WO2012046288A1 - β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME - Google Patents

β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME Download PDF

Info

Publication number
WO2012046288A1
WO2012046288A1 PCT/JP2010/067359 JP2010067359W WO2012046288A1 WO 2012046288 A1 WO2012046288 A1 WO 2012046288A1 JP 2010067359 W JP2010067359 W JP 2010067359W WO 2012046288 A1 WO2012046288 A1 WO 2012046288A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
sialon
light
sialon phosphor
silicon nitride
Prior art date
Application number
PCT/JP2010/067359
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 江本
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to PCT/JP2010/067359 priority Critical patent/WO2012046288A1/en
Publication of WO2012046288A1 publication Critical patent/WO2012046288A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides

Definitions

  • the present invention relates to a phosphor that can be used in various light emitting devices such as a blue light emitting diode (blue LED (Light Emitting Diode)) or a white light emitting diode (white LED) using an ultraviolet light emitting diode (ultraviolet LED).
  • a blue light emitting diode blue LED (Light Emitting Diode)
  • a white light emitting diode white LED
  • ultraviolet light emitting diode ultraviolet light emitting diode
  • Patent Document 1 a combination of a semiconductor light-emitting element that emits blue to violet short-wavelength visible light and a phosphor allows white light to be emitted by mixing the light emitted from the semiconductor light-emitting element and the light wavelength-converted by the phosphor.
  • a white LED for obtaining the above is disclosed.
  • phosphors using silicates, phosphates, aluminates, and sulfides as the base material and using transition metals or rare earth metals as the emission center are widely known.
  • a phosphor using nitride or oxynitride having a strong covalent bond as a base material has recently attracted attention.
  • sialon which is a solid solution of silicon nitride can be cited. Similar to silicon nitride, sialon has two types of crystal systems, ⁇ -type and ⁇ -type. For example, ⁇ -sialon activated with divalent Eu ions as the emission center is reported to be a phosphor that emits yellow light having an emission peak wavelength of 550 to 600 nm when excited in a wide wavelength range from ultraviolet to blue. (Patent Document 2).
  • ⁇ -type sialon is a solid solution of ⁇ -type silicon nitride in which Al is substituted at the Si position and O is substituted at the N position. Since there are two formula atoms in the unit cell (unit cell), the general formula is expressed as “Si 6-z Al z O z N 8-z ”. Here, the composition z is 0 to 4.2, and the solid solution range is very wide. The molar ratio of (Si, Al) / (N, O) needs to be maintained at 3/4.
  • ⁇ -sialon is generally obtained by heating silicon nitride with silicon oxide and aluminum nitride, or aluminum oxide and aluminum nitride.
  • the phosphor When Eu 2+ is contained in the ⁇ -sialon crystal, the phosphor is excited by ultraviolet to blue light and emits green light of 520 to 550 nm, and can be used as a green light emitting component of a light emitting device such as a white LED.
  • This Eu 2+ -activated ⁇ -sialon has a relatively sharp emission spectrum among the phosphors activated by Eu 2+ , and is particularly the back of a liquid crystal display panel that requires blue, green, and red narrow-band light emission. It is a phosphor suitable for a green light emitting component of a light source.
  • Patent Document 5 reports that the fluorescence emission is narrowed by reducing the amount of oxygen solid solution in the ⁇ -sialon crystal.
  • Examples include a method of nitriding elemental metal powder and a method of heating nitride and oxide raw materials in a reducing nitriding atmosphere.
  • the emission efficiency of the ⁇ -type sialon phosphor is extremely low, and it is difficult to put it to practical use.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an Eu-activated ⁇ -sialon phosphor that has a high fluorescence emission efficiency, a short fluorescence peak wavelength, and can realize narrow-band emission.
  • the phosphor of the present invention has a ⁇ -type sialon represented by the general formula: Si 6-z Al z O z N 8-z as a base crystal, and Eu 2+ as a luminescent center in solid solution.
  • narrow-band light emission is realized by lowering the amount of oxygen solid solution in the ⁇ -type sialon crystal, that is, lowering the z value of the above equation.
  • the present inventor determined not only the z value but also the Eu 2+ solid solution amount in the crystal from the crystal lattice size of ⁇ -sialon. I found what I could estimate. As a result, it has been found that the ⁇ -sialon phosphor manufactured by the conventional method has a reduced z value, the amount of Eu 2+ actually dissolved in the ⁇ -sialon crystal is reduced, and the luminous efficiency is lowered.
  • the crystal system of silicon nitride powder which is the main raw material of ⁇ -type sialon, optimization of impurities, and post-treatment of the synthesized phosphor under predetermined conditions can increase the amount of Eu 2+ solid solution even at low z values.
  • the inventors have obtained the knowledge that high luminous efficiency can be maintained and narrow band emission can be realized, and the present invention has been achieved.
  • the present invention is a beta-SiAlON represented by the general formula Si 6-z Al z O z N 8-z as a host material, a beta-SiAlON phosphor solid solution Eu 2+ as a luminescent center, beta Type sialon crystal has a lattice constant a of 0.7605 to 0.7610 nm, a lattice constant c of 0.2906 to 0.2911 nm, an Eu content of 0.4 to 2 mass%, and a first transition metal content of 5 ppm.
  • the following ⁇ -sialon phosphor is provided.
  • This ⁇ -type sialon phosphor has an emission peak wavelength in the wavelength range of 520 to 540 nm when irradiated with an excitation source, and its chromaticity is CIExy chromaticity coordinates, 0.28 ⁇ x ⁇ 0.33, 0 .62 ⁇ y ⁇ 0.67.
  • the 90% cumulative volume fraction (D90) in the particle size distribution measured by the laser diffraction scattering method is 10 to 50 ⁇ m, and the 10% diameter (D10) is 2 ⁇ m or more. Is preferred.
  • the present invention also provides a method for producing a ⁇ sialon phosphor in which ⁇ sialon represented by the general formula Si 6-z Al z O z N 8-z is used as a base material and Eu 2+ is used as a luminescence center in solid solution.
  • a firing step of firing a raw material mixed powder containing silicon nitride powder containing Al and an inorganic compound containing Eu in a nitrogen atmosphere at a temperature range of 1850 to 2050 ° C., and 1300 to 1500 ° C. in a rare gas atmosphere.
  • a heat treatment step of holding for 1 to 100 hours, and an acid treatment step of immersing in a mixed acid of hydrofluoric acid and nitric acid at 60 ° C.
  • the silicon nitride powder preferably has a ⁇ ratio of 50% or more and a metal silicon content of 10% by mass or less.
  • the present invention provides a light emitting device having an LED having a maximum emission wavelength intensity of 240 to 480 nm and the ⁇ -sialon phosphor laminated on the light emitting surface of the LED, and the light emitting device and the light emitting device. There is also provided a light emitting device having a power source for supplying electricity.
  • an Eu-activated ⁇ -sialon phosphor capable of realizing narrow-band light emission with high fluorescence emission efficiency and a short fluorescence peak wavelength is provided.
  • FIG. 6 is a drawing-substituting graph showing fluorescence spectra of external excitation light having a wavelength of 455 nm for ⁇ -sialon phosphors according to Examples 1 to 3 and Comparative Example 2.
  • FIG. 6 is a drawing-substituting graph showing fluorescence spectra of external excitation light having a wavelength of 455 nm for ⁇ -sialon phosphors according to Examples 1 to 3 and Comparative Example 2.
  • ⁇ -Sialon Phosphor The phosphor of the present invention is obtained by solid-dissolving Eu 2+ as the emission center in a base crystal of ⁇ -sialon represented by the general formula: Si 6-z Al z O z N 8-z. .
  • ⁇ -type sialon is synthesized by mixing silicon and aluminum nitride and oxide raw material powders and firing at high temperature.
  • the obtained ⁇ -sialon is not a complete single phase, but inevitably forms a Si—Al—ON glass phase, and in some cases, a heterogeneous phase such as an AlN polytypoid or ⁇ -sialon is generated. End up. Therefore, it is difficult to grasp an accurate z value by a raw material blend composition or a composition analysis of a synthetic powder. In particular, in a region where the z value is low for the purpose of narrowing the band, dissociation between the charged composition and composition analysis values and the actual solid solution composition is remarkable.
  • the lattice constant of the ⁇ -type sialon crystal is a parameter that sensitively reflects the z value and the Eu 2+ solid solution amount.
  • the lattice constant c of the ⁇ -type sialon crystal is preferably in the range of 0.2906 to 0.2911 nm.
  • the lattice constant c is smaller than 0.2906 nm, the solid solubility limit of Eu 2+ is lowered and sufficient fluorescence intensity cannot be obtained.
  • the lattice constant c exceeds 0.2911 nm, the fluorescence spectrum becomes broad due to an increase in the true z value of the ⁇ -type sialon crystal, which is not preferable.
  • the amount of Eu 2+ solid solution in the ⁇ -type sialon crystal is preferably as large as possible.
  • the lattice constant a is 0.7605 to 0.7610 nm. It is preferable to be in the range.
  • the Eu content contained in the phosphor is preferably set to 0.4 to 2% by mass.
  • the phosphor contains a ⁇ -sialon crystal phase with a high purity and as much as possible. If possible, it is preferably composed of a single phase of ⁇ -sialon crystal. Even a mixture containing an amorphous phase and another crystal phase may be included as long as the characteristics are not deteriorated.
  • the phosphor of the present invention having a low z value is very sensitive to first transition metal impurities such as Fe, Ni, Co, etc., and the content thereof is preferably 5 ppm or less, although the reason is not clear.
  • the phosphor of the present invention emits green light having a peak wavelength in the wavelength range of 520 to 540 nm when irradiated with an excitation source.
  • the fluorescence spectrum of the ⁇ -sialon phosphor activated by Eu 2+ has a feature that even if the z value is increased, the wavelength at the rising edge of the spectrum hardly changes and the fluorescence component on the long wavelength side increases. That is, when the z value is increased, the peak wavelength is gradually shifted to the longer wavelength side, and the half width of the spectrum is increased. As a result, the x value on the CIE chromaticity coordinate increases and the y value decreases.
  • the crystallinity of ⁇ -type sialon In addition to the z value, another factor that affects the shape of the fluorescence spectrum is the crystallinity of ⁇ -type sialon. Even at a low z-value, when the crystallinity of ⁇ -type sialon is low, the half width of the spectrum increases.
  • the phosphor of the present invention having a low z value and high crystallinity of the ⁇ -type sialon crystal has a narrow half-value width and 0.28 ⁇ x ⁇ 0.33, 0 in terms of (x, y) value on the CIE chromaticity coordinates. .62 ⁇ y ⁇ 0.67.
  • the 90% diameter (D90) in the volume-based cumulative fraction is 10 to 50 ⁇ m in the particle size distribution measured by the laser diffraction scattering method. Is preferred.
  • the phosphor of the present invention is preferable because D90 is adjusted to 50 ⁇ m or less so that uniform mixing with the resin for sealing the LED is facilitated, and the cause of the chromaticity variation of the LED and the uneven color of the irradiated surface can be reduced. .
  • the phosphor of the present invention preferably has a 10% diameter (D10) of 2 ⁇ m or more. Particles smaller than a few ⁇ m have low crystallinity and not only low emission intensity of the phosphor itself, but also close to the wavelength of visible light.
  • D10 10% diameter
  • an LED can be assembled using a phosphor with a small content of such small particles, and it is possible to suppress the strong scattering of light within the layer containing the phosphor.
  • Luminous efficiency light extraction efficiency
  • silicon nitride powder containing Al corresponding to the z value of the ⁇ -type sialon crystal synthesized by the metal silicon nitriding method.
  • the silicon nitride powder of the present invention it is preferable to reduce impurity elements other than Si, Al, and N as much as possible, and it is particularly preferable that the content of the first transition metal is 10 ppm or less.
  • ⁇ -sialon having a low z composition excessive oxygen promotes the formation of a heterogeneous phase, so that it is necessary to reduce the amount of impurity oxygen in the silicon nitride raw material.
  • silicon nitride raw material powder obtained by direct nitridation of silicon powder having a high purity and a small amount of impurity oxygen is preferable.
  • Silicon nitride powder by direct nitriding is synthesized by a known method. For example, after silicon powder is heated and nitrided in a nitrogen-containing atmosphere at a temperature of 1200 ° C. or higher, the resulting nitride is pulverized, pulverized, classified, and subjected to pulverization processes such as classification and acid treatment. Can be produced.
  • silicon nitride powder obtained by the conventional direct nitriding method is mostly used for sintering, it is a fine powder having an average particle size of submicron to several microns. However, it is not always fine for use in the phosphor of the present invention.
  • the average particle size may be about 5 to 100 ⁇ m, but it is important to suppress the contamination of impurities in the pulverization process due to excessive grinding as much as possible.
  • ⁇ -sialon in the phosphor of the present invention has a small amount of Al solid solution
  • a small amount of Al is uniformly distributed in the final firing step by adding a predetermined amount of Al in the nitriding stage of silicon powder.
  • a solid solution having a uniform composition is obtained.
  • the method of adding Al include a method of directly adding aluminum powder, aluminum nitride powder, aluminum oxide powder and the like to silicon powder before nitriding, and a method of using an alloy powder of silicon and aluminum as a direct nitriding raw material.
  • Al in the Al-containing silicon nitride powder as the phosphor raw material may exist as a heterogeneous phase not dissolved in silicon nitride as long as it is uniformly dispersed.
  • Al content in the silicon nitride powder of the present invention in order to make the ⁇ -sialon lattice constant finally obtained within the above range, it is 0.1-2% by mass, preferably 0.5-2% by mass. It is preferable.
  • unreacted silicon may remain if it is 10% by mass or less. If the free silicon exceeds 10% by mass, silicon remains even at a high temperature for synthesizing the phosphor. Since silicon absorbs light in a wide wavelength range from ultraviolet to visible, if it is present in the phosphor, the luminance is greatly reduced.
  • the reason why the solid solution of Eu 2+ can be promoted by increasing the ⁇ ratio is considered as follows.
  • the solid solution of Eu 2+ in the ⁇ -type sialon crystal is accompanied by the growth of ⁇ -type sialon through a liquid phase mainly composed of an oxide present in a minute amount at a high temperature in the phosphor synthesis process. And proceed.
