WO2012043672A1 - Porous polyethylene hollow-fiber membrane, cartridge for water purifier, and hollow-fiber membrane module - Google Patents

Porous polyethylene hollow-fiber membrane, cartridge for water purifier, and hollow-fiber membrane module Download PDF

Info

Publication number
WO2012043672A1
WO2012043672A1 PCT/JP2011/072267 JP2011072267W WO2012043672A1 WO 2012043672 A1 WO2012043672 A1 WO 2012043672A1 JP 2011072267 W JP2011072267 W JP 2011072267W WO 2012043672 A1 WO2012043672 A1 WO 2012043672A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber membrane
hollow fiber
polyethylene
porous hollow
molecular weight
Prior art date
Application number
PCT/JP2011/072267
Other languages
French (fr)
Japanese (ja)
Inventor
規孝 柴田
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201180057171.2A priority Critical patent/CN103228341B/en
Priority to JP2011546369A priority patent/JP6003057B2/en
Priority to KR1020137010892A priority patent/KR101536836B1/en
Publication of WO2012043672A1 publication Critical patent/WO2012043672A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00933Chemical modification by addition of a layer chemically bonded to the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/44Cartridge types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0281Fibril, or microfibril structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • B01D2325/341At least two polymers of same structure but different molecular weight
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges

Definitions

  • the present invention relates to a polyethylene porous hollow fiber membrane, and a water purifier cartridge and a hollow fiber membrane module comprising the polyethylene porous hollow fiber membrane.
  • Polyethylene porous hollow fiber membranes are widely used as separation and selective permeation of various substances, separators and the like.
  • a method for producing a polyethylene porous hollow fiber membrane for example, a method is known in which high-density polyethylene is spun while applying an appropriate draft, and then subjected to heat treatment and stretching to obtain a porous hollow fiber membrane.
  • Patent Documents 1 to 3 high-density polyethylene having a melt flow rate (MFRD) measured in accordance with JIS K7210 code D of 0.1 to 1 g / 10 minutes is used, and spinning is performed while applying an appropriate draft.
  • MFRD melt flow rate
  • a method of performing heat treatment and stretching after obtaining a yarn having excellent orientation is known (Patent Document 4).
  • annealing treatment is performed to form a lamellar laminated crystal (stacked lamellar) in the film wall of the shaped product.
  • a porous hollow fiber membrane is obtained in which the lamella laminated crystals are grown while the stacked lamellas are separated. Since the hollow fiber membrane has the specific porous structure as described above, it has excellent mechanical strength. Furthermore, it is excellent in that no solvent is used in the production process.
  • porous hollow fiber membrane having a homogeneous structure as described above, in order to increase the water permeability, it is conceivable to make the porous hollow fiber membrane thinner.
  • the mechanical strength of the porous hollow fiber membrane is insufficient, and sufficient pressure resistance cannot be maintained particularly when the porosity is increased.
  • the mechanical strength of the porous hollow fiber membrane is increased, but the water permeability is decreased.
  • the present invention comprises a polyethylene porous hollow fiber membrane that is formed of a resin composition having excellent moldability, retains excellent rigidity, has a large water permeability, and has excellent filtration characteristics, and the polyethylene porous hollow fiber membrane. It aims at provision of the cartridge for water purifiers, and a hollow fiber membrane module.
  • the present invention employs the following configuration in order to solve the above problems.
  • Polyethylene porous hollow having an average pore size of 0.1 to 0.5 ⁇ m and a pore size distribution in the region of ⁇ 0.05 ⁇ m from the average pore size of 70% or more of the total pore size distribution Yarn membrane.
  • the polyethylene porous hollow fiber membrane according to [1] which is formed of a resin composition containing polyethylene that satisfies the following requirements (a) to (d).
  • (A) The melt flow rate (MFRD) measured according to JIS K7210 code D is 0.1 to 0.9 g / 10 min.
  • the melt flow rate (MFRG) measured in accordance with JIS K7210 code G is 50 to 100 g / 10 min.
  • a water purifier cartridge comprising the polyethylene porous hollow fiber membrane according to any one of [1] to [7].
  • a hollow fiber membrane module comprising the polyethylene porous hollow fiber membrane according to any one of [1] to [7].
  • the polyethylene porous hollow fiber membrane of the present invention is formed of a resin composition having excellent moldability, maintains excellent rigidity, has a large amount of water permeability, and is excellent in filtration characteristics. Moreover, this invention provides the cartridge for water purifiers and hollow fiber membrane module which comprise the said polyethylene porous hollow fiber membrane.
  • the polyethylene porous hollow fiber membrane of the present invention (hereinafter referred to as “the present hollow fiber membrane”) is a resin composition containing polyethylene that satisfies the following requirements (a) to (d) (hereinafter “the present resin composition”). It is a porous hollow fiber membrane formed by.
  • (A) Melt flow rate (hereinafter referred to as “MFRD”) measured in accordance with JIS K7210 code D (measurement temperature: 190 ° C., load: 2.16 kg) is 0.1 to 0.9 g / 10 min. It is.
  • the melt flow rate (hereinafter referred to as “MFRG”) measured according to JIS K7210 code G (measurement temperature: 190 ° C., load: 21.6 kg) is 50 to 100 g / 10 min.
  • the ratio FRR (G / D) ( MFRG / MFRD) of the MFRD and the MFRG is 50-100.
  • the density is 0.962 to 0.968 g / cm 3 .
  • the melt viscosity is not too high and the molding range capable of improving the crystal orientation is increased. Moreover, it is applicable also to the field
  • the MFRG of polyethylene is 50 g / 10 min or more, excellent high-speed moldability can be obtained.
  • the MFRG of polyethylene is 100 g / 10 min or less, good environmental stress crack resistance (hereinafter referred to as “ESCR”) can be obtained.
  • high-speed moldability is the same conditions, lower the extruder load, how far the discharge speed can be increased, and how much the molding temperature can be lowered within the same range of the extruder load, It is a characteristic evaluated by judging.
  • the MFRG of polyethylene is preferably 60 to 90 g / 10 minutes.
  • the ratio FRR (G / D) of MFRG and MFRD of polyethylene generally has a correlation with the molecular weight distribution, and tends to increase as the molecular weight distribution becomes wider.
  • the FRR (G / D) of polyethylene is 50 or more, the load on the extruder during molding does not become too high, and the high-speed moldability is excellent. Also, excellent stress crack resistance is obtained. If the FRR (G / D) of polyethylene is 100 or less, this hollow fiber membrane having high impact strength can be obtained.
  • the FRR (G / D) of polyethylene is preferably 60-80.
  • the density of polyethylene is 0.962 g / cm 2 or more, the amount of low crystal components is small, the porosity is increased, and sufficient transmission performance is obtained. If the density of polyethylene is 0.968 g / cm 3 or less, ESCR of 20 hours or more is maintained. The density is measured by a method based on JIS K7112 (ASTM D1505).
  • the ratio Mw / Mn between the weight average molecular weight (hereinafter referred to as “Mw”) and the number average molecular weight (hereinafter referred to as “Mn”) of polyethylene is preferably 8.0 to 12.0.
  • Mw / Mn is 8.0 or more, the ESCR is improved by increasing the amount of the high molecular weight component. If Mw / Mn is 12.0 or less, low molecular weight components such as wax are reduced, and it is easy to suppress dissolution of the low molecular weight components in water in drinking water applications such as water purifiers and waterworks. Moreover, the rigidity of this hollow fiber membrane improves because molecular weight distribution becomes narrow.
  • the polyethylene ratio Mw / Mn is calculated from measurement by high-temperature gel permeation chromatography (hereinafter referred to as “high-temperature GPC”).
  • High-temperature GPC refers to GPC that performs measurement in a state in which a sample is heated and dissolved.
  • the ratio Mw / Mn is calculated using a calibration curve created using polystyrene as a standard sample in the measurement by high temperature GPC. Examples of the measuring apparatus include trade names “150-GPC”, “Alliance GPCV 2000” (manufactured by Waters).
  • the amount of a component having a molecular weight of 1000 or less (hereinafter referred to as “FL”) in polyethylene is preferably 0.1 to 2.0% by mass, preferably 0.2 to 1.0 is more preferable, and 0.3 to 0.7 is particularly preferable.
  • FL is a so-called low molecular weight component among polyethylene components. If it is 0.1 mass% or more, it contributes to an improvement in a softness
  • the amount of a component having a molecular weight of 1,000,000 or more in polyethylene is preferably 1.5 to 3.0% by mass with respect to 100% by mass of the total copolymer constituting the polyethylene, To 3.0 is more preferable, and 2.5 to 3.0 is particularly preferable. If the FH is 1.5% by mass or more, the amount of the high molecular weight component increases, so that long-term characteristics such as stress crack resistance and ESCR are improved. When FH is 3% by mass or less, sufficient fluidity can be easily obtained at the time of molding, so that an unmelted gel is hardly generated, and a non-porous portion contrary to the intention at the time of stretching is hardly generated.
  • FL and FH are obtained from the same high temperature GPC as the ratio Mw / Mn described above. That is, in the molecular weight distribution chart obtained by measurement by high temperature GPC, FL is obtained from the ratio of the area of the molecular weight portion of 1000 or less to the area of the entire molecular weight distribution. Similarly, FH is calculated
  • the ESCR (environmental stress crack resistance) of polyethylene is preferably 10 to 50 hours, more preferably 15 to 40 hours, and particularly preferably 15 to 30 hours.
  • the ESCR is 10 hours or longer, the present hollow fiber membrane that is difficult to break even when stress is applied can be obtained. Further, when the porous structure (stretching) is performed so that cracks are generated between the crystal components during production, the hollow fiber membrane is hardly broken. If the ESCR is 50 hours or less, the density is improved and the crystallinity is also improved, so that the openability is improved and good pores are formed.
  • the ESCR of polyethylene is measured by a constant strain environmental stress crack test according to JIS K6760. ESCR is the time when the probability of occurrence of cracks due to environmental stress is 50%.
  • polyethylene having a short number of short branched chains is particularly preferable from the viewpoint of pore opening properties.
  • the MFRD, MFRG, and molecular weight of polyethylene can be adjusted, for example, by using a molecular weight regulator such as hydrogen during the production of polyethylene.
  • a molecular weight regulator such as hydrogen during the production of polyethylene.
  • commercially available polyethylene products include trade names “H6670B” and “H6430BM” (above, manufactured by SCG Chemical).
  • the resin composition is preferably a composition containing polyethylene as a main component.
  • the composition mainly composed of polyethylene is a composition having a polyethylene content of 50% by mass or more.
  • the polyethylene content in the polyethylene-based composition is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass with respect to 100% by mass of the resin composition.
  • Examples of other polymer components other than polyethylene contained in the resin composition include other olefinic monomers such as polypropylene.
  • this resin composition contains other polymer components other than polyethylene, MFRD, MFRG, FRR (G / D), density, Mw / Mn, ESCR, FL and FH in all polymers containing them are It is preferable to be within the range.
  • additives examples include an antioxidant, a lubricant, and a nucleating agent that increases the crystallization speed and improves the moldability.
  • examples of the antioxidant include hindered phenolic antioxidants such as trade names “IRGANOX1076” and “IRGANOX1010” (manufactured by Ciba Specialty Chemicals).
  • examples of the lubricant include calcium stearate and magnesium stearate. The amount of lubricant added is preferably 800 ppm or less, more preferably 600 ppm or less, and even more preferably 300 ppm or less.
  • examples of the nucleating agent include pigments such as titanium oxide.
  • examples of the additive include an antistatic agent, a light stabilizer, an ultraviolet absorber, an antifogging agent, and an organic peroxide.
  • filler examples include talc, silica, carbon, mica, calcium carbonate, magnesium carbonate, and wood powder. Moreover, you may add a titanium oxide and an organic pigment with a masterbatch as needed.
  • the hollow fiber membrane may be a hollow fiber membrane formed by a single membrane or a composite hollow fiber membrane formed by a composite membrane in which a plurality of membranes are laminated.
  • the thickness of the hollow fiber membrane is not particularly limited, but the hollow fiber membrane outer diameter is preferably 100 to 2000 ⁇ m. If the outer diameter of the hollow fiber membrane is 100 ⁇ m or more, a gap between the hollow fiber membranes can be easily obtained at the time of manufacturing a hollow fiber membrane module or the like, and a potting resin can easily enter between the hollow fiber membranes. If the outer diameter of the hollow fiber membrane is 2000 ⁇ m or less, the size of the entire module can be reduced even when a hollow fiber membrane module using a large number of hollow fiber membranes is manufactured. As a result, the volume of the potting process portion is also reduced, and it is easy to suppress a decrease in dimensional accuracy due to the shrinkage of the potting resin during the potting process.
  • the porosity of the hollow fiber membrane is preferably 30 to 80% by volume with respect to 100% by volume of the entire hollow fiber membrane. If the porosity is 30% by volume or more, the amount of water permeability tends to increase, and excellent filtration characteristics can be easily obtained. When the porosity is 80% by volume or less, mechanical strength such as pressure resistance is improved.
  • the size of the pores of the present hollow fiber membrane is not particularly limited as long as sufficient filtration characteristics and mechanical strength are satisfied.
  • the membrane surface is preferably hydrophilized with a hydrophilic polymer.
  • the hydrophilic copolymer is a copolymer obtained by copolymerizing a monomer mixture containing 20 mol% or more of ethylene and 10 mol% or more of a hydrophilic monomer.
  • the hydrophilic copolymer may be any type of copolymer such as a random copolymer, a block copolymer, or a graft copolymer.
  • the ethylene content in the hydrophilic copolymer is 20 mol% or more, the affinity of the hydrophilic copolymer for the hollow fiber membrane is increased, and the hydrophilic copolymer can be sufficiently coated. Therefore, the membrane surface of the present hollow fiber membrane can be sufficiently hydrophilized.
  • hydrophilic monomer examples include vinyl compounds such as vinyl alcohol, (meth) acrylic acid and salts thereof, hydroxyethyl (meth) acrylate, polyethylene glycol (meth) acrylic ester, vinyl pyrrolidone, and acrylamide. Of these, vinyl alcohol is particularly preferable. Only 1 type may be used for a hydrophilic monomer and it may use 2 or more types together.
  • the hydrophilic copolymer may contain a third component other than ethylene and the hydrophilic monomer.
  • the third component include vinyl acetate, (meth) acrylic acid ester, vinyl alcohol fatty acid ester, vinyl alcohol formalized product or butyral product.
  • the coating amount of the hydrophilic copolymer is preferably 3 to 30% by mass and more preferably 7 to 15% by mass with respect to 100% by mass of the present hollow fiber membrane.
  • the coating amount of the hydrophilic copolymer is 3% by mass or more, the affinity of the hollow fiber membrane with water is improved and the water permeability is improved. If the coating amount of the hydrophilic copolymer is 30% by mass or less, it is easy to suppress the pores of the hollow fiber membrane from being blocked by the hydrophilic copolymer, and the water permeability is improved.
  • the distribution is narrow. Specifically, if the average pore size ⁇ 0.05 ⁇ m is 70% or more, not only the fractionation performance becomes sharp, but also the existence ratio of very small pore sizes that do not contribute to the water permeability decreases, so the entire membrane is filtered. There is an effect of reducing resistance, and as a result, water permeability is improved.
  • the average pore diameter of ⁇ 0.05 ⁇ m is less than 70% of the entire pore diameter distribution, that is, the ratio of the ultrafine pore diameter is 15% or more of the whole, thereby increasing the filtration resistance of the entire membrane, thereby increasing the water permeability. Decreases.
  • the hollow fiber membrane can be produced, for example, by a method having the following spinning process, stretching process and permanent hydrophilization process.
  • Spinning step A step of spinning the resin composition to obtain an unstretched hollow fiber membrane precursor.
  • Stretching step A step of stretching a hollow fiber membrane precursor and making it porous to obtain a porous hollow fiber membrane.
  • Permanent hydrophilic step A step of imparting permanent hydrophilicity to the membrane surface of the porous hollow fiber membrane.
  • the resin composition is extruded from the nozzle base, and cooled and solidified in an unstretched state while appropriately adjusting the extrusion speed and the winding speed. To do. Thereby, an unstretched hollow fiber membrane precursor is obtained.
  • the discharge temperature of the resin composition is not less than the melting point of the polymer used such as polyethylene, and is preferably 10 to 100 ° C. higher than the melting point.
  • the discharged material is preferably taken up at a take-up speed of 0.1 to 3 m / sec in an atmosphere of 10 to 40 ° C.
  • the unstretched hollow fiber membrane precursor obtained by melt spinning is subjected to a constant length heat treatment (annealing treatment) at a temperature equal to or lower than the melting point before stretching.
  • the constant-length heat treatment is preferably performed at 105 to 120 ° C. for 8 to 16 hours. If the temperature is 105 ° C. or higher, this hollow fiber membrane with good quality can be easily obtained. If temperature is 120 degrees C or less, sufficient elongation will be easy to be obtained, stability at the time of extending
  • the stretching is preferably two-stage stretching in which hot stretching is performed subsequent to cold stretching or multi-stage stretching in which hot stretching is divided into two or more multi-stages following cold stretching. Furthermore, in order to obtain the dimensional stability of the porous hollow fiber membrane obtained by the stretching, heat setting is performed in a state where the porous hollow fiber membrane is slightly relaxed under a constant length or within a range of 40% or less. Do.
  • the stretching is preferably slow stretching.
  • Cold drawing is a process of causing microcracking by causing structural breakdown of the film at a relatively low temperature.
  • the temperature of cold drawing is in the range from 0 ° C. to a temperature lower than the melting point of the polymer used by 50 ° C. or more (for example, 0 to 80 ° C. when the polymer in the resin composition is only polyethylene). It is preferable to carry out at a low temperature. When cold drawing is performed at a temperature exceeding the above range, the occurrence of microcracking is reduced and the pores may be reduced.
  • Hot stretching is a process in which micro cracks generated by cold stretching are expanded to form pores.
  • the heat stretching is preferably performed at a relatively high temperature, but is performed at a temperature not exceeding the melting point of the polymer used.
  • the heat draw ratio may be appropriately selected depending on the target pore diameter, and is preferably 3 to 7 times the length of the hollow fiber membrane precursor before drawing from the viewpoint of process stability.
  • the heat stretching is a multi-stage stretching of two or more stages. By setting it as multistage stretching, it becomes easy to form a pore, suppressing that a thread diameter becomes too thin at the time of extending
  • the heat setting temperature is preferably not less than the stretching temperature and not more than the melting temperature.
  • Permanent hydrophilization process As a method for coating the hydrophilic copolymer, for example, after immersing the hollow fiber membrane in a solution in which the hydrophilic copolymer is dissolved in a solvent (hereinafter referred to as “copolymer solution”), The method of drying is mentioned.
  • the method of immersing the hollow fiber membrane in the copolymer solution may be a method of immersing twice or more in the copolymer solution of the same concentration, and immersing twice or more using solutions having different concentrations. The method of performing may be sufficient.
  • a water-miscible organic solvent is preferable.
  • the water-miscible organic solvent include alcohols such as methanol, ethanol, N-propanol and isopropyl alcohol, dimethyl sulfoxide, dimethylformamide and the like. These solvents may be used alone or in combination of two or more. These solvents are preferably mixed with water from the viewpoint of improving the solubility of the hydrophilic copolymer.
  • the boiling point is low because of the ease of creating a vapor-containing atmosphere of the solvent, that is, the low vapor pressure of the solvent and the low toxicity to the human body.
  • a mixed solvent of alcohol for example, methanol, ethanol, isopropyl alcohol, etc.
  • the mixing ratio of the water-miscible organic solvent and water may be in a range that does not decrease the water permeability of the hollow fiber membrane and does not excessively decrease the solubility of the hydrophilic copolymer. Specifically, although it varies depending on the type of hydrophilic copolymer used, when ethanol is used as the organic solvent, the ethanol / water ratio is preferably 90/10 to 30/70 (volume%).
  • the content of the hydrophilic copolymer in the copolymer solution is preferably 0.1 to 10% by mass, and 0.5 to 5% by mass with respect to 100% by mass as the total of the solvent and the hydrophilic copolymer. More preferred.
  • the content of the hydrophilic copolymer is 0.1% by mass or more, it becomes easy to uniformly coat the hydrophilic copolymer on the hollow fiber membrane. If the content of the hydrophilic copolymer is 10% by mass or less, it is easy to suppress the viscosity of the copolymer solution from becoming too large, and the pores of the hollow fiber membrane are blocked with the hydrophilic copolymer. It is easy to suppress that.
  • the immersion treatment time varies depending on the film thickness, pore diameter, and porosity of the hollow fiber membrane to be immersed, but is preferably in the range of several seconds to several minutes.
  • the organic solvent vapor is contained in an amount of 3% by volume or more, and the temperature is within the range from room temperature to the boiling point of the solvent.
  • a setting process for allowing the hollow fiber membrane to stay for at least 30 seconds is performed.
  • the purpose of the treatment is (1) to prevent pore clogging by forming a hydrophilic copolymer film on the surface of the nodule portion of the microfibril and stack lamella constituting the hollow fiber membrane.
  • drying treatment of the hollow fiber membrane after the setting treatment examples include known drying methods such as vacuum drying and hot air drying.
  • the drying temperature may be a temperature range in which the hollow fiber membrane is not deformed by heat.
  • the drying temperature is preferably 120 ° C. or less, particularly preferably 40 to 70 ° C.
  • this hollow fiber membrane is not limited to the above-mentioned method.
  • a method that does not perform the permanent hydrophilization step may be used.
  • the cartridge for water purifier of this invention is a module which comprises this hollow fiber membrane mentioned above.
  • the cartridge for water purifier of the present invention has the same form as a known cartridge for water purifier, except that this hollow fiber membrane is used.
  • the hollow fiber membrane module of the present invention is a module comprising the above-described hollow fiber membrane.
  • the hollow fiber membrane module of the present invention has the same form as a known hollow fiber membrane module, except that this hollow fiber membrane is used.
  • a hollow fiber membrane module of a known form in which several hundreds of the present hollow fiber membranes are bundled and inserted into a cylindrical housing and the composite hollow fiber membranes are sealed with a sealing material (potting resin). .
  • MFR Melt flow rate
  • the ratio Mw / Mn of polyethylene was calculated by obtaining Mw and Mn from calibration curves obtained by measurement by GPC (high temperature GPC) under the following conditions.
  • the calibration curve was calculated in a third order by measuring a standard sample of polystyrene and using a polyethylene conversion constant (0.48). The columns used were the following three columns connected in series.
  • Measurement condition Measuring device: “150-GPC” (manufactured by Waters) Column: “Shodex GPC AT-807 / S” (manufactured by Showa Denko) (1), “Tosoh TSK-GEL GMH6-HT” (manufactured by Tosoh) (2) Solvent: 1,2,4-trichlorobenzene Column temperature: 140 ° C Sample concentration: 0.05% by mass (injection amount: 500 ⁇ L) Flow rate: 1.0 mL / min Sample dissolution temperature: 160 ° C. Sample dissolution time: 2.5 hours
  • Mw and Mn of each component such as a low molecular weight component and a high molecular weight component are approximated by a Gaussian distribution, and The blending ratio of these components was calculated.
  • the component amount (FL) (unit: mass%) having a molecular weight of 1000 or less and the component amount (FH) (unit: mass%) having a molecular weight of 1,000,000 or more are calculated by measuring the molecular weight distribution by high-temperature GPC under the following conditions. did. That is, in the molecular weight distribution chart obtained by measurement by high-temperature GPC under the following conditions, the ratio of the area of the molecular weight portion of 1000 or less, or the ratio of the area of the molecular weight portion of 1 million or more to the total area of the molecular weight distribution, FL and FH were calculated.
  • the columns used were the following three columns connected in series.
  • Measurement condition Measuring device: “Alliance GPCV 2000” (manufactured by Waters) Column: “AT-807S” (manufactured by Showa Denko) (1), “GMHHR-H (S) HT” (manufactured by Tosoh) (2) Solvent: 1,2,4-trichlorobenzene Column temperature: 140 ° C Sample concentration: 20 mg / solvent 10 mL Flow rate: 1.0 mL / min Sample dissolution temperature: 140 ° C. Sample dissolution time: 1 hour
  • ESCR environmental stress crack resistance, unit: time
  • ESCR environment stress crack resistance, unit: time
  • test solution a 10% by mass aqueous solution of “Igepal CO-630” (manufactured by Rhodia Nikka Co., Ltd.) was used.
  • the time when the probability of occurrence of cracks due to environmental stress was 50% was measured and used as the ESCR value.
  • the coating amount W (unit: mass%) of the hydrophilic copolymer was calculated according to the following formula.
  • W (XY) / Y ⁇ 100
  • X is the dry membrane mass (unit: g) after the hydrophilization treatment
  • Y is the dry mass (unit: g) of the hollow fiber membrane before the treatment.
  • the amount of water permeation (unit: m 3 / m 2 ⁇ hour ⁇ MPa) of the obtained hollow fiber membrane is such that the hollow fiber membranes are bundled in a U shape and the ends of the hollow fiber membranes are solidified with urethane resin, and the effective membrane area A hollow fiber membrane module of 70 to 90 cm 2 was produced, and ion exchange water was filtered at a differential pressure of 0.1 MPa, and the water permeability at that time was measured.
  • the obtained hollow fiber membranes are bundled in a U shape, and the ends of the hollow fiber membranes are solidified with urethane resin to produce a hollow fiber membrane module having an effective membrane area of about 50 m 2.
  • the sample was immersed in ethanol having a concentration of 95% or more so that the portion of was completely immersed. After suctioning 100 mL or more of ethanol from inside the hollow fiber membrane so that the porous inside of the hollow fiber membrane is sufficiently wetted with ethanol, nitrogen is fed into the hollow fiber membrane while being immersed, in increments of 1 kPa every 10 seconds. The air pressure was increased.
  • Bubbles were generated from almost the entire surface of the hollow fiber membrane, and the nitrogen pressure when the interval between the bubbles was within 1 mm was taken as the bubble point (BP).
  • the relationship between the bubble point P (pressure) and the average pore diameter is as represented by the following formula.
  • P 2 ⁇ cos ⁇ / r
  • is the surface tension of ethanol
  • is the contact angle between ethanol and the hollow fiber membrane
  • r is the average pore radius.
  • the porosity (unit: volume%) was measured using a mercury porosimeter 221 type (manufactured by Carlo Elba).
  • the pore size distribution and the average pore size of the hollow fiber membranes are fluorine based on the PMI palm porosimeter PMI palm porometer CFP-1200AE (porous material automatic pore size distribution measuring system) based on the bubble point method (ASTM F316-86).
  • the measurement was carried out using Surfactant Fluorinert FC-72 (manufactured by 3M) as a measurement solvent.
  • the pore diameter ( ⁇ m) of the polyethylene porous hollow fiber membrane and the ratio (%) in the pore diameter distribution are shown in FIG. Further, an average pore diameter range of ⁇ 0.05 ⁇ m that most influenced the flow rate was calculated by integration from the measured pore diameter distribution.
  • the average flow pore size was measured with a Palm Porometer CFP-1200AE (a porous material automatic pore size distribution measuring system) manufactured by PMI in accordance with ASTM F316-86.
  • the pore size variation is measured by a PMI palm porometer CFP-1200AE (porous material automatic pore size distribution measurement system) according to ASTM F316-86, and the cumulative flow rate is 100%.
  • the chart had one shoulder peak at around 1 million molecular weight and around 5000 molecular weight. 1) Mn: 1.99 ⁇ 10 4 Mw: 1.09 ⁇ 10 5 Mixing ratio: 88% 2) Mn: 2.76 ⁇ 10 3 Mw: 5.25 ⁇ 10 3 Mixing ratio: 6% 3) Mn: 7.52 ⁇ 10 5 Mw: 9.74 ⁇ 10 5 Mixing ratio: 6%
  • melt spinning was performed at a discharge temperature of 170 ° C. and a winding speed of 70 m / min using a hollow fiber manufacturing nozzle in which annular discharge ports were arranged concentrically. Further, the yarn was wound around the yarn discharged from the nozzle while uniformly flowing cooling air at a temperature of 20 ° C. and a wind speed of 0.5 m / sec to obtain an unstretched composite hollow fiber membrane precursor.
  • the obtained unstretched composite hollow fiber membrane precursor was annealed by being placed in air at 115 ° C. for 16 hours while being wound around a bobbin.
  • the composite hollow fiber membrane precursor after the annealing treatment was cold-stretched 1.5 times between rollers kept at 30 ° C., and subsequently the maximum stretch amount was 6.0 in a heating furnace heated to 117 ° C.
  • the film is stretched between rollers so as to be doubled, and further relaxed by 20% in a heating furnace heated to 118 ° C., so that the total stretch ratio at the time of winding (the ratio relative to the unstretched composite hollow fiber membrane precursor) ) was multiplied by 5 to obtain a polyethylene porous hollow fiber membrane.
  • the hollow fiber membrane was raised at an angle of 90 ° in an atmosphere having an ethanol vapor concentration of 40% by volume and 60 ° C., and was allowed to stay for 80 seconds, so that the hydrophilic polymer was also applied to the pore inner surface of the hollow fiber membrane. Uniformly adhered. Thereafter, the solvent was removed by drying with hot air at 70 ° C. The adhesion rate of the ethylene-vinyl alcohol copolymer after drying was 10.5% by mass with respect to 100% by mass of the hollow fiber membrane.
  • the chart had one shoulder peak at around 1 million molecular weight and around 5000 molecular weight.
  • Mn 2.81 ⁇ 10 3 Mw: 6.57 ⁇ 10 3 Mixing ratio: 9%
  • Mn 2.24 ⁇ 10 4 Mw: 1.15 ⁇ 10 5 Mixing ratio: 84%
  • Mn 4.68 ⁇ 10 5 Mw: 9.40 ⁇ 10 5 Mixing ratio: 7%
  • a polyethylene porous hollow fiber membrane hollow fiber membrane was obtained in the same manner as in Example 1 except that the resin composition was used and the winding speed in melt spinning was 40 m / min. Moreover, the permanent hydrophilization process similar to Example 1 was performed. The adhesion rate of the ethylene-vinyl alcohol copolymer was 10.5% by mass relative to 100% by mass of the hollow fiber membrane.
  • the inner and outer surfaces of the polyethylene porous hollow fiber membrane and the inner surface of the micropore were uniformly covered with a thin film of an ethylene-vinyl alcohol copolymer. It was. Moreover, the bubble point which shows the hole diameter of a film
  • the porosity was 73.8% by volume.
  • a fluorosurfactant Fluorinert FC-72 manufactured by 3M
  • PMI palm porosimeter manufactured by PMI as a measuring solvent
  • the film had a sharp pore size distribution such that the ratio was 87.3%.
  • An unstretched composite hollow fiber membrane precursor was obtained by melt spinning as in Example 1 except that the resin composition was used and the discharge temperature was 180 ° C.
  • Stretching process The obtained unstretched composite hollow fiber membrane precursor was annealed by being placed in air at 115 ° C. for 16 hours while being wound around a bobbin.
  • the hollow fiber membrane after the annealing treatment is cold-drawn 1.5 times between rollers kept at 30 ° C., and then the maximum drawing amount is 6.0 times in a heating furnace heated to 117 ° C.
  • Examples 1 and 2 which are the polyethylene porous hollow fiber membranes of the present invention, the water permeability was large and the filtration characteristics were excellent. Further, the resin composition used had sufficient fluidity and excellent moldability. Further, since the amount of the low molecular weight component is not increased in order to improve moldability, excellent rigidity is maintained. Further, the polyethylene porous hollow fiber membrane of Example 2 had a higher porosity than the polyethylene porous hollow fiber membrane of Example 1, had a large water permeability, and was excellent in filtration characteristics.
  • the polyethylene porous hollow fiber membrane of Comparative Example 1 using polyethylene whose density is too low has a remarkably low water permeability and inferior filtration characteristics.
  • Example 1 which is the polyethylene porous hollow fiber membrane of the present invention
  • the average pore diameter is 0.3123
  • the ratio of the average pore diameter in the pore diameter range of ⁇ 0.05 ⁇ m to the total pore diameter distribution is as high as 85.5%. Results are shown.
  • Example 2 which is the polyethylene porous hollow fiber membrane of the present invention
  • the average pore diameter is 0.3155
  • the ratio of the average pore diameter within the pore diameter range of ⁇ 0.05 ⁇ m to the total pore diameter distribution is 87.3%. And showed high results.
  • the polyethylene porous hollow fiber membrane of the present invention is excellent in filtration characteristics and membrane strength, it can be suitably used for filtration of a wide variety of liquids to be treated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

The purpose of the present invention is to provide a porous polyethylene hollow-fiber membrane which uses a resin composition containing polyethylene and having excellent fluidity, and which retains excellent film quality and stiffness, and has high permeability and excellent filtering characteristics, and also to provide a hollow-fiber membrane module and a water purifier cartridge equipped with the porous polyethylene hollow-fiber membrane. The porous polyethylene hollow-fiber membrane is formed from a resin composition which contains polyethylene and has excellent fluidity, and the average pore-diameter in the hollow-fiber membrane is 0.1-0.5μm; the pore-diameter distribution in a region ± 0.05 μm from the average pore-diameter is at least 70% of the total pore-diameter distribution; the metal flow rate measured in accordance with JIS K7210 code D is 0.1-0.9g/10 minutes, and the metal flow rate measured in accordance with code G is 50-100g/10 minutes, with the FRR ratio (G/D) thereof being 50-100; and the density is 0.962-0.968g/cm3. Also provided are a hollow-fiber membrane module and a water purifier cartridge equipped with the porous polyethylene hollow-fiber membrane

Description

ポリエチレン多孔質中空糸膜、浄水器用カートリッジ及び中空糸膜モジュールPolyethylene porous hollow fiber membrane, cartridge for water purifier, and hollow fiber membrane module
 本発明は、ポリエチレン多孔質中空糸膜、並びに前記ポリエチレン多孔質中空糸膜を具備する浄水器用カートリッジ及び中空糸膜モジュールに関する。
 本願は、2010年9月29日に、日本に出願された特願2010-218043号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a polyethylene porous hollow fiber membrane, and a water purifier cartridge and a hollow fiber membrane module comprising the polyethylene porous hollow fiber membrane.
This application claims priority on September 29, 2010 based on Japanese Patent Application No. 2010-218043 filed in Japan, the contents of which are incorporated herein by reference.
 ポリエチレン多孔質中空糸膜は、種々の物質の分離や選択透過、及び隔離材等として広く用いられている。ポリエチレン多孔質中空糸膜の製造方法としては、例えば、高密度ポリエチレンを、適切なドラフトをかけながら紡糸した後、熱処理と延伸を行うことにより多孔質化して多孔質中空糸膜を得る方法が知られている(特許文献1~3)。
 また、ポリエチレンとして、JIS K7210のコードDに準拠して測定したメルトフローレート(MFRD)が0.1~1g/10分の高密度ポリエチレンを用い、適切なドラフトをかけながら紡糸することで、液晶の配向性に優れる糸を得た後、熱処理と延伸を行う方法が知られている(特許文献4)。すなわち、特定の紡糸条件でポリエチレンを賦形した後に、アニール処理を施して、賦形物の膜壁内にラメラ積層結晶(スタックドラメラ)を形成させる。次いで、前記賦形物を延伸することで、スタックドラメラ間を剥離させるとともに、ラメラ積層結晶間を結ぶフィブリルを成長させた多孔質中空糸膜が得られる。前記中空糸膜は、前記のような特定の多孔質構造を有しているため、機械的強度に優れている。さらに、その製造過程で溶剤を使用しない点で優れている。
Polyethylene porous hollow fiber membranes are widely used as separation and selective permeation of various substances, separators and the like. As a method for producing a polyethylene porous hollow fiber membrane, for example, a method is known in which high-density polyethylene is spun while applying an appropriate draft, and then subjected to heat treatment and stretching to obtain a porous hollow fiber membrane. (Patent Documents 1 to 3).
In addition, as polyethylene, high-density polyethylene having a melt flow rate (MFRD) measured in accordance with JIS K7210 code D of 0.1 to 1 g / 10 minutes is used, and spinning is performed while applying an appropriate draft. A method of performing heat treatment and stretching after obtaining a yarn having excellent orientation is known (Patent Document 4). That is, after shaping polyethylene under specific spinning conditions, annealing treatment is performed to form a lamellar laminated crystal (stacked lamellar) in the film wall of the shaped product. Next, by stretching the shaped product, a porous hollow fiber membrane is obtained in which the lamella laminated crystals are grown while the stacked lamellas are separated. Since the hollow fiber membrane has the specific porous structure as described above, it has excellent mechanical strength. Furthermore, it is excellent in that no solvent is used in the production process.
 前記のような均質構造を有する多孔質中空糸膜において、透水量を大きくするためには、多孔質中空糸膜の膜厚をより薄くすることが考えられる。しかし、膜厚を薄くすると、多孔質中空糸膜の機械的強度が不足し、特に空孔率を高めたときに充分な耐圧性を維持できない。また、逆に膜厚を大きくすると、多孔質中空糸膜の機械的強度は大きくなるが、透水量が少なくなる。 In the porous hollow fiber membrane having a homogeneous structure as described above, in order to increase the water permeability, it is conceivable to make the porous hollow fiber membrane thinner. However, when the film thickness is reduced, the mechanical strength of the porous hollow fiber membrane is insufficient, and sufficient pressure resistance cannot be maintained particularly when the porosity is increased. Conversely, when the film thickness is increased, the mechanical strength of the porous hollow fiber membrane is increased, but the water permeability is decreased.
 機械的強度が高く透水量の多い多孔質中空糸膜を得るには、膜材料であるポリエチレンの材料強度及び剛性を向上させることが考えられる。しかし、剛性を向上させるためにポリエチレンの高分子量成分の割合を高めると、MFRDが低くなるため、溶融紡糸時の紡糸速度が低くなる等、成形性が低下する。一方、優れた成形性を得るために低分子量成分の割合を高めると、特に耐圧性を維持するために膜厚を厚くする必要が生じ、充分な濾過特性を維持できない。 In order to obtain a porous hollow fiber membrane having a high mechanical strength and a large water permeability, it is conceivable to improve the material strength and rigidity of polyethylene as a membrane material. However, when the proportion of the high molecular weight component of polyethylene is increased to improve the rigidity, the MFRD is lowered, and thus the moldability is lowered, for example, the spinning speed at the time of melt spinning is lowered. On the other hand, when the proportion of the low molecular weight component is increased in order to obtain excellent moldability, it is necessary to increase the film thickness particularly in order to maintain pressure resistance, and sufficient filtration characteristics cannot be maintained.
特開昭52-137026号公報Japanese Patent Laid-Open No. 52-137026 特開昭57-66114号公報JP-A-57-66114 特公昭63-42006号公報Japanese Patent Publication No. 63-42006 特開平6-277475号公報JP-A-6-277475
 本発明は、成形性に優れた樹脂組成物により形成され、優れた剛性を保持し、透水量が多く濾過特性に優れたポリエチレン多孔質中空糸膜、並びに前記ポリエチレン多孔質中空糸膜を具備する浄水器用カートリッジ及び中空糸膜モジュールの提供を目的とする。 The present invention comprises a polyethylene porous hollow fiber membrane that is formed of a resin composition having excellent moldability, retains excellent rigidity, has a large water permeability, and has excellent filtration characteristics, and the polyethylene porous hollow fiber membrane. It aims at provision of the cartridge for water purifiers, and a hollow fiber membrane module.
 本発明は、前記課題を解決するために以下の構成を採用した。
 [1]平均孔径が0.1~0.5μmであって、かつ、孔径分布が、前記平均孔径から±0.05μmの領域における孔径分布が全孔径分布の70%以上であるポリエチレン多孔質中空糸膜。
 [2]下記(a)~(d)の要件を満たすポリエチレンを含む樹脂組成物により形成された[1]に記載のポリエチレン多孔質中空糸膜。
 (a)JIS K7210のコードDに準拠して測定したメルトフローレート(MFRD)が0.1~0.9g/10分である。
 (b)JIS K7210のコードGに準拠して測定したメルトフローレート(MFRG)が50~100g/10分である。
 (c)前記MFRDと前記MFRGとの比FRR(G/D)(=MFRG/MFRD)が50~100である。
 (d)密度が0.962~0.968g/cmである。
 [3]前記ポリエチレンにおける質量平均分子量Mwと数平均分子量Mnの比率Mw/Mnが8.0~12.0である、前記[1]又は[2]に記載のポリエチレン多孔質中空糸膜。
 [4]前記ポリエチレンのJIS K6760に準拠して測定した耐環境応力亀裂性が10~50時間である、前記[1]~[3]のいずれか一項に記載のポリエチレン多孔質中空糸膜。
 [5]前記ポリエチレンにおける分子量1000以下の成分量が2.0質量%以下で、かつ分子量100万以上の成分量が1.5~3.0質量%である、前記[1]~[3]のいずれか一項に記載のポリエチレン多孔質中空糸膜。
 [6]中空糸膜の内表面及び外表面が親水性共重合体で親水化処理された、前記[1]~[5]のいずれか一項に記載のポリエチレン多孔質中空糸膜。
 [7]前記親水性共重合体が、エチレン-ビニルアルコール共重合体である、前記[6]に記載のポリエチレン多孔質中空糸膜。
 [8]前記[1]~[7]のいずれか一項に記載のポリエチレン多孔質中空糸膜を具備する、浄水器用カートリッジ。
 [9]前記[1]~[7]のいずれか一項に記載のポリエチレン多孔質中空糸膜を具備する、中空糸膜モジュール。
 [10]平均流量孔径が0.1~0.5μmであって、かつ、開孔径ばらつきが100%以下である[1]~[7]のいずれか一項に記載のポリエチレン多孔質中空糸膜。
The present invention employs the following configuration in order to solve the above problems.
[1] Polyethylene porous hollow having an average pore size of 0.1 to 0.5 μm and a pore size distribution in the region of ± 0.05 μm from the average pore size of 70% or more of the total pore size distribution Yarn membrane.
[2] The polyethylene porous hollow fiber membrane according to [1], which is formed of a resin composition containing polyethylene that satisfies the following requirements (a) to (d).
(A) The melt flow rate (MFRD) measured according to JIS K7210 code D is 0.1 to 0.9 g / 10 min.
(B) The melt flow rate (MFRG) measured in accordance with JIS K7210 code G is 50 to 100 g / 10 min.
(C) The ratio FRR (G / D) (= MFRG / MFRD) of the MFRD and the MFRG is 50-100.
(D) The density is 0.962 to 0.968 g / cm 3 .
[3] The polyethylene porous hollow fiber membrane according to the above [1] or [2], wherein the ratio Mw / Mn of the mass average molecular weight Mw to the number average molecular weight Mn in the polyethylene is 8.0 to 12.0.
[4] The polyethylene porous hollow fiber membrane according to any one of [1] to [3], wherein the polyethylene has an environmental stress crack resistance measured in accordance with JIS K6760 of 10 to 50 hours.
[5] The above [1] to [3], wherein the polyethylene has an amount of a component having a molecular weight of 1,000 or less of 2.0% by mass or less and an amount of a component having a molecular weight of 1,000,000 or more is 1.5 to 3.0% by mass. The polyethylene porous hollow fiber membrane according to any one of the above.
[6] The polyethylene porous hollow fiber membrane according to any one of the above [1] to [5], wherein the inner surface and the outer surface of the hollow fiber membrane are hydrophilized with a hydrophilic copolymer.
[7] The polyethylene porous hollow fiber membrane according to [6], wherein the hydrophilic copolymer is an ethylene-vinyl alcohol copolymer.
[8] A water purifier cartridge comprising the polyethylene porous hollow fiber membrane according to any one of [1] to [7].
[9] A hollow fiber membrane module comprising the polyethylene porous hollow fiber membrane according to any one of [1] to [7].
[10] The polyethylene porous hollow fiber membrane according to any one of [1] to [7], wherein the average flow pore size is 0.1 to 0.5 μm, and the pore size variation is 100% or less. .
 本発明のポリエチレン多孔質中空糸膜は、成形性に優れた樹脂組成物により形成されており、優れた剛性を保持し、透水量が多く濾過特性に優れている。
 また、本発明は、前記ポリエチレン多孔質中空糸膜を具備する浄水器用カートリッジ及び中空糸膜モジュールを提供する。
The polyethylene porous hollow fiber membrane of the present invention is formed of a resin composition having excellent moldability, maintains excellent rigidity, has a large amount of water permeability, and is excellent in filtration characteristics.
Moreover, this invention provides the cartridge for water purifiers and hollow fiber membrane module which comprise the said polyethylene porous hollow fiber membrane.
本発明のポリエチレン多孔質中空糸膜の孔径分布Pore size distribution of the polyethylene porous hollow fiber membrane of the present invention
<ポリエチレン多孔質中空糸膜>
 本発明のポリエチレン多孔質中空糸膜(以下、「本中空糸膜」という。)は、下記(a)~(d)の要件を満たすポリエチレンを含む樹脂組成物(以下、「本樹脂組成物」という。)により形成された多孔質中空糸膜である。
 (a)JIS K7210のコードD(測定温度:190℃、荷重:2.16kg)に準拠して測定したメルトフローレート(以下、「MFRD」という。)が0.1~0.9g/10分である。
 (b)JIS K7210のコードG(測定温度:190℃、荷重:21.6kg)に準拠して測定したメルトフローレート(以下、「MFRG」という。)が50~100g/10分である。
 (c)前記MFRDと前記MFRGとの比FRR(G/D)(=MFRG/MFRD)が50~100である。
 (d)密度が0.962~0.968g/cmである。
<Polyethylene porous hollow fiber membrane>
The polyethylene porous hollow fiber membrane of the present invention (hereinafter referred to as “the present hollow fiber membrane”) is a resin composition containing polyethylene that satisfies the following requirements (a) to (d) (hereinafter “the present resin composition”). It is a porous hollow fiber membrane formed by.
(A) Melt flow rate (hereinafter referred to as “MFRD”) measured in accordance with JIS K7210 code D (measurement temperature: 190 ° C., load: 2.16 kg) is 0.1 to 0.9 g / 10 min. It is.
(B) The melt flow rate (hereinafter referred to as “MFRG”) measured according to JIS K7210 code G (measurement temperature: 190 ° C., load: 21.6 kg) is 50 to 100 g / 10 min.
(C) The ratio FRR (G / D) (= MFRG / MFRD) of the MFRD and the MFRG is 50-100.
(D) The density is 0.962 to 0.968 g / cm 3 .
 ポリエチレンのMFRDが0.1g/10分以上であれば、溶融粘性が大きすぎず、結晶の配向性を向上させることが可能な成形範囲が大きくなる。また、浄水器等の小型化が要求される分野にも適用できる。ポリエチレンのMFRDが0.9g/10分以下であれば、溶融粘性が小さすぎず、ドラフト比を上げていくことで、結晶の配向性が向上する。そのため、製造時の延伸により充分に多孔質化した本中空糸膜が得られる。また、剛性が向上し、薄膜化及び高空孔率化して透過性能を向上させることできる。 If the MFRD of polyethylene is 0.1 g / 10 min or more, the melt viscosity is not too high and the molding range capable of improving the crystal orientation is increased. Moreover, it is applicable also to the field | area where size reduction, such as a water purifier, is requested | required. If the MFRD of polyethylene is 0.9 g / 10 min or less, the melt viscosity is not too small, and the crystal orientation is improved by increasing the draft ratio. Therefore, the present hollow fiber membrane that has been sufficiently made porous by stretching during production can be obtained. Further, the rigidity can be improved, and the permeation performance can be improved by reducing the film thickness and increasing the porosity.
 ポリエチレンのMFRGが50g/10分以上であれば、優れた高速成形性が得られる。ポリエチレンのMFRGが100g/10分以下であれば、良好な耐環境応力亀裂性(以下、「ESCR」という。)が得られる。ここで、高速成形性とは、同一条件において、押出機の負荷を低くして、吐出速度をどこまで上げられるか、及び押出機の負荷が同一となる範囲で、成形温度をどこまで下げられるか、を判断することにより評価する特性である。
 ポリエチレンのMFRGは、60~90g/10分が好ましい。
If the MFRG of polyethylene is 50 g / 10 min or more, excellent high-speed moldability can be obtained. When the MFRG of polyethylene is 100 g / 10 min or less, good environmental stress crack resistance (hereinafter referred to as “ESCR”) can be obtained. Here, high-speed moldability is the same conditions, lower the extruder load, how far the discharge speed can be increased, and how much the molding temperature can be lowered within the same range of the extruder load, It is a characteristic evaluated by judging.
The MFRG of polyethylene is preferably 60 to 90 g / 10 minutes.
 ポリエチレンのMFRGとMFRDとの比FRR(G/D)は、一般的に分子量分布と相関があり、分子量分布が広くなるほど大きくなる傾向にある。
 ポリエチレンのFRR(G/D)が50以上であれば、成形時の押出機の負荷が高くなりすぎず、高速成形性に優れる。また、優れた耐ストレスクラック性も得られる。ポリエチレンのFRR(G/D)が100以下であれば、衝撃強度が高い本中空糸膜が得られる。ポリエチレンのFRR(G/D)は、60~80が好ましい。
 中空糸膜を溶融延伸法により製膜する場合、結晶配向性を高める点から、紡糸は通常の押出成形よりも低温で行うことが多い。この条件は押出機に負荷のかかりやすい条件であるので、分子の流動性を向上させる必要がある。FRR(G/D)が前記範囲内であれば、分子の流動を向上させつつ、結晶の配向を良好にできる。そのため、膜孔径の均一性が高くなるだけでなく、空孔率が高くなる。
The ratio FRR (G / D) of MFRG and MFRD of polyethylene generally has a correlation with the molecular weight distribution, and tends to increase as the molecular weight distribution becomes wider.
When the FRR (G / D) of polyethylene is 50 or more, the load on the extruder during molding does not become too high, and the high-speed moldability is excellent. Also, excellent stress crack resistance is obtained. If the FRR (G / D) of polyethylene is 100 or less, this hollow fiber membrane having high impact strength can be obtained. The FRR (G / D) of polyethylene is preferably 60-80.
When a hollow fiber membrane is formed by a melt drawing method, spinning is often performed at a lower temperature than ordinary extrusion molding from the viewpoint of improving crystal orientation. Since this condition is a condition in which the extruder is easily loaded, it is necessary to improve the fluidity of the molecule. When FRR (G / D) is within the above range, the crystal orientation can be improved while improving the flow of molecules. Therefore, not only the uniformity of the membrane pore diameter is increased, but the porosity is also increased.
 ポリエチレンの密度が0.962g/cm以上であれば、低結晶成分の量が少なく、空孔率が高まり、充分な透過性能が得られる。ポリエチレンの密度が0.968g/cm以下であれば、20時間以上のESCRが維持される。
 密度は、JIS K7112(ASTM D1505)に準拠した方法により測定される。
When the density of polyethylene is 0.962 g / cm 2 or more, the amount of low crystal components is small, the porosity is increased, and sufficient transmission performance is obtained. If the density of polyethylene is 0.968 g / cm 3 or less, ESCR of 20 hours or more is maintained.
The density is measured by a method based on JIS K7112 (ASTM D1505).
 ポリエチレンの質量平均分子量(以下、「Mw」という。)と数平均分子量(以下、「Mn」という。)との比率Mw/Mnは、8.0~12.0が好ましい。Mw/Mnが8.0以上であれば、高分子量成分の量が多くなることで、ESCRが向上する。Mw/Mnが12.0以下であれば、ワックスのような低分子量成分が少なくなり、浄水器、上水道等の飲料水用途において水中に前記低分子量成分が溶け出すことを抑制しやすい。また、分子量分布が狭くなることで、本中空糸膜の剛性が向上する。 The ratio Mw / Mn between the weight average molecular weight (hereinafter referred to as “Mw”) and the number average molecular weight (hereinafter referred to as “Mn”) of polyethylene is preferably 8.0 to 12.0. When Mw / Mn is 8.0 or more, the ESCR is improved by increasing the amount of the high molecular weight component. If Mw / Mn is 12.0 or less, low molecular weight components such as wax are reduced, and it is easy to suppress dissolution of the low molecular weight components in water in drinking water applications such as water purifiers and waterworks. Moreover, the rigidity of this hollow fiber membrane improves because molecular weight distribution becomes narrow.
 ポリエチレンの比率Mw/Mnは、高温ゲルパーミエーションクロマトグラフィー(以下、「高温GPC」という。)による測定から算出される。高温GPCとは、試料を加熱して溶解させた状態で測定を行うGPCをいう。比率Mw/Mnは、高温GPCによる測定において、標準試料としてポリスチレンを用いて作成した検量線を用いて算出される。
 測定装置としては、商品名「150-GPC」、「Alliance GPCV 2000」(以上、Waters社製)等が挙げられる。
The polyethylene ratio Mw / Mn is calculated from measurement by high-temperature gel permeation chromatography (hereinafter referred to as “high-temperature GPC”). High-temperature GPC refers to GPC that performs measurement in a state in which a sample is heated and dissolved. The ratio Mw / Mn is calculated using a calibration curve created using polystyrene as a standard sample in the measurement by high temperature GPC.
Examples of the measuring apparatus include trade names “150-GPC”, “Alliance GPCV 2000” (manufactured by Waters).
 ポリエチレンにおける分子量1000以下の成分量(以下、「FL」という。)は、ポリエチレンを構成する全共重合体100質量%に対して、0.1~2.0質量%が好ましく、0.2~1.0がより好ましく、0.3~0.7が特に好ましい。FLは、ポリエチレンの成分のうち、いわゆる低分子量成分である。0.1質量%以上であれば柔軟性の向上に寄与し、2.0質量%以下であれば、臭気が問題とならず、食品用途等への適用にも好適である。 The amount of a component having a molecular weight of 1000 or less (hereinafter referred to as “FL”) in polyethylene is preferably 0.1 to 2.0% by mass, preferably 0.2 to 1.0 is more preferable, and 0.3 to 0.7 is particularly preferable. FL is a so-called low molecular weight component among polyethylene components. If it is 0.1 mass% or more, it contributes to an improvement in a softness | flexibility, and if it is 2.0 mass% or less, an odor does not become a problem and it is suitable also for application to a food use etc.
 ポリエチレンにおける分子量100万以上の成分量(以下、「FH」という。)は、ポリエチレンを構成する全共重合体100質量%に対して、1.5~3.0質量%が好ましく、2.0~3.0がより好ましく、2.5~3.0が特に好ましい。FHが1.5質量%以上であれば、高分子量成分の量が多くなるため、耐ストレスクラック性、ESCR等の長期特性が向上する。FHが3質量%以下であれば、成形時に充分な流動性が得られやすいため、未溶融のゲルが生じにくく、延伸時に意に反した非多孔化部を生じにくい。
 FL及びFHは、前述した比率Mw/Mnと同様の高温GPCから求められる。すなわち、高温GPCによる測定で得られた分子量分布のチャートにおいて、分子量分布全体の面積に対する、分子量1000以下の部分の面積の割合からFLが求められる。同様に、分子量分布全体の面積に対する、分子量100万以上の部分の面積の割合からFHが求められる。
The amount of a component having a molecular weight of 1,000,000 or more in polyethylene (hereinafter referred to as “FH”) is preferably 1.5 to 3.0% by mass with respect to 100% by mass of the total copolymer constituting the polyethylene, To 3.0 is more preferable, and 2.5 to 3.0 is particularly preferable. If the FH is 1.5% by mass or more, the amount of the high molecular weight component increases, so that long-term characteristics such as stress crack resistance and ESCR are improved. When FH is 3% by mass or less, sufficient fluidity can be easily obtained at the time of molding, so that an unmelted gel is hardly generated, and a non-porous portion contrary to the intention at the time of stretching is hardly generated.
FL and FH are obtained from the same high temperature GPC as the ratio Mw / Mn described above. That is, in the molecular weight distribution chart obtained by measurement by high temperature GPC, FL is obtained from the ratio of the area of the molecular weight portion of 1000 or less to the area of the entire molecular weight distribution. Similarly, FH is calculated | required from the ratio of the area of the part of molecular weight 1 million or more with respect to the area of the whole molecular weight distribution.
 ポリエチレンのESCR(耐環境応力亀裂性)は、10~50時間が好ましく、15~40時間がより好ましく、15~30時間が特に好ましい。ESCRが10時間以上であれば、応力がかかっても割れにくい本中空糸膜が得られる。また、製造時に結晶成分間に亀裂を生じさせるようにして多孔質化(延伸)を行う際、本中空糸膜の破断が起こりにくい。ESCRが50時間以下であれば、密度が向上し、また結晶性も向上するため、開孔性が向上して良好な細孔が形成される。
 ポリエチレンのESCRは、JIS K6760に準拠した定ひずみ環境応力亀裂試験により測定される。ESCRは、環境応力による亀裂が発生する確率が50%となる時間である。
The ESCR (environmental stress crack resistance) of polyethylene is preferably 10 to 50 hours, more preferably 15 to 40 hours, and particularly preferably 15 to 30 hours. When the ESCR is 10 hours or longer, the present hollow fiber membrane that is difficult to break even when stress is applied can be obtained. Further, when the porous structure (stretching) is performed so that cracks are generated between the crystal components during production, the hollow fiber membrane is hardly broken. If the ESCR is 50 hours or less, the density is improved and the crystallinity is also improved, so that the openability is improved and good pores are formed.
The ESCR of polyethylene is measured by a constant strain environmental stress crack test according to JIS K6760. ESCR is the time when the probability of occurrence of cracks due to environmental stress is 50%.
 本樹脂組成物に含まれるポリエチレンとしては、特に開孔性等の点から、短分岐鎖の少ないポリエチレンが好ましい。ポリエチレンのMFRD、MFRG、及び分子量は、例えば、ポリエチレンの製造時に水素等の分子量調節剤を用いることにより調節できる。
 ポリエチレンの市販品としては、例えば、商品名「H6670B」、「H6430BM」(以上、SCG Chemical社製)が挙げられる。
As the polyethylene contained in the present resin composition, polyethylene having a short number of short branched chains is particularly preferable from the viewpoint of pore opening properties. The MFRD, MFRG, and molecular weight of polyethylene can be adjusted, for example, by using a molecular weight regulator such as hydrogen during the production of polyethylene.
Examples of commercially available polyethylene products include trade names “H6670B” and “H6430BM” (above, manufactured by SCG Chemical).
 本樹脂組成物は、ポリエチレンを主成分とする組成物が好ましい。ポリエチレンを主成分とする組成物とは、ポリエチレンの含有量が50質量%以上の組成物である。ポリエチレンを主成分とする組成物におけるポリエチレンの含有量は、本樹脂組成物100質量%に対して、80質量%以上が好ましく、90質量%以上がより好ましく、100質量%が特に好ましい。 The resin composition is preferably a composition containing polyethylene as a main component. The composition mainly composed of polyethylene is a composition having a polyethylene content of 50% by mass or more. The polyethylene content in the polyethylene-based composition is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass with respect to 100% by mass of the resin composition.
 本樹脂組成物に含まれるポリエチレン以外の他の重合体成分としては、例えば、ポリプロピレン等の他のオレフィン系単量体等が挙げられる。
 本樹脂組成物がポリエチレン以外の他の重合体成分を含む場合は、それらを含む全重合体におけるMFRD、MFRG、FRR(G/D)、密度、Mw/Mn、ESCR、FL及びFHが、前記範囲内となるようにすることが好ましい。
Examples of other polymer components other than polyethylene contained in the resin composition include other olefinic monomers such as polypropylene.
When this resin composition contains other polymer components other than polyethylene, MFRD, MFRG, FRR (G / D), density, Mw / Mn, ESCR, FL and FH in all polymers containing them are It is preferable to be within the range.
 また、本樹脂組成物には、本発明の効果を損なわない範囲で添加剤、充填剤等が少量添加されていてもよい。
 添加剤としては、酸化防止剤、滑剤、結晶化速度を高めて成形性を向上させる核剤等が挙げられる。
 酸化防止剤としては、例えば、商品名「IRGANOX1076」、「IRGANOX1010」(以上、チバスペシャリティーケミカルズ社製)等のヒンダードフェノール系酸化防止剤等が挙げられる。
 滑剤としては、例えば、ステアリン酸カルシウム、ステアリン酸マグネシウムが挙げられる。滑剤の添加量は、800ppm以下が好ましく、600ppm以下がより好ましく、300ppm以下がさらに好ましい。
 核剤としては、酸化チタン等の顔料が挙げられる。
 また、添加剤としては、帯電防止剤、光安定剤、紫外線吸収剤、防曇剤、有機過酸化物等も挙げられる。
In addition, a small amount of additives, fillers and the like may be added to the resin composition as long as the effects of the present invention are not impaired.
Examples of the additive include an antioxidant, a lubricant, and a nucleating agent that increases the crystallization speed and improves the moldability.
Examples of the antioxidant include hindered phenolic antioxidants such as trade names “IRGANOX1076” and “IRGANOX1010” (manufactured by Ciba Specialty Chemicals).
Examples of the lubricant include calcium stearate and magnesium stearate. The amount of lubricant added is preferably 800 ppm or less, more preferably 600 ppm or less, and even more preferably 300 ppm or less.
Examples of the nucleating agent include pigments such as titanium oxide.
Examples of the additive include an antistatic agent, a light stabilizer, an ultraviolet absorber, an antifogging agent, and an organic peroxide.
 充填剤としては、例えば、タルク、シリカ、カーボン、マイカ、炭酸カルシウム、炭酸マグネシウム、木粉等が挙げられる。また、必要に応じて、酸化チタン、有機顔料をマスターバッチで添加してもよい。 Examples of the filler include talc, silica, carbon, mica, calcium carbonate, magnesium carbonate, and wood powder. Moreover, you may add a titanium oxide and an organic pigment with a masterbatch as needed.
 本中空糸膜は、単一の膜により形成された中空糸膜であってもよく、複数の膜が積層した複合膜により形成された複合中空糸膜であってもよい。
 本中空糸膜の太さは特に限定されないが、中空糸膜外径が100~2000μmであることが好ましい。中空糸膜外径が100μm以上であれば、中空糸膜モジュール等の製造時に中空糸膜間の隙間を充分に取りやすく、中空糸膜間にポッティング用樹脂を侵入させやすくなる。中空糸膜外径が2000μm以下であれば、多数本の中空糸膜を用いた中空糸膜モジュール等を製造したときにも、モジュール全体のサイズを小さくできる。これにより、ポッティング加工部の容積も小さくなるので、ポッティング加工時のポッティング用樹脂の収縮による寸法精度の低下を抑制しやすい。
The hollow fiber membrane may be a hollow fiber membrane formed by a single membrane or a composite hollow fiber membrane formed by a composite membrane in which a plurality of membranes are laminated.
The thickness of the hollow fiber membrane is not particularly limited, but the hollow fiber membrane outer diameter is preferably 100 to 2000 μm. If the outer diameter of the hollow fiber membrane is 100 μm or more, a gap between the hollow fiber membranes can be easily obtained at the time of manufacturing a hollow fiber membrane module or the like, and a potting resin can easily enter between the hollow fiber membranes. If the outer diameter of the hollow fiber membrane is 2000 μm or less, the size of the entire module can be reduced even when a hollow fiber membrane module using a large number of hollow fiber membranes is manufactured. As a result, the volume of the potting process portion is also reduced, and it is easy to suppress a decrease in dimensional accuracy due to the shrinkage of the potting resin during the potting process.
 本中空糸膜の空孔率は、本中空糸膜全体100体積%に対して、30~80体積%が好ましい。空孔率が30体積%以上であれば、透水量が多くなりやすく、優れた濾過特性が得られやすい。空孔率が80体積%以下であれば、耐圧性等の機械的強度が向上する。
 本中空糸膜の細孔の大きさは、特に限定されず、充分な濾過特性と機械的強度が満足される大きさであればよい。
The porosity of the hollow fiber membrane is preferably 30 to 80% by volume with respect to 100% by volume of the entire hollow fiber membrane. If the porosity is 30% by volume or more, the amount of water permeability tends to increase, and excellent filtration characteristics can be easily obtained. When the porosity is 80% by volume or less, mechanical strength such as pressure resistance is improved.
The size of the pores of the present hollow fiber membrane is not particularly limited as long as sufficient filtration characteristics and mechanical strength are satisfied.
 本中空糸膜は、膜表面(内面及び外面)が、親水性重合体で親水化処理されていることが好ましい。
 前記親水性共重合体は、エチレンを20モル%以上、親水性モノマーを10モル%以上含む単量体混合物を共重合して得た共重合体である。前記親水性共重合体は、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれのタイプの共重合体であってもよい。
 親水性共重合体に占めるエチレンの含量量が20モル%以上であれば、親水性共重合体の本中空糸膜に対する親和性が高くなり、親水性共重合体を充分に被覆できる。そのため、本中空糸膜の膜表面を充分に親水化できる。
In the present hollow fiber membrane, the membrane surface (inner surface and outer surface) is preferably hydrophilized with a hydrophilic polymer.
The hydrophilic copolymer is a copolymer obtained by copolymerizing a monomer mixture containing 20 mol% or more of ethylene and 10 mol% or more of a hydrophilic monomer. The hydrophilic copolymer may be any type of copolymer such as a random copolymer, a block copolymer, or a graft copolymer.
When the ethylene content in the hydrophilic copolymer is 20 mol% or more, the affinity of the hydrophilic copolymer for the hollow fiber membrane is increased, and the hydrophilic copolymer can be sufficiently coated. Therefore, the membrane surface of the present hollow fiber membrane can be sufficiently hydrophilized.
 親水性モノマーとしては、例えば、ビニルアルコール、(メタ)アクリル酸及びその塩、ヒドロキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリル酸エステル、ビニルピロリドン、アクリルアミド等のビニル化合物が挙げられる。なかでも、ビニルアルコールが特に好ましい。
 親水性モノマーは、1種のみを使用してもよく、2種以上を併用してもよい。
Examples of the hydrophilic monomer include vinyl compounds such as vinyl alcohol, (meth) acrylic acid and salts thereof, hydroxyethyl (meth) acrylate, polyethylene glycol (meth) acrylic ester, vinyl pyrrolidone, and acrylamide. Of these, vinyl alcohol is particularly preferable.
Only 1 type may be used for a hydrophilic monomer and it may use 2 or more types together.
 親水性共重合体は、エチレン及び親水性モノマー以外の第3成分を含んでいてもよい。
 第3成分としては、例えば、酢酸ビニル、(メタ)アクリル酸エステル、ビニルアルコール脂肪酸エステル、ビニルアルコールのフォルマール化物若しくはブチラール化物等が挙げられる。
The hydrophilic copolymer may contain a third component other than ethylene and the hydrophilic monomer.
Examples of the third component include vinyl acetate, (meth) acrylic acid ester, vinyl alcohol fatty acid ester, vinyl alcohol formalized product or butyral product.
 親水性共重合体の被覆量は、本中空糸膜100質量%に対して、3~30質量%が好ましく、7~15質量%がより好ましい。親水性共重合体の被覆量が3質量%以上であれば、本中空糸膜の水との親和性が向上し、透水量が向上する。親水性共重合体の被覆量が30質量%以下であれば、親水性共重合体により本中空糸膜の細孔の閉塞等が起こることを抑制しやすく、透水量が向上する。 The coating amount of the hydrophilic copolymer is preferably 3 to 30% by mass and more preferably 7 to 15% by mass with respect to 100% by mass of the present hollow fiber membrane. When the coating amount of the hydrophilic copolymer is 3% by mass or more, the affinity of the hollow fiber membrane with water is improved and the water permeability is improved. If the coating amount of the hydrophilic copolymer is 30% by mass or less, it is easy to suppress the pores of the hollow fiber membrane from being blocked by the hydrophilic copolymer, and the water permeability is improved.
 中空糸膜の孔径分布においては、分布が狭いことが好ましい。具体的には平均孔径±0.05μmの範囲が70%以上であると、分画性能がシャープになるだけでなく、透水量に寄与しない極微小孔径の存在比率が低下するので膜全体の濾過抵抗を下げる効果があり結果として透水性能が向上する。
 また、平均孔径±0.05μmの範囲が細孔径分布全体の70%未満、つまり極微小孔径の割合が、全体の15%以上になることで、膜全体の濾過抵抗が増大することで透水量が低下する。
In the pore diameter distribution of the hollow fiber membrane, it is preferable that the distribution is narrow. Specifically, if the average pore size ± 0.05 μm is 70% or more, not only the fractionation performance becomes sharp, but also the existence ratio of very small pore sizes that do not contribute to the water permeability decreases, so the entire membrane is filtered. There is an effect of reducing resistance, and as a result, water permeability is improved.
In addition, the average pore diameter of ± 0.05 μm is less than 70% of the entire pore diameter distribution, that is, the ratio of the ultrafine pore diameter is 15% or more of the whole, thereby increasing the filtration resistance of the entire membrane, thereby increasing the water permeability. Decreases.
(製造方法)
 本中空糸膜は、例えば、下記紡糸工程、延伸工程及び恒久親水化工程を有する方法により製造できる。
 紡糸工程:本樹脂組成物を紡糸して、未延伸の中空糸膜前駆体を得る工程。
 延伸工程:中空糸膜前駆体を延伸し、多孔質化して多孔質中空糸膜を得る工程。
 恒久親水化工程:多孔質中空糸膜の膜表面に恒久親水性を付与する工程。
(Production method)
The hollow fiber membrane can be produced, for example, by a method having the following spinning process, stretching process and permanent hydrophilization process.
Spinning step: A step of spinning the resin composition to obtain an unstretched hollow fiber membrane precursor.
Stretching step: A step of stretching a hollow fiber membrane precursor and making it porous to obtain a porous hollow fiber membrane.
Permanent hydrophilic step: A step of imparting permanent hydrophilicity to the membrane surface of the porous hollow fiber membrane.
 紡糸工程:
 例えば、円環状の複数の吐出口が同心円状に配置された複合ノズル口金を用い、前記ノズル口金から本樹脂組成物を押し出し、押出速度と巻取速度を適宜調節しつつ未延伸状態で冷却固化する。これにより、未延伸の中空糸膜前駆体が得られる。
 本樹脂組成物の吐出温度は、ポリエチレン等の使用する重合体の融点以上であり、前記融点より10~100℃高いことが好ましい。吐出物は10~40℃の雰囲気中において引取速度0.1~3m/秒で引き取ることが好ましい。
Spinning process:
For example, using a composite nozzle base in which a plurality of annular discharge ports are arranged concentrically, the resin composition is extruded from the nozzle base, and cooled and solidified in an unstretched state while appropriately adjusting the extrusion speed and the winding speed. To do. Thereby, an unstretched hollow fiber membrane precursor is obtained.
The discharge temperature of the resin composition is not less than the melting point of the polymer used such as polyethylene, and is preferably 10 to 100 ° C. higher than the melting point. The discharged material is preferably taken up at a take-up speed of 0.1 to 3 m / sec in an atmosphere of 10 to 40 ° C.
 延伸工程:
 溶融紡糸して得た未延伸の中空糸膜前駆体は、延伸前に前記融点以下で定長熱処理(アニール処理)する。
 定長熱処理は、105~120℃で、8~16時間行うことが好しい。温度が105℃以上であれば、品質の良好な本中空糸膜が得られやすい。温度が120℃以下であれば、充分な伸度が得られやすく、延伸時の安定性が向上し、高倍率での延伸が容易になる。また、処理時間が8時間以上であれば、品質の良好な本中空糸膜が得られやすい。
Stretching process:
The unstretched hollow fiber membrane precursor obtained by melt spinning is subjected to a constant length heat treatment (annealing treatment) at a temperature equal to or lower than the melting point before stretching.
The constant-length heat treatment is preferably performed at 105 to 120 ° C. for 8 to 16 hours. If the temperature is 105 ° C. or higher, this hollow fiber membrane with good quality can be easily obtained. If temperature is 120 degrees C or less, sufficient elongation will be easy to be obtained, stability at the time of extending | stretching will improve, and extending | stretching by high magnification will become easy. Further, if the treatment time is 8 hours or more, the present hollow fiber membrane having good quality can be easily obtained.
 延伸は、冷延伸に引続き熱延伸を行う2段延伸、又は冷延伸に引続き、熱延伸を2段以上の多段に分割して行う多段延伸が好ましい。さらに、前記延伸により得られた多孔質中空糸膜の寸法安定性を得るため、前記多孔質中空糸膜を定長下、又は、40%以下の範囲内で少し弛緩させた状態で熱セットを行う。
 延伸は、低速延伸が好ましい。
 冷延伸は、比較的低い温度下で膜の構造破壊を起させ、ミクロなクラッキングを発生させる工程である。冷延伸の温度は、0℃から、用いる重合体の融点より50℃以上低い温度までの範囲内(例えば、本樹脂組成物中の重合体がポリエチレンのみの場合は0~80℃。)の比較的低温下で行うことが好ましい。前記範囲を超える温度下で冷延伸を行うと、ミクロなクラッキングの発生が減少し、細孔が減少するおそれがある。
The stretching is preferably two-stage stretching in which hot stretching is performed subsequent to cold stretching or multi-stage stretching in which hot stretching is divided into two or more multi-stages following cold stretching. Furthermore, in order to obtain the dimensional stability of the porous hollow fiber membrane obtained by the stretching, heat setting is performed in a state where the porous hollow fiber membrane is slightly relaxed under a constant length or within a range of 40% or less. Do.
The stretching is preferably slow stretching.
Cold drawing is a process of causing microcracking by causing structural breakdown of the film at a relatively low temperature. The temperature of cold drawing is in the range from 0 ° C. to a temperature lower than the melting point of the polymer used by 50 ° C. or more (for example, 0 to 80 ° C. when the polymer in the resin composition is only polyethylene). It is preferable to carry out at a low temperature. When cold drawing is performed at a temperature exceeding the above range, the occurrence of microcracking is reduced and the pores may be reduced.
 熱延伸は、冷延伸で発生させたミクロなクラッキングを拡大させ、細孔を形成する工程である。熱延伸は、比較的高温下で行うことが好ましいが、用いる重合体の融点を超えない温度で行う。
 熱延伸倍率としては、目的とする孔径により適宜選定すればよく、工程安定性の点から、延伸前の中空糸膜前駆体の長さに対して3~7倍とすることが好ましい。
 熱延伸は、2段以上の多段延伸とすることが好ましい。多段延伸とすることで、延伸時に糸径が細くなりすぎることを抑制しつつ細孔を形成することが容易になる。
 また、熱延伸は低速で行うことが好ましい。低速延伸であれば、延伸時に糸径が細くなりすぎることを抑制しつつ細孔を形成することが容易になる。
 熱セットを効果的に行うためには、熱セット温度は延伸温度以上、融点温度以下であることが好ましい。
Hot stretching is a process in which micro cracks generated by cold stretching are expanded to form pores. The heat stretching is preferably performed at a relatively high temperature, but is performed at a temperature not exceeding the melting point of the polymer used.
The heat draw ratio may be appropriately selected depending on the target pore diameter, and is preferably 3 to 7 times the length of the hollow fiber membrane precursor before drawing from the viewpoint of process stability.
It is preferable that the heat stretching is a multi-stage stretching of two or more stages. By setting it as multistage stretching, it becomes easy to form a pore, suppressing that a thread diameter becomes too thin at the time of extending | stretching.
Moreover, it is preferable to perform heat stretching at low speed. If it is low speed drawing, it becomes easy to form pores while suppressing the yarn diameter from becoming too thin during drawing.
In order to effectively perform heat setting, the heat setting temperature is preferably not less than the stretching temperature and not more than the melting temperature.
 恒久親水化工程:
 親水性共重合体を被覆する方法としては、例えば、前記親水性共重合体を溶剤に溶解した溶液(以下、「共重合体溶液」という。)中に、本中空糸膜を浸漬した後、乾燥する方法が挙げられる。共重合体溶液に本中空糸膜を浸漬する方法としては、同じ濃度の共重合体溶液に2回以上浸漬処理を行う方法であってもよく、濃度の異なる溶液を用いて浸漬を2回以上行う方法であってもよい。
Permanent hydrophilization process:
As a method for coating the hydrophilic copolymer, for example, after immersing the hollow fiber membrane in a solution in which the hydrophilic copolymer is dissolved in a solvent (hereinafter referred to as “copolymer solution”), The method of drying is mentioned. The method of immersing the hollow fiber membrane in the copolymer solution may be a method of immersing twice or more in the copolymer solution of the same concentration, and immersing twice or more using solutions having different concentrations. The method of performing may be sufficient.
 溶剤としては、水混和性有機溶剤が好ましい。
 水混和性有機溶剤としては、例えば、メタノール、エタノール、N-プロパノール、イソプロピルアルコール等のアルコール類、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。これら溶剤は、1種のみを使用してもよく、2種以上を併用してもよい。また、これら溶剤は、親水性共重合体の溶解性が向上する点から、水との混合液とすることが好ましい。
 また、親水性共重合体を被覆した本中空糸膜を乾燥する際に、溶剤の蒸気含有雰囲気を作りやすい点、すなわち、溶剤の蒸気圧の低さ、人体に対する低毒性の点から、沸点が100℃未満のアルコール類(例えば、メタノール、エタノール、イロプロピルアルコール等。)と、水の混合系溶剤を用いることが特に好ましい。
As the solvent, a water-miscible organic solvent is preferable.
Examples of the water-miscible organic solvent include alcohols such as methanol, ethanol, N-propanol and isopropyl alcohol, dimethyl sulfoxide, dimethylformamide and the like. These solvents may be used alone or in combination of two or more. These solvents are preferably mixed with water from the viewpoint of improving the solubility of the hydrophilic copolymer.
In addition, when drying this hollow fiber membrane coated with a hydrophilic copolymer, the boiling point is low because of the ease of creating a vapor-containing atmosphere of the solvent, that is, the low vapor pressure of the solvent and the low toxicity to the human body. It is particularly preferable to use a mixed solvent of alcohol (for example, methanol, ethanol, isopropyl alcohol, etc.) of less than 100 ° C. and water.
 水混和性有機溶剤と水との混合割合は、本中空糸膜の透水量を低下させず、親水性共重合体の溶解性を低下させすぎない範囲であればよい。具体的には、用いる親水性共重合体の種類によっても異なるが、有機溶剤としてエタノールを用いる場合、エタノール/水の割合は、90/10~30/70(体積%)が好ましい。 The mixing ratio of the water-miscible organic solvent and water may be in a range that does not decrease the water permeability of the hollow fiber membrane and does not excessively decrease the solubility of the hydrophilic copolymer. Specifically, although it varies depending on the type of hydrophilic copolymer used, when ethanol is used as the organic solvent, the ethanol / water ratio is preferably 90/10 to 30/70 (volume%).
 共重合体溶液中の親水性共重合体の含有量は、溶剤と親水性共重合体の合計100質量%に対して、0.1~10質量%が好ましく、0.5~5質量%がより好ましい。親水性共重合体の含有量が0.1質量%以上であれば、本中空糸膜に親水性共重合体を均一に被覆することが容易になる。親水性共重合体の含有量が10質量%以下であれば、共重合体溶液の粘度が大きくなりすぎることを抑制しやすく、本中空糸膜の細孔が親水性共重合体で閉塞されることを抑制しやすい。 The content of the hydrophilic copolymer in the copolymer solution is preferably 0.1 to 10% by mass, and 0.5 to 5% by mass with respect to 100% by mass as the total of the solvent and the hydrophilic copolymer. More preferred. When the content of the hydrophilic copolymer is 0.1% by mass or more, it becomes easy to uniformly coat the hydrophilic copolymer on the hollow fiber membrane. If the content of the hydrophilic copolymer is 10% by mass or less, it is easy to suppress the viscosity of the copolymer solution from becoming too large, and the pores of the hollow fiber membrane are blocked with the hydrophilic copolymer. It is easy to suppress that.
 浸漬処理を行う際の共重合体溶液の温度は、高い程その粘度が低下し、本中空糸膜への溶液の浸透性が向上するために好ましい。また、浸漬処理を安定して行える点から、共重合体溶液の沸点以下であることが好ましい。
 浸漬処理時間は、浸漬する本中空糸膜の膜厚、孔径、空孔率により異なるが、数秒~数分の範囲とすることが好ましい。
The higher the temperature of the copolymer solution at the time of the immersion treatment, the lower the viscosity, and the better the permeability of the solution into the hollow fiber membrane. Moreover, it is preferable that it is below the boiling point of a copolymer solution from the point which can perform an immersion process stably.
The immersion treatment time varies depending on the film thickness, pore diameter, and porosity of the hollow fiber membrane to be immersed, but is preferably in the range of several seconds to several minutes.
 共重合体溶液に浸漬した後に本中空糸膜を乾燥処理する前には、有機溶剤の蒸気が3体積%以上含まれ、温度が室温から前記溶剤の沸点以下の範囲にある雰囲気下に、本中空糸膜を少なくとも30秒間以上滞在させるセッティング処理を行う。
 前記処理の目的は、(1)本中空糸膜を構成するミクロフィブリルとスタックドラメラとの結節部の表面に、親水性共重合体の皮膜を形成することにより細孔の閉塞を防止すること、(2)ミクロフィブリルを結束させてスリット状の細孔を大孔径化して楕円状の細孔を形成し、透水量の増大を図ると共に、処理水との親和性を高めること、である。
Before the hollow fiber membrane is dried after being immersed in the copolymer solution, the organic solvent vapor is contained in an amount of 3% by volume or more, and the temperature is within the range from room temperature to the boiling point of the solvent. A setting process for allowing the hollow fiber membrane to stay for at least 30 seconds is performed.
The purpose of the treatment is (1) to prevent pore clogging by forming a hydrophilic copolymer film on the surface of the nodule portion of the microfibril and stack lamella constituting the hollow fiber membrane. (2) To bind microfibrils to increase the diameter of slit-shaped pores to form elliptical pores, thereby increasing the amount of water permeation and increasing the affinity with treated water.
 セッティング処理後の本中空糸膜の乾燥処理としては、真空乾燥、熱風乾燥等の公知の乾燥方法が挙げられる。
 乾燥温度は、本中空糸膜が熱によって変形しない温度範囲であればよい。例えば、ポリエチレンからなる本中空糸膜の場合、乾燥温度は、120℃以下が好ましく、40~70℃が特に好ましい。
Examples of the drying treatment of the hollow fiber membrane after the setting treatment include known drying methods such as vacuum drying and hot air drying.
The drying temperature may be a temperature range in which the hollow fiber membrane is not deformed by heat. For example, in the case of the present hollow fiber membrane made of polyethylene, the drying temperature is preferably 120 ° C. or less, particularly preferably 40 to 70 ° C.
 なお、本中空糸膜の製造方法は、前述の方法には限定されない。例えば、恒久親水化工程を行わない方法であってもよい。 In addition, the manufacturing method of this hollow fiber membrane is not limited to the above-mentioned method. For example, a method that does not perform the permanent hydrophilization step may be used.
<浄水器用カートリッジ>
 本発明の浄水器用カートリッジは、前述した本中空糸膜を具備するモジュールである。本発明の浄水器用カートリッジは、本中空糸膜を用いる以外は、公知の浄水器用カートリッジと同様の形態が用いられる。
 例えば、蛇口直結型浄水器用のカートリッジ、ピッチャー型浄水器用カットリッジ、流し台上に設置して用いる据置型浄水器用カートリッジ、流し台下の収納スペース内に設置しているアンダーシンク型浄水器用カートリッジが挙げられる。
<Water purifier cartridge>
The cartridge for water purifier of this invention is a module which comprises this hollow fiber membrane mentioned above. The cartridge for water purifier of the present invention has the same form as a known cartridge for water purifier, except that this hollow fiber membrane is used.
For example, a cartridge for a faucet direct connection type water purifier, a cut ridge for a pitcher type water purifier, a cartridge for a stationary water purifier used by being installed on a sink, and a cartridge for an under-sink type water purifier installed in a storage space under the sink .
<中空糸膜モジュール>
 本発明の中空糸膜モジュールは、前述した本中空糸膜を具備するモジュールである。本発明の中空糸膜モジュールは、本中空糸膜を用いる以外は、公知の中空糸膜モジュールと同様の形態が用いられる。
 例えば、本中空糸膜を数百本束ねて筒状のハウジングに挿入し、それら本複合中空糸膜を封止材(ポッティング用樹脂)で封止した公知の形態の中空糸膜モジュールが挙げられる。
<Hollow fiber membrane module>
The hollow fiber membrane module of the present invention is a module comprising the above-described hollow fiber membrane. The hollow fiber membrane module of the present invention has the same form as a known hollow fiber membrane module, except that this hollow fiber membrane is used.
For example, a hollow fiber membrane module of a known form in which several hundreds of the present hollow fiber membranes are bundled and inserted into a cylindrical housing and the composite hollow fiber membranes are sealed with a sealing material (potting resin). .
 以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
(メルトフローレート(MFR))
 ポリエチレンのMFRについては、JIS K7210のコードD(測定温度:190℃、荷重:2.16kg)に準拠してMFRD(単位:g/10分)を測定し、さらにJIS K7210のコードG(測定温度:190℃、荷重:21.6kg)に準拠してMFRG(単位:g/10分)を測定した。
 また、それらの測定結果から、FRR(G/D)(=MFRG/MFRD)を求めた。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
(Melt flow rate (MFR))
For MFR of polyethylene, MFRD (unit: g / 10 minutes) was measured according to JIS K7210 code D (measurement temperature: 190 ° C., load: 2.16 kg), and JIS K7210 code G (measurement temperature). : MFRG (unit: g / 10 min) was measured based on 190 ° C. and load: 21.6 kg).
Moreover, FRR (G / D) (= MFRG / MFRD) was calculated | required from those measurement results.
(密度)
 ポリエチレンの密度(単位:kg/m)は、JIS K7112に準拠して測定した。
(density)
The density (unit: kg / m 3 ) of polyethylene was measured according to JIS K7112.
(比率Mw/Mn)
 ポリエチレンの比率Mw/Mnは、下記条件のGPC(高温GPC)による測定で得られたキャリブレーションカーブから、Mw及びMnをそれぞれ求めて算出した。キャリブレーションカーブは、ポリスチレンの標準試料を測定し、ポリエチレン換算定数(0.48)を使用し、3次で算出した。カラムは、下記カラム3本を順に直列に接続して用いた。
 測定条件:
  測定装置  :「150-GPC」(Waters社製)
  カラム   :「Shodex GPC AT-807/S」(昭和電工社製)(1本)、「Tosoh TSK-GEL GMH6-HT」(東ソー社製)(2本)
   溶媒   :1,2,4-トリクロロベンゼン
  カラム温度 :140℃
  試料濃度  :0.05質量%(インジェクション量:500μL)
  流量    :1.0mL/分
  試料溶解温度:160℃
  試料溶解時間:2.5時間
(Ratio Mw / Mn)
The ratio Mw / Mn of polyethylene was calculated by obtaining Mw and Mn from calibration curves obtained by measurement by GPC (high temperature GPC) under the following conditions. The calibration curve was calculated in a third order by measuring a standard sample of polystyrene and using a polyethylene conversion constant (0.48). The columns used were the following three columns connected in series.
Measurement condition:
Measuring device: “150-GPC” (manufactured by Waters)
Column: “Shodex GPC AT-807 / S” (manufactured by Showa Denko) (1), “Tosoh TSK-GEL GMH6-HT” (manufactured by Tosoh) (2)
Solvent: 1,2,4-trichlorobenzene Column temperature: 140 ° C
Sample concentration: 0.05% by mass (injection amount: 500 μL)
Flow rate: 1.0 mL / min Sample dissolution temperature: 160 ° C.
Sample dissolution time: 2.5 hours
 また、ポリエチレンについては、前記高温GPCで測定した分子量分布のチャートにおいて、ショルダーピークが見られた場合、ガウス分布で近似して、低分子量成分、高分子量成分等の各成分のMw及びMn、並びにそれらの成分の配合率を算出した。 For polyethylene, when a shoulder peak is observed in the molecular weight distribution chart measured by the high temperature GPC, Mw and Mn of each component such as a low molecular weight component and a high molecular weight component are approximated by a Gaussian distribution, and The blending ratio of these components was calculated.
(FL、FH)
 ポリエチレンの分子量1000以下の成分量(FL)(単位:質量%)と、分子量100万以上の成分量(FH)(単位:質量%)は、下記条件の高温GPCにより分子量分布を測定して算出した。すなわち、下記条件の高温GPCによる測定で得られた分子量分布のチャートにおいて、分子量分布全体の面積に対する、分子量1000以下の部分の面積の割合、又は分子量100万以上の部分の面積の割合を求め、FL及びFHを算出した。カラムは、下記カラム3本を順に直列に接続して用いた。
 測定条件:
  測定装置  :「Alliance GPCV 2000」(Waters社製)
  カラム   :「AT-807S」(昭和電工社製)(1本)、「GMHHR-H(S)HT」(東ソー社製)(2本)
  溶媒    :1,2,4-トリクロロベンゼン
  カラム温度 :140℃
  試料濃度  :20mg/溶媒10mL
  流量    :1.0mL/分
  試料溶解温度:140℃
  試料溶解時間:1時間
(FL, FH)
The component amount (FL) (unit: mass%) having a molecular weight of 1000 or less and the component amount (FH) (unit: mass%) having a molecular weight of 1,000,000 or more are calculated by measuring the molecular weight distribution by high-temperature GPC under the following conditions. did. That is, in the molecular weight distribution chart obtained by measurement by high-temperature GPC under the following conditions, the ratio of the area of the molecular weight portion of 1000 or less, or the ratio of the area of the molecular weight portion of 1 million or more to the total area of the molecular weight distribution, FL and FH were calculated. The columns used were the following three columns connected in series.
Measurement condition:
Measuring device: “Alliance GPCV 2000” (manufactured by Waters)
Column: “AT-807S” (manufactured by Showa Denko) (1), “GMHHR-H (S) HT” (manufactured by Tosoh) (2)
Solvent: 1,2,4-trichlorobenzene Column temperature: 140 ° C
Sample concentration: 20 mg / solvent 10 mL
Flow rate: 1.0 mL / min Sample dissolution temperature: 140 ° C.
Sample dissolution time: 1 hour
(ESCR)
 ポリエチレンのESCR(耐環境応力亀裂性、単位:時間)は、JIS K6760に準拠した定ひずみ環境応力亀裂試験により測定した。試験液としては、商品名「イゲパルCO-630」(ローディア日華社製)の10質量%水溶液を使用した。環境応力による亀裂が発生する確率が50%となる時間を計測し、ESCRの値とした。
(ESCR)
The ESCR (environmental stress crack resistance, unit: time) of polyethylene was measured by a constant strain environmental stress cracking test according to JIS K6760. As a test solution, a 10% by mass aqueous solution of “Igepal CO-630” (manufactured by Rhodia Nikka Co., Ltd.) was used. The time when the probability of occurrence of cracks due to environmental stress was 50% was measured and used as the ESCR value.
(親水性共重合体の被覆量)
 下記式により親水性共重合体の被覆量W(単位:質量%)を算出した。
 W=(X-Y)/Y×100
 ただし、式中、Xは親水化処理後の乾燥膜質量(単位:g)であり、Yは処理前の中空糸膜の乾燥質量(単位:g)である。
(Coating amount of hydrophilic copolymer)
The coating amount W (unit: mass%) of the hydrophilic copolymer was calculated according to the following formula.
W = (XY) / Y × 100
However, in the formula, X is the dry membrane mass (unit: g) after the hydrophilization treatment, and Y is the dry mass (unit: g) of the hollow fiber membrane before the treatment.
(透水量)
 得られた中空糸膜の透水量(単位:m/m・時間・MPa)は、前記中空糸膜をU字型に束ねて中空糸膜の端部をウレタン樹脂で固め、有効膜面積70~90cmの中空糸膜モジュールを作製し、差圧0.1MPaでイオン交換水を濾過し、そのときの透水量を測定した。
(Water permeability)
The amount of water permeation (unit: m 3 / m 2 · hour · MPa) of the obtained hollow fiber membrane is such that the hollow fiber membranes are bundled in a U shape and the ends of the hollow fiber membranes are solidified with urethane resin, and the effective membrane area A hollow fiber membrane module of 70 to 90 cm 2 was produced, and ion exchange water was filtered at a differential pressure of 0.1 MPa, and the water permeability at that time was measured.
(バブルポイント、空孔率、孔径分布)
 得られた中空糸膜をU字型に束ねて中空糸膜の端部をウレタン樹脂で固め、有効膜面積約50mの中空糸膜モジュールを作製し、前記中空糸膜モジュールを、中空糸膜の部分が完全に浸るように濃度95%以上のエタノール中に浸漬した。中空糸膜の多孔質内部がエタノールで充分に濡れるように、中空糸膜内部からエタノールを100mL以上吸引した後、浸漬状態のままで中空糸膜内部に窒素を送り込み、10秒毎に1kPaきざみで空気圧を昇圧した。気泡が中空糸膜のほぼ全表面から発生し、気泡発生箇所の間隔が1mm以内になった時の窒素圧力をバブルポイント(B.P.)とした。なお、バブルポイントP(圧力)と平均孔径の関係は下記式で表されるとおりである。
 P=2σcosθ/r
 ただし、式中、σはエタノールの表面張力、θはエタノールと中空糸膜の接触角、rは平均細孔半径である。
 また、空孔率(単位:体積%)は、水銀ポロシメーター221型(カルロエルバ社製)を用いて測定した。
 中空糸膜の孔径分布および平均孔径は、バブルポイント法(ASTM F316-86)に基づくPMI社製パームポロシメーターPMI社製パームポロメーターCFP-1200AE(多孔質材料自動細孔径分布測定システム)によりフッ素系界面活性剤フロリナートFC-72(スリーエム社製)を測定溶媒として測定を実施した。
 ポリエチレン多孔質中空糸膜の孔径(μm)と細孔径分布に占める割合(%)を図1に示した。さらに測定した細孔径分布から最も流量に影響を与える平均孔径±0.05μmの範囲を積算により算出した。
(Bubble point, porosity, pore size distribution)
The obtained hollow fiber membranes are bundled in a U shape, and the ends of the hollow fiber membranes are solidified with urethane resin to produce a hollow fiber membrane module having an effective membrane area of about 50 m 2. The sample was immersed in ethanol having a concentration of 95% or more so that the portion of was completely immersed. After suctioning 100 mL or more of ethanol from inside the hollow fiber membrane so that the porous inside of the hollow fiber membrane is sufficiently wetted with ethanol, nitrogen is fed into the hollow fiber membrane while being immersed, in increments of 1 kPa every 10 seconds. The air pressure was increased. Bubbles were generated from almost the entire surface of the hollow fiber membrane, and the nitrogen pressure when the interval between the bubbles was within 1 mm was taken as the bubble point (BP). The relationship between the bubble point P (pressure) and the average pore diameter is as represented by the following formula.
P = 2σ cos θ / r
In the formula, σ is the surface tension of ethanol, θ is the contact angle between ethanol and the hollow fiber membrane, and r is the average pore radius.
The porosity (unit: volume%) was measured using a mercury porosimeter 221 type (manufactured by Carlo Elba).
The pore size distribution and the average pore size of the hollow fiber membranes are fluorine based on the PMI palm porosimeter PMI palm porometer CFP-1200AE (porous material automatic pore size distribution measuring system) based on the bubble point method (ASTM F316-86). The measurement was carried out using Surfactant Fluorinert FC-72 (manufactured by 3M) as a measurement solvent.
The pore diameter (μm) of the polyethylene porous hollow fiber membrane and the ratio (%) in the pore diameter distribution are shown in FIG. Further, an average pore diameter range of ± 0.05 μm that most influenced the flow rate was calculated by integration from the measured pore diameter distribution.
(平均流量孔径)
 平均流量孔径は、ASTM F316-86に準じて、PMI社製パームポロメーターCFP-1200AE(多孔質材料自動細孔径分布測定システム)で測定を行った。
(開孔径ばらつき)
 開孔径ばらつきは、ASTM F316-86に準じて、PMI社製パームポロメーターCFP-1200AE(多孔質材料自動細孔径分布測定システム)で測定を行い、累積流量を100%とした時の、流量が5%となる開孔径を最大孔径、95%の時を最小孔径とし、以下の式で計算し求めた。
 開孔径ばらつき(%)=[(5%最大孔径-95%最小孔径)/平均流量孔径]×100
(Average flow hole diameter)
The average flow pore size was measured with a Palm Porometer CFP-1200AE (a porous material automatic pore size distribution measuring system) manufactured by PMI in accordance with ASTM F316-86.
(Opening diameter variation)
The pore size variation is measured by a PMI palm porometer CFP-1200AE (porous material automatic pore size distribution measurement system) according to ASTM F316-86, and the cumulative flow rate is 100%. The maximum pore diameter was 5%, and the minimum pore diameter was 95%.
Opening hole diameter variation (%) = [(5% maximum hole diameter−95% minimum hole diameter) / average flow hole diameter] × 100
[実施例1]
 樹脂組成物として、チーグラー型触媒を用いて3段連続重合法により製造した高密度ポリエチレン(商品名「H6670B」、SCG Chemical社製、密度0.966g/cm、MFRD:0.7g/10分、MFRG:54g/10分、FRR(G/D)=77、FL:0.38質量%、FH:2.64質量%、Mw/Mn=8.8、ESCR:20時間)を用いた。
 また、前記高密度ポリエチレンについて、高温GPCで測定した分子量分布のチャートをガウス分布で近似した3成分は、以下の通りであった。前記チャートは、分子量100万付近、及び分子量5000付近にそれぞれ1箇所ずつのショルダーピークを有していた。
 1)Mn:1.99×10 Mw:1.09×10 配合率:88%
 2)Mn:2.76×10 Mw:5.25×10 配合率:6%
 3)Mn:7.52×10 Mw:9.74×10 配合率:6%
[Example 1]
As a resin composition, a high-density polyethylene (trade name “H6670B” manufactured by SCG Chemical, density 0.966 g / cm 3 , MFRD: 0.7 g / 10 minutes) produced by a three-stage continuous polymerization method using a Ziegler-type catalyst. , MFRG: 54 g / 10 min, FRR (G / D) = 77, FL: 0.38 mass%, FH: 2.64 mass%, Mw / Mn = 8.8, ESCR: 20 hours).
Moreover, about the said high density polyethylene, three components which approximated the chart of the molecular weight distribution measured by high temperature GPC by Gaussian distribution were as follows. The chart had one shoulder peak at around 1 million molecular weight and around 5000 molecular weight.
1) Mn: 1.99 × 10 4 Mw: 1.09 × 10 5 Mixing ratio: 88%
2) Mn: 2.76 × 10 3 Mw: 5.25 × 10 3 Mixing ratio: 6%
3) Mn: 7.52 × 10 5 Mw: 9.74 × 10 5 Mixing ratio: 6%
 紡糸工程:
 前記樹脂組成物を用いて、円環状の吐出口が同心円状に配置された中空糸製造用ノズルを用いて、吐出温度170℃、巻取速度70m/分にて溶融紡糸を行った。さらにノズルから吐出された糸の周囲に、温度20℃、風速0.5m/秒の冷却風を均一に流しながら前記糸を巻取り、未延伸の複合中空糸膜前駆体を得た。
Spinning process:
Using the resin composition, melt spinning was performed at a discharge temperature of 170 ° C. and a winding speed of 70 m / min using a hollow fiber manufacturing nozzle in which annular discharge ports were arranged concentrically. Further, the yarn was wound around the yarn discharged from the nozzle while uniformly flowing cooling air at a temperature of 20 ° C. and a wind speed of 0.5 m / sec to obtain an unstretched composite hollow fiber membrane precursor.
 延伸工程:
 得られた未延伸の複合中空糸膜前駆体をボビンに巻いたまま、115℃の空気中に16時間置いてアニール処理した。前記アニール処理後の複合中空糸膜前駆体を、30℃に保たれたローラ間で1.5倍に冷延伸し、引き続いて117℃に加熱された加熱炉中で最大延伸量が6.0倍になるようにローラ間で熱延伸し、さらに118℃に加熱した加熱炉中で20%の緩和を行うことで、巻取り時の総延伸倍率(未延伸の複合中空糸膜前駆体に対する倍率)を5倍とすることでポリエチレン多孔質中空糸膜を得た。
Stretching process:
The obtained unstretched composite hollow fiber membrane precursor was annealed by being placed in air at 115 ° C. for 16 hours while being wound around a bobbin. The composite hollow fiber membrane precursor after the annealing treatment was cold-stretched 1.5 times between rollers kept at 30 ° C., and subsequently the maximum stretch amount was 6.0 in a heating furnace heated to 117 ° C. The film is stretched between rollers so as to be doubled, and further relaxed by 20% in a heating furnace heated to 118 ° C., so that the total stretch ratio at the time of winding (the ratio relative to the unstretched composite hollow fiber membrane precursor) ) Was multiplied by 5 to obtain a polyethylene porous hollow fiber membrane.
 恒久親水化工程:
 次に、エチレン含有量32モル%のエチレン-ビニルアルコール共重合体(商品名「ソアノールDC3203」、日本合成化学社製)を、70℃のエタノール/水=40/60(体積%)混合溶液に1.5質量%溶解し、共重合体溶液を調製した。前記共重合体溶液中に、前記中空糸膜を30秒間浸漬した後、前記中空糸膜を引き上げ、ガイドにより前記中空糸膜表面に過剰に付着した共重合体溶液の一部を絞り落とした。引き続き、エタノール蒸気濃度40体積%、60℃の雰囲気中に、中空糸膜を立上げ角度90°で立上げ、80秒間滞在させて、中空糸膜の細孔内表面にも親水化重合体を均一に付着させた。その後、70℃の熱風にて乾燥して溶剤を除去した。乾燥後のエチレン-ビニルアルコール共重合体の付着率は、中空糸膜100質量%に対して10.5質量%であった。
 得られたポリエチレン多孔質中空糸膜を走査型電子顕微鏡にて観察したところ、前記ポリエチレン多孔質中空糸膜の内外表面及び微孔内表面は、エチレン-ビニルアルコール共重合体の薄膜で均一に覆われていた。
 また、膜の孔径を示すバブルポイントは122kPaであった。空孔率は73.5体積%であった。
 PMI社製パームポロシメーターによりフッ素系界面活性剤フロリナートFC-72(スリーエム社製)を測定溶媒として測定を行うと、平均孔径0.3123μm、平均孔径±0.05μmの孔径範囲の全孔径分布に占める割合が85.5%を示すような孔径分布がシャープな膜であった。
Permanent hydrophilization process:
Next, an ethylene-vinyl alcohol copolymer having an ethylene content of 32 mol% (trade name “Soarnol DC3203”, manufactured by Nippon Synthetic Chemical Co., Ltd.) is mixed into a 70 ° C. ethanol / water = 40/60 (volume%) mixed solution. 1.5% by mass was dissolved to prepare a copolymer solution. After immersing the hollow fiber membrane in the copolymer solution for 30 seconds, the hollow fiber membrane was pulled up, and a part of the copolymer solution excessively adhered to the surface of the hollow fiber membrane was squeezed out by a guide. Subsequently, the hollow fiber membrane was raised at an angle of 90 ° in an atmosphere having an ethanol vapor concentration of 40% by volume and 60 ° C., and was allowed to stay for 80 seconds, so that the hydrophilic polymer was also applied to the pore inner surface of the hollow fiber membrane. Uniformly adhered. Thereafter, the solvent was removed by drying with hot air at 70 ° C. The adhesion rate of the ethylene-vinyl alcohol copolymer after drying was 10.5% by mass with respect to 100% by mass of the hollow fiber membrane.
When the obtained polyethylene porous hollow fiber membrane was observed with a scanning electron microscope, the inner and outer surfaces and the microporous inner surface of the polyethylene porous hollow fiber membrane were uniformly covered with a thin film of an ethylene-vinyl alcohol copolymer. It was broken.
Moreover, the bubble point which shows the hole diameter of a film | membrane was 122 kPa. The porosity was 73.5% by volume.
When a fluorosurfactant Fluorinert FC-72 (manufactured by 3M) was measured with a palm porosimeter manufactured by PMI as a measuring solvent, it occupied the total pore size distribution in a pore size range of average pore size 0.3123 μm and average pore size ± 0.05 μm. The film had a sharp pore size distribution such that the ratio was 85.5%.
[実施例2]
 樹脂組成物として、チーグラー型触媒を用いて3段連続重合法により製造された高密度ポリエチレン(商品名「H6430BM」、SCG Chemical社製、密度:0.966g/cm、MFRD:0.4g/10分、MFRG:30g/10分、FRR(G/D)=75、FL:0.66質量%、FH:3.00質量%、Mw/Mn=12、ESCR:25時間)を用いた。
 また、前記高密度ポリエチレンについて、高温GPCで測定した分子量分布のチャートをガウス分布で近似した3成分は、以下の通りであった。前記チャートは、分子量100万付近、及び分子量5000付近にそれぞれ1箇所ずつのショルダーピークを有していた。
 1)Mn:2.81×10 Mw:6.57×10 配合率:9%
 2)Mn:2.24×10 Mw:1.15×10 配合率:84%
 3)Mn:4.68×10 Mw:9.40×10 配合率:7%
[Example 2]
As a resin composition, a high-density polyethylene (trade name “H6430BM” manufactured by SCG Chemical Co., density: 0.966 g / cm 3 , MFRD: 0.4 g / kg) manufactured by a three-stage continuous polymerization method using a Ziegler-type catalyst. 10 minutes, MFRG: 30 g / 10 minutes, FRR (G / D) = 75, FL: 0.66 mass%, FH: 3.00 mass%, Mw / Mn = 12, ESCR: 25 hours).
Moreover, about the said high density polyethylene, three components which approximated the chart of the molecular weight distribution measured by high temperature GPC by Gaussian distribution were as follows. The chart had one shoulder peak at around 1 million molecular weight and around 5000 molecular weight.
1) Mn: 2.81 × 10 3 Mw: 6.57 × 10 3 Mixing ratio: 9%
2) Mn: 2.24 × 10 4 Mw: 1.15 × 10 5 Mixing ratio: 84%
3) Mn: 4.68 × 10 5 Mw: 9.40 × 10 5 Mixing ratio: 7%
 前記樹脂組成物を用い、溶融紡糸における巻取速度を40m/分とした以外は、実施例1と同様にしてポリエチレン多孔質中空糸膜中空糸膜を得た。また、実施例1と同様の恒久親水化工程を行った。エチレン-ビニルアルコール共重合体の付着率は、中空糸膜100質量%に対して10.5質量%であった。
 得られたポリエチレン多孔質中空糸膜を走査型電子顕微鏡にて観察したところ、前記ポリエチレン多孔質中空糸膜の内外表面及び微孔内表面はエチレン-ビニルアルコール共重合体の薄膜で均一に覆われていた。
 また、膜の孔径を示すバブルポイントは127kPaであった。空孔率は73.8体積%であった。
 PMI社製パームポロシメーターによりフッ素系界面活性剤フロリナートFC-72(スリーエム社製)を測定溶媒として測定を行うと、平均孔径0.3155μm、平均孔径±0.05μmの孔径範囲の全孔径分布に占める割合が87.3%を示すような孔径分布がシャープな膜であった。
A polyethylene porous hollow fiber membrane hollow fiber membrane was obtained in the same manner as in Example 1 except that the resin composition was used and the winding speed in melt spinning was 40 m / min. Moreover, the permanent hydrophilization process similar to Example 1 was performed. The adhesion rate of the ethylene-vinyl alcohol copolymer was 10.5% by mass relative to 100% by mass of the hollow fiber membrane.
When the obtained polyethylene porous hollow fiber membrane was observed with a scanning electron microscope, the inner and outer surfaces of the polyethylene porous hollow fiber membrane and the inner surface of the micropore were uniformly covered with a thin film of an ethylene-vinyl alcohol copolymer. It was.
Moreover, the bubble point which shows the hole diameter of a film | membrane was 127 kPa. The porosity was 73.8% by volume.
When a fluorosurfactant Fluorinert FC-72 (manufactured by 3M) was measured with a palm porosimeter manufactured by PMI as a measuring solvent, it occupied the total pore size distribution in the pore size range of average pore size 0.3155 μm and average pore size ± 0.05 μm. The film had a sharp pore size distribution such that the ratio was 87.3%.
[比較例1]
 樹脂組成物として、チーグラー型触媒を用いたスラリー重合法により製造した高密度ポリエチレン(商品名「HY540」、日本ポリエチレン社製、密度0.960g/cm、MFRD:1.0g/10分、MFRG:45g/10分、FRR(G/D)=45、FL:0.37質量%、FH:1.07質量%、Mn:1.8×10、Mw:1.18×10、Mw/Mn=6.6、ESCR:100時間)を用いた。
 前記高密度ポリエチレンについて、高温GPCで測定した分子量分布には、分子量100万付近にショルダーピーク等は見られなかった。
[Comparative Example 1]
As a resin composition, high density polyethylene (trade name “HY540” manufactured by Nippon Polyethylene Co., Ltd., density 0.960 g / cm 3 , MFRD: 1.0 g / 10 min, MFRG, manufactured by slurry polymerization using a Ziegler type catalyst. : 45 g / 10 min, FRR (G / D) = 45, FL: 0.37 mass%, FH: 1.07 mass%, Mn: 1.8 × 10 4 , Mw: 1.18 × 10 5 , Mw /Mn=6.6, ESCR: 100 hours).
For the high-density polyethylene, no shoulder peak or the like was observed in the molecular weight distribution measured by high-temperature GPC in the vicinity of a molecular weight of 1,000,000.
 紡糸工程:
 前記樹脂組成物を用い、吐出温度を180℃とした以外は、実施例1と同様に溶融紡糸して、未延伸の複合中空糸膜前駆体を得た。
 延伸工程:
 得られた未延伸の複合中空糸膜前駆体をボビンに巻いたまま、115℃の空気中に16時間置いてアニール処理した。前記アニール処理後の中空糸膜を、30℃に保たれたローラ間で1.5倍に冷延伸し、引き続いて117℃に加熱された加熱炉中で最大延伸量が6.0倍になるようにローラ間で熱延伸し、さらに118℃に加熱した加熱炉中で定長緩和をすることで、巻取り時の総延伸倍率(未延伸の複合中空糸膜前駆体に対する倍率)を6倍とすることでポリエチレン多孔質中空糸膜中空糸膜を得た。
 恒久親水化工程:
 実施例1と同様にして恒久親水化処理を行った。
Spinning process:
An unstretched composite hollow fiber membrane precursor was obtained by melt spinning as in Example 1 except that the resin composition was used and the discharge temperature was 180 ° C.
Stretching process:
The obtained unstretched composite hollow fiber membrane precursor was annealed by being placed in air at 115 ° C. for 16 hours while being wound around a bobbin. The hollow fiber membrane after the annealing treatment is cold-drawn 1.5 times between rollers kept at 30 ° C., and then the maximum drawing amount is 6.0 times in a heating furnace heated to 117 ° C. As described above, the film is stretched between rollers and relaxed at a constant length in a heating furnace heated to 118 ° C., so that the total draw ratio during winding (the ratio relative to the unstretched composite hollow fiber membrane precursor) is 6 times. Thus, a polyethylene porous hollow fiber membrane was obtained.
Permanent hydrophilization process:
A permanent hydrophilic treatment was performed in the same manner as in Example 1.
 得られたポリエチレン多孔質中空糸膜を走査型電子顕微鏡にて観察したところ、前記ポリエチレン多孔質中空糸膜の内外表面及び微孔内表面は、エチレン-ビニルアルコール共重合体の薄膜で均一に覆われていた。
 膜の孔径を示すバブルポイントは132kPaであった。空孔率は71.3体積%であった。
 PMI社製パームポロシメーターによりフッ素系界面活性剤フロリナートFC-72(スリーエム社製)を測定溶媒として測定を行うと、平均孔径0.3813μm、平均孔径±0.05μmの孔径範囲の全孔径分布に占める割合が58%を示すように実施例に比べ孔径分布が広い膜となっていた。
 各例で得られたポリエチレン多孔質中空糸膜について、透水量を評価した結果を表1に示す。
When the obtained polyethylene porous hollow fiber membrane was observed with a scanning electron microscope, the inner and outer surfaces and the microporous inner surface of the polyethylene porous hollow fiber membrane were uniformly covered with a thin film of an ethylene-vinyl alcohol copolymer. It was broken.
The bubble point indicating the pore size of the membrane was 132 kPa. The porosity was 71.3% by volume.
When a fluorosurfactant Fluorinert FC-72 (manufactured by 3M) was measured with a palm porosimeter manufactured by PMI as a measuring solvent, it occupied the total pore size distribution in a pore size range of average pore size 0.3813 μm and average pore size ± 0.05 μm. As a proportion of 58%, the membrane had a wider pore size distribution than the example.
Table 1 shows the results of evaluating the water permeability of the polyethylene porous hollow fiber membrane obtained in each example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明のポリエチレン多孔質中空糸膜である実施例1及び2では、透水量が多く、濾過特性に優れていた。また、用いた樹脂組成物は充分な流動性を有しており、成形性も優れていた。また、成形性を高めるために低分子量成分の量を増加させていないため、優れた剛性も維持されている。
 また、実施例2のポリエチレン多孔質中空糸膜は、実施例1のポリエチレン多孔質中空糸膜に比べて空孔率が高くなっており、透水量が多く、濾過特性に優れていた。
As shown in Table 1, in Examples 1 and 2 which are the polyethylene porous hollow fiber membranes of the present invention, the water permeability was large and the filtration characteristics were excellent. Further, the resin composition used had sufficient fluidity and excellent moldability. Further, since the amount of the low molecular weight component is not increased in order to improve moldability, excellent rigidity is maintained.
Further, the polyethylene porous hollow fiber membrane of Example 2 had a higher porosity than the polyethylene porous hollow fiber membrane of Example 1, had a large water permeability, and was excellent in filtration characteristics.
 一方、密度が低すぎるポリエチレンを用いた比較例1のポリエチレン多孔質中空糸膜は、透水量が著しく低く、濾過特性が劣っていた。 On the other hand, the polyethylene porous hollow fiber membrane of Comparative Example 1 using polyethylene whose density is too low has a remarkably low water permeability and inferior filtration characteristics.
 本発明のポリエチレン多孔質中空糸膜である実施例1では、平均孔径が0.3123であって、前記平均孔径±0.05μmの孔径範囲の全孔径分布に占める割合が85.5%と高い結果を示した。また、本発明のポリエチレン多孔質中空糸膜である実施例2では、平均孔径が0.3155であって、前記平均孔径±0.05μmの孔径範囲の全孔径分布に占める割合が87.3%と高い結果を示した。
 一方、密度が低すぎるポリエチレンを用いた比較例1では、ポリエチレン多孔質中空糸膜の平均孔径は0.3813ではあったが、前記平均孔径±0.05μmの孔径範囲の全孔径分布に占める割合は、58.0%と低かった。
In Example 1 which is the polyethylene porous hollow fiber membrane of the present invention, the average pore diameter is 0.3123, and the ratio of the average pore diameter in the pore diameter range of ± 0.05 μm to the total pore diameter distribution is as high as 85.5%. Results are shown. Further, in Example 2 which is the polyethylene porous hollow fiber membrane of the present invention, the average pore diameter is 0.3155, and the ratio of the average pore diameter within the pore diameter range of ± 0.05 μm to the total pore diameter distribution is 87.3%. And showed high results.
On the other hand, in Comparative Example 1 using polyethylene whose density is too low, the average pore diameter of the polyethylene porous hollow fiber membrane was 0.3813, but the ratio of the average pore diameter to the total pore diameter distribution in the pore diameter range of ± 0.05 μm Was as low as 58.0%.
 本発明のポリエチレン多孔質中空糸膜は、濾過特性及び膜強度に優れているため、多種多様な被処理液の濾過に好適に使用できる。 Since the polyethylene porous hollow fiber membrane of the present invention is excellent in filtration characteristics and membrane strength, it can be suitably used for filtration of a wide variety of liquids to be treated.

Claims (10)

  1.  平均孔径が0.1~0.5μmであって、かつ、孔径分布が、前記平均孔径から±0.05μmの領域における孔径分布が全孔径分布の70%以上であるポリエチレン多孔質中空糸膜。 A polyethylene porous hollow fiber membrane having an average pore size of 0.1 to 0.5 μm and a pore size distribution in a range of ± 0.05 μm from the average pore size of 70% or more of the total pore size distribution.
  2.  下記(a)~(d)の要件を満たすポリエチレンを含む樹脂組成物により形成された請求項1に記載のポリエチレン多孔質中空糸膜。
     (a)JIS K7210のコードDに準拠して測定したメルトフローレート(MFRD)が0.1~0.9g/10分である。
     (b)JIS K7210のコードGに準拠して測定したメルトフローレート(MFRG)が50~100g/10分である。
     (c)前記MFRDと前記MFRGとの比FRR(G/D)(=MFRG/MFRD)が50~100である。
     (d)密度が0.962~0.968g/cmである。
    2. The polyethylene porous hollow fiber membrane according to claim 1, formed of a resin composition containing polyethylene that satisfies the following requirements (a) to (d).
    (A) The melt flow rate (MFRD) measured according to JIS K7210 code D is 0.1 to 0.9 g / 10 min.
    (B) The melt flow rate (MFRG) measured in accordance with JIS K7210 code G is 50 to 100 g / 10 min.
    (C) The ratio FRR (G / D) (= MFRG / MFRD) of the MFRD and the MFRG is 50-100.
    (D) The density is 0.962 to 0.968 g / cm 3 .
  3.  前記ポリエチレンにおける質量平均分子量Mwと数平均分子量Mnの比率Mw/Mnが8.0~12.0である、請求項1または2に記載のポリエチレン多孔質中空糸膜。 3. The polyethylene porous hollow fiber membrane according to claim 1, wherein a ratio Mw / Mn of the mass average molecular weight Mw and the number average molecular weight Mn in the polyethylene is 8.0 to 12.0.
  4.  前記ポリエチレンのJIS K6760に準拠して測定した耐環境応力亀裂性が10~50時間である、請求項1~3のいずれか一項に記載のポリエチレン多孔質中空糸膜。 The polyethylene porous hollow fiber membrane according to any one of claims 1 to 3, wherein the polyethylene has an environmental stress crack resistance measured in accordance with JIS K6760 of 10 to 50 hours.
  5.  前記ポリエチレンにおける分子量1000以下の成分量が2.0質量%以下で、かつ分子量100万以上の成分量が1.5~3.0質量%である、請求項1~3のいずれか一項に記載のポリエチレン多孔質中空糸膜。 The amount of a component having a molecular weight of 1,000 or less in the polyethylene is 2.0% by mass or less, and the amount of a component having a molecular weight of 1,000,000 or more is 1.5 to 3.0% by mass. The polyethylene porous hollow fiber membrane described.
  6.  中空糸膜の内表面及び外表面が親水性共重合体で親水化処理された、請求項1~5のいずれか一項に記載のポリエチレン多孔質中空糸膜。 The polyethylene porous hollow fiber membrane according to any one of claims 1 to 5, wherein the inner surface and the outer surface of the hollow fiber membrane are hydrophilized with a hydrophilic copolymer.
  7.  前記親水性共重合体が、エチレン-ビニルアルコール共重合体である、請求項6に記載のポリエチレン多孔質中空糸膜。 The polyethylene porous hollow fiber membrane according to claim 6, wherein the hydrophilic copolymer is an ethylene-vinyl alcohol copolymer.
  8.  請求項1~7のいずれか一項に記載のポリエチレン多孔質中空糸膜を具備する、浄水器用カートリッジ。 A water purifier cartridge comprising the polyethylene porous hollow fiber membrane according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか一項に記載のポリエチレン多孔質中空糸膜を具備する、中空糸膜モジュール。 A hollow fiber membrane module comprising the polyethylene porous hollow fiber membrane according to any one of claims 1 to 7.
  10.  平均流量孔径が0.1~0.5μmであって、かつ、開孔径ばらつきが100%以下である請求項1~7のいずれか一項に記載のポリエチレン多孔質中空糸膜。 The polyethylene porous hollow fiber membrane according to any one of claims 1 to 7, wherein the average flow pore size is 0.1 to 0.5 µm and the variation in pore size is 100% or less.
PCT/JP2011/072267 2010-09-29 2011-09-28 Porous polyethylene hollow-fiber membrane, cartridge for water purifier, and hollow-fiber membrane module WO2012043672A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180057171.2A CN103228341B (en) 2010-09-29 2011-09-28 Polyethylene porous matter hollow-fibre membrane, filter element for water purifier and hollow fiber film assembly
JP2011546369A JP6003057B2 (en) 2010-09-29 2011-09-28 Polyethylene porous hollow fiber membrane for water purifier, cartridge for water purifier, and hollow fiber membrane module
KR1020137010892A KR101536836B1 (en) 2010-09-29 2011-09-28 Porous polyethylene hollow-fiber membrane, cartridge for water purifier, and hollow-fiber membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010218043 2010-09-29
JP2010-218043 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043672A1 true WO2012043672A1 (en) 2012-04-05

Family

ID=45893111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072267 WO2012043672A1 (en) 2010-09-29 2011-09-28 Porous polyethylene hollow-fiber membrane, cartridge for water purifier, and hollow-fiber membrane module

Country Status (4)

Country Link
JP (1) JP6003057B2 (en)
KR (1) KR101536836B1 (en)
CN (1) CN103228341B (en)
WO (1) WO2012043672A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142887A (en) * 2014-01-31 2015-08-06 東レ株式会社 Polyethylene hollow fiber membrane and production method thereof
US20200047128A1 (en) * 2017-04-12 2020-02-13 Gambro Lundia Ab Filtration device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070021B (en) * 2016-05-13 2022-04-01 旭化成医疗株式会社 Porous hollow fiber membrane of polyethylene resin, separation membrane, and method for producing same
CN111051246B (en) * 2017-09-07 2022-07-05 旭化成株式会社 Filtration method using porous membrane
JP7314797B2 (en) * 2018-05-24 2023-07-26 東レ株式会社 porous hollow fiber membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328406A (en) * 1986-07-21 1988-02-06 Asahi Medical Co Ltd Network porous hollow yarn membrane
JP2002253939A (en) * 2001-03-05 2002-09-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084173A (en) * 1985-05-27 1992-01-28 Asahi Medical Co., Ltd. Hydrophilic composite porous membrane, a method of producing the plasma separator
IT1204903B (en) * 1986-06-26 1989-03-10 Ausimont Spa POLYMERIZATION PROCESS IN WATER DISPERSION OF FLORATED MONOMERS
JPH06277475A (en) * 1993-03-30 1994-10-04 Mitsubishi Rayon Co Ltd Large diameter porous hollow fiber membrane and its production
CN101300295A (en) * 2005-11-01 2008-11-05 东燃化学株式会社 Polyolefin microporous membrane, separator for battery using the membrane, and battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328406A (en) * 1986-07-21 1988-02-06 Asahi Medical Co Ltd Network porous hollow yarn membrane
JP2002253939A (en) * 2001-03-05 2002-09-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142887A (en) * 2014-01-31 2015-08-06 東レ株式会社 Polyethylene hollow fiber membrane and production method thereof
US20200047128A1 (en) * 2017-04-12 2020-02-13 Gambro Lundia Ab Filtration device

Also Published As

Publication number Publication date
JPWO2012043672A1 (en) 2014-02-24
JP6003057B2 (en) 2016-10-05
KR101536836B1 (en) 2015-07-14
KR20130064812A (en) 2013-06-18
CN103228341B (en) 2016-08-10
CN103228341A (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4494638B2 (en) Polyolefin microporous membrane and method for producing the same
JP5283379B2 (en) Polyolefin microporous membrane and method for producing the same
JP4494637B2 (en) Polyolefin microporous membrane and method for producing the same
JP4808935B2 (en) Method for producing polyethylene microporous membrane, and microporous membrane and use thereof
EP1873193B1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
KR101482477B1 (en) Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module
JP6003057B2 (en) Polyethylene porous hollow fiber membrane for water purifier, cartridge for water purifier, and hollow fiber membrane module
EP1873194B1 (en) Method for producing polyolefin microporous film and microporous film
JPH0582248B2 (en)
JP2002284918A (en) Polyolefin microporous film, method for producing the same and use thereof
JP2005343958A (en) Method for producing polyethylene fine porous film, fine porous film and use of the same
JP2008272696A (en) Degassing composite hollow fiber membrane and its manufacturing method
US9694313B2 (en) Composite hollow fiber membrane and hollow fiber membrane module
WO2016104791A1 (en) Polyolefin resin composition and manufacturing method for polyolefin microporous membrane
JP2019111476A (en) Separation membrane, and manufacturing method of separation membrane
KR101924111B1 (en) Hydrophilic polyolefin hollow fiber membrane for a water purifier and preparation method thereof
KR101936334B1 (en) Hydrophilic polyolefin hollow fiber membrane for a water purifier and preparation method thereof
JP7470297B2 (en) Polyolefin microporous membrane and its manufacturing method
JPH08311225A (en) Microporous polyolefin film
JPH01288302A (en) Micro-porous hollow fiber membrane and manufacture thereof
KR20180026848A (en) Hydrophilic polyolefin hollow fiber membrane for a water purifier and preparation method thereof
JP2014104445A (en) Method for manufacturing hollow fiber membrane
JP2017137384A (en) Polyolefin porous membrane

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011546369

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010892

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11829225

Country of ref document: EP

Kind code of ref document: A1