laser beam on the workpiece
  • FIG. 13 shows a time chart showing the timing of laser beam irradiation and pause.
  • (2), (3), (4), and (5) in FIG. 13 correspond to the irradiation periods (2) and (5) and the rest periods (3) and (4) in FIG.
  • FIG. 14 shows the relationship between the irradiation timing of the pulse laser beam and the irradiation area on the workpiece.
  • the mask is not moved, and the pulse laser beam is irradiated while moving the workpiece.
  • FIG. 12 is drawn to scan the laser beam. Yes.
  • the mask 44 is arranged so that the upper end of the uppermost opening M1 is aligned with the upper end of the workpiece 3 in the same line.
  • the upper end of the opening M1 may extend from the upper end of the workpiece 3.
  • the workpiece 3 is conveyed in one direction from the right to the left while irradiating the laser beam.
  • the laser light passes through the mask 44 shown in FIG. 10 so that the irradiation areas LA to LE formed by the divided laser light become the workpiece 3.
  • the laser light is directed from the left side to the right side of the work 3 on the work 3 from the upper end of the uppermost opening M1 (virtual line LL1) of the mask 44 to the lower end of the lowermost opening M5 of the mask 44 ( The region S1 over the virtual line LL2) is irradiated.
  • the irradiation areas LA and LB, LB and LC, LC and LD, and LD and LE formed on the workpiece 3 by the laser beam irradiated from the opening of the mask 44 are transferred to the workpiece 3 when the workpiece 3 is conveyed in one direction.
  • the edge portions LA1 and LB1 ′ extending in the direction parallel to the moving direction are overlapped with each other (the same applies to LB, LC, LD,...), And the overlapping region T1 is formed.
  • the transport speed of the work 3 and the laser so that the edge portions LA2, LB2,... Extending in the direction orthogonal to the transport direction of the work 3 in each irradiation region overlap each other.
  • the pulse interval of light is set.
  • the irradiation areas LA and LB, LB and LC, LC and LD, and LD and LE formed by the laser light irradiated from the openings of the adjacent masks 44 are respectively workpieces.
  • edge portions LA1 and LB1 ′ extending in a direction parallel to the moving direction of the workpiece 3 are superimposed on each other (the same applies to LB, LC, LD,...), And an overlapping region T1 is formed. Irradiated as follows. Further, when the work 3 is transported in one direction, the work speed of the work 3 and the pulse laser beam are such that the edge portions LA2, LB2,...
  • the irradiation interval is set.
  • the pulse interval of the laser beam is set to be shorter than the time required for the work to move a distance corresponding to the irradiation region for one shot of the laser beam. For example, when the conveying speed of the workpiece 3 is 100 mm / second and the width of the laser light overlapping region ST is 0.1 mm, the pulse interval of the laser light is 0.004 seconds (250 Hz). Further, as shown in FIGS. 11 and 12, laser light is irradiated in order from one end side of the work 3 toward the other end, so that it is peeled off sequentially from the substrate as shown by the dotted line in FIG. In the peeled region of the material layer, the sides that are peeled off from the substrate for the first time are always two sides.
  • FIG. 14 is a diagram showing the relationship between the irradiation timing of the pulse laser beam and the irradiation region on the workpiece, wherein FIG. 14 (a) shows the irradiation region on the workpiece, (b) shows each pulse laser beam,
  • laser light is irradiated in the order of irradiation areas A ⁇ B ⁇ C on the workpiece, the irradiation area A is irradiated with laser light a, the irradiation area B is irradiated with laser light b, and the irradiation area C is irradiated.
  • the laser beam c is irradiated.
  • the pulse laser beam a passes through the opening of the mask 44 and irradiates the irradiation area A on the workpiece 3 until the next pulse laser beam b is irradiated. It moves to the position where the laser beam is irradiated to the irradiation region. Then, the next pulse laser beam b is applied at a timing such that an edge portion (a hatched portion in the figure) T3 extending in a direction orthogonal to the conveyance direction of the workpiece 3 in the irradiation region A and the irradiation region B overlaps. 3 is irradiated to the irradiation region B on the upper side.
  • the workpiece 3 moves to a position where the irradiation region C in the figure is irradiated with the laser beam, and the next pulse laser beam c is applied to the irradiation region B. Irradiation is performed at such a timing that the edge portions of the irradiation region C (hatched portions in the figure) overlap each other.
  • the work 3 is transported in the direction of the arrow (3) shown in FIG. 11 in order to irradiate the next region of the work with laser light.
  • the transport distance at this time is set so that the laser light irradiation areas S1 and S2 overlap each other.
  • the work 3 is conveyed from the left to the right according to the arrow (4) in FIG.
  • the workpiece 3 is conveyed in one direction from the right to the left while irradiating the laser beam.
  • Irradiation regions LF and LG, LG and LH, LH and LI, and LI and LJ formed by laser light emitted from openings adjacent to the mask 44 are overlapped with edge portions extending in a direction parallel to the moving direction of the workpiece 3. Irradiate as you do.
  • the laser light is irradiated so that the irradiation regions LF to LJ overlap with the edge portions of the irradiation regions extending in the direction orthogonal to the conveyance direction of the workpiece 3 as described above.
  • the mask 44 having a plurality of openings M1-M5 (corresponding to the laser beam emitting portions) arranged apart from each other is provided as the laser beam forming means, and the openings M1-M5 of the mask 44 are provided.
  • the irradiation regions LA-LE that are separated from each other are formed on the workpiece by the laser beam divided by the above, and the irradiation region LA-LE formed by the laser beams emitted from the adjacent openings M1-M5
  • Edge portions extending in a direction parallel to the moving direction are configured to be collectively irradiated onto the workpiece while being sequentially superimposed as the workpiece is moved in one direction. For this reason, laser lift-off can be performed in a short time, and throughput can be improved.
  • the irradiation areas LA to LE formed by the laser beams emitted from the laser beam emitting portions arranged apart from each other are sequentially superimposed at intervals as described above. For this reason, the irradiation energy of each divided
  • the irradiation area LA formed by laser light is formed after LB, but since the time until the material layer returns from the decomposition temperature to room temperature is extremely short, it is already irradiated by LB when LA is irradiated. Since the region T1 is already at room temperature, the irradiation energy of the irradiation regions LA and LB formed by the laser light is not added.
  • each laser beam divided by the mask 44 is the same as being individually irradiated onto the workpiece, and each laser irradiation region has a small area. For this reason, damage to the material layer when the material layer is peeled from the substrate can be reduced.
  • the irradiation region groups S1, S2,... are sequentially arranged from the one end side of the work 3 toward the other end in order.
  • the laser beam is irradiated over the entire surface of the work 3.
  • the laser lift-off process of the second embodiment irradiates the workpiece 3 with the laser beam through the mask 44 having a plurality of openings.
  • the laser lift-off process can be performed in a short time while the damage can be reduced.
  • the material layer is decomposed as described above.
  • the material layer after peeling from the substrate can be well harmonized by ensuring the escape path of the gas generated from time to time and the length of the side where the stress generated in the initial stage when the material layer is decomposed is sufficiently long. The occurrence of cracks in can be prevented or suppressed.
  • FIGS. 15 and 16 are diagrams showing modifications of the second embodiment.
  • FIG. 15 is a conceptual diagram of an optical system of a laser lift-off device when other laser beam forming means is used, and FIG. 15 is an enlarged view of the laser beam forming means shown in FIG. 15, FIG. 16 (a) is an enlarged view of the vicinity of the workpiece, and FIG. 16 (b) is a view showing the arrangement of the light emitting elements. .
  • the laser beam forming means is composed of light guides 61a to 61e, light emitting elements 62a to 62e, and optical fibers 60a to 60e, and the laser beam emitting part corresponding to the opening of the mask is the light emitting elements 62a to 62e.
  • the plurality of light emitting elements 62a-62e are straightly inclined with respect to the conveying direction of the workpiece 3 like the openings M1 to M5 of the mask shown in FIG.
  • each of the light emitting elements 62a to 62e is arranged on a line.
  • each of the light emitting elements 62a to 62e are arranged so as to be separated from each other so that the edge portions extending in the direction parallel to the conveyance direction of the workpiece 3 overlap in the irradiation region formed by the above. Even if an optical fiber is used as in this modification, the same effect as in the second embodiment can be obtained by irradiating the workpiece 3 with laser light as described in the second embodiment. Laser lift-off processing can be performed for a short time, damage can be reduced, and generation of cracks in the material layer after peeling from the substrate can be prevented or suppressed.
  • FIGS. 17 to 21 are diagrams for explaining a laser lift-off process according to a third embodiment of the laser lift-off apparatus of the present invention.
  • the mask 44 has a plurality of openings M1 to M9 as laser beam emitting portions spaced apart from each other and inclined with respect to the conveying direction of the workpiece 3 in the metal plate portion. It is drilled in an X shape by arranging it on one imaginary line L1 and the other imaginary line L2 intersecting each other at the opening M3 located at the same position.
  • FIG. 17 the mask 44 has a plurality of openings M1 to M9 as laser beam emitting portions spaced apart from each other and inclined with respect to the conveying direction of the workpiece 3 in the metal plate portion. It is drilled in an X shape by arranging it on one imaginary line L1 and the other imaginary line L2 intersecting each other at the opening M3 located at the same position.
  • each of the openings M1 to M9 extends in a direction parallel to the conveying direction of the workpiece 3 of the laser beam emitted from each adjacent laser beam emitting portion when the workpiece 3 is conveyed in one direction.
  • the edges are formed so as not to be continuous with each other so as to overlap each other.
  • FIG. 18 shows the operation of the mask shutters MS1 to MS4 for opening and closing the openings M1 to M9 provided in the mask 44.
  • the mask 44 of the third embodiment can form two different mask patterns by appropriately opening and closing the mask shutter.
  • FIG. 4A shows a state in which all the mask shutters MS1-MS4 are opened, but in this embodiment, the mask 44 is not used in this state. As shown in FIGS.
  • the mask 44 of the present embodiment is masked so that the openings M1 to M9 are aligned on either one of the virtual lines L1 or L2.
  • both the mask pattern MP1 and the mask pattern MP2 can be formed.
  • the mask pattern MP1 and the mask pattern MP2 are used by switching each time the workpiece moving direction with respect to the laser beam is switched.
  • FIG. 20 shows the irradiation pattern of the laser beam on the workpiece.
  • FIG. 21 is a time chart showing a pulse laser beam irradiation period and a pause period. In the procedure (1) shown in FIG.
  • the mask 44 is arranged so that the upper end of the uppermost opening M ⁇ b> 1 in the drawing is aligned with the upper end of the workpiece 3.
  • the upper end of M1 may extend from the upper end of the workpiece 3.
  • the mask shutters MS2, MS3 are retracted from the mask so as to open the openings M1-M5 arranged on the virtual line L1, and are arranged on the virtual line L2.
  • the mask shutters MS1, MS4 are advanced so as to close the openings M6-M9. In this way, a mask pattern MP1 is formed in the mask 44.
  • the workpiece 3 is conveyed in one direction from right to left while irradiating laser light.
  • the laser light passes through the mask pattern MP1, as shown in FIGS. 20A and 20B, the irradiation areas LA to LE formed by the laser light are inclined straight with respect to the conveyance direction of the workpiece 3.
  • Irradiation patterns P1 arranged in an array on the line are formed.
  • the irradiation pattern P ⁇ b> 1 moves from the upper end of the opening M ⁇ b> 1 located on the uppermost side of the mask 44 in the work 3 (virtual line LL ⁇ b> 1 in FIG. 19A) as the work 3 moves from right to left.
  • the region S1 is irradiated over the lower end (the virtual line LL2 in FIG. 19A) of the opening M5 located at the lowest position of the mask 44.
  • the irradiation areas LA and LB, LB and LC, LC and LD, and LD and LE formed by the laser beams irradiated from the adjacent laser beam emitting portions are combined with each other.
  • an edge portion extending in a direction parallel to the moving direction of the workpiece 3 is superimposed.
  • the irradiation areas LA to LE formed by the laser light are irradiated so that the respective edge portions extending in the direction orthogonal to the moving direction of the workpiece 3 overlap as described with reference to FIG.
  • the procedure (3) shown in FIG. 19 is executed during the pause period of the pulse laser beam (see FIG. 21), and preparation for irradiating the next region of the workpiece 3 with the laser beam, that is, the movement of the workpiece.
  • Change the mask pattern in the procedure of (3), in order to irradiate the next area of the work 3 with the laser beam, the work 3 is moved to a position slightly shorter than the laser-irradiated area S1 in FIG. It is moved in the direction of the arrow (3) shown. The reason why the conveyance distance of the workpiece 3 is slightly shorter than the area S1 is to overlap the areas S1 and S2 shown in FIG. Further, in the procedure (3), the mask pattern MP1 is changed to the mask pattern MP2.
  • the mask shutters MS2 and MS3 are advanced to close the openings M1-M5 except for the opening M3 arranged on the virtual line L1, and the mask pattern is changed to the virtual line L2.
  • the mask shutters MS1 and MS4 are retracted out of the mask 44 in order to open the openings M6 to M9 arranged in the above. In this way, the mask pattern MP2 is formed in the mask 44.
  • an irradiation pattern P2 is formed in which irradiation regions LF to LJ formed by laser light are arranged on a straight line inclined with respect to the moving direction of the workpiece 3.
  • the irradiation pattern P ⁇ b> 2 has a line-symmetric shape of the irradiation pattern P ⁇ b> 1 with the scanning direction of the laser beam with respect to the workpiece 3 as the center.
  • the laser beam having the irradiation pattern P2 is directed from the right side to the left side of the workpiece 3 shown in FIG.
  • the laser light irradiation areas LF and LG, LG and LH, LH and LI, and LI and LJ irradiated from the adjacent openings respectively are the workpieces when the workpiece 3 is conveyed in one direction.
  • the edge portions extending in the direction parallel to the conveyance direction 3 overlap.
  • the areas S1 and S2 are overlapped by adjusting the transport distance of the workpiece 3 as described above.
  • the irradiation regions LF to LJ formed by the laser light are irradiated so that the edge portions extending in the direction orthogonal to the moving direction of the workpiece overlap.
  • the steps (1) to (4) are sequentially performed from one end of the work 3 so that the irradiation region groups S1, S2,... Are sequentially formed from one end to the other end of the work 3.
  • the entire surface of the workpiece 3 is irradiated with the laser beam.
  • the edge portion of the laser light emitted from the openings M1 to M9 as the adjacent laser light emitting portions extending in the direction parallel to the moving direction of the workpiece makes the workpiece in one direction. Since light emitted from a plurality of laser light emitting portions is collectively irradiated onto the workpiece while being sequentially superimposed as it moves, basically the laser light to the workpiece is substantially the same as in the second embodiment. Since the irradiation area can be made large, a laser lift-off process can be performed in a short time.
  • the side to be peeled from the substrate for the first time is always two sides as shown by the dotted lines in FIGS. become. For this reason, as described above, the harmony between ensuring the escape path of the gas generated during the decomposition of the material layer and that the total length of the side on which the stress generated at the initial stage during the decomposition of the material layer is sufficiently long is excellent. The generation of cracks in the material layer after peeling from the substrate can be prevented or suppressed.
  • the laser light irradiation patterns P1 and P2 formed by the mask 44 have a line-symmetric shape with respect to the scanning direction of the laser light with respect to the work 3, respectively, the work transport operation is simplified. be able to. This will be described below.
  • the scan direction of the laser beam with respect to the workpiece 3 is changed by 180 ° in the regions S1 and S2 of the workpiece 3 as shown in FIG.
  • the laser light irradiation patterns P1 and P2 are arranged on two straight lines that are in a line-symmetrical relationship with respect to the moving direction of the workpiece.
  • the number of sides of the material layer that is peeled off from the substrate for the first time by laser light irradiation can always be two.
  • the scanning direction of the workpiece 3 can be alternately changed by 180 ° on the left and right (the moving direction of the workpiece is only one direction in the method of the second embodiment), so the laser shown in FIG.
  • the procedure (4) shown in the light irradiation method that is, the procedure for making the moving direction of the workpiece constant can be omitted. Therefore, the workpiece transfer operation can be simplified.
  • the divided laser beam is formed using a mask.
  • the divided laser beam may be formed using an optical fiber. Good. When an optical fiber is used, it is not necessary to use a mask shutter as shown in this embodiment, and light emission from the optical fiber may be turned on and off.
  • FIGS. 22 to 25 show a laser lift-off process according to a fourth embodiment of the laser lift-off apparatus of the present invention.
  • the mask 44 separates a plurality of openings M1-M9 as laser beam emitting portions from each other in the metal plate portion and is inclined with respect to the conveying direction of the workpiece 3 and V It is drilled so as to be arranged in a straight line on one imaginary line L1 and the other imaginary line L2 intersecting in a letter shape.
  • each of the openings serving as the laser beam emitting portions has an edge portion extending in a direction parallel to the conveying direction of the workpiece 3 of the laser beam emitted from the adjacent opening when the workpiece 3 is conveyed in one direction. They are formed apart from each other so as to overlap.
  • FIG. 24 shows a mask transport mechanism 50 for moving the mask 44 left and right on the paper surface.
  • the mask pattern is changed by sliding on the mask stage 51 in the horizontal direction on the paper surface in accordance with the conveying direction of the workpiece.
  • the mask 44 can form two mask patterns with the opening M5 located at the intersection of one virtual line L1 and the other virtual line L2 as a boundary.
  • the mask 44 has openings M1-M5 arranged in a straight line on one imaginary line L1 within the laser light irradiation range, and openings arranged in a straight line on the other imaginary line L2.
  • the mask pattern MP1 is formed by retracting M6 to M9 out of the laser light irradiation range.
  • the mask 44 retracts the openings M1-M4 arranged in a straight line on one imaginary line L1 out of the laser light irradiation range, and opens the openings M5 arranged in a straight line on the other imaginary line L2.
  • the mask pattern MP22 is formed by arranging -M9 in the laser beam irradiation range.
  • the laser lift-off process of the fourth embodiment will be described with reference to FIG.
  • the numbers in parentheses in the figure indicate the laser light irradiation procedure.
  • This laser beam irradiation method is different from the second and third embodiments in that the mask pattern is changed by moving the mask 44 according to the conveyance of the workpiece.
  • the irradiation pattern of the laser beam to the workpiece is the same as that of the third embodiment. Therefore, the irradiation pattern of the laser beam to the workpiece will be described with reference to FIG. .
  • the mask 44 is arranged so that the upper end of the uppermost opening M ⁇ b> 5 in FIG.
  • the upper end of the opening M5 may extend from the upper end of the workpiece 3.
  • the mask 44 is transported by the mask transport mechanism, and the openings M1 to M5 are disposed within the laser light irradiation range and the openings M6 to M9 are retracted outside the laser light irradiation range as shown in FIG.
  • the mask pattern MP1 is formed on the mask 44.
  • the workpiece 3 is conveyed in one direction from the right to the left while irradiating the laser beam.
  • the laser light passes through the mask pattern MP1 of the mask 44, as shown in FIG. 20B, the irradiation areas LA to LE formed by the laser light are straightly inclined with respect to the workpiece conveyance direction. Irradiation patterns P1 arranged in an array on the line are formed.
  • the laser light is moved from the right side to the left side, as shown in FIG. 23A, the upper end of the opening M5 positioned above the mask 44 in the workpiece 3 (FIG. 23A).
  • From the imaginary line LL1) to the lower end of the opening M1 located on the lowermost side of the mask 44 (the imaginary line LL2 in FIG. 23A).
  • the procedure (3) shown in FIG. 23 is executed during the pause period of the pulse laser beam (see FIG. 25), and preparation for irradiating the next region of the workpiece 3 with the laser beam, that is, the movement of the workpiece. Change the mask pattern.
  • the workpiece 3 in order to irradiate the next region of the workpiece with the laser beam, the workpiece 3 is slightly shorter than the region S1 irradiated with the laser beam of FIG. Is moved in the direction of arrow (3) shown in FIG.
  • the reason why the transport distance of the workpiece 3 is slightly shorter than the laser irradiation area S1 is to overlap the laser light irradiation areas S1 and S2 shown in FIG.
  • the mask pattern MP1 is changed to the mask pattern MP2.
  • the mask 44 is slid by using the mask transport mechanism shown in FIG. 24, and the openings M1-M4 arranged on the virtual line L1 are retracted outside the laser light irradiation range, and the mask pattern is moved onto the virtual line L2.
  • the arranged openings M5-M9 are arranged within the laser beam irradiation range. In this way, a mask pattern MP2 is formed in the mask 44.
  • the workpiece 3 is moved from the left to the right according to the arrow (4) in FIG.
  • an irradiation pattern P2 in which irradiation regions LF to LJ formed by laser light are arranged in an array on a straight line inclined with respect to the moving direction of the work 3 is formed. Is done.
  • the irradiation pattern P ⁇ b> 2 has a line-symmetric shape of the irradiation pattern P ⁇ b> 1 with the scanning direction of the laser beam with respect to the workpiece 3 as the center. As shown in FIG.
  • the laser beam having the irradiation pattern P2 is irradiated from the right side to the left side of the workpiece 3, that is, from the opposite direction to when the region S1 is irradiated with the laser beam.
  • the workpiece 3 from the upper end of the opening M5 positioned above the mask 44 (virtual line LL3 in FIG. 23B) to the lower end of the opening M9 positioned at the lowermost end of the mask 44 (virtual line LL4 in FIG. 23B).
  • Such procedures (1) to (4) are sequentially repeated in order from one end of the work to the other end of the work so that the irradiation region groups S1, S2,.
  • the laser beam is irradiated over the entire surface of the work 3.
  • the laser lift-off process of the fourth embodiment described above basically the same effect as the laser lift-off process of the second embodiment can be expected. Further, since the laser light irradiation patterns P1 and P2 formed by the mask 44 have a line-symmetric shape with respect to the scanning direction of the laser light with respect to the workpiece, they are peeled off from the substrate for the first time by laser light irradiation. The number of sides of the material layer is always two, and the workpiece transfer operation can be simplified as in the third embodiment.
  • the divided laser beam is formed using a mask. However, as shown in FIGS. 15 and 16, the laser beam divided using an optical fiber is used. Light may be formed. When an optical fiber is used, it is not necessary to move the mask as shown in this embodiment, and light emission from the optical fiber may be turned on and off.
  • a GaN layer 102 made of a GaN-based compound semiconductor is rapidly formed on the sapphire substrate 101 by using, for example, a metal organic chemical vapor deposition method (MOCVD method).
  • MOCVD method metal organic chemical vapor deposition method
  • an n-type semiconductor layer 103 and a p-type semiconductor layer 104 that are light emitting layers are stacked on the surface of the GaN layer 102.
  • GaN doped with silicon is used as the n-type semiconductor
  • GaN doped with magnesium is used as the p-type semiconductor.
  • solder 105 is applied on the p-type semiconductor layer 104.
  • FIG. 26C solder 105 is applied on the p-type semiconductor layer 104.
  • a support substrate 106 is attached on the solder 105.
  • the support substrate 106 is made of, for example, an alloy of copper and tungsten.
  • laser light 107 is irradiated from the back surface side of the sapphire substrate 101 toward the interface between the sapphire substrate 101 and the GaN layer 102.
  • the laser beam 107 is shaped so that the irradiation area is a square having an area of 0.25 mm 2 or less, and the light intensity distribution is substantially trapezoidal as shown in FIG.
  • the GaN layer 102 is peeled from the sapphire substrate 101.
  • ITO 108 which is a transparent electrode is formed on the surface of the GaN layer 102 after peeling by vapor deposition, and the electrode 109 is attached to the surface of the ITO 108.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Led Devices (AREA)

Abstract

The present invention prevents, to the maximum extent possible, the occurrence of cracking in a material layer following separation from a substrate, and enables laser lift-off treatment to be performed in a short period of time. In order to separate a material layer (2) at the interface of a substrate (1) and the material layer (2), a pulsed laser beam is emitted through the substrate (1) while altering the irradiation area over time. The laser beam is formed in rectangular shapes having at least one side extending in a direction parallel to the direction of movement of a workpiece (3), is emitted so that each of the adjacent irradiated areas overlap with one another, and is irradiated on a workpiece (3) so that within the rectangular separation regions of the material layer (2), two sides of the material layer are initially separated from the substrate (1). Thus, the N2 gas generated by the decomposition of GaN can escape from the two sides where separation has been completed, enabling separation of the material layer (2) without cracking. Furthermore, using a mask to split the laser beam into a plurality of laser beams irradiating smaller areas, and thereby creating a plurality of irradiation areas spaced apart from one another on the workpiece enables laser lift-off treatment to be performed in a short period of time.