  • the ⁇ phase of silicon nitride has a significantly higher dissolution rate in the liquid phase than the ⁇ phase, and has a faster grain growth rate.
  • Eu 2+ hardly dissolves in the ⁇ -type sialon crystal, and if the grain growth rate is too high, it is considered that it cannot be sufficiently dissolved. Therefore, it is considered that the solid solution of Eu 2+ could be promoted by increasing the ⁇ phase ratio and decreasing the grain growth rate.
  • the ⁇ -type sialon phosphor of the present invention is synthesized by heating a raw material mixed powder composed of the above-mentioned Al-containing silicon nitride powder and a compound containing Eu in a nitrogen atmosphere.
  • the heating temperature is preferably in the range of 1850 to 2050 ° C. If the heating temperature is 1850 ° C. or higher, Eu 2+ can enter the ⁇ -type sialon crystal, and a phosphor having sufficient luminance can be obtained. Further, if the heating temperature is 2050 ° C. or less, it is not necessary to suppress the decomposition of ⁇ -sialon by applying a very high nitrogen pressure, and a special apparatus is not required for this purpose, which is industrially preferable. .
  • the composite is granular or massive. This is combined with pulverization, pulverization and / or classification operations to obtain a powder of a predetermined size.
  • pulverization, pulverization and / or classification operations to obtain a powder of a predetermined size.
  • treatment examples include a method of subjecting the synthesized product to sieve classification with an opening of 20 to 45 ⁇ m to obtain a powder that has passed through the sieve, or a general pulverizer such as a ball mill, a vibration mill, or a jet mill.
  • pulverizing to a predetermined particle size is mentioned.
  • excessive pulverization not only generates fine particles that easily scatter light, but also generates crystal defects on the particle surface, causing a decrease in luminous efficiency.
  • the powder obtained by the treatment only by sieve classification and the pulverization treatment by the jet mill pulverizer without the pulverization treatment finally showed high luminous efficiency.
  • the phosphor obtained by the above method is further subjected to the following treatment to improve the fluorescence characteristics. That is, the ⁇ -sialon phosphor obtained by the above method is heat-treated in a rare gas atmosphere and then heat-treated with a mixed acid of hydrofluoric acid and nitric acid. The heat treatment of the phosphor is performed in order to further destabilize the low crystalline portion in the phosphor. According to the study of the present inventor, the atmosphere containing nitrogen and oxygen, which are constituent elements of the phosphor, is minimized. Since it is effective, a rare gas atmosphere is selected. Heat treatment only produces a destabilized phase, and removal of this phase significantly improves the fluorescence properties.
  • the heat treatment temperature is preferably in the range of 1300 to 1500 ° C. If it is 1300 degreeC or more, a low crystalline part can be destabilized, and if it is 1500 degrees C or less, decomposition
  • a known technique such as dissolution removal with acid or alkali can be employed. Among them, a dissolution treatment carried out by heating with a mixture of hydrofluoric acid and nitric acid at 60 ° C. or higher for 5 minutes or longer, preferably 0.5 hours or longer is effective and preferable.
  • the ⁇ -type sialon phosphor of the present invention is used in a light-emitting device composed of a light-emitting light source and a phosphor, and particularly uses ultraviolet light or visible light containing a wavelength of 240 to 480 nm as an excitation source. By irradiating, it emits a narrow band of green light, so it is easily laminated by stacking it on the light emitting surface of an ultraviolet LED or blue LED and combining it with a red phosphor and / or a blue phosphor as necessary. White light is obtained.
  • ⁇ -sialon phosphors have a low luminance decrease at high temperatures, light emitting devices using the same have a low luminance decrease and chromaticity deviation, do not deteriorate even when exposed to high temperatures, have excellent heat resistance, and an oxidizing atmosphere.
  • it since it has excellent long-term stability in a moisture environment, it has a feature of high brightness and long life.
  • the light-emitting device is configured using at least one light-emitting light source and a phosphor mainly composed of ⁇ -sialon of the present invention.
  • an LED can be manufactured using a known method described in JP-A-5-152609, JP-A-7-99345, JP-A-2927279, and the like.
  • the emission light source is preferably an ultraviolet LED or a blue LED emitting light having a wavelength of 240 to 480 nm, particularly preferably a blue LED emitting light having a wavelength of 440 to 470 nm. Examples of these light emitting elements include GaN and InGaN.
  • the light emitting light source that emits light of a predetermined wavelength can be obtained by adjusting the composition.
  • a light emitting device that emits a desired color in addition to the method of using the phosphor of the present invention alone, a light emitting device that emits a desired color can be configured by using in combination with a phosphor having other light emission characteristics.
  • the green narrow-band phosphor of the present invention uses a blue LED as an excitation source, and is combined with a red phosphor having an emission wavelength peak of 600 to 700 nm, for example, CaAlSiN 3 : Eu, so that color reproducibility is achieved. It is suitable for a white LED for backlight of an excellent image display device.
  • FIG. 1 is a graph showing fluorescence spectra of external excitation light having a wavelength of 455 nm for ⁇ -sialon phosphors according to Examples 1 to 3 and Comparative Example 2.
  • the raw material mixed powder is filled into a cylindrical boron nitride container with a lid of 60 mm in diameter and 30 mm in height (“N-1” grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) and pressurized to 0.5 MPa in an electric furnace of a carbon heater.
  • Heat treatment was performed at 1500 ° C. for 8 hours in a nitrogen atmosphere. The heating rate during the heat treatment was such that room temperature to 1200 ° C. was 20 ° C./min, and 1200 to 1500 ° C. was 0.5 ° C./min.
  • the obtained product was in the form of a lump, and this was pulverized by a high-speed stamp mill (manufactured by Nippon Ceramic Science Co., Ltd., ANS-143PL, light and hammer made of alumina).
  • the pulverized powder was classified with a sieve having an opening of 45 ⁇ m, and the powder of 45 ⁇ m or less was used as a silicon nitride powder for phosphor synthesis.
  • the sieve passing rate with an opening of 45 ⁇ m was about 40%.
  • the obtained silicon nitride powder was subjected to powder X-ray diffraction measurement (XRD) using an X-ray diffractometer (manufactured by Rigaku Corporation, ULTIMA IV).
  • the crystal phases present were three phases of ⁇ -type silicon nitride, ⁇ -type silicon nitride and metal silicon.
  • the obtained powder X-ray diffraction pattern was subjected to Rietveld analysis by the analysis program JADE manufactured by Rigaku Corporation. As a result, the ⁇ ratio (the ratio indicated by the ⁇ phase in the silicon nitride crystal) was 90.2% and the metal silicon was 0. It was 8 mass%.
  • the powder was dissolved by the alkali melting method, and for the impurity content by the pressure acid decomposition method, and then analyzed by an ICP emission spectroscopic analyzer (manufactured by Rigaku Corporation, CIROS-120). went.
  • the Al content of this powder was 0.46% by mass, and the first transition metal content was 2 ppm.
  • This raw material mixed powder is filled into a cylindrical boron nitride container (“N-1” grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) with a lid having a diameter of 60 mm and a height of 30 mm, and 0.8 MPa in an electric furnace of a carbon heater.
  • the above powder is filled in a cylindrical boron nitride container with a lid having a diameter of 60 mm and a height of 30 mm (“N-1” grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) in an atmospheric pressure argon atmosphere in a carbon heater electric furnace. Heat treatment was performed at 1400 ° C. for 8 hours. The color of the obtained powder changed from green before processing to dark green. The obtained powder did not shrink at all due to sintering or the like, and all passed through a sieve having an opening of 45 ⁇ m. The powder thus obtained was heat-treated at 75 ° C. in a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid. During the treatment, the suspension changed from dark green to bright green. Thereafter, filtration, washing and drying were performed to obtain a phosphor powder.
  • the crystal phase was a single ⁇ -sialon phase.
  • the Al and Eu contents determined by ICP emission spectroscopic analysis were 0.49 and 0.77% by mass, respectively, and the first transition metal content was less than 5 ppm.
  • the light emission characteristics of the phosphor were evaluated as follows.
  • the phosphor powder was filled with a concave cell so that the surface was smooth, and an integrating sphere was attached.
  • Monochromatic light that was split into a predetermined wavelength from a light emitting light source (Xe lamp) was introduced into the integrating sphere using an optical fiber.
  • a phosphor sample was irradiated, and a spectrophotometer (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) was used to measure the spectrum of the fluorescence and reflected light of the sample.
  • MCPD-7000 spectrophotometer
  • near-ultraviolet light having a wavelength of 405 nm and blue light having a wavelength of 455 nm were used as monochromatic light.
  • an XYZ table defined by JIS Z 8701 is obtained from data in the wavelength range of 415 to 780 nm and 465 to 780 nm, respectively, according to JIS Z 8724.
  • the chromaticity coordinates CIEx and CIEy in the color system were calculated.
  • the chromaticity CIEx and CIEy were 0.312 and 0.655, respectively, and when the excitation wavelength was 455 nm, the chromaticity CIEx and CIEy were 0.318 and 0.651, respectively.
  • the luminous efficiency was determined as follows. First, a standard reflector (Spectralon manufactured by Labsphere, Inc.) having a reflectance of 99% is set on the sample portion, and the spectrum of the excitation light is measured. When the excitation wavelength is 405 nm, excitation is performed in the wavelength range of 400 to 415 nm. When the wavelength was 455 nm, the number of excitation light photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm. Next, a phosphor was set in the sample portion, and the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated from the obtained spectrum data.
  • a standard reflector Spectrum Spectralon manufactured by Labsphere, Inc.
  • the number of excitation reflected light photons is in the same wavelength range as the number of excitation light photons, and the number of fluorescent photons is in the wavelength range of 415 to 800 nm when the excitation wavelength is 405 nm, and from 465 to when the excitation light is 455 nm. Calculation was performed in the range of 800 nm.
  • Absorption rate, internal quantum efficiency, and external quantum efficiency are 83.2%, 59.2%, and 49.3%, respectively, when excited by near-ultraviolet light having a wavelength of 405 nm.
  • When excited by blue light having a wavelength of 455 nm Were 73.1%, 56.6%, and 41.3%, respectively.
  • Example 1 ⁇ -type silicon nitride powder (SN-E10 grade) manufactured by Ube Industries, Ltd., aluminum nitride powder (F grade) manufactured by Tokuyama Co., Ltd. and europium oxide powder (RU grade) manufactured by Shin-Etsu Chemical Co., Ltd., and the phosphor of Example 1 and Si: Al
  • the mixture was made to have the same Eu ratio, and ⁇ -sialon was synthesized in the same manner as in Example 1.
  • the obtained product was a green hard aggregate, and a reddish brown precipitate was formed on the surface thereof. As in Example 1, this product was difficult to be pulverized by mild disintegration.
  • the mixture was pulverized with an alumina mortar until it passed through a sieve having an opening of 150 ⁇ m, and further classified with a sieve having an opening of 45 ⁇ m.
  • the powder that passed through the sieve was subjected to heat treatment and acid treatment in the same manner as in Example 1 to obtain a ⁇ -type sialon phosphor.
  • the crystal phase was a ⁇ -type sialon single phase.
  • the Al and Eu contents determined by ICP emission spectroscopic analysis were 0.46 and 0.22% by mass, respectively, and the first transition metal content was less than 5 ppm. Compared to Example 1, both the Eu content particularly decreased.
  • the 10% diameter (D10) in the volume-based integrated fraction was 4.3 ⁇ m
  • the 90% diameter (D90) was 43.3 ⁇ m.
  • Absorption rate, internal quantum efficiency, external quantum efficiency, CIEx and CIEy when excited with near-ultraviolet light having a wavelength of 405 nm of this phosphor are 56.4%, 69.5%, 39.2%, and 0.304, respectively. 0.655 and 45.1%, 68.4%, 30.9%, 0.314, and 0.650 when excited with blue light having a wavelength of 455 nm.
  • the amount of Eu dissolved in ⁇ -sialon was small, and the external absorption efficiency was low, so the external quantum efficiency was low.
  • Example 2 to 4 Except that the mixing ratio of the silicon powder and the aluminum nitride powder, the purity of the raw silicon powder, and the silicon nitride synthesis temperature are as shown in Table 1, synthesis of the silicon nitride powder and ⁇ The type sialon was fired and post-treated (heat treatment and acid treatment) to obtain a ⁇ -type sialon phosphor. In Example 3 and Comparative Example 2, aluminum oxide powder was also added to adjust the oxygen content of the ⁇ -type sialon crystal.
  • Table 1 shows the ⁇ ratio calculated by XRD of the silicon nitride powder, the amount of metal silicon, the Al content and the first transition metal content determined by ICP.
  • Table 2 shows the lattice constant, composition, impurity content and particle size distribution of the obtained ⁇ -sialon phosphor, and “Table 3” shows the emission characteristics.
  • Comparative Example 3 when a raw material powder with a large amount of first transition metal impurities is used, or when a silicon nitride raw material with a large amount of metal silicon is used as in Comparative Example 4, acid treatment, etc. It has been found that even when the high purity treatment is performed, the first transition metal impurities and metal silicon remain in the phosphor to some extent, and the light emission characteristics are deteriorated.
  • the crystal phase of the obtained phosphor was only a ⁇ -type sialon phase except that a slight amount of metallic silicon was detected in Comparative Example 4 as a result of XRD measurement.
  • the ⁇ -type sialon phosphor of the present invention is excited at a wide wavelength range from ultraviolet to blue light, and exhibits high luminance and narrow band green light emission. Therefore, as a phosphor of a white LED using blue or ultraviolet light as a light source. It can be used suitably, and can be used suitably especially for an image display apparatus.
  • the phosphor of the present invention has little decrease in luminance at high temperatures and is excellent in heat resistance and moisture resistance, when applied to the above-mentioned image display device field, the luminance and luminescent color with respect to changes in the use environment temperature. It exhibits small characteristics and excellent long-term stability.
  • the method for producing a phosphor of the present invention is very useful industrially because it can stably provide the phosphor having the above characteristics.

