WO2012043954A1 - Cognitive radio transmitter and cognitive radio receiver for improving data transfer rate - Google Patents

Cognitive radio transmitter and cognitive radio receiver for improving data transfer rate Download PDF

Info

Publication number
WO2012043954A1
WO2012043954A1 PCT/KR2011/003254 KR2011003254W WO2012043954A1 WO 2012043954 A1 WO2012043954 A1 WO 2012043954A1 KR 2011003254 W KR2011003254 W KR 2011003254W WO 2012043954 A1 WO2012043954 A1 WO 2012043954A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
cognitive radio
fft
symbol
subcarriers
Prior art date
Application number
PCT/KR2011/003254
Other languages
French (fr)
Korean (ko)
Inventor
임명섭
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2012043954A1 publication Critical patent/WO2012043954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio

Definitions

  • the present invention relates to a cognitive radio transmitter and a cognitive radio receiver, and more particularly, to a cognitive radio transmitter and a cognitive radio receiver for performing radio communication suitably for a radio wave environment.
  • Cognitive Radio (CR) communication technology refers to a radio technology that makes an operation suitable for a current radio wave environment by measuring an radio wave environment and setting operating parameters of the radio device according to the measured radio wave environment.
  • wireless devices with cognitive radio technology can maximize transmission capacity to match channel characteristics, minimize device-to-device interference, facilitate interoperability between different systems, or find time away from the primary user by looking for unused frequencies. The technique used for this can be applied.
  • Orthogonal Frequency Division Multiplexing may be applied to cognitive radio communication technology.
  • FFT fast fourier transform
  • IFFT inverse FFT
  • the FFT pruning technique may be used to reduce the amount of computation of the FFT.
  • the wireless device can reduce the processing time due to the reduction of the total computation amount.
  • the circuit design for the FFT operation is complicated.
  • the wireless device has no hardware size reduction effect because the entire subcarrier should be used when there is no data having a value of zero.
  • the wireless device can reduce the amount of computation, and thus can reduce the processing time and power required by the calculation.
  • the processing time is shortened due to the decrease in the amount of computation.
  • the receiver since the receiver has to wait until all output signals of the IFFT corresponding to one cycle of the OFDM symbol arrive, the data rate increase effect of the wireless device cannot be obtained. There is this.
  • the present invention has been made to solve the above problems, and an object of the present invention is to compare the number of usable even subcarriers and the usable odd subcarriers, and the number of available subcarriers in the even subcarrier group and the odd subcarrier group is large.
  • a cognitive radio transmitter and a cognitive radio receiver for selecting a group as a subcarrier for data transmission are provided.
  • a cognitive radio transmitter includes: a spectrum sensing unit detecting availability information of subcarriers of a plurality of channels; A comparison unit comparing the available even subcarriers with the available odd subcarriers using the detected subcarrier availability information, and selecting a greater number of available subcarrier groups among the even subcarrier group and the odd subcarrier group; A subcarrier allocator for allocating a subcarrier group selected by the comparator to a subcarrier for input data transmission and modulating the input data to the assigned subcarrier; An IFFT processor for processing inverse fast fourier transform (IFFT) signals output from the subcarrier allocation unit; And a transmitter for transmitting the IFFT processed signal to the outside.
  • IFFT inverse fast fourier transform
  • the comparison unit transmits the usable subcarrier number information and the channel information of the usable subcarrier for the group having many usable subcarriers among the even and odd subcarriers to the subcarrier assignment unit.
  • the subcarrier allocator may modulate data to an allocated subcarrier based on OFDM (Orthogonal Frequency Division Multiplexing) and multiplex the modulated signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the IFFT processor may perform IFFT processing on the signal output from the subcarrier allocation unit using a split-radix FFT pruning technique.
  • the IFFT processor may perform a split-radix FFT pruning technique using a pruning matrix.
  • the IFFT processor may include a pruning matrix generator configured to generate a pruning matrix; And a split-radix FFT unit performing a split-radix FFT process using the generated pruning matrix.
  • the IFFT processor may output only half of signals corresponding to one symbol according to OFDM.
  • the IFFT processor transmits half of the symbol interval signal for the first data for 0 to T / 2 intervals for one symbol interval T of one subcarrier, and the second data for the T / 2 to T intervals.
  • One half of the symbol interval signal may be transmitted.
  • the cognitive radio receiver for receiving a signal containing two symbol data half in one symbol period of one subcarrier; And an FFT processor configured to perform FFT processing on the received signal.
  • the FFT processor may split a signal received during one symbol period into half, and restore the half received signal to a signal corresponding to one symbol.
  • the FFT processor may double the signal corresponding to half of a symbol to restore a signal corresponding to one symbol.
  • the FFT processor is configured to apply a signal corresponding to half of a symbol. By multiplying by 2 times, the signal corresponding to one symbol may be restored.
  • the FFT processing unit may perform FFT processing on the recovered signal using a split-radix FFT pruning technique.
  • the FFT processor may perform a split-radix FFT pruning technique using a pruning matrix.
  • a cognitive radio for comparing the number of usable even subcarriers and the number of usable odd subcarriers and selecting a greater number of usable subcarrier groups from among even and odd subcarrier groups as subcarriers for data transmission may be used. Since the transmitter and the cognitive radio receiver can be provided, the cognitive radio transmitter can transmit data by transmitting only half of signals corresponding to one symbol according to OFDM. Accordingly, the cognitive radio transmitter can further output and transmit signals for other symbols for the remaining half of the symbol period, thereby improving the data rate.
  • the cognitive radio transmitter implements a split-radix FFT pruning technique using a pruning matrix, thereby simplifying and efficiently designing a circuit.
  • FIG. 11 illustrates a structure of a Cognitive Radio (CR) transmitter according to an embodiment of the present invention.
  • FIG. 11 illustrates a structure of a Cognitive Radio (CR) transmitter according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the structure of a Cognitive Radio (CR) receiver according to an embodiment of the present invention
  • FIG. 3 illustrates an example of a split-radix FFT pruning structure having eight points, according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating a structure of an FFT processor using a pruning matrix to implement pruning in a split-radix IFFT according to an embodiment of the present invention
  • FIG. 5 is a diagram illustrating a circuit structure of an SDF SRFFT BF control unit according to an embodiment of the present invention
  • FIG. 6 is a diagram illustrating a circuit structure of a pruning matrix controller 312 according to an embodiment of the present invention.
  • 11 is a graph comparing the number of complex cumulative numbers of various types of 1024-point FFT algorithms according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a probability density distribution of empty subcarriers according to an embodiment of the present invention.
  • the cognitive radio transmitter includes a spectrum sensing unit 110, a comparator 120, a subcarrier allocator 130, an inverse fast fourier transform (IFFT) processor 140, and a transmitter 150. Include.
  • IFFT inverse fast fourier transform
  • the spectrum sensing unit 110 detects a spectral state of a radio wave of a place where the currently recognized wireless transmitter 100 is located. Specifically, the spectrum sensing unit 110 detects whether subcarriers of various channels are being used by a specific device. The spectrum sensing unit 110 determines that the subcarrier is not in use by another device as an available subcarrier.
  • the spectrum sensing unit 110 outputs availability information of subcarriers of various channels to the comparator 120.
  • spectrum sensing technology is the most important frequency resource sharing technology for determining whether a subcarrier occupied or used by a primary user is an unused subcarrier.
  • Spectrum sensing techniques include non-cooperative spectrum sensing and cooperative spectrum sensing.
  • the spectrum sensing unit 110 detects whether subcarriers of various channels are being used by other devices using the spectrum detection technique.
  • the comparator 120 compares the number of usable even subcarriers with the number of usable odd subcarriers using the subcarrier availability information received from the spectrum sensing unit 110.
  • the even subcarriers represent subcarriers corresponding to even numbers in the order of the channels of the lower frequencies.
  • the odd subcarriers represent subcarriers corresponding to the odd numbered channels in order of the lowest frequency.
  • Equation 1 the sum of even subcarriers may be expressed as Equation 1 below.
  • 2m represents an input signal carried on an even subcarrier.
  • Equation 2 the sum of the odd subcarriers.
  • 2m + 1 represents an input signal carried on an odd subcarrier.
  • the comparison unit 120 compares the number of usable even subcarriers with the number of usable odd subcarriers, and determines whether there are more available subcarriers among the even and odd subcarriers.
  • the comparator 120 selects a subcarrier of a larger number as a subcarrier for data transmission.
  • the comparator 120 transmits information about the subcarriers having a large number of usable subcarriers to the subcarrier allocator 130.
  • the comparator 120 transmits the usable subcarrier number information and the usable subcarrier channel information for the group having many usable subcarriers among the even subcarriers and the odd subcarriers to the subcarrier allocator 130.
  • the comparator 120 selects an even subcarrier as a subcarrier for transmission, and the information that the even subcarriers are three and three even subcarriers.
  • Each channel information on the subcarrier allocation unit 130 is transmitted.
  • the subcarrier allocator 130 assigns a subcarrier group selected by the comparator 120 among the even subcarriers and the odd subcarriers as subcarriers for input data transmission.
  • the subcarrier allocator 130 modulates the input data to each subcarrier, multiplexes it, and transmits the multiplexed data to the IFFT processor 140.
  • the subcarrier allocation unit 130 modulates data to the assigned subcarriers based on Orthogonal Frequency Division Multiplexing (OFDM).
  • the subcarrier assignment unit 130 multiplexes the modulated signal based on OFDM.
  • the IFFT processor 140 performs IFFT processing on the multiplexed signal. In addition, the IFFT processor 140 outputs an IFFT processed signal for data transmission. At this time, the IFFT processor 140 is applied with a split-radix FFT pruning technique to reduce the amount of calculation of the IFFT. In this case, the IFFT processor 140 according to the present embodiment uses a pruning matrix to efficiently design a hardware for pruning. As such, since the IFFT processor 140 implements the split-radix FFT pruning technique using the pruning matrix, circuit design can be simplified and efficiently. The implementation of the pruning matrix and related circuits will be described later in detail.
  • the IFFT processor 140 outputs only half of signals corresponding to one symbol according to OFDM.
  • the IFFT-treated transmission signal using only odd subcarriers or only even carriers is symmetrical in half of one OFDM symbol signal interval T time. That is, in the IFFT processed transmission signal, a signal corresponding to 0 to T / 2 time and a signal corresponding to T / 2 to T time are symmetrical with each other. Therefore, even if the IFFT processor 140 transmits only a signal corresponding to 0 to T / 2 time, the receiving end can restore the signal corresponding to the remaining T / 2 to T time using symmetry. Therefore, the IFFT processor 140 outputs only half of the signals corresponding to one symbol according to OFDM (that is, only signals corresponding to 0 to T / 2 time).
  • the IFFT processor 140 may output a signal corresponding to one symbol only for 0 to T / 2 time, and output a signal corresponding to another symbol for the remaining T / 2 to T time. Through this, the IFFT processor 140 may increase the data rate.
  • the transmitter 150 wirelessly transmits the IFFT processed signal from the IFFT processor 140 to an external device.
  • the cognitive radio transmitter 100 having such a structure outputs an IFFT processed signal for data transmission.
  • the cognitive radio transmitter 100 since the cognitive radio transmitter 100 outputs only half of signals corresponding to one symbol according to OFDM, the cognitive radio transmitter 100 can additionally output and transmit signals for other symbols for the remaining symbol periods.
  • the cognitive radio transmitter 100 implements a split-radix FFT pruning technique using a pruning matrix, circuit design can be simplified and efficiently.
  • FIG. 2 is a diagram illustrating a structure of a cognitive radio receiver (CR) 200 according to an embodiment of the present invention.
  • the cognitive radio receiver 200 includes a receiver 210 and an FFT processor 220.
  • the receiver 210 receives a signal that is IFFT-processed and transmitted from the cognitive radio transmitter 100. In this case, the receiver 210 receives a signal including two data in one symbol period.
  • the FFT processor 220 performs FFT processing of the received signal.
  • the FFT processor 220 first separates signals by half for one period of an OFDM symbol.
  • the FFT processor 220 restores a signal corresponding to one symbol using a signal corresponding to half of a symbol.
  • the FFT processor 220 doubles a signal corresponding to half of a symbol and restores a signal corresponding to one symbol.
  • the FFT processor 220 corresponds to a signal corresponding to half of a symbol. By multiplying by 2 times, the signal corresponding to one symbol is restored.
  • the FFT processor 220 performs FFT processing on the restored signal using a split-radix FFT pruning technique.
  • the FFT processor 220 performs a split-radix FFT pruning technique using a pruning matrix.
  • the cognitive radio receiver 200 receives two data in one symbol period for one subcarrier.
  • the cognitive radio receiver 200 may increase the data reception rate.
  • FIG 3 shows an example of an eight-point Split-radix FFT pruning structure, in accordance with an embodiment of the invention.
  • the split-radix FFT pruning technique corresponds to a technique that computes only the values necessary to obtain the output X (k) of the final stage and does not perform unnecessary operations in a split-radix FFT structure having a small amount of computation.
  • the cognitive radio transmitter 100 since the cognitive radio transmitter 100 does not perform unnecessary operations generated by an input of zero, the computation speed of the FFT can be improved.
  • the IFFT processor 140 may design a circuit using a pruning matrix. That is, the IFFT processor 140 uses a pruning matrix to use pruning for split-radix IFFT and implements split-radix IFFT pruning through efficient hardware design of the pruning matrix. Since the IFFT and the FFT are inversely related to each other, the following description will be based on the FFT. However, referring to the description of Split-radix FFT pruning, it is of course possible to infer the case of Split-radix IFFT pruning. And the cognitive radio device represents a cognitive radio transmitter or a cognitive radio receiver.
  • the pruning matrix (M i ) is created by the position of the output values of the nonzero FFT.
  • the last column of the pruning matrix is associated with the output values. Thus, if the output value is not 0, the element value of the last column of the corresponding row is 1, and if the output value is 0, the element value of the last column of the corresponding row is 0.
  • the cognitive wireless device determines the values of the last column (ie, the r-th column) and obtains the values of the (r-1) th column from the r-th column.
  • a cognitive radio device first groups the elements of the last column into two groups of N / 2, and if there is an element with a value of 1 among the elements of the intermediate group, the corresponding two elements of the r-1th columns are set to 1, or 0.
  • the cognitive radio device (rk) th column to generate the (rk + 1) th column, a second element enclosed by k by one N / 2 k groups if there is one in the group of parameters corresponding to the second column elements You can make m matrix with 1 elements or 0. The matrix generated by this process becomes a pruning matrix.
  • M i described in Equation 3 below represents a pruning matrix corresponding to the split-radix FFT pruning structure for the case where only X (0) and X (1) are not zero, as shown in FIG. 3.
  • FIG. 4 is a diagram illustrating a structure of an FFT processor using a pruning matrix to implement pruning in a split-radix IFFT according to an embodiment of the present invention.
  • the FFT processing unit includes a pruning matrix generator 310 and a split-radix FFT unit 320.
  • the pruning matrix generator 310 includes a plurality of pruning matrix controllers 312 and a delay unit 314. At this time, the number of pruning matrix controllers 312 and delay units 314 is the same as the number of columns of the pruning matrix.
  • the pruning matrix control unit 312 is described as a single-path delay feedback (SDF) pruning matrix.
  • the pruning matrix generator 310 inputs data on whether or not the subcarrier is available as a result of spectrum sensing to the pruning matrix controller 312 located at the far right of the last column of the pruning matrix. That is, a value other than 0 is input to the rightmost Pruning matrix controller 312 when a corresponding subcarrier is available, and 0 is input when the corresponding subcarrier is unavailable.
  • the pruning matrix generator 310 generates the elements of the last second column of the pruning matrix, generates the elements of the last third column with the elements of the last second column, and generates the elements of all the columns according to this rule.
  • the AND gate 316 is determined. Implemented through If the element value of the pruning matrix is 1, the output value of the AND gate 316 is the rotation factor value 318. If the element value of the pruning matrix is 0, the output value of the AND gate 316 is 0 and the rotation factor The multiplication process is omitted.
  • the split-radix FFT unit 320 multiplies the rotation factor values 318 processed as described above with a split-radix FFT butterfly operation result.
  • the split-radix FFT unit 320 includes a plurality of SDF SRFFT BF (Single-path Delay Feedback Split-radix FFT Butterfly) control units 322, delay units 324, and multipliers 326. It consists of The leftmost SDF SRFFT BF controller 322 performs a split-radix FFT butterfly operation on an input value x (n).
  • SDF SRFFT BF Single-path Delay Feedback Split-radix FFT Butterfly
  • split-radix FFT butterfly operation which is sequentially output from the left, is multiplied by the rotation factor value 318 through the multiplier 326, and then the split-radix FFT butterfly operation is performed by the next SDF SRFFT BF controller 322. Will repeat.
  • the split-radix FFT unit 320 outputs X (k) on which the FFT is performed from the input x (n).
  • Equation 4 the necessary delay for the kth column (that is, the kth stage) is expressed as in Equation 4 below.
  • FIG. 5 is a diagram illustrating a circuit structure of an SDF SRFFT BF controller 322 according to an embodiment of the present invention.
  • the R-2 BF 400 performs a radix-2 FFT Butterfly operation.
  • the split-radix FFT structure has irregular positions of addition and subtraction as compared with a general radix-2 FFT structure.
  • two control circuits are required.
  • the first control circuit 410 controls the execution timing of the subtraction.
  • the second control circuit 420 then controls the execution timing of the addition.
  • the SDF SRFFT BF controller 322 controls the execution of addition and subtraction by using the first control circuit 410 and the second control circuit 420.
  • FIG. 6 is a diagram illustrating a circuit structure of the pruning matrix controller 312 according to an embodiment of the present invention.
  • the pruning matrix control unit 312 groups the elements of each row in order to generate the elements of the pruning matrix. Specifically, the kth column of the r columns bundles 2 r-k + 1 elements. If there is an element with a value of 1 in this group, the values of the elements in the k-1th column will be 1, or 0.
  • the process of processing whether there is 1 in each group is executed by the OR gate 500 shown in FIG.
  • the FFT processor using the pruning matrix to implement pruning in the split-radix FFT may be implemented by the circuits of FIGS. 4 to 6.
  • the pruning matrix is used to implement the split-radix FFT processing circuit, a simpler circuit can be designed.
  • the IFFT processor 140 of FIG. 1 may be implemented based on such a circuit structure.
  • the cognitive radio transmitter 100 of FIG. 1 compares the number of even subcarriers and odd subcarriers using information on subcarriers sensed by the spectrum sensing unit 110.
  • the subcarrier allocation unit 130 of the cognitive radio transmitter 100 selects an even or odd subcarrier group having a large number and allocates transmission data to an input side corresponding to each subcarrier of the selected subcarrier group.
  • FIGS. 7 to 10 are graphs illustrating IFFT output signals according to an embodiment of the present invention.
  • FIG. 7 is a graph illustrating the sum of sine terms of even subcarriers for one symbol of an 8 point IFFT according to an embodiment of the present invention.
  • the horizontal axis represents a symbol of one period.
  • the sum of the sine terms of the even subcarriers may be symmetric changed from the half of the symbol period (the point at which the x-axis value is 0.5).
  • FIG. 8 is a graph showing the sum of cosine terms of even subcarriers for one symbol of an 8 point IFFT according to an embodiment of the present invention.
  • the horizontal axis represents a symbol of one period.
  • the sum of cosine terms of even subcarriers may be symmetric about half of a symbol period (a point at which an x-axis value is 0.5).
  • FIG. 9 is a graph illustrating the sum of sine terms of odd subcarriers for one symbol of an 8 point IFFT according to an embodiment of the present invention.
  • the horizontal axis represents a symbol of one period.
  • the sum of the sine terms of odd subcarriers is symmetric with the sign changed about half of the symbol period (the point at which the x-axis value is 0.5).
  • FIG. 10 is a graph illustrating the sum of cosine terms of odd subcarriers for one symbol of an 8 point IFFT according to an embodiment of the present invention.
  • the horizontal axis represents a symbol of one period.
  • the sum of cosine terms of odd subcarriers may be symmetric about half of a symbol period (a point at which an x-axis value is 0.5).
  • an IFFT output signal using only even subcarriers or an IFFT signal using only odd subcarriers is symmetric about a half point of a symbol period or a sign is symmetrically changed. Therefore, even if the cognitive radio transmitter 100 transmits only half of a signal for one symbol using only odd subcarriers or only even subcarriers, the receiver uses half of the signal for one symbol to symmetry the signal corresponding to one symbol. Can be used to recover.
  • IFT Inverse Discrete Fourier Transform
  • the graphs for the sin and cosin terms for the X n value correspond to the graphs of FIGS. 7 to 10.
  • the odd subcarriers are as follows.
  • the cognitive radio transmitter 100 since an input consisting of only odd subcarriers or only even subcarriers is repeated with an symmetrical IFFT output signal, the cognitive radio transmitter 100 has a half period of a symbol unlike a general IFFT signal in which odd and even subcarriers are mixed with inputs.
  • the data can be transmitted with only the signal of.
  • the number of odd subcarriers of an unused subcarrier i.e. available subcarriers
  • the number of even subcarriers is m (assuming m> n)
  • the number of data that can be sent during an OFDM symbol period processed by a typical IFFT is n + m.
  • the cognitive radio transmitter 100 transmits data by assigning only m even subcarriers which are a larger number group. At this time, since the cognitive radio transmitter 100 transmits data of one symbol using half symbol periods, the cognitive radio transmitter 100 can transmit data twice during one symbol period. Therefore, since the cognitive radio transmitter 100 transmits data twice during one symbol period using m even subcarriers, 2m data is transmitted during one symbol period.
  • the cognitive radio transmitter 100 transmits 2m data during one symbol period.
  • the transmitter transmits n + m data in one period.
  • 2m> n + m it can be seen that the number of data transmitted in one symbol period of the cognitive radio transmitter 100 according to the present embodiment is larger.
  • the cognitive radio transmitter 100 may improve the data rate by using only even subcarriers or only odd subcarriers.
  • the IFFT-processed transmission signal using even or odd subcarriers in the transmitter has a symmetry between a signal corresponding to 0 to T / 2 time and a signal corresponding to T / 2 to T time during T time of one symbol signal interval of OFDM. Is repeated. Therefore, the receiver does not receive the entire OFDM symbol signal of the transmitter and receives only the signal corresponding to 0 to T / 2 time for FFT processing.
  • the cognitive radio transmitter 100 may continuously transmit other data in T / 2 to T time, thereby increasing the data rate. Proof of this is as follows.
  • the DFT processing result at the receiver is output as 1/2 of the data value transmitted from the transmitter. Accordingly, the receiver may recover the data value received from the transmitter by doubling the FFT result.
  • the receiver is applied to the received IFFT signal.
  • we can restore the original signal through the same process as in the even case.
  • the cognitive radio transmitter 100 transmits only a signal corresponding to half of a symbol period using only even subcarriers or only odd subcarriers. Then, the receiver recovers the signal corresponding to one symbol period by using the signal corresponding to half of the symbol period.
  • the cognitive radio transmitter 100 can reduce the amount of calculation of split-radix FFT pruning using this principle. This will be described with reference to FIG. 11.
  • 11 corresponds to a graph comparing the number of complex cumulative numbers of various types of 1024-point FFT algorithms according to an embodiment of the present invention.
  • the horizontal axis shows the number of nonzero outputs
  • the vertical axis shows the number of complex multiplications.
  • the graph also shows that the radix-2 FFT pruning technique requires less computation than the transform decomposition using radix-2 FFTs on sub-transforms. Therefore, although the graph shows the average number of complex multiplications of the split-radix FFT pruning, the split-radix FFT pruning shows less computation than the transform decomposition using the split-radix FFT for the sub-transform.
  • the split-radix FFT pruning technique according to the present embodiment has the least amount of calculation.
  • FIG. 12 is a diagram illustrating a probability density distribution of empty subcarriers according to an embodiment of the present invention.
  • the number of empty subcarriers has a Gaussian distribution (normal distribution) in which the average number of empty subcarriers is m as shown in FIG.
  • the number distribution of empty even subcarriers has a uniform distribution between 0 and m having an average number of m / 2 as shown in FIG.
  • the number of empty subcarriers is larger than m / 2
  • the average value is 3m / 4
  • one period of an OFDM symbol is selected by selecting a large number of even or odd subcarrier groups according to the present embodiment, rather than the general scheme of transmitting data using empty subcarriers after spectrum sensing (FIG. 12 (b)).
  • FIG. 12 (c) the method of transmitting data twice during the period
  • the present invention relates to a cognitive radio transmitter and a cognitive radio receiver, and is industrially applicable to a cognitive radio transmitter and a cognitive radio receiver for performing radio communication suitably for a radio wave environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a cognitive radio transmitter and a cognitive radio receiver. The cognitive radio transmitter: compares the number of available even subcarriers with the number of available odd subcarriers; and selects one subcarrier group from either the even or odd subcarrier groups, the one subcarrier group including a greater number of available subcarriers as subcarriers for data transmission. Accordingly, the cognitive radio transmitter can transmit data while transmitting only half of a signal corresponding to one symbol in accordance with OFDM.