Description

レーザリフトオフ方法及びレーザリフトオフ装置Laser lift-off method and laser lift-off apparatus
 本発明は、化合物半導体により形成される半導体発光素子の製造プロセスにおいて、基板上に形成された材料層にレーザ光を照射することによって、当該材料層を分解して当該基板から剥離する(以下、レーザリフトオフという)ためのレーザリフトオフ方法及びレーザリフトオフ装置に関する。 In the manufacturing process of a semiconductor light emitting device formed of a compound semiconductor, the present invention decomposes the material layer by irradiating the material layer formed on the substrate with a laser beam, and peels the material layer from the substrate (hereinafter referred to as the following). The present invention relates to a laser lift-off method and a laser lift-off apparatus.
 GaN(窒化ガリウム)系化合物半導体により形成される半導体発光素子の製造プロセスにおいて、サファイア基板の上に形成されたGaN系化合物材料層を当該サファイア基板の裏面からレーザ光を照射することにより剥離するレーザリフトオフの技術が知られている。以下、基板上に形成された材料層に対してレーザ光を照射して基板から結晶層を剥離することをレーザリフトオフと呼ぶ。
 例えば、特許文献1においては、サファイア基板の上にGaN層を形成し、当該サファイア基板の裏面からレーザ光を照射することにより、GaN層を形成するGaNが分解され、当該GaN層をサファイア基板から剥離するレーザリフトオフ方法について記載されている。以下では基板上に結晶層が形成されたものをワークと呼ぶ。
 GaN系化合物材料層を基板からレーザリフトオフするためには、GaN系化合物をGaとNとに分解するために必要な分解閾値以上の照射エネルギーを有するレーザ光をワークの全面に亘り照射することが重要になる。
Laser for peeling a GaN-based compound material layer formed on a sapphire substrate by irradiating a laser beam from the back surface of the sapphire substrate in a manufacturing process of a semiconductor light-emitting device formed of a GaN (gallium nitride) -based compound semiconductor Lift-off technology is known. Hereinafter, the process of irradiating the material layer formed on the substrate with laser light and peeling the crystal layer from the substrate is referred to as laser lift-off.
For example, in Patent Document 1, a GaN layer is formed on a sapphire substrate, and laser light is irradiated from the back surface of the sapphire substrate, whereby GaN forming the GaN layer is decomposed, and the GaN layer is separated from the sapphire substrate. A laser lift-off method for peeling is described. Hereinafter, a substrate in which a crystal layer is formed on a substrate is referred to as a workpiece.
In order to laser lift off the GaN-based compound material layer from the substrate, the entire surface of the workpiece is irradiated with laser light having irradiation energy equal to or higher than the decomposition threshold necessary for decomposing the GaN-based compound into Ga and N 2. Becomes important.
 特許文献2には、ワークを搬送しながらワークに対してサファイア基板越しにライン状のレーザ光を照射することが記載される。具体的に同文献には、図27に示すように、サファイア基板121とGaN系化合物の材料層122の界面への照射領域123がライン状になるようにレーザ光124を成形し、サファイア基板121をレーザ光124の長手方向と垂直方向に移動させながら、当該レーザ光124をサファイア基板121の裏面から照射するレーザリフトオフ方法が開示されている。
 また、特許文献3には、レーザを用いて例えば方形状のビームスポットを形成し、このビームスポットを相対的に移動させながら順次、被照射物に照射し、材料層を基板からレーザリフトオフすることが記載されている。特許文献3の図17には、図28に示すように、ビームスポット132を円形のワーク(ウエハ131)に対して同心円状に移動させ、レーザリフトオフすることが示されている。
Patent Document 2 describes that a workpiece is irradiated with a line-shaped laser beam through a sapphire substrate while the workpiece is conveyed. Specifically, in this document, as shown in FIG. 27, a laser beam 124 is formed so that an irradiation region 123 to the interface between the sapphire substrate 121 and the material layer 122 of the GaN-based compound is formed in a line shape, and the sapphire substrate 121 A laser lift-off method is disclosed in which the laser beam 124 is irradiated from the back surface of the sapphire substrate 121 while moving the laser beam 124 in a direction perpendicular to the longitudinal direction of the laser beam 124.
Further, in Patent Document 3, for example, a rectangular beam spot is formed using a laser, and the irradiated object is sequentially irradiated while moving the beam spot, and the material layer is laser lifted off from the substrate. Is described. FIG. 17 of Patent Document 3 shows that the beam spot 132 is moved concentrically with respect to a circular workpiece (wafer 131) and laser lift-off is performed as shown in FIG.
特表2001-501778号公報JP-T-2001-501778 特開2003-168820号公報JP 2003-168820 A 特表2007-534164号公報Special Table 2007-534164
 上述したように、サファイア基板の上に形成されたGaN系化合物材料層を当該サファイア基板の裏面からレーザ光を照射することにより剥離する場合、レーザ光を照射した際にGaNが分解することにより発生するNガスにより、当該GaN層にせん断応力が加わり、当該レーザ光の照射領域の境界部においてクラックが生じる場合がある。
 レーザリフトオフにおいては、このような剥離後の材料層にクラックが発生するのを防止することが重要である。
 レーザ光の照射方法としては、例えば特許文献2に記載されるように、材料層の界面への照射領域がライン状になるようにレーザ光を成形し、基板をレーザ光の長手方向と垂直方向にスキャンさせながらレーザ光を照射したり、特許文献3に記載されるように、方形ビームスポットを円形のウエハに対して同心円状にスキャンし、照射領域を刻々と変えながら照射する方法が提案されている。
 上記特許文献2に記載される方法は、照射領域をライン状に成形し、レーザ光の長手方向と垂直方向に照射領域を移動させながら照射するものであり、レーザ光を基板の幅に相当した長さの形状に成形することが要求されるが、このような形状の照射照度の大きなレーザ光を得ることは難しく、簡単に実現することはできない。
 また、特許文献3の図17に記載されるようにビームスポットをスキャンさせるには、方形状のビームスポットをワーク上で相対的に同心円状に移動させるための機構が必要となり、また、重複して照射される領域の面積が増加し、ワーク全域にレーザ光を照射するのに多くの時間が必要になると考えられ、効率的でない。
As described above, when the GaN-based compound material layer formed on the sapphire substrate is peeled off by irradiating the laser beam from the back surface of the sapphire substrate, the GaN is decomposed when irradiated with the laser beam. The N 2 gas that is applied causes shear stress to the GaN layer, which may cause cracks at the boundary of the laser light irradiation region.
In laser lift-off, it is important to prevent such cracks from occurring in the material layer after peeling.
As a laser light irradiation method, for example, as described in Patent Document 2, the laser light is shaped so that the irradiation region to the interface of the material layer is in a line shape, and the substrate is formed in a direction perpendicular to the longitudinal direction of the laser light. A method of irradiating a laser beam while scanning it, or scanning a rectangular beam spot concentrically with respect to a circular wafer as described in Patent Document 3, and irradiating while changing the irradiation area every time has been proposed. ing.
The method described in Patent Document 2 is to form an irradiation region in a line shape and irradiate while moving the irradiation region in the direction perpendicular to the longitudinal direction of the laser beam, and the laser beam corresponds to the width of the substrate. Although it is required to be shaped into a long shape, it is difficult to obtain a laser beam having such a shape with a large irradiation illuminance and cannot be realized easily.
Further, as described in FIG. 17 of Patent Document 3, in order to scan the beam spot, a mechanism for moving the square beam spot relatively concentrically on the work is necessary, and overlapping is required. The area of the irradiated region increases, and it is considered that a long time is required to irradiate the entire area of the workpiece with laser light, which is not efficient.
 また、本発明者らは、先に、四角形状に成形された小面積のレーザ光の照射領域の位置を刻々と変えながら、各照射領域の端部が隣接する照射領域の端部と互いに重畳するように照射し、レーザリフトオフする方法を提案している。このようにすれば、レーザ光を特許文献2に示されるように、細長い形状に成形したり、ビームスポットを同心円状にスキャンするための特別の機構を用いることなく、効率よく、かつクラックを生じさせることなくレーザリフトオフを実現することができる。
 しかし、上記のように四角形状に成形された小面積のレーザ光を照射領域を刻々と変えながら照射した場合であっても、基板から剥離後の材料層においてクラックが生じる場合があった。
In addition, the inventors previously changed the position of the irradiation area of the laser beam having a small area formed in a square shape, while the end of each irradiation area overlaps the end of the adjacent irradiation area. The laser lift-off method is proposed. In this way, as shown in Patent Document 2, the laser beam is efficiently and cracked without forming a long and narrow shape and using a special mechanism for scanning the beam spot concentrically. The laser lift-off can be realized without causing it.
However, even when the laser light having a small area formed into a quadrangular shape as described above is irradiated while changing the irradiation region, cracks may occur in the material layer after peeling from the substrate.
 また、上述したレーザリフトオフ処理において、レーザリフトオフに要する時間(つまり、ワークの全面に亘りレーザ光を照射するために必要な時間)は、主にレーザ光の照射面積とワークの搬送速度とに依存する。ワークの処理に要するレーザ光の照射時間は、当然のことながらワークへのレーザ光の照射面積が大きく尚且つワークを高速で搬送すれば短くなり、その逆であれば長くなる。
 しかしながら、ワークの搬送速度には自ずと限界がある。よって、レーザリフトオフに要する時間は、主としてワークへのレーザ光の照射面積に依存する。ところが、ワークへのレーザ光の照射面積を大きくすることは、次に説明するように様々な困難が伴う。
 即ち、レーザリフトオフに使用されるレーザ光には、材料層を構成する物質を分解するための分解閾値を超える照射エネルギーが必要とされるが、レーザリフトオフに必要な照射エネルギーを維持しつつレーザ光の照射面積を大きくすることは困難である。
 本発明者らが鋭意検討したところ、ワークへのレーザ光の照射面積を大きくした場合は、レーザリフトオフ時に材料層に例えばクラック(割れ)などのダメージが発生することが判明した。
 前述したように、材料層はパルスレーザ光が照射されることにより、材料層のGaNがGaとNとに分解する。GaNが分解することによりNガスが発生することから、当該GaN層にせん断応力が加わり、当該レーザ光の照射領域の境界部においてクラックが生じるなど、照射領域のエッジ部にダメージを与える。
 この分解によるダメージの大きさは、レーザ光の照射面積に大きく依存しているものと考えられる。すなわち、照射面積Sが大きいほど、上記Nガスの発生量が多くなる等、パルスレーザ光の照射領域のエッジ部へ大きな力が加わる。
In the laser lift-off process described above, the time required for laser lift-off (that is, the time required for irradiating the entire surface of the workpiece with laser light) mainly depends on the laser light irradiation area and the workpiece conveyance speed. To do. Naturally, the irradiation time of the laser beam required for processing the workpiece becomes shorter if the irradiation area of the laser beam to the workpiece is large and the workpiece is conveyed at a high speed, and becomes longer if the workpiece is transferred at high speed.
However, there is a limit to the workpiece transfer speed. Therefore, the time required for laser lift-off mainly depends on the irradiation area of the laser beam on the workpiece. However, increasing the irradiation area of the laser beam on the workpiece involves various difficulties as will be described below.
That is, the laser light used for laser lift-off requires irradiation energy exceeding the decomposition threshold for decomposing the material constituting the material layer, but the laser light is maintained while maintaining the irradiation energy necessary for laser lift-off. It is difficult to increase the irradiation area.
As a result of intensive studies by the present inventors, it has been found that when the laser light irradiation area on the workpiece is increased, damage such as cracks occurs in the material layer at the time of laser lift-off.
As described above, the material layer is irradiated with pulsed laser light, whereby GaN in the material layer is decomposed into Ga and N 2 . Since N 2 gas is generated by the decomposition of GaN, shear stress is applied to the GaN layer, and cracks are generated at the boundary of the laser light irradiation region, thereby damaging the edge of the irradiation region.
It is considered that the magnitude of damage due to this decomposition greatly depends on the irradiation area of the laser beam. That is, as the irradiation area S is larger, a larger force is applied to the edge portion of the irradiation region of the pulsed laser light, such as the generation amount of the N 2 gas is increased.
 上記した理由により、レーザリフトオフ時の材料層へのダメージを軽減するため、ワークへのレーザ光の照射面積を小さくするのが望ましい。
 しかしながら、レーザ光照射面積を小さくすると、レーザリフトオフに要するレーザ光の照射時間が長くなるという問題がある。例えば、以下の条件1では、φ2インチ(50.8mm)のワークをレーザリフトオフするために要するレーザ光の照射時間は約25秒である。一方、以下の条件2では、φ2インチのワークをレーザリフトオフするために要するレーザ光の照射時間は約625秒となる。
(条件1)
・ワークの直径:φ2インチ
・ワークへのレーザ光の照射領域:1mm角の正方形
・パルスレーザ光の周波数:100Hz
(条件2)
・ワークの直径:φ2インチ
・ワークへのレーザ光の照射領域:0.2mm角の正方形
・パルスレーザ光の周波数:100Hz
 以上のように、ダメージを生じさせることなく材料層を基板から十分に剥離させるためには、レーザ光の照射面積を小さくすることが必要である。しかし、レーザ光はワークの全面に亘り照射する必要があるため、レーザ光の照射領域の面積を小さくすると、レーザリフトオフ処理に要する時間が長くなる。
For the reasons described above, it is desirable to reduce the irradiation area of the laser beam on the workpiece in order to reduce damage to the material layer at the time of laser lift-off.
However, when the laser light irradiation area is reduced, there is a problem that the laser light irradiation time required for laser lift-off becomes longer. For example, under the following condition 1, the irradiation time of laser light required for laser lift-off of a workpiece of φ2 inches (50.8 mm) is about 25 seconds. On the other hand, under the following condition 2, the irradiation time of the laser beam required for laser lift-off of the φ2 inch workpiece is about 625 seconds.
(Condition 1)
・ Workpiece diameter: φ2 inch ・ Laser irradiation area: 1 mm square ・ Pulse laser light frequency: 100 Hz
(Condition 2)
・ Workpiece diameter: φ2 inches ・ Laser irradiation area: 0.2 mm square ・ Pulse laser light frequency: 100 Hz
As described above, in order to sufficiently peel the material layer from the substrate without causing damage, it is necessary to reduce the irradiation area of the laser beam. However, since it is necessary to irradiate the entire surface of the workpiece with the laser beam, the time required for the laser lift-off process increases when the area of the laser beam irradiation region is reduced.
 一方、本発明者らが鋭意検討したところ、GaN系化合物材料層を基板からレーザリフトオフするためには、GaN系化合物をGaとNとに分解するために必要な分解閾値以上の照射エネルギーを有するレーザ光をワークの全面に亘り照射することが必要であることが分かった。
 分解閾値以上の照射エネルギーを有するレーザ光が照射されない領域が存在すると、材料層を構成するGaNの未分解領域が形成され、材料層を基板から十分に剥離させることができない。このため、隣り合う照射領域のエッジ部が、分解閾値VEを超えるエネルギー領域において重畳する必要がある。
On the other hand, as a result of intensive studies by the present inventors, in order to laser lift off the GaN-based compound material layer from the substrate, irradiation energy equal to or higher than the decomposition threshold necessary for decomposing the GaN-based compound into Ga and N 2 is required. It was found that it is necessary to irradiate the entire surface of the workpiece with the laser beam.
If there is a region where a laser beam having irradiation energy equal to or higher than the decomposition threshold is not irradiated, an undecomposed region of GaN constituting the material layer is formed, and the material layer cannot be sufficiently separated from the substrate. For this reason, the edge part of an adjacent irradiation area | region needs to overlap in the energy area | region exceeding the decomposition threshold value VE.
 上述したように、ダメージを生じさせることなく材料層を基板から十分に剥離させるためには、隣り合う照射領域のエッジ部が、分解閾値VEを超えるエネルギー領域において重畳するようにレーザ光をワークの全面に亘り照射することが必要であるが、これに加えて、レーザ光の照射面積を小さくすることが必要である。
 しかし、レーザ光の照射面積を小さくすると、前述したように、レーザリフトオフ処理に要する時間が増加するといった問題が生ずる。さらに、レーザ光をこのように照射した場合であっても、前述したようにレーザ光の照射方法如何により、基板から剥離後の材料層においてクラックが生じる場合があった。
As described above, in order to sufficiently peel the material layer from the substrate without causing damage, the laser light is applied to the workpiece so that the edge portion of the adjacent irradiation region overlaps in the energy region exceeding the decomposition threshold VE. It is necessary to irradiate the entire surface, but in addition to this, it is necessary to reduce the irradiation area of the laser beam.
However, when the irradiation area of the laser beam is reduced, there is a problem that the time required for the laser lift-off process increases as described above. Further, even when the laser beam is irradiated in this manner, cracks may occur in the material layer after peeling from the substrate depending on the laser beam irradiation method as described above.
 本発明は、上記問題点を解決するものであって、基板から剥離後の材料層におけるクラックの発生を極力防止することができ、また、照射面積の小さいレーザ光により、短時間でレーザリフトオフ処理を行うことができるレーザリフトオフ方法および装置を提供することを目的とする。 The present invention solves the above-mentioned problems, can prevent the generation of cracks in the material layer after peeling from the substrate as much as possible, and can perform laser lift-off processing in a short time with a laser beam having a small irradiation area. It is an object of the present invention to provide a laser lift-off method and apparatus capable of performing the above.
 本発明者らが種々検討した結果、上記したように四角形状に成形されたレーザ光を照射領域を刻々と変えながら、各照射領域の端部が隣接する照射領域の端部と互いに重畳するように照射することにより、クラックの発生を防止しながら、基板から材料層を剥離できることを見出した。
 しかし、上記レーザリフトオフ方法によっても、ワークに対するレーザ光の照射方法如何により、基板から剥離後の材料層においてクラックが生じる場合があることが分かった。これについて以下で説明する。
 図6は、前記ワークに対する照射領域を刻々と変えながら、レーザ光の照射領域のエッジ部が、ワークの搬送方向に従って順次に重畳するように、レーザ光を前記ワークに照射することにより、材料層を基板からレーザリフトオフする方法を示す。
 同図は、レーザ光のワークに対する照射領域が四角形状(正方形)の場合を示し、同図の黒く塗りつぶした領域がレーザ光が照射されている照射領域であり、斜線で示した部分はレーザ光の照射済みの領域、白の部分はレーザ光が未照射の領域であり、照射領域は、同図の矢印で示す方向に順次移動し、照射領域を刻々と変えながらレーザ光が照射される。
 また、同図では、基板から剥離された材料層の四角形状の剥離領域のうち、基板からはじめて剥離される材料層の剥離辺が、2辺の場合(同図(a)の2辺剥離)、及び3辺の場合(同図(b)の3辺剥離)および一辺の場合(同図(c)1辺剥離)、をそれぞれ示す。
As a result of various studies by the present inventors, as described above, the end of each irradiation region overlaps with the end of the adjacent irradiation region while changing the irradiation region of the laser beam formed into a square shape as described above. It was found that the material layer can be peeled from the substrate while preventing the generation of cracks by irradiating the substrate.
However, it has been found that even with the laser lift-off method, cracks may occur in the material layer after peeling from the substrate, depending on the method of irradiating the workpiece with laser light. This will be described below.
FIG. 6 shows that the material layer is formed by irradiating the workpiece with laser light so that the edge portions of the irradiation region of the laser beam are sequentially superimposed in accordance with the conveyance direction of the workpiece while changing the irradiation region with respect to the workpiece. Shows a method of laser lift-off from the substrate.
This figure shows the case where the irradiation area of the laser beam on the workpiece is square (square). The black area in the figure is the irradiation area irradiated with the laser beam, and the shaded area is the laser beam. The irradiated area and the white part are areas where the laser beam has not been irradiated, and the irradiated area is sequentially moved in the direction indicated by the arrow in the figure, and the laser beam is irradiated while changing the irradiation area every moment.
Moreover, in the same figure, when the peeling side of the material layer peeled for the first time from the substrate is two sides in the rectangular peeling region of the material layer peeled from the substrate (two-side peeling in FIG. 1A). , And the case of three sides (three-side peeling in FIG. 1B) and the case of one side (one-side peeling in FIG. 1C) are shown.
 図7は、図6に示すレーザリフトオフ方法によって剥離した材料層の状態を示した画像であり、上記図6の(a)~(c)のようにレーザリフトオフした場合の、基板から剥離後の材料層におけるクラック発生の有無をそれぞれ示したものである。
 なお、図7は、前記したサファイア基板の上に形成されたGaN系化合物材料層をサファイア基板の裏面から図6に示す四角形状のレーザ光を照射することにより剥離させた場合を示し、図7(a)は、基板からはじめて剥離される材料層の剥離辺が2辺の場合(図6(a))を示し、図7(b)は3辺の場合(図6(b))を示し、図7(c)は一辺の場合(図6(c))を示す。
FIG. 7 is an image showing the state of the material layer peeled off by the laser lift-off method shown in FIG. 6, and the state after peeling from the substrate when the laser lift-off is performed as shown in FIGS. It shows the presence or absence of occurrence of cracks in the material layer.
FIG. 7 shows a case where the GaN-based compound material layer formed on the sapphire substrate is peeled off by irradiating the rectangular laser beam shown in FIG. 6 from the back surface of the sapphire substrate. (A) shows the case where the peeling side of the material layer peeled from the substrate for the first time is two sides (FIG. 6A), and FIG. 7B shows the case where there are three sides (FIG. 6B). FIG. 7C shows the case of one side (FIG. 6C).
 図6(a)に示すように材料層の未分解領域からはじめて剥離された辺が2辺である場合は、図7(a)に示すようにクラックが生じなかったが、図6(b)に示すように、材料層の未分解領域からはじめて剥離された辺が3辺である場合は、図7(b)に示すように剥離後の材料層においてクラックが発生した。
 この理由は、次のように考えられる。
 材料層であるGaNはレーザ光が照射されることによってGaとNとに分解される。図6(a)(b)に示すように、GaNの分解時に発生したNガスは、基板から順次に剥離される四角形状の剥離領域において、GaNの未分解領域に接する辺からは排出不可能であるため、既に基板から剥離済の辺から排出される。
 図6(a)に示すようにGaNの四角形状の剥離領域において、基板からはじめて剥離された辺が2辺である場合は、既に基板から剥離済の辺が2辺あり、Nガスの逃げ道はこの2辺となり、Nガスはこの2辺から逃げるため、光が照射されている領域には大きなガスの圧力は加わらない。
 一方、図6(b)に示すように、GaNの四角形状の剥離領域において、基板からはじめて剥離された辺が3辺である場合は、既に基板から剥離済の辺が1辺のみであり、Nガスの逃げ道がこの1辺しかない。このため、Nガスを十分に排出することができず、Nガスの圧力によって発生する応力が、基板から剥離した材料層における、GaNの未分解領域に接する3辺に蓄積することによって、基板から剥離後のGaNにおいてクラックが生じるものと考えられる。
As shown in FIG. 6A, when two sides were peeled for the first time from the undecomposed region of the material layer, cracks did not occur as shown in FIG. As shown in FIG. 7, when three sides were peeled for the first time from the undecomposed region of the material layer, cracks occurred in the peeled material layer as shown in FIG.
The reason is considered as follows.
GaN, which is a material layer, is decomposed into Ga and N 2 when irradiated with laser light. As shown in FIGS. 6 (a) and 6 (b), the N 2 gas generated during the decomposition of GaN is not discharged from the side in contact with the undecomposed region of GaN in a rectangular separation region that is sequentially separated from the substrate. Since it is possible, it is discharged from the side already peeled off from the substrate.
In rectangular peeled area of GaN as shown in FIG. 6 (a), if the first time peeled edges from the substrate is two sides, already in two sides peeling already sides from the substrate, escape of N 2 gas Since these are the two sides and the N 2 gas escapes from these two sides, no large gas pressure is applied to the region irradiated with light.
On the other hand, as shown in FIG. 6B, in the GaN square-shaped peeling region, when the side peeled for the first time from the substrate is three sides, there is only one side already peeled from the substrate, N 2 escape of gas is only the one side. For this reason, N 2 gas cannot be sufficiently discharged, and stress generated by the pressure of N 2 gas accumulates on three sides in contact with the undecomposed region of GaN in the material layer peeled from the substrate, It is considered that cracks occur in the GaN after peeling from the substrate.
 図6(c)に示すように、材料層の未分解領域からはじめて剥離された辺が1辺である場合にも、図7(c)に示すように、上記と同じく、剥離後の材料層にクラックが発生した。
 この場合は、図6(c)に示すように、既に基板から剥離済の辺が3辺あるため、Nガスの排出に関しては問題ない。しかし、レーザ光の照射によりGaNが分解する際に発生する応力が、GaNの未分解領域に接する1辺のみに集中するため、材料層の強度が十分でない場合に、基板から剥離後のGaNにおいてクラックが生じるものと考えられる。
 なお、図6(c)に示すように、上下の領域が剥離済みの領域で、その間に未分解領域が残っており、この未分解領域にレーザ光を照射するのは特殊なケースであり、ワークの一端から他端に向けて順番にレーザ光を照射していく場合には生じないが、ワークに対するレーザ光の照射方法如何によっては、このようなケースが生ずる場合もあり、図6(c)に示す「1辺剥離」は、避けることが望ましい。
As shown in FIG. 7C, even when the side peeled for the first time from the undecomposed region of the material layer is one side, as shown in FIG. Cracks occurred.
In this case, as shown in FIG. 6C, there are three sides already peeled from the substrate, so there is no problem with the discharge of N 2 gas. However, since the stress generated when GaN is decomposed by laser light irradiation is concentrated only on one side in contact with the undecomposed region of GaN, when the strength of the material layer is not sufficient, It is thought that cracks occur.
As shown in FIG. 6 (c), the upper and lower regions are already peeled regions, and an undecomposed region remains between them. It is a special case that the undecomposed region is irradiated with laser light. Although this does not occur when laser light is irradiated in order from one end of the workpiece to the other end, such a case may occur depending on the method of irradiating the workpiece with laser light. FIG. It is desirable to avoid the “one-side peeling” shown in FIG.
 以上のように、レーザ光のワークに対する照射領域を、ワークの移動方向と平行方向に伸びる1辺を有する四角形状とし、レーザ光をワークに対して照射することで基板から剥離された材料層の四角形状の剥離領域のうち、基板からはじめて剥離された辺が、2辺になるようにすることで、剥離後の材料層にクラックが生ずるのを防ぐことができる。
 すなわち、図6(a)に示すように、基板からはじめて剥離された辺が2辺である場合は、基板から剥離後のGaNにおいて、図7(a)に示すように全くクラックが発生しなかった。
 これは、GaNの四角形状の剥離領域において、基板からはじめて剥離された辺が2辺である場合は、GaNの分解によって発生したN2ガスが、既に基板から剥離済の2辺から排出され、Nガスの逃げ道が十分に確保されるためである。
 また、剥離された辺が2辺の場合は、レーザ光の照射によりGaNが分解する際に発生した応力は、GaNの未分解領域に接する2辺に分散して印加されることにより、クラックの発生が防止される。
As described above, the irradiation region of the laser beam on the workpiece has a quadrangular shape having one side extending in a direction parallel to the movement direction of the workpiece, and the material layer peeled from the substrate by irradiating the workpiece with the laser beam. By making the sides peeled for the first time from the substrate into two sides in the square peeled region, it is possible to prevent the material layer after peeling from being cracked.
That is, as shown in FIG. 6A, when there are two sides peeled from the substrate for the first time, no cracks are generated in the GaN after peeling from the substrate as shown in FIG. 7A. It was.
This is because, in the GaN quadrilateral peeling region, when there are two sides peeled off from the substrate for the first time, N2 gas generated by the decomposition of GaN is discharged from the two sides already peeled off from the substrate, and N This is because a sufficient escape path for two gases is secured.
In addition, when the peeled sides are two sides, the stress generated when GaN is decomposed by laser light irradiation is distributed and applied to the two sides in contact with the undecomposed region of GaN, thereby causing cracks. Occurrence is prevented.
 Nガスの逃げ道を十分に確保することと、GaNが分解する際に発生した応力を分散させるためには、レーザ光の照射により基板から順次に剥離された剥離領域において、基板からはじめて剥離される辺の全長Xと、基板から既に剥離された辺の全長Yとの比が概ね1:1であることが好ましい。
 即ち、基板からはじめて剥離された辺を常に2辺にすることにより、材料層の分解時に発生したガスの逃げ道を確保することと、材料層の分解時に発生する応力を分散させること、の調和をうまく図ることができ、基板から剥離後の材料層におけるクラックの発生を、防止若しくは抑制することができる。
In order to ensure a sufficient escape path for N 2 gas and to disperse the stress generated when GaN decomposes, in the peeling region where the GaN is sequentially peeled from the substrate by the irradiation of the laser beam, the peeling is performed for the first time from the substrate. The ratio of the total length X of the sides to the total length Y of the sides already peeled from the substrate is preferably about 1: 1.
