WO2012043903A1 - 접합공정을 이용한 고체산화물 연료전지 스택의 분리판 - Google Patents

접합공정을 이용한 고체산화물 연료전지 스택의 분리판 Download PDF

Info

Publication number
WO2012043903A1
WO2012043903A1 PCT/KR2010/006670 KR2010006670W WO2012043903A1 WO 2012043903 A1 WO2012043903 A1 WO 2012043903A1 KR 2010006670 W KR2010006670 W KR 2010006670W WO 2012043903 A1 WO2012043903 A1 WO 2012043903A1
Authority
WO
WIPO (PCT)
Prior art keywords
manifold
plate
anode
cathode
flow path
Prior art date
Application number
PCT/KR2010/006670
Other languages
English (en)
French (fr)
Inventor
이태희
유영성
최미화
최진혁
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2012043903A1 publication Critical patent/WO2012043903A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator plate of a solid oxide fuel cell stack using a bonding process, and more particularly, after processing through a manifold and a flow path shape by using an etching or press working method on a plurality of thin metal plates,
  • the present invention relates to a separator of a flat plate type solid oxide fuel cell stack in which a manifold and a flow path are formed by only joining metal plates sequentially.
  • a fuel cell is an energy converter that converts chemical energy of a fuel into electrical energy through an electrochemical oxidation of the fuel. Since there is no intermediate step in the energy conversion process, it is more efficient than the existing power generation method, and when using hydrogen as fuel, it is an eco-friendly power generation method with no pollution other than water.
  • SOFCs Solid Oxide Fuel Cells
  • SOFCs are made of ceramics with electrolytes and components and operate at high temperatures of 600 to 1000 ° C. Fuel is available.
  • cogeneration and combined cycle power generation is easy, and research is being conducted into household, distributed power generation systems, and large power generation systems.
  • the fuel cell is composed of an anode and a cathode on both sides of the electrolyte.
  • the electrolyte here should only have ionic conductivity and no electronic conductivity.
  • oxygen ions move from the cathode to the anode through the electrolyte to oxidize the fuel.
  • electrons are generated to move to the cathode through an external circuit to ionize oxygen again.
  • the oxidation reaction at the anode, the reduction reaction of oxygen at the cathode, and the movement of oxygen ions through the electrolyte are generated continuously.
  • the separator serves to electrically connect the unit cells and provides a flow path for uniformly supplying the unit cells without mixing the two gases supplied to the anode and the cathode.
  • the ceramic separator has low mechanical strength and low thermal conductivity, making it difficult to sufficiently discharge heat generated from the fuel cell reaction. In addition, it is not easy to sinter in a compact structure in order to prevent gas mixing between the air electrode and the fuel electrode.
  • an object of the present invention is to solve the problems of the prior art as described above, by forming a manifold and a flow path at the same time on the metal separator plate to achieve a uniform gas supply inside the solid oxide fuel cell stack, It is to provide a solid oxide fuel cell stack separator using a bonding process that can reduce the time and cost of fold and flow path processing, and reduce the processing deformation of the metal separator.
  • the present invention is the anode inlet manifold and anode outlet manifold are formed facing each other, the cathode inlet manifold and cathode outlet manifold are formed facing each other
  • a fuel electrode passage plate having a fuel electrode inlet gas passage and a fuel electrode outlet gas passage in parallel to the longitudinal direction at portions spaced inwardly from the manifold;
  • the anode inlet manifold flow path and the anode outlet manifold flow path are joined to the lower surface of the anode flow path plate and correspond to the anode inlet and outlet manifold, and are formed to extend to the anode inlet and outlet flow path, respectively.
  • An air cathode flow path plate formed to be parallel to the horizontal direction; And a cathode plate joined to a lower surface of the cathode flow path plate, the manifold having the same size and shape as the manifold of the cathode flow path plate, and having a communication hole formed so that the cathode communicates with the cathode inlet / outlet passage.
  • the manifold and the flow path formed in the anode flow path plate, the anode manifold plate, the intermediate manifold plate, the cathode flow path plate, and the cathode plate may be manufactured by joining the metal plate through the metal plate by etching or pressing.
  • the manifold and the flow path formed in the anode flow path plate, the anode manifold plate, the intermediate manifold plate, the cathode flow path plate, and the cathode plate are formed to face each other in a diagonal direction, and have a cross flow shape.
  • the size of the cathode inlet / outlet manifold of the anode channel plate may be greater than or equal to that of the cathode inlet / outlet manifold of the anode manifold plate.
  • the size of the anode entrance and exit manifold of the cathode plate is greater than or equal to that of the anode entrance and exit manifold of the cathode passage plate.
  • the anode microfluidic plate may further include an anode microfluidic plate which is bonded to an upper surface of the anode flow path plate and has a plurality of anode microchannels formed in a direction perpendicular to the anode inlet flow path and the anode outlet flow path.
  • the cathode microfluidic plate is further bonded to a lower surface of the cathode plate and has a plurality of cathode microchannels formed in a direction perpendicular to the cathode inlet oil passage and the cathode outlet oil passage.
  • the present invention forms a manifold and a gas flow path by sequentially joining the processed metal plate after processing through a plurality of metal plates through the manifold and the gas flow path by using an etching or a press. It is characterized by.
  • the present invention after the manifold and the gas flow through the process using an etching or a press on a plurality of metal plate, and then processed to join the metal plate in sequence, the manifold of the metal plate A plurality of left and right sides are formed in a parallel direction, and the gas flow passages extend inwardly from the manifold.