Abstract

[Problem] To provide an Eu-activated β-SiAlON phosphor which has high fluorescence emission efficiency and short fluorescence peak wavelength and is capable of achieving narrow band emission. [Solution] Provided is a β-SiAlON phosphor which is obtained using a β-SiAlON represented by general formula of Si6-zAlzOzN8-z as a matrix material and solid-solving Eu2+ hereinto as the luminescence center. The β-SiAlON crystals have a lattice constant a of 0.7605-0.7610 nm, a lattice constant c of 0.2906-0.2911 nm, an Eu content of 0.4-2% by mass and a first transition metal content of not more than 5 ppm.

Description

β型サイアロン蛍光体とその製造方法、およびその用途β-type sialon phosphor, method for producing the same, and use thereof
 本発明は、青色発光ダイオード(青色LED(Light Emitting Diode))又は紫外発光ダイオード(紫外LED)を用いた白色発光ダイオード(白色LED)等を初めとするいろいろな発光装置に利用可能な蛍光体とそれを用いた発光装置に関する。 The present invention relates to a phosphor that can be used in various light emitting devices such as a blue light emitting diode (blue LED (Light Emitting Diode)) or a white light emitting diode (white LED) using an ultraviolet light emitting diode (ultraviolet LED). The present invention relates to a light emitting device using the same.
 特許文献1には、青色から紫色の短波長の可視光を発光する半導体発光素子と蛍光体とを組み合わせることにより、半導体発光素子の発光と蛍光体により波長変換された光との混色により白色光を得る白色LEDが開示されている。 In Patent Document 1, a combination of a semiconductor light-emitting element that emits blue to violet short-wavelength visible light and a phosphor allows white light to be emitted by mixing the light emitted from the semiconductor light-emitting element and the light wavelength-converted by the phosphor. A white LED for obtaining the above is disclosed.
 一方、蛍光体としては、母体材料にケイ酸塩、リン酸塩、アルミン酸塩、硫化物を用い、発光中心に遷移金属もしくは希土類金属を用いたものが広く知られている。 On the other hand, phosphors using silicates, phosphates, aluminates, and sulfides as the base material and using transition metals or rare earth metals as the emission center are widely known.
 白色LEDの高出力化に伴い、蛍光体の耐熱性、耐久性に対する要求が益々高まっている。しかし、上述の従来公知の蛍光体を使用した場合、使用環境温度上昇に伴う蛍光体の輝度低下や、長時間青色光や紫外線の励起源に曝されることによる蛍光体の劣化に起因して、白色LEDとしての輝度低下や色ズレが発生するという問題が生じている。 With the increase in output of white LEDs, demands for heat resistance and durability of phosphors are increasing. However, when the above-mentioned conventionally known phosphors are used, the phosphors are deteriorated due to a decrease in luminance of the phosphors due to an increase in the operating environment temperature or a long time exposure to blue light or ultraviolet light excitation sources. As a result, there is a problem in that the luminance of the white LED is reduced and color deviation occurs.
 温度上昇に伴う輝度低下が小さく、耐久性に優れた蛍光体として、最近、共有結合性の強い窒化物や酸窒化物を母体材料とした蛍光体が注目されている。 As a phosphor having a small decrease in luminance due to temperature rise and excellent durability, a phosphor using nitride or oxynitride having a strong covalent bond as a base material has recently attracted attention.
 窒化物、酸窒化物を母体材料とする蛍光体の代表的なものとして、窒化ケイ素の固溶体であるサイアロンが挙げられる。窒化ケイ素と同様にサイアロンには、α型、β型の二種類の結晶系が存在する。例えば、発光中心として二価のEuイオンを付活したα型サイアロンは、紫外~青色の幅広い波長域で励起され、発光ピーク波長が550~600nmの黄色光を発する蛍光体となることが報告されている(特許文献2)。 As a typical phosphor using nitride or oxynitride as a base material, sialon which is a solid solution of silicon nitride can be cited. Similar to silicon nitride, sialon has two types of crystal systems, α-type and β-type. For example, α-sialon activated with divalent Eu ions as the emission center is reported to be a phosphor that emits yellow light having an emission peak wavelength of 550 to 600 nm when excited in a wide wavelength range from ultraviolet to blue. (Patent Document 2).
 また、β型サイアロンにおいても、発光中心として、Mn、Ce、Euを添加することにより、蛍光特性を発現することが見出されている(特許文献3)。 In addition, it has been found that β-type sialon also exhibits fluorescence characteristics by adding Mn, Ce, and Eu as the emission center (Patent Document 3).
 β型サイアロンは、β型窒化ケイ素の固溶体であり、β型窒化ケイ素結晶のSi位置にAlが、N位置にOが置換固溶したものである。単位胞(単位格子)に2式量の原子が存在するので、一般式は「Si6-zAl8-z」と表される。ここで、組成zは0~4.2であり、固溶範囲は非常に広い。また、(Si、Al)/(N、O)のモル比は、3/4を維持する必要がある。β型サイアロンは、一般的に、窒化ケイ素に、酸化ケイ素と窒化アルミニウムとを、或いは酸化アルミニウムと窒化アルミニウムとを加えて加熱することで得られる。 β-type sialon is a solid solution of β-type silicon nitride in which Al is substituted at the Si position and O is substituted at the N position. Since there are two formula atoms in the unit cell (unit cell), the general formula is expressed as “Si 6-z Al z O z N 8-z ”. Here, the composition z is 0 to 4.2, and the solid solution range is very wide. The molar ratio of (Si, Al) / (N, O) needs to be maintained at 3/4. β-sialon is generally obtained by heating silicon nitride with silicon oxide and aluminum nitride, or aluminum oxide and aluminum nitride.
 β型サイアロンの結晶内にEu2+を含有させると、紫外から青色の光で励起され、520~550nmの緑色発光を示す蛍光体となり、白色LED等の発光装置の緑色発光成分として使用できる。このEu2+付活β型サイアロンは、Eu2+で付活される蛍光体の中でも、発光スペクトルは比較的シャープであり、特に青、緑、赤の狭帯域発光が要求される液晶ディスプレイパネルのバックライト光源の緑色発光成分に好適な蛍光体である。 When Eu 2+ is contained in the β-sialon crystal, the phosphor is excited by ultraviolet to blue light and emits green light of 520 to 550 nm, and can be used as a green light emitting component of a light emitting device such as a white LED. This Eu 2+ -activated β-sialon has a relatively sharp emission spectrum among the phosphors activated by Eu 2+ , and is particularly the back of a liquid crystal display panel that requires blue, green, and red narrow-band light emission. It is a phosphor suitable for a green light emitting component of a light source.
 高温での焼成により合成されたβ型サイアロン蛍光体は、所定の条件での熱処理及び酸処理等の組み合わせた後処理により、結晶欠陥を低減でき、蛍光特性を著しく向上することが報告されている(特許文献4)。しかしながら、この場合は発光効率の向上に伴い、蛍光ピークの長波長化やブロード化が起こる。 It has been reported that β-sialon phosphors synthesized by firing at high temperatures can reduce crystal defects and significantly improve fluorescence characteristics by post-treatment such as heat treatment and acid treatment under predetermined conditions. (Patent Document 4). However, in this case, as the luminous efficiency increases, the fluorescence peak becomes longer or broader.
 特許文献5では、β型サイアロン結晶内の酸素固溶量を減らすことにより、蛍光発光が狭帯域化することが報告されており、酸素固溶量の低いβ型サイアロンを合成する方法として、構成元素の金属粉末を窒化する方法や窒化物、酸化物原料を還元窒化雰囲気で加熱する方法が挙げられている。しかしながら、この場合はβ型サイアロン蛍光体の発光効率が極めて低く、実用に供することに難がある。 Patent Document 5 reports that the fluorescence emission is narrowed by reducing the amount of oxygen solid solution in the β-sialon crystal. As a method for synthesizing β-sialon having a low oxygen solid solution amount, Examples include a method of nitriding elemental metal powder and a method of heating nitride and oxide raw materials in a reducing nitriding atmosphere. However, in this case, the emission efficiency of the β-type sialon phosphor is extremely low, and it is difficult to put it to practical use.
特許第2927279号公報Japanese Patent No. 2927279 特許第3668770号公報Japanese Patent No. 3668770 特開2005-255895号公報JP 2005-255895 A 国際公開第2008/062781号International Publication No. 2008/062781 国際公開第2007/066733号International Publication No. 2007/066673
 従来のEu付活β型サイアロン蛍光体は、蛍光発光効率とスペクトル幅にトレードオフの関係が存する。従って、これを用いた白色LEDは、狭帯域化した場合には十分な輝度が得られず、一方発光効率を高めた場合には色再現範囲が狭くなり、特に液晶ディスプレイのバックライト光源等の用途において、実用に供することに難がある。 Conventional Eu-activated β-sialon phosphors have a trade-off relationship between fluorescence emission efficiency and spectrum width. Therefore, a white LED using this cannot obtain a sufficient luminance when the band is narrowed. On the other hand, when the luminous efficiency is increased, the color reproduction range becomes narrow, particularly in a backlight light source of a liquid crystal display. In use, there is difficulty in providing for practical use.
 本発明は、上述の課題に鑑み、高蛍光発光効率で蛍光ピーク波長が短く、狭帯域発光を実現できるEu付活β型サイアロン蛍光体を提供することを目的としている。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an Eu-activated β-sialon phosphor that has a high fluorescence emission efficiency, a short fluorescence peak wavelength, and can realize narrow-band emission.
 本発明の蛍光体は、一般式:Si6-zAl8-zで示されるβ型サイアロンを母体結晶とし、発光中心としてEu2+を固溶させたものである。狭帯域化発光は、特許文献5に示されている様に、β型サイアロン結晶内の酸素固溶量を低くすること、つまり上式のz値を低くすることで実現される。 The phosphor of the present invention has a β-type sialon represented by the general formula: Si 6-z Al z O z N 8-z as a base crystal, and Eu 2+ as a luminescent center in solid solution. As shown in Patent Document 5, narrow-band light emission is realized by lowering the amount of oxygen solid solution in the β-type sialon crystal, that is, lowering the z value of the above equation.
 本発明者は、β型サイアロンのz値、結晶構造、組成及び蛍光特性について鋭意研究を重ねた結果、β型サイアロンの結晶格子サイズからz値だけでなく、結晶内のEu2+固溶量を推定できることを見い出した。その結果、従来の方法で製造されたβ型サイアロン蛍光体はz値が低くなると、実際にβ型サイアロン結晶に固溶するEu2+量が減少し、発光効率が低くなることを見い出した。
 更に、β型サイアロンの主原料である窒化ケイ素粉末の結晶系や不純物の適正化及び合成した蛍光体を所定の条件で後処理することにより、低いz値においてもEu2+固溶量を増大させ、高い発光効率を維持し、狭帯域化発光を実現できるとの知見を得て、本発明に至ったものである。
As a result of extensive research on the z value, crystal structure, composition and fluorescence characteristics of β-sialon, the present inventor determined not only the z value but also the Eu 2+ solid solution amount in the crystal from the crystal lattice size of β-sialon. I found what I could estimate. As a result, it has been found that the β-sialon phosphor manufactured by the conventional method has a reduced z value, the amount of Eu 2+ actually dissolved in the β-sialon crystal is reduced, and the luminous efficiency is lowered.
Furthermore, the crystal system of silicon nitride powder, which is the main raw material of β-type sialon, optimization of impurities, and post-treatment of the synthesized phosphor under predetermined conditions can increase the amount of Eu 2+ solid solution even at low z values. The inventors have obtained the knowledge that high luminous efficiency can be maintained and narrow band emission can be realized, and the present invention has been achieved.
 すなわち、本発明は、一般式Si6-zAl8-zで示されるβ型サイアロンを母体材料とし、発光中心としてEu2+を固溶したβ型サイアロン蛍光体であって、β型サイアロン結晶の格子定数aが0.7605~0.7610nm、格子定数cが0.2906~0.2911nmであり、Eu含有量が0.4~2質量%、第一遷移金属含有量が5ppm以下であるβ型サイアロン蛍光体を提供する。
 このβ型サイアロン蛍光体は、励起源を照射することにより、波長520~540nmの範囲に発光ピーク波長を持ち、その色度がCIExy色度座標で、0.28≦x≦0.33、0.62≦y≦0.67となる。
 このβ型サイアロン蛍光体においては、レーザー回折散乱法により測定した粒子径分布における積算体積分率90%径(D90)が10~50μmであり、かつ10%径(D10)が2μm以上であることが好ましい。
That is, the present invention is a beta-SiAlON represented by the general formula Si 6-z Al z O z N 8-z as a host material, a beta-SiAlON phosphor solid solution Eu 2+ as a luminescent center, beta Type sialon crystal has a lattice constant a of 0.7605 to 0.7610 nm, a lattice constant c of 0.2906 to 0.2911 nm, an Eu content of 0.4 to 2 mass%, and a first transition metal content of 5 ppm. The following β-sialon phosphor is provided.
This β-type sialon phosphor has an emission peak wavelength in the wavelength range of 520 to 540 nm when irradiated with an excitation source, and its chromaticity is CIExy chromaticity coordinates, 0.28 ≦ x ≦ 0.33, 0 .62 ≦ y ≦ 0.67.
In this β-type sialon phosphor, the 90% cumulative volume fraction (D90) in the particle size distribution measured by the laser diffraction scattering method is 10 to 50 μm, and the 10% diameter (D10) is 2 μm or more. Is preferred.
 また、本発明は、一般式Si6-zAl8-zで示されるβ型サイアロンを母体材料とし、発光中心としてEu2+を固溶したβサイアロン蛍光体の製造方法であって、Alを含有する窒化ケイ素粉末と、Euを含有する無機化合物とを含む原料混合粉末を窒素雰囲気中、1850~2050℃の温度範囲で焼成する焼成工程と、希ガス雰囲気中、1300~1500℃で1~100時間保持する熱処理工程と、60℃以上のフッ化水素酸と硝酸の混酸内に0.5時間以上浸漬する酸処理工程と、を含むβ型サイアロン蛍光体の製造方法を提供する。
 この製造方法において、前記窒化ケイ素粉末には、金属シリコン窒化法により合成した第一遷移金属含有量が10ppm以下であり、かつ、Alを0.1~2質量%含有するものを用いることが好ましい。また、前記窒化ケイ素粉末には、β率50%以上であり、金属シリコン含有量10質量%以下であるものを用いることが好ましい。
The present invention also provides a method for producing a β sialon phosphor in which β sialon represented by the general formula Si 6-z Al z O z N 8-z is used as a base material and Eu 2+ is used as a luminescence center in solid solution. A firing step of firing a raw material mixed powder containing silicon nitride powder containing Al and an inorganic compound containing Eu in a nitrogen atmosphere at a temperature range of 1850 to 2050 ° C., and 1300 to 1500 ° C. in a rare gas atmosphere. And a heat treatment step of holding for 1 to 100 hours, and an acid treatment step of immersing in a mixed acid of hydrofluoric acid and nitric acid at 60 ° C. or higher for 0.5 hour or longer. .
In this production method, it is preferable to use a silicon nitride powder having a first transition metal content synthesized by a metal silicon nitriding method of 10 ppm or less and containing 0.1 to 2% by mass of Al. . The silicon nitride powder preferably has a β ratio of 50% or more and a metal silicon content of 10% by mass or less.
 さらに、本発明は、発光波長の最大強度が240~480nmにあるLEDと該LEDの発光面に積層される上記のβ型サイアロン蛍光体とを有する発光素子、並びに、この発光素子と該発光素子に電気を供給する電源とを有する発光装置をも提供する。 Furthermore, the present invention provides a light emitting device having an LED having a maximum emission wavelength intensity of 240 to 480 nm and the β-sialon phosphor laminated on the light emitting surface of the LED, and the light emitting device and the light emitting device. There is also provided a light emitting device having a power source for supplying electricity.
 本発明により、高蛍光発光効率で蛍光ピーク波長が短く、狭帯域発光を実現できるEu付活β型サイアロン蛍光体が提供される。 According to the present invention, an Eu-activated β-sialon phosphor capable of realizing narrow-band light emission with high fluorescence emission efficiency and a short fluorescence peak wavelength is provided.