In other words, the two sides that are peeled off from the substrate for the first time are always kept in harmony between ensuring the escape path of the gas generated during decomposition of the material layer and dispersing the stress generated during decomposition of the material layer. This can be achieved well, and the occurrence of cracks in the material layer after peeling from the substrate can be prevented or suppressed.
 また、照射面積の小さいレーザ光により、短時間でレーザリフトオフ処理を行うことができるようにするため、本発明においては、上記のように各照射領域において、はじめて剥離する辺が2辺になるようにレーザ光を照射するとともに、レーザ光を分割して、ワークあるいはレーザ源(照射領域)を相対的に移動させながら、ワーク上に、上記互いに離間した複数の照射領域が形成されるようにレーザ光を一括照射する。 In addition, in order to enable laser lift-off processing to be performed in a short time with a laser beam having a small irradiation area, in the present invention, as described above, in each irradiation region, the sides to be peeled for the first time are two sides. Is irradiated with laser light, and the laser light is divided so that the plurality of irradiation regions separated from each other are formed on the workpiece while relatively moving the workpiece or the laser source (irradiation region). Irradiate light in a lump.
 すなわち、以下のようにして、ワークにレーザ光を照射する。
 マスクなどのレーザ光を分割するための複数の小面積のレーザ光出射部が設けられたレーザ光形成手段を用いて、レーザ源から出射するレーザ光を複数のレーザ光に分割し、ワーク上に互いに離間した面積の小さな複数の照射領域を形成する。なお、ここでは、上記複数のレーザ光出射部から出射した各レーザ光が照射される領域を照射領域という。
 そして、ワークあるいはレーザ源(照射領域)を相対的に移動させながら、ワーク上に、上記互いに離間した複数の照射領域が形成されるように、レーザ光を一括照射する。
 その際、隣り合う照射領域が、上記ワークの移動方向に対して斜めに配置されるように互いに離間させ、隣接する照射領域のワークの相対的移動方向に対して平行方向に伸びる端部が、移動するに従って順次に重畳するように上記複数の照射領域を配列する。さらに、各照射領域におけるワークの搬送方向と直交方向に伸びるエッジ部が互いに重畳するように、ワーク3の搬送速度とパルスレーザ光の照射間隔を設定する。
 すなわち、上記各照射領域の端部(エッジ部)は隣接する照射領域の端部(エッジ部)と互いに重畳する。
 このようにすれば、実質的にワークへのレーザ照射領域を大面積にしたことと同じになり、短時間でのレーザリフトオフ処理が可能になる。
 なお、ワーク上で重畳して照射されるレーザ光は、ワークをレーザ源に対して相対移動させているので、わずかな時間を隔てて照射される。材料層(GaN)は、材料層が分解する温度に達した後に室温に戻るまでの時間が極めて短い。これに対し、ワーク上で重畳して照射されるレーザ光の照射間隔は、上記の材料層が分解する温度に達した後に室温に戻るまでの時間よりもはるかに長い。したがって、レーザ光が重畳する領域では、各レーザ光の照射エネルギーが合算されないため、各レーザ光出射部から出射したレーザ光の照射領域が実質的に小面積となり、材料層へのダメージが低減される。
In other words, the workpiece is irradiated with laser light as follows.
Using a laser beam forming means provided with a plurality of laser beam emitting sections with a small area for dividing the laser beam, such as a mask, the laser beam emitted from the laser source is divided into a plurality of laser beams on the workpiece. A plurality of irradiation regions with small areas separated from each other are formed. Here, the region irradiated with each laser beam emitted from the plurality of laser beam emitting units is referred to as an irradiation region.
Then, while moving the workpiece or the laser source (irradiation region) relatively, the laser beam is collectively irradiated so that the plurality of irradiation regions separated from each other are formed on the workpiece.
At that time, the adjacent irradiation regions are spaced apart from each other so as to be arranged obliquely with respect to the movement direction of the workpiece, and the end portions extending in a direction parallel to the relative movement direction of the workpiece in the adjacent irradiation region, The plurality of irradiation areas are arranged so as to be sequentially overlapped as they move. Furthermore, the conveyance speed of the workpiece 3 and the irradiation interval of the pulse laser light are set so that the edge portions extending in the direction orthogonal to the workpiece conveyance direction in each irradiation region overlap each other.
That is, the end portions (edge portions) of the respective irradiation regions overlap with the end portions (edge portions) of the adjacent irradiation regions.
In this way, it is substantially the same as having a large laser irradiation area on the workpiece, and a laser lift-off process can be performed in a short time.
Note that the laser beam that is superimposed and irradiated on the workpiece is irradiated with a slight interval since the workpiece is moved relative to the laser source. The material layer (GaN) has a very short time to return to room temperature after reaching the temperature at which the material layer decomposes. On the other hand, the irradiation interval of the laser light that is superimposed and irradiated on the workpiece is much longer than the time required to return to room temperature after reaching the temperature at which the material layer is decomposed. Therefore, in the region where the laser beam is superimposed, the irradiation energy of each laser beam is not summed up, so the irradiation region of the laser beam emitted from each laser beam emitting section is substantially small, and damage to the material layer is reduced. The
 以上に基づき、本発明においては、次のように前記課題を解決する。
(1)基板上に材料層が形成されてなるワークに対し、前記基板を通してレーザ源からのレーザ光を照射し、前記基板と前記材料層との界面で前記材料層を分解して前記基板から剥離するレーザリフトオフ方法において、前記レーザ光は、前記ワークに対する照射領域を刻々と変えながら前記ワークに照射され、前記レーザ光の前記ワークに対する照射領域は、前記ワークの移動方向と平行方向に伸びる1辺を有する四角形状に形成され、前記照射領域のエッジ部が、前記ワークが前記レーザ源に対して相対的に一方向に移動するに従って順次に重畳し、前記レーザ光は、前記基板から順次に剥離された前記材料層の四角形状の剥離領域において、前記基板からはじめて剥離される材料層の剥離辺が2辺になるように、前記ワークに照射される。
(2)上記(1)において、レーザ光により、各照射領域群が、ワークの一端から他端に向けて順次に並ぶように形成され、ワークにおいて最初に形成される照射領域群および最後に形成される照射領域群は、ワークの一方のエッジ部および他方のエッジ部から伸びだすように形成される。
(3)上記(1)において、前記レーザ源から出射するレーザ光を、複数のレーザ光に分割し、分割された各パルスレーザ光により前記ワーク上に互いに離間した複数の照射領域を形成し、前記複数の照射領域は、隣接する照射領域の前記ワークの移動方向と平行方向に伸びる端部が、前記ワークが前記レーザ源に対して相対的に一方向に移動するに従って、順次に重畳するように配列される。
(4)基板上に材料層が形成されてなるワークに対し、前記基板を通してレーザ光を照射し、前記基板と前記材料層との界面で前記材料層を前記基板から剥離するレーザリフトオフ装置において、前記基板を透過する波長域のレーザ光を発生するレーザ源と前記ワークと前記レーザ源とを相対的に搬送する搬送機構と、前記レーザ光が、前記ワークに対する照射領域を刻々と変えながら、各照射領域がワークの一端から他端に向けて順次に並ぶように前記ワークに照射され、かつ、前記照射領域のエッジ部が前記ワークが前記レーザ源に対して相対的に一方向に移動するに従って順次に重畳するように、前記レーザ光の照射間隔と前記搬送機構による前記ワークの搬送動作とを制御する制御部と、前記レーザ源から発したレーザ光を、前記ワークの移動方向と平行方向に伸びる1辺を有する四角形状に成形して、前記ワークに照射するレーザ光学系とを設ける。
 前記制御部は、ワークにおいて最初に形成される照射領域群および最後に形成される照射領域群が、ワークの一方のエッジ部および他方のエッジ部から伸びだすようにレーザ光を前記ワークに照射するとともに、前記基板から順次に剥離された前記材料層の四角形状の剥離領域のうち、前記基板からはじめて剥離される材料層の剥離辺が2辺になるように、前記レーザ光を前記ワークに照射する。
(5)上記(4)において、前記レーザ源から出射するレーザ光を、複数のレーザ光に分割し、分割された各パルスレーザ光により前記ワーク上に互いに離間した複数の照射領域を形成するレーザ光形成手段を設け、前記レーザ光形成手段により形成される複数の照射領域は、隣接する照射領域の前記ワークの移動方向と平行方向に伸びる端部が、前記ワークが前記レーザ源に対して相対的に一方向に移動するに従って、順次に重畳するように配列する。
(6)上記(5)において、前記レーザ光形成手段として、複数の方形状の開口を有するマスクを用いる。
(7)上記(5)または(6)において、前記ワーク上に形成される照射領域が、前記ワークの移動方向に傾斜した一直線上に配列される。
(8)上記(6)において、前記マスクは、前記複数の開口が互いに交差する一方の仮想線と他方の仮想線とにそれぞれ一直線上に配列される一方のマスクパターンと、他方のマスクパターンとからなり、マスクが有する開口がX字状に配列されている。
(9)上記(8)において、前記マスクの前記複数の開口を開閉するマスクシャッタを備え、前記マスクシャッタは、前記ワークの搬送時において、前記一方のマスクパターンの開口のみが開き、前記一方の仮想線と前記他方の仮想線との交点に位置する開口を除いて、前記他方のマスクパターンの開口が閉じるように開閉し、前記マスクシャッタは、前記ワークの搬送方向を180°切替える毎に、前記一方の仮想線と前記他方の仮想線との交点に位置する開口を除いて、前記一方のマスクパターン及び前記他方のマスクパターンそれぞれの開閉状態を切替える。
(10)上記(6)において、前記マスクは、一方の仮想線上に配列された複数の開口からなる一方のマスクパターンと、他方の仮想線上に配列された複数の開口からなる他方のマスクパターンとからなり、マスクが有する開口がV字状に配列される。
(11)上記(10)において、前記マスクは、前記一方のマスクパターン及び前記他方のマスクパターンの何れかのみがレーザ光照射領域内に配置されるように、前記マスクを搬送するマスク搬送機構を備え、前記マスク搬送機構は、前記ワークの搬送方向を180°切替える毎に、前記レーザ光照射領域内に配置するマスクパターンを切替える。
Based on the above, the present invention solves the above problems as follows.
(1) A workpiece having a material layer formed on a substrate is irradiated with a laser beam from a laser source through the substrate, and the material layer is decomposed at the interface between the substrate and the material layer. In the laser lift-off method for peeling, the laser beam is irradiated to the workpiece while changing the irradiation region to the workpiece, and the irradiation region of the laser beam to the workpiece extends in a direction parallel to the moving direction of the workpiece. The edges of the irradiation area are sequentially superimposed as the workpiece moves in one direction relative to the laser source, and the laser light is sequentially emitted from the substrate. The workpiece is irradiated so that the peeling side of the material layer peeled off for the first time from the substrate becomes two sides in the square peeling region of the peeled material layer. .
(2) In the above (1), each irradiation region group is formed by laser light so as to be sequentially arranged from one end to the other end of the workpiece, and the irradiation region group formed first and last in the workpiece. The irradiated region group is formed so as to extend from one edge portion and the other edge portion of the workpiece.
(3) In the above (1), the laser beam emitted from the laser source is divided into a plurality of laser beams, and a plurality of irradiation regions separated from each other are formed on the workpiece by the divided pulse laser beams, The plurality of irradiation areas are sequentially overlapped with the ends of the adjacent irradiation areas extending in a direction parallel to the movement direction of the work as the work moves in one direction relative to the laser source. Arranged.
(4) In a laser lift-off device that irradiates a workpiece having a material layer formed on a substrate with laser light through the substrate and peels the material layer from the substrate at an interface between the substrate and the material layer. A laser source that generates laser light in a wavelength region that passes through the substrate, a transport mechanism that relatively transports the work and the laser source, and the laser light changes the irradiation area of the work every moment, As the irradiation area is sequentially irradiated from one end to the other end of the work, the work is irradiated, and the edge of the irradiation area moves in one direction relative to the laser source. The laser beam emitted from the laser source and the control unit for controlling the irradiation interval of the laser beam and the transfer operation of the workpiece by the transfer mechanism so as to be sequentially superimposed It is formed into a square shape having one sides extending in the moving direction and the direction parallel click, providing a laser optical system for irradiating the workpiece.
The control unit irradiates the workpiece with laser light so that an irradiation region group formed first and an irradiation region group formed last in the workpiece extend from one edge portion and the other edge portion of the workpiece. At the same time, the workpiece is irradiated with the laser light so that the material layer to be peeled for the first time from the substrate has two sides of the square peeled region of the material layer that has been sequentially peeled from the substrate. To do.
(5) In the above (4), the laser beam emitted from the laser source is divided into a plurality of laser beams, and a plurality of irradiation regions separated from each other are formed on the workpiece by the divided pulse laser beams. A plurality of irradiation regions formed by the laser beam forming unit, the end portions extending in parallel to the moving direction of the workpiece in the adjacent irradiation regions, and the workpiece is relative to the laser source; Thus, they are arranged so that they are sequentially superimposed as they move in one direction.
(6) In the above (5), a mask having a plurality of rectangular openings is used as the laser beam forming means.
(7) In the above (5) or (6), the irradiation areas formed on the workpiece are arranged on a straight line inclined in the moving direction of the workpiece.
(8) In the above (6), the mask includes one mask pattern arranged on a straight line on each of the virtual line and the virtual line intersecting the plurality of openings, and the other mask pattern. The openings of the mask are arranged in an X shape.
(9) In the above (8), a mask shutter that opens and closes the plurality of openings of the mask is provided, and the mask shutter opens only the opening of the one mask pattern when the workpiece is transported. Except for the opening located at the intersection of the imaginary line and the other imaginary line, the opening of the other mask pattern is opened and closed so as to be closed, and the mask shutter is changed every 180 ° in the conveyance direction of the workpiece, Except for the opening located at the intersection of the one virtual line and the other virtual line, the open / closed states of the one mask pattern and the other mask pattern are switched.
(10) In the above (6), the mask includes one mask pattern including a plurality of openings arranged on one imaginary line and the other mask pattern including a plurality of openings arranged on the other imaginary line. The openings of the mask are arranged in a V shape.
(11) In the above (10), the mask includes a mask transport mechanism that transports the mask so that only one of the one mask pattern and the other mask pattern is disposed in the laser light irradiation region. The mask transport mechanism switches the mask pattern arranged in the laser light irradiation region every time the work transport direction is switched by 180 °.
 本発明においては以下の効果を得ることができる。
(1)前記基板から順次に剥離された前記材料層の四角形状の剥離領域において、基板からはじめて剥離される材料層の剥離辺が2辺になるようにしたので、GaNの分解によって発生したNガスが、既に基板から剥離済の2辺から排出され、Nガスの逃げ道を十分に確保することができる。また、剥離された辺が2辺の場合は、レーザ光の照射によりGaNが分解する際に発生した応力は、GaNの未分解領域に接する2辺に分散して印加され、クラックの発生が防止される。
 また、ワークにおいて最初に形成される照射領域群および最後に形成される照射領域群が、ワークの一方のエッジ部および他方のエッジ部から伸びだすようにレーザ光を前記ワークに照射することにより、ワークの最初と最後に形成される照射領域群においても、剥離される辺が2辺となり、ワークの全域において、剥離される辺を常に2辺とすることができる。
(2)レーザ光の照射領域をワーク上で直線的に移動させることにより、ワークの全域のレーザリフトオフ処理を行うことができ、レーザ光をスキャンするための特殊な機構を用いる必要がなく、装置構成を簡単にすることができる。
In the present invention, the following effects can be obtained.
(1) Since the material layer peeled from the substrate for the first time in the square peeled region of the material layer peeled sequentially from the substrate has two peeled sides, N generated by the decomposition of GaN Two gases are discharged from the two sides already peeled from the substrate, and a sufficient escape path for N 2 gas can be secured. In addition, when there are two separated sides, the stress generated when GaN is decomposed by laser light irradiation is distributed and applied to the two sides in contact with the undecomposed region of GaN, preventing the generation of cracks. Is done.
In addition, by irradiating the workpiece with laser light so that the irradiation region group formed first and the irradiation region group formed last in the workpiece extend from one edge portion and the other edge portion of the workpiece, Also in the irradiation region group formed at the beginning and the end of the workpiece, the sides to be peeled are two sides, and the sides to be peeled can be always two sides in the entire area of the workpiece.
(2) By moving the irradiation region of the laser beam linearly on the workpiece, the laser lift-off process can be performed on the entire area of the workpiece, and there is no need to use a special mechanism for scanning the laser beam. The configuration can be simplified.
(3)レーザ光形成手段により、レーザ源から出射するレーザ光を、複数のレーザ光に分割し、分割された各レーザ光により前記ワーク上に互いに離間した複数の照射領域を形成し、ワーク上の各照射領域にレーザ光を一括照射するようにしたので、一度のレーザ光の照射で複数の照射領域にレーザ光を照射することができる。すなわち、複数の照射領域に一括してレーザ光を照射することができるので、各照射領域を小面積にしても、レーザリフトオフ処理を短時間に行うことができ、スループットの向上を図ることができる。
(4)隣接する各レーザ光出射部から出射したレーザ光の、ワークの移動方向と直交方向のエッジ部がワークの移動に従って順次に重畳されるようにするとともに、各照射領域におけるワークの搬送方向と直交方向のエッジ部が互いに重畳するようにしたので、GaN系化合物をGaとNとに分解するために必要な分解閾値以上の照射エネルギーを有するレーザ光を、各照射面積を小さくしながら、ワークの全面に亘り照射することができる。
 また、前述したように重畳領域に照射されるレーザ光は、照射された領域の温度が低下するに充分な時間間隔をおいて照射されるので、重畳領域に照射されるレーザ光のそれぞれの照射エネルギーが合算されることはない。したがって、各照射領域が重畳していても、実質的に各照射領域毎にレーザ光を照射したのと同等の効果を得ることができる。このため、材料層を基板から剥離するときの材料層へのダメージを低減化することができる。
(3) Laser light emitted from the laser source is divided into a plurality of laser beams by the laser beam forming means, and a plurality of irradiation areas separated from each other are formed on the workpiece by each of the divided laser beams. Since each of the irradiation areas is collectively irradiated with the laser beam, it is possible to irradiate the plurality of irradiation areas with a single laser beam irradiation. That is, since a plurality of irradiation regions can be irradiated with laser light at once, even if each irradiation region is small in area, laser lift-off processing can be performed in a short time, and throughput can be improved. .
(4) The edge of the laser beam emitted from each of the adjacent laser beam emitting portions is superimposed on the workpiece in the direction orthogonal to the moving direction of the workpiece in order, and the workpiece conveying direction in each irradiation region. Since the edge portions in the orthogonal direction overlap each other, the laser light having irradiation energy equal to or higher than the decomposition threshold necessary for decomposing the GaN-based compound into Ga and N 2 is reduced while reducing each irradiation area. The entire surface of the work can be irradiated.
Further, as described above, since the laser light irradiated on the overlap region is irradiated with a time interval sufficient for the temperature of the irradiated region to decrease, each irradiation of the laser light irradiated on the overlap region is performed. Energy is never added up. Therefore, even if the respective irradiation regions are overlapped, the same effect as that obtained by irradiating the laser light substantially for each irradiation region can be obtained. For this reason, damage to the material layer when the material layer is peeled from the substrate can be reduced.
本発明の第1の実施例のレーザリフトオフ処理の概要を説明する概念図である。It is a conceptual diagram explaining the outline | summary of the laser lift-off process of 1st Example of this invention. レーザ光がワークに照射される様子を示す図である。It is a figure which shows a mode that a laser beam is irradiated to a workpiece | work. 基板からはじめて剥離される辺が2辺になることを説明する図である。It is a figure explaining the edge | side peeled from a board | substrate for the first time becomes two sides. 本発明の第1の実施例のレーザリフトオフ装置の概念図である。It is a conceptual diagram of the laser lift-off apparatus of the 1st Example of this invention. 本発明の第1の実施例において、ワークの互いに隣接する領域S1、S2に重畳して照射されるレーザ光の光強度分布を示す図である。It is a figure which shows the light intensity distribution of the laser beam irradiated in the 1st Example of this invention superimposed on the area | region S1, S2 which a workpiece | work mutually adjoins. GaN未分解領域が2辺、3辺および1辺になるようにレーザ光を照射する場合を説明する図である。It is a figure explaining the case where a laser beam is irradiated so that a GaN undecomposed area | region may become 2 sides, 3 sides, and 1 side. GaN未分解領域が2辺、3辺および1辺になるようにレーザ光を照射した場合の剥離後の材料層の表面状態を模式的に示した図である。It is the figure which showed typically the surface state of the material layer after peeling at the time of irradiating a laser beam so that a GaN undecomposed area | region may become 2 sides, 3 sides, and 1 side. 本発明の第2~4の実施例のレーザリフトオフ装置の構成の概要を示す図である。FIG. 3 is a diagram showing an outline of the configuration of a laser lift-off device according to second to fourth embodiments of the present invention. 本発明の第2~4の実施例のレーザリフトオフ装置の光学系の概念図である。FIG. 5 is a conceptual diagram of an optical system of a laser lift-off device according to second to fourth embodiments of the present invention. 本発明の第2の実施例のレーザリフトオフ装置に用いられるマスクを示す図である。It is a figure which shows the mask used for the laser lift-off apparatus of the 2nd Example of this invention. 本発明の第2の実施例の実施例のレーザリフトオフ装置に係るレーザ光照射方法を説明する図である。It is a figure explaining the laser beam irradiation method which concerns on the laser lift-off apparatus of the Example of the 2nd Example of this invention. 本発明の第2の実施例のワーク上でのレーザ光のスキャン方向とワークへのレーザ光の照射パターンを示す図である。It is a figure which shows the scanning direction of the laser beam on the workpiece | work of the 2nd Example of this invention, and the irradiation pattern of the laser beam to a workpiece | work. 本発明の第2の実施例におけるレーザ光の照射及び休止のタイミングを示すタイムチャートである。It is a time chart which shows the irradiation of a laser beam and the timing of a pause in 2nd Example of this invention. 第2の実施例におけるパルスレーザ光の照射タイミングとワーク上の照射領域の関係を示す図である。It is a figure which shows the relationship between the irradiation timing of the pulse laser beam in a 2nd Example, and the irradiation area | region on a workpiece | work. 第2の実施例の変形例のレーザリフトオフ装置の光学系の概念図である。It is a conceptual diagram of the optical system of the laser lift-off apparatus of the modification of a 2nd Example. 図15に示すレーザ光形成手段の構成例を示す図である。It is a figure which shows the structural example of the laser beam formation means shown in FIG. 本発明の第3の実施例のレーザリフトオフ装置に用いられるマスクを示す図である。It is a figure which shows the mask used for the laser lift-off apparatus of the 3rd Example of this invention. 本発明の第3の実施例のマスクの開口を開閉するためのマスクシャッタの動作を示す図である。It is a figure which shows operation | movement of the mask shutter for opening and closing the opening of the mask of the 3rd Example of this invention. 第3の実施例のレーザリフトオフ装置に係るレーザ光照射方法を説明する図である。It is a figure explaining the laser beam irradiation method which concerns on the laser lift-off apparatus of a 3rd Example. 第3の実施例のワーク上でのレーザ光のスキャン方向とワークへのレーザ光の照射パターンを示す図である。It is a figure which shows the scanning direction of the laser beam on the workpiece | work of a 3rd Example, and the irradiation pattern of the laser beam to a workpiece | work. 第3の実施例におけるレーザ光の照射及び休止のタイミングを示すタイムチャートである。It is a time chart which shows the timing of the irradiation of a laser beam and a rest in a 3rd Example. 本発明の第4の実施例のレーザリフトオフ装置に用いられるマスクを示す図である。It is a figure which shows the mask used for the laser lift-off apparatus of the 4th Example of this invention. 第4の実施例のレーザリフトオフ装置に係るレーザ光照射方法を説明する図である。It is a figure explaining the laser beam irradiation method which concerns on the laser lift-off apparatus of a 4th Example. 第4の実施例において、マスクを移動させるためのマスク搬送機構を示す図である。FIG. 10 is a diagram showing a mask transport mechanism for moving a mask in the fourth embodiment. 第4の実施例におけるレーザ光の照射及び休止のタイミングを示すタイムチャートである。It is a time chart which shows the timing of the irradiation of a laser beam and a rest in a 4th Example. レーザリフトオフ処理を適用することができる半導体発光素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor light-emitting device which can apply a laser lift-off process. ライン状のレーザ光を、レーザ光の長手方向と垂直方向に移動させながら照射する従来例を示す図である。It is a figure which shows the prior art example irradiated while moving a line-shaped laser beam to the orthogonal | vertical direction with the longitudinal direction of a laser beam. 方形状のビームスポットを同心円状に移動させながら照射する従来例を示す図である。It is a figure which shows the prior art example irradiated while moving a square-shaped beam spot concentrically.
(1)第1の実施例
 図1は、本発明の第1の実施例のレーザリフトオフ処理の概要を説明する概念図である。
 同図に示すように、本実施例において、レーザリフトオフ処理は次のように行われる。
 レーザ光を透過する基板1上に材料層2が形成されたワーク3が、ワークステージ31上に載置されている。ワーク3を載せたワークステージ31は、コンベヤのような搬送機構32に載置され、搬送機構32によって所定の速度で搬送される。ワーク3は、ワークステージ31と共に図中の矢印AB方向に搬送されながら、基板1を通じて、図示しないパルスレーザ源から出射するパルスレーザ光Lが照射される。
 ワーク3は、サファイアからなる基板1の表面に、GaN(窒化ガリウム)系化合物の材料層2が形成されてなるものである。基板1は、GaN系化合物の材料層を良好に形成することができ、尚且つ、GaN系化合物の材料層を分解するために必要な波長のレーザ光を透過するものであれば良い。材料層2には、低い入力エネルギーによって高出力の青色光を効率良く出力するためにGaN系化合物を用いることができる。材料層2としては、III族系化合物を用いることができ、上記GaN系化合物や、窒化インジウムガリウム(InGaN)系化合物、窒化アルミニウムガリウム(AlGaN)系化合物などがある。
(1) 1st Example FIG. 1: is a conceptual diagram explaining the outline | summary of the laser lift-off process of the 1st Example of this invention.
As shown in the figure, in the present embodiment, the laser lift-off process is performed as follows.
A work 3 in which a material layer 2 is formed on a substrate 1 that transmits laser light is placed on a work stage 31. The work stage 31 on which the work 3 is placed is placed on a transport mechanism 32 such as a conveyor, and is transported by the transport mechanism 32 at a predetermined speed. The workpiece 3 is irradiated with a pulse laser beam L emitted from a pulse laser source (not shown) through the substrate 1 while being conveyed in the arrow AB direction in the figure together with the workpiece stage 31.
The workpiece 3 is formed by forming a material layer 2 of a GaN (gallium nitride) compound on the surface of a substrate 1 made of sapphire. The substrate 1 may be any material that can satisfactorily form a GaN-based compound material layer and transmits laser light having a wavelength necessary for decomposing the GaN-based compound material layer. A GaN-based compound can be used for the material layer 2 in order to efficiently output high-output blue light with low input energy. As the material layer 2, a group III compound can be used, such as the GaN compound, indium gallium nitride (InGaN) compound, aluminum gallium nitride (AlGaN) compound, or the like.
 レーザ光は、基板1および基板1から剥離する材料層を構成する物質に対応して適宜選択すべきである。サファイアの基板1からGaN系化合物の材料層2を剥離する場合には、例えば波長248nmを放射するKrF(クリプトンフッ素)エキシマレーザを用いることができる。レーザ波長248nmの光エネルギー(5eV)は、GaNのバンドギャップ(3.4eV)とサファイアのバンドギャップ(9.9eV)の間にある。したがって、波長248nmのレーザ光はサファイアの基板からGaN系化合物の材料層を剥離するために望ましい。 The laser beam should be appropriately selected according to the substrate 1 and the substance constituting the material layer peeled from the substrate 1. When the GaN-based compound material layer 2 is peeled from the sapphire substrate 1, for example, a KrF (krypton fluorine) excimer laser that emits a wavelength of 248 nm can be used. The light energy (5 eV) with a laser wavelength of 248 nm is between the band gap of GaN (3.4 eV) and the band gap of sapphire (9.9 eV). Therefore, a laser beam having a wavelength of 248 nm is desirable for peeling the material layer of the GaN compound from the sapphire substrate.