  • the present invention after processing the flow path and the manifold shape so as to completely penetrate the metal plate by using a press or etching method on a relatively thin metal plate by joining each plate in the same manner as diffusion bonding to produce a separation plate during machining There is no effect of warpage caused by thermal deformation and residual stresses, so that the electrical contact and gas sealability of the planar solid oxide fuel cell stack can be improved.
  • FIG. 1 is an exploded perspective view of a solid oxide fuel cell stack separator according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a fuel electrode flow path plate of a solid oxide fuel cell stack separator according to the present invention
  • FIG. 3 is a plan view illustrating a cathode manifold plate of a solid oxide fuel cell stack separator according to the present invention
  • Figure 4 is a plan view showing an intermediate manifold plate of the solid oxide fuel cell stack separator according to the present invention.
  • FIG. 5 is a plan view illustrating a cathode flow path plate of the solid oxide fuel cell stack separator according to the present invention.
  • FIG. 6 is a bottom view showing a cathode plate of a solid oxide fuel cell stack separator according to the present invention.
  • FIG. 7 is a plan view illustrating the anode microchannel of the solid oxide fuel cell stack separator according to the present invention.
  • FIG. 8 is a plan view illustrating a cathode microfluidic plate of a solid oxide fuel cell stack separator according to the present invention.
  • Figure 1 is an exploded perspective view of a solid oxide fuel cell stack separator according to an embodiment of the present invention.
  • the separator plate 100 of the solid oxide fuel cell stack according to the present invention is the anode flow path plate 200, the anode manifold plate 300, the intermediate manifold plate 400, the cathode flow path plate 500, The cathode plate 600, the anode microfluidic plate 700, and the cathode microfluidic plate 800 are included.
  • each configuration of the separation plate 100 will be described in order.
  • the anode flow path plate 200 has anode inlet manifolds 211 and 212 formed on one side of a thin metal plate having a thickness of about 1 mm, and anode outlet manifolds 213 and 214 on opposite sides thereof. Is formed.
  • the cathode inlet manifold 221 is formed parallel to the anode inlet manifolds 211 and 212, and the cathode outlet manifold 222 is formed in a diagonal direction of the cathode inlet manifold 221.
  • the cathode outlet manifold 222 is formed at a position parallel to the anode outlet manifolds 213 and 214.
  • the anode inlet and outlet manifolds 211,212,213 and 214 and the cathode inlet and outlet manifolds 221 and 222 are positioned at diagonally opposite positions to each other and have a flow path having a cross flow shape, and directions of the inlet and the outlet may be changed. have.
  • the number of anode manifolds and cathode manifolds may be one or two or more depending on design conditions.
  • the number of anode manifolds and cathode manifolds and the positions of the entrance and exit ports of all the components of the separator to be described below may be variously formed according to design conditions, such as the anode flow path plate 200.
  • the anode inlet oil passage 231 is formed in a portion spaced inwardly from the anode inlet manifolds 211 and 212, and the portion spaced inwardly from the anode outlet manifolds 213 and 214 is opposed thereto.
  • a fuel electrode outlet oil passage 232 is formed in the fuel cell.
  • the anode inlet oil passage 231 and the anode outlet oil passage 232 are formed in the longitudinal direction in parallel with each other, and are formed symmetrically with respect to the center line of the anode passage plate 200.
  • the anode microfluidic channel 710 is formed in a direction perpendicular to the anode inlet oil passage 231 and the outlet oil passage 232 which are processed in a longitudinal direction. It is bonded to the upper surface of the flow path plate 200 to uniformly distribute the gas to the fuel electrode. At this time, the bonding should be made so that the positions of the anode inlet / outlet oil passages 231 and 232 and the anode microfluidic plate 700 coincide with each other.
  • manifold, the oil passage and the micro-channel described above are preferably processed by completely penetrating through a thin metal plate having a thickness of about 1 mm using an etching or press working method.
  • the anode manifold plate 300 is about 1 mm thick and has a rectangular metal plate having the same size as the anode passage plate 200, and the anode inlet manifold passage 311 and the anode outlet manifold passage 312. And the cathode inlet manifold 321 and the cathode outlet manifold 322 are processed through so as to face in a diagonal direction.
  • the anode manifold plate 300 is bonded to the lower surface of the anode flow path plate 200, and the centers of the anode and cathode entrance and exit manifolds should be positioned to coincide with the centers of the manifolds of the anode flow path plate 200.
  • the fold size must also be the same.
  • the size of the cathode inlet manifold 221 and the cathode outlet manifold 222 of the anode flow path plate 200 is the cathode inlet manifold 321 and cathode outlet manifold 322 of the anode manifold plate 300. It may be made larger or the same depending on the design conditions.
  • a tube-shaped gasket is positioned (hatched part) around the manifold of the anode flow path plate 200, in which case the same size may be manufactured to seal and adjust the height.
  • the anode inlet manifold passage 311 provides a gas passage from the anode inlet manifolds 211 and 212 to the anode inlet oil passage 231 so that fuel supplied to the stack can be supplied to each unit cell.
  • the anode outlet manifold passage 312 provides a passage for discharging the anode exhaust gas from the anode outlet gas passage 232 to the anode outlet manifolds 213 and 214.
  • the anode inlet manifold passage 311 and the anode outlet manifold passage 312 have a shape that may include the manifold of the anode passage plate 200.
  • the intermediate manifold plate 400 is bonded to the lower surface of the anode manifold plate 300 so that the gas inlet gas is sealed between the anode inlet manifold passage 311 and the anode outlet manifold passage 312.