実施例1~3及び比較例2に係るβ型サイアロン蛍光体の波長455nmの外部励起光による蛍光スペクトルを示す図面代用グラフである。6 is a drawing-substituting graph showing fluorescence spectra of external excitation light having a wavelength of 455 nm for β-sialon phosphors according to Examples 1 to 3 and Comparative Example 2. FIG.
1.β型サイアロン蛍光体
 本発明の蛍光体は、一般式:Si6-zAl8-zで示されるβ型サイアロンの母体結晶に発光中心であるEu2+が固溶したものである。
1. β-Sialon Phosphor The phosphor of the present invention is obtained by solid-dissolving Eu 2+ as the emission center in a base crystal of β-sialon represented by the general formula: Si 6-z Al z O z N 8-z. .
 β型サイアロンは、ケイ素とアルミニウムの窒化物や酸化物の原料粉末を混合し、高温で焼成することより合成される。しかしながら、得られるβ型サイアロンは完全な単一相ではなく、不可避的にSi-Al-O-Nガラス相を副成し、場合によってはAlNポリタイポイドやα型サイアロンの様な異相が生成してしまう。従って、原料配合組成や合成粉末の組成分析により、正確なz値を把握することは困難である。特に狭帯化を目的としたz値の低い領域は、仕込組成や組成分析値と実際の固溶組成との解離が顕著である。 Β-type sialon is synthesized by mixing silicon and aluminum nitride and oxide raw material powders and firing at high temperature. However, the obtained β-sialon is not a complete single phase, but inevitably forms a Si—Al—ON glass phase, and in some cases, a heterogeneous phase such as an AlN polytypoid or α-sialon is generated. End up. Therefore, it is difficult to grasp an accurate z value by a raw material blend composition or a composition analysis of a synthetic powder. In particular, in a region where the z value is low for the purpose of narrowing the band, dissociation between the charged composition and composition analysis values and the actual solid solution composition is remarkable.
 β型サイアロンは、β型窒化ケイ素のSi位置にAlが、N位置にOが固溶するため、その固溶量の増加に伴い、六方晶結晶のa軸(=b軸)長及びc軸長が増大する。 In β-type sialon, Al is dissolved in the Si position of β-type silicon nitride, and O is dissolved in the N position. Therefore, the a-axis (= b-axis) length and c-axis of the hexagonal crystal increase as the amount of the solid solution increases. The length increases.
 Eu2+固溶量とβ型サイアロン結晶の格子定数との関係を調べた本発明者らの検討結果によると、z値が一定の場合、Eu2+がβ型サイアロン結晶に固溶すると、a軸長のみが増大し、c軸長はほとんど変化しないことが判明した。これは、Eu2+がβ型サイアロン結晶内に存在するc軸方向の大きなトンネル状の空隙に侵入固溶しているためと推定される。 According to the examination results of the present inventors who investigated the relationship between the amount of Eu 2+ solid solution and the lattice constant of β-type sialon crystal, when Eu 2+ is dissolved in β-type sialon crystal when z value is constant, It was found that only the length increased and the c-axis length hardly changed. It is estimated that for Eu 2+ is penetrated solid solution in a large tunnel-like voids in the c-axis direction present in the β-sialon crystal.
 従って、β型サイアロン結晶の格子定数は、z値及びEu2+固溶量を敏感に反映したパラメータとなる。本発明の蛍光体では、β型サイアロン結晶の格子定数cが0.2906~0.2911nmの範囲にあることが好ましい。格子定数cが0.2906nmよりも小さいとEu2+の固溶限界が低くなり、十分な蛍光強度が得られなくなる。一方、格子定数cが0.2911nmを越えると、β型サイアロン結晶の真のz値の増大により、蛍光スペクトルがブロード化するので好ましくない。β型サイアロン結晶へのEu2+固溶量は、できるだけ多くすることが好ましいが、固溶限界はz値に依存するため、本発明の蛍光体では、格子定数aは0.7605~0.7610nmの範囲となることが好ましい。これを実現するために、蛍光体に含まれるEu含有量は、0.4~2質量%とすることが好ましい。 Accordingly, the lattice constant of the β-type sialon crystal is a parameter that sensitively reflects the z value and the Eu 2+ solid solution amount. In the phosphor of the present invention, the lattice constant c of the β-type sialon crystal is preferably in the range of 0.2906 to 0.2911 nm. When the lattice constant c is smaller than 0.2906 nm, the solid solubility limit of Eu 2+ is lowered and sufficient fluorescence intensity cannot be obtained. On the other hand, if the lattice constant c exceeds 0.2911 nm, the fluorescence spectrum becomes broad due to an increase in the true z value of the β-type sialon crystal, which is not preferable. The amount of Eu 2+ solid solution in the β-type sialon crystal is preferably as large as possible. However, since the solid solution limit depends on the z value, in the phosphor of the present invention, the lattice constant a is 0.7605 to 0.7610 nm. It is preferable to be in the range. In order to realize this, the Eu content contained in the phosphor is preferably set to 0.4 to 2% by mass.
 蛍光発光の観点からは、蛍光体がβ型サイアロン結晶相を高純度で極力多く含んでいること、できればβ型サイアロン結晶の単相から構成されていることが望ましいが、若干量の不可避的な非晶質相及び他の結晶相を含む混合物であっても、特性が低下しない範囲であれば含んでいても構わない。特にz値の低い本発明の蛍光体は、理由は明確でないが、Fe、Ni、Co等の第一遷移金属不純物に非常に敏感であり、これらの含有量を5ppm以下とすることが好ましい。 From the viewpoint of fluorescence emission, it is desirable that the phosphor contains a β-sialon crystal phase with a high purity and as much as possible. If possible, it is preferably composed of a single phase of β-sialon crystal. Even a mixture containing an amorphous phase and another crystal phase may be included as long as the characteristics are not deteriorated. In particular, the phosphor of the present invention having a low z value is very sensitive to first transition metal impurities such as Fe, Ni, Co, etc., and the content thereof is preferably 5 ppm or less, although the reason is not clear.
 本発明の蛍光体は、励起源を照射することにより、波長520~540nmの範囲にピーク波長を有する緑色光を発す。Eu2+を付活したβ型サイアロン蛍光体の蛍光スペクトルは、z値を高めても、スペクトルの立ち上がりの波長はほとんど変わらず長波長側の蛍光成分が増大するという特徴を有する。つまり、z値を高めるとピーク波長が徐々に長波長側にシフトするとともに、スペクトルの半値幅が増大する。その結果、CIE色度座標上のx値が増大し、y値が減少する。z値以外に蛍光スペクトル形状に影響を及ぼす因子として、β型サイアロンの結晶性が挙げられ、低z値においても、β型サイアロンの結晶性が低い場合には、スペクトルの半値幅が増大する。β型サイアロン結晶のz値が低く、結晶性が高い本発明の蛍光体では、半値幅が狭く、CIE色度座標上の(x、y)値で0.28≦x≦0.33、0.62≦y≦0.67の値を取る。 The phosphor of the present invention emits green light having a peak wavelength in the wavelength range of 520 to 540 nm when irradiated with an excitation source. The fluorescence spectrum of the β-sialon phosphor activated by Eu 2+ has a feature that even if the z value is increased, the wavelength at the rising edge of the spectrum hardly changes and the fluorescence component on the long wavelength side increases. That is, when the z value is increased, the peak wavelength is gradually shifted to the longer wavelength side, and the half width of the spectrum is increased. As a result, the x value on the CIE chromaticity coordinate increases and the y value decreases. In addition to the z value, another factor that affects the shape of the fluorescence spectrum is the crystallinity of β-type sialon. Even at a low z-value, when the crystallinity of β-type sialon is low, the half width of the spectrum increases. The phosphor of the present invention having a low z value and high crystallinity of the β-type sialon crystal has a narrow half-value width and 0.28 ≦ x ≦ 0.33, 0 in terms of (x, y) value on the CIE chromaticity coordinates. .62 ≦ y ≦ 0.67.
 本発明の蛍光体の形態については、粉末として使用する場合には、レーザー回折散乱法によって測定した粒子径分布で、体積基準の積算分率における90%径(D90)が10~50μmであることが好ましい。本発明の蛍光体は、D90を50μm以下に調整することにより、LEDを封止する樹脂へ均一混合が容易になるとともに、LEDの色度バラツキや照射面の色むらの原因を減少できるので好ましい。 Regarding the form of the phosphor of the present invention, when used as a powder, the 90% diameter (D90) in the volume-based cumulative fraction is 10 to 50 μm in the particle size distribution measured by the laser diffraction scattering method. Is preferred. The phosphor of the present invention is preferable because D90 is adjusted to 50 μm or less so that uniform mixing with the resin for sealing the LED is facilitated, and the cause of the chromaticity variation of the LED and the uneven color of the irradiated surface can be reduced. .
 更に、本発明の蛍光体は10%径(D10)が2μm以上であることが好ましい。数μmよりも小さい粒子は、結晶性が低く、蛍光体自体の発光強度が低いだけでなく、可視光の波長に近い。D10を2μm以上とすることで、このような小さい粒子の含有量が少ない蛍光体を用いてLEDを組み立てることができ、蛍光体を含む層内で光を強く散乱することを抑制して、LEDの発光効率(光の取り出し効率)を向上できる。 Furthermore, the phosphor of the present invention preferably has a 10% diameter (D10) of 2 μm or more. Particles smaller than a few μm have low crystallinity and not only low emission intensity of the phosphor itself, but also close to the wavelength of visible light. By setting D10 to be 2 μm or more, an LED can be assembled using a phosphor with a small content of such small particles, and it is possible to suppress the strong scattering of light within the layer containing the phosphor. Luminous efficiency (light extraction efficiency) can be improved.
2.β型サイアロン蛍光体の製造方法
 次に、本発明の蛍光体を得る製造方法について説明する。
2. Method for Producing β-Sialon Phosphor Next, a method for producing the phosphor of the present invention will be described.
 本発明のβ型サイアロン蛍光体の製造方法では、金属ケイ素窒化法により合成されたβ型サイアロン結晶のz値に応じたAlを含有する窒化ケイ素粉末を用いることが好ましい。本発明の窒化ケイ素粉末は、Si、Al、N以外の不純物元素を極力減らすことが好ましく、特に第一遷移金属含有量を10ppm以下にすることが好ましい。
 低z組成のβ型サイアロンにおいて、過剰な酸素は異相の生成を促進することから、窒化ケイ素原料の不純物酸素量の低減も必要となる。この様な観点から、高純度で且つ不純物酸素量の少ないシリコン粉末の直接窒化により得られる窒化ケイ素原料粉末が好ましい。
 直接窒化法による窒化ケイ素粉末は公知の方法により合成される。例えば、シリコン粉末を窒素含有雰囲気において、1200℃以上の温度で加熱し、窒化させた後、得られた窒化物を解砕、粉砕、分級や酸処理等の粉体化工程を経て窒化ケイ素粉末を作製することができる。従来の直接窒化法により得られる窒化ケイ素粉末は、多くが焼結用に用いられるため、平均粒径がサブミクロン~数ミクロンの微粉であるが、本発明の蛍光体用途では、必ずしも微粉である必要はなく、平均粒径は5~100μm程度で構わなく、むしろ過度の粉砕などによる粉体化工程での不純物混入を極力抑制することが肝要である。
In the method for producing a β-type sialon phosphor of the present invention, it is preferable to use silicon nitride powder containing Al corresponding to the z value of the β-type sialon crystal synthesized by the metal silicon nitriding method. In the silicon nitride powder of the present invention, it is preferable to reduce impurity elements other than Si, Al, and N as much as possible, and it is particularly preferable that the content of the first transition metal is 10 ppm or less.
In β-sialon having a low z composition, excessive oxygen promotes the formation of a heterogeneous phase, so that it is necessary to reduce the amount of impurity oxygen in the silicon nitride raw material. From such a viewpoint, a silicon nitride raw material powder obtained by direct nitridation of silicon powder having a high purity and a small amount of impurity oxygen is preferable.
Silicon nitride powder by direct nitriding is synthesized by a known method. For example, after silicon powder is heated and nitrided in a nitrogen-containing atmosphere at a temperature of 1200 ° C. or higher, the resulting nitride is pulverized, pulverized, classified, and subjected to pulverization processes such as classification and acid treatment. Can be produced. Since silicon nitride powder obtained by the conventional direct nitriding method is mostly used for sintering, it is a fine powder having an average particle size of submicron to several microns. However, it is not always fine for use in the phosphor of the present invention. The average particle size may be about 5 to 100 μm, but it is important to suppress the contamination of impurities in the pulverization process due to excessive grinding as much as possible.
 更に、本発明の蛍光体におけるβ型サイアロンはAl固溶量が少ないことから、シリコン粉末の窒化段階で所定量のAlを含有させておくことで、最終的な焼成工程で少量のAlが均一に固溶した、つまり組成が均一な固溶体となる。Alの添加方法は、アルミニウム粉末や窒化アルミニウム粉末及び酸化アルミニウム粉末などを直接窒化前のケイ素粉末に添加する方法や直接窒化原料として、ケイ素とアルミニウムの合金粉末を使用する方法などが挙げられる。蛍光体原料であるAl含有窒化ケイ素粉末におけるAlの存在形態に関しては、均一に分散していれば窒化ケイ素に固溶していない異相として存在していても構わない。本発明の窒化ケイ素粉末におけるAl含有量に関しては、最終的に得られるβサイアロン格子定数を前記範囲内とするために、0.1~2質量%、好ましくは0.5~2質量%とすることが好ましい。 Furthermore, since β-sialon in the phosphor of the present invention has a small amount of Al solid solution, a small amount of Al is uniformly distributed in the final firing step by adding a predetermined amount of Al in the nitriding stage of silicon powder. Thus, a solid solution having a uniform composition is obtained. Examples of the method of adding Al include a method of directly adding aluminum powder, aluminum nitride powder, aluminum oxide powder and the like to silicon powder before nitriding, and a method of using an alloy powder of silicon and aluminum as a direct nitriding raw material. Regarding the presence form of Al in the Al-containing silicon nitride powder as the phosphor raw material, it may exist as a heterogeneous phase not dissolved in silicon nitride as long as it is uniformly dispersed. Regarding the Al content in the silicon nitride powder of the present invention, in order to make the β-sialon lattice constant finally obtained within the above range, it is 0.1-2% by mass, preferably 0.5-2% by mass. It is preferable.
 窒化ケイ素粉末では、未反応のシリコンが10質量%以下であれば残存していても構わない。遊離シリコンが10質量%を越えると、蛍光体を合成する高温での処理でもシリコンが残存してしまう。シリコンは紫外~可視の幅広い波長域の光を吸収するため、蛍光体中に存在すると輝度を大幅に低下させてしまう。 In the silicon nitride powder, unreacted silicon may remain if it is 10% by mass or less. If the free silicon exceeds 10% by mass, silicon remains even at a high temperature for synthesizing the phosphor. Since silicon absorbs light in a wide wavelength range from ultraviolet to visible, if it is present in the phosphor, the luminance is greatly reduced.
 本発明者の検討によれば、本発明の窒化ケイ素粉末は、二種類存在する結晶系(α、β)のうち、β相含有量の比率(β率=β量/(α量+β量))を高めることにより、β型サイアロン合成時にEu2+をβ型サイアロン結晶内に効果的に固溶させることができることから、β率は50%以上であることが好ましい。 According to the study of the present inventor, the silicon nitride powder of the present invention has a β-phase content ratio (β ratio = β amount / (α amount + β amount) of two types of crystal systems (α, β). ) by increasing, since it can be effectively dissolved the Eu 2+ in the β-sialon crystal when β-sialon synthesis, it is preferable that the β ratio is 50% or more.
 β率を高めることにより、Eu2+の固溶を促進できる理由は、次の通りと考える。
 Eu2+のβ型サイアロン結晶内への固溶は、蛍光体合成工程の高温下で、原料中に微量存在する酸化物を主成分とする液相を介したβ型サイアロンの粒成長に付随して進行する。窒化ケイ素のα相はこの液相への溶解速度がβ相に比べ、著しく大きく、粒成長速度が速い。元来、Eu2+はβ型サイアロン結晶内には固溶しがたく、粒成長速度が速すぎると、十分に固溶できないと考えられる。そこで、β相の比率を高め、粒成長速度を下げることにより、Eu2+の固溶を促進することができたと考えられる。