 材料層2はパルスレーザ光が照射されることにより、材料層2のGaNがGaとNとに分解する。GaNが分解するときは、あたかも爆発したような現象が生じ、材料層2へのパルスレーザ光の照射領域のエッジ部に対して少なからずダメージを与える。
 本発明のレーザリフトオフ処理においては、基板からはじめて剥離される材料層の剥離辺が2辺になるようにしているので、前述したように、材料層に大きなダメージを与えることなく、レーザリフトオフ処理を行うことができる。
When the material layer 2 is irradiated with pulsed laser light, GaN in the material layer 2 is decomposed into Ga and N 2 . When GaN decomposes, a phenomenon as if it has exploded occurs, and the edge of the irradiation region of the pulse laser beam on the material layer 2 is damaged to some extent.
In the laser lift-off process of the present invention, since the material layer that is peeled off from the substrate for the first time is made to have two sides, the laser lift-off process is performed without damaging the material layer as described above. It can be carried out.
 本発明において、ワークに照射されたパルスレーザ光の照射領域の形状は、パルスレーザ光照射時のワークの移動方向と平行に伸びる1辺のエッジ部を有する四角形である。なお、レーザ光の照射領域は四角形状であれば、どのような形状でもよいが、レーザ装置の構造上、照射領域の縦横比を1:XとするとXを20以下とし、照射領域の面積を30mm以下とするのが望ましい。また、照射領域の形状を上記のように縦と横の長さが大きく異なる長方形とした場合、主として短辺に沿って照射領域をスキャンするのが望ましいと考えられる。
 以下の図2は、ワークに対する照射領域が四角形となるように成形したパルスレーザ光を、ワークをレーザ源に対して一方向に搬送しながら照射する、本実施例のレーザリフトオフ方法による照射領域を示す。なお、図1ではワークが矩形の場合を示したが、図2ではワーク3が円形の場合を示す。
 このレーザリフト方法では、パルスレーザ光の照射間隔と、ワーク3の搬送速度とを調整することにより、四角形状のパルスレーザ光の照射領域の、ワーク3の移動方向と平行方向に伸びるエッジ部、及びワークの移動方向と直交する方向(図1のC方向)に伸びるエッジ部の双方が重畳するように、ワーク3に対してパルスレーザ光を照射する。
 図2のレーザリフトオフ方法では、ワーク3の紙面上方のエッジ部を超えるように、紙面のHAの方向に向け、パルスレーザ光を各照射領域が線状に並ぶように順次に照射し、パルスレーザ光の照射領域S1ないしS4を形成する。そして、パルスレーザ照射領域の大きさからレーザ重畳領域STを差し引いた分だけワーク3を紙面下方のHB方向に移動させた後、紙面のHCの方向に向けて、パルスレーザ光を各照射領域が線状に並ぶように順次に照射し、パルスレーザ光照射領域S5ないしS10を形成する。
In the present invention, the shape of the irradiation region of the pulse laser beam irradiated to the workpiece is a quadrangle having one edge portion extending in parallel with the moving direction of the workpiece at the time of pulse laser beam irradiation. The laser light irradiation region may have any shape as long as it has a rectangular shape. However, due to the structure of the laser device, when the aspect ratio of the irradiation region is 1: X, X is 20 or less, and the area of the irradiation region is It is desirable that it be 30 mm 2 or less. In addition, when the shape of the irradiation region is a rectangle that is greatly different in length and width as described above, it is considered desirable to scan the irradiation region mainly along the short side.
FIG. 2 below shows an irradiation region by the laser lift-off method of the present embodiment, in which pulsed laser light shaped so that the irradiation region on the workpiece is square is irradiated while the workpiece is conveyed in one direction with respect to the laser source. Show. Although FIG. 1 shows the case where the workpiece is rectangular, FIG. 2 shows the case where the workpiece 3 is circular.
In this laser lift method, by adjusting the irradiation interval of the pulse laser light and the conveyance speed of the workpiece 3, an edge portion extending in a direction parallel to the moving direction of the workpiece 3 in the irradiation region of the rectangular pulse laser light, In addition, the workpiece 3 is irradiated with pulsed laser light so that both edges extending in the direction orthogonal to the moving direction of the workpiece (direction C in FIG. 1) overlap.
In the laser lift-off method of FIG. 2, the pulse laser beam is sequentially irradiated so that each irradiation region is arranged in a line in the direction of HA on the paper surface so as to exceed the edge portion above the paper surface of the work 3. Light irradiation regions S1 to S4 are formed. Then, after moving the workpiece 3 in the HB direction below the paper surface by the amount of the laser laser irradiation region ST subtracted from the size of the pulse laser irradiation region, each irradiation region emits the pulse laser light toward the HC direction on the paper surface. Irradiation is sequentially performed so as to form a line, and pulsed laser light irradiation regions S5 to S10 are formed.
 図2(a)に示すように、ワーク3の移動方向において隣接する各照射領域S1ないしS10の、ワーク3の移動方向と直交する方向に伸びるエッジ部は互いに重畳する。また、ワーク3の移動方向と直交方向において隣接する各照射領域S1とS9、S2とS8、S3とS7、S4とS6の、ワーク3の移動方向と平行方向に伸びるエッジ部が、互いに重畳する。尚、各パルスレーザ光の照射領域は、後述する図5に示すように、材料層であるGaNの分解閾値を超える領域で重畳される。このようにして、順次に形成された複数のパルスレーザ光の照射領域が一方向において線状に並んで形成される複数の照射領域群G1~G6を形成する。
 本実施例のレーザリフトオフ方法では、ワーク3の一端3aからパルスレーザ光の照射を開始し、ワーク3の他端3bに対して最後にパルスレーザ光を照射する。つまり、レーザ光を照射した順番どおりに、ワークのレーザ源に対する相対的な移動方向に対して直交方向における、ワーク3の一端3aから他端3bに向けて、各照射領域群G1~G6が順次に並ぶように、各照射領域群を形成する。
As shown in FIG. 2A, the edge portions extending in the direction orthogonal to the moving direction of the workpiece 3 in the irradiation regions S1 to S10 adjacent in the moving direction of the workpiece 3 overlap each other. In addition, the edge portions extending in the direction parallel to the moving direction of the work 3 in the irradiation areas S1 and S9, S2 and S8, S3 and S7, and S4 and S6 adjacent in the direction orthogonal to the moving direction of the work 3 overlap each other. . In addition, as shown in FIG. 5 to be described later, the irradiation regions of the respective pulse laser beams are overlapped in regions exceeding the decomposition threshold value of GaN as the material layer. In this way, a plurality of irradiation region groups G1 to G6 are formed in which irradiation regions of a plurality of pulsed laser beams formed in sequence are formed in a line in one direction.
In the laser lift-off method of the present embodiment, the irradiation of the pulse laser beam is started from the one end 3a of the workpiece 3, and the pulse laser beam is finally irradiated to the other end 3b of the workpiece 3. That is, the irradiation region groups G1 to G6 are sequentially arranged from the one end 3a to the other end 3b of the workpiece 3 in the direction orthogonal to the relative movement direction of the workpiece with respect to the laser source in the order in which the laser beams are irradiated. Each irradiation region group is formed so as to line up.
 ワーク3において最初に形成される照射領域群G1では、各照射領域S1~S4が、ワーク3の一方のエッジ部(一端)3aから伸びだすように、パルスレーザ光を照射する。ワーク3において最後に形成される照射領域群G6では、各照射領域が、ワーク3の他方のエッジ部(他端)3bから伸びだすように、パルスレーザ光を照射する。こうすることによって、基板から順次剥離されたGaNの四角形状の剥離領域では、図3の点線で示すように、基板からはじめて剥離されるエッジ部が常に2辺になる。
 例えば照射領域S1では、基板からはじめて剥離される2辺のエッジ部以外の辺は、ワーク3の外縁部に接し未分解領域ではないので、GaN分解時に発生したNガスはこの外縁部から排出される。同様に照射領域S2についても、基板からはじめて剥離される2辺のエッジ部以外の辺は、ワーク3の外縁部と上記照射領域S1に接し、GaN分解時に発生したNガスはこの外縁部から排出される。
In the irradiation region group G1 formed first in the workpiece 3, the irradiation regions S1 to S4 are irradiated with pulsed laser light so as to extend from one edge portion (one end) 3a of the workpiece 3. In the irradiation region group G6 formed last in the workpiece 3, the pulse laser beam is irradiated so that each irradiation region extends from the other edge (other end) 3b of the workpiece 3. By doing so, in the GaN square-shaped peeling region sequentially peeled from the substrate, as shown by a dotted line in FIG. 3, the edge portion peeled for the first time from the substrate always has two sides.
For example, in the irradiation region S1, since the sides other than the two edge portions that are peeled off from the substrate for the first time are in contact with the outer edge portion of the work 3 and are not undecomposed regions, N 2 gas generated during GaN decomposition is discharged from the outer edge portion. Is done. Similarly the irradiated region S2 also, the first side of the non-edge portion of the two sides to be peeled from the substrate, the contact outer edge and the irradiation region S1 of the workpiece 3, N 2 gas generated during GaN decomposition from the outer edge Discharged.
 以上のように、本実施例においては、照射領域のエッジ部が、前記ワーク3がレーザ源に対して相対的に一方向に移動するに従って順次に重畳し、レーザ光は、前記基板から順次に剥離された前記材料層の四角形状の剥離領域において、前記図6(a)に示したように、基板からはじめて剥離される材料層の剥離辺が2辺になるようにワーク3に照射される。また、ワーク3において最初に形成される照射領域群および最後に形成される照射領域群は、ワーク3の一方のエッジ部および他方のエッジ部から伸びだすように形成される。
 一方、前記図6(b)、図6(c)に示す比較例では、図2に示すように、レーザ光を順番どおりにワーク3の一端から他端に向けて照射することにより、照射領域群を順次に並んで形成していないので、基板からはじめて剥離されるエッジ部が常に2辺にはならない。
 本実施例のレーザリフトオフ方法によれば、基板から順次に剥離されたGaNの四角形状の剥離領域において、基板からはじめて剥離されるエッジ部を常に2辺にすることによって、上記したように、基板から剥離後のGaNにおけるクラックの発生を防止、若しくは抑制することができる。また、パルスレーザ光の照射領域の形状を四角形にした場合は、各照射領域の周辺部分を重畳させ易い。
 なお、前記特許文献3に記載されるように、照射領域を同心円状に移動(前記図28参照)させれば、基板からはじめて剥離されるエッジ部は2辺に近い値になると考えられるが、この場合は前述したようにビームスポットを同心円状にスキャンするための特殊な機構が必要になるとともに、照射領域の重複部分が多く効率が悪くなり、また、ビームスポットの移動のさせ方によっては、前記図6(c)に示したように基板からはじめて剥離されるエッジ部が一辺になる場合もあり、この部分でクラックを生ずる可能性がでてくる。
As described above, in this embodiment, the edge portion of the irradiation region is sequentially superimposed as the workpiece 3 moves in one direction relative to the laser source, and the laser light is sequentially emitted from the substrate. As shown in FIG. 6 (a), the workpiece 3 is irradiated with the peeled side of the material layer peeled off from the substrate for two sides in the square peeled area of the peeled material layer. . In addition, the irradiation region group formed first and the irradiation region group formed last in the workpiece 3 are formed so as to extend from one edge portion and the other edge portion of the workpiece 3.
On the other hand, in the comparative example shown in FIGS. 6B and 6C, as shown in FIG. 2, the irradiation region is irradiated by sequentially irradiating the laser beam from one end of the work 3 to the other end. Since the groups are not formed side by side, the edge part peeled off for the first time from the substrate does not always have two sides.
According to the laser lift-off method of the present embodiment, in the GaN square-shaped peeling region sequentially peeled from the substrate, the edge portion peeled off for the first time from the substrate is always two sides, as described above. The generation of cracks in GaN after peeling off can be prevented or suppressed. In addition, when the shape of the irradiation region of the pulse laser beam is a square, it is easy to overlap the peripheral portion of each irradiation region.
Note that, as described in Patent Document 3, if the irradiation region is moved concentrically (see FIG. 28), the edge portion peeled off from the substrate for the first time is considered to be a value close to two sides, In this case, as described above, a special mechanism for scanning the beam spot concentrically is necessary, and there are many overlapping portions of the irradiation region, resulting in poor efficiency, and depending on how the beam spot is moved, As shown in FIG. 6C, the edge portion that is peeled off from the substrate for the first time may be one side, and there is a possibility that a crack will occur at this portion.
 図4は、本発明の第1の実施例のレーザリフトオフ装置の光学系の構成を示す概念図である。同図において、レーザリフトオフ装置10は、パルスレーザ光を発生するレーザ源20と、レーザ光を所定の形状に成形するためのレーザ光学系40と、ワーク3が載置されるワークステージ31と、ワークステージ31を搬送する搬送機構32と、レーザ源20で発生するレーザ光の照射間隔および搬送機構32の動作を制御する制御部33とを備えている。
 レーザ光学系40は、シリンドリカルレンズ41、42と、レーザ光をワークの方向へ反射するミラー43と、レーザ光を所定の形状に成形するためのマスク44と、マスク44を通過したレーザ光Lの像をワーク3上に投影する投影レンズ45とを備えている。ワーク3へのパルスレーザ光の照射領域の面積および形状は、レーザ光学系40によって適宜設定することができる。
 レーザ光学系40の先にはワーク3が配置されている。ワーク3はワークステージ31上に載置されている。ワークステージ31は搬送機構32に載置されており、搬送機構32によって搬送される。これにより、ワーク3が、図1に示す矢印A、Bの方向に順次に搬送され、ワーク3におけるレーザ光の照射領域が刻々と変わる。制御部33は、ワーク3の隣接する照射領域に照射される各レーザ光の重畳度が所望の値になるように、レーザ源20で発生するパルスレーザ光のパルス間隔を制御する。
FIG. 4 is a conceptual diagram showing the configuration of the optical system of the laser lift-off device according to the first embodiment of the present invention. In the figure, a laser lift-off device 10 includes a laser source 20 that generates pulsed laser light, a laser optical system 40 for shaping the laser light into a predetermined shape, a work stage 31 on which the work 3 is placed, A transport mechanism 32 that transports the work stage 31 and a controller 33 that controls the irradiation interval of the laser light generated by the laser source 20 and the operation of the transport mechanism 32 are provided.
The laser optical system 40 includes cylindrical lenses 41 and 42, a mirror 43 that reflects the laser light in the direction of the workpiece, a mask 44 for shaping the laser light into a predetermined shape, and the laser light L that has passed through the mask 44. And a projection lens 45 for projecting an image onto the work 3. The area and shape of the irradiation region of the pulse laser beam on the work 3 can be appropriately set by the laser optical system 40.
A workpiece 3 is disposed at the tip of the laser optical system 40. The work 3 is placed on the work stage 31. The work stage 31 is placed on the transport mechanism 32 and is transported by the transport mechanism 32. Thereby, the workpiece | work 3 is conveyed sequentially in the direction of the arrows A and B shown in FIG. 1, and the irradiation area of the laser beam in the workpiece | work 3 changes every moment. The control unit 33 controls the pulse interval of the pulsed laser light generated by the laser source 20 so that the degree of superimposition of each laser light irradiated on the irradiation region adjacent to the workpiece 3 becomes a desired value.
 レーザ源20から発生するレーザ光Lは波長248nmの紫外線を発生する例えばKrFエキシマレーザである。レーザ源としてArFレーザやYAGレーザを使用しても良い。ここで、ワーク3の光入射面3Aは、投影レンズ45の焦点Fよりもレーザ光の光軸方向において遠方側に配置されている。これとは反対に、レーザ光の光軸方向において、ワーク3の光入射面3Aを投影レンズ45の焦点Fよりも投影レンズ45に近づけるように配置しても良い。このように、ワーク3の光入射面3Aを投影レンズ45の焦点Fに一致しないように配置することにより、後述する図5に示すような断面が台形状の光強度分布を持つレーザ光が得られる。
 レーザ源20で発生したパルスレーザ光Lは、シリンドリカルレンズ41、42、ミラー43、マスク44を通過した後に、投影レンズ45によってワーク3上に投影される。パルスレーザ光Lは、図1に示したように基板1を通じて基板1と材料層2の界面に照射される。基板1と材料層2の界面では、パルスレーザ光Lが照射されることにより、材料層2の基板1との界面付近のGaNが分解される。このようにして材料層2が基板1から剥離される。
The laser light L generated from the laser source 20 is, for example, a KrF excimer laser that generates ultraviolet light having a wavelength of 248 nm. An ArF laser or a YAG laser may be used as the laser source. Here, the light incident surface 3 </ b> A of the work 3 is disposed farther in the optical axis direction of the laser light than the focal point F of the projection lens 45. On the contrary, the light incident surface 3A of the workpiece 3 may be disposed closer to the projection lens 45 than the focal point F of the projection lens 45 in the optical axis direction of the laser light. Thus, by arranging the light incident surface 3A of the workpiece 3 so as not to coincide with the focal point F of the projection lens 45, a laser beam having a trapezoidal light intensity distribution as shown in FIG. It is done.
The pulsed laser light L generated by the laser source 20 passes through the cylindrical lenses 41 and 42, the mirror 43, and the mask 44, and is then projected onto the work 3 by the projection lens 45. The pulse laser beam L is irradiated to the interface between the substrate 1 and the material layer 2 through the substrate 1 as shown in FIG. By irradiating the pulse laser beam L at the interface between the substrate 1 and the material layer 2, GaN near the interface between the material layer 2 and the substrate 1 is decomposed. In this way, the material layer 2 is peeled from the substrate 1.
 図5は、図2に示すワーク3の互いに隣接する領域S1、S2に重畳するようにワークに照射されるレーザ光の光強度分布を示す図であり、図2(b)におけるa-a´線断面図である。
 同図において縦軸はワークの各照射領域に照射されるレーザ光の強度(エネルギー値)を、横軸はワークの搬送方向を示す。また、L1、L2は、それぞれワークの照射領域S1、S2に照射されるレーザ光のプロファイルを示す。なお、レーザ光L1,L2は同時に照射されるわけではなく、レーザ光L1が照射されてから1パルス間隔後にレーザ光L2が照射される。
 この例では、図5に示すように、レーザ光L1、L2の断面は、周方向になだらかに広がるエッジ部LEに続いて頂上(ピークエネルギーPE)に平坦面を有する略台形状に形成されている。そして、レーザ光L1、L2は、図5に破線で示すように、GaN系化合物の材料層を分解してサファイアの基板から剥離させるために必要な分解閾値VEを超えるエネルギー領域において重畳される。
FIG. 5 is a diagram showing the light intensity distribution of the laser beam irradiated to the workpiece 3 so as to overlap the regions S1 and S2 adjacent to each other of the workpiece 3 shown in FIG. 2, and aa ′ in FIG. It is line sectional drawing.
In the figure, the vertical axis indicates the intensity (energy value) of the laser beam irradiated to each irradiation area of the workpiece, and the horizontal axis indicates the conveyance direction of the workpiece. L1 and L2 indicate the profiles of the laser beams irradiated to the workpiece irradiation areas S1 and S2, respectively. The laser beams L1 and L2 are not irradiated at the same time, but the laser beam L2 is irradiated after one pulse interval from the irradiation of the laser beam L1.
In this example, as shown in FIG. 5, the cross sections of the laser beams L1 and L2 are formed in a substantially trapezoidal shape having a flat surface on the top (peak energy PE) following the edge portion LE that gently spreads in the circumferential direction. Yes. The laser beams L1 and L2 are superimposed in an energy region exceeding a decomposition threshold value VE necessary for decomposing and separating the material layer of the GaN-based compound from the sapphire substrate, as indicated by broken lines in FIG.
 すなわち、各レーザ光の光強度分布における、レーザ光L1とL2との交差位置Cでのレーザ光の強度(エネルギー値)CEは、上記分解閾値VEを越える値になるように設定される。
 これは、前述したように、図2の照射領域S1にレーザ光を照射した後に照射領域をS1からS2に移行させたとき、領域S1の温度は既に室温レベルまで低下した状態となるため、照射領域S1の温度が室温レベルに低下した状態で照射領域S2にレーザ光を照射したとしても、それぞれの照射領域S1、S2に照射されるパルスレーザ光の照射量が積算されないためである。
 レーザ光L1とL2との交差位置Cでのレーザ光の強度CE、すなわち、レーザ光が重畳して照射される領域におけるそれぞれのパルスレーザ光の強度を、上記分解閾値VEを越える値になるように設定することで、材料層を基板から剥離させるために十分なレーザエネルギーを与えることができ、基板上に形成された材料層に割れを生じさせることなく、材料層を基板から確実に剥離させることができる。
That is, in the light intensity distribution of each laser beam, the intensity (energy value) CE of the laser beam at the intersection position C between the laser beams L1 and L2 is set to a value exceeding the decomposition threshold value VE.
This is because, as described above, when the irradiation region is shifted from S1 to S2 after irradiating the irradiation region S1 of FIG. 2 with the laser beam, the temperature of the region S1 is already lowered to the room temperature level. This is because even if the irradiation region S2 is irradiated with the laser light in a state where the temperature of the region S1 is lowered to the room temperature level, the irradiation amount of the pulse laser light irradiated to each of the irradiation regions S1 and S2 is not integrated.
The intensity CE of the laser beam at the crossing position C between the laser beams L1 and L2, that is, the intensity of each pulsed laser beam in the region irradiated with the laser beam superimposed, becomes a value exceeding the decomposition threshold VE. By setting to, sufficient laser energy can be applied to peel the material layer from the substrate, and the material layer is surely peeled from the substrate without causing cracks in the material layer formed on the substrate. be able to.
(2)第2~第4の実施例
 図8は、以下に説明する本発明の第2~4の実施例のレーザリフトオフ装置の構成の概要を示す図である。
 同図に示すレーザリフトオフ装置は、レーザ光を透過する基板1上に材料層2が形成されたワーク3が、ワークステージ31上に載置されている。ワーク3を載せたワークステージ31は、コンベヤのような搬送機構32に載置され、搬送機構32によって所定の速度で搬送される。ワーク3は、ワークステージ31と共に所定方向に搬送されながら、基板1を通じてレーザ光Lが照射される。
 ワーク3は、サファイアからなる基板1の表面に、GaN(窒化ガリウム)系化合物の材料層2が形成されてなるものである。基板1は、GaN系化合物の材料層を良好に形成することができ、尚且つ、GaN系化合物材料層を分解するために必要な波長のレーザ光を透過するものであれば良い。材料層2には、低い入力エネルギーによって高出力の青色光あるいは紫外光を効率良く出力するためにGaN系化合物が用いられる。
(2) Second to Fourth Embodiments FIG. 8 is a diagram showing an outline of the configuration of a laser lift-off device according to second to fourth embodiments of the present invention described below.
In the laser lift-off device shown in FIG. 1, a work 3 in which a material layer 2 is formed on a substrate 1 that transmits laser light is placed on a work stage 31. The work stage 31 on which the work 3 is placed is placed on a transport mechanism 32 such as a conveyor, and is transported by the transport mechanism 32 at a predetermined speed. The workpiece 3 is irradiated with the laser beam L through the substrate 1 while being conveyed in a predetermined direction together with the workpiece stage 31.
The workpiece 3 is formed by forming a material layer 2 of a GaN (gallium nitride) compound on the surface of a substrate 1 made of sapphire. The substrate 1 may be any material as long as it can form a GaN-based compound material layer satisfactorily and transmits laser light having a wavelength necessary for decomposing the GaN-based compound material layer. A GaN-based compound is used for the material layer 2 in order to efficiently output high-output blue light or ultraviolet light with low input energy.
 レーザ光は、基板1および基板1から剥離する材料層を構成する物質に対応して適宜選択すべきである。サファイアの基板1からGaN系化合物の材料層2を剥離する場合には、例えば波長248nmのパルスレーザ光を放射するKrF(クリプトンフッ素)エキシマレーザを用いることができる。レーザ波長248nmの光エネルギー(5eV)は、GaNのバンドギャップ(3.4eV)とサファイアのバンドギャップ(9.9eV)の間にある。したがって、波長248nmのレーザ光はサファイアの基板からGaN系化合物の材料層を剥離するために望ましい。ワーク3の上方にはレーザ源から発したレーザ光Lに所定のレーザ光パターンを形成するためのマスク44が配置されている。図8では後述する投影レンズは省略している。 The laser beam should be appropriately selected according to the substrate 1 and the substance constituting the material layer peeled from the substrate 1. When the GaN-based compound material layer 2 is peeled from the sapphire substrate 1, for example, a KrF (krypton fluorine) excimer laser that emits a pulsed laser beam having a wavelength of 248 nm can be used. The light energy (5 eV) with a laser wavelength of 248 nm is between the band gap of GaN (3.4 eV) and the band gap of sapphire (9.9 eV). Therefore, a laser beam having a wavelength of 248 nm is desirable for peeling the material layer of the GaN compound from the sapphire substrate. A mask 44 for forming a predetermined laser beam pattern on the laser beam L emitted from the laser source is disposed above the workpiece 3. In FIG. 8, a projection lens described later is omitted.
 図9は、本発明の第2~第4の実施例のレーザリフトオフ装置の光学系の概念図である。
 同図において、レーザリフトオフ装置10は、パルスレーザ光を発生するレーザ源20と、レーザ光を所定の形状に成形するためのレーザ光学系40と、ワーク3が載置されるワークステージ31と、ワークステージ31を搬送する搬送機構32と、レーザ源20で発生するレーザ光の照射間隔および搬送機構32の動作を制御する制御部33とを備えている。
 レーザ光学系40は、シリンドリカルレンズ41、42と、レーザ光をワークの方向へ反射するミラー43と、レーザ光を透過させる開口を有するマスク44と、マスク44を通過したレーザ光Lの像をワーク3上に投影する投影レンズ45とを備えている。上記マスク44は、レーザ光を分割するための複数の開口を有し、上記レーザ源2から出射するレーザ光を、複数のレーザ光に分割し、分割された各レーザ光により前記ワーク上に互いに離間した複数の照射領域を形成する。すなわち、マスク44は前記したレーザ光形成手段として機能し、上記複数の開口はレーザ光出射部となる。
 ワーク3へのパルスレーザ光の照射領域の配置、形状、面積は、上記レーザ光形成手段として機能するマスク44の開口の配置、形状、大きさ等を選定することにより、適宜設定することができる。レーザ光学系40の先にはワーク3が配置されている。ワーク3はワークステージ31上に載置されている。ワークステージ31は搬送機構32に載置されており、搬送機構32によって搬送される。
FIG. 9 is a conceptual diagram of the optical system of the laser lift-off device of the second to fourth embodiments of the present invention.
In the figure, a laser lift-off device 10 includes a laser source 20 that generates pulsed laser light, a laser optical system 40 for shaping the laser light into a predetermined shape, a work stage 31 on which the work 3 is placed, A transport mechanism 32 that transports the work stage 31 and a controller 33 that controls the irradiation interval of the laser light generated by the laser source 20 and the operation of the transport mechanism 32 are provided.
The laser optical system 40 includes cylindrical lenses 41 and 42, a mirror 43 that reflects the laser light in the direction of the workpiece, a mask 44 having an opening that transmits the laser light, and an image of the laser light L that has passed through the mask 44. 3 is provided with a projection lens 45 for projecting onto the projector 3. The mask 44 has a plurality of openings for dividing the laser beam, divides the laser beam emitted from the laser source 2 into a plurality of laser beams, and each of the divided laser beams causes each other to be placed on the workpiece. A plurality of spaced irradiation regions are formed. That is, the mask 44 functions as the laser beam forming means described above, and the plurality of openings serve as laser beam emitting portions.
The arrangement, shape, and area of the irradiation region of the pulse laser beam on the work 3 can be appropriately set by selecting the arrangement, shape, size, and the like of the opening of the mask 44 that functions as the laser beam forming unit. . A workpiece 3 is disposed at the tip of the laser optical system 40. The work 3 is placed on the work stage 31. The work stage 31 is placed on the transport mechanism 32 and is transported by the transport mechanism 32.
 レーザ源20で発生したパルスレーザ光Lは、シリンドリカルレンズ41、42、ミラー43、マスク44を通過した後に、投影レンズ45によってワーク3上に投影される。パルスレーザ光Lは基板1を通じて基板1と材料層2の界面に照射される。基板1と材料層2の界面では、パルスレーザ光Lが照射されることにより、材料層2の基板1との界面付近のGaNが分解される。このようにして材料層2が基板1から剥離される。 The pulsed laser light L generated by the laser source 20 passes through the cylindrical lenses 41 and 42, the mirror 43, and the mask 44, and then is projected onto the work 3 by the projection lens 45. The pulse laser beam L is applied to the interface between the substrate 1 and the material layer 2 through the substrate 1. By irradiating the pulse laser beam L at the interface between the substrate 1 and the material layer 2, GaN near the interface between the material layer 2 and the substrate 1 is decomposed. In this way, the material layer 2 is peeled from the substrate 1.
(a)第2の実施例