  • the right vertical surface of the anode inlet manifold passage 311 is preferably exactly the same size and position as the right vertical surface of the anode inlet oil passage 231. This gradually increases the size of the anode inlet manifold passage 311 from the anode inlet manifolds 211 and 212 and connects them to the same size as the anode inlet oil passage 231 so as to uniformly distribute the fuel throughout the anode microfluidic plate 700. Because it is possible. It is preferable that the anode outlet manifold passage 312 also has the same structure as the anode inlet manifold passage 311 for the same reason.
  • anode inlet manifold passage 311, the anode outlet manifold passage 312, the cathode inlet manifold 321, and the cathode outlet manifold 322 are all etched or pressed by a thin metal plate having a thickness of about 1 mm. It is preferable to make it penetrate completely using it.
  • the intermediate manifold plate 400 has a thickness of about 1 mm and has anode inlet manifolds 411 and 412 formed on a rectangular metal plate having the same size as the anode flow path plate 200 and opposed thereto.
  • the anode exit manifolds 413 and 414 are formed on the surface.
  • a cathode inlet manifold 421 is formed in parallel with the anode inlet manifolds 411 and 412, and an anode outlet manifold 422 is formed in a diagonal direction.
  • anode and the cathode inlet and the outlet manifolds 411, 412, 413, 414, 421, and 422 may be disposed at positions facing each other in a diagonal direction to have a flow path having a cross flow shape.
  • the intermediate manifold plate 400 is bonded to the bottom surface of the anode manifold plate 300, and the centers of the anode and cathode inlet and outlet manifolds should be positioned to exactly coincide with the centers of the manifolds of the anode manifold plate 300.
  • the fold size must also be the same.
  • the intermediate manifold plate 400 provides airtightness so that the gases of the anode and the cathode are not mixed.
  • the anode manifolds 411, 412, 413, 414 and the cathode manifolds 421, 422 are preferably completely penetrated through a thin metal plate having a thickness of about 1 mm by using an etching or press working method.
  • anode inlet manifolds 511 and 512 are formed on a rectangular metal plate having a thickness of about 1 mm and having the same size as the anode passage plate 200.
  • the anode exit manifolds 513 and 514 are formed on the surface.
  • a cathode inlet lubrication passage 521 is formed in a horizontal direction in a position parallel to the anode inlet manifolds 511 and 512, and a cathode outlet lubrication passage 522 is formed in a diagonal direction in a lateral direction. .
  • the cathode flow path plate 500 is joined to the lower surface of the intermediate manifold plate 400, and the center of the anode and cathode inlet and outlet manifolds must be exactly aligned with the center of the manifold of the intermediate manifold plate. Should be.
  • cathode inlet oil passage 521 and the cathode outlet oil passage 522 are formed to be orthogonal to the anode oil passages 231 and 232 that are processed in the horizontal direction and are processed in the vertical direction, so that the flow path has a cross flow shape. Is preferably formed.
  • the cathode plate 600 has a thickness of about 1 mm and anode inlet manifolds 611 and 612 are formed on a rectangular metal plate having the same size as the anode flow path plate 200.
  • the anode outlet manifolds 613 and 614 are formed in the same.
  • the cathode inlet manifold 621 and the cathode outlet manifold 622 are also formed to face diagonally in the rectangular metal plate.
  • the cathode plate 600 is bonded to the bottom surface of the cathode flow path plate 500, and the center of the anode and cathode inlet / outlet manifolds must be exactly coincident with the center of the manifold of the cathode flow path plate.
  • the sizes of the anode inlet manifolds 611 and 612 and the anode outlet manifolds 613 and 614 of the cathode plate 600 are the size of the anode inlet manifolds 511 and 512 and the anode outlet manifold of the cathode flow path plate 500.
  • 513, 514 is preferably made larger or the same according to the design conditions.
  • a tube-shaped gasket is positioned (hatched part) around the manifold of the cathode plate 600, and may be manufactured with the same size for sealing and height adjustment.
  • a communication hole 631 is formed to expose the cathode fine flow path plate 800 bonded to the cathode flow path plate 500 to communicate with the cathode of the unit cell.
  • gas supply is made.
  • the anode manifold, the cathode manifold, and the communication holes 631 are completely penetrated through a thin metal plate having a thickness of about 1 mm by using an etching or a press working method.
  • the cathode microfluidic plate 800 illustrated in FIG. 8 is formed such that the cathode microchannel 810 is formed in a direction perpendicular to the cathode inlet oil passage 521 and the cathode outlet oil passage 522 which are processed in the horizontal direction. It is bonded to the lower surface of the cathode plate 600 so that uniform gas distribution is made to the cathode.
  • the bonding is preferably performed such that the positions of the cathode inlet / outlet passages 521 and 522 in the horizontal direction coincide with the positions of the cathode microfluidic plate 800.
  • the cathode plate 600 is bonded to the lower surface of the cathode flow path plate 500, so that a gas seal is provided from the cathode inlet and outlet manifolds to the vicinity of the cathode microfluid plate 800.
  • the anode manifold, the cathode manifold, the cathode oil passage, and the cathode microchannel are preferably completely penetrated by using an etching or press working method on a thin metal plate having a thickness of about 1 mm.
  • the present invention is to produce a separation plate of a solid oxide fuel cell stack in a thin metal plate of about 1mm without the conventional mechanical processing through the desired shape by etching or press working method through the separation plate through bonding It provides both the manifold and gas flow path required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 접합공정을 이용한 고체산화물 연료전지 스택의 분리판에 관한 것이다. 본 발명은 고체산화물 연료전지 스택의 분리판 제작 시 금속판재 양 면에 기계가공으로 연료유로와 공기유로를 각각 가공하는 방법이 아니라 여러 장의 얇은 금속판에 식각 또는 프레스 가공법을 이용하여 매니폴드 및 유로형상을 모두 관통시켜 가공한 후, 가공된 금속판을 순차적으로 접합만 하여 매니폴드와 유로를 형성한 평판형 고체산화물 연료전지 스택의 분리판에 관한 것이다. 이를 통해 금속 분리판 양 면에 기계가공 시 소요되는 시간과 비용을 줄일 수 있고 가공 및 잔류응력으로 발생되는 분리판의 변형을 줄일 수 있어 평판형 스택 분리판의 전기접촉과 밀봉성능을 향상시킬 수 있다. 또한 종래의 분리판 제작방법과 비교해 일정한 가공품질 확보가 용이하고 분리판 면적에 제한이 없어 대면적 분리판 및 대량생산에 적합하다.

Description

접합공정을 이용한 고체산화물 연료전지 스택의 분리판
본 발명은 접합공정을 이용한 고체산화물 연료전지 스택의 분리판에 관한 것으로, 더욱 상세하게는 여러 장의 얇은 금속판에 식각 또는 프레스 가공법을 이용하여 매니폴드 및 유로형상을 모두 관통시켜 가공한 후, 가공된 금속판을 순차적으로 접합만 하여 매니폴드와 유로를 형성한 평판형 고체산화물 연료전지 스택의 분리판에 관한 것이다.
연료전지는 연료의 전기화학적 산화반응을 통해 연료의 화학에너지를 전기에너지로 전환시키는 에너지 변환장치다. 에너지 변환 과정에서 중간 단계가 없기 때문에 기존 발전방식에 비해 효율이 높고, 수소를 연료로 이용할 경우 물 이외의 공해물질이 없는 친환경 발전방식이다.
이러한 연료전지는 전해질의 종류에 따라 특성이 달라지는데 고체산화물 연료전지(SOFC ; Solid Oxide Fuel Cell)는 전해질 및 구성요소가 세라믹으로 이루어져 600 ~ 1000℃ 의 고온에서 운전되고, 수소, 일산화탄소, 메탄 등 다양한 연료를 이용할 수 있다. 또한, 열병합발전 및 복합발전이 용이하여 가정용, 분산발전시스템 및 대형 발전시스템으로 연구가 진행되고 있다.
연료전지는 전해질을 중심으로 양 쪽에 연료극과 공기극으로 이루어져 있다. 여기에서 전해질은 이온 전도성만 있고 전자 전도성은 없어야 한다. 고체산화물 연료전지는 산소이온이 전해질을 통해 공기극에서 연료극으로 이동하여 연료를 산화시키고, 이때 전자가 발생하여 외부 회로를 통해 공기극으로 이동하여 다시 산소를 이온화 시키게 된다. 이러한 연료극에서의 산화반응과 공기극에서 산소의 환원반응, 전해질을 통한 산소이온의 이동이 연속적으로 일어나면서 전력이 만들어지게 된다.
일반적으로 연료전지에서 생산되는 전기는 1볼트 미만이고, 전류는 면적에 비례하게 된다. 따라서, 연료전지에서 원하는 출력을 얻기 위해서는 면적을 넓히고여러 장의 단위전지를 직렬로 연결해야 한다. 높은 출력을 얻기 위해 단위전지를 여러 장 적층한 것을 스택이라고 한다. 스택에서 분리판은 단위전지들을 전기적으로 연결해 주는 역할을 함과 동시에 연료극과 공기극에 공급되는 두 종류의 가스가 혼합되지 않고 단위전지에 균일하게 공급될 수 있도록 유로를 제공해 준다.
분리판은 금속과 세라믹 재료가 널리 이용되고 있는데, 세라믹 분리판은 기계적 강도가 약하고 열전도도가 낮아 연료전지 반응에서 발생된 열을 충분히 배출시키기 어렵다. 또한, 공기극과 연료극의 가스혼합을 막기 위해 치밀한 구조로 소결하기가 쉽지 않다.
최근에는 금속 소재의 분리판 개발이 활발히 이루어지고 있는데 고온에서 금속의 산화를 막기 위해 새로운 소재 및 내산화 코팅 기술에 대한 연구가 진행되고있다. 스택에서 단위전지에 균일한 가스 공급을 위해 매니폴드와 분리판 구조에 대한 다양한 연구가 진행되고 있다. 스택은 매니폴드 위치에 따라 내부 매니폴드 스택과 외부 매니폴드 스택으로 나누어지며, 분리판의 유로 형상은 크게 카운터플로(Counter flow), 코플로(Co-flow), 크로스플로(Cross flow) 등이 있다. 높은 성능의 고체산화물 연료전지 스택을 제작하기 위해서는 연료와 공기가 스택 내부에 위치한 단위전지에 균일하게 공급되도록 매니폴드와 분리판의 유로를 잘 설계하고 가공하여야 한다.
또한, 고체산화물 연료전지 스택에서 매니폴드와 금속 분리판 가공을 위해서 많은 시간과 비용이 소모된다. 특히, 기계적 가공법으로 금속 분리판 위에 유로를 형성할 경우 시간과 경제적 비용이 많이 소요될 뿐만 아니라 가공 시 고온과 잔류응력으로 인해 분리판이 휘거나 변형이 생겨 평판형 고체산화물 연료전지의 전기적 접촉과 밀봉 성능에 많은 문제점이 발생하였다.
따라서, 본 발명의 목적은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 금속 분리판에 매니폴드와 유로를 동시에 형성하여 고체산화물 연료전지 스택 내부에 균일한 가스공급이 이루어지게 하고, 매니폴드와 유로 가공 시에 소요되는 시간과 비용을 줄이며, 금속 분리판의 가공 변형을 감소시킬 수 있는 접합공정을 이용한 고체산화물 연료전지 스택 분리판을 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 연료극 입구 매니폴드 및 연료극 출구 매니폴드가 서로 대향되게 형성되고, 공기극 입구 매니폴드 및 공기극 출구 매니폴드가 서로 대향되게 형성되며, 상기 매니폴드에서 내측으로 일정 거리만큼 이격된 부분에 연료극 입구 주유로 및 연료극 출구 주유로가 세로방향으로 평행하게 형성되는 연료극 유로판과; 상기 연료극 유로판의 하면에 접합되고, 상기 연료극 입출구 매니폴드에 대응되는 위치에 연료극 입구 매니폴드유로 및 연료극 출구 매니폴드유로가 상기 연료극 입출구 주유로까지 연장되어 형성되며, 상기 공기극 입출구 매니폴드에 대응되는 위치에 공기극 입구 매니폴드 및 공기극 출구 매니폴드가 각각 형성되는 연료극 매니폴드판과; 상기 연료극 매니폴드판의 하면에 접합되고, 상기 연료극 매니폴드판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되어 공기극과 연료극의 가스 혼합을 방지하는 중간 매니폴드판과; 상기 중간 매니폴드판의 하면에 접합되고, 상기 중간 매니폴드판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되고, 상기 공기극 입출구 매니폴드에 대응되는 위치에서 공기극 입구 주유로 및 공기극 출구 주유로가 가로방향으로 평행하게 형성되는 공기극 유로판과; 상기 공기극 유로판의 하면에 접합되고, 상기 공기극 유로판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되고, 공기극이 상기 공기극 입출구 주유로와 연통되도록 연통공이 형성되는 공기극판을 포함한다.
상기 연료극 유로판, 연료극 매니폴드판, 중간 매니폴드판, 공기극 유로판 및 공기극판에 형성된 매니폴드와 유로는 식각 또는 프레스를 이용하여 금속판 전체를 관통시켜 가공한 후에 접합하여 제작됨을 특징으로 한다.
상기 연료극 유로판, 연료극 매니폴드판, 중간 매니폴드판, 공기극 유로판 및 공기극판에 형성된 매니폴드와 유로는 서로 대각 방향으로 대향되게 형성되어 크로스 플로우(Cross Flow) 형태를 가짐을 특징으로 한다.
상기 연료극 유로판의 공기극 입출구 매니폴드의 크기는 상기 연료극 매니폴드판의 공기극 입출구 매니폴드보다 크거나 같게 제작됨을 특징으로 한다.
상기 공기극판의 연료극 입출구 매니폴드의 크기는 상기 공기극 유로판의 연료극 입출구 매니폴드보다 크거나 같게 제작됨을 특징으로 한다.
상기 연료극 유로판의 상면에 접합되고, 상기 연료극 입구 주유로 및 연료극 출구 주유로에 수직한 방향으로 다수의 연료극 미세유로가 형성되는 연료극 미세유로판을 더 포함한다.
상기 공기극판의 하면에 접합되고, 상기 공기극 입구 주유로 및 공기극 출구 주유로에 수직한 방향으로 다수의 공기극 미세유로가 형성되는 공기극 미세유로판을 더 포함한다.
본 발명의 다른 특징에 따르면, 본 발명은 다수의 금속판에 식각 또는 프레스를 이용하여 매니폴드 및 가스유로 형상으로 관통시켜 가공한 후, 가공한 금속판을 순차적으로 접합하여 매니폴드 및 가스유로를 형성함을 특징으로 한다.
본 발명의 또 다른 특징에 따르면, 본 발명은 다수의 금속판에 식각 또는 프레스를 이용하여 매니폴드 및 가스유로 형상으로 관통시켜 가공한 후, 가공한 금속판을 순차적으로 접합하되, 상기 매니폴드는 금속판의 좌우 양측에 다수개가 평행한 방향으로 형성되고, 상기 가스유로는 상기 매니폴드에서 내측으로 연장되어 형성됨을 특징으로 한다.
본 발명에 의하면, 상대적으로 얇은 금속판에 프레스 또는 식각을 이용한 방법으로 금속판을 완전 관통하도록 유로와 매니폴드 형상을 가공한 후 확산접합과 같은 방법으로 각 판들을 접합하여 분리판을 제작함으로써 기계가공 시 발생되는 열변형과 잔류응력에 의한 뒤틀림 문제가 발생하지 않아 평판형 고체산화물 연료전지 스택의 전기적 접촉과 가스밀봉도를 향상 시킬 수 있는 효과가 있다.
또한, 밀링 등과 같은 기계가공으로 분리판을 가공할 경우 가공면적에 비례하여 시간과 비용이 증가하지만 식각과 프레스를 이용하여 판을 관통하는 가공법의 경우 상대적으로 적은 시간이 소요되고 일정한 가공품질 확보가 용이하여 대량으로 분리판을 저렴하게 제작할 수 있는 효과도 있다.
도 1은 본 발명의 일 실시예에 따른 고체산화물 연료전지 스택 분리판의 분해 사시도.
도 2는 본 발명에 의한 고체산화물 연료전지 스택 분리판의 연료극 유로판을 도시한 평면도.
도 3은 본 발명에 의한 고체산화물 연료전지 스택 분리판의 연료극 매니폴드판을 도시한 평면도.
도 4는 본 발명에 의한 고체산화물 연료전지 스택 분리판의 중간 매니폴드판을 도시한 평면도.
도 5는 본 발명에 의한 고체산화물 연료전지 스택 분리판의 공기극 유로판을 도시한 평면도.
도 6은 본 발명에 의한 고체산화물 연료전지 스택 분리판의 공기극판을 도시한 저면도.
도 7은 본 발명에 의한 고체산화물 연료전지 스택 분리판의 연료극 미세유로판을 도시한 평면도.
도 8은 본 발명에 의한 고체산화물 연료전지 스택 분리판의 공기극 미세유로판을 도시한 평면도.
이하 본 발명에 의한 고체산화물 연료전지 스택 분리판의 일 실시예를 첨부된 도면을 참고하여 상세하게 설명한다.
먼저, 도 1은 본 발명의 일 실시예에 따른 고체산화물 연료전지 스택 분리판의 분해 사시도이다. 이를 참조하면, 본 발명에 따른 고체산화물 연료전지스택의 분리판(100)은 연료극 유로판(200), 연료극 매니폴드판(300), 중간 매니폴드판(400), 공기극 유로판(500), 공기극판(600), 연료극 미세유로판(700), 공기극 미세유로판(800)을 포함한다. 이하에서는 상기 분리판(100) 각각의 구성에 대하여 차례대로 설명하기로 한다.
도 2를 참조하면, 상기 연료극 유로판(200)은 직사각형의 두께 1mm 내외의 얇은 금속판의 한쪽 면에 연료극 입구 매니폴드(211,212)가 형성되고, 이에 대향되는 반대쪽 면에는 연료극 출구 매니폴드(213,214)가 형성된다.
그리고, 상기 연료극 입구 매니폴드(211,212)와 평행하게 공기극 입구 매니폴드(221)가 형성되고, 상기 공기극 입구 매니폴드(221)의 대각 방향에는 공기극 출구 매니폴드(222)가 형성된다. 상기 공기극 출구 매니폴드(222)는 상기 연료극 출구 매니폴드(213,214)와 평행한 위치에 형성된다.
이때, 연료극 입출구 매니폴드(211,212,213,214)및 공기극 입출구 매니폴드(221,222)는 서로 대각선으로 대향되는 위치에 놓여서 크로스 플로우(Cross Flow) 형태의 유로를 가지는 것을 특징으로 하며, 입구와 출구의 방향은 바뀔 수 있다. 또한, 연료극 매니폴드와 공기극 매니폴드의 개수도 설계 조건에 따라 1개 또는 2개 이상이 될 수 있다. 이하에서 설명될 분리판의 모든 구성요소에서 연료극 매니폴드와 공기극 매니폴드 개수와 입출구의 위치는 연료극 유로판(200)과 같이 설계 조건에 따라 다양하게 형성될 수 있다.
한편, 상기 연료극 입구 매니폴드(211,212)에서 일정 거리만큼 내측으로 이격된 부분에 연료극 입구 주유로(231)가 형성되고, 이에 대향하여 연료극 출구 매니폴드(213,214)에서 일정 거리만큼 내측으로 이격된 부분에 연료극 출구 주유로(232)가 형성된다. 상기 연료극 입구 주유로(231) 및 연료극 출구 주유로(232)는 서로 평행하게 세로방향으로 형성되는 것으로서, 상기 연료극 유로판(200)의 중심선을 기준으로 서로 대칭되게 형성된다.
그리고, 도 7에 도시된 연료극 미세유로판(700)은 세로방향으로 가공되어 있는 연료극 입구 주유로(231)와 출구 주유로(232)에 수직한 방향으로 연료극 미세유로(710)가 형성되어 연료극 유로판(200) 상면에 접합되어 연료극에 균일한 가스분배가 이루어지도록 한다. 이때, 세로방향의 연료극 입출구 주유로(231,232)와 연료극 미세유로판(700)의 위치가 일치하도록 접합이 이루어져야 한다.
또한, 이상에서 설명한 매니폴드, 주유로 및 미세유로는 두께 1mm 내외의 얇은 금속판에 식각 또는 프레스 가공법을 이용하여 완전히 관통시켜 가공하는 것이 바람직하다.
도 3을 참조하면, 연료극 매니폴드판(300)은 두께 1mm 내외이며 연료극 유로판(200)과 같은 크기를 가진 직사각형의 금속판에 연료극 입구 매니폴드유로(311)와 연료극 출구 매니폴드유로(312) 및 공기극 입구 매니폴드(321)와 공기극 출구 매니폴드(322)가 대각선방향으로 대향하게 위치하도록 관통하여 가공되어 있다.
여기에서, 상기 연료극 매니폴드판(300)은 연료극 유로판(200)의 하면에 접합되며, 연료극 및 공기극 입출구 매니폴드의 중심이 연료극 유로판(200)의 매니폴드 중심과 일치하도록 위치해야 하고 매니폴드 크기도 동일해야 한다. 단, 연료극 유로판(200)의 공기극 입구 매니폴드(221)과 공기극 출구 매니폴드(222)의 크기는 연료극 매니폴드판(300)의 공기극 입구 매니폴드(321)와 공기극 출구 매니폴드(322)보다 설계 조건에 따라 크거나 같게 제작될 수도 있다. 이는 연료전지 스택을 적층할 시에 연료극 유로판(200)의 매니폴드 주위로 튜브 형태의 가스켓이 위치(해칭 부분)하게 되는데, 이때 밀봉 및 높이 조절을 하기 위해 크거가 같게 제작될 수도 있는 것이다.
또한, 상기 연료극 입구 매니폴드유로(311)는 스택에 공급된 연료가 각 단위전지에 공급될 수 있도록 연료극 입구 매니폴드(211,212)에서 연료극 입구 주유로(231)까지 가스통로를 제공한다. 연료극 출구 매니폴드유로(312)는 연료극 배기가스를 연료극 출구 주유로(232)에서 연료극 출구 매니폴드(213,214)까지 배출하는 통로를 제공하게 된다. 이를 위해 상기 연료극 입구 매니폴드유로(311)와 연료극 출구 매니폴드유로(312)는 연료극 유로판(200)의 매니폴드를 포함할 수 있는 형상을 가진다.
그리고, 상기 중간 매니폴드판(400)이 연료극 매니폴드판(300)의 하면에 접합되어 연료극 입구 매니폴드유로(311)와 연료극 출구 매니폴드유로(312)가 가스기밀이 이루어지도록 한다. 상기 연료극 입구 매니폴드유로(311)의 우측 세로면은 연료극 입구 주유로(231)의 우측 세로면과 크기 및 위치가 정확히 일치하는 것이 바람직하다. 이는 연료극 입구 매니폴드(211,212)에서부터 연료극 입구 매니폴드유로(311)의 크기를 점차적으로 증가시켜 연료극 입구 주유로(231)와 동일한 크기로 연결함으로써 연료극 미세유로판(700) 전체에 균일한 연료 분배가 가능하기 때문이다. 상기 연료극 출구 매니폴드유로(312) 또한 같은 이유로 연료극 입구 매니폴드유로(311)와 동일한 구조를 가지는 것이 바람직하다.
한편, 상기 연료극 입구 매니폴드유로(311)와 연료극 출구 매니폴드유로(312), 공기극 입구 매니폴드(321)와 공기극 출구 매니폴드(322)는 모두 두께 1mm 내외의 얇은 금속판에 식각 또는 프레스 가공법을 이용하여 완전히 관통시켜 가공하는 것이 바람직하다.
도 4를 참조하면, 상기 중간 매니폴드판(400)은 두께 1mm 내외이며 연료극 유로판(200)과 같은 크기를 가진 직사각형의 금속판에 연료극 입구 매니폴드(411, 412)가 형성되고 이에 대향되는 반대쪽 면에 연료극 출구 매니폴드(413,414)가 형성된다. 상기 연료극 입구 매니폴드(411,412)와 평행하게 공기극 입구 매니폴드(421)가 형성되고 대각 방향에는 공기극 출구 매니폴드(422)가 형성된다.
이때, 연료극 및 공기극 입구와 출구 매니폴드(411,412,413,414,421,422)는 서로 대각 방향으로 대향되는 위치에 놓여서 크로스 플로우(Cross Flow) 형태의 유로를 가지는 것이 바람직하다.
상기 중간 매니폴드판(400)은 연료극 매니폴드판(300)의 하면에 접합되며, 연료극 및 공기극 입출구 매니폴드의 중심이 연료극 매니폴드판(300)의 매니폴드 중심과 정확히 일치하도록 위치해야 하고 매니폴드 크기도 동일해야 한다. 그리고, 중간 매니폴드판(400)은 연료극과 공기극의 가스가 혼합되지 않도록 기밀을 제공한다. 이때, 연료극 매니폴드(411,412,413,414) 및 공기극 매니폴드(421,422)는 모두 두께 1mm 내외의 얇은 금속판에 식각 또는 프레스 가공법을 이용하여 완전히 관통시켜 가공하는 것이 바람직하다.
도 5를 참조하면, 상기 공기극 유로판(500)은 두께 1mm 내외이며 연료극 유로판(200)과 같은 크기를 가진 직사각형의 금속판에 연료극 입구 매니폴드(511, 512)가 형성되고, 이에 대향되는 반대쪽 면에 연료극 출구 매니폴드(513,514)가 형성된다. 상기 연료극 입구 매니폴드(511,512)와 평행한 위치에 가로방향으로 길게 가공된 공기극 입구 주유로(521)가 형성되고, 대각 방향에 가로방향으로 길게 가공된 된 공기극 출구 주유로(522)가 형성된다.
상기 공기극 유로판(500)은 중간 매니폴드판(400)의 하면에 접합되며, 연료극 및 공기극 입출구 매니폴드의 중심이 중간 매니폴드판의 매니폴드 중심과 정확히 일치하도록 위치해야 하고 매니폴드 크기도 동일해야 한다.
또한, 상기 공기극 입구 주유로(521)와 공기극 출구 주유로(522)는 가로방향으로 가공이 되어 세로방향으로 가공된 연료극 주유로(231,232)와 직교하게 형성되어 크로스 플로우(Cross Flow)형태의 유로가 형성되는 것이 바람직하다.
도 6을 참조하면, 상기 공기극판(600)은 두께 1mm 내외이며 연료극 유로판(200)과 같은 크기를 가진 직사각형의 금속판에 연료극 입구 매니폴드(611, 612)가 형성되고, 이에 대향되는 반대쪽 면에 연료극 출구 매니폴드(613,614)가 형성된다. 또한, 공기극 입구 매니폴드(621)와 공기극 출구 매니폴드(622)도 직사각형 금속판에서 대각 방향으로 대향하게 형성된다.
상기 공기극판(600)은 공기극 유로판(500)의 하면에 접합되며, 연료극 및 공기극 입출구 매니폴드의 중심이 공기극 유로판의 매니폴드 중심과 정확히 일치하도록 위치해야 하고 매니폴드 크기도 동일해야 한다. 단, 공기극판(600)의 연료극 입구 매니폴드(611, 612)와 연료극 출구 매니폴드(613, 614)의 크기는 공기극 유로판(500)의 연료극 입구 매니폴드(511,512)와 연료극 출구 매니폴드(513, 514)보다 설계 조건에 따라 크거나 같게 제작되는 것이 바람직하다. 이는 연료전지 스택을 적층할 시에 공기극판(600)의 매니폴드 주위로 튜브 형태의 가스켓이 위치(해칭 부분)하게 되는데, 이때 밀봉 및 높이 조절을 하기 위해 크거가 같게 제작될 수도 있는 것이다.
상기 공기극판(600)의 가운데 부분에는 공기극 유로판(500)에 접합된 공기극미세유로판(800)이 노출되어 단위전지의 공기극과 연통될 수 있도록 연통공(631)이 형성되어 공기극에 균일한 가스공급이 이루어지는 것이 바람직하다. 이때, 연료극 매니폴드와 공기극 매니폴드 및 연통공(631)은 모두 두께 1mm 내외의 얇은 금속판에 식각 또는 프레스 가공법을 이용하여 완전히 관통시켜 가공하는 것이 바람직하다.
그리고, 도 8에 도시된 공기극 미세유로판(800)은 가로방향으로 가공되어 있는 공기극 입구 주유로(521)와 공기극 출구 주유로(522)에 수직한 방향으로 공기극 미세유로(810)가 형성되도록 공기극판(600)의 하면에 접합되어 공기극에 균일한 가스분배가 이루어지도록 한다.
이때, 가로방향의 공기극 입출구 주유로(521,522)와 공기극 미세유로판(800)의 위치가 일치하도록 접합이 이루어지는 것이 바람직하다. 또한, 공기극 유로판(500)의 하면에는 공기극판(600)이 접합되어 있어 공기극 입구 및 출구매니폴드에서 공기극 미세유로판(800)이 접합된 부근까지 가스밀봉이 제공된다.
여기에서, 연료극 매니폴드와 공기극 매니폴드 및 공기극 주유로, 공기극 미세유로는 모두 두께 1mm 내외의 얇은 금속판에 식각 또는 프레스 가공법을 이용하여 완전히 관통시켜 가공하는 것이 바람직하다.
이상에서 설명한 바와 같이, 본 발명은 고체산화물 연료전지 스택의 분리판을 제작하는데 있어 종래의 기계적 가공 없이 1mm 내외의 얇은 금속판에 식각 또는 프레스 가공법으로 원하는 형상을 관통시켜 가공한 후 접합을 통해 분리판에 필요한 매니폴드와 가스유로를 모두 제공하고 있다.
본 발명의 권리범위는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 기술분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.

Claims (15)

  1. 연료극 입구 매니폴드 및 연료극 출구 매니폴드가 서로 대향되게 형성되고, 공기극 입구 매니폴드 및 공기극 출구 매니폴드가 서로 대향되게 형성되며, 상기 매니폴드에서 내측으로 일정 거리만큼 이격된 부분에 연료극 입구 주유로 및 연료극 출구 주유로가 세로방향으로 평행하게 형성되는 연료극 유로판과;
    상기 연료극 유로판의 하면에 접합되고, 상기 연료극 입출구 매니폴드에 대응되는 위치에 연료극 입구 매니폴드유로 및 연료극 출구 매니폴드유로가 상기 연료극 입출구 주유로까지 연장되어 형성되며, 상기 공기극 입출구 매니폴드에 대응되는 위치에 공기극 입구 매니폴드 및 공기극 출구 매니폴드가 각각 형성되는 연료극 매니폴드판과;
    상기 연료극 매니폴드판의 하면에 접합되고, 상기 연료극 매니폴드판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되어 공기극과 연료극의 가스 혼합을 방지하는 중간 매니폴드판과;
    상기 중간 매니폴드판의 하면에 접합되고, 상기 중간 매니폴드판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되고, 상기 공기극 입출구 매니폴드에 대응되는 위치에서 공기극 입구 주유로 및 공기극 출구 주유로가 가로방향으로 평행하게 형성되는 공기극 유로판과;
    상기 공기극 유로판의 하면에 접합되고, 상기 공기극 유로판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되고, 공기극이 상기 공기극 입출구 주유로와 연통되도록 연통공이 형성되는 공기극판을 포함하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  2. 제 1 항에 있어서,
    상기 연료극 유로판, 연료극 매니폴드판, 중간 매니폴드판, 공기극 유로판 및 공기극판에 형성된 매니폴드와 유로는 식각 또는 프레스를 이용하여 금속판 전체를 관통시켜 가공한 후에 접합하여 제작됨을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  3. 제 1 항에 있어서,
    상기 연료극 유로판, 연료극 매니폴드판, 중간 매니폴드판, 공기극 유로판 및 공기극판에 형성된 매니폴드와 유로는 서로 대각 방향으로 대향되게 형성되어 크로스 플로우(Cross Flow) 형태를 가짐을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  4. 제 1 항에 있어서,
    상기 연료극 유로판의 공기극 입출구 매니폴드의 크기는 상기 연료극 매니폴드판의 공기극 입출구 매니폴드보다 크거나 같게 제작됨을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  5. 제 1 항에 있어서,
    상기 공기극판의 연료극 입출구 매니폴드의 크기는 상기 공기극 유로판의 연료극 입출구 매니폴드보다 크거나 같게 제작됨을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  6. 제 1 항에 있어서,
    상기 연료극 유로판의 상면에 접합되고, 상기 연료극 입구 주유로 및 연료극 출구 주유로에 수직한 방향으로 다수의 연료극 미세유로가 형성되는 연료극 미세유로판을 더 포함하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  7. 제 1 항에 있어서,
    상기 공기극판의 하면에 접합되고, 상기 공기극 입구 주유로 및 공기극 출구 주유로에 수직한 방향으로 다수의 공기극 미세유로가 형성되는 공기극 미세유로판을 더 포함하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  8. 연료극 입구 매니폴드 및 연료극 출구 매니폴드가 서로 대향되게 형성되고, 공기극 입구 매니폴드 및 공기극 출구 매니폴드가 서로 대향되게 형성되며, 상기 매니폴드에서 내측으로 일정 거리만큼 이격된 부분에 연료극 입구 주유로 및 연료극 출구 주유로가 세로방향으로 평행하게 형성되는 연료극 유로판과;
    상기 연료극 유로판의 상면에 접합되고, 상기 연료극 입구 주유로 및 연료극 출구 주유로에 수직한 방향으로 다수의 연료극 미세유로가 형성되는 연료극 미세유로판과;
    상기 연료극 유로판의 하면에 접합되고, 상기 연료극 입출구 매니폴드에 대응되는 위치에 연료극 입구 매니폴드유로 및 연료극 출구 매니폴드유로가 상기 연료극 입출구 주유로까지 연장되어 형성되며, 상기 공기극 입출구 매니폴드에 대응되는 위치에 공기극 입구 매니폴드 및 공기극 출구 매니폴드가 각각 형성되는 연료극 매니폴드판과;
    상기 연료극 매니폴드판의 하면에 접합되고, 상기 연료극 매니폴드판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되어 공기극과 연료극의 가스 혼합을 방지하는 중간 매니폴드판과;
    상기 중간 매니폴드판의 하면에 접합되고, 상기 중간 매니폴드판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되고, 상기 공기극 입출구 매니폴드에 대응되는 위치에서 공기극 입구 주유로 및 공기극 출구 주유로가 가로방향으로 평행하게 형성되는 공기극 유로판과;
    상기 공기극 미세유로판의 하면에 접합되고, 상기 공기극 유로판의 매니폴드와 크기와 형상이 동일한 매니폴드가 형성되고, 공기극이 상기 공기극 입출구 주유로와 연통되도록 연통공이 형성되는 공기극판과;
    상기 공기극판의 하면에 접합되고, 상기 공기극 입구 주유로 및 공기극 출구 주유로에 수직한 방향으로 다수의 공기극 미세유로가 형성되는 공기극 미세유로판을 포함하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  9. 제 8 항에 있어서,
    상기 연료극 유로판, 연료극 매니폴드판, 중간 매니폴드판, 공기극 유로판 및 공기극판에 형성된 매니폴드와 유로는 식각 또는 프레스를 이용하여 금속판 전체를 관통시켜 가공한 후에 접합하여 제작됨을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  10. 제 8 항에 있어서,
    상기 연료극 유로판, 연료극 매니폴드판, 중간 매니폴드판, 공기극 유로판 및 공기극판에 형성된 매니폴드는 서로 대각 방향으로 대향되게 형성되어 크로스 플로우(Cross Flow) 형태를 가짐을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  11. 제 8 항에 있어서,
    상기 연료극 유로판의 공기극 입출구 매니폴드의 크기는 상기 연료극 매니폴드판의 공기극 입출구 매니폴드보다 크거나 같게 제작됨을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  12. 제 8 항에 있어서,
    상기 공기극판의 연료극 입출구 매니폴드의 크기는 상기 공기극 유로판의 연료극 입출구 매니폴드보다 크거나 같게 제작됨을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  13. 다수의 금속판에 식각 또는 프레스를 이용하여 매니폴드 및 가스유로 형상 전체를 관통시켜 가공한 후, 가공한 금속판을 순차적으로 접합하여 매니폴드 및 가스유로를 형성함을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  14. 제 13 항에 있어서,
    상기 매니폴드는 금속판의 좌우 양측에 다수개가 평행한 방향으로 형성되고,상기 가스유로는 상기 매니폴드에서 내측으로 연장되어 형성됨을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
  15. 제 13 항에 있어서,
    상기 매니폴드는 서로 대각 방향으로 대향되게 형성되어 크로스 플로우(Cross Flow) 형태를 가짐을 특징으로 하는 접합공정을 이용한 고체산화물 연료전지 스택의 분리판.
PCT/KR2010/006670 2010-09-29 2010-09-30 접합공정을 이용한 고체산화물 연료전지 스택의 분리판 WO2012043903A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0094063 2010-09-29
KR1020100094063A KR101889550B1 (ko) 2010-09-29 2010-09-29 접합공정을 이용한 고체산화물 연료전지 스택의 분리판

Publications (1)

Publication Number Publication Date
WO2012043903A1 true WO2012043903A1 (ko) 2012-04-05

Family

ID=45893326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006670 WO2012043903A1 (ko) 2010-09-29 2010-09-30 접합공정을 이용한 고체산화물 연료전지 스택의 분리판

Country Status (2)

Country Link
KR (1) KR101889550B1 (ko)
WO (1) WO2012043903A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023990A (zh) * 2021-11-03 2022-02-08 无锡威孚高科技集团股份有限公司 燃料电池封装板及一体式双面燃料电池封装件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349924B (zh) * 2020-09-21 2022-03-18 中国科学院大连化学物理研究所 一种带气液分配流场的导电分隔板的蚀刻加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078956A (ja) * 2003-09-01 2005-03-24 Nissin Electric Co Ltd 燃料電池用のガス分離板の製造方法
JP2008147157A (ja) * 2006-12-12 2008-06-26 Hyundai Motor Co Ltd 燃料電池用金属分離板の製造方法
KR20080109148A (ko) * 2007-06-12 2008-12-17 포항공과대학교 산학협력단 내식성과 전기전도성이 우수한 스테인리스강과 이를 이용한연료전지용 분리판
KR20100012139A (ko) * 2008-07-28 2010-02-08 한국과학기술원 개질기 일체형 고체산화물 연료전지
KR20100029321A (ko) * 2008-09-08 2010-03-17 한국과학기술원 금속지지체형 고체산화물 연료전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429685B1 (ko) * 2001-12-17 2004-05-03 한국과학기술연구원 소형 고분자 전해질 연료전지용 다공성 가스분배판, 및 이를 포함하여 제조된 분리판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078956A (ja) * 2003-09-01 2005-03-24 Nissin Electric Co Ltd 燃料電池用のガス分離板の製造方法
JP2008147157A (ja) * 2006-12-12 2008-06-26 Hyundai Motor Co Ltd 燃料電池用金属分離板の製造方法
KR20080109148A (ko) * 2007-06-12 2008-12-17 포항공과대학교 산학협력단 내식성과 전기전도성이 우수한 스테인리스강과 이를 이용한연료전지용 분리판
KR20100012139A (ko) * 2008-07-28 2010-02-08 한국과학기술원 개질기 일체형 고체산화물 연료전지
KR20100029321A (ko) * 2008-09-08 2010-03-17 한국과학기술원 금속지지체형 고체산화물 연료전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023990A (zh) * 2021-11-03 2022-02-08 无锡威孚高科技集团股份有限公司 燃料电池封装板及一体式双面燃料电池封装件
CN114023990B (zh) * 2021-11-03 2024-05-24 无锡威孚高科技集团股份有限公司 燃料电池封装板及一体式双面燃料电池封装件

Also Published As

Publication number Publication date
KR20120032634A (ko) 2012-04-06
KR101889550B1 (ko) 2018-08-17

Similar Documents

Publication Publication Date Title
US7329471B2 (en) Methods and apparatus for assembling solid oxide fuel cells
EP2980904B1 (en) Fuel battery
EP0405088A1 (en) Fully internally manifolded fuel cell stack
US10062912B2 (en) Bipolar plate of an electrochemical cell with low thickness
US9608285B2 (en) Stack for a solid oxide fuel cell using a flat tubular structure
WO2017003116A1 (ko) 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
JPH08273696A (ja) 燃料電池スタック構造
US5811202A (en) Hybrid molten carbonate fuel cell with unique sealing
WO2013183884A1 (ko) 연료 전지용 집전판 및 이를 포함하는 스택 구조물
EP1685621B1 (en) Multi-cell fuel layer and system
WO2012043903A1 (ko) 접합공정을 이용한 고체산화물 연료전지 스택의 분리판
JPH10199555A (ja) 固体電解質型燃料電池のガスシール構造
CN112803054B (zh) 一种电化学反应装置及其制作方法
EP3817115B1 (en) Fuel cell structure
CN111095642B (zh) 燃料电池结构体
KR101301824B1 (ko) 연료 전지용 분리판
JP5596112B2 (ja) 密閉された燃料電池の積層体
CN111799495A (zh) 固体氧化物燃料电池电堆的歧管及包括其的固体氧化物燃料电池
WO2014092357A1 (ko) 연료 전지용 스택 구조물
WO2018143610A1 (ko) 연료전지 스택
WO2023128447A1 (ko) 구조적 변형이 방지되는 고체산화물 연료전지용 집전체
JPH0412468A (ja) 高温型燃料電池
US20200006788A1 (en) Electrochemical reaction unit and electrochemical reaction cell stack
WO2019059424A1 (ko) 고체산화물 연료전지 구조체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857904

Country of ref document: EP

Kind code of ref document: A1