The reason why the solid solution of Eu 2+ can be promoted by increasing the β ratio is considered as follows.
The solid solution of Eu 2+ in the β-type sialon crystal is accompanied by the growth of β-type sialon through a liquid phase mainly composed of an oxide present in a minute amount at a high temperature in the phosphor synthesis process. And proceed. The α phase of silicon nitride has a significantly higher dissolution rate in the liquid phase than the β phase, and has a faster grain growth rate. Originally, Eu 2+ hardly dissolves in the β-type sialon crystal, and if the grain growth rate is too high, it is considered that it cannot be sufficiently dissolved. Therefore, it is considered that the solid solution of Eu 2+ could be promoted by increasing the β phase ratio and decreasing the grain growth rate.
 本発明のβ型サイアロン蛍光体は、上述のAl含有窒化ケイ素粉末とEuを含有する化合物とからなる原料混合粉末を窒素雰囲気中で加熱することにより合成される。加熱温度については、1850~2050℃の範囲が好ましい。加熱温度が1850℃以上であればEu2+がβ型サイアロン結晶中に入り込むことができ、十分な輝度を有する蛍光体が得られる。また、加熱温度が2050℃以下であれば、非常に高い窒素圧力をかけてβ型サイアロンの分解を抑制する必要がなく、その為に特殊な装置を必要とすることもないので工業的に好ましい。 The β-type sialon phosphor of the present invention is synthesized by heating a raw material mixed powder composed of the above-mentioned Al-containing silicon nitride powder and a compound containing Eu in a nitrogen atmosphere. The heating temperature is preferably in the range of 1850 to 2050 ° C. If the heating temperature is 1850 ° C. or higher, Eu 2+ can enter the β-type sialon crystal, and a phosphor having sufficient luminance can be obtained. Further, if the heating temperature is 2050 ° C. or less, it is not necessary to suppress the decomposition of β-sialon by applying a very high nitrogen pressure, and a special apparatus is not required for this purpose, which is industrially preferable. .
 β型サイアロン蛍光体を製造した際、その合成物は粒状又は塊状となる。これを解砕、粉砕及び/又は分級操作と組み合わせて所定のサイズの粉末にする。LED用の蛍光体として好適に使用するためには、上述の通り、所定のD10、D90にする必要がある。 When the β-type sialon phosphor is produced, the composite is granular or massive. This is combined with pulverization, pulverization and / or classification operations to obtain a powder of a predetermined size. In order to use suitably as a fluorescent substance for LED, as above-mentioned, it is necessary to set it as predetermined D10 and D90.
 具体的な処理例としては、合成物を目開き20~45μmの篩分級処理し、篩を通過した粉末を得る方法、或いは合成物をボールミルや振動ミル、ジェットミル等の一般的な粉砕機を使用して所定の粒度に粉砕する方法が挙げられる。後者の方法において、過度の粉砕は、光を散乱しやすい微粒子を生成するだけでなく、粒子表面に結晶欠陥を生成し、発光効率の低下を引き起こす。本発明者らの検討によれば、粉砕処理を行わずに篩分級のみによる処理及びジェットミル粉砕機による解砕処理により得られた粉末が最終的に高い発光効率を示した。 Specific examples of treatment include a method of subjecting the synthesized product to sieve classification with an opening of 20 to 45 μm to obtain a powder that has passed through the sieve, or a general pulverizer such as a ball mill, a vibration mill, or a jet mill. The method of using and grind | pulverizing to a predetermined particle size is mentioned. In the latter method, excessive pulverization not only generates fine particles that easily scatter light, but also generates crystal defects on the particle surface, causing a decrease in luminous efficiency. According to the study by the present inventors, the powder obtained by the treatment only by sieve classification and the pulverization treatment by the jet mill pulverizer without the pulverization treatment finally showed high luminous efficiency.
 上述の方法により得られた蛍光体を更に、次の処理を行うことにより、蛍光特性が向上する。
 即ち、上述の方法により得られたβ型サイアロン蛍光体を希ガス雰囲気中で熱処理した後、フッ化水素酸と硝酸の混酸で加熱処理する。蛍光体の熱処理は、蛍光体中の低結晶性部分を更に不安定にするために行われ、本発明者の検討によれば、蛍光体の構成元素である窒素と酸素を極力含まない雰囲気が有効であることから、希ガス雰囲気が選択される。熱処理は不安定化相を生成するのみであり、この相を除去することにより蛍光特性が著しく向上する。熱処理温度は、1300~1500℃の範囲が好ましい。1300℃以上であれば、低結晶性部の不安定化が可能であり、1500℃以下であれば、β型サイアロンの分解を抑制できる。不安定化相の除去は、酸やアルカリによる溶解除去など公知の技術を採用することができる。中でもフッ素水素酸と硝酸の混合物により60℃以上で5分以上、好ましくは0.5時間以上、加熱して行う溶解処理が効果的で好ましい。
The phosphor obtained by the above method is further subjected to the following treatment to improve the fluorescence characteristics.
That is, the β-sialon phosphor obtained by the above method is heat-treated in a rare gas atmosphere and then heat-treated with a mixed acid of hydrofluoric acid and nitric acid. The heat treatment of the phosphor is performed in order to further destabilize the low crystalline portion in the phosphor. According to the study of the present inventor, the atmosphere containing nitrogen and oxygen, which are constituent elements of the phosphor, is minimized. Since it is effective, a rare gas atmosphere is selected. Heat treatment only produces a destabilized phase, and removal of this phase significantly improves the fluorescence properties. The heat treatment temperature is preferably in the range of 1300 to 1500 ° C. If it is 1300 degreeC or more, a low crystalline part can be destabilized, and if it is 1500 degrees C or less, decomposition | disassembly of (beta) -sialon can be suppressed. For removing the destabilizing phase, a known technique such as dissolution removal with acid or alkali can be employed. Among them, a dissolution treatment carried out by heating with a mixture of hydrofluoric acid and nitric acid at 60 ° C. or higher for 5 minutes or longer, preferably 0.5 hours or longer is effective and preferable.
3.発光素子及び発光装置
 本発明のβ型サイアロン蛍光体は、発光光源と蛍光体から構成される発光装置に使用され、特に240~480nmの波長を含有している紫外光や可視光を励起源として照射することにより、緑色の狭帯化発光するので、紫外LED又は青色LEDの発光面に積層され、必要に応じて赤色蛍光体及び/又は青色蛍光体と組み合わせて発光素子とすることで、容易に白色光が得られる。
3. Light-Emitting Element and Light-Emitting Device The β-type sialon phosphor of the present invention is used in a light-emitting device composed of a light-emitting light source and a phosphor, and particularly uses ultraviolet light or visible light containing a wavelength of 240 to 480 nm as an excitation source. By irradiating, it emits a narrow band of green light, so it is easily laminated by stacking it on the light emitting surface of an ultraviolet LED or blue LED and combining it with a red phosphor and / or a blue phosphor as necessary. White light is obtained.
 また、β型サイアロン蛍光体は高温での輝度低下が少ないので、これを用いた発光装置は輝度低下及び色度ズレが小さく、高温にさらしても劣化せず、更に耐熱性に優れ、酸化雰囲気及び水分環境下における長期間の安定性にも優れているので、高輝度で長寿命になるという特徴を有する。 In addition, since β-sialon phosphors have a low luminance decrease at high temperatures, light emitting devices using the same have a low luminance decrease and chromaticity deviation, do not deteriorate even when exposed to high temperatures, have excellent heat resistance, and an oxidizing atmosphere. In addition, since it has excellent long-term stability in a moisture environment, it has a feature of high brightness and long life.
 発光装置は、少なくとも一つの発光光源と本発明のβ型サイアロンを主成分とする蛍光体を用いて構成される。例えば、特開平5-152609号公報、特開平7-99345号公報、特許第2927279号などに記載されている公知の方法を用いてLEDを製造することができる。この場合において、発光光源は240~480nmの波長の光を発する紫外LED又は青色LED、特に好ましくは440~470nmの波長の光を発する青色LEDが好ましく、これらの発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより所定の波長の光を発する発光光源となりうる。 The light-emitting device is configured using at least one light-emitting light source and a phosphor mainly composed of β-sialon of the present invention. For example, an LED can be manufactured using a known method described in JP-A-5-152609, JP-A-7-99345, JP-A-2927279, and the like. In this case, the emission light source is preferably an ultraviolet LED or a blue LED emitting light having a wavelength of 240 to 480 nm, particularly preferably a blue LED emitting light having a wavelength of 440 to 470 nm. Examples of these light emitting elements include GaN and InGaN. The light emitting light source that emits light of a predetermined wavelength can be obtained by adjusting the composition.
 発光装置において、本発明の蛍光体を単独で使用する方法以外に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する発光装置を構成することもできる。特に本発明の緑色狭帯発光の蛍光体は青色LEDを励起源とし、発光波長のピークが600~700nmである赤色の蛍光体、例えば、CaAlSiN:Eu等と組み合わせることにより、色再現性に優れた画像表示装置のバックライト用白色LEDに好適である。 In the light emitting device, in addition to the method of using the phosphor of the present invention alone, a light emitting device that emits a desired color can be configured by using in combination with a phosphor having other light emission characteristics. In particular, the green narrow-band phosphor of the present invention uses a blue LED as an excitation source, and is combined with a red phosphor having an emission wavelength peak of 600 to 700 nm, for example, CaAlSiN 3 : Eu, so that color reproducibility is achieved. It is suitable for a white LED for backlight of an excellent image display device.
 次に、実施例を、表、図を用いつつ、比較例と比較しながら詳細に説明する。図1は、実施例1~3及び比較例2に係るβ型サイアロン蛍光体の波長455nmの外部励起光による蛍光スペクトルを示したグラフ図である。
〔実施例1〕
Next, an Example is described in detail, comparing with a comparative example, using a table | surface and a figure. FIG. 1 is a graph showing fluorescence spectra of external excitation light having a wavelength of 455 nm for β-sialon phosphors according to Examples 1 to 3 and Comparative Example 2.
[Example 1]
<Al含有窒化ケイ素粉末の合成及び評価>
 高純度化学社製シリコン粉末(純度99.999%以上、-75μm)98.81質量%とトクヤマ社製窒化アルミニウム粉末(Eグレード)1.19質量%を、V型混合機(筒井理化学器械社製「S-3」)を用い混合し、更に目開き250μmの篩を全通させ凝集を取り除き、原料混合粉末を得た。
<Synthesis and evaluation of Al-containing silicon nitride powder>
High purity chemical silicon powder (purity 99.999% or more, -75 μm) 98.81% by mass and Tokuyama aluminum nitride powder (E grade) 1.19% by mass, V type mixer (Tsutsui Rika Instruments Co., Ltd.) “S-3”) was mixed, and a sieve having an opening of 250 μm was passed through to remove aggregates to obtain a raw material mixed powder.
 原料混合粉末を直径60mm、高さ30mmの蓋付きの円筒型窒化ホウ素製容器(電気化学工業社製、「N-1」グレード)に充填し、カーボンヒーターの電気炉で0.5MPaの加圧窒素雰囲気中、1500℃で8時間の加熱処理を行った。加熱処理の際の加熱時の昇温速度は、室温~1200℃を20℃/分で、1200~1500℃を0.5℃/分とした。 The raw material mixed powder is filled into a cylindrical boron nitride container with a lid of 60 mm in diameter and 30 mm in height (“N-1” grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) and pressurized to 0.5 MPa in an electric furnace of a carbon heater. Heat treatment was performed at 1500 ° C. for 8 hours in a nitrogen atmosphere. The heating rate during the heat treatment was such that room temperature to 1200 ° C. was 20 ° C./min, and 1200 to 1500 ° C. was 0.5 ° C./min.
 得られた生成物は塊状であり、これを高速スタンプミル(日陶科学社製、ANS-143PL、うす及びハンマーはアルミナ製)により粉砕した。粉砕した粉末を目開き45μmの篩で分級し、45μm以下の粉末を蛍光体合成用の窒化ケイ素粉末とした。尚、目開き45μmの篩通過率は約40%であった。 The obtained product was in the form of a lump, and this was pulverized by a high-speed stamp mill (manufactured by Nippon Ceramic Science Co., Ltd., ANS-143PL, light and hammer made of alumina). The pulverized powder was classified with a sieve having an opening of 45 μm, and the powder of 45 μm or less was used as a silicon nitride powder for phosphor synthesis. In addition, the sieve passing rate with an opening of 45 μm was about 40%.
 得られた窒化ケイ素粉末は、X線回折装置(株式会社リガク製、ULTIMA IV)を用い、粉末X線回折測定(XRD)を行った。存在する結晶相は、β型窒化ケイ素、α型窒化ケイ素及び金属シリコンの三相であった。得られた粉末X線回折パターンを株式会社リガク製解析プログラムJADEにより、リートベルト解析を行った結果、β率(窒化ケイ素結晶中のβ相の示す割合)が90.2%で金属シリコンが0.8質量%であった。 The obtained silicon nitride powder was subjected to powder X-ray diffraction measurement (XRD) using an X-ray diffractometer (manufactured by Rigaku Corporation, ULTIMA IV). The crystal phases present were three phases of β-type silicon nitride, α-type silicon nitride and metal silicon. The obtained powder X-ray diffraction pattern was subjected to Rietveld analysis by the analysis program JADE manufactured by Rigaku Corporation. As a result, the β ratio (the ratio indicated by the β phase in the silicon nitride crystal) was 90.2% and the metal silicon was 0. It was 8 mass%.
 次いで、Al含有量に関しては、アルカリ融解法により、不純物含有量に関しては加圧酸分解法により粉末を溶解させた後、ICP発光分光分析装置(株式会社リガク製、CIROS-120)により、分析を行った。この粉末のAl含有量は0.46質量%であり、第一遷移金属含有量は2ppmであった。 Next, for the Al content, the powder was dissolved by the alkali melting method, and for the impurity content by the pressure acid decomposition method, and then analyzed by an ICP emission spectroscopic analyzer (manufactured by Rigaku Corporation, CIROS-120). went. The Al content of this powder was 0.46% by mass, and the first transition metal content was 2 ppm.
<β型サイアロン蛍光体の合成及び評価>
 前記Al含有窒化ケイ素粉末98.03質量%と信越化学工業社製酸化ユーロピウム粉末(RUグレード)1.97質量%をアルミナ乳鉢により乾式混合し、更に目開き250μmの篩を全通させ、β型サイアロン蛍光体用原料混合粉末を得た。この原料混合粉末を直径60mm、高さ30mmの蓋付きの円筒型窒化ホウ素製容器(電気化学工業株式会社製、「N-1」グレード)に充填し、カーボンヒーターの電気炉で0.8MPaの加圧窒素雰囲気中、2000℃で8時間の加熱処理を行った。得られた生成物は緑色の緩く凝集した塊状物であり、清浄なゴム手袋を着用した人手で軽く解すことが出来た。こうして、軽度の解砕を行った後、目開き45μmの篩を通過させた。この状態での目開き45μmの篩通過率は約90%であった。
<Synthesis and evaluation of β-type sialon phosphor>
98.03% by mass of the Al-containing silicon nitride powder and 1.97% by mass of Europium oxide powder (RU grade) manufactured by Shin-Etsu Chemical Co., Ltd. are dry-mixed in an alumina mortar, and further passed through a sieve having an opening of 250 μm. A raw material mixed powder for sialon phosphor was obtained. This raw material mixed powder is filled into a cylindrical boron nitride container (“N-1” grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) with a lid having a diameter of 60 mm and a height of 30 mm, and 0.8 MPa in an electric furnace of a carbon heater. Heat treatment was performed at 2000 ° C. for 8 hours in a pressurized nitrogen atmosphere. The obtained product was a green loosely agglomerated lump, which could be easily unwound by hand wearing clean rubber gloves. In this way, after carrying out mild crushing, it was passed through a sieve having an opening of 45 μm. In this state, the sieve passing rate with an opening of 45 μm was about 90%.