 図10は本発明の第2の実施例のレーザリフトオフ装置が備えるマスクを示す図である。本実施例のマスク44は、図10に示すように、金属製の板部において、レーザ光出射部としての複数の開口M1~M5を、互いに離間すると共に、後述する図11に示すように、ワーク3の搬送方向(同図の矢印方向)に対して傾斜する一直線上に配列するように穿設したものである。各々のレーザ光出射部となる開口M1~M5は、後述する図12に示すように、ワーク3を一方向に搬送したときに、隣接する各レーザ光出射部(マスクの各開口)から出射するレーザ光により形成される光照射領域の、ワーク3の搬送方向と平行方向に延びるエッジ部が重畳するように、互いに連続することなく離間して形成されている。
 マスク44に形成された開口M1~M5は、レーザ源から発したレーザ光を分割し互いに離間した複数の照射領域を形成するものであり、各々の照射領域の面積は、例えば照射領域の形状が正方形に近い場合には、0.25mm以下になるような大きさに設定されている。
 マスク44の開口M1~M5の形状は、ワーク3の移動方向と平行方向に伸びる1辺を有する四角形状であることが好ましく、特にワーク3の移動方向と平行方向に伸びる2辺を有する、例えば、正方形、長方形とすることが好ましい。
(A) Second Embodiment FIG. 10 is a view showing a mask provided in a laser lift-off apparatus according to a second embodiment of the present invention. As shown in FIG. 10, the mask 44 of the present embodiment has a plurality of openings M1 to M5 as laser beam emitting portions spaced apart from each other in a metal plate portion, and as shown in FIG. It is drilled so as to be arranged on a straight line that is inclined with respect to the conveying direction of the workpiece 3 (arrow direction in the figure). As shown in FIG. 12 to be described later, the openings M1 to M5 serving as the respective laser light emitting portions emit from the adjacent laser light emitting portions (each opening of the mask) when the work 3 is conveyed in one direction. The light irradiation areas formed by the laser light are formed so as to be separated from each other without being continuous so that edge portions extending in a direction parallel to the conveyance direction of the workpiece 3 overlap.
The openings M1 to M5 formed in the mask 44 divide the laser beam emitted from the laser source to form a plurality of irradiation regions separated from each other. The area of each irradiation region is, for example, the shape of the irradiation region. When close to a square, the size is set to be 0.25 mm 2 or less.
The shape of the openings M1 to M5 of the mask 44 is preferably a quadrangular shape having one side extending in a direction parallel to the moving direction of the workpiece 3, and particularly has two sides extending in a direction parallel to the moving direction of the workpiece 3. , Square and rectangular are preferable.
 上記分割されたレーザ光による照射面積を上記のように小さくすれば、材料層を基板から剥離させるときに材料層に加わるダメージを低減することができる。
 すなわち、前述したように、GaNが分解する際、GaN層にせん断応力が加わり、当該レーザ光の照射領域の境界部においてクラックが生じるなど、照射領域のエッジ部にダメージを与えるが、この分解によるダメージの大きさは、レーザ光の照射面積に大きく依存しているものと考えられる。
 実験等を行って検証した結果、上記のように照射領域の形状が正方形に近い場合には、ワークへのレーザ光の照射面積を0.25mm以下とすれば、ワークの材料層へのクラックの発生を防止することができることが確認された。
If the irradiation area by the divided laser light is reduced as described above, damage applied to the material layer when the material layer is peeled from the substrate can be reduced.
That is, as described above, when GaN is decomposed, shear stress is applied to the GaN layer, and cracks are generated at the boundary of the irradiation region of the laser light, which damages the edge of the irradiation region. The magnitude of the damage is considered to largely depend on the irradiation area of the laser beam.
As a result of verification through experiments and the like, when the shape of the irradiation region is close to a square as described above, if the irradiation area of the laser beam to the workpiece is 0.25 mm 2 or less, cracks in the material layer of the workpiece It was confirmed that the occurrence of the occurrence can be prevented.
 以下、本実施例のレーザリフトオフ装置に係るレーザ光照射方法について説明する。
 図11ないし図14は本発明のレーザリフトオフ装置にかかる第2の実施例のレーザリフトオフ処理を示す図である。
 図11は、本実施例のレーザリフトオフ装置に係るレーザ光照射方法を説明する図であり、(a)はレーザ照射期間、(b)はレーザ休止期間、(c)はレーザ照射期間を示す。また、同図中の括弧数字はレーザ光照射の手順を示し、(2)(5)の手順をレーザ光の照射期間(図13参照)に実行し、(3)(4)の手順をレーザ光の休止期間(図13参照)に実行する。
 また、図12は、ワーク上でのレーザ光のスキャン方向とワークへのレーザ光の照射パターンを示し、図13はレーザ光の照射及び休止のタイミングを示すタイムチャートを示す。図13の(2)(3)(4)(5)は、図11の照射期間(2)(5)と休止期間(3)(4)に対応している。さらに、図14はパルスレーザ光の照射タイミングとワーク上の照射領域の関係を示す。
 なお、本実施例のレーザリフトオフ装置においては、マスクは移動せず、ワークを移動させながらパルスレーザ光を照射するが、図12は、説明の都合上、レーザ光をスキャンするように描かれている。
Hereinafter, a laser beam irradiation method according to the laser lift-off apparatus of this embodiment will be described.
11 to 14 are views showing a laser lift-off process of the second embodiment according to the laser lift-off apparatus of the present invention.
FIG. 11 is a diagram for explaining a laser beam irradiation method according to the laser lift-off apparatus of the present embodiment, where (a) shows a laser irradiation period, (b) shows a laser pause period, and (c) shows a laser irradiation period. The numbers in parentheses in the figure indicate the procedure of laser light irradiation, the steps (2) and (5) are executed during the laser light irradiation period (see FIG. 13), and the steps (3) and (4) are performed by the laser. It is executed during the light pause period (see FIG. 13).
FIG. 12 shows the scanning direction of the laser beam on the workpiece and the irradiation pattern of the laser beam on the workpiece, and FIG. 13 shows a time chart showing the timing of laser beam irradiation and pause. (2), (3), (4), and (5) in FIG. 13 correspond to the irradiation periods (2) and (5) and the rest periods (3) and (4) in FIG. Further, FIG. 14 shows the relationship between the irradiation timing of the pulse laser beam and the irradiation area on the workpiece.
In the laser lift-off apparatus of this embodiment, the mask is not moved, and the pulse laser beam is irradiated while moving the workpiece. However, for convenience of explanation, FIG. 12 is drawn to scan the laser beam. Yes.
 図11(a)の(1)の手順では、マスク44は同図中で最も上方に位置する開口M1の上端がワーク3の上端と同一直線上に並ぶように配置される。開口M1の上端はワーク3の上端から伸び出していてもよい。(2)の手順では、レーザ光を照射しながらワーク3を右方から左方に一方向に搬送する。
 ここで、レーザ光は、前記図10に示したマスク44を介することによって、図12(a)(b)に示すように、分割されたレーザ光により形成される照射領域LA~LEがワーク3の搬送方向に対して傾斜した一直線上に配列される。当該レーザ光が、ワーク3の左方から右方に向けて、ワーク3上において、マスク44の最も上方の開口M1の上端(仮想線LL1)から、マスク44の最も下方の開口M5の下端(仮想線LL2)に亘る領域S1に照射される。
In the procedure of (1) of FIG. 11A, the mask 44 is arranged so that the upper end of the uppermost opening M1 is aligned with the upper end of the workpiece 3 in the same line. The upper end of the opening M1 may extend from the upper end of the workpiece 3. In the procedure (2), the workpiece 3 is conveyed in one direction from the right to the left while irradiating the laser beam.
Here, as shown in FIGS. 12A and 12B, the laser light passes through the mask 44 shown in FIG. 10 so that the irradiation areas LA to LE formed by the divided laser light become the workpiece 3. Are arranged on a straight line inclined with respect to the conveying direction. The laser light is directed from the left side to the right side of the work 3 on the work 3 from the upper end of the uppermost opening M1 (virtual line LL1) of the mask 44 to the lower end of the lowermost opening M5 of the mask 44 ( The region S1 over the virtual line LL2) is irradiated.
 マスク44の開口から照射されるレーザ光によりワーク3上に形成される照射領域LAとLB、LBとLC、LCとLD、LDとLEは、ワーク3を一方向に搬送したときに、ワーク3の移動方向と平行方向に伸びるエッジ部LA1、LB1´が互いに重畳し(LB,LC,LD,・・・についても同様)、重畳領域T1が形成される。また、ワーク3を一方向に搬送したときに、各照射領域におけるワーク3の搬送方向と直交方向に伸びるエッジ部LA2,LB2,・・・が互いに重畳するように、ワーク3の搬送速度とレーザ光のパルス間隔とが設定される。 The irradiation areas LA and LB, LB and LC, LC and LD, and LD and LE formed on the workpiece 3 by the laser beam irradiated from the opening of the mask 44 are transferred to the workpiece 3 when the workpiece 3 is conveyed in one direction. The edge portions LA1 and LB1 ′ extending in the direction parallel to the moving direction are overlapped with each other (the same applies to LB, LC, LD,...), And the overlapping region T1 is formed. Further, when the work 3 is transported in one direction, the transport speed of the work 3 and the laser so that the edge portions LA2, LB2,... Extending in the direction orthogonal to the transport direction of the work 3 in each irradiation region overlap each other. The pulse interval of light is set.
 ここで、図12(b)に示すように、それぞれ隣接するマスク44の開口から照射されるレーザ光により形成される照射領域LAとLB、LBとLC、LCとLD、LDとLEは、ワーク3を一方向に搬送したときに、ワーク3の移動方向と平行方向に伸びるエッジ部LA1,LB1´が互いに重畳し(LB,LC,LD,…についても同様)、重畳領域T1が形成されるように照射される。
 また、ワーク3を一方向に搬送したときに、各照射領域におけるワーク3の移動方向と直交方向に伸びるエッジ部LA2,LB2,…が互いに重畳するように、ワーク3の搬送速度とパルスレーザ光の照射間隔が設定されている。レーザ光のパルス間隔は、ワークがレーザ光の1ショット分の照射領域に相当する距離を移動するために要する時間よりも短く設定される。例えば、ワーク3の搬送速度が100mm/秒、レーザ光の重畳領域STの幅が0.1mmである場合、レーザ光のパルス間隔は0.004秒(250Hz)である。
 また、図11、図12に示すように、ワーク3の一端側から順番に他端に向けてレーザ光が照射されるので、図12(b)の点線に示すように、基板から順次に剥離された材料層の剥離領域において、はじめて基板から剥離する辺が常に2辺になる。
Here, as shown in FIG. 12B, the irradiation areas LA and LB, LB and LC, LC and LD, and LD and LE formed by the laser light irradiated from the openings of the adjacent masks 44 are respectively workpieces. When 3 is conveyed in one direction, edge portions LA1 and LB1 ′ extending in a direction parallel to the moving direction of the workpiece 3 are superimposed on each other (the same applies to LB, LC, LD,...), And an overlapping region T1 is formed. Irradiated as follows.
Further, when the work 3 is transported in one direction, the work speed of the work 3 and the pulse laser beam are such that the edge portions LA2, LB2,... Extending in the direction orthogonal to the moving direction of the work 3 in each irradiation region overlap each other. The irradiation interval is set. The pulse interval of the laser beam is set to be shorter than the time required for the work to move a distance corresponding to the irradiation region for one shot of the laser beam. For example, when the conveying speed of the workpiece 3 is 100 mm / second and the width of the laser light overlapping region ST is 0.1 mm, the pulse interval of the laser light is 0.004 seconds (250 Hz).
Further, as shown in FIGS. 11 and 12, laser light is irradiated in order from one end side of the work 3 toward the other end, so that it is peeled off sequentially from the substrate as shown by the dotted line in FIG. In the peeled region of the material layer, the sides that are peeled off from the substrate for the first time are always two sides.
 図14はパルスレーザ光の照射タイミングとワーク上の照射領域の関係を示す図であり、同図(a)はワーク上の照射領域を示し、(b)は各パルスレーザ光を示しており、同図は、ワーク上の照射領域A→B→Cの順にレーザ光が照射され、照射領域Aにはレーザ光aが照射され、照射領域Bにはレーザ光bが照射され、照射領域Cにはレーザ光cが照射される場合を示している。
 図14において、パルスレーザ光aがマスク44の開口を通過してワーク3上の照射領域Aに照射され、次のパルスレーザ光bが照射されるまでの間に、ワーク3は同図のBの照射領域にレーザ光が照射される位置まで移動する。
 そして、次のパルスレーザ光bは、上記照射領域Aと照射領域Bのワーク3の搬送方向と直交方向に伸びるエッジ部(同図のハッチングを付した部分)T3が重畳するようなタイミングでワーク3上の照射領域Bに照射される。
 同様に、次のパルスレーザ光cが照射されるまでの間に、ワーク3は同図の照射領域Cにレーザ光が照射される位置まで移動し、次のパルスレーザ光cは、照射領域Bと照射領域Cのエッジ部(同図のハッチングを付した部分)が互いに重畳するようなタイミングで照射される。
FIG. 14 is a diagram showing the relationship between the irradiation timing of the pulse laser beam and the irradiation region on the workpiece, wherein FIG. 14 (a) shows the irradiation region on the workpiece, (b) shows each pulse laser beam, In the figure, laser light is irradiated in the order of irradiation areas A → B → C on the workpiece, the irradiation area A is irradiated with laser light a, the irradiation area B is irradiated with laser light b, and the irradiation area C is irradiated. Indicates a case where the laser beam c is irradiated.
In FIG. 14, the pulse laser beam a passes through the opening of the mask 44 and irradiates the irradiation area A on the workpiece 3 until the next pulse laser beam b is irradiated. It moves to the position where the laser beam is irradiated to the irradiation region.
Then, the next pulse laser beam b is applied at a timing such that an edge portion (a hatched portion in the figure) T3 extending in a direction orthogonal to the conveyance direction of the workpiece 3 in the irradiation region A and the irradiation region B overlaps. 3 is irradiated to the irradiation region B on the upper side.
Similarly, before the next pulse laser beam c is irradiated, the workpiece 3 moves to a position where the irradiation region C in the figure is irradiated with the laser beam, and the next pulse laser beam c is applied to the irradiation region B. Irradiation is performed at such a timing that the edge portions of the irradiation region C (hatched portions in the figure) overlap each other.
 図11の(3)(4)のパルスレーザ光の休止期間には、ワークの次なる領域にレーザ光を照射するために、ワーク3を図11に示す矢印(3)方向に搬送する。このときの搬送距離は、レーザ光の照射領域S1とS2とが重畳するように設定される。また(4)の手順では、マスク44に対するワーク3の移動方向を(2)の移動方向と同じにするため、図11の矢印(4)に従ってワーク3を左方から右方に搬送する。
 次の(5)の手順では、レーザ光を照射しながら、ワーク3を右方から左方に一方向に搬送する。(5)の手順では、(1)の手順と同様にして、ワーク3においてマスク44の最も上方の開口M1の上端(図11(c)の仮想線LL3)から、マスク44の最も下方の開口M5の下端(図11(c)の仮想線LL4)に亘る領域S2に照射される。マスク44のそれぞれ隣接する開口から出射されるレーザ光により形成される照射領域LFとLG、LGとLH、LHとLI、LIとLJは、ワーク3の移動方向と平行方向に伸びるエッジ部が重畳するように照射される。また、レーザ光は、照射領域LF~LJが、前記と同じく、ワーク3の搬送方向と直交方向に伸びる各照射領域のエッジ部が重畳するように、照射される。
In the rest period of the pulse laser light of (3) and (4) in FIG. 11, the work 3 is transported in the direction of the arrow (3) shown in FIG. 11 in order to irradiate the next region of the work with laser light. The transport distance at this time is set so that the laser light irradiation areas S1 and S2 overlap each other. Further, in the procedure (4), in order to make the moving direction of the work 3 with respect to the mask 44 the same as the moving direction of (2), the work 3 is conveyed from the left to the right according to the arrow (4) in FIG.
In the next procedure (5), the workpiece 3 is conveyed in one direction from the right to the left while irradiating the laser beam. In the procedure of (5), in the same manner as the procedure of (1), the lowermost opening of the mask 44 from the upper end of the uppermost opening M1 of the mask 44 (virtual line LL3 in FIG. 11C) in the work 3. It irradiates to area | region S2 covering the lower end (virtual line LL4 of FIG.11 (c)) of M5. Irradiation regions LF and LG, LG and LH, LH and LI, and LI and LJ formed by laser light emitted from openings adjacent to the mask 44 are overlapped with edge portions extending in a direction parallel to the moving direction of the workpiece 3. Irradiate as you do. Also, the laser light is irradiated so that the irradiation regions LF to LJ overlap with the edge portions of the irradiation regions extending in the direction orthogonal to the conveyance direction of the workpiece 3 as described above.
 上記実施例においては、レーザ光形成手段として、互いに離間して配置される複数の開口M1-M5(レーザ光出射部に相当)を有するマスク44を備えており、該マスク44の開口M1-M5により分割されたレーザ光により、ワーク上に、互いに離間した照射領域LA-LEを形成し、また、隣接する開口M1-M5から出射したレーザ光により形成される照射領域LA-LEの、ワークの移動方向と平行方向に伸びるエッジ部が、ワークを一方向に移動するに従って順次に重畳されながら、ワークに対して一括照射されるように構成されている。このため、レーザリフトオフを短時間に行うことができ、スループットを向上させることができる。
 しかも、上記実施例は、互いに離間して配置されるレーザ光出射部から出射した各レーザ光により形成される照射領域LA~LEが、前記したように時間を隔てて順次に重畳される。
 このため、分割された各レーザ光の照射エネルギーが合算されることがない。例えば、レーザ光により形成される照射領域LAはLBよりも後に形成されるが、材料層が分解温度から室温に戻るまでの時間が極めて短いことから、LAが照射される時にはLBによって既に照射された領域T1は既に室温状態になっているため、レーザ光により形成される照射領域LAとLBの照射エネルギーは合算されない。つまり、マスク44によって分割された各レーザ光は、個別にワークに照射されるのと同然であり、各々のレーザ照射領域が小面積となる。このため、基板から材料層を剥離する際の材料層へのダメージを軽減することができる。
 さらに、本実施例においては、図11、図12に示したように、ワーク3の一端側から順番に他端に向けて、照射領域群S1,S2・・・が順次に並んで形成されるようレーザ光がワーク3の全面に亘って照射される。このようにレーザ光を照射することにより、基板から順次に剥離された材料層の剥離領域において、はじめて基板から剥離する辺が常に2辺になる。
In the above embodiment, the mask 44 having a plurality of openings M1-M5 (corresponding to the laser beam emitting portions) arranged apart from each other is provided as the laser beam forming means, and the openings M1-M5 of the mask 44 are provided. The irradiation regions LA-LE that are separated from each other are formed on the workpiece by the laser beam divided by the above, and the irradiation region LA-LE formed by the laser beams emitted from the adjacent openings M1-M5 Edge portions extending in a direction parallel to the moving direction are configured to be collectively irradiated onto the workpiece while being sequentially superimposed as the workpiece is moved in one direction. For this reason, laser lift-off can be performed in a short time, and throughput can be improved.
In addition, in the above-described embodiment, the irradiation areas LA to LE formed by the laser beams emitted from the laser beam emitting portions arranged apart from each other are sequentially superimposed at intervals as described above.
For this reason, the irradiation energy of each divided | segmented laser beam is not added together. For example, the irradiation area LA formed by laser light is formed after LB, but since the time until the material layer returns from the decomposition temperature to room temperature is extremely short, it is already irradiated by LB when LA is irradiated. Since the region T1 is already at room temperature, the irradiation energy of the irradiation regions LA and LB formed by the laser light is not added. That is, each laser beam divided by the mask 44 is the same as being individually irradiated onto the workpiece, and each laser irradiation region has a small area. For this reason, damage to the material layer when the material layer is peeled from the substrate can be reduced.
Furthermore, in this embodiment, as shown in FIGS. 11 and 12, the irradiation region groups S1, S2,... Are sequentially arranged from the one end side of the work 3 toward the other end in order. The laser beam is irradiated over the entire surface of the work 3. By irradiating with laser light in this way, in the peeling region of the material layer sequentially peeled from the substrate, the sides to be peeled from the substrate for the first time are always two sides.
 このように、第2の実施例のレーザリフトオフ処理は、複数の開口を有してなるマスク44を介してワーク3に対してレーザ光を照射するものであるため、実質的にワークにおけるレーザ光の照射領域を大面積とすることができ、これにより、ダメージを軽減できるものでありながら、短時間のレーザリフトオフ処理が可能となる。
 さらに、第2の実施例のレーザリフトオフ処理は、基板から順次に剥離された材料層の剥離領域において、はじめて基板から剥離する辺が常に2辺になるため、前述したように、材料層の分解時に発生したガスの逃げ道を確保することと、材料層の分解時の初期に発生する応力がかかる辺の全長が十分に長いこと、の調和をうまく図ることができ、基板から剥離後の材料層におけるクラックの発生を、防止若しくは抑制することができる。
As described above, the laser lift-off process of the second embodiment irradiates the workpiece 3 with the laser beam through the mask 44 having a plurality of openings. Thus, the laser lift-off process can be performed in a short time while the damage can be reduced.
Further, in the laser lift-off process of the second embodiment, since the side to be peeled off from the substrate is always two sides for the first time in the peeling region of the material layer sequentially peeled from the substrate, the material layer is decomposed as described above. The material layer after peeling from the substrate can be well harmonized by ensuring the escape path of the gas generated from time to time and the length of the side where the stress generated in the initial stage when the material layer is decomposed is sufficiently long. The occurrence of cracks in can be prevented or suppressed.
(b)第2の実施例の変形例
 上記実施例では、分割されたレーザ光をマスクを用いて形成していたが、以下に説明するように、光ファイバを用いて分割されたレーザ光を形成してもよい。
 図15、図16は上記第2の実施例の変形例を示す図であり、図15はその他のレーザ光形成手段を用いた場合のレーザリフトオフ装置の光学系の概念図、図16は、図15に示したレーザ光形成手段を拡大して示した図であり、図16(a)はワーク近傍を拡大して示した図、同図(b)は光出射素子の配置を示す図である。
 本変形例においては、レーザ光形成手段が導光部61a~61eと光出射素子62a~62eと光ファイバ60a~60eから構成され、マスクの開口に相当するレーザ光出射部は光出射素子62a~62eに対応する。
 すなわち、図16(a)(b)に示すように、複数の光出射素子62a-62eが、図10に示したマスクの開口M1~M5と同様、ワーク3の搬送方向に対して傾斜する一直線上に配列されており、各々の光出射素子62a-62eは、例えば前記図12に示したように、ワーク3を一方向に搬送したときに、隣接する各レーザ光出射部から出射するレーザ光により形成される照射領域の、ワーク3の搬送方向と平行方向に伸びるエッジ部が重畳するように、互いに離間して配置されている。
 本変形例のように光ファイバを用いても、前記第2の実施例で説明したようにワーク3にレーザ光を照射することにより、第2の実施例と同様の効果を得ることができ、短時間のレーザリフトオフ処理が可能となるとともに、ダメージを軽減し、基板から剥離後の材料層におけるクラックの発生を、防止若しくは抑制することができる。
(B) Modification of the second embodiment In the above embodiment, the divided laser beam is formed using a mask. However, as will be described below, the divided laser beam is divided using an optical fiber. It may be formed.
FIGS. 15 and 16 are diagrams showing modifications of the second embodiment. FIG. 15 is a conceptual diagram of an optical system of a laser lift-off device when other laser beam forming means is used, and FIG. 15 is an enlarged view of the laser beam forming means shown in FIG. 15, FIG. 16 (a) is an enlarged view of the vicinity of the workpiece, and FIG. 16 (b) is a view showing the arrangement of the light emitting elements. .
In this modification, the laser beam forming means is composed of light guides 61a to 61e, light emitting elements 62a to 62e, and optical fibers 60a to 60e, and the laser beam emitting part corresponding to the opening of the mask is the light emitting elements 62a to 62e. Corresponds to 62e.
That is, as shown in FIGS. 16 (a) and 16 (b), the plurality of light emitting elements 62a-62e are straightly inclined with respect to the conveying direction of the workpiece 3 like the openings M1 to M5 of the mask shown in FIG. For example, as shown in FIG. 12, each of the light emitting elements 62a to 62e is arranged on a line. When the workpiece 3 is conveyed in one direction, each of the light emitting elements 62a to 62e Are arranged so as to be separated from each other so that the edge portions extending in the direction parallel to the conveyance direction of the workpiece 3 overlap in the irradiation region formed by the above.
Even if an optical fiber is used as in this modification, the same effect as in the second embodiment can be obtained by irradiating the workpiece 3 with laser light as described in the second embodiment. Laser lift-off processing can be performed for a short time, damage can be reduced, and generation of cracks in the material layer after peeling from the substrate can be prevented or suppressed.
(c)第3の実施例
 図17ないし図21は、本発明のレーザリフトオフ装置にかかる第3の実施例のレーザリフトオフ処理を説明する図である。マスク44は、図17に示すように、金属製の板部において、レーザ光出射部としての複数の開口M1~M9を、互いに離間すると共に、ワーク3の搬送方向に対して互いに傾斜し、中央に位置する開口M3で交差する一方の仮想線L1上と他方の仮想線L2上のそれぞれに一直線上に配列することで、X字状に穿設したものである。
 各々の開口M1~M9は、図20に示すように、ワーク3を一方向に搬送したときに、隣接する各レーザ光出射部から出射するレーザ光の、ワーク3の搬送方向と平行方向に伸びるエッジ部が重畳するように、互いに連続することなく離間して形成されている。
 図18は、マスク44に複数設けられた開口M1~M9を開閉するためのマスクシャッタMS1~MS4の動作を示す。第3の実施例のマスク44は、マスクシャッタを適宜開閉することにより、2種類の異なるマスクパターンを形成することができる。
 同図(a)はマスクシャッタMS1-MS4を全て開放した状態を示すが、本実施例では、この状態でマスク44を使用することはしない。本実施例のマスク44は、同図(b)(c)のように、一方の仮想線L1或いは他方の仮想線L2の何れかの上に開口M1-M9が一直線上に配列するようにマスクシャッタMS1-MS4を開閉することによってマスクパターンMP1とマスクパターンMP2の双方を形成することができる。マスクパターンMP1とマスクパターンMP2とは、レーザ光に対するワークの移動方向を切替える毎に切替えて使用する。
(C) Third Embodiment FIGS. 17 to 21 are diagrams for explaining a laser lift-off process according to a third embodiment of the laser lift-off apparatus of the present invention. As shown in FIG. 17, the mask 44 has a plurality of openings M1 to M9 as laser beam emitting portions spaced apart from each other and inclined with respect to the conveying direction of the workpiece 3 in the metal plate portion. It is drilled in an X shape by arranging it on one imaginary line L1 and the other imaginary line L2 intersecting each other at the opening M3 located at the same position.
As shown in FIG. 20, each of the openings M1 to M9 extends in a direction parallel to the conveying direction of the workpiece 3 of the laser beam emitted from each adjacent laser beam emitting portion when the workpiece 3 is conveyed in one direction. The edges are formed so as not to be continuous with each other so as to overlap each other.
FIG. 18 shows the operation of the mask shutters MS1 to MS4 for opening and closing the openings M1 to M9 provided in the mask 44. The mask 44 of the third embodiment can form two different mask patterns by appropriately opening and closing the mask shutter.
FIG. 4A shows a state in which all the mask shutters MS1-MS4 are opened, but in this embodiment, the mask 44 is not used in this state. As shown in FIGS. 2B and 2C, the mask 44 of the present embodiment is masked so that the openings M1 to M9 are aligned on either one of the virtual lines L1 or L2. By opening and closing the shutters MS1-MS4, both the mask pattern MP1 and the mask pattern MP2 can be formed. The mask pattern MP1 and the mask pattern MP2 are used by switching each time the workpiece moving direction with respect to the laser beam is switched.
 図19により、本発明のレーザリフトオフ装置に係るレーザ光照射方法について説明する。同図中の括弧数字はレーザ光照射の手順を示す。このレーザ光照射方法は、前述したようにマスク44を移動することなくワークを移動させてレーザ光を照射する。図20は、ワークへのレーザ光の照射パターンを示す。なお、説明の都合上、図20では、レーザ光をスキャンするように描かれている。また、図21はパルスレーザ光の照射期間及び休止期間を示すタイムチャートである。
 図19に示す(1)の手順では、マスク44は同図中で最も上方に位置する開口M1の上端がワーク3の上端と同一直線上に並ぶように配置される。M1の上端はワーク3の上端から伸び出していてもよい。このとき、図18(b)において、仮想線L1上に配列された開口M1-M5を開くようにマスクシャッタMS2、MS3をマスク外に退避させた状態にすると共に、仮想線L2上に配列された開口M6-M9を閉じるようにマスクシャッタMS1、MS4を進出させる。このようにして、マスク44においてマスクパターンMP1を形成する。
A laser beam irradiation method according to the laser lift-off apparatus of the present invention will be described with reference to FIG. The numbers in parentheses in the figure indicate the laser light irradiation procedure. In this laser beam irradiation method, as described above, the workpiece is moved without moving the mask 44 and the laser beam is irradiated. FIG. 20 shows the irradiation pattern of the laser beam on the workpiece. For convenience of explanation, FIG. 20 shows the laser beam being scanned. FIG. 21 is a time chart showing a pulse laser beam irradiation period and a pause period.
In the procedure (1) shown in FIG. 19, the mask 44 is arranged so that the upper end of the uppermost opening M <b> 1 in the drawing is aligned with the upper end of the workpiece 3. The upper end of M1 may extend from the upper end of the workpiece 3. At this time, in FIG. 18B, the mask shutters MS2, MS3 are retracted from the mask so as to open the openings M1-M5 arranged on the virtual line L1, and are arranged on the virtual line L2. The mask shutters MS1, MS4 are advanced so as to close the openings M6-M9. In this way, a mask pattern MP1 is formed in the mask 44.