Description

데이터 전송률 향상을 위한 인지 무선 송신기 및 인지 무선 수신기 Cognitive radio transmitters and cognitive radio receivers for improved data rates
본 발명은 인지 무선 송신기 및 인지 무선 수신기에 관한 것으로, 더욱 상세하게는, 전파 환경에 적합하게 무선 통신을 수행하는 인지 무선 송신기 및 인지 무선 수신기에 관한 것이다. The present invention relates to a cognitive radio transmitter and a cognitive radio receiver, and more particularly, to a cognitive radio transmitter and a cognitive radio receiver for performing radio communication suitably for a radio wave environment.
인지 무선(CR : Cognitive Radio) 통신 기술은 전파 환경을 측정하여 측정된 전파 환경에 적합하게 무선 기기의 운용 파라미터를 설정함으로써, 현재 전파 환경에 적합하게 동작하게 하는 무선 기술을 나타낸다. 예를 들어, 인지 무선 통신 기술이 적용된 무선 기기는 전송 용량을 채널 특성에 맞게 최대화, 기기 간 간섭 최소화, 다른 기종 시스템 간에 상호 동작성 촉진, 또는 비사용 주파수를 찾아서 1차 사용자가 사용하지 않는 시간에 이용하는 기술을 적용할 수 있게 된다.Cognitive Radio (CR) communication technology refers to a radio technology that makes an operation suitable for a current radio wave environment by measuring an radio wave environment and setting operating parameters of the radio device according to the measured radio wave environment. For example, wireless devices with cognitive radio technology can maximize transmission capacity to match channel characteristics, minimize device-to-device interference, facilitate interoperability between different systems, or find time away from the primary user by looking for unused frequencies. The technique used for this can be applied.
인지 무선 통신 기술에는 직교 주파수 분할 다중화(OFDM : Orthogonal Frequency Division Multiplexing)가 적용될 수 있다. 이와 같은 OFDM 기반의 인지 무선 시스템에는 신호의 다중화를 위해 FFT(Fast Fourier Transform) 및 IFFT(Inverse FFT)를 이용한다. 또한, FFT의 계산량 감소를 위해 FFT Pruning 기법이 이용될 수 있다. Orthogonal Frequency Division Multiplexing (OFDM) may be applied to cognitive radio communication technology. In such an OFDM-based cognitive radio system, fast fourier transform (FFT) and inverse FFT (IFFT) are used for multiplexing of signals. In addition, the FFT pruning technique may be used to reduce the amount of computation of the FFT.
FFT Pruning 기법을 적용할 경우 부분적으로 0의 데이터가 입력되는 IFFT/FFT 구조에서 0의 데이터가 관련되는 부분은 계산하지 않기 때문에, 무선 기기는 총 연산량 감소에 따른 처리 시간 단축 효과를 얻을 수 있다. 그러나, 0의 데이터가 존재하는 부분은 데이터 조합 경우 수가 다양하기 때문에, FFT 연산을 위한 회로 설계가 복잡해지게 된다. When the FFT Pruning technique is applied, the part of the IFFT / FFT structure in which 0 data is partially input is not calculated. Therefore, the wireless device can reduce the processing time due to the reduction of the total computation amount. However, since the number of data combinations varies in the part where zero data exists, the circuit design for the FFT operation is complicated.
이와 같이, FFT Pruning 기법을 이용할 경우, 무선 기기는 값이 0인 데이터가 없을 경우 전체 부반송파를 이용해야하기 때문에 하드웨어의 크기 감소 효과는 없다. 반면, 0의 데이터 수가 증가하면, 무선 기기는 연산량이 감소되고, 따라서 연산으로 인해 소요되는 처리 시간 및 전력을 감소할 수 있는 효과를 얻을 수 있다. As described above, when the FFT pruning technique is used, the wireless device has no hardware size reduction effect because the entire subcarrier should be used when there is no data having a value of zero. On the other hand, if the number of data increases to zero, the wireless device can reduce the amount of computation, and thus can reduce the processing time and power required by the calculation.
그러나, 데이터 전송율 측면에서 보면 연산량의 감소로 처리 시간이 단축되었지만, 수신단이 OFDM 심볼 한 주기에 해당하는 IFFT 모든 출력 신호가 도착할 때까지 기다려야하기 때문에, 무선 기기의 데이터 전송율 증대 효과는 얻을 수 없다는 문제점이 있다.However, in terms of data rate, the processing time is shortened due to the decrease in the amount of computation. However, since the receiver has to wait until all output signals of the IFFT corresponding to one cycle of the OFDM symbol arrive, the data rate increase effect of the wireless device cannot be obtained. There is this.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 사용 가능한 짝수 부반송파와 사용 가능한 홀수 부반송파의 개수를 비교하고, 짝수 부반송파 그룹 및 홀수 부반송파 그룹 중 사용 가능한 개수가 많은 부반송파 그룹을 데이터 전송을 위한 부반송파로 선택하는 인지 무선 송신기 및 인지 무선 수신기를 제공함에 있다. The present invention has been made to solve the above problems, and an object of the present invention is to compare the number of usable even subcarriers and the usable odd subcarriers, and the number of available subcarriers in the even subcarrier group and the odd subcarrier group is large. A cognitive radio transmitter and a cognitive radio receiver for selecting a group as a subcarrier for data transmission are provided.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 인지 무선 송신기는, 복수개의 채널의 부반송파들의 사용가능 여부 정보를 검출하는 스펙트럼 센싱부; 상기 검출된 부반송파 사용 가능여부 정보를 이용하여, 사용 가능한 짝수 부반송파와 사용 가능한 홀수 부반송파의 개수를 비교하고, 짝수 부반송파 그룹 및 홀수 부반송파 그룹 중 사용 가능한 개수가 많은 부반송파 그룹을 선택하는 비교부; 상기 비교부에 의해 선택된 부반송파 그룹을 입력 데이터 송신을 위한 부반송파로 할당하고, 입력 데이터를 할당된 부반송파에 변조하는 부반송파 할당부; 상기 부반송파 할당부에서 출력되는 신호를 IFFT(Inverse Fast Fourier Transform) 처리하는 IFFT 처리부; 및 상기 IFFT 처리된 신호를 외부로 송신하는 송신부;를 포함한다. According to an embodiment of the present invention, a cognitive radio transmitter includes: a spectrum sensing unit detecting availability information of subcarriers of a plurality of channels; A comparison unit comparing the available even subcarriers with the available odd subcarriers using the detected subcarrier availability information, and selecting a greater number of available subcarrier groups among the even subcarrier group and the odd subcarrier group; A subcarrier allocator for allocating a subcarrier group selected by the comparator to a subcarrier for input data transmission and modulating the input data to the assigned subcarrier; An IFFT processor for processing inverse fast fourier transform (IFFT) signals output from the subcarrier allocation unit; And a transmitter for transmitting the IFFT processed signal to the outside.
그리고, 상기 비교부는, 짝수 부반송파와 홀수 부반송파 중 사용 가능한 부반송파가 많은 그룹에 대한 사용 가능 부반송파 개수 정보 및 사용 가능한 부반송파의 채널 정보를 상기 부반송파 할당부로 전송한다. The comparison unit transmits the usable subcarrier number information and the channel information of the usable subcarrier for the group having many usable subcarriers among the even and odd subcarriers to the subcarrier assignment unit.
또한, 상기 부반송파 할당부는, OFDM(직교 주파수 분할 다중화 : Orthogonal Frequency Division Multiplexing) 기반으로 데이터를 할당된 부반송파에 변조하고, 변조된 신호를 멀티플렉싱할 수도 있다. In addition, the subcarrier allocator may modulate data to an allocated subcarrier based on OFDM (Orthogonal Frequency Division Multiplexing) and multiplex the modulated signal.
그리고, 상기 IFFT 처리부는, 상기 부반송파 할당부에서 출력되는 신호를 Split-radix FFT pruning 기법을 이용하여 IFFT처리할 수도 있다. The IFFT processor may perform IFFT processing on the signal output from the subcarrier allocation unit using a split-radix FFT pruning technique.
또한, 상기 IFFT 처리부는, Pruning matrix를 이용하여 Split-radix FFT pruning 기법을 수행할 수도 있다. Also, the IFFT processor may perform a split-radix FFT pruning technique using a pruning matrix.
그리고, 상기 IFFT 처리부는, Pruning matrix를 생성하는 Pruning matrix 생성부; 및 상기 생성된 pruning matrix를 이용하여 Split-radix FFT 처리를 수행하는 Split-radix FFT부;를 포함할 수도 있다. The IFFT processor may include a pruning matrix generator configured to generate a pruning matrix; And a split-radix FFT unit performing a split-radix FFT process using the generated pruning matrix.
또한, 상기 IFFT 처리부는, OFDM에 따른 하나의 심볼에 해당되는 신호 중 절반의 신호만을 출력할 수도 있다. The IFFT processor may output only half of signals corresponding to one symbol according to OFDM.
그리고, 상기 IFFT 처리부는, 하나의 부반송파의 하나의 심볼구간 T에 대해, 0 ~ T/2 구간동안 제1 데이터에 대한 절반의 심볼구간 신호를 전송하고, T/2 ~ T 구간동안 제2 데이터에 대한 절반의 심볼구간 신호를 전송할 수도 있다. The IFFT processor transmits half of the symbol interval signal for the first data for 0 to T / 2 intervals for one symbol interval T of one subcarrier, and the second data for the T / 2 to T intervals. One half of the symbol interval signal may be transmitted.
한편, 본 발명의 일 실시예에 따른, 인지 무선 수신기는, 하나의 부반송파의 하나의 심볼 주기에 두개의 심볼 데이터가 절반씩 포함된 신호를 수신하는 수신부; 및 상기 수신된 신호를 FFT 처리하는 FFT 처리부;를 포함한다. On the other hand, the cognitive radio receiver according to an embodiment of the present invention, the receiver for receiving a signal containing two symbol data half in one symbol period of one subcarrier; And an FFT processor configured to perform FFT processing on the received signal.
그리고, 상기 FFT 처리부는, 하나의 심볼 구간동안 수신된 신호를 절반으로 분리하고, 절반에 해당되는 수신신호를 하나의 심볼에 해당되는 신호로 복원할 수도 있다. The FFT processor may split a signal received during one symbol period into half, and restore the half received signal to a signal corresponding to one symbol.
또한, 상기 FFT 처리부는, 수신된 신호가 짝수 부반송파에 의해 수신된 경우, 심볼의 절반에 해당되는 신호를 2배로 처리하여 하나의 심볼에 해당되는 신호를 복원할 수도 있다. In addition, when the received signal is received by an even subcarrier, the FFT processor may double the signal corresponding to half of a symbol to restore a signal corresponding to one symbol.
그리고, 상기 FFT 처리부는, 수신된 신호가 홀수 부반송파에 의해 수신된 경우, 심볼의 절반에 해당되는 신호에
Figure PCTKR2011003254-appb-I000001
를 곱하여 2배로 처리함으로써 하나의 심볼에 해당되는 신호를 복원할 수도 있다.
In addition, when the received signal is received by an odd subcarrier, the FFT processor is configured to apply a signal corresponding to half of a symbol.
Figure PCTKR2011003254-appb-I000001
By multiplying by 2 times, the signal corresponding to one symbol may be restored.
또한, 상기 FFT 처리부는, 복원된 신호에 대해 Split-radix FFT pruning 기법을 이용하여 FFT 처리를 수행할 수도 있다. In addition, the FFT processing unit may perform FFT processing on the recovered signal using a split-radix FFT pruning technique.
그리고, 상기 FFT 처리부는, Pruning matrix를 이용하여 Split-radix FFT pruning 기법을 수행할 수도 있다. The FFT processor may perform a split-radix FFT pruning technique using a pruning matrix.
본 발명의 다양한 실시예에 따르면, 사용 가능한 짝수 부반송파와 사용 가능한 홀수 부반송파의 개수를 비교하고, 짝수 부반송파 그룹 및 홀수 부반송파 그룹 중 사용 가능한 개수가 많은 부반송파 그룹을 데이터 전송을 위한 부반송파로 선택하는 인지 무선 송신기 및 인지 무선 수신기를 제공할 수 있게 되어, 인지 무선 송신기는 OFDM에 따른 하나의 심볼에 해당되는 신호 중 절반의 신호만을 전송하여 데이터를 송신할 수 있게 된다. 따라서, 인지 무선 송신기는 나머지 절반의 심볼 구간에 대해서는 다른 심볼에 대한 신호를 추가로 출력 및 전송할 수 있게 되어, 데이터 전송률을 향상시킬 수 있게 된다.According to various embodiments of the present disclosure, a cognitive radio for comparing the number of usable even subcarriers and the number of usable odd subcarriers and selecting a greater number of usable subcarrier groups from among even and odd subcarrier groups as subcarriers for data transmission may be used. Since the transmitter and the cognitive radio receiver can be provided, the cognitive radio transmitter can transmit data by transmitting only half of signals corresponding to one symbol according to OFDM. Accordingly, the cognitive radio transmitter can further output and transmit signals for other symbols for the remaining half of the symbol period, thereby improving the data rate.
또한, 인지 무선 송신기는 Pruning matrix를 이용하여 Split-radix FFT pruning 기법을 구현하기 때문에 회로 설계를 간단하고 효율적으로 할 수 있게 된다.In addition, the cognitive radio transmitter implements a split-radix FFT pruning technique using a pruning matrix, thereby simplifying and efficiently designing a circuit.
도 11은 본 발명의 일 실시예에 따른, 인지 무선(CR : Cognitive Radio) 송신기의 구조를 도시한 도면,FIG. 11 illustrates a structure of a Cognitive Radio (CR) transmitter according to an embodiment of the present invention. FIG.
도 2는 본 발명의 일 실시예에 따른, 인지 무선(CR : Cognitive Radio) 수신기의 구조를 도시한 도면,2 is a diagram illustrating the structure of a Cognitive Radio (CR) receiver according to an embodiment of the present invention;
도 3은 본 발명의 일 실시예에 따른, 8개의 포인트를 가진 Split-radix FFT pruning 구조의 예를 도시한 도면, 3 illustrates an example of a split-radix FFT pruning structure having eight points, according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따른, Split-radix IFFT에 pruning을 구현하기 위하여 Pruning matrix가 이용된 FFT 처리부의 구조가 도시된 도면,4 is a diagram illustrating a structure of an FFT processor using a pruning matrix to implement pruning in a split-radix IFFT according to an embodiment of the present invention;
도 5는 본 발명의 일 실시예에 따른, SDF SRFFT BF 제어부의 회로 구조를 도시한 도면,5 is a diagram illustrating a circuit structure of an SDF SRFFT BF control unit according to an embodiment of the present invention;
도 6은 본 발명의 일 실시예에 따른, Pruning matrix 제어부(312)의 회로구조를 도시한 도면,6 is a diagram illustrating a circuit structure of a pruning matrix controller 312 according to an embodiment of the present invention.
도 7 내지 도 10은 본 발명의 일 실시예에 따른, IFFT 출력 신호를 그래프로 도시한 도면,7 to 10 are graphs illustrating an IFFT output signal according to an embodiment of the present invention;
도 11은 본 발명의 일 실시예에 따른, 다양한 종류의 1024-point FFT 알고리즘들의 복소 곰셈 개수를 비교한 그래프,11 is a graph comparing the number of complex cumulative numbers of various types of 1024-point FFT algorithms according to an embodiment of the present invention;
도 12는 본 발명의 일 실시예에 따른, 비어있는 부반송파의 확률밀도 분포를 도시한 도면이다.12 is a diagram illustrating a probability density distribution of empty subcarriers according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다. Hereinafter, with reference to the drawings will be described the present invention in more detail.
도 1은 본 발명의 일 실시예에 따른, 인지 무선(CR : Cognitive Radio) 송신기(100)의 구조를 도시한 도면이다. 도 1에 도시된 바와 같이, 인지 무선 송신기는 스펙트럼 센싱부(110), 비교부(120), 부반송파 할당부(130), IFFT(Inverse Fast Fourier Transform) 처리부(140), 및 송신부(150)를 포함한다.1 is a diagram illustrating a structure of a Cognitive Radio (CR) transmitter 100 according to an embodiment of the present invention. As shown in FIG. 1, the cognitive radio transmitter includes a spectrum sensing unit 110, a comparator 120, a subcarrier allocator 130, an inverse fast fourier transform (IFFT) processor 140, and a transmitter 150. Include.
스펙트럼 센싱부(110)는 현재 인지 무선 송신기(100)가 위치한 장소의 전파에 대한 스펙트럼 상태를 감지한다. 구체적으로, 스펙트럼 센싱부(110)는 다양한 채널의 부반송파들이 특정 기기에 의해 사용중인지 아닌지 여부를 감지한다. 그리고, 스펙트럼 센싱부(110)는 다른 기기에 의해 사용중이 아닌 부반송파를 사용 가능한 부반송파로 판단하게 된다. The spectrum sensing unit 110 detects a spectral state of a radio wave of a place where the currently recognized wireless transmitter 100 is located. Specifically, the spectrum sensing unit 110 detects whether subcarriers of various channels are being used by a specific device. The spectrum sensing unit 110 determines that the subcarrier is not in use by another device as an available subcarrier.
그리고, 스펙트럼 센싱부(110)는 다양한 채널의 부반송파의 사용가능 여부 정보를 비교부(120)로 출력하게 된다. The spectrum sensing unit 110 outputs availability information of subcarriers of various channels to the comparator 120.
인지 무선 통신기술에서 스펙트럼 센싱 기술은 1차 사용자에 의해 점유되어 사용되고 있는 부반송파인지 사용되지 않는 부반송파인지 여부를 판별하는 가장 핵심적인 주파수 자원 공유 기술에 해당된다. 스펙트럼 센싱 기술은 비협력 스펙트럼 감지 기법 및 협력 스펙트럼 감지 기법이 있다. In cognitive wireless communication technology, spectrum sensing technology is the most important frequency resource sharing technology for determining whether a subcarrier occupied or used by a primary user is an unused subcarrier. Spectrum sensing techniques include non-cooperative spectrum sensing and cooperative spectrum sensing.
이와 같이, 스펙트럼 센싱부(110)는 이와 같은 스펙트럼 검출 기법을 이용하여 다양한 채널의 부반송파들이 다른 기기에 의해 사용중인지 여부를 감지하게 된다. As such, the spectrum sensing unit 110 detects whether subcarriers of various channels are being used by other devices using the spectrum detection technique.
비교부(120)는 스펙트럼 센싱부(110)로부터 수신된 부반송파 사용 가능여부 정보를 이용하여, 사용 가능한 짝수 부반송파와 사용 가능한 홀수 부반송파의 개수를 비교한다. 여기에서, 짝수 부반송파는 낮은 주파수의 채널순으로 짝수번째에 해당되는 부반송파를 나타낸다. 그리고, 홀수 부반송파는 낮은 주파수의 채널 순으로 홀수번째에 해당되는 부반송파를 나타낸다. The comparator 120 compares the number of usable even subcarriers with the number of usable odd subcarriers using the subcarrier availability information received from the spectrum sensing unit 110. Here, the even subcarriers represent subcarriers corresponding to even numbers in the order of the channels of the lower frequencies. The odd subcarriers represent subcarriers corresponding to the odd numbered channels in order of the lowest frequency.
예를 들어, 짝수번째 부반송파들의 합은 아래의 수식 1과 같이 표현할 수 있다. For example, the sum of even subcarriers may be expressed as Equation 1 below.
[수식 1][Equation 1]
Figure PCTKR2011003254-appb-I000002
Figure PCTKR2011003254-appb-I000002
여기에서, 2m은 짝수번째의 부반송파에 실린 입력신호임을 나타내고 있다. Here, 2m represents an input signal carried on an even subcarrier.
또한, 홀수번째 부반송파들의 합은 아래의 수식 2와 같이 표현할 수 있다. In addition, the sum of the odd subcarriers can be expressed as Equation 2 below.
[수식 2][Formula 2]
Figure PCTKR2011003254-appb-I000003
Figure PCTKR2011003254-appb-I000003
여기에서, 2m+1은 홀수번째 부반송파에 실린 입력신호임을 나타내고 있다. Here, 2m + 1 represents an input signal carried on an odd subcarrier.
이와 같이, 비교부(120)는 사용 가능한 짝수 부반송파와 사용 가능한 홀수 부반송파의 개수를 비교하여, 짝수 부반송파와 홀수 부반송파 중 사용 가능한 부반송파의 개수가 더 많은 것이 어떤 것인지 판단한다. 그리고, 비교부(120)는 개수가 더 많은 그룹의 부반송파를 데이터 송신을 위한 부반송파로 선택하게 된다. As described above, the comparison unit 120 compares the number of usable even subcarriers with the number of usable odd subcarriers, and determines whether there are more available subcarriers among the even and odd subcarriers. The comparator 120 selects a subcarrier of a larger number as a subcarrier for data transmission.
그리고, 비교부(120)는 사용 가능한 부반송파의 개수가 많은 부반송파에 대한 정보를 부반송파 할당부(130)로 전송하게 된다. 여기에서, 비교부(120)는 짝수 부반송파와 홀수 부반송파 중 사용 가능한 부반송파가 많은 그룹에 대한 사용 가능 부반송파 개수 정보 및 사용 가능한 부반송파의 채널 정보를 부반송파 할당부(130)로 전송하게 된다. The comparator 120 transmits information about the subcarriers having a large number of usable subcarriers to the subcarrier allocator 130. Here, the comparator 120 transmits the usable subcarrier number information and the usable subcarrier channel information for the group having many usable subcarriers among the even subcarriers and the odd subcarriers to the subcarrier allocator 130.
예를 들어, 사용 가능한 짝수 부반송파가 3개이고 사용 가능한 홀수 부반송파가 2개인 경우, 비교부(120)는 송신을 위한 부반송파로 짝수 부반송파를 선택하고, 짝수 부반송파가 3개라는 정보 및 3개의 짝수 부반송파에 대한 각각의 채널 정보를 부반송파 할당부(130)로 전송하게 된다. For example, if there are three available even subcarriers and two available odd subcarriers, the comparator 120 selects an even subcarrier as a subcarrier for transmission, and the information that the even subcarriers are three and three even subcarriers. Each channel information on the subcarrier allocation unit 130 is transmitted.
부반송파 할당부(130)는 짝수 부반송파 및 홀수 부반송파 중 비교부(120)에 의해 선택된 부반송파 그룹을 입력 데이터 송신을 위한 부반송파로 할당한다. 그리고, 부반송파 할당부(130)는 입력 데이터를 각각의 부반송파에 변조하고, 멀티플렉싱하여 IFFT 처리부(140)로 전송하게 된다. The subcarrier allocator 130 assigns a subcarrier group selected by the comparator 120 among the even subcarriers and the odd subcarriers as subcarriers for input data transmission. The subcarrier allocator 130 modulates the input data to each subcarrier, multiplexes it, and transmits the multiplexed data to the IFFT processor 140.
이 때, 부반송파 할당부(130)는 OFDM(직교 주파수 분할 다중화 : Orthogonal Frequency Division Multiplexing) 기반으로 데이터를 할당된 부반송파에 변조한다. 그리고, 부반송파 할당부(130)는 OFDM을 기반으로 변조된 신호를 멀티플렉싱하게 된다. At this time, the subcarrier allocation unit 130 modulates data to the assigned subcarriers based on Orthogonal Frequency Division Multiplexing (OFDM). The subcarrier assignment unit 130 multiplexes the modulated signal based on OFDM.
IFFT 처리부(140)는 멀티플렉싱된 신호를 IFFT 처리를 하게 된다. 그리고, IFFT 처리부(140)는 데이터 송신을 위해 IFFT 처리된 신호를 출력하게 된다. 이 때, IFFT 처리부(140)는 IFFT의 연산량 감소를 위해 Split-radix FFT pruning 기법이 적용된다. 이 때, 본 실시예에 따른 IFFT 처리부(140)는 pruning을 위한 하드웨어 설계를 효율적으로 하기 위해, Pruning matrix를 이용하게 된다. 이와 같이, IFFT 처리부(140)는 Pruning matrix를 이용하여 Split-radix FFT pruning 기법을 구현하기 때문에 회로 설계를 간단하고 효율적으로 할 수 있게 된다. Pruning matrix의 구현 및 관련 회로에 관하여는 추후 상세히 설명하도록 한다. The IFFT processor 140 performs IFFT processing on the multiplexed signal. In addition, the IFFT processor 140 outputs an IFFT processed signal for data transmission. At this time, the IFFT processor 140 is applied with a split-radix FFT pruning technique to reduce the amount of calculation of the IFFT. In this case, the IFFT processor 140 according to the present embodiment uses a pruning matrix to efficiently design a hardware for pruning. As such, since the IFFT processor 140 implements the split-radix FFT pruning technique using the pruning matrix, circuit design can be simplified and efficiently. The implementation of the pruning matrix and related circuits will be described later in detail.
또한 IFFT 처리부(140)는 OFDM에 따른 하나의 심볼에 해당되는 신호 중 절반의 신호만을 출력한다. 홀수 부반송파만을 이용하거나 또는 짝수 반송파만을 이용하여 IFFT 처리된 송신 신호는 하나의 OFDM 심볼 신호 구간 T시간 중 절반이 대칭을 이루게 된다. 즉, IFFT 처리된 송신신호는 0 ~ T/2 시간에 해당되는 신호와 T/2 ~ T 시간에 해당되는 신호가 서로 대칭을 이루게 된다. 따라서, IFFT 처리부(140)가 0 ~ T/2 시간에 해당되는 신호만을 송신하더라도, 수신단에서는 대칭성을 이용하여 나머지 T/2 ~ T 시간에 해당되는 신호를 복원할 수 있게 된다. 따라서, IFFT 처리부(140)는 OFDM에 따른 하나의 심볼에 해당되는 신호 중 절반의 신호만을(즉, 0 ~ T/2 시간에 해당되는 신호만을) 출력한다.Also, the IFFT processor 140 outputs only half of signals corresponding to one symbol according to OFDM. The IFFT-treated transmission signal using only odd subcarriers or only even carriers is symmetrical in half of one OFDM symbol signal interval T time. That is, in the IFFT processed transmission signal, a signal corresponding to 0 to T / 2 time and a signal corresponding to T / 2 to T time are symmetrical with each other. Therefore, even if the IFFT processor 140 transmits only a signal corresponding to 0 to T / 2 time, the receiving end can restore the signal corresponding to the remaining T / 2 to T time using symmetry. Therefore, the IFFT processor 140 outputs only half of the signals corresponding to one symbol according to OFDM (that is, only signals corresponding to 0 to T / 2 time).
따라서, IFFT 처리부(140)는 하나의 심볼에 해당되는 신호를 0 ~ T/2 시간만 출력하고, 나머지 T/2 ~ T 시간 동안에는 다른 심볼에 해당되는 신호를 출력할 수 있게 된다. 이를 통해, IFFT 처리부(140)는 데이터 전송율을 증가시킬 수 있게 된다. Therefore, the IFFT processor 140 may output a signal corresponding to one symbol only for 0 to T / 2 time, and output a signal corresponding to another symbol for the remaining T / 2 to T time. Through this, the IFFT processor 140 may increase the data rate.
송신부(150)는 IFFT 처리부(140)에서 IFFT 처리된 신호를 외부 기기에 무선으로 송신하게 된다. The transmitter 150 wirelessly transmits the IFFT processed signal from the IFFT processor 140 to an external device.
이와 같은 구조의 인지 무선 송신기(100)는 데이터 송신을 위해 IFFT 처리된 신호를 출력하게 된다. 특히, 인지 무선 송신기(100)는 OFDM에 따른 하나의 심볼에 해당되는 신호 중 절반의 신호만을 출력하게 되므로, 나머지 심볼 구간에 대해서는 다른 심볼에 대한 신호를 추가로 출력 및 전송할 수 있게 된다. 또한, 인지 무선 송신기(100)는 Pruning matrix를 이용하여 Split-radix FFT pruning 기법을 구현하기 때문에 회로 설계를 간단하고 효율적으로 할 수 있게 된다.The cognitive radio transmitter 100 having such a structure outputs an IFFT processed signal for data transmission. In particular, since the cognitive radio transmitter 100 outputs only half of signals corresponding to one symbol according to OFDM, the cognitive radio transmitter 100 can additionally output and transmit signals for other symbols for the remaining symbol periods. In addition, since the cognitive radio transmitter 100 implements a split-radix FFT pruning technique using a pruning matrix, circuit design can be simplified and efficiently.
도 2는 본 발명의 일 실시예에 따른, 인지 무선(CR : Cognitive Radio) 수신기(200)의 구조를 도시한 도면이다. 도 2에 도시된 바와 같이, 인지 무선 수신기(200)는 수신부(210) 및 FFT 처리부(220)를 포함한다. 2 is a diagram illustrating a structure of a cognitive radio receiver (CR) 200 according to an embodiment of the present invention. As shown in FIG. 2, the cognitive radio receiver 200 includes a receiver 210 and an FFT processor 220.
수신부(210)는 인지 무선 송신기(100)로부터 IFFT 처리되어 전송되는 신호를 수신한다. 이때, 수신부(210)는 하나의 심볼 주기에 두개의 데이터가 포함된 신호를 수신하게 된다. The receiver 210 receives a signal that is IFFT-processed and transmitted from the cognitive radio transmitter 100. In this case, the receiver 210 receives a signal including two data in one symbol period.
FFT 처리부(220)는 수신된 신호를 FFT 처리하게 된다. FFT 처리부(220)는 우선 OFDM 심볼의 한 주기에 대해 절반씩 신호를 분리한다. 그리고, FFT 처리부(220)는 심볼의 절반에 해당되는 신호를 이용하여 하나의 심볼에 해당되는 신호로 복원하게 된다. The FFT processor 220 performs FFT processing of the received signal. The FFT processor 220 first separates signals by half for one period of an OFDM symbol. In addition, the FFT processor 220 restores a signal corresponding to one symbol using a signal corresponding to half of a symbol.
구체적으로, 수신된 신호가 짝수 부반송파에 의해 수신된 경우, FFT 처리부(220)는 심볼의 절반에 해당되는 신호를 2배로 처리하여 하나의 심볼에 해당되는 신호를 복원한다. 그리고, 수신된 신호가 홀수 부반송파에 의해 수신된 경우, FFT 처리부(220)는 심볼의 절반에 해당되는 신호에
Figure PCTKR2011003254-appb-I000004
를 곱하여 2배로 처리함으로써 하나의 심볼에 해당되는 신호를 복원하게 된다.
Specifically, when the received signal is received by an even subcarrier, the FFT processor 220 doubles a signal corresponding to half of a symbol and restores a signal corresponding to one symbol. In addition, when the received signal is received by an odd subcarrier, the FFT processor 220 corresponds to a signal corresponding to half of a symbol.
Figure PCTKR2011003254-appb-I000004
By multiplying by 2 times, the signal corresponding to one symbol is restored.
그 후에, FFT 처리부(220)는 복원된 신호에 대해 Split-radix FFT pruning 기법을 이용하여 FFT 처리를 수행하게 된다. 또한, FFT 처리부(220)는 Pruning matrix를 이용하여 Split-radix FFT pruning 기법을 수행하게 된다. Thereafter, the FFT processor 220 performs FFT processing on the restored signal using a split-radix FFT pruning technique. In addition, the FFT processor 220 performs a split-radix FFT pruning technique using a pruning matrix.
이와 같이, 인지 무선 수신기(200)는 하나의 부반송파에 대해 하나의 심볼 구간에 2개의 데이터를 수신하게 된다. 따라서, 인지 무선 수신기(200)는 데이터 수신율을 증가시킬 수 있게 된다. As described above, the cognitive radio receiver 200 receives two data in one symbol period for one subcarrier. Thus, the cognitive radio receiver 200 may increase the data reception rate.
도 3은 본 발명의 일 실시예에 따른, 8개의 포인트를 가진 Split-radix FFT pruning 구조의 예를 도시하고 있다. 3 shows an example of an eight-point Split-radix FFT pruning structure, in accordance with an embodiment of the invention.
Split-radix FFT pruning 기법은 연산량이 적은 Split-radix FFT 구조에서 최종 단계의 출력 X(k)를 구하기 위하여 필요한 값들만 연산하고 불필요한 연산들은 수행하지 않는 기법에 해당된다.The split-radix FFT pruning technique corresponds to a technique that computes only the values necessary to obtain the output X (k) of the final stage and does not perform unnecessary operations in a split-radix FFT structure having a small amount of computation.
도 3에 도시된 바와 같이, X(0)과 X(1)만이 연산의 대상이 될 경우, Split-radix FFT pruning 은 실선으로 된 부분의 연산과정만 처리하게 된다. 그리고, X(2) ~ X(7)의 값들을 구하는데 필요한 점선으로 된 부분의 연산과정은 처리하지 않게 된다.As shown in FIG. 3, when only X (0) and X (1) are subject to the calculation, Split-radix FFT pruning processes only the calculation process of the solid part. In addition, the calculation process of the dotted portion required to obtain the values of X (2) to X (7) is not processed.
이와 같이, Split-radix FFT의 N개의 출력 중에서 0이 아닌 임의의 L개의 0이 아닌 출력들만 구하려하고 하는 상태에서, L=2d, L<N=2r 이라고 가정하면, Split-radix FFT pruning 알고리즘은 Split-radix FFT구조에서 처음 d개의 단계들을 그대로 두고 남은 (r-d)개의 단계들을 개조시켜 (N-L)개의 0인 입력에 의하여 생기는 불필요한 계산을 수행하지 않게 하게 된다. As such, assuming that L = 2 d and L <N = 2 r in a state where only L nonzero outputs of N outputs of the Split-radix FFT are intended to be obtained, Split-radix FFT pruning The algorithm leaves the first d steps in the split-radix FFT structure and modifies the remaining (rd) steps so that they do not perform unnecessary calculations caused by (NL) zero inputs.
따라서, Split-radix FFT pruning 기법에 따르면, 인지 무선 송신기(100)는 0인 입력에 의해 생기는 불필요한 연산을 수행하지 않기 때문에, FFT의 연산 속도를 향상시킬 수 있게 된다. Therefore, according to the split-radix FFT pruning technique, since the cognitive radio transmitter 100 does not perform unnecessary operations generated by an input of zero, the computation speed of the FFT can be improved.
한편, IFFT 처리부(140)는 pruning matrix를 이용하여 회로가 설계되게 된다. 즉, IFFT 처리부(140)는 Split-radix IFFT에 pruning을 사용하기 위하여 Pruning matrix을 사용하였으며 Pruning matrix의 효율적인 하드웨어 설계를 통하여 Split-radix IFFT pruning를 구현하게 된다. IFFT와 FFT는 서로 역의 관계에 해당되므로, 이하에서는 FFT를 기반으로 설명한다. 하지만, Split-radix FFT pruning에 대한 설명을 참고하여, Split-radix IFFT pruning의 경우를 유추해낼 수 있음은 물론이다. 그리고, 인지 무선 기기는 인지 무선 송신기 또는 인지 무선 수신기를 나타낸다. In the meantime, the IFFT processor 140 may design a circuit using a pruning matrix. That is, the IFFT processor 140 uses a pruning matrix to use pruning for split-radix IFFT and implements split-radix IFFT pruning through efficient hardware design of the pruning matrix. Since the IFFT and the FFT are inversely related to each other, the following description will be based on the FFT. However, referring to the description of Split-radix FFT pruning, it is of course possible to infer the case of Split-radix IFFT pruning. And the cognitive radio device represents a cognitive radio transmitter or a cognitive radio receiver.
크기가 N(N = 2r)인 Split-radix FFT의 경우, 인지 무선 기기는 N×r 인 pruning matrix (Mi)를 생성한다. pruning matrix (Mi)의 개개의 원소들은 split-radix FFT 구조의 매개 노드들과 연관된다. 따라서, 인지 무선 기기는 매개 노드에서 회전인자를 곱하기 전에 대응되는 행렬의 원소 값을 체크하고, 그 노드에서 회전인자를 곱할 것인가 또는 곱하지 않을 것인가를 결정하게 된다. In the case of a split-radix FFT of size N (N = 2 r ), the cognitive radio device generates a pruning matrix (M i ) of N × r. Individual elements of the pruning matrix (M i ) are associated with the intermediate nodes of the split-radix FFT structure. Accordingly, the cognitive radio device checks the element values of the corresponding matrix before multiplying the rotation factors at each node and determines whether or not to multiply the rotation factors at the nodes.
Pruning matrix (Mi)는 0이 아닌 FFT의 출력 값들의 위치에 의하여 만들어진다. Pruning matrix의 마지막 열은 출력 값들과 연관된다. 따라서, 만약 출력 값이 0이 아니면 상응하는 행의 마지막 열의 원소 값은 1이 되고, 출력값이 0인 경우에 상응하는 행의 마지막 열의 원소 값은 0이 된다. The pruning matrix (M i ) is created by the position of the output values of the nonzero FFT. The last column of the pruning matrix is associated with the output values. Thus, if the output value is not 0, the element value of the last column of the corresponding row is 1, and if the output value is 0, the element value of the last column of the corresponding row is 0.
이와 같이, 인지 무선 기기는 마지막 열(즉, r번째 열)의 값들을 결정하고, 이 r번째 열로부터 (r-1) 번째 열의 값들을 구하게 된다. 인지 무선 기기는 먼저 마지막 열의 원소들을 2개씩 N/2개의 그룹으로 묶고, 매개 그룹의 원소 중에 값이 1인 원소가 있으면 r-1번째 열의 상응하는 두 원소들을 1로하고 아니면 0으로 한다. As such, the cognitive wireless device determines the values of the last column (ie, the r-th column) and obtains the values of the (r-1) th column from the r-th column. A cognitive radio device first groups the elements of the last column into two groups of N / 2, and if there is an element with a value of 1 among the elements of the intermediate group, the corresponding two elements of the r-1th columns are set to 1, or 0.
유사한 방식으로, 인지 무선 기기는 (r-k)번째 열을 생성하려면 (r-k+1)번째 열의 원소들을 2k개씩 N/2k개의 그룹으로 묶고 매개 그룹 원소들 중에 1이 있으면 번째 열의 상응하는 개의 원소들을 1로하고 아니면 0으로 하여 행렬을 만들게 된다. 이와 같은 과정에 의해 생성된 행렬이 pruning matrix가 된다.In a similar fashion, the cognitive radio device (rk) th column to generate the (rk + 1) th column, a second element enclosed by k by one N / 2 k groups if there is one in the group of parameters corresponding to the second column elements You can make m matrix with 1 elements or 0. The matrix generated by this process becomes a pruning matrix.
아래의 수식 3에 기재된 Mi은 도 3과 같이, X(0)과 X(1)만 0이 아닌 경우에 대한 Split-radix FFT pruning 구조에 상응하는 pruning matrix를 나타낸다.M i described in Equation 3 below represents a pruning matrix corresponding to the split-radix FFT pruning structure for the case where only X (0) and X (1) are not zero, as shown in FIG. 3.
[수식 3][Equation 3]
Figure PCTKR2011003254-appb-I000005
Figure PCTKR2011003254-appb-I000005
이하에서는, 도 4를 참고하여, Split-radix FFT에 pruning을 구현하기 위하여 Pruning matrix가 이용된 FFT 처리부(도 1의 IFFT 처리부(140)와 역관계에 해당됨)에 대해 설명한다. 도 4는 본 발명의 일 실시예에 따른, Split-radix IFFT에 pruning을 구현하기 위하여 Pruning matrix가 이용된 FFT 처리부의 구조가 도시된 도면이다. 도 4에 도시된 바와 같이, FFT 처리부는 Pruning matrix 생성부(310) 및 Split-radix FFT부(320)를 포함한다. Hereinafter, referring to FIG. 4, an FFT processor (which corresponds to an inverse relationship with the IFFT processor 140 of FIG. 1) in which a pruning matrix is used to implement pruning in a split-radix FFT will be described. 4 is a diagram illustrating a structure of an FFT processor using a pruning matrix to implement pruning in a split-radix IFFT according to an embodiment of the present invention. As shown in FIG. 4, the FFT processing unit includes a pruning matrix generator 310 and a split-radix FFT unit 320.
Pruning matrix 생성부(310)는 복수개의 Pruning matrix 제어부(312)들 및 지연부(314)로 구성된다. 이 때, Pruning matrix 제어부(312)들 및 지연부(314)들의 개수는 Pruning matrix의 열의 개수와 동일하다. 도 4에서 Pruning matrix 제어부(312)는 SDF(Single-path Delay Feedback) Pruning matrix로 기재되어 있다. The pruning matrix generator 310 includes a plurality of pruning matrix controllers 312 and a delay unit 314. At this time, the number of pruning matrix controllers 312 and delay units 314 is the same as the number of columns of the pruning matrix. In FIG. 4, the pruning matrix control unit 312 is described as a single-path delay feedback (SDF) pruning matrix.
도 4에 도시된 바와 같이 pruning matrix 생성부(310)는 pruning matrix의 마지막 열에 해당되는 가장 오른쪽에 위치한 Pruning matrix 제어부(312)에 스펙트럼 센싱 결과 부반송파의 사용가능 여부에 대한 데이터가 입력된다. 즉, 가장 오른쪽에 위치한 Pruning matrix 제어부(312)에는 대응되는 부반송파가 사용 가능한 경우 0이 아닌 값이 입력되고, 사용 불가 상태인 경우는 0이 입력된다. As shown in FIG. 4, the pruning matrix generator 310 inputs data on whether or not the subcarrier is available as a result of spectrum sensing to the pruning matrix controller 312 located at the far right of the last column of the pruning matrix. That is, a value other than 0 is input to the rightmost Pruning matrix controller 312 when a corresponding subcarrier is available, and 0 is input when the corresponding subcarrier is unavailable.
이를 통해, Pruning matrix 생성부(310)는 pruning matrix의 마지막 두 번째 열의 원소들이 생성되고 마지막 두 번째 열의 원소들로 마지막 세 번째 열의 원소들을 생성하며 이런 규칙에 따라 모든 열의 원소들을 생성한다. 그리고, 도 4에서, 이렇게 생성된 pruning matrix 원소들로 매개 노드에서 회전인자의 곱셈과정을 실행 할 것인가를 결정하는데, 도 4의 pruning matrix 생성부(310)에서는 이 과정을 AND 게이트(316)를 통하여 구현하였다. 만약 pruning matrix의 원소 값이 1이면 AND 게이트(316)의 출력 값은 회전인자 값(318)으로 되고, pruning matrix의 원소 값이 0이면 AND 게이트(316)의 출력 값은 0으로 되어 회전인자의 곱셈과정을 생략하게 된다. Through this, the pruning matrix generator 310 generates the elements of the last second column of the pruning matrix, generates the elements of the last third column with the elements of the last second column, and generates the elements of all the columns according to this rule. In addition, in FIG. 4, it is determined whether to multiply the rotation factor at each node using the generated pruning matrix elements. In the pruning matrix generator 310 of FIG. 4, the AND gate 316 is determined. Implemented through If the element value of the pruning matrix is 1, the output value of the AND gate 316 is the rotation factor value 318. If the element value of the pruning matrix is 0, the output value of the AND gate 316 is 0 and the rotation factor The multiplication process is omitted.
Split-radix FFT부(320)는 상기와 같이 처리된 회전인자 값(318)들을 split-radix FFT butterfly 연산 결과와 곱하게 된다. 도 4에 도시된 바와 같이, Split-radix FFT부(320)는 복수의 SDF SRFFT BF(Single-path Delay Feedback Split-radix FFT Butterfly) 제어부(322), 지연부(324), 및 곱셈기(326)들로 구성된다. 그리고, 가장 왼쪽의 SDF SRFFT BF 제어부(322)는 입력값인 x(n)에 split-radix FFT butterfly 연산을 수행하게 된다. 그리고, 왼쪽부터 차례대로 출력되는 split-radix FFT butterfly 연산 결과가 곱셈기(326)를 거쳐 회전인자 값(318)과 곱해지고, 다시 다음 SDF SRFFT BF 제어부(322)에 의해 split-radix FFT butterfly 연산을 반복하게 된다. 이와 같은 과정을 거쳐, Split-radix FFT부(320)는 입력된 x(n)으로부터 FFT가 수행된 X(k)를 출력하게 된다. The split-radix FFT unit 320 multiplies the rotation factor values 318 processed as described above with a split-radix FFT butterfly operation result. As shown in FIG. 4, the split-radix FFT unit 320 includes a plurality of SDF SRFFT BF (Single-path Delay Feedback Split-radix FFT Butterfly) control units 322, delay units 324, and multipliers 326. It consists of The leftmost SDF SRFFT BF controller 322 performs a split-radix FFT butterfly operation on an input value x (n). The result of the split-radix FFT butterfly operation, which is sequentially output from the left, is multiplied by the rotation factor value 318 through the multiplier 326, and then the split-radix FFT butterfly operation is performed by the next SDF SRFFT BF controller 322. Will repeat. Through this process, the split-radix FFT unit 320 outputs X (k) on which the FFT is performed from the input x (n).
*이 때, Pruning matrix 생성부(310)에 의해 처리된 회전인자 값(318)들이 split-radix FFT butterfly 연산 결과와 곱해지는 과정에서 동기화가 필요하며, Pruning matrix 생성부(310)의 지연부(314)와 Split-radix FFT부(320)의 지연부(324)에 의해 동기화가 실행된다. * At this time, synchronization is required in the process of multiplying the rotation factor values 318 processed by the pruning matrix generator 310 with the result of the split-radix FFT butterfly operation, and a delay unit of the pruning matrix generator 310. Synchronization is performed by the delay unit 324 of the split- radix FFT unit 320 and 314.
예를 들어, k번째 열(즉, k 번째 스테이지)에 대해 필요한 delay는 다음의 수식 4과 같이 표현된다. For example, the necessary delay for the kth column (that is, the kth stage) is expressed as in Equation 4 below.
[수식 4][Equation 4]
Figure PCTKR2011003254-appb-I000006
Figure PCTKR2011003254-appb-I000006
이하에서는, 도 5를 참고하여 SDF SRFFT BF 제어부(322)의 회로 구조에 대해 설명한다. 도 5는 본 발명의 일 실시예에 따른, SDF SRFFT BF 제어부(322)의 회로 구조를 도시한 도면이다. Hereinafter, a circuit structure of the SDF SRFFT BF control unit 322 will be described with reference to FIG. 5. 5 is a diagram illustrating a circuit structure of an SDF SRFFT BF controller 322 according to an embodiment of the present invention.
도 5에서, R-2 BF(400)는 radix-2 FFT Butterfly 연산을 수행한다. 도 5에 도시된 바와 같이, Split-Radix FFT구조는 일반적인 radix-2 FFT구조와 비교했을 때 덧셈과 뺄셈의 위치가 불규칙적이다. 따라서, 도 5에 도시된 바와 같이, 2개의 제어회로가 필요하다. 제1 제어회로(410)는 뺄셈의 실행 타이밍을 제어한다. 그리고, 제2 제어회로(420)는 덧셈의 실행 타이밍을 제어하게 된다. 이와 같이, SDF SRFFT BF 제어부(322)는 제1 제어회로(410) 및 제2 제어회로(420)를 이용하여 덧셈과 뺄셈의 실행을 제어하게 된다.In FIG. 5, the R-2 BF 400 performs a radix-2 FFT Butterfly operation. As shown in FIG. 5, the split-radix FFT structure has irregular positions of addition and subtraction as compared with a general radix-2 FFT structure. Thus, as shown in Fig. 5, two control circuits are required. The first control circuit 410 controls the execution timing of the subtraction. The second control circuit 420 then controls the execution timing of the addition. As such, the SDF SRFFT BF controller 322 controls the execution of addition and subtraction by using the first control circuit 410 and the second control circuit 420.
이하에서는, 도 6을 참고하여, Pruning matrix 제어부(312)의 회로 구조에 대해 설명한다. 도 6은 본 발명의 일 실시예에 따른, Pruning matrix 제어부(312)의 회로구조를 도시한 도면이다. Hereinafter, a circuit structure of the pruning matrix control unit 312 will be described with reference to FIG. 6. 6 is a diagram illustrating a circuit structure of the pruning matrix controller 312 according to an embodiment of the present invention.
도 6에 도시된 바와 같이, Pruning matrix 제어부(312)는 Pruning matrix의 원소들을 생성하기 위하여 매개 열의 원소들을 그룹으로 묶는다. 구체적으로, r개의 열중에 k번째 열은 2r-k+1개 원소씩 묶는다. 이렇게 묶은 그룹 중에 값이 1인 원소가 있으면 k-1번째의 열에 상응하는 원소들 값은 1로 되고 아니면 0으로 된다. 여기에서, 매개 그룹에 1이 있는가를 처리하는 과정은 도 6에 도시된 OR게이트(500)에 의해 실행된다. As shown in FIG. 6, the pruning matrix control unit 312 groups the elements of each row in order to generate the elements of the pruning matrix. Specifically, the kth column of the r columns bundles 2 r-k + 1 elements. If there is an element with a value of 1 in this group, the values of the elements in the k-1th column will be 1, or 0. Here, the process of processing whether there is 1 in each group is executed by the OR gate 500 shown in FIG.
상술한 바와 같이, Split-radix FFT에 pruning을 구현하기 위하여 Pruning matrix가 이용된 FFT 처리부는 도 4 내지 도 6의 회로에 의해 구현될 수 있다. 특히, Split-radix FFT의 처리회로 구현에 Pruning matrix가 이용되었기 때문에 더욱 간단한 회로를 설계할 수 있게 된다. 또한, 이와 같은 회로 구조에 기초하여 도 1의 IFFT 처리부(140)를 구현할 수도 있음은 물론이다. As described above, the FFT processor using the pruning matrix to implement pruning in the split-radix FFT may be implemented by the circuits of FIGS. 4 to 6. In particular, since the pruning matrix is used to implement the split-radix FFT processing circuit, a simpler circuit can be designed. In addition, the IFFT processor 140 of FIG. 1 may be implemented based on such a circuit structure.
이와 같이, 도 1의 인지 무선 송신기(100)는 스펙트럼 센싱부(110)에서 감지된 부반송파의 정보를 이용하여 짝수 부반송파와 홀수 부반송파의 개수를 비교한다. 그리고, 인지 무선 송신기(100)의 부반송파 할당부(130)는 숫자가 많은 짝수 또는 홀수 부반송파 그룹을 선택한 후, 선택된 부반송파 그룹의 각 부반송파에 대응되는 입력측에 전송 데이터를 할당하게 된다.As described above, the cognitive radio transmitter 100 of FIG. 1 compares the number of even subcarriers and odd subcarriers using information on subcarriers sensed by the spectrum sensing unit 110. The subcarrier allocation unit 130 of the cognitive radio transmitter 100 selects an even or odd subcarrier group having a large number and allocates transmission data to an input side corresponding to each subcarrier of the selected subcarrier group.
이하에서는, 도 7 내지 도 10를 참고하여, IFFT 출력 신호의 대칭성에 대해 설명한다. 도 7 내지 도 10은 본 발명의 일 실시예에 따른, IFFT 출력 신호를 그래프로 도시한 도면이다. Hereinafter, the symmetry of the IFFT output signal will be described with reference to FIGS. 7 to 10. 7 to 10 are graphs illustrating IFFT output signals according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른, 8 point IFFT의 한 심볼에 대한 짝수 부반송파의 sine항의 합에 대한 그래프를 도시한 도면이다. 도 7에서 가로축은 한 주기의 심볼을 나타낸다. 도 7에 도시된 바와 같이, 짝수 부반송파의 sine항의 합은 심볼 주기의 절반(x축값이 0.5인 지점)을 중심으로 부호가 바뀐 대칭임을 확인할 수 있다. 7 is a graph illustrating the sum of sine terms of even subcarriers for one symbol of an 8 point IFFT according to an embodiment of the present invention. In Figure 7, the horizontal axis represents a symbol of one period. As shown in FIG. 7, the sum of the sine terms of the even subcarriers may be symmetric changed from the half of the symbol period (the point at which the x-axis value is 0.5).
도 8은 본 발명의 일 실시예에 따른, 8 point IFFT의 한 심볼에 대한 짝수 부반송파의 cosine항의 합에 대한 그래프를 도시한 도면이다. 도 8에서 가로축은 한 주기의 심볼을 나타낸다. 도 8에 도시된 바와 같이, 짝수 부반송파의 cosine항의 합은 심볼 주기의 절반(x축값이 0.5인 지점)을 중심으로 대칭임을 확인할 수 있다. 8 is a graph showing the sum of cosine terms of even subcarriers for one symbol of an 8 point IFFT according to an embodiment of the present invention. In FIG. 8, the horizontal axis represents a symbol of one period. As shown in FIG. 8, the sum of cosine terms of even subcarriers may be symmetric about half of a symbol period (a point at which an x-axis value is 0.5).
도 9는 본 발명의 일 실시예에 따른, 8 point IFFT의 한 심볼에 대한 홀수 부반송파의 sine항의 합에 대한 그래프를 도시한 도면이다. 도 9에서 가로축은 한 주기의 심볼을 나타낸다. 도 9에 도시된 바와 같이, 홀수 부반송파의 sine항의 합은 심볼 주기의 절반(x축값이 0.5인 지점)을 중심으로 부호가 바뀐 대칭임을 확인할 수 있다. 9 is a graph illustrating the sum of sine terms of odd subcarriers for one symbol of an 8 point IFFT according to an embodiment of the present invention. In FIG. 9, the horizontal axis represents a symbol of one period. As shown in FIG. 9, it can be seen that the sum of the sine terms of odd subcarriers is symmetric with the sign changed about half of the symbol period (the point at which the x-axis value is 0.5).
도 10은 본 발명의 일 실시예에 따른, 8 point IFFT의 한 심볼에 대한 홀수 부반송파의 cosine항의 합에 대한 그래프를 도시한 도면이다. 도 10에서 가로축은 한 주기의 심볼을 나타낸다. 도 10에 도시된 바와 같이, 홀수 부반송파의 cosine항의 합은 심볼 주기의 절반(x축값이 0.5인 지점)을 중심으로 대칭임을 확인할 수 있다. FIG. 10 is a graph illustrating the sum of cosine terms of odd subcarriers for one symbol of an 8 point IFFT according to an embodiment of the present invention. In FIG. 10, the horizontal axis represents a symbol of one period. As shown in FIG. 10, the sum of cosine terms of odd subcarriers may be symmetric about half of a symbol period (a point at which an x-axis value is 0.5).
이와 같이, 짝수 부반송파만을 이용한 IFFT 출력 신호 또는 홀수 부반송파만을 이용한 IFFT 신호는 심볼 주기의 절반 지점을 중심으로 대칭이거나 부호가 바뀐 대칭인 것을 확인할 수 있다. 따라서, 인지 무선 송신기(100)가 홀수 부반송파만 또는 짝수 부반송파만을 이용하여 한 심볼에 대해 절반의 신호만 송신하더라도, 수신기는 한 심볼에 대한 절반의 신호를 이용하여 한 심볼에 해당되는 신호를 대칭성을 이용하여 복원해낼 수 있게 된다. As described above, it can be seen that an IFFT output signal using only even subcarriers or an IFFT signal using only odd subcarriers is symmetric about a half point of a symbol period or a sign is symmetrically changed. Therefore, even if the cognitive radio transmitter 100 transmits only half of a signal for one symbol using only odd subcarriers or only even subcarriers, the receiver uses half of the signal for one symbol to symmetry the signal corresponding to one symbol. Can be used to recover.
이하에서는, 이와 같은 대칭성에 대해, 수식을 이용하여 증명해보고자 한다. Hereinafter, this symmetry will be proved using a formula.
IDFT(Inverse Discrete Fourier Transform)은 다음과 같이 정의된다.Inverse Discrete Fourier Transform (IDFT) is defined as follows.
Figure PCTKR2011003254-appb-I000007
Figure PCTKR2011003254-appb-I000007
여기서
Figure PCTKR2011003254-appb-I000008
here
Figure PCTKR2011003254-appb-I000008
입력 신호가 복소수일 때 다음과 같이 전개된다.When the input signal is complex, it develops as follows.
Figure PCTKR2011003254-appb-I000009
이므로
Figure PCTKR2011003254-appb-I000009
Because of
Figure PCTKR2011003254-appb-I000010
Figure PCTKR2011003254-appb-I000010
상기 Xn값이 대한 sin항 및 cosin항에 대한 그래프가 도 7 내지 도 10의 그래프에 해당된다. The graphs for the sin and cosin terms for the X n value correspond to the graphs of FIGS. 7 to 10.
이하에서는 짝수 부반송파 및 홀수 부반송파에 대한 대칭성을 수식으로 증명해본다. Hereinafter, the symmetry of the even subcarriers and the odd subcarriers will be proved by the equation.
짝수 부반송파의 경우는 다음과 같다. For even subcarriers,
Figure PCTKR2011003254-appb-I000011
Figure PCTKR2011003254-appb-I000011
Figure PCTKR2011003254-appb-I000012
Figure PCTKR2011003254-appb-I000012
이와 같이, xp+N/2가 xp와 동일한 값이 되므로, 짝수 부반송파에 대해서는 IFFT 출력이 심볼의 절반이 되는 지점에 대해 대칭이 된다는 점을 확인할 수 있다. As described above, since x p + N / 2 becomes the same value as x p , it can be seen that the IFFT output is symmetric with respect to the half point of the symbol for even subcarriers.
홀수 부반송파의 경우는 다음과 같다. The odd subcarriers are as follows.
Figure PCTKR2011003254-appb-I000013
Figure PCTKR2011003254-appb-I000013
Figure PCTKR2011003254-appb-I000014
Figure PCTKR2011003254-appb-I000014
이와 같이, xp+N/2가 -xp와 동일한 값이 되므로, 홀수 부송파에 대해서는 IFFT 출력이 심볼의 절반이 되는 지점에 대해 부호가 바뀐 대칭이 된다는 점을 확인할 수 있다. As described above, since x p + N / 2 is equal to −x p , it can be confirmed that, for odd subcarriers, the sign is symmetric with respect to the point where the IFFT output is half of the symbol.
위에서 설명한 바와 같이 홀수 부반송파들만으로 또는 짝수 부반송파들만으로 구성된 입력은 IFFT 출력 신호가 대칭성을 가지고 반복되므로, 인지 무선 송신기(100)는 홀수 부반송파와 짝수 부반송파의 입력이 섞인 일반적인 IFFT 신호와 달리, 심볼의 반 주기의 신호만으로 데이터의 전송이 가능하게 된다. As described above, since an input consisting of only odd subcarriers or only even subcarriers is repeated with an symmetrical IFFT output signal, the cognitive radio transmitter 100 has a half period of a symbol unlike a general IFFT signal in which odd and even subcarriers are mixed with inputs. The data can be transmitted with only the signal of.
만약 비사용 부반송파(즉, 사용 가능한 부반송파)의 홀수 부반송파 갯수가 n, 짝수 부반송파 갯수가 m이라면(m >n 가정), 일반적인 IFFT로 처리한 OFDM 한 심볼 주기동안 보낼 수 있는 데이터의 숫자는 n+m 이다. If the number of odd subcarriers of an unused subcarrier (i.e. available subcarriers) is n and the number of even subcarriers is m (assuming m> n), then the number of data that can be sent during an OFDM symbol period processed by a typical IFFT is n + m.
하지만, 본 실시예에 따르면, m 이 더 큰 수이므로, 인지 무선 송신기(100)는 개수가 더 많은 그룹인 m개의 짝수 부반송파들만을 할당하여 데이터를 송신하게 된다. 이 때, 인지 무선 송신기(100)는 한 심볼의 데이터를 절반의 심볼 주기를 이용하여 전송하기 때문에, 한 심볼 주기동안 데이터를 2번 전송할 수 있게 된다. 따라서, 인지 무선 송신기(100)는 m개의 짝수 부반송파들을 이용하여 한 심볼주기동안 데이터를 2번 전송하기 때문에, 하나의 심볼주기동안 2m개의 데이터를 전송하게 된다. However, according to the present embodiment, since m is a larger number, the cognitive radio transmitter 100 transmits data by assigning only m even subcarriers which are a larger number group. At this time, since the cognitive radio transmitter 100 transmits data of one symbol using half symbol periods, the cognitive radio transmitter 100 can transmit data twice during one symbol period. Therefore, since the cognitive radio transmitter 100 transmits data twice during one symbol period using m even subcarriers, 2m data is transmitted during one symbol period.
이와 같이, 본 실시예에 따른 인지 무선 송신기(100)는 한 심볼주기 동안 2m개의 데이터를 전송한다. 반면, 일반적인 IFFT 처리를 통해 전송하는 경우, 송신기는 한 주기동안 n+m개의 데이터를 전송하게 된다. 여기에서, 2m > n+m이므로, 본실시예에 따른 인지 무선 송신기(100)의 한 심볼 주기에 전송하는 데이터의 수가 더 많은 것을 알 수 있다. As such, the cognitive radio transmitter 100 according to the present embodiment transmits 2m data during one symbol period. On the other hand, when transmitting through a general IFFT process, the transmitter transmits n + m data in one period. Here, since 2m> n + m, it can be seen that the number of data transmitted in one symbol period of the cognitive radio transmitter 100 according to the present embodiment is larger.
따라서, 인지 무선 송신기(100)는 짝수 부반송파만을 이용하거나 홀수 부반송파만을 이용함으로써 데이터 전송율을 향상시킬 수 있게 된다. Accordingly, the cognitive radio transmitter 100 may improve the data rate by using only even subcarriers or only odd subcarriers.
이와 같이, 송신단에서 짝수 또는 홀수 부반송파들을 이용하여 IFFT처리 된 송신신호는 OFDM 하나의 심볼 신호구간 T시간동안 0~T/2 시간에 해당하는 신호와 T/2~T시간에 해당하는 신호가 대칭성을 가지고 반복된다. 따라서 수신기에서는 송신부의 OFDM 하나의 심볼신호 전체를 수신하지 않고 0~T/2 시간에 해당하는 신호만 수신하여 FFT처리를 하게 된다. As described above, the IFFT-processed transmission signal using even or odd subcarriers in the transmitter has a symmetry between a signal corresponding to 0 to T / 2 time and a signal corresponding to T / 2 to T time during T time of one symbol signal interval of OFDM. Is repeated. Therefore, the receiver does not receive the entire OFDM symbol signal of the transmitter and receives only the signal corresponding to 0 to T / 2 time for FFT processing.
이 경우 FFT 사이즈는 1/2로 감소하여 연산시간이 종래의 방법보다 1/2로 감소하게 된다. 또한, 본 실시예에 따르면, 인지 무선 송신기(100)는 T/2~T시간에 다른 데이터를 연속하여 전송할 수 있으므로 데이터 전송율을 증가시킬 수 있게 된다. 이를 수식으로 입증하면 다음과 같다. In this case, the FFT size is reduced to 1/2 so that the computation time is reduced to 1/2 compared to the conventional method. In addition, according to the present embodiment, the cognitive radio transmitter 100 may continuously transmit other data in T / 2 to T time, thereby increasing the data rate. Proof of this is as follows.
짝수 부반송파의 경우:For even subcarriers:
Figure PCTKR2011003254-appb-I000015
Figure PCTKR2011003254-appb-I000015
Figure PCTKR2011003254-appb-I000016
Figure PCTKR2011003254-appb-I000016
Figure PCTKR2011003254-appb-I000017
Figure PCTKR2011003254-appb-I000017
Figure PCTKR2011003254-appb-I000018
Figure PCTKR2011003254-appb-I000018
Figure PCTKR2011003254-appb-I000019
Figure PCTKR2011003254-appb-I000019
Figure PCTKR2011003254-appb-I000020
Figure PCTKR2011003254-appb-I000020
위 수식에서 확인할 수 있듯이, 수신기에서의 DFT처리결과는 송신기에서 전송한 데이터 값의 1/2로 출력된다. 따라서, 수신기는 FFT 결과를 2배로 복원 처리하여 송신기로부터 수신한 데이터 값을 복원할 수 있게 된다. As can be seen from the above equation, the DFT processing result at the receiver is output as 1/2 of the data value transmitted from the transmitter. Accordingly, the receiver may recover the data value received from the transmitter by doubling the FFT result.
이하에서는, 홀수 부반송파의 경우를 설명한다. Hereinafter, the case of odd subcarriers will be described.
홀수 부반송파의 경우:For odd subcarriers:
Figure PCTKR2011003254-appb-I000021
Figure PCTKR2011003254-appb-I000021
Figure PCTKR2011003254-appb-I000022
Figure PCTKR2011003254-appb-I000022
Figure PCTKR2011003254-appb-I000023
Figure PCTKR2011003254-appb-I000023
Figure PCTKR2011003254-appb-I000024
Figure PCTKR2011003254-appb-I000024
Figure PCTKR2011003254-appb-I000025
Figure PCTKR2011003254-appb-I000025
Figure PCTKR2011003254-appb-I000026
Figure PCTKR2011003254-appb-I000026
상기 수식에서 확인할 수 있는 바와 같이, 홀수 부반송파의 경우, 수신기는 수신된 IFFT 신호에
Figure PCTKR2011003254-appb-I000027
를 곱하여 처리하면 짝수의 경우와 같은 과정을 거쳐 본래의 신호를 복원할 수 있다.
As can be seen from the above equation, in the case of odd subcarriers, the receiver is applied to the received IFFT signal.
Figure PCTKR2011003254-appb-I000027
By multiplying by, we can restore the original signal through the same process as in the even case.
상기 살펴본 바와 같이, 인지 무선 송신기(100)는 짝수 부반송파들만을 이용하거나 홀수 부반송파들만을 이용하여 심볼 구간의 절반에 해당되는 신호만을 전송하게 된다. 그러면, 수신기는 심볼 구간의 절반에 해당되는 신호를 이용하여 하나의 심볼 구간에 해당되는 신호를 복원하게 된다. As described above, the cognitive radio transmitter 100 transmits only a signal corresponding to half of a symbol period using only even subcarriers or only odd subcarriers. Then, the receiver recovers the signal corresponding to one symbol period by using the signal corresponding to half of the symbol period.
본 실시예에 따른 인지 무선 송신기(100)는 이와 같은 원리를 이용하여 Split-radix FFT pruning의 연산량을 감소할 수 있게 된다. 이에 대해, 도 11을 참고하여 설명한다. The cognitive radio transmitter 100 according to the present embodiment can reduce the amount of calculation of split-radix FFT pruning using this principle. This will be described with reference to FIG. 11.
도 11은 본 발명의 일 실시예에 따른, 다양한 종류의 1024-point FFT 알고리즘들의 복소 곰셈 개수를 비교한 그래프에 해당된다. 11 corresponds to a graph comparing the number of complex cumulative numbers of various types of 1024-point FFT algorithms according to an embodiment of the present invention.
이 그림에서 가로축은 0이 아닌 출력의 개수를 표시하고 세로축은 복소 곱셈의 개수를 표시한다. L의 개수가 적을수록 모든 Pruning 알고리즘이나 Transform decomposition 알고리즘은 일반적인 FFT알고리즘보다 연산량이 훨씬 적고 split-radix FFT pruning 기법이 다른 알고리즘보다 연산량이 적다는 것을 볼 수 있다. In this figure, the horizontal axis shows the number of nonzero outputs, and the vertical axis shows the number of complex multiplications. As the number of L decreases, all the Pruning algorithms and Transform decomposition algorithms have much less computation than the general FFT algorithm, and the split-radix FFT pruning technique has less computation than other algorithms.
또한 이 그래프로부터 radix-2 FFT pruning기법은 radix-2 FFT를 sub-transform에 적용한 transform decomposition 보다 연산량이 적다는 것을 볼 수 있다. 때문에 이 그래프에는 비록 split-radix FFT pruning의 복소 곱셈의 개수가 평균값으로 그려져 있지만 split-radix FFT pruning은 split-radix FFT를 sub-transform에 사용한 transform decomposition보다 연산량이 적다는 것을 알 수 있다. The graph also shows that the radix-2 FFT pruning technique requires less computation than the transform decomposition using radix-2 FFTs on sub-transforms. Therefore, although the graph shows the average number of complex multiplications of the split-radix FFT pruning, the split-radix FFT pruning shows less computation than the transform decomposition using the split-radix FFT for the sub-transform.
즉, 도 11에 의해, 본 실시예에 따른, split-radix FFT pruning 기법이 연산량이 가장 적은 것을 확인할 수 있게 된다. That is, it can be seen from FIG. 11 that the split-radix FFT pruning technique according to the present embodiment has the least amount of calculation.
이하에서는, 도 12를 참고하여, 비어있는 부반송파(즉, 사용 가능한 부반송파)의 확률밀도 분포에 대해 설명한다. 도 12는 본 발명의 일 실시예에 따른, 비어있는 부반송파의 확률밀도 분포를 도시한 도면이다. Hereinafter, a probability density distribution of empty subcarriers (that is, usable subcarriers) will be described with reference to FIG. 12. 12 is a diagram illustrating a probability density distribution of empty subcarriers according to an embodiment of the present invention.
일반적으로 OFDM기반 인지 무선(cognitive radio) 기술에서 비어있는 부반송파의 개수는 도 12의 (a)와 같이 비어있는 부반송파의 평균 개수가 m인 가우시안 분포(정규분포)를 갖는다. 그리고 스펙트럼 센싱 후 비어있는 부반송파의 최대 개수가 m일 때, 비어있는 짝수 부반송파의 개수분포는 도 12의 (b)와 같이 평균개수가 m/2인 0에서 m사이에 균일분포를 갖는다. In general, in the OFDM-based cognitive radio technology, the number of empty subcarriers has a Gaussian distribution (normal distribution) in which the average number of empty subcarriers is m as shown in FIG. When the maximum number of empty subcarriers after m is sensed, m, the number distribution of empty even subcarriers has a uniform distribution between 0 and m having an average number of m / 2 as shown in FIG.
본 실시예에 따르면, 홀수 부반송파 개수와 짝수 부반송파 개수를 비교한 후 개수가 많은 그룹의 부반송파들을 선택하여, 하나의 심볼 구간에 2번에 거쳐 데이터를 전송할 수 있게 된다. 따라서, 본 실시예에 따른 경우, 도 12의 (c)와 같이, 비어있는 부반송파의 개수는 m/2보다 크며, 평균값이 3m/4이고, m/2에서 m까지의 균일한 분포특성을 갖게 된다. According to the present embodiment, after comparing the number of odd subcarriers and the number of even subcarriers, a plurality of groups of subcarriers are selected and data can be transmitted twice in one symbol period. Therefore, according to the present embodiment, as shown in (c) of FIG. 12, the number of empty subcarriers is larger than m / 2, the average value is 3m / 4, and has a uniform distribution characteristic from m / 2 to m. do.
즉, 스펙트럼 센싱한 후 비어있는 부반송파를 이용하여 데이터를 전송하는 일반적인 방식(도 12의 (b))보다, 본 실시예에 따른, 개수가 많은 짝수 또는 홀수 부반송파그룹을 선택하여 OFDM 심볼의 한 주기 동안 데이터를 2번 전송을 하는 방식(도 12의 (c))을 이용할 경우 평균 데이터 전송율이 향상되는 것을 확인할 수 있게 된다. That is, one period of an OFDM symbol is selected by selecting a large number of even or odd subcarrier groups according to the present embodiment, rather than the general scheme of transmitting data using empty subcarriers after spectrum sensing (FIG. 12 (b)). In the case of using the method of transmitting data twice during the period (Fig. 12 (c)), it can be seen that the average data rate is improved.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although the preferred embodiment of the present invention has been shown and described above, the present invention is not limited to the specific embodiments described above, but the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
본 발명은 인지 무선 송신기 및 인지 무선 수신기에 관한 것으로, 전파 환경에 적합하게 무선 통신을 수행하는 인지 무선 송신기 및 인지 무선 수신기에 산업상 이용가능하다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cognitive radio transmitter and a cognitive radio receiver, and is industrially applicable to a cognitive radio transmitter and a cognitive radio receiver for performing radio communication suitably for a radio wave environment.

Claims (14)

  1. 복수개의 채널의 부반송파들의 사용가능 여부 정보를 검출하는 스펙트럼 센싱부;A spectrum sensing unit detecting availability information of subcarriers of a plurality of channels;
    상기 검출된 부반송파 사용 가능여부 정보를 이용하여, 사용 가능한 짝수 부반송파와 사용 가능한 홀수 부반송파의 개수를 비교하고, 짝수 부반송파 그룹 및 홀수 부반송파 그룹 중 사용 가능한 개수가 많은 부반송파 그룹을 선택하는 비교부;A comparison unit comparing the available even subcarriers with the available odd subcarriers using the detected subcarrier availability information, and selecting a greater number of available subcarrier groups among the even subcarrier group and the odd subcarrier group;
    상기 비교부에 의해 선택된 부반송파 그룹을 입력 데이터 송신을 위한 부반송파로 할당하고, 입력 데이터를 할당된 부반송파에 변조하는 부반송파 할당부;A subcarrier allocator for allocating a subcarrier group selected by the comparator to a subcarrier for input data transmission and modulating the input data to the assigned subcarrier;
    상기 부반송파 할당부에서 출력되는 신호를 IFFT(Inverse Fast Fourier Transform) 처리하는 IFFT 처리부; 및An IFFT processor for processing inverse fast fourier transform (IFFT) signals output from the subcarrier allocation unit; And
    상기 IFFT 처리된 신호를 외부로 송신하는 송신부;를 포함하는 인지 무선(cognitive Radio) 송신기.A cognitive radio transmitter comprising a; transmitter for transmitting the IFFT processed signal to the outside.
  2. 제1항에 있어서, The method of claim 1,
    상기 비교부는, The comparison unit,
    짝수 부반송파와 홀수 부반송파 중 사용 가능한 부반송파가 많은 그룹에 대한 사용 가능 부반송파 개수 정보 및 사용 가능한 부반송파의 채널 정보를 상기 부반송파 할당부로 전송하는 것을 특징으로 하는 인지 무선 송신기.A cognitive radio transmitter, characterized by transmitting the usable subcarrier number information and the channel information of the usable subcarrier to the subcarrier allocator for a group with a large number of usable subcarriers out of even and odd subcarriers.
  3. 제1항에 있어서, The method of claim 1,
    상기 부반송파 할당부는,The subcarrier assignment unit,
    OFDM(직교 주파수 분할 다중화 : Orthogonal Frequency Division Multiplexing) 기반으로 데이터를 할당된 부반송파에 변조하고, 변조된 신호를 멀티플렉싱하는 것을 특징으로 하는 인지 무선 송신기.A cognitive radio transmitter characterized by modulating data on an allocated subcarrier based on Orthogonal Frequency Division Multiplexing (OFDM) and multiplexing the modulated signal.
  4. 제1항에 있어서, The method of claim 1,
    상기 IFFT 처리부는, The IFFT processing unit,
    상기 부반송파 할당부에서 출력되는 신호를 Split-radix FFT pruning 기법을 이용하여 IFFT처리하는 것을 특징으로 하는 인지 무선 송신기.And a IFFT process of the signal output from the subcarrier allocation unit using a split-radix FFT pruning technique.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 IFFT 처리부는,The IFFT processing unit,
    Pruning matrix를 이용하여 Split-radix FFT pruning 기법을 수행하는 것을 특징으로 하는 인지 무선 송신기.A cognitive radio transmitter, characterized in that to perform a split-radix FFT pruning technique using a pruning matrix.
  6. 제5항에 있어서, The method of claim 5,
    상기 IFFT 처리부는,The IFFT processing unit,
    Pruning matrix를 생성하는 Pruning matrix 생성부; 및 A pruning matrix generator for generating a pruning matrix; And
    상기 생성된 pruning matrix를 이용하여 Split-radix FFT 처리를 수행하는 Split-radix FFT부;를 포함하는 것을 특징으로 하는 인지 무선 송신기.And a split-radix FFT unit for performing a split-radix FFT process using the generated pruning matrix.
  7. 제1항에 있어서, The method of claim 1,
    상기 IFFT 처리부는,The IFFT processing unit,
    OFDM에 따른 하나의 심볼에 해당되는 신호 중 절반의 신호만을 출력하는 것을 특징으로 하는 인지 무선 송신기.Cognitive radio transmitter, characterized in that for outputting only half of the signal corresponding to one symbol according to the OFDM.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 IFFT 처리부는,The IFFT processing unit,
    하나의 부반송파의 하나의 심볼구간 T에 대해, 0 ~ T/2 구간동안 제1 데이터에 대한 절반의 심볼구간 신호를 전송하고, T/2 ~ T 구간동안 제2 데이터에 대한 절반의 심볼구간 신호를 전송하는 것을 특징으로 하는 인지 무선 송신기.For one symbol interval T of one subcarrier, half the symbol interval signal for the first data is transmitted during the 0 to T / 2 period, and half the symbol interval signal for the second data for the T / 2 ~ T period. A cognitive radio transmitter, characterized in that for transmitting.
  9. 하나의 부반송파의 하나의 심볼 주기에 두개의 심볼 데이터가 절반씩 포함된 신호를 수신하는 수신부; 및A receiving unit for receiving a signal in which two symbol data are halved in one symbol period of one subcarrier; And
    상기 수신된 신호를 FFT 처리하는 FFT 처리부;를 포함하는 인지 무선 수신기.And a FFT processor for FFT processing the received signal.
  10. 제9항에 있어서, The method of claim 9,
    상기 FFT 처리부는, The FFT processing unit,
    하나의 심볼 구간동안 수신된 신호를 절반으로 분리하고, 절반에 해당되는 수신신호를 하나의 심볼에 해당되는 신호로 복원하는 것을 특징으로 하는 인지 무선 수신기.A cognitive radio receiver characterized in that the signal received during one symbol period is divided into half, and the received signal corresponding to half is restored to a signal corresponding to one symbol.
  11. 제10에 있어서, The method according to claim 10,
    상기 FFT 처리부는,The FFT processing unit,
    수신된 신호가 짝수 부반송파에 의해 수신된 경우, 심볼의 절반에 해당되는 신호를 2배로 처리하여 하나의 심볼에 해당되는 신호를 복원하는 것을 특징으로 하는 인지 무선 수신기.If the received signal is received by an even subcarrier, the cognitive radio receiver, characterized in that to recover the signal corresponding to one symbol by doubling the signal corresponding to half of the symbol.
  12. 제10 있어서,In the tenth aspect,
    상기 FFT 처리부는,The FFT processing unit,
    수신된 신호가 홀수 부반송파에 의해 수신된 경우, 심볼의 절반에 해당되는 신호에
    Figure PCTKR2011003254-appb-I000028
    를 곱하여 2배로 처리함으로써 하나의 심볼에 해당되는 신호를 복원하는 것을 특징으로 하는 인지 무선 수신기.
    When the received signal is received by an odd subcarrier, it corresponds to a signal corresponding to half of the symbol.
    Figure PCTKR2011003254-appb-I000028
    Cognitive radio receiver, characterized in that to recover the signal corresponding to one symbol by multiplying by two times.
  13. 제10항에 있어서, The method of claim 10,
    상기 FFT 처리부는,The FFT processing unit,
    복원된 신호에 대해 Split-radix FFT pruning 기법을 이용하여 FFT 처리를 수행하는 것을 특징으로 하는 인지 무선 수신기.A cognitive radio receiver for performing a FFT process on the recovered signal using a split-radix FFT pruning technique.
  14. 제13항에 있어서, The method of claim 13,
    상기 FFT 처리부는,The FFT processing unit,
    Pruning matrix를 이용하여 Split-radix FFT pruning 기법을 수행하는 것을 특징으로 하는 인지 무선 수신기.A cognitive radio receiver, which performs a split-radix FFT pruning technique using a pruning matrix.
PCT/KR2011/003254 2010-09-30 2011-05-02 Cognitive radio transmitter and cognitive radio receiver for improving data transfer rate WO2012043954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100095383A KR101190053B1 (en) 2010-09-30 2010-09-30 Cognitive radio transmitter and receiver for improving data transfer rate
KR10-2010-0095383 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043954A1 true WO2012043954A1 (en) 2012-04-05

Family

ID=45893367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003254 WO2012043954A1 (en) 2010-09-30 2011-05-02 Cognitive radio transmitter and cognitive radio receiver for improving data transfer rate

Country Status (2)

Country Link
KR (1) KR101190053B1 (en)
WO (1) WO2012043954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711593A (en) * 2020-06-22 2020-09-25 西安电子科技大学 OFDM/OQAM-based modulation method for visible light communication system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101984015B1 (en) 2016-12-29 2019-09-03 공병성 Bidet device
KR20190089270A (en) 2018-01-22 2019-07-31 공병성 Establishment structure of steam generator
KR102095904B1 (en) 2018-12-05 2020-04-01 공병성 Steam generator
KR102241154B1 (en) 2020-07-13 2021-04-16 공병성 Bidet device for mugwort fumigation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070051675A (en) * 2005-11-14 2007-05-18 한국전자통신연구원 Method for dynamic resource allocation method in ofdma-based cognitive radio system and forward link frame structure thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070051675A (en) * 2005-11-14 2007-05-18 한국전자통신연구원 Method for dynamic resource allocation method in ofdma-based cognitive radio system and forward link frame structure thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAKESH RAJBANSHI ET AL.: "An Efficient Implementation of NC-OFDM Transceivers for Cognitive Radios.", IEEE COGNITIVE RADIO ORIENTED WIRELESS NETWORKS AND COMMUNICATIONS, 8 June 2006 (2006-06-08), pages 1 - 5, XP031091943 *
YIHU XU ET AL.: "Split-Radix FFT Pruning for the Reduction of Computational Complexity in OFDM Based Cognitive Radio System.", PROCEEDINGS OF 2010 IEEE INTERNATIONAL SYMPOSIUM ON ISCAS, 30 May 2010 (2010-05-30), pages 69 - 72. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711593A (en) * 2020-06-22 2020-09-25 西安电子科技大学 OFDM/OQAM-based modulation method for visible light communication system

Also Published As

Publication number Publication date
KR101190053B1 (en) 2012-10-16
KR20120033709A (en) 2012-04-09

Similar Documents

Publication Publication Date Title
WO2015093892A1 (en) Method and apparatus for terminal cell search in beamforming system
WO2012043954A1 (en) Cognitive radio transmitter and cognitive radio receiver for improving data transfer rate
WO2009116769A1 (en) Method of transmitting reference signal and transmitter using the same
WO2018231024A1 (en) Method for generating srs sequence and terminal therefor
WO2016182288A1 (en) Apparatus and mehtod for synchronization signal detection
WO2020231161A1 (en) Method and apparatus for transmitting and receiving system information block in wireless communication system
WO2011049388A2 (en) Method and base station for transmitting sa-preamble and method and user equipment for receiving sa-preamble
WO2009134058A2 (en) Apparatus and method for initialization of a scrambling sequence for a downlink reference signal in a wireless network
WO2020040552A1 (en) Method and device for obtaining information about communication entity operating in new band in wireless lan system
WO2016064247A1 (en) Method and apparatus for detecting inter-cell interference in mobile communication system
WO2015156520A1 (en) Method for transmitting data and device using same
CN101228759A (en) Method for transmitting OFDM signal, ofdm transmitter and ofdm receiver
WO2010002228A2 (en) Apparatus and method for generating permutation sequence in a broadband wireless communication system
WO2010147445A2 (en) Cell searching method and apparatus in multi-carrier system
WO2015020382A1 (en) Transmitter, receiver, and controlling methods thereof
WO2010071311A2 (en) Method for transmitting pilot symbols in downlink multiple-input multiple-output system
WO2020189933A1 (en) Method and device for allocating resource in wireless communication system
WO2010002153A2 (en) Apparatus for transmitting a synchronous signal in a multi-antenna system
WO2018066766A1 (en) Method and apparatus for estimating channel in communication system
WO2016163748A1 (en) Device and method for detecting transmission signal
WO2019143149A1 (en) Method and device for transmitting/receiving signal in wireless communication system
WO2012118360A2 (en) Fast fourier transform processor and fast fourier transform method for odfm system
WO2016018032A1 (en) Method and apparauts for performing sequence synchronization in mobile communication system
WO2014069913A1 (en) Interference alignment method and apparatus in wireless communication system
WO2010050774A2 (en) Method for transmitting signals in multi-carrier radio transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829460

Country of ref document: EP

Kind code of ref document: A1