 上記粉末を直径60mm、高さ30mmの蓋付きの円筒型窒化ホウ素製容器(電気化学工業株式会社製、「N-1」グレード)に充填し、カーボンヒーターの電気炉で大気圧アルゴン雰囲気中、1400℃で8時間の加熱処理を行った。得られた粉末の色は処理前の緑色から深緑色へ変化した。得られた粉末は、焼結等に伴う収縮は全くなく、目開き45μmの篩を全て通過した。こうして得られた粉末を50%フッ化水素酸と70%硝酸の1:1混酸中、75℃での加熱処理を行った。処理中に懸濁液は深緑色から鮮やかな緑色に変化した。その後、ろ過、水洗及び乾燥して蛍光体粉末を得た。 The above powder is filled in a cylindrical boron nitride container with a lid having a diameter of 60 mm and a height of 30 mm (“N-1” grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) in an atmospheric pressure argon atmosphere in a carbon heater electric furnace. Heat treatment was performed at 1400 ° C. for 8 hours. The color of the obtained powder changed from green before processing to dark green. The obtained powder did not shrink at all due to sintering or the like, and all passed through a sieve having an opening of 45 μm. The powder thus obtained was heat-treated at 75 ° C. in a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid. During the treatment, the suspension changed from dark green to bright green. Thereafter, filtration, washing and drying were performed to obtain a phosphor powder.
 この蛍光体に対して、XRD測定を行った結果、結晶相はβ型サイアロン単相であった。β型サイアロンの格子定数は、a=0.7606nm、c=0.2908nmであった。ICP発光分光分析法により求めたAl及びEu含有量は、それぞれ0.49、0.77質量%であり、第一遷移金属含有量は5ppm未満であった。 As a result of performing XRD measurement on this phosphor, the crystal phase was a single β-sialon phase. The lattice constant of β-type sialon was a = 0.7606 nm and c = 0.2908 nm. The Al and Eu contents determined by ICP emission spectroscopic analysis were 0.49 and 0.77% by mass, respectively, and the first transition metal content was less than 5 ppm.
 次に、粒度分布測定装置(ベックマン・コールター株式会社製、LS-230型)を用い、レーザー回折・散乱法による粒子径分布測定を行った結果、体積基準の積算分率における10%径(D10)は6.7μm、90%径(D90)は38.4μmであった。この粒子径分布測定用試料の調整は、原則JIS R 1629-1997解説付表1の窒化けい素の測定条件に従った。 Next, as a result of particle size distribution measurement by laser diffraction / scattering method using a particle size distribution measuring apparatus (LS-230 type, manufactured by Beckman Coulter, Inc.), a 10% diameter (D10 ) Was 6.7 μm, and the 90% diameter (D90) was 38.4 μm. The adjustment of the sample for measuring the particle size distribution was in accordance with the silicon nitride measurement conditions shown in Table 1 of JIS R 1629-1997.
 蛍光体の発光特性は次の様に評価した。蛍光体粉末を凹型のセルを表面が平滑になる様に充填し、積分球を取り付けた。この積分球に、発光光源(Xeランプ)から所定の波長に分光した単色光を、光ファイバーを用いて導入した。この単色光を励起源として、蛍光体試料に照射し、分光光度計(大塚電子社製、MCPD-7000)を用いて、試料の蛍光及び反射光のスペクトル測定を行った。本実施例では、単色光は、波長405nmの近紫外光と波長455nmの青色光を用いた。 The light emission characteristics of the phosphor were evaluated as follows. The phosphor powder was filled with a concave cell so that the surface was smooth, and an integrating sphere was attached. Monochromatic light that was split into a predetermined wavelength from a light emitting light source (Xe lamp) was introduced into the integrating sphere using an optical fiber. Using this monochromatic light as an excitation source, a phosphor sample was irradiated, and a spectrophotometer (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) was used to measure the spectrum of the fluorescence and reflected light of the sample. In this example, near-ultraviolet light having a wavelength of 405 nm and blue light having a wavelength of 455 nm were used as monochromatic light.
 得られた蛍光スペクトルにおいて、励起波長が405nm及び455nmに対して、それぞれ415~780nm及び465~780nm範囲の波長域のデータからJIS Z 8724に準じた方法で、JIS Z 8701で規定されるXYZ表色系における色度座標CIExとCIEyを算出した。励起波長405nmの場合の色度CIEx、CIEyはそれぞれ0.312、0.655で、励起波長455nmの場合の色度CIEx、CIEyはそれぞれ0.318、0.651であった。 In the obtained fluorescence spectrum, for the excitation wavelengths of 405 nm and 455 nm, an XYZ table defined by JIS Z 8701 is obtained from data in the wavelength range of 415 to 780 nm and 465 to 780 nm, respectively, according to JIS Z 8724. The chromaticity coordinates CIEx and CIEy in the color system were calculated. When the excitation wavelength was 405 nm, the chromaticity CIEx and CIEy were 0.312 and 0.655, respectively, and when the excitation wavelength was 455 nm, the chromaticity CIEx and CIEy were 0.318 and 0.651, respectively.
 発光効率は次の様にして求めた。まず試料部に反射率が99%の標準反射板(Labsphere社製、スペクトラロン)をセットし、励起光のスペクトルを測定し、励起波長が405nmの場合は、400~415nmの波長範囲で、励起波長が455nmの場合は450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。次いで、試料部に蛍光体をセットし、得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。尚、励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、励起波長が405nmの場合は、415~800nmの波長範囲で、励起光が455nmの場合は、465~800nmの範囲で算出した。得られた三種類のフォトン数から外部量子効率(=Qem/Qex×100)、吸収率(=(Qex-Qref)×100)、内部量子効率(=Qem/(Qex-Qref)×100)を求めた。波長405nmの近紫外光で励起した場合の、吸収率、内部量子効率、外部量子効率はそれぞれ83.2%、59.2%、49.3%であり、波長455nmの青色光で励起した場合は、それぞれ73.1%、56.6%、41.3%であった。 The luminous efficiency was determined as follows. First, a standard reflector (Spectralon manufactured by Labsphere, Inc.) having a reflectance of 99% is set on the sample portion, and the spectrum of the excitation light is measured. When the excitation wavelength is 405 nm, excitation is performed in the wavelength range of 400 to 415 nm. When the wavelength was 455 nm, the number of excitation light photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm. Next, a phosphor was set in the sample portion, and the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated from the obtained spectrum data. The number of excitation reflected light photons is in the same wavelength range as the number of excitation light photons, and the number of fluorescent photons is in the wavelength range of 415 to 800 nm when the excitation wavelength is 405 nm, and from 465 to when the excitation light is 455 nm. Calculation was performed in the range of 800 nm. The external quantum efficiency (= Qem / Qex × 100), the absorptance (= (Qex−Qref) × 100), and the internal quantum efficiency (= Qem / (Qex−Qref) × 100) are obtained from the obtained three types of photons. Asked. Absorption rate, internal quantum efficiency, and external quantum efficiency are 83.2%, 59.2%, and 49.3%, respectively, when excited by near-ultraviolet light having a wavelength of 405 nm. When excited by blue light having a wavelength of 455 nm Were 73.1%, 56.6%, and 41.3%, respectively.
〔比較例1〕
 宇部興産社製α型窒化ケイ素粉末(SN-E10グレード)、トクヤマ社製窒化アルミニウム粉末(Fグレード)と信越化学工業社製酸化ユーロピウム粉末(RUグレード)を実施例1の蛍光体とSi:Al:Eu比が同一になる配合とし、実施例1と同様の方法によりβ型サイアロンを合成した。得られた生成物は、緑色の硬い凝集塊であり、その表面に赤褐色の析出物が生じていた。この生成物は実施例1の場合の様に軽度な解砕での粉体化は困難であった。そこでアルミナ乳鉢により、目開き150μmの篩を全通するまで粉砕し、それを更に目開き45μmの篩で分級した。篩を通過した粉末を実施例1と同様な方法で加熱処理及び酸処理を行い、β型サイアロン蛍光体を得た。
[Comparative Example 1]
Α-type silicon nitride powder (SN-E10 grade) manufactured by Ube Industries, Ltd., aluminum nitride powder (F grade) manufactured by Tokuyama Co., Ltd. and europium oxide powder (RU grade) manufactured by Shin-Etsu Chemical Co., Ltd., and the phosphor of Example 1 and Si: Al The mixture was made to have the same Eu ratio, and β-sialon was synthesized in the same manner as in Example 1. The obtained product was a green hard aggregate, and a reddish brown precipitate was formed on the surface thereof. As in Example 1, this product was difficult to be pulverized by mild disintegration. Therefore, the mixture was pulverized with an alumina mortar until it passed through a sieve having an opening of 150 μm, and further classified with a sieve having an opening of 45 μm. The powder that passed through the sieve was subjected to heat treatment and acid treatment in the same manner as in Example 1 to obtain a β-type sialon phosphor.
 この蛍光体に対して、XRD測定を行った結果、結晶相はβ型サイアロン単相であった。
 β型サイアロンの格子定数は、a=0.7604nm、c=0.2909nmであった。
 ICP発光分光分析法により求めたAl及びEu含有量は、それぞれ0.46、0.22質量%であり、第一遷移金属含有量は5ppm未満であった。実施例1に比べ、特にEu含有率が共に低下した。
As a result of XRD measurement of this phosphor, the crystal phase was a β-type sialon single phase.
The lattice constants of β-sialon were a = 0.7604 nm and c = 0.2909 nm.
The Al and Eu contents determined by ICP emission spectroscopic analysis were 0.46 and 0.22% by mass, respectively, and the first transition metal content was less than 5 ppm. Compared to Example 1, both the Eu content particularly decreased.
 この蛍光体に対して、粒子径分布測定を行った結果、体積基準の積算分率における10%径(D10)は4.3μm、90%径(D90)は43.3μmであった。 As a result of performing particle size distribution measurement on this phosphor, the 10% diameter (D10) in the volume-based integrated fraction was 4.3 μm, and the 90% diameter (D90) was 43.3 μm.
 この蛍光体の波長405nmの近紫外光で励起した場合の、吸収率、内部量子効率、外部量子効率、CIEx及びCIEyはそれぞれ56.4%、69.5%、39.2%、0.304、0.655で、波長455nmの青色光で励起した場合が45.1%、68.4%、30.9%、0.314、0.650であった。実施例1に比べ、β型サイアロンに固溶しているEu量が少なく、吸収率が低いために外部量子効率が低くなった。 Absorption rate, internal quantum efficiency, external quantum efficiency, CIEx and CIEy when excited with near-ultraviolet light having a wavelength of 405 nm of this phosphor are 56.4%, 69.5%, 39.2%, and 0.304, respectively. 0.655 and 45.1%, 68.4%, 30.9%, 0.314, and 0.650 when excited with blue light having a wavelength of 455 nm. Compared to Example 1, the amount of Eu dissolved in β-sialon was small, and the external absorption efficiency was low, so the external quantum efficiency was low.
〔実施例2~4、比較例2~4〕
 シリコン粉末と窒化アルミニウム粉末の混合比及び原料ケイ素粉末の純度、更に窒化ケイ素合成温度を「表1」に示す様にした以外は、実施例1と同様の方法により、窒化ケイ素粉末の合成及びβ型サイアロンの焼成及び後処理(加熱処理及び酸処理)を行い、β型サイアロン蛍光体を得た。尚、実施例3及び比較例2では、酸化アルミニウム粉末も添加し、β型サイアロン結晶の酸素量を調整した。
[Examples 2 to 4, Comparative Examples 2 to 4]
Except that the mixing ratio of the silicon powder and the aluminum nitride powder, the purity of the raw silicon powder, and the silicon nitride synthesis temperature are as shown in Table 1, synthesis of the silicon nitride powder and β The type sialon was fired and post-treated (heat treatment and acid treatment) to obtain a β-type sialon phosphor. In Example 3 and Comparative Example 2, aluminum oxide powder was also added to adjust the oxygen content of the β-type sialon crystal.
 「表1」には、窒化ケイ素粉末のXRDにより算出したβ率、金属シリコン量及びICPにより求めたAl含有量及び第一遷移金属含有量を示した。「表2」には得られたβ型サイアロン蛍光体の格子定数、組成、不純物含有量及び粒度分布を示し、「表3」には発光特性を示した。 Table 1 shows the β ratio calculated by XRD of the silicon nitride powder, the amount of metal silicon, the Al content and the first transition metal content determined by ICP. “Table 2” shows the lattice constant, composition, impurity content and particle size distribution of the obtained β-sialon phosphor, and “Table 3” shows the emission characteristics.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~3及び比較例2を比べると、窒化ケイ素原料粉末中のAl量の増加とともに、β型サイアロン蛍光体の格子定数cが増大するとともに、図1に示す様に蛍光スペクトルが広がり、色度が赤色側にシフトすることが分かった。 Comparing Examples 1 to 3 and Comparative Example 2, as the amount of Al in the silicon nitride raw material powder increases, the lattice constant c of the β-type sialon phosphor increases, and the fluorescence spectrum broadens as shown in FIG. It was found that the chromaticity shifts to the red side.
 比較例3で示されるように、第一遷移金属不純物量が多い原料粉末を使用した場合、あるいは比較例4の様に金属シリコンが多い窒化ケイ素原料を使用した場合にあっては、酸処理等の高純度化処理を行っても、蛍光体中にある程度第一遷移金属不純物や金属シリコンが残留し、発光特性を低下させることが分かった。 As shown in Comparative Example 3, when a raw material powder with a large amount of first transition metal impurities is used, or when a silicon nitride raw material with a large amount of metal silicon is used as in Comparative Example 4, acid treatment, etc. It has been found that even when the high purity treatment is performed, the first transition metal impurities and metal silicon remain in the phosphor to some extent, and the light emission characteristics are deteriorated.
 得られた蛍光体の結晶相は、「表1」に示すように、XRD測定の結果、比較例4で若干量の金属シリコンが検出された以外は、β型サイアロン相のみであった。 As shown in “Table 1”, the crystal phase of the obtained phosphor was only a β-type sialon phase except that a slight amount of metallic silicon was detected in Comparative Example 4 as a result of XRD measurement.
 本発明のβ型サイアロン蛍光体は、紫外から青色光の幅広い波長で励起され、高輝度かつ狭帯化された緑色発光を示すことから、青色又は紫外光を光源とする白色LEDの蛍光体として好適に使用できるものであり、特に、画像表示装置に好適に使用できる。 The β-type sialon phosphor of the present invention is excited at a wide wavelength range from ultraviolet to blue light, and exhibits high luminance and narrow band green light emission. Therefore, as a phosphor of a white LED using blue or ultraviolet light as a light source. It can be used suitably, and can be used suitably especially for an image display apparatus.
 更に、本発明の蛍光体は、高温での輝度低下が少なく、また耐熱性や耐湿性に優れることから、上述の画像表示装置分野に適用すれば、使用環境温度の変化に対する輝度および発光色の変化が小さく、長期間の安定性にも優れる特性が発揮できる。 Furthermore, since the phosphor of the present invention has little decrease in luminance at high temperatures and is excellent in heat resistance and moisture resistance, when applied to the above-mentioned image display device field, the luminance and luminescent color with respect to changes in the use environment temperature. It exhibits small characteristics and excellent long-term stability.
 更に、本発明の蛍光体の製造方法は、前記特徴を有する蛍光体を安定して提供できるので、産業上非常に有用である。 Furthermore, the method for producing a phosphor of the present invention is very useful industrially because it can stably provide the phosphor having the above characteristics.