 図19に示す(2)の手順では、レーザ光を照射しながらワーク3を右方から左方に一方向に搬送する。このとき、レーザ光がマスクパターンMP1を介することによって、図20(a)(b)に示すように、レーザ光により形成される照射領域LA~LEがワーク3の搬送方向に対して傾斜した一直線上にアレイ状に配列された照射パターンP1が形成される。当該照射パターンP1は、ワーク3が右方から左方に向けて移動することにより、ワーク3においてマスク44の最も上方に位置する開口M1の上端(図19(a)の仮想線LL1)から、マスク44の最も下方に位置する開口M5の下端(図19(a)の仮想線LL2)に亘る領域S1に照射される。
 図20(b)に示すように、それぞれ隣接するレーザ光出射部から照射されるレーザ光により形成される照射領域LAとLB、LBとLC、LCとLD、LDとLEは、ワーク3を一方向に移動させたときにワーク3の移動方向と平行方向に伸びるエッジ部が重畳する。また、レーザ光により形成される照射領域LA~LEは、前記図14で説明したように、ワーク3の移動方向と直交方向に伸びるそれぞれのエッジ部が重畳するように照射される。
In the procedure (2) shown in FIG. 19, the workpiece 3 is conveyed in one direction from right to left while irradiating laser light. At this time, since the laser light passes through the mask pattern MP1, as shown in FIGS. 20A and 20B, the irradiation areas LA to LE formed by the laser light are inclined straight with respect to the conveyance direction of the workpiece 3. Irradiation patterns P1 arranged in an array on the line are formed. The irradiation pattern P <b> 1 moves from the upper end of the opening M <b> 1 located on the uppermost side of the mask 44 in the work 3 (virtual line LL <b> 1 in FIG. 19A) as the work 3 moves from right to left. The region S1 is irradiated over the lower end (the virtual line LL2 in FIG. 19A) of the opening M5 located at the lowest position of the mask 44.
As shown in FIG. 20 (b), the irradiation areas LA and LB, LB and LC, LC and LD, and LD and LE formed by the laser beams irradiated from the adjacent laser beam emitting portions are combined with each other. When moved in the direction, an edge portion extending in a direction parallel to the moving direction of the workpiece 3 is superimposed. In addition, the irradiation areas LA to LE formed by the laser light are irradiated so that the respective edge portions extending in the direction orthogonal to the moving direction of the workpiece 3 overlap as described with reference to FIG.
 次の図19に示す(3)の手順は、パルスレーザ光の休止期間(図21参照)に実行され、ワーク3の次なる領域にレーザ光を照射するための準備、即ち、ワークの移動とマスクパターンの変更を行う。
 (3)の手順では、ワーク3の次なる領域にレーザ光を照射するために、レーザ光の休止期間において、図19のレーザ照射済みの領域S1よりもやや短い距離だけワーク3を図19に示す矢印(3)の方向に移動させる。ワーク3の搬送距離を領域S1よりやや短くするのは、図19に示す領域S1と、S2とを重畳させるためである。
 さらに、(3)の手順では、マスクパターンMP1からマスクパターンMP2への変更を行う。
 マスクパターンの変更は、図18(c)に示すように、仮想線L1上に配列された、開口M3を除く開口M1-M5を閉じるためにマスクシャッタMS2、MS3を進出させ、仮想線L2上に配列された開口M6-M9を開くためにマスクシャッタMS1、MS4をマスク44外に退避させる。このようにして、マスク44において、マスクパターンMP2を形成する。
Next, the procedure (3) shown in FIG. 19 is executed during the pause period of the pulse laser beam (see FIG. 21), and preparation for irradiating the next region of the workpiece 3 with the laser beam, that is, the movement of the workpiece. Change the mask pattern.
In the procedure of (3), in order to irradiate the next area of the work 3 with the laser beam, the work 3 is moved to a position slightly shorter than the laser-irradiated area S1 in FIG. It is moved in the direction of the arrow (3) shown. The reason why the conveyance distance of the workpiece 3 is slightly shorter than the area S1 is to overlap the areas S1 and S2 shown in FIG.
Further, in the procedure (3), the mask pattern MP1 is changed to the mask pattern MP2.
To change the mask pattern, as shown in FIG. 18 (c), the mask shutters MS2 and MS3 are advanced to close the openings M1-M5 except for the opening M3 arranged on the virtual line L1, and the mask pattern is changed to the virtual line L2. The mask shutters MS1 and MS4 are retracted out of the mask 44 in order to open the openings M6 to M9 arranged in the above. In this way, the mask pattern MP2 is formed in the mask 44.
 次の図19に示す(4)の手順は、レーザ光を照射しながら、図19(b)の矢印(4)に従ってワーク3を左方から右方に移動させる。このとき、図20(c)に示すように、レーザ光により形成される照射領域LF~LJがワーク3の移動方向に対して傾斜した一直線上に配列された照射パターンP2が形成される。照射パターンP2は、ワーク3に対するレーザ光のスキャン方向を中心として照射パターンP1の線対称の形状を有する。当該照射パターンP2を有するレーザ光が、図20(a)に示すワーク3の右方から左方に向けて、つまり、レーザ光が照射された領域S1にレーザ光を照射したときと逆方向から照射され、ワーク3においてマスク44の最も上方に位置する開口M9の上端(図19(b)の仮想線LL3)から、マスク44の最も下端に位置する開口の下端(図19(b)の仮想線LL4)に亘る領域S2に照射される。 In the procedure (4) shown in FIG. 19, the workpiece 3 is moved from the left to the right according to the arrow (4) in FIG. 19 (b) while irradiating the laser beam. At this time, as shown in FIG. 20C, an irradiation pattern P2 is formed in which irradiation regions LF to LJ formed by laser light are arranged on a straight line inclined with respect to the moving direction of the workpiece 3. The irradiation pattern P <b> 2 has a line-symmetric shape of the irradiation pattern P <b> 1 with the scanning direction of the laser beam with respect to the workpiece 3 as the center. The laser beam having the irradiation pattern P2 is directed from the right side to the left side of the workpiece 3 shown in FIG. 20A, that is, from the opposite direction to when the laser beam is irradiated onto the region S1 irradiated with the laser beam. Irradiated and from the upper end of the opening M9 positioned above the mask 44 in the workpiece 3 (virtual line LL3 in FIG. 19B) to the lower end of the opening positioned at the lowermost end of the mask 44 (virtual line in FIG. 19B) The region S2 over the line LL4) is irradiated.
 図20(c)に示すように、それぞれ隣接する開口から照射されるレーザ光照射領域LFとLG、LGとLH、LHとLI、LIとLJは、ワーク3を一方向に搬送したときにワーク3の搬送方向と平行方向に伸びるエッジ部が重畳する。図19の(3)の手順において、前記のようにワーク3の搬送距離を調整することにより、領域S1とS2とを重畳させる。また、レーザ光により形成される照射領域LF~LJは、ワークの移動方向と直交方向に伸びるエッジ部が重畳するように照射される。このような手順(1)~(4)を、ワーク3の一端から順に、ワーク3の一端から他端に向けて照射領域群S1,S2・・・が順次に並んで形成されるよう順次に繰返し実行することにより、ワーク3の全面に亘りレーザ光が照射される。 As shown in FIG. 20 (c), the laser light irradiation areas LF and LG, LG and LH, LH and LI, and LI and LJ irradiated from the adjacent openings respectively are the workpieces when the workpiece 3 is conveyed in one direction. The edge portions extending in the direction parallel to the conveyance direction 3 overlap. In the procedure of (3) of FIG. 19, the areas S1 and S2 are overlapped by adjusting the transport distance of the workpiece 3 as described above. Further, the irradiation regions LF to LJ formed by the laser light are irradiated so that the edge portions extending in the direction orthogonal to the moving direction of the workpiece overlap. The steps (1) to (4) are sequentially performed from one end of the work 3 so that the irradiation region groups S1, S2,... Are sequentially formed from one end to the other end of the work 3. By repeatedly executing the laser beam, the entire surface of the workpiece 3 is irradiated with the laser beam.
 第3の実施例のレーザリフトオフ処理によれば、隣接するレーザ光出射部としての開口M1-M9から出射したレーザ光の、ワークの移動方向と平行方向に伸びるエッジ部が、ワークを一方向に移動するに従って順次に重畳されながら、複数のレーザ光出射部から出射した光がワークに対して一括照射されるため、基本的には第2の実施例と同じく、実質的にワークへのレーザ光の照射領域を大面積にすることができるため、短時間のレーザリフトオフ処理が可能になる。また、第2の実施例と同様、基板から順次に剥離された材料層の剥離領域において、はじめて基板から剥離する辺が、図20(b)(c)の点線で示すように、常に2辺になる。このため、前述したように、材料層の分解時に発生したガスの逃げ道を確保することと、材料層の分解時の初期に発生する応力がかかる辺の全長が十分に長いこと、の調和をうまく図ることができ、基板から剥離後の材料層におけるクラックの発生を、防止若しくは抑制することができる。
 さらに、マスク44によって形成されるレーザ光の照射パターンP1とP2とが、それぞれワーク3に対するレーザ光のスキャン方向を中心として線対称な形状を有しているので、ワークの搬送動作を簡略化することができる。これについて、以下に説明する。
According to the laser lift-off process of the third embodiment, the edge portion of the laser light emitted from the openings M1 to M9 as the adjacent laser light emitting portions extending in the direction parallel to the moving direction of the workpiece makes the workpiece in one direction. Since light emitted from a plurality of laser light emitting portions is collectively irradiated onto the workpiece while being sequentially superimposed as it moves, basically the laser light to the workpiece is substantially the same as in the second embodiment. Since the irradiation area can be made large, a laser lift-off process can be performed in a short time. Further, as in the second embodiment, in the peeling region of the material layer sequentially peeled from the substrate, the side to be peeled from the substrate for the first time is always two sides as shown by the dotted lines in FIGS. become. For this reason, as described above, the harmony between ensuring the escape path of the gas generated during the decomposition of the material layer and that the total length of the side on which the stress generated at the initial stage during the decomposition of the material layer is sufficiently long is excellent. The generation of cracks in the material layer after peeling from the substrate can be prevented or suppressed.
Further, since the laser light irradiation patterns P1 and P2 formed by the mask 44 have a line-symmetric shape with respect to the scanning direction of the laser light with respect to the work 3, respectively, the work transport operation is simplified. be able to. This will be described below.
 第3の実施例のレーザリフトオフ処理によれば、図20(a)に示すようにワーク3の領域S1とS2とでレーザ光のワーク3に対するスキャン方向を180°変えている。このようにしても、ワークの移動方向を中心にして互いに線対称の関係にある2つの一直線上に配列されたレーザ光の照射パターンP1、P2を有するが故に、図20(b)(c)に示すように、レーザ光照射によって基板から初めて剥離される材料層の辺数を常に2辺にすることができる。
 つまり、本実施例では、ワーク3のスキャン方向を左右で180°交互に変えることができ(前記第2の実施例の方法ではワークの移動方向は一方向のみ)るので、前記図11のレーザ光照射方法に示す(4)の手順、即ちワークの移動方向を一定に揃えるための手順を省略することができる。したがって、ワークの搬送動作を簡略化することができる。
 なお、上記実施例では、分割されたレーザ光をマスクを用いて形成していたが、前記図15、図16に示したように、光ファイバを用いて分割されたレーザ光を形成してもよい。光ファイバを用いる場合には、本実施例に示すようなマスクシャッタを用いる必要はなく、光ファイバから光の放射をオンオフすればよい。
According to the laser lift-off process of the third embodiment, the scan direction of the laser beam with respect to the workpiece 3 is changed by 180 ° in the regions S1 and S2 of the workpiece 3 as shown in FIG. Even in this case, the laser light irradiation patterns P1 and P2 are arranged on two straight lines that are in a line-symmetrical relationship with respect to the moving direction of the workpiece. As shown, the number of sides of the material layer that is peeled off from the substrate for the first time by laser light irradiation can always be two.
In other words, in this embodiment, the scanning direction of the workpiece 3 can be alternately changed by 180 ° on the left and right (the moving direction of the workpiece is only one direction in the method of the second embodiment), so the laser shown in FIG. The procedure (4) shown in the light irradiation method, that is, the procedure for making the moving direction of the workpiece constant can be omitted. Therefore, the workpiece transfer operation can be simplified.
In the above embodiment, the divided laser beam is formed using a mask. However, as shown in FIGS. 15 and 16, the divided laser beam may be formed using an optical fiber. Good. When an optical fiber is used, it is not necessary to use a mask shutter as shown in this embodiment, and light emission from the optical fiber may be turned on and off.
(c)第4の実施例
 図22ないし図25は、本発明のレーザリフトオフ装置にかかる第4の実施例のレーザリフトオフ処理を示す。マスク44は、図22に示すように、金属製の板部において、レーザ光出射部としての複数の開口M1-M9を、互いに離間すると共に、ワーク3の搬送方向に対して互いに傾斜し且つV字状に交差する一方の仮想線L1上と他方の仮想線L2上のそれぞれに一直線上に配列するように穿設したものである。
 各々のレーザ光出射部となる開口は、前記したように、ワーク3を一方向に搬送したときに、隣接する開口から出射するレーザ光の、ワーク3の搬送方向と平行方向に伸びるエッジ部が重畳するように、互いに連続することなく離間して形成されている。
(C) Fourth Embodiment FIGS. 22 to 25 show a laser lift-off process according to a fourth embodiment of the laser lift-off apparatus of the present invention. As shown in FIG. 22, the mask 44 separates a plurality of openings M1-M9 as laser beam emitting portions from each other in the metal plate portion and is inclined with respect to the conveying direction of the workpiece 3 and V It is drilled so as to be arranged in a straight line on one imaginary line L1 and the other imaginary line L2 intersecting in a letter shape.
As described above, each of the openings serving as the laser beam emitting portions has an edge portion extending in a direction parallel to the conveying direction of the workpiece 3 of the laser beam emitted from the adjacent opening when the workpiece 3 is conveyed in one direction. They are formed apart from each other so as to overlap.
 図24は、マスク44を紙面左右に移動させるためのマスク搬送機構50を示す。第4の実施例に係るマスク44は、ワークの搬送方向に応じて、マスクステージ51上を紙面左右方向に摺動することによって、マスクパターンが変更される。マスク44は、一方の仮想線L1と他方の仮想線L2との交点に位置する開口M5を境界として、2つのマスクパターンを形成することができる。図22に示すように、マスク44は、一方の仮想線L1上に一直線に配列される開口M1-M5をレーザ光照射範囲内に配置し、他方の仮想線L2上に一直線に配列される開口M6-M9をレーザ光照射範囲外に退避させることでマスクパターンMP1が形成される。これとは逆に、マスク44は、一方の仮想線L1上に一直線に配列される開口M1-M4をレーザ光照射範囲外に退避させ、他方の仮想線L2上に一直線に配列される開口M5-M9をレーザ光照射範囲に配置することでマスクパターンMP22が形成される。 FIG. 24 shows a mask transport mechanism 50 for moving the mask 44 left and right on the paper surface. In the mask 44 according to the fourth embodiment, the mask pattern is changed by sliding on the mask stage 51 in the horizontal direction on the paper surface in accordance with the conveying direction of the workpiece. The mask 44 can form two mask patterns with the opening M5 located at the intersection of one virtual line L1 and the other virtual line L2 as a boundary. As shown in FIG. 22, the mask 44 has openings M1-M5 arranged in a straight line on one imaginary line L1 within the laser light irradiation range, and openings arranged in a straight line on the other imaginary line L2. The mask pattern MP1 is formed by retracting M6 to M9 out of the laser light irradiation range. On the contrary, the mask 44 retracts the openings M1-M4 arranged in a straight line on one imaginary line L1 out of the laser light irradiation range, and opens the openings M5 arranged in a straight line on the other imaginary line L2. The mask pattern MP22 is formed by arranging -M9 in the laser beam irradiation range.
 図23により、第4の実施例のレーザリフトオフ処理について説明する。同図中の括弧数字はレーザ光照射の手順を示す。このレーザ光照射方法は、ワークの搬送に応じてマスク44を移動することによりマスクパターンを変えるところが、第2及び第3の実施例と異なる。なお、第4の実施例のレーザリフトオフ処理では、ワークへのレーザ光の照射パターンは第3の実施例と同じであるため、ワークへのレーザ光の照射パターンについては図23を用いて説明する。
 図23に示す(1)の手順では、マスク44は図23中で最も上方に位置する開口M5の上端がワーク3の上端と同一の仮想線LL1上に並ぶように配置される。開口M5の上端がワーク3の上端から伸び出してもよい。このとき、マスク搬送機構によってマスク44を搬送し、図23(a)に示すように、開口M1-M5をレーザ光照射範囲内に配置し、開口M6~M9をレーザ光照射範囲外に退避させ、マスク44にマスクパターンMP1を形成する。
The laser lift-off process of the fourth embodiment will be described with reference to FIG. The numbers in parentheses in the figure indicate the laser light irradiation procedure. This laser beam irradiation method is different from the second and third embodiments in that the mask pattern is changed by moving the mask 44 according to the conveyance of the workpiece. In the laser lift-off process of the fourth embodiment, the irradiation pattern of the laser beam to the workpiece is the same as that of the third embodiment. Therefore, the irradiation pattern of the laser beam to the workpiece will be described with reference to FIG. .
In the procedure (1) shown in FIG. 23, the mask 44 is arranged so that the upper end of the uppermost opening M <b> 5 in FIG. 23 is aligned with the same virtual line LL <b> 1 as the upper end of the work 3. The upper end of the opening M5 may extend from the upper end of the workpiece 3. At this time, the mask 44 is transported by the mask transport mechanism, and the openings M1 to M5 are disposed within the laser light irradiation range and the openings M6 to M9 are retracted outside the laser light irradiation range as shown in FIG. The mask pattern MP1 is formed on the mask 44.
 図23に示す(2)の手順では、レーザ光を照射しながらワーク3を右方から左方に一方向に搬送する。このとき、レーザ光がマスク44のマスクパターンMP1を介することによって、図20(b)に示したように、レーザ光により形成される照射領域LA~LEがワークの搬送方向に対して傾斜した一直線上にアレイ状に配列された照射パターンP1が形成される。
 レーザ光は、ワーク3が右方から左方に向けて移動することにより、図23(a)に示すように、ワーク3においてマスク44の最も上方に位置する開口M5の上端(図23(a)の仮想線LL1)から、マスク44の最も下方に位置する開口M1の下端(図23(a)の仮想線LL2)に亘る領域S1に照射される。
In the procedure (2) shown in FIG. 23, the workpiece 3 is conveyed in one direction from the right to the left while irradiating the laser beam. At this time, since the laser light passes through the mask pattern MP1 of the mask 44, as shown in FIG. 20B, the irradiation areas LA to LE formed by the laser light are straightly inclined with respect to the workpiece conveyance direction. Irradiation patterns P1 arranged in an array on the line are formed.
When the workpiece 3 moves from the right side to the left side, the laser light is moved from the right side to the left side, as shown in FIG. 23A, the upper end of the opening M5 positioned above the mask 44 in the workpiece 3 (FIG. 23A). ) From the imaginary line LL1) to the lower end of the opening M1 located on the lowermost side of the mask 44 (the imaginary line LL2 in FIG. 23A).
 次の図23に示す(3)の手順は、パルスレーザ光の休止期間(図25参照)に実行され、ワーク3の次なる領域にレーザ光を照射するための準備、即ち、ワークの移動とマスクパターンの変更を行う。
 (3)の手順では、ワークの次なる領域にレーザ光を照射するために、レーザ光の休止期間において、図23(a)のレーザ光が照射される領域S1よりもやや短い距離だけワーク3を図23に示す矢印(3)の方向に移動させる。ワーク3の搬送距離をレーザ照射領域S1よりやや短くするのは、図23(b)に示すレーザ光照射領域S1とS2とを重畳させるためである。
 さらに、(3)の手順では、マスクパターンMP1からマスクパターンMP2への変更を行う。マスクパターンの変更は、図24に示すマスク搬送機構を用いてマスク44を摺動させ、仮想線L1上に配列された開口M1-M4をレーザ光照射範囲外へ退避させ、仮想線L2上に配列された開口M5-M9をレーザ光照射範囲内に配置させる。このようにして、マスク44においてマスクパターンMP2を形成する。
Next, the procedure (3) shown in FIG. 23 is executed during the pause period of the pulse laser beam (see FIG. 25), and preparation for irradiating the next region of the workpiece 3 with the laser beam, that is, the movement of the workpiece. Change the mask pattern.
In the procedure of (3), in order to irradiate the next region of the workpiece with the laser beam, the workpiece 3 is slightly shorter than the region S1 irradiated with the laser beam of FIG. Is moved in the direction of arrow (3) shown in FIG. The reason why the transport distance of the workpiece 3 is slightly shorter than the laser irradiation area S1 is to overlap the laser light irradiation areas S1 and S2 shown in FIG.
Further, in the procedure (3), the mask pattern MP1 is changed to the mask pattern MP2. To change the mask pattern, the mask 44 is slid by using the mask transport mechanism shown in FIG. 24, and the openings M1-M4 arranged on the virtual line L1 are retracted outside the laser light irradiation range, and the mask pattern is moved onto the virtual line L2. The arranged openings M5-M9 are arranged within the laser beam irradiation range. In this way, a mask pattern MP2 is formed in the mask 44.
 次の図23に示す(4)の手順は、レーザ光を照射しながら、図23(b)の矢印(4)に従ってワーク3を左方から右方に移動させる。このとき、図20(c)に示したように、レーザ光により形成される照射領域LF~LJがワーク3の移動方向に対して傾斜した一直線上にアレイ状に配列された照射パターンP2が形成される。照射パターンP2は、ワーク3に対するレーザ光のスキャン方向を中心として照射パターンP1の線対称の形状を有する。
 当該照射パターンP2を有するレーザ光が、図23(b)に示すように、ワーク3の右方から左方に向けて、つまり、領域S1にレーザ光を照射したときと逆方向から照射され、ワーク3においてマスク44の最も上方に位置する開口M5の上端(図23(b)の仮想線LL3)から、マスク44の最も下端に位置する開口M9の下端(図23(b)の仮想線LL4)に亘る領域S2に照射される。このような手順(1)~(4)を、ワークの一端から順に、ワークの一端から他端に向けて、照射領域群S1,S2・・・が順次に形成されるよう順次に繰返し実行することにより、ワーク3の全面に亘りレーザ光が照射される。
In the procedure (4) shown in FIG. 23, the workpiece 3 is moved from the left to the right according to the arrow (4) in FIG. At this time, as shown in FIG. 20C, an irradiation pattern P2 in which irradiation regions LF to LJ formed by laser light are arranged in an array on a straight line inclined with respect to the moving direction of the work 3 is formed. Is done. The irradiation pattern P <b> 2 has a line-symmetric shape of the irradiation pattern P <b> 1 with the scanning direction of the laser beam with respect to the workpiece 3 as the center.
As shown in FIG. 23 (b), the laser beam having the irradiation pattern P2 is irradiated from the right side to the left side of the workpiece 3, that is, from the opposite direction to when the region S1 is irradiated with the laser beam. In the workpiece 3, from the upper end of the opening M5 positioned above the mask 44 (virtual line LL3 in FIG. 23B) to the lower end of the opening M9 positioned at the lowermost end of the mask 44 (virtual line LL4 in FIG. 23B). ) Over the region S2. Such procedures (1) to (4) are sequentially repeated in order from one end of the work to the other end of the work so that the irradiation region groups S1, S2,. Thus, the laser beam is irradiated over the entire surface of the work 3.
 上述した第4の実施例のレーザリフトオフ処理によれば、基本的には第2の実施例のレーザリフトオフ処理と同じ効果を期待することができる。さらに、マスク44によって形成されるレーザ光の照射パターンP1とP2とが、それぞれワークに対するレーザ光のスキャン方向を中心として線対称な形状を有しているので、レーザ光照射によって基板から初めて剥離される材料層の辺数が常に2辺となり、また、第3の実施例と同じくワークの搬送動作を簡略化することができる。
 なお、上記第2~第4の実施例では、分割されたレーザ光をマスクを用いて形成していたが、前記図15、図16に示したように、光ファイバを用いて分割されたレーザ光を形成してもよい。光ファイバを用いる場合には、本実施例に示すようなマスクを移動させる必要はなく、光ファイバから光の放射をオンオフすればよい。
According to the laser lift-off process of the fourth embodiment described above, basically the same effect as the laser lift-off process of the second embodiment can be expected. Further, since the laser light irradiation patterns P1 and P2 formed by the mask 44 have a line-symmetric shape with respect to the scanning direction of the laser light with respect to the workpiece, they are peeled off from the substrate for the first time by laser light irradiation. The number of sides of the material layer is always two, and the workpiece transfer operation can be simplified as in the third embodiment.
In the second to fourth embodiments, the divided laser beam is formed using a mask. However, as shown in FIGS. 15 and 16, the laser beam divided using an optical fiber is used. Light may be formed. When an optical fiber is used, it is not necessary to move the mask as shown in this embodiment, and light emission from the optical fiber may be turned on and off.
(3)レーザリフトオフ装置を用いた半導体発光素子の製造方法
 最後に、上記したレーザリフトオフ装置を用いることができる半導体発光素子の製造方法について説明する。以下ではGaN系化合物材料層により形成される半導体発光素子の製造方法について図26を用いて説明する。
 結晶成長用の基板には、レーザ光を透過し材料層を構成する窒化ガリウム(GaN)系化合物半導体を結晶成長させることができるサファイア基板を使用する。図26(a)に示すように、サファイア基板101上には、例えば有機金属気相成長法(MOCVD法)を用いて迅速にGaN系化合物半導体よりなるGaN層102が形成される。
 続いて、図26(b)に示すように、GaN層102の表面には、発光層であるn型半導体層103とp型半導体層104とを積層させる。例えば、n型半導体としてはシリコンがドープされたGaNが用いられ、p型半導体としてはマグネシウムがドープされたGaNが用いられる。
 続いて、図26(c)に示すように、p型半導体層104上には、半田105が塗布される。続いて、図26(d)に示すように、半田105上にサポート基板106が取付けられる。サポート基板106は例えば銅とタングステンの合金からなる。
 そして、図26(e)に示すように、サファイア基板101の裏面側からサファイア基板101とGaN層102との界面に向けてレーザ光107を照射する。レーザ光107は、照射領域が0.25mm以下の面積を有する正方形となり、かつ、光強度分布が図5に示したような略台形状となるように成形される。
 レーザ光107をサファイア基板101とGaN層102の界面に照射して、GaN層102を分解することにより、サファイア基板101からGaN層102を剥離する。剥離後のGaN層102の表面に透明電極であるITO108を蒸着により形成し、ITO108の表面に電極109を取付ける。
(3) Method for Manufacturing Semiconductor Light-Emitting Element Using Laser Lift-Off Device Finally, a method for manufacturing a semiconductor light-emitting element that can use the above-described laser lift-off device will be described. Below, the manufacturing method of the semiconductor light-emitting device formed of a GaN-based compound material layer will be described with reference to FIG.
As the substrate for crystal growth, a sapphire substrate capable of crystal growth of a gallium nitride (GaN) compound semiconductor that transmits laser light and forms a material layer is used. As shown in FIG. 26A, a GaN layer 102 made of a GaN-based compound semiconductor is rapidly formed on the sapphire substrate 101 by using, for example, a metal organic chemical vapor deposition method (MOCVD method).
Subsequently, as illustrated in FIG. 26B, an n-type semiconductor layer 103 and a p-type semiconductor layer 104 that are light emitting layers are stacked on the surface of the GaN layer 102. For example, GaN doped with silicon is used as the n-type semiconductor, and GaN doped with magnesium is used as the p-type semiconductor.
Subsequently, as shown in FIG. 26C, solder 105 is applied on the p-type semiconductor layer 104. Subsequently, as shown in FIG. 26D, a support substrate 106 is attached on the solder 105. The support substrate 106 is made of, for example, an alloy of copper and tungsten.
Then, as shown in FIG. 26E, laser light 107 is irradiated from the back surface side of the sapphire substrate 101 toward the interface between the sapphire substrate 101 and the GaN layer 102. The laser beam 107 is shaped so that the irradiation area is a square having an area of 0.25 mm 2 or less, and the light intensity distribution is substantially trapezoidal as shown in FIG.
By irradiating the interface between the sapphire substrate 101 and the GaN layer 102 with the laser beam 107 and decomposing the GaN layer 102, the GaN layer 102 is peeled from the sapphire substrate 101. ITO 108 which is a transparent electrode is formed on the surface of the GaN layer 102 after peeling by vapor deposition, and the electrode 109 is attached to the surface of the ITO 108.
1    基板
2    材料層
3    ワーク
10   レーザリフトオフ装置
20   レーザ源
31   ワークステージ
32   搬送機構
33   制御部
40   レーザ光学系
41、42  シリンドリカルレンズ
43   ミラー
44   マスク
45   投影レンズ
50   マスク搬送機構
51   マスクステージ
60a~60e ファイバ
61a~61e 導光部
62a~62e 光出射素子
101  サファイア基板
102  GaN層
103  n型半導体層
104  p型半導体層
105  半田
106  サポート基板
107  レーザ光
108  透明電極(ITO)
109  電極
L    レーザ光
M1~M9  マスクの開口
MS1~MS4 マスクシャッタ
DESCRIPTION OF SYMBOLS 1 Substrate 2 Material layer 3 Workpiece 10 Laser lift-off device 20 Laser source 31 Workstage 32 Transport mechanism 33 Control unit 40 Laser optical system 41, 42 Cylindrical lens 43 Mirror 44 Mask 45 Projection lens 50 Mask transport mechanism 51 Mask stages 60a-60e Fiber 61a to 61e Light guides 62a to 62e Light emitting element 101 Sapphire substrate 102 GaN layer 103 n-type semiconductor layer 104 p-type semiconductor layer 105 solder 106 support substrate 107 laser beam 108 transparent electrode (ITO)
109 Electrode L Laser light M1 to M9 Mask openings MS1 to MS4 Mask shutter

Claims (11)

  1.  基板上に材料層が形成されてなるワークに対し、前記基板を通してレーザ源からのレーザ光を照射し、前記基板と前記材料層との界面で前記材料層を分解して前記基板から剥離するレーザリフトオフ方法において、
     前記レーザ光は、前記ワークに対する照射領域を刻々と変えながら前記ワークに照射され、前記照射領域のエッジ部が、前記ワークが前記レーザ源に対して相対的に一方向に移動するに従って順次に重畳し、
     前記レーザ光の前記ワークに対する照射領域は、前記ワークの移動方向と平行方向に伸びる1辺を有する四角形状に形成され、
     前記レーザ光は、前記基板から順次に剥離された前記材料層の四角形状の剥離領域において、前記基板からはじめて剥離される材料層の剥離辺が2辺になるように、前記ワークに照射される
    ことを特徴とするレーザリフトオフ方法。
    A laser that irradiates a workpiece in which a material layer is formed on a substrate with a laser beam from a laser source through the substrate, decomposes the material layer at an interface between the substrate and the material layer, and peels the workpiece from the substrate In the lift-off method,
    The laser beam is irradiated onto the workpiece while changing the irradiation region on the workpiece, and the edge portion of the irradiation region is sequentially superimposed as the workpiece moves in one direction relative to the laser source. And
    The irradiation region of the laser beam on the workpiece is formed in a quadrangular shape having one side extending in a direction parallel to the moving direction of the workpiece,
    The laser beam is applied to the workpiece so that the material layer that is peeled off from the substrate for the first time is separated into two sides in the rectangular peeling region of the material layer that is peeled off sequentially from the substrate. And a laser lift-off method.
  2.  上記レーザ光により、各照射領域群が、ワークの一端から他端に向けて順次に並ぶように形成され、ワークにおいて最初に形成される照射領域群および最後に形成される照射領域群は、ワークの一方のエッジ部および他方のエッジ部から伸びだすように形成される
    ことを特徴とする請求項1に記載のレーザリフトオフ方法。
    With the laser beam, each irradiation region group is formed so as to be sequentially arranged from one end to the other end of the workpiece, and the irradiation region group formed first and the last irradiation region group formed in the workpiece are the workpiece The laser lift-off method according to claim 1, wherein the laser lift-off method is formed so as to extend from one edge portion and the other edge portion.
  3.  前記レーザ源から出射するレーザ光を、複数のレーザ光に分割し、分割された各パルスレーザ光により前記ワーク上に互いに離間した複数の照射領域を形成し、
     前記複数の照射領域は、隣接する照射領域の前記ワークの移動方向と平行方向に伸びる端部が、前記ワークが前記レーザ源に対して相対的に一方向に移動するに従って、順次に重畳するように配列される
    ことを特徴とする請求項1に記載のレーザリフトオフ方法。
    The laser beam emitted from the laser source is divided into a plurality of laser beams, and a plurality of irradiation regions separated from each other are formed on the workpiece by the divided pulse laser beams,
    The plurality of irradiation areas are sequentially overlapped with the ends of the adjacent irradiation areas extending in a direction parallel to the movement direction of the work as the work moves in one direction relative to the laser source. The laser lift-off method according to claim 1, wherein the laser lift-off method is arranged as follows.
  4.  基板上に材料層が形成されてなるワークに対し、前記基板を通してレーザ光を照射し、前記基板と前記材料層との界面で前記材料層を前記基板から剥離するレーザリフトオフ装置において、
     前記基板を透過する波長域のレーザ光を発生するレーザ源と、
     前記ワークと前記レーザ源とを相対的に搬送する搬送機構と、
     前記レーザ光が、前記ワークに対する照射領域を刻々と変えながら、各照射領域がワークの一端から他端に向けて順次に並ぶように前記ワークに照射され、かつ、前記照射領域のエッジ部が前記ワークが前記レーザ源に対して相対的に一方向に移動するに従って順次に重畳するように、前記レーザ光の照射間隔と前記搬送機構による前記ワークの搬送動作とを制御する制御部と、
     前記レーザ源から発したレーザ光を、前記ワークの移動方向と平行方向に伸びる1辺を有する四角形状に成形して、前記ワークに照射するレーザ光学系と、を備え、
     前記制御部は、ワークにおいて最初に形成される照射領域群および最後に形成される照射領域群が、ワークの一方のエッジ部および他方のエッジ部から伸びだすようにレーザ光を前記ワークに照射するとともに、前記基板から順次に剥離された前記材料層の四角形状の剥離領域のうち、前記基板からはじめて剥離される材料層の剥離辺が2辺になるように、前記レーザ光を前記ワークに照射する
    ことを特徴とするレーザリフトオフ装置。
    In a laser lift-off device for irradiating a workpiece having a material layer formed on a substrate with laser light through the substrate and peeling the material layer from the substrate at an interface between the substrate and the material layer,
    A laser source that generates laser light in a wavelength region that passes through the substrate;
    A transport mechanism for relatively transporting the workpiece and the laser source;
    The laser beam is irradiated to the workpiece so that each irradiation region is sequentially arranged from one end to the other end of the workpiece while changing the irradiation region to the workpiece, and an edge portion of the irradiation region is the edge portion of the irradiation region. A control unit that controls an irradiation interval of the laser light and a conveyance operation of the workpiece by the conveyance mechanism so that the workpiece is sequentially superimposed as the workpiece moves in one direction relative to the laser source;
    A laser optical system configured to irradiate the workpiece with a laser beam emitted from the laser source, shaped into a square shape having one side extending in a direction parallel to the moving direction of the workpiece,
    The control unit irradiates the workpiece with laser light so that an irradiation region group formed first and an irradiation region group formed last in the workpiece extend from one edge portion and the other edge portion of the workpiece. At the same time, the workpiece is irradiated with the laser light so that the material layer to be peeled for the first time from the substrate has two sides of the square peeled region of the material layer that has been sequentially peeled from the substrate. A laser lift-off device.
  5.  前記レーザ源から出射するレーザ光を、複数のレーザ光に分割し、分割された各パルスレーザ光により前記ワーク上に互いに離間した複数の照射領域を形成するレーザ光形成手段を有し、
     前記レーザ光形成手段により形成される複数の照射領域は、隣接する照射領域の前記ワークの移動方向と平行方向に伸びる端部が、前記ワークが前記レーザ源に対して相対的に一方向に移動するに従って、順次に重畳するように配列される
    ことを特徴とする請求項4に記載のレーザリフトオフ装置。
    Laser light emitted from the laser source is divided into a plurality of laser lights, and laser light forming means for forming a plurality of irradiation regions separated from each other on the workpiece by the divided pulse laser lights,
    In the plurality of irradiation areas formed by the laser beam forming means, the ends of the adjacent irradiation areas extending in a direction parallel to the movement direction of the workpiece move relative to the laser source in one direction. The laser lift-off device according to claim 4, wherein the laser lift-off devices are arranged so as to be sequentially overlapped with each other.
  6.  前記レーザ光形成手段は、複数の方形状の開口を有するマスクである
    ことを特徴とする請求項5に記載のレーザリフトオフ装置。
    6. The laser lift-off apparatus according to claim 5, wherein the laser beam forming means is a mask having a plurality of rectangular openings.
  7.  前記ワーク上に形成される照射領域は、前記ワークの移動方向に傾斜した一直線上に配列される
    ことを特徴とする請求項5または請求項6記載のレーザリフトオフ装置。
    The laser lift-off device according to claim 5 or 6, wherein the irradiation area formed on the workpiece is arranged on a straight line inclined in the moving direction of the workpiece.
  8.  前記マスクは、前記複数の開口が互いに交差する一方の仮想線と他方の仮想線とにそれぞれ一直線上に配列される一方のマスクパターンと、他方のマスクパターンとからなり、マスクが有する開口がX字状に配列されている
    ことを特徴とする請求項6に記載のレーザリフトオフ装置。
    The mask is composed of one mask pattern and the other mask pattern arranged in a straight line on one virtual line and the other virtual line where the plurality of openings intersect with each other, and the opening of the mask is X The laser lift-off device according to claim 6, wherein the laser lift-off device is arranged in a letter shape.
  9.  前記マスクの前記複数の開口を開閉するマスクシャッタを備え、
     前記マスクシャッタは、前記ワークの搬送時において、前記一方のマスクパターンの開口のみが開き、前記一方の仮想線と前記他方の仮想線との交点に位置する開口を除いて、前記他方のマスクパターンの開口が閉じるように開閉し、
     前記マスクシャッタは、前記ワークの搬送方向を180°切替える毎に、前記一方の仮想線と前記他方の仮想線との交点に位置する開口を除いて、前記一方のマスクパターン及び前記他方のマスクパターンそれぞれの開閉状態を切替える
    ことを特徴とする請求項8に記載のレーザリフトオフ装置。
    A mask shutter for opening and closing the plurality of openings of the mask;
    In the mask shutter, only the opening of the one mask pattern is opened at the time of transferring the workpiece, and the other mask pattern except for the opening located at the intersection of the one virtual line and the other virtual line. Open and close so that the opening of
    Each time the mask shutter is switched by 180 °, the one mask pattern and the other mask pattern except for the opening located at the intersection of the one virtual line and the other virtual line. The laser lift-off device according to claim 8, wherein each open / close state is switched.
  10.  前記マスクは、一方の仮想線上に配列された複数の開口からなる一方のマスクパターンと、他方の仮想線上に配列された複数の開口からなる他方のマスクパターンとからなり、マスクが有する開口がV字状に配列される
    ことを特徴とする請求項6に記載のレーザリフトオフ装置。
    The mask is composed of one mask pattern composed of a plurality of openings arranged on one imaginary line and the other mask pattern composed of a plurality of openings arranged on the other imaginary line. The laser lift-off device according to claim 6, wherein the laser lift-off device is arranged in a letter shape.
  11.  前記マスクは、前記一方のマスクパターン及び前記他方のマスクパターンの何れかのみがレーザ光照射領域内に配置されるように、前記マスクを搬送するマスク搬送機構を備え、
     前記マスク搬送機構は、前記ワークの搬送方向を180°切替える毎に、前記レーザ光照射領域内に配置するマスクパターンを切替えることを特徴とする請求項10に記載のレーザリフトオフ装置。
     
     
     
     
    The mask includes a mask transport mechanism that transports the mask so that only one of the one mask pattern and the other mask pattern is disposed in the laser light irradiation region,
    11. The laser lift-off device according to claim 10, wherein the mask transport mechanism switches a mask pattern arranged in the laser light irradiation region every time the work transport direction is switched by 180 °.



PCT/JP2011/064643 2010-10-06 2011-06-27 Laser lift-off method and laser lift-off device WO2012046478A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-226233 2010-10-06
JP2010226233A JP2012080020A (en) 2010-10-06 2010-10-06 Laser lift-off method, and laser lift-off device
JP2010227429A JP2012081478A (en) 2010-10-07 2010-10-07 Laser lift-off device
JP2010-227429 2010-10-07

Publications (1)

Publication Number Publication Date
WO2012046478A1 true WO2012046478A1 (en) 2012-04-12

Family

ID=45927479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064643 WO2012046478A1 (en) 2010-10-06 2011-06-27 Laser lift-off method and laser lift-off device

Country Status (2)

Country Link
TW (1) TW201221268A (en)
WO (1) WO2012046478A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138659A1 (en) * 2018-01-11 2019-07-18 株式会社日本製鋼所 Laser processing device, laser processing method, and method for manufacturing semiconductor device
WO2019220666A1 (en) * 2018-05-17 2019-11-21 信越エンジニアリング株式会社 Workpiece separation device and workpiece separation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9591746B2 (en) 2014-12-16 2017-03-07 Industrial Technology Research Institute Electronic device package, electronic device structure and method of fabricating electronic device package
TWI589193B (en) 2014-12-16 2017-06-21 財團法人工業技術研究院 Flexible device and fabrication method of flexible device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282441A (en) * 2002-03-11 2003-10-03 Sharp Corp Manufacturing method for semiconductor crystal layer, semiconductor substrate, and liquid display panel
JP2005001974A (en) * 2003-06-10 2005-01-06 Samsung Electro Mech Co Ltd Method for manufacturing gallium nitride-based single crystal substrate
JP2005502193A (en) * 2001-09-05 2005-01-20 クリー インコーポレイテッド Independent (Al, Ga, In) N and splitting method for forming the same
JP2007534164A (en) * 2004-03-29 2007-11-22 ジェイピー・サーセル・アソシエイツ・インコーポレーテッド Material layer separation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502193A (en) * 2001-09-05 2005-01-20 クリー インコーポレイテッド Independent (Al, Ga, In) N and splitting method for forming the same
JP2003282441A (en) * 2002-03-11 2003-10-03 Sharp Corp Manufacturing method for semiconductor crystal layer, semiconductor substrate, and liquid display panel
JP2005001974A (en) * 2003-06-10 2005-01-06 Samsung Electro Mech Co Ltd Method for manufacturing gallium nitride-based single crystal substrate
JP2007534164A (en) * 2004-03-29 2007-11-22 ジェイピー・サーセル・アソシエイツ・インコーポレーテッド Material layer separation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONG XL ET AL.: "The influences of laser scanning speed on the structural and optical properties of thin GaN films s", JOURNAL OF PHYSICS D-APPLIED PHYSICS, vol. 42, no. 4, 21 February 2009 (2009-02-21), pages 045414 - 1, 045414-4, XP020149212, DOI: doi:10.1088/0022-3727/42/4/045414 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138659A1 (en) * 2018-01-11 2019-07-18 株式会社日本製鋼所 Laser processing device, laser processing method, and method for manufacturing semiconductor device
US12011777B2 (en) 2018-01-11 2024-06-18 Jsw Aktina System Co., Ltd Laser processing apparatus, laser processing method, and method for manufacturing semiconductor device
WO2019220666A1 (en) * 2018-05-17 2019-11-21 信越エンジニアリング株式会社 Workpiece separation device and workpiece separation method
CN112166495A (en) * 2018-05-17 2021-01-01 信越工程株式会社 Workpiece separation device and workpiece separation method

Also Published As

Publication number Publication date
TW201221268A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
JP4661989B1 (en) Laser lift-off device
KR101362633B1 (en) Laser lift-off method and laser lift-off apparatus
US11239116B2 (en) Laser lift off systems and methods
US7749782B1 (en) Laser roughening to improve LED emissions
WO2012002155A1 (en) Laser lift-off method and laser lift-off apparatus
WO2012046478A1 (en) Laser lift-off method and laser lift-off device
KR20120104956A (en) Laser lift off apparatus
JP2012081478A (en) Laser lift-off device
JP2012080020A (en) Laser lift-off method, and laser lift-off device
JP2012146771A (en) Laser lift-off method and laser lift-off device
JP5240318B2 (en) Laser lift-off method
JP5086928B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US20180240933A1 (en) Method of manufacturing light emitting element
JP4853134B2 (en) Method and apparatus for manufacturing semiconductor light emitting device
JP5640890B2 (en) Light irradiation apparatus and light irradiation method
JP5081124B2 (en) Manufacturing method of semiconductor light emitting device
JP2007073941A (en) Method of crystallizing non-crystal semiconductor film, and device of manufacturing substrate to be treated for crystallization
KR101139333B1 (en) Apparatus and method for manufacturing led
KR20090040052A (en) Method of fabricating for vertical light emitting diode
JP2007317809A (en) Laser irradiator, and laser processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830412

Country of ref document: EP

Kind code of ref document: A1