Claims (8)

  1.  一般式Si6-zAl8-zで示されるβ型サイアロンを母体材料とし、発光中心としてEu2+を固溶したβ型サイアロン蛍光体であって、
    β型サイアロン結晶の格子定数aが0.7605~0.7610nm、格子定数cが0.2906~0.2911nmであり、Eu含有量が0.4~2質量%、第一遷移金属含有量が5ppm以下であるβ型サイアロン蛍光体。
    A β-type sialon phosphor having a β-type sialon represented by the general formula Si 6-z Al z O z N 8-z as a base material and Eu 2+ as a luminescence center in a solid solution,
    The β-type sialon crystal has a lattice constant a of 0.7605 to 0.7610 nm, a lattice constant c of 0.2906 to 0.2911 nm, an Eu content of 0.4 to 2 mass%, and a first transition metal content of Β-type sialon phosphor of 5 ppm or less.
  2.  励起源を照射することにより、波長520~540nmの範囲に発光ピーク波長を持ち、その色度がCIExy色度座標で、0.28≦x≦0.33、0.62≦y≦0.67であることを特徴とする請求項1記載のβ型サイアロン蛍光体。 By irradiating the excitation source, it has an emission peak wavelength in the wavelength range of 520 to 540 nm, and its chromaticity is CIExy chromaticity coordinates, 0.28 ≦ x ≦ 0.33, 0.62 ≦ y ≦ 0.67. The β-sialon phosphor according to claim 1, wherein
  3.  レーザー回折散乱法により測定した粒子径分布における積算体積分率90%径(D90)が10~50μmであり、かつ10%径(D10)が2μm以上であることを特徴とする請求項1又は2のいずれか記載のβ型サイアロン蛍光体。 3. The integrated volume fraction 90% diameter (D90) in a particle size distribution measured by a laser diffraction scattering method is 10 to 50 μm, and the 10% diameter (D10) is 2 μm or more. (Beta) sialon fluorescent substance in any one of these.
  4.  一般式Si6-zAl8-zで示されるβ型サイアロンを母体材料とし、発光中心としてEu2+を固溶したβサイアロン蛍光体の製造方法であって、
    Alを含有する窒化ケイ素粉末と、Euを含有する無機化合物とを含む原料混合粉末を窒素雰囲気中、1850~2050℃の温度範囲で焼成する焼成工程と、
    希ガス雰囲気中、1300~1500℃で1~100時間保持する熱処理工程と、
    60℃以上のフッ化水素酸と硝酸の混酸内に0.5時間以上浸漬する酸処理工程と、を含むβ型サイアロン蛍光体の製造方法。
    A method for producing a β sialon phosphor in which a β-type sialon represented by the general formula Si 6-z Al z O z N 8-z is used as a base material, and Eu 2+ is solid-solved as an emission center,
    A firing step of firing a raw material mixed powder containing silicon nitride powder containing Al and an inorganic compound containing Eu in a nitrogen atmosphere at a temperature range of 1850 to 2050 ° C .;
    A heat treatment step of holding at 1300 to 1500 ° C. for 1 to 100 hours in a rare gas atmosphere;
    And an acid treatment step of immersing in a mixed acid of hydrofluoric acid and nitric acid at 60 ° C. or higher for 0.5 hour or longer. A method for producing a β-type sialon phosphor.
  5.  前記窒化ケイ素粉末が、金属シリコン窒化法により合成した第一遷移金属含有量が10ppm以下であり、かつ、Alを0.1~2質量%含有した窒化ケイ素粉末である請求項4記載のβ型サイアロン蛍光体の製造方法。 The β-type according to claim 4, wherein the silicon nitride powder is a silicon nitride powder having a first transition metal content of 10 ppm or less synthesized by a metal silicon nitriding method and containing 0.1 to 2% by mass of Al. A method for producing a sialon phosphor.
  6.  前記窒化ケイ素粉末が、β率50%以上であり、金属シリコン含有量10質量%以下であることを特徴とする請求項4又は5記載のβ型サイアロン蛍光体の製造方法。 6. The method for producing a β-type sialon phosphor according to claim 4, wherein the silicon nitride powder has a β ratio of 50% or more and a metal silicon content of 10% by mass or less.
  7.  発光波長の最大強度が240~480nmにあるLEDと、LEDの発光面に積層される請求項1~3のいずれか1項に記載されたβ型サイアロン蛍光体を有する発光素子。 4. A light emitting device having an LED having a maximum emission wavelength intensity of 240 to 480 nm and the β-sialon phosphor according to claim 1 laminated on a light emitting surface of the LED.
  8.  請求項7記載の発光素子と、発光素子に電気を供給する電源を有する発光装置。 A light-emitting device comprising: the light-emitting element according to claim 7; and a power source for supplying electricity to the light-emitting element.
PCT/JP2010/067359 2010-10-04 2010-10-04 β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME WO2012046288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067359 WO2012046288A1 (en) 2010-10-04 2010-10-04 β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067359 WO2012046288A1 (en) 2010-10-04 2010-10-04 β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME

Publications (1)

Publication Number Publication Date
WO2012046288A1 true WO2012046288A1 (en) 2012-04-12

Family

ID=45927310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067359 WO2012046288A1 (en) 2010-10-04 2010-10-04 β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME

Country Status (1)

Country Link
WO (1) WO2012046288A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077240A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
JP2016132774A (en) * 2015-01-22 2016-07-25 三菱化学株式会社 Phosphor, light-emitting device, luminaire and image display device
JP6024849B1 (en) * 2015-06-05 2016-11-16 日亜化学工業株式会社 Method for producing β-sialon phosphor
US9663713B2 (en) 2012-11-13 2017-05-30 Denka Company Limited Phosphor, light-emitting element and lighting device
WO2018184575A1 (en) * 2017-04-07 2018-10-11 苏州欧普照明有限公司 Light source module, and illumination device comprising light source module
CN109742217A (en) * 2018-11-20 2019-05-10 浙江云科智造科技有限公司 Four fluorescent powder LED proportion and dispensing amount recommended method based on least square method
WO2019188632A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 Red fluorescent body and light-emitting device
WO2019188630A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 α-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
WO2019188631A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 β-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
CN115989298A (en) * 2020-08-25 2023-04-18 电化株式会社 Phosphor powder and light-emitting device
US11952520B2 (en) 2020-08-25 2024-04-09 Denka Company Limited Method for manufacturing phosphor powder, phosphor powder, and light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031201A (en) * 2005-07-27 2007-02-08 Denki Kagaku Kogyo Kk METHOD FOR MANUFACTURING alpha-SIALON POWDER AND PHOSPHOR
WO2007066733A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
JP2009010315A (en) * 2007-05-30 2009-01-15 Sharp Corp Method of manufacturing phosphor, light-emitting device and image display apparatus
JP2010185009A (en) * 2009-02-12 2010-08-26 Showa Denko Kk Raw material mixture for nitride-based or oxynitride-based fluorescent material and method for producing nitride-based or oxynitride-based fluorescent material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031201A (en) * 2005-07-27 2007-02-08 Denki Kagaku Kogyo Kk METHOD FOR MANUFACTURING alpha-SIALON POWDER AND PHOSPHOR
WO2007066733A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
JP2009010315A (en) * 2007-05-30 2009-01-15 Sharp Corp Method of manufacturing phosphor, light-emitting device and image display apparatus
JP2010185009A (en) * 2009-02-12 2010-08-26 Showa Denko Kk Raw material mixture for nitride-based or oxynitride-based fluorescent material and method for producing nitride-based or oxynitride-based fluorescent material

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077240A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
KR20150084867A (en) * 2012-11-13 2015-07-22 덴끼 가가꾸 고교 가부시키가이샤 Phosphor, light-emitting element and lighting device
CN104837954A (en) * 2012-11-13 2015-08-12 电气化学工业株式会社 Phosphor, light-emitting element and lighting device
JPWO2014077240A1 (en) * 2012-11-13 2017-01-05 デンカ株式会社 Phosphor, light emitting element, and lighting device
US9663713B2 (en) 2012-11-13 2017-05-30 Denka Company Limited Phosphor, light-emitting element and lighting device
US10266766B2 (en) 2012-11-13 2019-04-23 Denka Company Limited Phosphor, light-emitting element and lighting device
KR102205640B1 (en) 2012-11-13 2021-01-20 덴카 주식회사 Phosphor, light-emitting element and lighting device
JP2016132774A (en) * 2015-01-22 2016-07-25 三菱化学株式会社 Phosphor, light-emitting device, luminaire and image display device
JP6024849B1 (en) * 2015-06-05 2016-11-16 日亜化学工業株式会社 Method for producing β-sialon phosphor
JP2017002278A (en) * 2015-06-05 2017-01-05 日亜化学工業株式会社 MANUFACTURING METHOD OF β SIALON PHOSPHOR
WO2018184575A1 (en) * 2017-04-07 2018-10-11 苏州欧普照明有限公司 Light source module, and illumination device comprising light source module
CN111902518A (en) * 2018-03-29 2020-11-06 电化株式会社 Red phosphor and light-emitting device
JP7280866B2 (en) 2018-03-29 2023-05-24 デンカ株式会社 α-type sialon phosphor and light-emitting device
WO2019188631A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 β-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
WO2019188632A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 Red fluorescent body and light-emitting device
CN111936599A (en) * 2018-03-29 2020-11-13 电化株式会社 Beta-sialon phosphor and light-emitting device
US11932792B2 (en) 2018-03-29 2024-03-19 Denka Company Limited Red fluorescent body and light-emitting device
JP7282744B2 (en) 2018-03-29 2023-05-29 デンカ株式会社 β-type sialon phosphor and light-emitting device
JPWO2019188631A1 (en) * 2018-03-29 2021-04-01 デンカ株式会社 β-type sialone phosphor and light emitting device
JPWO2019188630A1 (en) * 2018-03-29 2021-04-01 デンカ株式会社 α-type Sialon phosphor and light emitting device
JPWO2019188632A1 (en) * 2018-03-29 2021-04-08 デンカ株式会社 Red phosphor and light emitting device
US11236269B2 (en) 2018-03-29 2022-02-01 Denka Company Limited Alpha-Sialon fluorescent body and light-emitting device
CN111936599B (en) * 2018-03-29 2023-03-17 电化株式会社 Beta-sialon phosphor and light-emitting device
JP7282745B2 (en) 2018-03-29 2023-05-29 デンカ株式会社 Red phosphor and light-emitting device
WO2019188630A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 α-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
CN109742217B (en) * 2018-11-20 2021-01-22 浙江云科智造科技有限公司 Four LED fluorescent powder proportioning and dispensing methods based on least square method
CN109742217A (en) * 2018-11-20 2019-05-10 浙江云科智造科技有限公司 Four fluorescent powder LED proportion and dispensing amount recommended method based on least square method
CN115989298A (en) * 2020-08-25 2023-04-18 电化株式会社 Phosphor powder and light-emitting device
US11952520B2 (en) 2020-08-25 2024-04-09 Denka Company Limited Method for manufacturing phosphor powder, phosphor powder, and light emitting device

Similar Documents

Publication Publication Date Title
JP4813577B2 (en) Method for producing β-sialon phosphor
WO2012046288A1 (en) β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME
JP4891336B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP5737693B2 (en) β-type sialon, manufacturing method thereof, and light emitting device using the same
WO2010143590A1 (en) Β-sialon phosphor, use thereof and method for producing same
KR101876103B1 (en) Oxynitride fluorescent substance powder, silicon nitride powder for manufacturing same, and method for manufacturing same
JP2009096882A (en) Phosphor and method for producing the same
JP6020756B1 (en) Method for producing β-sialon phosphor
KR20150084867A (en) Phosphor, light-emitting element and lighting device
JP5741177B2 (en) Ca-containing α-type sialon phosphor and method for producing the same
JP2017002278A (en) MANUFACTURING METHOD OF β SIALON PHOSPHOR
WO2014030637A1 (en) METHOD FOR PRODUCING β-SIALON, β-SIALON, AND LIGHT-EMITTING DEVICE
JP2020083945A (en) METHOD FOR PRODUCING β-TYPE SIALON PHOSPHOR
WO2011055665A1 (en) PROCESS FOR PRODUCING β-SIALON FLUORESCENT MATERIAL
JP2020012010A (en) Red phosphor and light-emitting device
EP2980183B1 (en) Oxynitride phosphor powder and method for producing same
CN113891926A (en) Surface-coated phosphor particle and light-emitting device
TWI796370B (en) Red Phosphor and Light-Emitting Device
JP6903455B2 (en) Fluorescent material manufacturing method, phosphor and light emitting element and light emitting device
KR20160013876A (en) Oxynitride phosphor powder
JP5697387B2 (en) Method for producing β-sialon
US11781064B2 (en) Phosphor powder and light-emitting device
JP6997548B2 (en) Method for producing active β-type sialone phosphor with Eu
JPWO2019220816A1 (en) Red phosphor and light emitting device
JP2023166646A (en) europium-activated β-type sialon phosphor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP