WO2012043667A1 - Capacitive storage cell and storage layer for capacitive storage cell - Google Patents

Capacitive storage cell and storage layer for capacitive storage cell Download PDF

Info

Publication number
WO2012043667A1
WO2012043667A1 PCT/JP2011/072258 JP2011072258W WO2012043667A1 WO 2012043667 A1 WO2012043667 A1 WO 2012043667A1 JP 2011072258 W JP2011072258 W JP 2011072258W WO 2012043667 A1 WO2012043667 A1 WO 2012043667A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
storage battery
base material
capacitor
conductive
Prior art date
Application number
PCT/JP2011/072258
Other languages
French (fr)
Japanese (ja)
Inventor
匠 浅沼
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2012043667A1 publication Critical patent/WO2012043667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation

Definitions

  • the present invention relates to a capacitor-type storage battery, and more particularly to a thin-film capacitor-type storage battery having a high electrostatic capacity and excellent retention characteristics, and a storage layer for a capacitor-type storage battery.
  • a capacitor (hereinafter referred to as a “thin film capacitor type storage battery”) that far exceeds the energy capacity per unit withstand voltage of the secondary battery has been invented (see, for example, International Publication No. 09/116668 pamphlet).
  • the thin film capacitor type storage battery described in the pamphlet of International Publication No. 09/116668 includes a first laminated substrate on which a first conductive film or a first semiconductor film and a first insulating layer are laminated, and a first laminated layer on the first insulating layer.
  • the maximum width of the particle or particle aggregate is less than 100 nm, an intrinsic electronic state is formed, and the energy of the electrons is not a continuous band structure of a bulk scale, but generates a plurality of discrete energy levels. be able to. That is, it becomes a quantum dot and a quantum effect appears.
  • the dense state obtained by the electromagnetic wave and surface plasmon interference is a transition from the base energy level to the high energy level in the discrete energy level obtained by the quantum effect of the quantum dots, that is, interlevel excitation.
  • energy is relaxed in the band and it is difficult to maintain it.
  • excitation between discrete energy levels can exhibit an energy holding action.
  • the quantum dot-like structure results in a discrete energy order, and an energy holding action can be exhibited.
  • an object of the present invention is to provide a capacitor-type storage battery having a high capacitance and high charge retention performance, and a capacitor-type storage battery storage layer.
  • the present inventors have provided conductive films or semiconductor particles, or aggregates of these particles by providing a film in which conductive particles or semiconductor particles are embedded in a polymer resin. It has been found that the quantum dot structure can be maintained without being in direct contact with each other, and the capacitance can be maintained high by the presence of a high-conductivity thin film composed of a conductive film or a semiconductor film on the conductive path side of the film.
  • the capacitor-type storage battery according to the first aspect of the present invention is: A first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first base material that is provided on the first composite layer and includes the first conductive film or the first semiconductor film And a first insulating layer provided on the first substrate of the first laminated substrate, A second insulating layer provided on the first composite layer of the first laminated substrate; A first conductive path extending in the longitudinal direction on the first insulating layer; A second conductive path extending in a longitudinal direction on the second insulating layer and provided in parallel to the first conductive path; It is a capacitor type storage battery having
  • the capacitor-type storage battery of the second aspect of the present invention is A first base material comprising a first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first conductive film or a first semiconductor film provided on the first composite layer. And a first laminated base material laminated, A first insulating layer provided on the first substrate of the first laminated substrate; A first conductive path provided on the first insulating layer so as to extend in the longitudinal direction of the first laminated substrate; A second conductive path extending in the longitudinal direction of the first laminated base material on the first insulating layer and provided in parallel to the first conductive path; It is a capacitor type storage battery having
  • a second base material composed of a second conductive film or a second semiconductor film provided on the second insulating layer, and a second conductive particle or second semiconductor particle provided on the second base material are in an organic polymer.
  • the distance between the first conductive particles or the first semiconductor particles contained in the first composite layer is preferably 30 nm or more and 3000 nm or less.
  • the distance between the second conductive particles or the second semiconductor particles contained in the second composite layer is preferably 30 nm or more and 3000 nm or less.
  • the surface of the first base material in contact with the first insulating layer has irregularities, and the width of the irregularities of the irregularities is not less than 30 nm and not more than 3000 nm. Is preferred.
  • the surface of the second base material in contact with the second insulating layer has irregularities, and the width of the concave and convex portions of the irregularities is not less than 30 nm and not more than 3000 nm. preferable.
  • the first insulating layer when the surface of the first base material in contact with the first insulating layer has irregularities, the first insulating layer is adjacent to the first base material. It is preferable that the first adhesive layer and the second adhesive layer provided on the side farther from the surface of the first base material than the first adhesive layer are two or more layers. On the other hand, in the capacitor-type storage battery according to the second aspect of the present invention, when the surface of the second base material in contact with the second insulating layer has irregularities, the second insulating layer is adjacent to the second base material. And a third adhesive layer provided on the side farther from the surface of the second base material than the third adhesive layer.
  • the first adhesive layer and the third adhesive layer are preferably organic polymer layers having a storage elastic modulus in the range of 1 ⁇ 10 4 Pa or more and less than 1 ⁇ 10 5 Pa
  • the second adhesive layer and the fourth adhesive layer are preferably organic polymer layers having a storage elastic modulus of 1 ⁇ 10 5 Pa or more.
  • the first adhesive layer and the third adhesive layer are preferably organic polymer layers having a dielectric loss tangent (tan ⁇ ) in the range of 0.1 to 1, and the second adhesive layer and the third adhesive layer
  • the fourth adhesive layer is preferably an organic polymer layer having a tan ⁇ of 0.5 or less.
  • the second adhesive layer is a layer formed by dispersing inorganic compound powder in a resin, or a layer formed by impregnating a porous material using a polymer resin with a resin.
  • 1st strength ensuring which prevents the unevenness
  • the first conductive film and the second conductive film are independently composed of Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, In, Ti, Ta, and C. Including at least one element selected from the group, an alloy or eutectoid composed of at least two elements selected from the group, or at least one element selected from the group, and 3 in the periodic table It is preferable to contain an alloy or a eutectoid containing at least one element selected from the group consisting of Group 14 to Group 14. In the case of Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, and In having conductivity alone, there is no problem even if they are formed of a single element.
  • the first semiconductor film and the second semiconductor film are each independently formed of nickel nitride, anatase structure titanium oxide, tin oxide mixed indium oxide, tin oxide, zirconium oxide, gallium nitride, aluminum nitride, It is preferable to contain at least one compound selected from the group consisting of silicon and carbon. Furthermore, it is preferable to dope these compounds with an n-type or p-type transition metal, rare earth metal or nonmagnetic metal from the viewpoint of generating 50% or more excited electrons from the impurity level at room temperature.
  • a mode in which a plurality of rows of the first conductive paths and the second conductive paths are provided on the same surface of the first insulating layer is also preferable.
  • the first conductive path and the second conductive path have a portion whose width becomes narrower. In this part, two sides extending in the same direction as the first conductive path have an angle of 30 ° or less. Preferably there is.
  • a capacitor-type storage battery and a capacitor-type storage battery storage layer having high capacitance and high strength can be obtained.
  • the capacitor-type storage battery according to the first aspect of the present invention is: A first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first base material that is provided on the first composite layer and includes the first conductive film or the first semiconductor film And a first insulating layer provided on the first substrate of the first laminated substrate, A second insulating layer provided on the first composite layer of the first laminated substrate; A first conductive path extending in the longitudinal direction on the first insulating layer; A second conductive path extending in a longitudinal direction on the second insulating layer and provided in parallel to the first conductive path; Have
  • the capacitor-type storage battery of the second aspect of the present invention is A first base material comprising a first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first conductive film or a first semiconductor film provided on the first composite layer. And a first laminated base material laminated, A first insulating layer provided on the first substrate of the first laminated substrate; A first conductive path provided on the first insulating layer so as to extend in the longitudinal direction of the first laminated substrate; A second conductive path extending in the longitudinal direction of the first laminated base material on the first insulating layer and provided in parallel to the first conductive path; Have
  • the electromagnetic wave traveling in the length direction of the conductive path generated by the current flowing through the pair of the first conductive path and the second conductive path is reduced in speed by the insulating layer in contact with the first conductive path and the second conductive path.
  • the TM component and the surface plasmon are likely to interfere with the surface plasmon because the wavefront matching probability between the TM component and the surface plasmon increases.
  • the density wave surface plasmon
  • the density wave gains energy, but due to the influence of the electric field, an electron density state is generated in the conductive film or the semiconductor film.
  • electrons are collected in a portion where electrons are densely present. In a continuous metal / semiconductor, this collection of electrons is thermally relaxed by thermal vibration of the atomic lattice during propagation, and energy is lost.
  • metal particles / semiconductors are arranged at the locations where the dense waves are generated, and the particles or aggregates of the particles.
  • the maximum width of for example, 10 ⁇ m or less
  • energy is propagated at a distance that does not relax heat.
  • the particles or particle aggregates having the maximum width do not come into contact with each other, and an insulating material is present between the particles, so that the waves can be returned from electromagnetic waves to electromagnetic waves. Again, energy is converted from electromagnetic waves to dense waves. By repeating this, thermal relaxation can be suppressed and charge retention performance can be improved.
  • the first composite layer in which the first conductive particles or the first semiconductor particles are embedded in the organic polymer, and the first composite A first laminated base material laminated with a first base material made of a first conductive film or a first semiconductor film provided on the layer;
  • the conductive particles or the semiconductor particles are embedded in the organic polymer means that the conductive particles, the semiconductor particles, or the particle aggregates do not contact each other in the organic polymer. , Means included in a distributed state.
  • the first conductive particles or the first semiconductor particles are embedded in an insulator that is an organic polymer, and the surface (the first base material made of the first conductive film or the first semiconductor film and the first base material) TM surface and surface plasmon can be converted into energy on the contact surface), and the first substrate made of the first conductive film or the first semiconductor film has low conductivity and can inject electrons. ing.
  • particle means a finite unit composed of a uniform solid phase, and the solid phase is separated by a boundary in contact with another phase.
  • an insulator other phase
  • solid phase conductive particles or semiconductor particles
  • a metal phase or semiconductor phase having another crystal orientation is surrounded around a metal phase having a specific crystal orientation.
  • an ultrathin oxide film another layer
  • the solid phase may be a single crystal, a polycrystal of the above size, or an amorphous.
  • the boundary between the solid phase and the other phase is subject to some restrictions on the movement of electrons, unlike the bulk body, but the particles in the composite layer are in contact with the substrate made of a conductive film or a semiconductor film. Some electric charges can pass through the contact surface when the particles are in contact with the substrate. On the other hand, propagation of coarse waves is hindered by the boundary that forms the periphery of the particles in the composite layer.
  • the distance between the particles of the first conductive particles or the first semiconductor particles included in the first composite layer (or between the particle aggregates) is preferably 30 nm or more and 3000 nm or less.
  • the mutual distance is preferably 30 nm or more and 3000 nm or less.
  • the quantum effect described below appears. .
  • the maximum width is less than 100 nm, an intrinsic electronic state is formed, and the energy of electrons can generate a plurality of discrete energy levels instead of a continuous band structure of a bulk scale. That is, it becomes a quantum dot and a quantum effect appears.
  • the dense state obtained by the electromagnetic wave and surface plasmon interference is a transition from the base energy level to the high energy level in the discrete energy level obtained by the quantum effect of the quantum dots, that is, interlevel excitation.
  • energy is relaxed in the band and it is difficult to maintain it.
  • excitation between discrete energy levels can exhibit an energy holding action.
  • the quantum dot-like structure results in a discrete energy order, and an energy holding action can be exhibited.
  • the discrete excitation state electrons are excited in the conductor to create holes in the shell of electrons, and energy is retained in the electron hole pair state. In this state, it is electrically neutral when viewed from the outside. That is, the energy is converted from the electromagnetic energy to the electron hole pair excitation energy, and the energy holding state is different from the state where electrons are held on one side of the counter electrode and holes are held on the other side by so-called electrostatic electric field strength. .
  • the stabilization function of power storage by the above mechanism can be utilized not only on one surface of the pair wire of the first conductive path and the second conductive path but also on the other surface.
  • a continuous second insulating layer is provided on the outer surfaces of the first conductive path and the second conductive path, and a second base material made of the second conductive film or the second semiconductor film is formed on the second insulating layer;
  • a second composite layer in which two conductive particles or second semiconductor particles are embedded in an organic polymer may be laminated in this order.
  • the capacitor-type storage battery according to the second aspect of the present invention is provided on the second insulating layer and the second insulating layer that are continuously provided on the outer surfaces of the first conductive path and the second conductive path.
  • a second base material made of the second conductive film or the second semiconductor film, and a second composite layer provided on the second base material, wherein the second conductive particles or the second semiconductor particles are embedded in the organic polymer May have a second laminated substrate laminated in this order
  • the capacitor-type storage battery according to the first and second embodiments of the present invention is a capacitor-type storage battery having a high electrostatic capacity and high charge retention performance.
  • the surface of the first base material with which the first insulating layer is in contact has irregularities, and the width of the irregularities is preferably 30 nm or more and 3000 nm or less.
  • the surface of the second base material in contact with the second insulating layer has unevenness,
  • the width of the recess is preferably 30 nm or more and 3000 nm or less.
  • TM The energy of wave and surface plasmon can be converted, that is, energy is converted from dense waves to electromagnetic waves, and from electromagnetic waves to dense waves, at the concave and convex portions of the substrate made of conductive film or semiconductor film, and the capacity of the storage battery Becomes larger.
  • the width of the concave and convex portions corresponds to the distance between the particles contained in the composite layer, and the energy is converted from dense waves to electromagnetic waves and from electromagnetic waves to electromagnetic waves by setting the width of the concave and convex portions to 30 nm or more.
  • the width of the concave and convex portions is preferably 3000 nm or less.
  • corrugation it is good for the convex part to be provided with the space
  • the maximum height of the concave and convex portions is preferably 10 ⁇ m or less (30 nm or more is desirable, 10 ⁇ m or less from the viewpoint of ease of formation), the maximum width of the convex portion is 10 ⁇ m or less, and the maximum width of the concave portion is 3 ⁇ m or less. Good.
  • the first insulating layer is provided adjacent to the first base. It is good to consist of two or more layers including the 1st adhesive layer and the 2nd adhesive layer provided in the side farther from the surface of the 1st substrate than the 1st adhesive layer.
  • the 1st adhesive layer provided adjacent to the 1st substrate is an adhesive layer closely_contact
  • the second adhesive layer provided on the side far from the unevenness is such that the unevenness on the surface of the first substrate is a conductive path (in the case of the first form, the first conductive path, in the case of the second form, the first conductive path and It functions as an adhesive layer that prevents contact with the second conductive path).
  • a conductive path in the case of the first form, the first conductive path, in the case of the second form, the first conductive path and It functions as an adhesive layer that prevents contact with the second conductive path.
  • the surface plasmon generation is stable in the unevenness of the first base material made of the first conductive film or the first semiconductor film, and energy is converted from the dense wave to the electromagnetic wave, and from the electromagnetic wave to the dense wave, The capacity of the storage battery increases.
  • the two insulating layers include a third adhesive layer provided adjacent to the second base material, and two layers including a fourth adhesive layer provided on a side farther from the surface of the second base material than the third adhesive layer. It is good to consist of the above.
  • the third adhesive layer provided adjacent to the second base material is an adhesive layer that is in close contact between the irregularities of the second base material, and the first conductive path and the second conductive layer are more than the third adhesive layer.
  • the fourth adhesive layer provided on the conductive path side functions as an adhesive layer that prevents the unevenness of the second base material from coming into contact with the first conductive path and the second conductive path.
  • an insulator is present in the concave and convex portions of the concave and convex portions of the second base material (that is, an insulator between the convex and concave portions of the concave and convex portions). Can be interposed).
  • the surface plasmon generation is stable in the convex and concave portions of the second base material made of the second conductive film or the second semiconductor film, and energy is converted from dense waves to electromagnetic waves, and from electromagnetic waves to dense waves,
  • the capacity of the storage battery increases.
  • an adhesive layer (first adhesive layer, third adhesive) provided adjacent to the base material in order not to generate voids by following the unevenness of the surface of the base material made of a conductive film or a semiconductor film.
  • Layer) and the storage elastic modulus of the adhesive layer (second adhesive layer, fourth adhesive layer) provided closer to the conductive path than the adhesive layer (first adhesive layer, third adhesive layer). It is preferable to do.
  • each adhesive layer (first to fourth adhesive layers) is an organic polymer layer, and the storage elastic modulus of the first adhesive layer and the third adhesive layer is 1 ⁇ 10 4 Pa or more and 1 ⁇ It is preferable that the range is less than 10 5 Pa, and the storage elastic modulus of the second adhesive layer and the fourth adhesive layer is 1 ⁇ 10 5 Pa or more.
  • each adhesive layer (first to fourth adhesive layers) is an organic polymer layer, and the tan ⁇ of the first adhesive layer and the third adhesive layer is in the range of 0.1 to 1,
  • the tan ⁇ of the second adhesive layer and the fourth adhesive layer is preferably 0.5 or less.
  • the inorganic compound powder is dispersed in the resin so as to increase the strength of the second adhesive layer and the fourth adhesive layer and effectively prevent the unevenness of the base material (its convex part) from contacting the conductive path. It is preferable to form a layer formed by impregnating a porous material using a polymer resin with a resin.
  • a first strength securing layer is provided between the first adhesive layer and the second adhesive layer so as to more effectively prevent the unevenness of the base material (its convex part) from contacting the conductive path.
  • a mode in which the second strength securing layer is provided between the third adhesive layer and the fourth adhesive layer is also suitable.
  • the first and second strength securing layers may not have adhesiveness.
  • FIG. 1 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the first embodiment.
  • the capacitor-type storage battery according to the first embodiment includes a first composite layer 12 in which conductive or semiconductive first particles 12A are embedded in an organic polymer, and a first conductive film. Or it has the 1st base material 13 which laminated
  • a first insulating layer 21 is provided on the first base material 13 of the first laminated base material 11, and a second insulating layer is provided on the first composite layer 12 of the first composite layer 12 of the first laminated base material 11. 22 is provided.
  • a second conductive path 32 is provided so as to extend in the longitudinal direction of the first laminated substrate and to be parallel to the first conductive path 31.
  • the first composite layer 12 is composed of an organic polymer film in which conductive or semiconductive first particles 12A (first conductive particles or first semiconductor particles) are embedded in an organic polymer.
  • conductive or semiconductive first particles 12A first conductive particles or first semiconductor particles
  • the conductive or semiconductive first particles 12A are embedded in the organic polymer” means that the first particles 12A are covered with the organic polymer.
  • the first particles 12A may be at least partially covered with the organic polymer, but are preferably completely covered with the organic polymer.
  • the conductive or semiconductive first particles 12A are embedded in a state of being dispersed in the organic polymer, and are embedded as an aggregate (aggregated) particle aggregate (first particle aggregate). It may be.
  • the first particles 12A or the first particle aggregates are present in the first composite layer 12 with an insulator that is an organic polymer interposed therebetween.
  • the first particles 12A are electrically conductive from the viewpoint of easily achieving a state in which TM waves and surface plasmons are likely to occur and charge injection as a basis for the surface plasmons. It is preferably present in the first composite layer 12 so as to be unevenly distributed on the first base material 13 side made of a film or a semiconductor film, specifically on the first base material 13 surface.
  • the first particle 12A may be a single type of particle or a combination of two or more types.
  • composition of the conductive first particles 12A those described in the first conductive film to be described later can be applied, and the same applies to materials that are preferably used.
  • composition of the semiconductive first particles 12A those described in the first semiconductor film described later can be applied, and the same applies to the materials that are preferably used.
  • n-type or p-type transition metals, rare earth metals, or non-type compounds are selected from the group so that 50% or more of excited electrons are generated from the impurity level at room temperature. It is effective to dope magnetic metal.
  • the first particles 12A are preferably made of a material having a high carrier density, easily generating surface plasmons, and easily forming particles.
  • the maximum width of the first particle 12A is, for example, 10 ⁇ m or less, and as described above, from the viewpoint of exerting the quantum effect, it is more preferably 5 nm or more and 100 nm or less, and further preferably 5 nm or more and 80 nm or less. .
  • the maximum width of the first particle 12A is an extension image of the first conductive path 31 and the second conductive path 32, that is, a cross section including the first particle 12A along the surface plasmon traveling method is imaged by AFM. This is a value obtained by observing and measuring the maximum width of 100 or more arbitrary first particles 12A included in the cross-sectional image.
  • the distance between the first particles 12A is preferably 30 nm or more and 3000 nm or less, more preferably 30 nm or more and 1500 nm or less, and further preferably 50 nm or more and 1000 nm or less.
  • the distance between the first particles 12A can be adjusted by the amount (content) embedded in the organic polymer.
  • the distance between the first particles 12A is a cross section observed by the same method as the measurement of the particle diameter of the first particles 12A, and the shortest distance between the adjacent first particles 12A is measured at this time. This is the value when
  • the organic polymer is an insulator, and specifically, for example, polyolefin resin, polyamide resin, polyester resin, polyether resin, polyketone resin, polyimide resin, polyurethane resin, polysiloxane resin.
  • Phenolic resin epoxy resin, acrylic resin, natural rubber, diene rubber (eg, isoprene rubber, butadiene rubber, styrene butadiene rubber, etc.), non-diene rubber (eg, butyl rubber, ethylene propylene rubber, urethane rubber, Silicone rubber, etc.).
  • These may be thermoplastic, may be thermosetting, or may be an uncured product thereof.
  • the organic polymer may be a modified product such as resin or rubber, a mixture, or a copolymer.
  • the organic polymer is preferably a polyimide resin from the viewpoint of excellent heat resistance.
  • the organic polymer is preferably made of a material different from the insulator constituting the first insulating layer 21 and the second insulating layer 22.
  • the organic polymer is coated with a coating liquid (a mixture of the organic polymer and the first particles 12A) for forming the first composite layer 12, and is formed in advance when the first composite layer 12 is formed.
  • the shear elastic modulus at room temperature is preferably 1 ⁇ 10 3 Pa or more and 1 ⁇ 10 7 Pa or less, more preferably 1 ⁇ 10 6. It is 3 Pa or more and 1 ⁇ 10 6 Pa or less, more preferably 1 ⁇ 10 3 Pa or more and 5 ⁇ 10 6 Pa or less.
  • the shear modulus is a value obtained by a method defined by JIS K 6254.
  • the thickness of the first composite layer 12 is preferably 10 ⁇ m to 1 mm, more preferably 10 ⁇ m to 200 ⁇ m, and still more preferably 10 ⁇ m to 100 ⁇ m.
  • the 1st base material 13 consists of a 1st electrically conductive film or a 1st semiconductor film, and may be comprised with any of the electrically conductive substance and the semiconductor substance. Further, the first base material 13 is composed of a conductive material or a semiconductor material, but may be made of a film aggregated in a state where particles of the conductive material or the semiconductor material (conductive particles or semiconductor particles) are in contact with each other, It may consist of a bulk film of a conductive material or a semiconductor material.
  • the first base material 13 (first conductive film or first semiconductor film) is integrally formed with the first particles 12A (first conductive particles or first semiconductor particles) constituting the first composite layer 12. It is good.
  • the first particles 12A (the conductive material or the semiconductor material forming the first base material 13 and the first particles 12A ( The first base material 13 and the first particles 12A may be integrally formed in a state where the first conductive particles or the first semiconductor particles are bonded to each other.
  • an extra layer for example, oxide layer
  • an extra layer does not intervene between the 1st base material 13 and the 1st particle 12A of the 1st compound layer, and internal resistance falls easily.
  • the conductivity means that the volume resistivity is 10 ⁇ 3 ⁇ ⁇ cm or less.
  • Semiconductive means that the volume resistivity is more than 10 ⁇ 3 ⁇ ⁇ cm and not more than 10 6 ⁇ ⁇ cm.
  • the first conductive film or the first semiconductor film is preferably a material having high carrier density and high charge mobility. Specifically, the following materials can be exemplified.
  • the first conductive film is not particularly limited as long as it exhibits conductivity. For example, Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, In, Ti, Ta And at least one element selected from the group consisting of C, and may be composed of a single element or two or more elements. When two or more elements are contained, an alloy or a eutectoid may be used.
  • an alloy or a eutectoid containing at least one element selected from the above group and further containing at least one element selected from the group consisting of groups 3 to 14 of the periodic table.
  • the alloy includes a solid solution having a solid solution limit or less.
  • Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, In, Ti, Ta, and C which are electrically conductive are formed of a single element. There is no problem.
  • Si-containing material is used as the first conductive film, at least one element selected from the group consisting of groups 3 to 15 of the periodic table, represented by B, Al, P, etc., is dissolved in Si. What was made into solid solution below the limit and provided electroconductivity can be used.
  • the first semiconductor film is not particularly limited as long as it exhibits semiconductivity, but nickel nitride, anatase structure titanium oxide, tin oxide mixed indium oxide, tin oxide, zirconium oxide, gallium nitride, aluminum It contains at least one compound selected from the group consisting of nitride, silicon, and carbon, and two or more compounds may be used in combination.
  • a compound selected from the above group may be doped with an n-type or p-type transition metal, rare earth metal or nonmagnetic metal so that 50% or more of excited electrons are generated from the impurity level at room temperature. It is valid.
  • the first base material 13 is a single layer composed of either one of the first conductive film or the first semiconductor film, a multilayer in which two or more first conductive films composed of different materials are stacked. Even in the case of a multilayer in which two or more first semiconductor films made of different materials are stacked, two or more layers selected from the first conductive film and the first semiconductor film are stacked. Also good.
  • the thickness of the first base material 13 is preferably 20 nm or more and 30000 nm or less, and preferably 1 ⁇ m or more and 20 ⁇ m or less from the viewpoint of securing a charge amount for improving electric capacity when modularized.
  • the surface roughness Rz ( ⁇ m) of the first substrate 13 is preferably 1 ⁇ m or more and 10 ⁇ m or less, and more preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the method for measuring the surface roughness Rz is as follows.
  • the uneven state of the surface of the first substrate 13 is measured using an atomic force microscope (AFM).
  • AFM atomic force microscope
  • the first insulating layer 21 and the second insulating layer 22 may be formed of any of an organic insulator, an inorganic insulator, or a composite of an organic insulator and an inorganic insulator.
  • organic insulator include polyester, PET (polyethylene terephthalate), PPC (polyester polycarbonate), vinylidene, polyimide, polystyrene, rubber, acrylic, and epoxy.
  • inorganic insulator include metal oxides such as borosilicate glass, soda lime glass, barium titanate and strontium titanate.
  • the first insulating layer 21 and the second insulating layer 22 are preferably formed of an acrylic adhesive.
  • the acrylic adhesive has high tackiness, and prevents the presence of air or the like between the conductive path and the conductive film, thereby improving the manufacturability of the capacitor.
  • the first insulating layer 21 and the second insulating layer 22 are preferably formed of a material different from the organic polymer constituting the first composite layer 12.
  • the first insulating layer 21 and the second insulating layer 22 may each be a single layer or a multilayer of two or more layers.
  • the thickness of the first insulating layer 21 and the second insulating layer 22 (the total thickness when two or more layers are used in an overlapping manner) is 20 nm or more and 10,000 nm or less, respectively, from the viewpoint of efficient energy exchange between electromagnetic waves and surface plasmons. preferable.
  • the film thickness consideration is given to withstand voltage, and it is preferable to secure the minimum thickness that can withstand the voltage suitable for the application.
  • First conductive path, second conductive path As a composition of the 1st conductive path 31 and the 2nd conductive path 32, what was demonstrated by the 1st conductive film can be applied, and it is the same also about the material used suitably.
  • the first conductive path 31 and the second conductive path 32 may be formed of the same material, or may be formed of different materials.
  • the length (width) w in the short direction of the first conductive path 31 and the second conductive path 32 is, for example, not less than 1 ⁇ m and not more than 100 mm, respectively, and the distance d between the first conductive path 31 and the second conductive path 32 (first The layer thickness of each film interposed between the conductive path 31 and the second conductive path 32 is, for example, not less than 1 ⁇ m and not more than 100 mm.
  • the thickness (height) t of the first conductive path 31 and the second conductive path 32 is, for example, not less than 0.5 ⁇ m and not more than 10 ⁇ m, respectively.
  • the relationship between the width w and the distance d is preferably w / d ⁇ 1.5.
  • the relationship between the width w and the height t is preferably t / w ⁇ 1, and more preferably t / w ⁇ 0.5.
  • the manufacturing method of the capacitor type storage battery according to the first embodiment is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above configuration. An example of the manufacturing method will be described below.
  • an organic polymer film is formed on a base material sheet by a method such as coating, bonding, vapor deposition, plating, ion plating, CVD, thermal spraying, etc., such as a bar coating method.
  • the first particles 12A (first conductive particles or first semiconductor particles) are physically deposited with high energy on the surface of the molecular film. As a result, the first particles 12A deposited first are broken so that the bonds of the organic polymer are broken and embedded in the organic polymer film, so that the first composite layer 12 is formed.
  • the first particles 12A exiting the organic polymer film are bonded to each other on the surface of the organic polymer film (first composite layer 12) and deposited in a film shape.
  • the first base material 13 made of a conductive film or a semiconductor film is formed.
  • specific examples of the method for depositing the first particles 12A with high energy include magnetron sputtering, DC sputtering, RF sputtering, and ion beam sputtering.
  • the energy for vapor deposition is determined by, for example, the particle acceleration energy and the binding energy of the organic polymer.
  • the formation method of the 1st composite layer 12 and the 1st base material 13 is not restricted to this,
  • grains 12A (1st electroconductive particle or 1st semiconductor particle) is used previously.
  • the first composite layer 12 is formed by a technique such as coating, bonding, or thermal spraying
  • the first composite layer 12 is formed on the first composite layer 12 by a technique such as sputtering, vapor deposition, plating, ion plating, CVD, or thermal spraying.
  • a method of forming the first base material 13 made of the first conductive film or the first semiconductor film may be employed.
  • the first insulating layer 21 is formed by a technique such as coating, bonding, vapor deposition, plating, ion plating, CVD, thermal spraying or the like such as a bar coating method. Further, the first conductive path 31 is formed on the first insulating layer 21.
  • the base material sheet is peeled off from the laminate in which these films are laminated, and on the peeled surface, that is, on the surface of the first composite layer 12 (the surface opposite to the surface in contact with the first base material 13).
  • the second insulating layer 22 is formed by a method similar to the method of forming the first insulating layer 21. Further, a second conductive path 32 is formed on the second insulating layer 22.
  • the capacitor-type storage battery according to the first embodiment can be manufactured.
  • the first conductive path 31 and the second conductive path 32 are exposed at one end in the longitudinal direction of the storage battery.
  • a first terminal and a second terminal for applying a voltage to the first conductive path 31 and the second conductive path 32 are connected to the exposed portions, respectively.
  • a photon ⁇ is generated between the first base material 13 and the electromagnetic field spread between the first conductive path 31 and the second conductive path 32, that is, photons.
  • Surface plasmon is exchanged for energy storage with a large capacity. The same applies to the following embodiments.
  • FIG. 2 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the second embodiment.
  • the capacitor-type storage battery according to the second embodiment is the surface of the first base material 13 made of the first conductive film or the first semiconductor film in the capacitor-type storage battery according to the first embodiment ( On the surface in contact with the first insulating layer 21, there are irregularities formed by the convex portions 13 ⁇ / b> A and the concave portions 13 ⁇ / b> B.
  • the unevenness on the surface of the first base material 13 is constituted by, for example, a plurality of conductive particles, semiconductor particles, or aggregated particles scattered on the surface of the first base material 13. That is, for example, the convex portions 13A constituting the irregularities are constituted by conductive particles or semiconductor particles, or aggregate particles thereof, and are constituted by particles or aggregate particles interspersed with the concave portions 13B constituting the irregularities.
  • the conductive particles or semiconductor particles constituting the irregularities on the surface of the first base material 13 are: What was demonstrated with the electroconductive or semiconductive 1st particle
  • corrugation which has on the surface of the 1st base material 13 is not restricted to the said structure, You may comprise the dent provided in the surface of the 1st base material 13.
  • the maximum width and the maximum height of the concavo-convex convex portions 13A on the surface of the first base material 13 are: It is preferably 10 ⁇ m or less, more preferably 100 nm or less, and particularly preferably 80 nm or less.
  • the maximum width and the maximum height of the convex portion 13A are an extension image of the first conductive path 31 and the second conductive path 32, that is, a cross section including the convex portion 13A along the surface plasmon traveling method is imaged by AFM. And the maximum width and the maximum height of 100 or more arbitrary convex portions 13A included in the cross-sectional image are measured.
  • the width of the concave-convex concave portion 13B on the surface of the first base material 13 is 30 nm or more and 3000 nm or less, more preferably They are 30 nm or more and 1500 nm or less, More preferably, they are 50 nm or more and 1000 nm or less.
  • the width of the concave portion 13B is a value obtained by observing the cross section by the same method as the measurement of the maximum width of the convex portion 13A and measuring the shortest distance between the adjacent convex portions 13A.
  • the manufacturing method of the capacitor type storage battery according to the second embodiment is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above configuration. An example of the manufacturing method will be described below.
  • the first composite layer 12 and the first base material 13 are formed in this order on the base material sheet in the same manner as in the first embodiment.
  • magnetron sputtering, vapor deposition, plating, ion plating, CVD, thermal spraying are used to form irregularities of conductive particles or conductive particles on the surface of the first base material 13 (first conductive film or first semiconductor film).
  • the conductive particles or the conductive particles are applied on the first base material 13 so as to have the unevenness of the above size by a method such as the above.
  • the conductive particles or the conductive particles are deposited on the first base material 13 so as to have the unevenness of the above size by a technique such as electroplating, ion plating, CVD, or thermal spraying.
  • the size of the unevenness by the conductive particles or conductive particles to be formed can be adjusted by optimizing the film forming conditions in the case of sputtering, or by optimizing the applied current conditions in the electrolytic plating method. .
  • the first process is performed by a series of processes using the same technique. This can be realized by changing the film forming condition of the base material 13 and the film forming condition of the unevenness by the conductive particles or the conductive particles. Of course, these may be formed by different conditions and different methods.
  • the first insulating layer 21 is formed on the first base material 13 provided with irregularities on the surface in the same manner as in the first embodiment. However, at this time, it is beneficial to control the fluidity of the insulator to be used so that the first insulating layer 21 is interposed in the concave and convex recesses 13 ⁇ / b> B provided on the surface of the first base material 13.
  • first conductive path 31, the second insulating layer 22, and the second conductive path 32 are sequentially formed in the same manner as in the first embodiment.
  • the capacitor-type storage battery according to the second embodiment can be manufactured.
  • FIG. 3 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the third embodiment.
  • the capacitor type storage battery according to the third embodiment is the same as the capacitor type storage battery according to the second embodiment.
  • a first insulating layer 21 composed of three layers in which a first adhesive layer 211, a first strength securing layer 213, and a second adhesive layer 212 are laminated in this order is provided.
  • the first strength securing layer 213 is arbitrarily provided, it is ensured that the unevenness (the convex portion 13A) provided on the first base material 13 is in contact with the first conductive path 31 by increasing the strength of the insulating layer. It is preferable to provide from a viewpoint of preventing.
  • the first insulating layer 21 includes at least a first adhesive layer 211 provided adjacent to the first base material 13, and a second adhesive layer 212 provided closer to the first conductive path 31 than the first adhesive layer 211. Further, a first strength securing layer 213 is provided between the first adhesive layer 211 and the second adhesive layer 212, and the first adhesive layer 211, the first strength securing layer 213, and The second adhesive layer 212 has a three-layer structure.
  • the first adhesive layer 211, the first strength securing layer 213, and the second adhesive layer 212 may each be composed of two or more layers.
  • the total thickness of the first insulating layer 21 is preferably 1000 nm or more and 30000 nm or less, and more preferably 5000 nm or more and 20000 nm or less from the viewpoint of increasing the efficiency of energy exchange between electromagnetic waves and surface plasmons and increasing the capacitance.
  • the first adhesive layer 211 is preferably a layer that is soft enough to follow the unevenness of the surface of the first base material 13 during pressure bonding.
  • the second adhesive layer 212 is located between the first adhesive layer 211 and the first conductive path 31, and the first adhesive path 31 has a corner (end) and irregularities on the surface of the first base material 13.
  • the first conductive path 31 and the first base material 13 may be harder than the first adhesive layer 211 so that the first conductive path 31 and the first base material 13 are adhered to each other while maintaining a certain distance without damaging each other. preferable. Specifically, it is preferable to adjust the storage elastic modulus, and specific physical property values thereof will be described later.
  • the dielectric loss tangent (tan ⁇ ) is preferably adjusted so that the first adhesive layer 211 and the second adhesive layer 212 effectively function as an insulating layer.
  • the specific numerical value will be described later.
  • the first adhesive layer 211, the second adhesive layer 212, and the first strength ensuring layer 213 will be described.
  • the first adhesive layer 211 is an adhesive layer that adheres following the unevenness of the surface of the first base material 13.
  • the first adhesive layer 211 is preferably a layer that is soft enough to follow the unevenness on the surface of the first base material 13 during pressure bonding.
  • the storage elastic modulus is preferably in the range of 1 ⁇ 10 4 Pa to less than 1 ⁇ 10 5 Pa, preferably 2 ⁇ 10 4 Pa. The range is more preferably 9 ⁇ 10 4 Pa or less, and still more preferably 3 ⁇ 10 4 Pa or more and 6 ⁇ 10 4 Pa or less.
  • the dielectric loss tangent (tan ⁇ ) of the first adhesive layer 211 is preferably in the range of 0.1 or more and 1 or less from the viewpoint of improving the adhesion with the first particle layer, and is 0.2 or more and 0.00. A range of 8 or less is more preferable, and a range of 0.3 to 0.6 is even more preferable.
  • the first adhesive layer 211 for example, an acrylic adhesive, an epoxy adhesive, a silicon adhesive, a low molecular rubber adhesive, or the like can be applied.
  • the first adhesive layer 211 may be a single layer or a multilayer of two or more layers.
  • the thickness of the first adhesive layer 211 (the total thickness when two or more layers are used in an overlapping manner) is preferably 500 nm or more and 20000 nm or less, respectively, from the viewpoint of closely following the unevenness of the surface of the first base material 13. 2,000 to 15000 nm is more preferable.
  • the second adhesive layer 212 is provided closer to the first conductive path 31 than the first adhesive layer 211, and the unevenness (the convex portion 13 ⁇ / b> A) on the surface of the first base material 13 is in contact with the first conductive path 31. It is an adhesive layer that prevents Even when the first adhesive layer 211 is pressure-bonded, the first adhesive is used to reliably prevent the unevenness on the surface of the first base material 13 (the convex portion 13A) from coming into contact with the first conductive path 31. A layer having higher strength than the layer 211 is preferable.
  • the storage elastic modulus is preferably 1 ⁇ 10 5 Pa or more, and preferably 2 ⁇ 10 5 Pa or more and 1 ⁇ 10 7 Pa or less.
  • the range is more preferable, and the range of 5 ⁇ 10 5 Pa to 1 ⁇ 10 6 Pa is more preferable.
  • the dielectric loss tangent (tan ⁇ ) of the second adhesive layer 212 is set to 0.5 or less from the viewpoint of increasing the strength of the second adhesive layer 212 and preventing the second adhesive layer 212 from being broken by the end surface of the first conductive path 31.
  • the range is preferably 0.05 to 0.5, and more preferably 0.1 to 0.2.
  • a rubber adhesive such as butyl rubber, CR rubber, or CSM rubber, a polymer acrylic adhesive, or a polymer silicone adhesive can be applied. .
  • the second adhesive layer 212 is a layer formed by dispersing inorganic compound powder in the resin so that the first conductive path 31 and the first base material 13 can be held at a constant interval even during pressure bonding. It is preferable to form a layer formed by impregnating a porous material using a polymer resin with the resin.
  • the inorganic compound powder can be exemplified by SiO 2, MgO, ZrO 2 and TiO 2 or the like.
  • distributes inorganic compound powder any, such as a thermoplastic resin, a thermosetting resin, and UV curable resin, may be sufficient.
  • acrylic resin, polycarbonate resin, polyester resin (for example, PET), alloy resin containing polycarbonate and polyester, ABS resin, AS resin, polystyrene resin, polyolefin resin, vinyl chloride resin, and fluorine resin Resin etc. can be illustrated.
  • the content of the inorganic compound powder in the resin is preferably 20% by mass to 85% by mass, more preferably 30% by mass to 80% by mass, and 40% by mass to 80% by mass. More preferably.
  • porous material using a polymer resin examples include polymer resins represented by polytetrafluoroethylene (PTFE) or polyethylene (PE).
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • a foaming agent may be added.
  • flour etc. can be suitably applied as resin impregnated to a porous material.
  • the second adhesive layer 212 may be a single layer or a multilayer of two or more layers. From the viewpoint of reliable insulation between the first base material 13 and the first conductive path 31, the thickness of the second adhesive layer 212 (total thickness when two or more layers are used in an overlapping manner) is 500 nm or more and 10,000 nm or less, respectively. Preferably, 1000 nm or more and 5000 nm or less are more preferable.
  • the first adhesive layer 211 is an organic polymer layer having a storage elastic modulus in the range of 1 ⁇ 10 4 Pa or more and less than 1 ⁇ 10 5 Pa, and the second adhesive layer 212 has a storage elastic modulus of 1 ⁇ 10. Organic polymer layer of 5 Pa or higher.
  • the first adhesive layer 211 is an organic polymer layer having a dielectric loss tangent (tan ⁇ ) in the range of 0.1 to 1, and the second adhesive layer 212 has a dielectric loss tangent (tan ⁇ ) of 0.5 or less.
  • the first adhesive layer 211 is an organic polymer layer having a storage modulus of 1 ⁇ 10 4 Pa or more and less than 1 ⁇ 10 5 Pa, and the second adhesive layer 212 disperses the inorganic compound powder. Formed layer.
  • the first adhesive layer 211 is an organic polymer layer having a storage modulus of 1 ⁇ 10 4 Pa or more and less than 1 ⁇ 10 5 Pa, and the second adhesive layer 212 uses a polymer resin. A layer formed by impregnating a porous material with resin.
  • the first adhesive layer 211 is an organic polymer layer having a dielectric loss tangent (tan ⁇ ) in the range of 0.1 to 1
  • the second adhesive layer 212 is a porous material using a polymer resin. Layer formed by impregnating resin.
  • the organic polymer layer in which the first adhesive layer 211 is in the range of the storage elastic modulus 1 ⁇ 10 4 Pa or more and less than 1 ⁇ 10 5 Pa and the dielectric loss tangent (tan ⁇ ) is 0.1 or more and 1 or less.
  • the second adhesive layer 212 is an organic polymer layer having a storage modulus of 1 ⁇ 10 5 Pa or more and a dielectric loss tangent (tan ⁇ ) of 0.5 or less.
  • the organic polymer layer in which the first adhesive layer 211 is in the range of the storage elastic modulus 1 ⁇ 10 4 Pa or more and less than 1 ⁇ 10 5 Pa and the dielectric loss tangent (tan ⁇ ) is 0.1 or more and 1 or less.
  • the second adhesive layer 212 is a layer formed by dispersing inorganic compound powder.
  • the organic polymer layer in which the first adhesive layer 211 is in the range of the storage elastic modulus 1 ⁇ 10 4 Pa or more and less than 1 ⁇ 10 5 Pa and the dielectric loss tangent (tan ⁇ ) is 0.1 or more and 1 or less.
  • the second adhesive layer 212 is formed by impregnating a porous material using a polymer resin with a resin.
  • the first strength securing layer 213 is disposed between the first adhesive layer 211 and the second adhesive layer 212, and the unevenness (the convex portion 13 ⁇ / b> A) on the surface of the first base material 13 is in contact with the first conductive path 31. It is a layer which prevents the above more effectively.
  • the physical property values required for the first strength securing layer 213 Is the same as that required for the second adhesive layer 212. Therefore, the suitable storage elastic modulus and dielectric loss tangent (tan ⁇ ) described in the second adhesive layer 212 are also applied to the first strength securing layer 213. Applicable.
  • a more preferable storage elastic modulus is in the range of 2 ⁇ 10 5 Pa to 1 ⁇ 10 8 Pa, and more preferably 1 ⁇ 10 6 Pa to 1 ⁇ 10 7 Pa. It is a range.
  • a more preferable dielectric loss tangent (tan ⁇ ) is in the range of 0.05 to 0.2, and more preferably in the range of 0.05 to 0.1.
  • the first strength securing layer 213 provided between these layers is not necessarily required to have adhesiveness and has adhesiveness. It does not have to be.
  • thermoplastic resin sheet As the first strength securing layer 213, a commercially available thermoplastic resin sheet can be used and is not particularly limited.
  • the resin sheet include resins. Even if it is obtained in the form of a sheet, it may be a non-solid material such as a thermosetting resin or a UV curable resin and cured after being applied on the insulating layer.
  • the first strength securing layer 213 is a layer formed by dispersing inorganic compound powder in the resin so that the first conductive path 31 and the first base material 13 can be held at a constant interval even during pressure bonding. It is preferable to form a layer formed by impregnating a porous material using a polymer resin with the resin.
  • the layer formed by dispersing the inorganic compound powder and the layer formed by impregnating the porous material using the polymer resin with the resin are the same as those described in the second adhesive layer 212, and thus description thereof is omitted. .
  • the first strength ensuring layer 213 may be provided with various well-known additives and stabilizers such as an antistatic agent, an ultraviolet ray preventing agent, a plasticizer, and a lubricant on the surface. Further, in order to improve the adhesion between the first adhesive layer 211 and the second adhesive layer 212, a corona discharge treatment, a low temperature plasma treatment, an ion bombardment treatment, a chemical treatment, a solvent treatment, etc. may be performed as a pretreatment. Good.
  • the first strength securing layer 213 may be a single layer or a multilayer of two or more layers. From the viewpoint of thinning of the storage battery, the thickness of the first strength securing layer 213 (total thickness when two or more layers are used) is preferably 200 nm or more and 5000 nm or less, and more preferably 500 nm or more and 2000 nm or less.
  • the manufacturing method of the capacitor type storage battery according to the third embodiment of the present invention is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above-described configuration. An example of the manufacturing method will be described below.
  • the first composite layer 12 and the first base material 13 provided with irregularities on the surface are formed in this order on the base material sheet.
  • a first insulating layer 21 (a first adhesive layer 211, a first strength securing layer 213, and a second adhesive layer 212, which are separately prepared) are formed in this order on the first base material 13 having an uneven surface.
  • a laminate composed of three layers to be laminated) is placed and pressed. At this time, it is beneficial to laminate by heating so that the first adhesive layer 211 of the first insulating layer 21 is embedded in the concave and convex recesses 13 ⁇ / b> B provided on the surface of the first base material 13.
  • first conductive path 31, the second insulating layer 22, and the second conductive path 32 are sequentially formed in the same manner as in the second embodiment.
  • the capacitor-type storage battery according to the third embodiment can be manufactured.
  • FIG. 4 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the fourth embodiment.
  • the capacitor-type storage battery according to the fourth embodiment includes a first composite layer in which conductive or semiconductive first particles 12A are embedded in an organic polymer on a base sheet 41. 12 and the 1st base material 13 which consists of a 1st electrically conductive film or a 1st semiconductor film have the 1st laminated substrate 11 laminated
  • a first insulating layer 21 is provided on the first substrate 13 of the first laminated substrate 11.
  • stacking base material 11 is parallel to the 1st conductive path 31.
  • the second conductive path 32 is provided.
  • the base material sheet 41 As long as the base material sheet 41 can laminate the first base material 13 made of the first conductive film or the first semiconductor film, the base material sheet 41 has any property of conductivity, semiconductivity, and insulation. Also good. If it is insulative, when the capacitor-type storage battery is wound and used, the base sheet is conductive or semiconductive between the first base 13 and the first conductive path 31 and the second conductive path 32. Can play a role in insulating.
  • the conductive sheet can be applied to the first base 13 as described in the first conductive film, and the semiconductive sheet is the first base 13 first. It can be applied as described for the semiconductor film, and as the insulating sheet, the one described for the first insulating layer 21 can be applied. The same applies to materials that are preferably used.
  • the thickness of the base sheet 41 is preferably 1 ⁇ m or more and 25 ⁇ m or less.
  • the application of the base sheet 41 is arbitrary, and the base sheet 41 may not be provided.
  • the manufacturing method of the capacitor type storage battery according to the fourth embodiment of the present invention is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above configuration. An example of the manufacturing method will be described below.
  • the first composite layer 12, the first base material 13, and the first insulating layer 21 are formed on the base material sheet 41 in the same manner as in the first embodiment.
  • the first conductive path 31 and the second conductive path 32 are formed on the first insulating layer 21 so as to be parallel to each other.
  • the capacitor-type storage battery according to the fourth embodiment can be manufactured.
  • the thickness of the first base material 13 made of a conductive film or a semiconductor film is not particularly limited, but is preferably 20 nm or more and 30000 nm or less, and the charge amount for improving the electric capacity when modularized. From the viewpoint of ensuring the thickness, it is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the first insulating layer 21 is preferably 20 nm or more and 10000 nm or less from the viewpoint of efficiency of energy exchange between electromagnetic waves and surface plasmons. With regard to the film thickness, consideration is given to withstand voltage, and it is preferable to secure the minimum thickness that can withstand the voltage suitable for the application.
  • the capacitor-type storage battery according to the fourth embodiment is similar to the first base material 13 described in the second embodiment, and the surface of the first base material 13 made of the first conductive film or the first semiconductor film.
  • Three layers in which the first adhesive layer 211, the first strength securing layer 213, and the second adhesive layer 212 are laminated in this order from the first base material 13 (first conductive film or first semiconductor film) side provided with The form which provided the 1st insulating layer 21 which consists of may be sufficient.
  • FIG. 5 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the fifth embodiment.
  • the capacitor-type storage battery according to the fifth embodiment is the same as that of the capacitor-type storage battery according to the fourth embodiment, on the outer surfaces of the first conductive path 31 and the second conductive path 32.
  • 2 insulating layers 23 are provided continuously, and on the outer surface of the second insulating layer 23, a second base material 16 made of a second conductive film or a second semiconductor film, and conductive or semiconductive second particles 15A.
  • a substrate sheet 42 is further provided on the second composite layer 15 of the second laminated substrate 14.
  • the second insulating layer 23 is the second insulating layer 22 described in the first embodiment
  • the second base material 16 is the first base material 13 described in the first embodiment
  • the second composite layer 15. Can be applied to the first composite layer 12 described in the first embodiment
  • the base sheet 42 can be the same as the base sheet 41 described in the fourth embodiment. It is.
  • the 2nd insulating layer 23 and the 2nd base material 16 are shown as a flat thing, it is not limited to such a shape, By the 1st conductive path 31 and the 2nd conductive path 32 It may be provided along the unevenness.
  • the manufacturing method of the capacitor type storage battery according to the fifth embodiment of the present invention is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above-described configuration. An example of the manufacturing method will be described below.
  • the first conductive path 31 and the second conductive path 32 are formed so as to be parallel to each other. This is the first laminate.
  • the second composite layer 15, the second composite layer 12, the second base material 42, and the first composite layer 12, the first base material, and the first insulating layer 21 described in the first embodiment are formed.
  • the base material 16 and the second insulating layer 23 are sequentially formed. This is the second laminate.
  • the first stacked body and the second stacked body thus obtained are arranged so that the first insulating layer 21 of the first stacked body and the second insulating layer 23 of the second stacked body face each other.
  • the 1 insulating layer 21 and the 2nd insulating layer 23 it arrange
  • the capacitor-type storage battery according to the fifth embodiment can be manufactured.
  • the capacitor-type storage battery according to the fifth embodiment is similar to the first base material 13 described in the second embodiment, and the surface of the first base material 13 made of the first conductive film or the first semiconductor film.
  • Three layers in which the first adhesive layer 211, the first strength securing layer 213, and the second adhesive layer 212 are laminated in this order from the first base material 13 (first conductive film or first semiconductor film) side provided with The form which provided the 1st insulating layer 21 which consists of may be sufficient.
  • the capacitor-type storage battery according to the fifth embodiment is similar to the first substrate 13 described in the second embodiment, and the surface of the second substrate 16 made of the second conductive film or the second semiconductor film.
  • Three layers in which the first adhesive layer 211, the first strength securing layer 213, and the second adhesive layer 212 are laminated in this order from the second base material 16 (second conductive film or second semiconductor film) side provided with The form which provided the 2nd insulating layer 23 which consists of may be sufficient.
  • FIG. 6 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the sixth embodiment.
  • the capacitor-type storage battery according to the sixth embodiment is the same as the capacitor-type storage battery according to the fifth embodiment, on the same surface of the first insulating layer 21, as shown in FIG. 6.
  • a plurality of conductive paths 32 are alternately provided, and although not shown, a plurality of first conductive paths 31 are connected to the same first terminal, and a plurality of second conductive paths 32 are connected to the same second terminal. .
  • the width w of the first conductive path 31 and the second conductive path 32 forming a pair and the distance d therebetween satisfy the relationship of w / d ⁇ 1.5.
  • the first terminal and the second terminal have a portion whose width becomes narrower as they are separated from the first conductive path 31 and the second conductive path 32, and in this part, the first conductive path 31 and the second conductive path 32. Is an angle ⁇ formed by two sides extending by 30 ° or less. Thereby, the resistance loss of the electric power in a 1st terminal and a 2nd terminal can be decreased.
  • the first terminal is directly connected to the first conductive path 31, but the second terminal is connected to the second conductive path 32 through a through electrode (not shown).
  • the through electrode passes through the insulating layer provided on the first terminal and on the first conductive path 31 and the second conductive path 32.
  • the second terminal is located on the insulating layer.
  • the capacitor type storage battery according to the sixth embodiment has a configuration in which a plurality of first conductive paths 31 and a plurality of second conductive paths 32 are alternately provided. In the configuration of the capacitor-type storage battery according to the first to fourth embodiments, a plurality of the first conductive paths 31 and the second conductive paths 32 may be alternately provided.
  • the capacitor-type storage battery according to the first to sixth embodiments has been described as having a sheet shape, but the sheet may be wound in a roll shape in the longitudinal direction.
  • Capacitor type storage battery storage layer A composite layer in which conductive particles or semiconductor particles are embedded in an organic polymer, and a base material formed on the composite layer and made of a conductive film or a semiconductor film; What has the insulating layer provided on the base material is useful as a power storage layer for capacitor-type storage batteries.
  • the composite layer, the base material made of a conductive film or a semiconductor film, and the insulating layer are the first composite layer 12, the first base material 13, and the first insulating layer 21 described in the first embodiment. And the same applies to the preferred range.
  • Example 1 On a polyethylene terephthalate film having a thickness of 12 ⁇ m as a support sheet, silicone rubber (shear elastic modulus at normal temperature: 1 ⁇ 10 7 Pa) and Cu nanoparticle dispersion (Cu nanoparticle diameter: 10 nm, volume fraction: 10 wt%) as a composite layer The coating liquid was dried so that the thickness after drying was 20 ⁇ m. On this composite layer (the distance between the conductive particles embedded in the organic polymer (Cu nanoparticles) or the particle aggregate is 50 nm), the above Cu nanoparticle dispersion is applied alone to a thickness of 10 ⁇ m. Then, heating was performed at 140 ° C. or higher to form a uniform metal plate, which was used as a base material made of a conductive film, to obtain a power storage substrate 1.
  • silicone rubber shear elastic modulus at normal temperature: 1 ⁇ 10 7 Pa
  • Cu nanoparticle dispersion Cu nanoparticle diameter: 10 nm, volume fraction: 10 wt%
  • the resin 1 is coated on the base material made of the conductive film of the electricity storage substrate 1 that is not on the polyethylene terephthalate film side by a bar coating method so that the thickness after drying becomes 10 ⁇ m, and dried to form the insulating layer 1.
  • a 2 cm wide copper foil was further bonded onto the insulating layer 1 to form a conductive path.
  • the support sheet of the electricity storage substrate 1 is peeled off, and the resin 1 is applied to the opposite surface (composite layer) so that the thickness after drying is 10 ⁇ m, and the insulating layer 2 is further formed by drying.
  • a copper foil having a width of 2 cm was bonded onto the insulating layer 2 to form a conductive path, and a capacitor type storage battery for test was produced.
  • Example 2 The insulating layer 1 was formed by applying and drying the resin 1 produced in Example 1 on the electricity storage board 1 produced in Example 1 by a bar coating method so that the thickness after drying was 10 ⁇ m. Two conductive paths were formed on the insulating layer 1 by arranging copper foils having a width of 2 cm in parallel at intervals of 1 mm, and a test capacitor type storage battery was produced.
  • Example 3 On a 12 ⁇ m-thick polyethylene terephthalate film (shear elastic modulus at normal temperature 3.8 ⁇ 10 9 Pa) as a support sheet, 20 ⁇ m-thick silicone rubber (shear elastic modulus at normal temperature: 1 ⁇ 10 7 Pa) as an organic polymer
  • Al is sputtered by applying a voltage so that the substrate temperature is kept at room temperature and having a particle energy of 7 eV by facing target type magnetron sputtering, and a composite layer (embedded in an organic polymer) And a 100 nm thick Al layer is formed on the composite layer, and this is used as a base material made of a conductive film.
  • a capacitor type storage battery for testing was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 2 was used instead of the power storage substrate 1.
  • Example 4 On the surface of the electricity storage substrate 1 produced in Example 1 that is not on the polyethylene terephthalate film side, that is, on the base material made of a conductive film (Cu layer), Cu nanoparticles are applied and dried at 120 ° C. or lower, and the surface of the base material is Concavities and convexities (the maximum width and maximum height of the protrusions and the width of the recesses of 100 nm) made of Cu nanoparticles or particle aggregates thereof were formed, and the electricity storage substrate 3 was produced.
  • Cu layer a conductive film
  • test type capacitor type storage battery was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 3 was used instead of the power storage substrate 1.
  • Example 5 On a 12 ⁇ m thick polyethylene terephthalate film (shear elastic modulus at normal temperature 3.8 ⁇ 10 9 Pa) as a support sheet, 20 ⁇ m thick silicone rubber (shear elastic modulus at normal temperature: 3 ⁇ 10 7 Pa) as an organic polymer
  • Al is applied by a facing target type magnetron sputtering method, the substrate temperature is kept at room temperature, a voltage is applied so as to have a particle energy of 8 eV, sputtering is performed, and a composite layer (embedded in an organic polymer) is formed.
  • the electrically conductive particles (Al particles) or the distance between the particle aggregates were 51 nm), and a 100 nm-thick Al layer was formed.
  • test capacitor type storage battery was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 4 was used instead of the power storage substrate 1.
  • Example 6 On the base material made of the conductive film (Al layer) of the electricity storage substrate 4, Sn is sputtered by applying a voltage so as to have a particle energy of 8 eV while keeping the substrate temperature at room temperature by the opposed target type magnetron sputtering method. Concavities and convexities (the maximum width and the maximum height of the protrusions and the width of the recesses of 50 nm) made of Sn particles or particle aggregates were formed on the surface of the material, and the electricity storage substrate 5 was manufactured.
  • test capacitor-type storage battery was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 5 was used instead of the power storage substrate 1.
  • Example 7 First, 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate were used as monomers, and these were mixed, and an appropriate amount of a curing agent was added to synthesize resin 2 as an organic polymer. In addition, methyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate were used as monomers, mixed, and an appropriate amount of a curing agent was added to synthesize resin 3 as an organic polymer.
  • the thickness after drying the resin 2 After a resin 3 is applied to a 25 ⁇ m thick polyethylene terephthalate film as a support sheet by a bar coating method so that the thickness after drying is 10 ⁇ m and dried, the thickness after drying the resin 2 further becomes 10 ⁇ m thick.
  • the insulating layer 3 which consists of two adhesive layers was obtained.
  • the power storage substrate 1 is bonded to the surface of the adhesive layer made of the resin 2 of the insulating layer 3 (the base material made of the conductive film (Cu layer) formed on the surface of the power storage substrate 1 is bonded oppositely),
  • a test-capacitor type storage battery was prepared by forming two conductive paths by arranging and bonding 2 cm-wide copper foils in parallel at 1 mm intervals on the surface of the adhesive layer made of the resin 2 of the insulating layer. .
  • test capacitor type storage battery was manufactured by the same manufacturing method as in Example 1 except that the power storage substrate 6 was used instead of the power storage substrate 1.
  • Comparative Example 2 A capacitor type storage battery for test was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 6 was used instead of the power storage substrate 1.
  • a capacitor-type storage battery for test was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 7 was used instead of the power storage substrate 1.
  • the object to be measured was charged at a rate of 10 C and left for 10 to 720 hours in a state disconnected from the power source.
  • discharging was performed at a rate of 1C.
  • the amount of electricity discharged was measured, and the elapsed days when the amount of electricity was 60 mAh or less was taken as the holding time and compared.
  • the acceptable line as a product was based on a retention day of 20 days or more.
  • the test capacitor type storage battery of the comparative example does not have a standing period of 10 days, but in the case of the test capacitor type storage battery of the example, the retention days are significantly improved. Recognize.
  • test capacitor type storage batteries of Examples 1 and 3 satisfied the standard because they maintained conductivity and retention characteristics. Further, in the test capacitor type storage battery of Example 4, the conductive particles contained in the composite layer or a particle aggregate thereof are present on one side of the base material made of the conductive film, and the conductive particles or It is considered that plasmons are likely to be generated due to the presence of the irregularities formed by the particle aggregate, and that the surface plasmon density is improved and the capacity is improved because the surface area is increased. Further, in the test capacitor type storage battery of Example 5, since the base material made of the conductive film is formed of conductive particles, high capacity and retention characteristics are satisfied at the same time.
  • the base material made of the conductive film is formed of conductive particles, and the conductive particles contained in the composite layer on one surface side of the base material made of the conductive film or its
  • the other surface has irregularities made of conductive particles or particle aggregates, so that plasmons are likely to be generated, and the surface area is large, resulting in surface plasmon density. It is considered that the capacity has been greatly improved.
  • the capacitor type storage battery for testing of the example can provide a storage battery that can achieve both high capacitance and high retention characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

Provided is a thin film capacitive storage cell, which has a high capacitance and excellent strength. A capacitive storage cell of the first embodiment is provided with a first laminated base material (11) having laminated therein a first composite layer (12) wherein conductive or semiconductive first particles (12A) are embedded in an organic polymer, and a first base material (13) composed of a first conductive film or a first semiconductor film. On the first base material (13) of the first laminated base material (11), a first insulating layer (21) is provided, and on the first composite layer (12) of the first laminated base material, a second insulating layer (22) is provided. On the first insulating layer (21), a first conductive path (31), which extends in the lengthwise direction of the first laminated base material (11) (the direction toward the further side from the front of the sheet in fig. 1) is provided, and on the second insulating layer (22), a second conductive path (32) is provided such that the path extends in the lengthwise direction of the first laminated base material, and that the path is in parallel to the first conductive path (31).

Description

キャパシタ型蓄電池、キャパシタ型蓄電池用蓄電層Capacitor-type storage battery, storage layer for capacitor-type storage battery
 本発明は、キャパシタ型蓄電池に関し、特に、静電容量が高く、保持特性に優れた薄膜キャパシタ型蓄電池、及びキャパシタ型蓄電池用蓄電層に関する。 The present invention relates to a capacitor-type storage battery, and more particularly to a thin-film capacitor-type storage battery having a high electrostatic capacity and excellent retention characteristics, and a storage layer for a capacitor-type storage battery.
 近年地球温暖化防止のため、発電したエネルギーを効率的に蓄電保存する必要に迫られている。このような蓄電システムとしては、携帯機器用蓄電池として理論エネルギー密度に達するまでに著しく進歩したニッケル水素電池やリチウムイオン電池等の二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の応用が試みられている。これらの蓄電システムはリチウムなどの希少金属を用いている点や、エネルギー密度と出力密度とを高いレベルで併せ持っていない点などの短所があり、応用上の障害となっている。 Recently, in order to prevent global warming, there is an urgent need to efficiently store and store the generated energy. As such power storage systems, applications such as secondary batteries such as nickel metal hydride batteries and lithium ion batteries, electric double layer capacitors, lithium ion capacitors, etc. that have made significant progress until reaching the theoretical energy density as storage batteries for portable devices have been attempted. ing. These power storage systems have drawbacks in that they use rare metals such as lithium and do not have high energy density and power density at the same time.
 一方、前記二次電池の耐電圧単位体積当たりのエネルギー容量をはるかに凌ぐキャパシタ(以下「薄膜キャパシタ型蓄電池」と称する)が発明されている(例えば、国際公開第09/116668号パンフレット参照)。
 国際公開第09/116668号パンフレットに記載の薄膜キャパシタ型蓄電池は、第1導電膜又は第1半導体膜及び第1絶縁層を積層する第1積層基材と、第1絶縁層上で第1積層基材の長尺方向に延在する第1導電路と、第1絶縁層上で第1積層基材の長尺方向に延在し第1導電路に平行に設けられた第2導電路と、第1導電路及び第2導電路の外面上にそれぞれ設けられた第2絶縁層と、を備えている。
On the other hand, a capacitor (hereinafter referred to as a “thin film capacitor type storage battery”) that far exceeds the energy capacity per unit withstand voltage of the secondary battery has been invented (see, for example, International Publication No. 09/116668 pamphlet).
The thin film capacitor type storage battery described in the pamphlet of International Publication No. 09/116668 includes a first laminated substrate on which a first conductive film or a first semiconductor film and a first insulating layer are laminated, and a first laminated layer on the first insulating layer. A first conductive path extending in the longitudinal direction of the substrate, and a second conductive path extending in the longitudinal direction of the first laminated substrate on the first insulating layer and provided in parallel with the first conductive path; And a second insulating layer provided on the outer surface of each of the first conductive path and the second conductive path.
 この薄膜キャパシタ型蓄電池においては、以下の原理で蓄電が行われている。
 第1導電路及び第2導電路端に所定の電位差を与えると、絶縁層を介して配置された導電膜や半導体膜と、導電路間に広がった電磁界すなわちフォトンとの間で、フォトン-フォノンのエネルギー交換が行われる。このため、第1導電路及び第2導電路上に流れる電磁エネルギー速度が遅くなり、電気長が長くなるのと等価の働き、すなわち蓄電池の容量が大きくなり電荷を受容している。そのエネルギーは導電膜中のバンド内で励起される。
In this thin film capacitor type storage battery, power is stored according to the following principle.
When a predetermined potential difference is applied to the ends of the first conductive path and the second conductive path, a photon − is generated between the conductive film or semiconductor film disposed via the insulating layer and the electromagnetic field spread between the conductive paths, that is, photons. Phonon energy exchange takes place. For this reason, the speed of the electromagnetic energy flowing on the first conductive path and the second conductive path is slowed, and the equivalent action of increasing the electrical length, that is, the capacity of the storage battery is increased, and charges are received. The energy is excited in a band in the conductive film.
 この原理により、単位体積あたりの容量が大きい電送線型キャパシタ型の蓄電池の開発が期待されており、蓄電池単体の耐電圧として100V以上が得られ、電圧あるいは電流が印加されている状態では、100V以上の電位まで大きな容量での蓄電が可能となる。 Based on this principle, the development of a transmission line capacitor type storage battery having a large capacity per unit volume is expected, and the withstand voltage of the storage battery alone is 100 V or more, and in the state where voltage or current is applied, 100 V or more is obtained. It is possible to store electricity with a large capacity up to the potential of.
 フォトンとエネルギー交換したフォノンは熱緩和による失活が起こることでエネルギーを失うため長時間のエネルギー保持に向かない。これを防止する方法としては熱緩和しない状態において保持することが有用である。熱緩和しない状態としては粒子同士が30nm~3000nmの範囲にすること、量子ドット構造を用いたバンド間励起エネルギーが挙げられる。 • Phonons that have exchanged energy with photons lose energy due to inactivation due to thermal relaxation, so they are not suitable for long-term energy retention. As a method for preventing this, it is useful to hold the substrate in a state where the heat is not relaxed. Examples of the state in which the thermal relaxation does not occur include that the particles are in the range of 30 nm to 3000 nm, and interband excitation energy using a quantum dot structure.
 前記粒子又は粒子集合体の最大幅が100nm未満の場合には、固有電子状態を形成し、電子のエネルギーはバルクスケールの連続的なバンド構造ではなく、離散的な複数のエネルギー準位を発生させることができる。つまり量子ドットとなり量子効果が発現する。 When the maximum width of the particle or particle aggregate is less than 100 nm, an intrinsic electronic state is formed, and the energy of the electrons is not a continuous band structure of a bulk scale, but generates a plurality of discrete energy levels. be able to. That is, it becomes a quantum dot and a quantum effect appears.
 電磁波と表面プラズモン干渉によりエネルギーを得た粗密状態は、量子ドットの量子効果で得られた離散的エネルギー準位において、基底のエネルギー準位から高いエネルギーバ準位への移動、つまり準位間励起となることができる。バルクスケールの連続的なバンド構造では、バンド内でエネルギーが緩和されてしまい保持が困難であるのに対し、離散的エネルギー準位間の励起では、エネルギーの保持作用を発現できる。さらに言うならば、金属の連続的なエネルギー順位にあっても量子ドット的構造で離散的エネルギー順位となり、エネルギーの保持作用が発現できる。 The dense state obtained by the electromagnetic wave and surface plasmon interference is a transition from the base energy level to the high energy level in the discrete energy level obtained by the quantum effect of the quantum dots, that is, interlevel excitation. Can be. In the continuous band structure of the bulk scale, energy is relaxed in the band and it is difficult to maintain it. On the other hand, excitation between discrete energy levels can exhibit an energy holding action. In other words, even in the continuous energy order of metals, the quantum dot-like structure results in a discrete energy order, and an energy holding action can be exhibited.
 導電膜や半導体膜中に量子ドット形状の粒子を分散させるためには粒子同士の融着を防止する必要がある。具体的な方法としては、例えば、特開2006-89786号公報等に開示されている。これらの方法ではナノ粒子が接触し粗大化することを防止するために有機高分子をナノ粒子の周囲に纏わせることで互いの接触を避けている。 In order to disperse the quantum dot-shaped particles in the conductive film or semiconductor film, it is necessary to prevent the particles from fusing together. A specific method is disclosed, for example, in JP-A-2006-89786. In these methods, in order to prevent the nanoparticles from coming into contact with each other and becoming coarse, organic polymers are combined around the nanoparticles to avoid contact with each other.
 一方で表面プラズモンは粒子表面での電荷の粗密でエネルギーを蓄積しているので高いレベルでのエネルギー蓄積のためには粒子表面に電荷が十分に注入されていることが重要であり、そのためには膜としての導電性が必要となる。 On the other hand, since surface plasmons accumulate energy due to the density of charge on the particle surface, it is important that the charge is sufficiently injected into the particle surface in order to accumulate energy at a high level. Conductivity as a film is required.
 上記状況を踏まえ本発明者らが鋭意検討を行った結果、上記薄膜キャパシタ型蓄電池において高い容量と蓄電保持性能を両立するためには量子ドット構造が形成されており、且つ、膜としての導電性が高いことが必要となることがわかった。 As a result of intensive studies by the present inventors based on the above situation, a quantum dot structure is formed in order to achieve both high capacity and storage performance in the thin film capacitor type storage battery, and the conductivity as the film It was found that it was necessary to be high.
 高い保持特性の発現のため量子ドット構造を形成するには粒子同士が接触しないための工夫が必要であり、膜としての導電性は低くなり、静電容量は低下してしまう。また、静電容量向上のため導電性の付与を目的とし粒子間距離を縮めようとすると粒子同士の融着がおこり量子ドットとしての性質を失う粒子が出てくるため保持特性が低下してしまうことがわかった。 In order to form a quantum dot structure due to the development of high retention characteristics, it is necessary to devise measures for preventing the particles from contacting each other, the conductivity as a film is lowered, and the capacitance is lowered. Also, if the distance between the particles is reduced for the purpose of imparting conductivity in order to improve the capacitance, the particles are fused together, resulting in particles that lose their properties as quantum dots. I understood it.
 そこで、本発明では、静電容量が高く、高い電荷保持性能を有するキャパシタ型蓄電池、及びキャパシタ型蓄電池用蓄電層を提供することを課題とする。 Therefore, an object of the present invention is to provide a capacitor-type storage battery having a high capacitance and high charge retention performance, and a capacitor-type storage battery storage layer.
 本発明者らは、上記課題を鑑み、鋭意研究を行った結果、高分子樹脂中に導電粒子又は半導体粒子が埋め込まれた膜を設けることで、導電粒子若しくは半導体粒子、又はこれらの粒子集合体が互いに直接接触することがなく量子ドット構造を維持でき、当該膜の導電路側に導電膜又は半導体膜で構成された高導電率薄膜が存在することで静電容量を高く維持できることを見出した。 As a result of intensive studies in view of the above problems, the present inventors have provided conductive films or semiconductor particles, or aggregates of these particles by providing a film in which conductive particles or semiconductor particles are embedded in a polymer resin. It has been found that the quantum dot structure can be maintained without being in direct contact with each other, and the capacitance can be maintained high by the presence of a high-conductivity thin film composed of a conductive film or a semiconductor film on the conductive path side of the film.
 すなわち、上記課題を解決するための手段は以下の通りである。
 本発明の第一の形態のキャパシタ型蓄電池は、
 第1導電粒子又は第1半導体粒子が有機高分子中に埋め込まれている第1複合層と、前記第1複合層上に設けられ、第1導電膜又は第1半導体膜からなる第1基材と、が積層された第1積層基材と
 前記第1積層基材の第1基材上に設けられた第1絶縁層と、
 前記第1積層基材の第1複合層上に設けられた第2絶縁層と、
 前記第1絶縁層上で長尺方向に延在して設けられた第1導電路と、
 前記第2絶縁層上で長尺方向に延在し、前記第1導電路に平行に設けられた第2導電路と、
 を有するキャパシタ型蓄電池である。
That is, the means for solving the above problems are as follows.
The capacitor-type storage battery according to the first aspect of the present invention is:
A first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first base material that is provided on the first composite layer and includes the first conductive film or the first semiconductor film And a first insulating layer provided on the first substrate of the first laminated substrate,
A second insulating layer provided on the first composite layer of the first laminated substrate;
A first conductive path extending in the longitudinal direction on the first insulating layer;
A second conductive path extending in a longitudinal direction on the second insulating layer and provided in parallel to the first conductive path;
It is a capacitor type storage battery having
 本発明の第二の形態のキャパシタ型蓄電池は、
 第1導電粒子又は第1半導体粒子が有機高分子中に埋め込まれている第1複合層と、前記第1複合層上に設けられた第1導電膜又は第1半導体膜からなる第1基材と、が積層された第1積層基材と、
 前記第1積層基材の第1基材上に設けられた第1絶縁層と、
 前記第1絶縁層上で該第1積層基材の長尺方向に延在して設けられた第1導電路と、
 前記第1絶縁層上で該第1積層基材の長尺方向に延在し、前記第1導電路に平行に設けられた第2導電路と、
 を有するキャパシタ型蓄電池である。
The capacitor-type storage battery of the second aspect of the present invention is
A first base material comprising a first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first conductive film or a first semiconductor film provided on the first composite layer. And a first laminated base material laminated,
A first insulating layer provided on the first substrate of the first laminated substrate;
A first conductive path provided on the first insulating layer so as to extend in the longitudinal direction of the first laminated substrate;
A second conductive path extending in the longitudinal direction of the first laminated base material on the first insulating layer and provided in parallel to the first conductive path;
It is a capacitor type storage battery having
 本発明の第二の形態のキャパシタ型蓄電池では、更に、
 前記第1導電路及び前記第2導電路の外面上に連続して設けられた第2絶縁層と、
 前記第2絶縁層上に設けられた第2導電膜又は第2半導体膜からなる第2基材と、第2基材上に設けられた第2導電粒子又は第2半導体粒子が有機高分子中に埋め込まれている第2複合層と、がこの順に積層された第2積層基材と、
 を有していてもよい。
In the capacitor type storage battery of the second aspect of the present invention,
A second insulating layer continuously provided on outer surfaces of the first conductive path and the second conductive path;
A second base material composed of a second conductive film or a second semiconductor film provided on the second insulating layer, and a second conductive particle or second semiconductor particle provided on the second base material are in an organic polymer. The second composite layer embedded in this order, a second laminated base material laminated in this order,
You may have.
 本発明の第一~第二の形態のキャパシタ型蓄電池において、第1複合層に含まれる第1導電粒子又は第1半導体粒子の粒子間の距離は、30nm以上3000nm以下であることが好ましい。
 一方、本発明の第二の形態のキャパシタ型蓄電池において、第2複合層に含まれる第2導電粒子又は第2半導体粒子の粒子間の距離は、30nm以上3000nm以下であることが好ましい。
In the capacitor-type storage battery according to the first to second aspects of the present invention, the distance between the first conductive particles or the first semiconductor particles contained in the first composite layer is preferably 30 nm or more and 3000 nm or less.
On the other hand, in the capacitor type storage battery according to the second aspect of the present invention, the distance between the second conductive particles or the second semiconductor particles contained in the second composite layer is preferably 30 nm or more and 3000 nm or less.
 本発明の第一~第二の形態のキャパシタ型蓄電池において、前記第1絶縁層が接する前記第1基材の表面が凹凸を有し、前記凹凸の凹部の幅が30nm以上3000nm以下であることが好ましい。
 一方、本発明の第二の形態のキャパシタ型蓄電池において、前記第2絶縁層が接する前記第2基材の表面が凹凸を有し、前記凹凸の凹部の幅が30nm以上3000nm以下であることが好ましい。
In the capacitor-type storage battery according to the first to second aspects of the present invention, the surface of the first base material in contact with the first insulating layer has irregularities, and the width of the irregularities of the irregularities is not less than 30 nm and not more than 3000 nm. Is preferred.
On the other hand, in the capacitor-type storage battery according to the second aspect of the present invention, the surface of the second base material in contact with the second insulating layer has irregularities, and the width of the concave and convex portions of the irregularities is not less than 30 nm and not more than 3000 nm. preferable.
 本発明の第一~第二の形態のキャパシタ型蓄電池において、前記第1絶縁層が接する前記第1基材の表面が凹凸を有する場合、前記第1絶縁層は、前記第1基材に隣接して設けられる第1接着剤層、及び前記第1接着剤層よりも前記第1基材の表面から遠い側に設けられる第2接着剤層を含む2層以上からなることが好ましい。
 一方、本発明の第二の形態のキャパシタ型蓄電池において、前記第2絶縁層が接する前記第2基材の表面が凹凸を有する場合、前記第2絶縁層は、前記第2基材に隣接して設けられる第3接着剤層、及び前記第3接着剤層よりも前記第2基材の表面から遠い側に設けられる第4接着剤層を含む2層以上からなることが好ましい。
In the capacitor-type storage battery according to the first to second aspects of the present invention, when the surface of the first base material in contact with the first insulating layer has irregularities, the first insulating layer is adjacent to the first base material. It is preferable that the first adhesive layer and the second adhesive layer provided on the side farther from the surface of the first base material than the first adhesive layer are two or more layers.
On the other hand, in the capacitor-type storage battery according to the second aspect of the present invention, when the surface of the second base material in contact with the second insulating layer has irregularities, the second insulating layer is adjacent to the second base material. And a third adhesive layer provided on the side farther from the surface of the second base material than the third adhesive layer.
 ここで、前記第1接着剤層及び前記第3接着剤層は、貯蔵弾性率が、1×10Pa以上1×10Pa未満の範囲にある有機高分子層であることが好ましく、前記第2接着剤層及び前記第4接着剤層は、貯蔵弾性率が1×10Pa以上の有機高分子層であることが好ましい。 Here, the first adhesive layer and the third adhesive layer are preferably organic polymer layers having a storage elastic modulus in the range of 1 × 10 4 Pa or more and less than 1 × 10 5 Pa, The second adhesive layer and the fourth adhesive layer are preferably organic polymer layers having a storage elastic modulus of 1 × 10 5 Pa or more.
 また、前記第1接着剤層及び前記第3接着剤層は、誘電正接(tanδ)が0.1以上1以下の範囲にある有機高分子層であることが好ましく、前記第2接着剤層及び前記第4接着剤層は、tanδが0.5以下の有機高分子層であることが好ましい。 The first adhesive layer and the third adhesive layer are preferably organic polymer layers having a dielectric loss tangent (tan δ) in the range of 0.1 to 1, and the second adhesive layer and the third adhesive layer The fourth adhesive layer is preferably an organic polymer layer having a tan δ of 0.5 or less.
 前記第2接着剤層が、樹脂中に無機化合物粉を分散させ形成した層である、或いは高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層であることが好適である。 It is preferable that the second adhesive layer is a layer formed by dispersing inorganic compound powder in a resin, or a layer formed by impregnating a porous material using a polymer resin with a resin.
 更に、前記第1接着剤層と前記第2接着剤層の間に、前記第1基材の表面の凹凸が前記第1導電路及び第2導電路に接触するのを防止する第1強度確保層を有することが好ましく、前記第3接着剤層と前記第4接着剤層の間に、前記第2基材の表面の凹凸が前記第1導電路及び第2導電路に接触するのを防止する第2強度確保層を有することが好ましい。 Furthermore, between the 1st adhesive layer and the 2nd adhesive layer, 1st strength ensuring which prevents the unevenness | corrugation of the surface of the 1st base material from contacting the 1st conductive path and the 2nd conductive path It is preferable to have a layer, and prevent unevenness on the surface of the second base material from contacting the first conductive path and the second conductive path between the third adhesive layer and the fourth adhesive layer. It is preferable to have a second strength securing layer.
 前記第1導電膜及び前記第2導電膜が、各々独立に、Fe、Al、Co、Cr、Ni、Ag、Mg、Cu、Sn、Au、Pt、Pd、In、Ti、Ta及びCからなる群より選択される少なくとも一つの元素、前記群より選択される少なくとも二種の元素で構成される合金若しくは共析物、又は前記群より選択される少なくとも一つの元素を含み更に周期律表の3族から14族からなる群より選択される少なくとも一つの元素を含んで構成される合金若しくは共析物を含有することが好ましい。また、単独でも導電性を有するFe、Al、Co、Cr、Ni、Ag、Mg、Cu、Sn、Au、Pt、Pd、Inの場合は単一の元素により形成されていても何ら問題ない。 The first conductive film and the second conductive film are independently composed of Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, In, Ti, Ta, and C. Including at least one element selected from the group, an alloy or eutectoid composed of at least two elements selected from the group, or at least one element selected from the group, and 3 in the periodic table It is preferable to contain an alloy or a eutectoid containing at least one element selected from the group consisting of Group 14 to Group 14. In the case of Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, and In having conductivity alone, there is no problem even if they are formed of a single element.
 前記第1半導体膜及び前記第2半導体膜が、各々独立に、ニッケルナイトライド、アナターゼ構造のチタン酸化物、酸化錫混入の酸化インジウム、酸化錫、ジルコニウム酸化物、ガリウムナイトライド、アルミニウムナイトライド、シリコン及びカーボンからなる群より選択される少なくとも一種の化合物を含有することが好ましい。
 更に、これら化合物にn型またはp型の遷移金属、希土類金属又は非磁性金属をドープすることが、常温で不純物準位から50%以上の励起電子を発生させる観点から好適である。
The first semiconductor film and the second semiconductor film are each independently formed of nickel nitride, anatase structure titanium oxide, tin oxide mixed indium oxide, tin oxide, zirconium oxide, gallium nitride, aluminum nitride, It is preferable to contain at least one compound selected from the group consisting of silicon and carbon.
Furthermore, it is preferable to dope these compounds with an n-type or p-type transition metal, rare earth metal or nonmagnetic metal from the viewpoint of generating 50% or more excited electrons from the impurity level at room temperature.
 なお、前記第1絶縁層の同一面上には、複数列の前記第1導電路及び前記第2導電路を備える態様も好適である。また、前記複数列の第1導電路に接続する第1端子と、前記複数列の第2導電路に接続する第2端子と、を備え、前記第1端子及び前記第2端子は、前記第1導電路及び前記第2導電路から離れるに従って幅が狭くなる部分を有しており、この部分において、前記第1導電路と同一方向に延伸する2辺は、互いになす角度が30°以下であることが好ましい。 A mode in which a plurality of rows of the first conductive paths and the second conductive paths are provided on the same surface of the first insulating layer is also preferable. The first terminal connected to the plurality of rows of first conductive paths, and the second terminal connected to the plurality of rows of second conductive paths, wherein the first terminal and the second terminal are the first terminals. The first conductive path and the second conductive path have a portion whose width becomes narrower. In this part, two sides extending in the same direction as the first conductive path have an angle of 30 ° or less. Preferably there is.
 また、導電粒子又は半導体粒子が有機高分子中に埋め込まれている複合層、及び前記複合層上に設けられ、導電膜又は半導体膜からなる基材と、が積層された積層基材と、前記積層基材の基材上に設けられた絶縁層と、を有するものは、キャパシタ型蓄電池用蓄電層として有用である。 In addition, a composite layer in which conductive particles or semiconductor particles are embedded in an organic polymer, and a base material that is provided on the composite layer and includes a conductive film or a semiconductor film, What has the insulating layer provided on the base material of the laminated base material is useful as a power storage layer for capacitor-type storage batteries.
 本発明によれば、静電容量が高く、高い強度を有するキャパシタ型蓄電池、及びキャパシタ型蓄電池用蓄電層が得られる。 According to the present invention, a capacitor-type storage battery and a capacitor-type storage battery storage layer having high capacitance and high strength can be obtained.
本発明における第1の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。It is sectional drawing in the elongate direction (width direction) which shows an example of the capacitor type storage battery which concerns on 1st Embodiment in this invention. 本発明における第2の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。It is sectional drawing in the elongate direction (width direction) which shows an example of the capacitor type storage battery which concerns on 2nd Embodiment in this invention. 本発明における第3の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。It is sectional drawing in the elongate direction (width direction) which shows an example of the capacitor type storage battery which concerns on 3rd Embodiment in this invention. 本発明における第4の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。It is sectional drawing in the elongate direction (width direction) which shows an example of the capacitor type storage battery which concerns on 4th Embodiment in this invention. 本発明における第5の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。It is sectional drawing in the elongate direction (width direction) which shows an example of the capacitor type storage battery which concerns on 5th Embodiment in this invention. 本発明における第6の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。It is sectional drawing in the elongate direction (width direction) which shows an example of the capacitor type storage battery which concerns on 6th Embodiment in this invention. 実施例における評価結果を示すグラフである。It is a graph which shows the evaluation result in an Example.
 本発明の第一の形態のキャパシタ型蓄電池は、
 第1導電粒子又は第1半導体粒子が有機高分子中に埋め込まれている第1複合層と、前記第1複合層上に設けられ、第1導電膜又は第1半導体膜からなる第1基材と、が積層された第1積層基材と
 前記第1積層基材の第1基材上に設けられた第1絶縁層と、
 前記第1積層基材の第1複合層上に設けられた第2絶縁層と、
 前記第1絶縁層上で長尺方向に延在して設けられた第1導電路と、
 前記第2絶縁層上で長尺方向に延在し、前記第1導電路に平行に設けられた第2導電路と、
 を有する。
The capacitor-type storage battery according to the first aspect of the present invention is:
A first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first base material that is provided on the first composite layer and includes the first conductive film or the first semiconductor film And a first insulating layer provided on the first substrate of the first laminated substrate,
A second insulating layer provided on the first composite layer of the first laminated substrate;
A first conductive path extending in the longitudinal direction on the first insulating layer;
A second conductive path extending in a longitudinal direction on the second insulating layer and provided in parallel to the first conductive path;
Have
 本発明の第二の形態のキャパシタ型蓄電池は、
 第1導電粒子又は第1半導体粒子が有機高分子中に埋め込まれている第1複合層と、前記第1複合層上に設けられた第1導電膜又は第1半導体膜からなる第1基材と、が積層された第1積層基材と、
 前記第1積層基材の第1基材上に設けられた第1絶縁層と、
 前記第1絶縁層上で該第1積層基材の長尺方向に延在して設けられた第1導電路と、
 前記第1絶縁層上で該第1積層基材の長尺方向に延在し、前記第1導電路に平行に設けられた第2導電路と、
 を有する。
The capacitor-type storage battery of the second aspect of the present invention is
A first base material comprising a first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first conductive film or a first semiconductor film provided on the first composite layer. And a first laminated base material laminated,
A first insulating layer provided on the first substrate of the first laminated substrate;
A first conductive path provided on the first insulating layer so as to extend in the longitudinal direction of the first laminated substrate;
A second conductive path extending in the longitudinal direction of the first laminated base material on the first insulating layer and provided in parallel to the first conductive path;
Have
 ここで、第1導電路と第2導電路のペア線を流れる電流によって生じた導電路長さ方向に進行する電磁波は、第1導電路と第2導電路と接する絶縁層によって速度の低下が生じ、TE成分やTM成分を持つことになる。これらの成分は、導電膜若しくは半導体膜内、又は導電粒子若しくは半導体粒子内の電子の粗密波、つまり表面プラズモンと干渉しやすくなる。 Here, the electromagnetic wave traveling in the length direction of the conductive path generated by the current flowing through the pair of the first conductive path and the second conductive path is reduced in speed by the insulating layer in contact with the first conductive path and the second conductive path. Occurs and has a TE component and a TM component. These components are likely to interfere with electron dense waves, that is, surface plasmons in the conductive film or semiconductor film, or in the conductive particles or semiconductor particles.
 特に、導電膜又は半導体膜を構成する要素が粒子の場合に、TM成分と表面プラズモンとの波面の整合確率が高くなることより、TM成分は表面プラズモンと干渉しやすくなる。この干渉によって粗密波(表面プラズモン)はエネルギーを得るが、電界の影響により電子の粗密な状態を、導電膜又は半導体膜内に生じさせる。これにより、電子が密に存在する部分に電子が集まることになる。この電子の集まりは、連続的な金属・半導体中においては、伝搬の際に原子格子の熱振動によって熱緩和し、エネルギーを損失させることになる。 In particular, when the constituent elements of the conductive film or semiconductor film are particles, the TM component and the surface plasmon are likely to interfere with the surface plasmon because the wavefront matching probability between the TM component and the surface plasmon increases. By this interference, the density wave (surface plasmon) gains energy, but due to the influence of the electric field, an electron density state is generated in the conductive film or the semiconductor film. As a result, electrons are collected in a portion where electrons are densely present. In a continuous metal / semiconductor, this collection of electrons is thermally relaxed by thermal vibration of the atomic lattice during propagation, and energy is lost.
 しかし、粗密波の発生する箇所に粒子化した金属・半導体(導電粒子・半導体粒子。以下ではこれらを総称して「粒子」という場合がある。)を配置し、この粒子又は該粒子の集合体の最大幅を小さく(例えば10μm以下)とすることで、熱緩和しない距離でのエネルギー伝搬となる。更に、この最大幅の粒子又は粒子集合体が互いに接触せずに、互いの間に絶縁物を存在させることで、粗密波から電磁波に戻すことができる。そして再び、電磁波から粗密波にエネルギーを変換する。これを繰り返すことで、熱緩和を抑制でき、電荷の保持性能を向上させることができる。 However, metal particles / semiconductors (conductive particles / semiconductor particles; hereinafter, these particles may be collectively referred to as “particles”) are arranged at the locations where the dense waves are generated, and the particles or aggregates of the particles. By reducing the maximum width of (for example, 10 μm or less), energy is propagated at a distance that does not relax heat. Furthermore, the particles or particle aggregates having the maximum width do not come into contact with each other, and an insulating material is present between the particles, so that the waves can be returned from electromagnetic waves to electromagnetic waves. Again, energy is converted from electromagnetic waves to dense waves. By repeating this, thermal relaxation can be suppressed and charge retention performance can be improved.
 一方、本発明(第一及び第二の形態のキャパシタ型蓄電池)では、上述の通り、第1導電粒子又は第1半導体粒子が有機高分子中に埋め込まれた第1複合層と、第1複合層上に設けられた第1導電膜又は第1半導体膜からなる第1基材と、が積層された第1積層基材を有している。ここで、複合層において、導電粒子または半導体粒子が有機高分子中に埋め込まれているとは、有機高分子中に、導電粒子若しくは半導体粒子、又はこれらの粒子集合体が、互いに接触することなく、分散された状態で含まれることを意味する。 On the other hand, in the present invention (capacitor-type storage battery of the first and second embodiments), as described above, the first composite layer in which the first conductive particles or the first semiconductor particles are embedded in the organic polymer, and the first composite A first laminated base material laminated with a first base material made of a first conductive film or a first semiconductor film provided on the layer; Here, in the composite layer, the conductive particles or the semiconductor particles are embedded in the organic polymer means that the conductive particles, the semiconductor particles, or the particle aggregates do not contact each other in the organic polymer. , Means included in a distributed state.
 第1複合層においては、第1導電粒子または第1半導体粒子が有機高分子である絶縁体中に埋め込まれており、その表面(第1導電膜又は第1半導体膜からなる第1基材と接する側の表面)においてはTM波と表面プラズモンがエネルギー変換できるようになっており、第1導電膜または第1半導体膜からなる第1基材においては導電性が低く電子を注入できるようになっている。 In the first composite layer, the first conductive particles or the first semiconductor particles are embedded in an insulator that is an organic polymer, and the surface (the first base material made of the first conductive film or the first semiconductor film and the first base material) TM surface and surface plasmon can be converted into energy on the contact surface), and the first substrate made of the first conductive film or the first semiconductor film has low conductivity and can inject electrons. ing.
 本発明において「粒子」とは、均一な固体相で構成され、その固体相は他相と接している境界で区切られた有限な一単位を意味する。例えば、導電粒子又は半導体粒子(固体相)の周囲に絶縁物(他相)が充填されている場合、特定の結晶方位を有する金属相の周囲に他の結晶方位を有する金属相又は半導体相が充填されている場合、極薄酸化膜(他層)が形成されている場合などが挙げられる。つまり、固体相は、単結晶、上記サイズの多結晶、アモルファスでもよい。 In the present invention, “particle” means a finite unit composed of a uniform solid phase, and the solid phase is separated by a boundary in contact with another phase. For example, when an insulator (other phase) is filled around conductive particles or semiconductor particles (solid phase), a metal phase or semiconductor phase having another crystal orientation is surrounded around a metal phase having a specific crystal orientation. When it is filled, a case where an ultrathin oxide film (another layer) is formed can be mentioned. That is, the solid phase may be a single crystal, a polycrystal of the above size, or an amorphous.
 なお、一般に固体相と他相との境界においては、バルク体と異なり電子の移動の多少の制限を受けるが、複合層中の粒子が導電膜又は半導体膜からなる基材と接触している場合には、電荷は、粒子と基材とが接触していることで接触面を通過できるものも存在している。
 一方で、粗密波は、複合層中の粒子の周囲を形成する境界によって、粒子の外へ伝搬が阻害される。
In general, the boundary between the solid phase and the other phase is subject to some restrictions on the movement of electrons, unlike the bulk body, but the particles in the composite layer are in contact with the substrate made of a conductive film or a semiconductor film. Some electric charges can pass through the contact surface when the particles are in contact with the substrate.
On the other hand, propagation of coarse waves is hindered by the boundary that forms the periphery of the particles in the composite layer.
 したがって、複合層と導電膜または半導体膜からなる基材とを連続して形成することでTM波と表面プラズモンが起きやすい状態と表面プラズモンの基となる電荷注入が同時に達成される。 Therefore, by continuously forming the composite layer and the base material made of a conductive film or a semiconductor film, a state in which TM waves and surface plasmons are likely to occur and charge injection as the basis of the surface plasmons are simultaneously achieved.
 ここで、第1複合層に含まれる第1導電粒子又は第1半導体粒子の粒子間(又はそれらの粒子集合体間)の距離は、30nm以上3000nm以下であることが好ましい。互いの距離を30nm以上とすることで、粗密波から電磁波に、また電磁波から粗密波にエネルギーが変換し、結果として蓄電池の容量が大きくなる。また、大きな容量を得るためには、粒子の数を一定以下に減らさないことが必要であり、この観点から互いの距離は、3000nm以下とすることがよい。 Here, the distance between the particles of the first conductive particles or the first semiconductor particles included in the first composite layer (or between the particle aggregates) is preferably 30 nm or more and 3000 nm or less. By setting the mutual distance to 30 nm or more, energy is converted from the dense wave to the electromagnetic wave, and from the electromagnetic wave to the dense wave, and as a result, the capacity of the storage battery is increased. Moreover, in order to obtain a large capacity, it is necessary not to reduce the number of particles below a certain level. From this viewpoint, the distance between each other is preferably 3000 nm or less.
 更に、第1複合層に含まれる第1導電粒子又は第1半導体粒子の粒子(又はそれらの粒子集合体)の最大幅が100nm未満の場合には、下記に説明するような量子効果が発現する。 Furthermore, when the maximum width of the first conductive particles or the particles of the first semiconductor particles (or the particle aggregate thereof) included in the first composite layer is less than 100 nm, the quantum effect described below appears. .
 前記最大幅が100nm未満の場合には、固有電子状態を形成し、電子のエネルギーはバルクスケールの連続的なバンド構造ではなく、離散的な複数のエネルギー準位を発生させることができる。つまり量子ドットとなり量子効果が発現する。 When the maximum width is less than 100 nm, an intrinsic electronic state is formed, and the energy of electrons can generate a plurality of discrete energy levels instead of a continuous band structure of a bulk scale. That is, it becomes a quantum dot and a quantum effect appears.
 電磁波と表面プラズモン干渉によりエネルギーを得た粗密状態は、量子ドットの量子効果で得られた離散的エネルギー準位において、基底のエネルギー準位から高いエネルギーバ準位への移動、つまり準位間励起となることができる。バルクスケールの連続的なバンド構造では、バンド内でエネルギーが緩和されてしまい保持が困難であるのに対し、離散的エネルギー準位間の励起では、エネルギーの保持作用を発現できる。さらに言うならば、金属の連続的なエネルギー順位にあっても量子ドット的構造で離散的エネルギー順位となり、エネルギーの保持作用が発現できる。 The dense state obtained by the electromagnetic wave and surface plasmon interference is a transition from the base energy level to the high energy level in the discrete energy level obtained by the quantum effect of the quantum dots, that is, interlevel excitation. Can be. In the continuous band structure of the bulk scale, energy is relaxed in the band and it is difficult to maintain it. On the other hand, excitation between discrete energy levels can exhibit an energy holding action. In other words, even in the continuous energy order of metals, the quantum dot-like structure results in a discrete energy order, and an energy holding action can be exhibited.
 離散的励起状態では、電子を伝導体に励起することで電子の抜け殻にホールができ、その電子ホールペア状態でエネルギーが保持される。この状態では、外部から見たとき電気的に中性である。すなわち、電磁エネルギーから電子ホールペア励起エネルギーにエネルギーが変換されたことになり、いわゆる静電気的な電界強度で対抗電極の一方に電子、他方にホールが保持された状態とは異なるエネルギー保持状態となる。 In the discrete excitation state, electrons are excited in the conductor to create holes in the shell of electrons, and energy is retained in the electron hole pair state. In this state, it is electrically neutral when viewed from the outside. That is, the energy is converted from the electromagnetic energy to the electron hole pair excitation energy, and the energy holding state is different from the state where electrons are held on one side of the counter electrode and holes are held on the other side by so-called electrostatic electric field strength. .
 また、電子が一方の電極側に集まっていることにより、カップリングの存在する範囲で正の電荷(ホール)は分極的に、他方に位置することになる。熱緩和的な正の電荷の存在確率が少ないことにより、中和が生じにくくなり、電子の強い粗密状態の保持作用に有効である。 Also, since electrons are gathered on one electrode side, positive charges (holes) are polarized and located on the other side in the range where the coupling exists. Since the probability of existence of positive heat-relaxing charges is small, neutralization is unlikely to occur, and this is effective for maintaining a strong and dense state of electrons.
 上記メカニズムでの蓄電の安定化作用は、本発明の第二の形態のキャパシタ型蓄電池において、第1導電路と第2導電路のペア線の一方の面でだけでなく、他面も活用できることから、第1導電路及び前記第2導電路の外面上、連続した第2絶縁層を設け、第2絶縁層上に、第2導電膜又は第2半導体膜からなる第2基材と、第2導電粒子又は第2半導体粒子が有機高分子中に埋め込まれている第2複合層と、をこの順に積層してもよい。
 つまり、本発明の第二の形態のキャパシタ型蓄電池は、前記第1導電路及び前記第2導電路の外面上に連続して設けられた第2絶縁層と、第2絶縁層上に設けられ、第2導電膜又は第2半導体膜からなる第2基材、及び第2基材上に設けられ、第2導電粒子又は第2半導体粒子が有機高分子中に埋め込まれている第2複合層がこの順に積層された第2積層基材と、を有していてもよい、
In the capacitor-type storage battery according to the second aspect of the present invention, the stabilization function of power storage by the above mechanism can be utilized not only on one surface of the pair wire of the first conductive path and the second conductive path but also on the other surface. A continuous second insulating layer is provided on the outer surfaces of the first conductive path and the second conductive path, and a second base material made of the second conductive film or the second semiconductor film is formed on the second insulating layer; A second composite layer in which two conductive particles or second semiconductor particles are embedded in an organic polymer may be laminated in this order.
That is, the capacitor-type storage battery according to the second aspect of the present invention is provided on the second insulating layer and the second insulating layer that are continuously provided on the outer surfaces of the first conductive path and the second conductive path. , A second base material made of the second conductive film or the second semiconductor film, and a second composite layer provided on the second base material, wherein the second conductive particles or the second semiconductor particles are embedded in the organic polymer May have a second laminated substrate laminated in this order,
 以上から、本発明の第一及び第二の形態のキャパシタ型蓄電池は、静電容量が高く、高い電荷保持性能を有するキャパシタ型蓄電池となると考えられる。 From the above, it is considered that the capacitor-type storage battery according to the first and second embodiments of the present invention is a capacitor-type storage battery having a high electrostatic capacity and high charge retention performance.
 本発明の第一及び第二の形態のキャパシタ型蓄電池において、第1絶縁層が接する第1基材の表面は凹凸を有し、凹凸の凹部の幅は30nm以上3000nm以下であることがよい。
 また、本発明の第二の形態のキャパシタ型蓄電池においては、上記第2絶縁層及び第2積層基材を有する場合、第2絶縁層が接する第2基材の表面が凹凸を有し、凹凸の凹部の幅が30nm以上3000nm以下であることがよい。
In the capacitor-type storage batteries according to the first and second aspects of the present invention, the surface of the first base material with which the first insulating layer is in contact has irregularities, and the width of the irregularities is preferably 30 nm or more and 3000 nm or less.
Moreover, in the capacitor type storage battery according to the second aspect of the present invention, when the second insulating layer and the second laminated base material are provided, the surface of the second base material in contact with the second insulating layer has unevenness, The width of the recess is preferably 30 nm or more and 3000 nm or less.
 ここで、絶縁層が接する導電膜又は半導体膜からなる基材において、絶縁層が接する基材の表面に凹凸を有する場合、上記複合層に含まれる粒子と同様に、凹凸の凸部においてはTM波と表面プラズモンがエネルギー変換できるようになる、つまり、導電膜又は半導体膜からなる基材の凹凸の凸部において、粗密波から電磁波に、また電磁波から粗密波にエネルギーが変換し、蓄電池の容量が大きくなる。 Here, in a base material made of a conductive film or a semiconductor film in contact with the insulating layer, when the surface of the base material in contact with the insulating layer has irregularities, like the particles contained in the composite layer, TM The energy of wave and surface plasmon can be converted, that is, energy is converted from dense waves to electromagnetic waves, and from electromagnetic waves to dense waves, at the concave and convex portions of the substrate made of conductive film or semiconductor film, and the capacity of the storage battery Becomes larger.
 凹凸の凹部の幅は、上記複合層に含まれる粒子間の距離に相当し、当該凹凸の凹部の幅を30nm以上とすることで、粗密波から電磁波に、また電磁波から粗密波にエネルギーが変換し、結果として蓄電池の容量が大きくなる。また、大きな容量を得るためには、凹凸の凹部の幅を3000nm以下とすることがよい。
 なお、凹凸は、凸部同士が間隔を持って設けられており、当該間隔である凹部の幅が上記範囲であることがよい。
 また、凹凸の凸部の最大高さは10μm以下(30nm以上が望ましく、形成の容易さの点から10μm以下)、凸部の最大幅は10μm以下、凹部の最大幅は3μm以下であることがよい。
The width of the concave and convex portions corresponds to the distance between the particles contained in the composite layer, and the energy is converted from dense waves to electromagnetic waves and from electromagnetic waves to electromagnetic waves by setting the width of the concave and convex portions to 30 nm or more. As a result, the capacity of the storage battery increases. In order to obtain a large capacity, the width of the concave and convex portions is preferably 3000 nm or less.
In addition, as for the unevenness | corrugation, it is good for the convex part to be provided with the space | interval, and the width | variety of the recessed part which is the said space | interval is good in the said range.
In addition, the maximum height of the concave and convex portions is preferably 10 μm or less (30 nm or more is desirable, 10 μm or less from the viewpoint of ease of formation), the maximum width of the convex portion is 10 μm or less, and the maximum width of the concave portion is 3 μm or less. Good.
 本発明の第一及び第二の形態のキャパシタ型蓄電池において、第1絶縁層が接する第1基材の表面が凹凸を有する場合、第1絶縁層は、第1基材に隣接して設けられる第1接着剤層、及び第1接着剤層よりも第1基材の表面から遠い側に設けられる第2接着剤層を含む2層以上からなることがよい。
 第1基材に隣接して設けられる第1接着剤層は、第1基材の表面の凹凸の間に密着する接着剤層であり、第1接着剤層よりも第1基材の表面の凹凸から遠い側に設けられる第2接着剤層は、第1基材の表面の凹凸が導電路(第1の形態の場合、第1導電路、第二の形態の場合、第1導電路及び第2導電路)に接触するのを防止する接着剤層として機能する。
 これにより、第1基材の凹凸の凸部が導電路と接触するのを防止すると共に、第1基材の凹凸の凹部に空隙を生じさせることなく絶縁物を存在(つまり、凹凸の凸部同士の間に絶縁物を介在)させることができる。その結果、第1導電膜又は第1半導体膜からなる第1基材の凹凸の凸部において、表面プラズモンの発生が安定し、粗密波から電磁波に、また電磁波から粗密波にエネルギーが変換し、蓄電池の容量が大きくなる。
In the capacitor-type storage battery according to the first and second aspects of the present invention, when the surface of the first base that is in contact with the first insulating layer has irregularities, the first insulating layer is provided adjacent to the first base. It is good to consist of two or more layers including the 1st adhesive layer and the 2nd adhesive layer provided in the side farther from the surface of the 1st substrate than the 1st adhesive layer.
The 1st adhesive layer provided adjacent to the 1st substrate is an adhesive layer closely_contact | adhered between the unevenness | corrugations of the surface of a 1st base material, and is the surface of a 1st base material rather than a 1st adhesive layer. The second adhesive layer provided on the side far from the unevenness is such that the unevenness on the surface of the first substrate is a conductive path (in the case of the first form, the first conductive path, in the case of the second form, the first conductive path and It functions as an adhesive layer that prevents contact with the second conductive path).
As a result, it is possible to prevent the uneven portion of the first base material from coming into contact with the conductive path, and the presence of an insulator without generating a void in the concave portion of the uneven portion of the first base material (that is, the uneven portion of the uneven portion). An insulator can be interposed between them. As a result, the surface plasmon generation is stable in the unevenness of the first base material made of the first conductive film or the first semiconductor film, and energy is converted from the dense wave to the electromagnetic wave, and from the electromagnetic wave to the dense wave, The capacity of the storage battery increases.
 また、本発明の第二の形態のキャパシタ型蓄電池においては、上記第2絶縁層及び第2積層基材を有し、第2絶縁層が接する第2基材の表面が凹凸を有する場合、第2絶縁層は、第2基材に隣接して設けられる第3接着剤層、及び第3接着剤層よりも第2基材の表面から遠い側に設けられる第4接着剤層を含む2層以上からなることがよい。
 第2基材に隣接して設けられる第3接着剤層は、第2基材の凹凸の間に密着する接着剤層であり、第3接着剤層よりも前記第1導電路及び前記第2導電路側に設けられる第4接着剤層は、第2基材の凹凸が第1導電路及び第2導電路に接触するのを防止する接着剤層として機能する。
 これにより、第2基材の凹凸の凸部が導電路と接触するのを防止すると共に、第2基材の凹凸の凹部に絶縁物を存在(つまり、凹凸の凸部同士の間に絶縁物を介在)させることができる。その結果、第2導電膜又は第2半導体膜からなる第2基材の凹凸の凸部において、表面プラズモンの発生が安定し、粗密波から電磁波に、また電磁波から粗密波にエネルギーが変換し、蓄電池の容量が大きくなる。
Further, in the capacitor type storage battery of the second aspect of the present invention, when the second insulating layer and the second laminated substrate are provided, and the surface of the second substrate in contact with the second insulating layer has irregularities, The two insulating layers include a third adhesive layer provided adjacent to the second base material, and two layers including a fourth adhesive layer provided on a side farther from the surface of the second base material than the third adhesive layer. It is good to consist of the above.
The third adhesive layer provided adjacent to the second base material is an adhesive layer that is in close contact between the irregularities of the second base material, and the first conductive path and the second conductive layer are more than the third adhesive layer. The fourth adhesive layer provided on the conductive path side functions as an adhesive layer that prevents the unevenness of the second base material from coming into contact with the first conductive path and the second conductive path.
As a result, the concave and convex portions of the second base material are prevented from coming into contact with the conductive path, and an insulator is present in the concave and convex portions of the concave and convex portions of the second base material (that is, an insulator between the convex and concave portions of the concave and convex portions). Can be interposed). As a result, the surface plasmon generation is stable in the convex and concave portions of the second base material made of the second conductive film or the second semiconductor film, and energy is converted from dense waves to electromagnetic waves, and from electromagnetic waves to dense waves, The capacity of the storage battery increases.
 ここで、導電膜又は半導体膜からなる基材の表面の凹凸に追従させて空隙を発生させないためには、基材に隣接して設けられる接着剤層(第1接着剤層、第3接着剤層)と、この接着剤層(第1接着剤層、第3接着剤層)よりも導電路側に設けられる接着剤層(第2接着剤層。第4接着剤層)の貯蔵弾性率を調節することが好適である。具体的には、各接着剤層(第1~第4接着剤層)を有機高分子層とし、第1接着剤層及び第3接着剤層の貯蔵弾性率は1×10Pa以上1×10Pa未満の範囲とし、第2接着剤層及び第4接着剤層の貯蔵弾性率は1×10Pa以上とすることが好ましい。 Here, an adhesive layer (first adhesive layer, third adhesive) provided adjacent to the base material in order not to generate voids by following the unevenness of the surface of the base material made of a conductive film or a semiconductor film. Layer) and the storage elastic modulus of the adhesive layer (second adhesive layer, fourth adhesive layer) provided closer to the conductive path than the adhesive layer (first adhesive layer, third adhesive layer). It is preferable to do. Specifically, each adhesive layer (first to fourth adhesive layers) is an organic polymer layer, and the storage elastic modulus of the first adhesive layer and the third adhesive layer is 1 × 10 4 Pa or more and 1 × It is preferable that the range is less than 10 5 Pa, and the storage elastic modulus of the second adhesive layer and the fourth adhesive layer is 1 × 10 5 Pa or more.
 また、第1接着剤層及び第3接着剤層と、第2接着剤層及び第4接着剤層の誘電正接(tanδ)を調節することも好適である。具体的には、各接着剤層(第1~第4接着剤層)を有機高分子層とし、第1接着剤層及び第3接着剤層のtanδは0.1以上1以下の範囲とし、第2接着剤層及び第4接着剤層のtanδは0.5以下とすることが好ましい。 It is also preferable to adjust the dielectric loss tangent (tan δ) of the first adhesive layer and the third adhesive layer, and the second adhesive layer and the fourth adhesive layer. Specifically, each adhesive layer (first to fourth adhesive layers) is an organic polymer layer, and the tan δ of the first adhesive layer and the third adhesive layer is in the range of 0.1 to 1, The tan δ of the second adhesive layer and the fourth adhesive layer is preferably 0.5 or less.
 更に、第2接着剤層及び第4接着剤層の強度を高めて基材の凹凸(その凸部)が導電路に接触するのを効果的に防止するよう、樹脂中に無機化合物粉を分散させ形成した層としたり、或いは高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層としたりすることが好適である。 Furthermore, the inorganic compound powder is dispersed in the resin so as to increase the strength of the second adhesive layer and the fourth adhesive layer and effectively prevent the unevenness of the base material (its convex part) from contacting the conductive path. It is preferable to form a layer formed by impregnating a porous material using a polymer resin with a resin.
 更に、基材の凹凸(その凸部)が導電路に接触するのをより効果的に防止するよう、第1接着剤層と第2接着剤層の間に第1強度確保層を設ける、また第3接着剤層と第4接着剤層の間に第2強度確保層を設ける形態も好適である。この第1~第2強度確保層は、接着性を有していなくともよい。 Further, a first strength securing layer is provided between the first adhesive layer and the second adhesive layer so as to more effectively prevent the unevenness of the base material (its convex part) from contacting the conductive path. A mode in which the second strength securing layer is provided between the third adhesive layer and the fourth adhesive layer is also suitable. The first and second strength securing layers may not have adhesiveness.
 以下、本発明の好ましい実施の形態について図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
<キャパシタ型蓄電池>
[第1の実施形態]
 図1は、第1の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。
<Capacitor type storage battery>
[First Embodiment]
FIG. 1 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the first embodiment.
 第1の実施形態に係るキャパシタ型蓄電池は、図1に示すように、導電性又は半導電性の第1粒子12Aが有機高分子中に埋め込まれた第1複合層12と、第1導電膜又は第1半導体膜からなる第1基材13と、が積層された第1積層基材11を有している。
 第1積層基材11の第1基材13上には第1絶縁層21が設けられており、第1積層基材の第1複合層12の第1複合層12上には第2絶縁層22が設けられている。
 第1絶縁層21上には、第1積層基材11の長尺方向(図1では紙面の手前から奥に向かう方向)に延在する第1導電路31が設けられ、第2絶縁層22上には、第1積層基材の長尺方向に延在し、第1導電路31と平行するように第2導電路32が設けられている。
As shown in FIG. 1, the capacitor-type storage battery according to the first embodiment includes a first composite layer 12 in which conductive or semiconductive first particles 12A are embedded in an organic polymer, and a first conductive film. Or it has the 1st base material 13 which laminated | stacked the 1st base material 13 which consists of a 1st semiconductor film.
A first insulating layer 21 is provided on the first base material 13 of the first laminated base material 11, and a second insulating layer is provided on the first composite layer 12 of the first composite layer 12 of the first laminated base material 11. 22 is provided.
On the first insulating layer 21, there is provided a first conductive path 31 extending in the longitudinal direction of the first laminated base material 11 (in FIG. 1, the direction from the front to the back of the page), and the second insulating layer 22. On the top, a second conductive path 32 is provided so as to extend in the longitudinal direction of the first laminated substrate and to be parallel to the first conductive path 31.
 以下、各部材について説明する。 Hereinafter, each member will be described.
(第1複合層)
 第1複合層12は、導電性又は半導電性の第1粒子12A(第1導電粒子又は第1半導体粒子)が有機高分子中に埋め込まれた有機高分子膜で構成されている。
 ここで、「導電性又は半導電性の第1粒子12A(第1導電粒子又は第1半導体粒子)が有機高分子中に埋め込まれた」とは、第1粒子12Aが有機高分子に覆われてることを意味する。第1粒子12Aは、少なくとも一部が有機高分子で覆われていればよいが、完全に有機高分子で覆われていることがよい。
(First composite layer)
The first composite layer 12 is composed of an organic polymer film in which conductive or semiconductive first particles 12A (first conductive particles or first semiconductor particles) are embedded in an organic polymer.
Here, “the conductive or semiconductive first particles 12A (first conductive particles or first semiconductor particles) are embedded in the organic polymer” means that the first particles 12A are covered with the organic polymer. Means that The first particles 12A may be at least partially covered with the organic polymer, but are preferably completely covered with the organic polymer.
 導電性又は半導電性の第1粒子12Aは、有機高分子中に分散した状態で、埋め込まれており、複数個が集合(凝集)した粒子集合体(第1粒子集合体)となって埋め込まれていてもよい。そして、第1粒子12A又は第1粒子集合体は、その互いの間に有機高分子である絶縁物を介在された状態で第1複合層12中に存在している。 The conductive or semiconductive first particles 12A are embedded in a state of being dispersed in the organic polymer, and are embedded as an aggregate (aggregated) particle aggregate (first particle aggregate). It may be. The first particles 12A or the first particle aggregates are present in the first composite layer 12 with an insulator that is an organic polymer interposed therebetween.
 また、第1粒子12A(第1粒子集合体を含む。以下同様である)は、TM波と表面プラズモンが起きやすい状態と表面プラズモンの基となる電荷注入を同時に達成させ易くする観点から、導電膜又は半導体膜からなる第1基材13側に偏在する、具体的には第1基材13面上に接触するようにして第1複合層12中に存在することがよい。
 なお、第1粒子12Aは、単一種の粒子であってもよいし、2種以上を併用してもよい。
In addition, the first particles 12A (including the first particle aggregate; the same applies hereinafter) are electrically conductive from the viewpoint of easily achieving a state in which TM waves and surface plasmons are likely to occur and charge injection as a basis for the surface plasmons. It is preferably present in the first composite layer 12 so as to be unevenly distributed on the first base material 13 side made of a film or a semiconductor film, specifically on the first base material 13 surface.
The first particle 12A may be a single type of particle or a combination of two or more types.
 導電性の第1粒子12Aの組成としては、後述する第1導電膜で説明するものを適用することができ、好適に用いられる材料についても同様である。
 半導電性の第1粒子12Aの組成としては、後述する第1半導体膜で説明するものを適用することができ、好適に用いられる材料についても同様である。
As the composition of the conductive first particles 12A, those described in the first conductive film to be described later can be applied, and the same applies to materials that are preferably used.
As the composition of the semiconductive first particles 12A, those described in the first semiconductor film described later can be applied, and the same applies to the materials that are preferably used.
 特に半導電性の第1粒子12Aにおいては、常温で不純物準位から50%以上の励起電子が発生するよう、前記群より選択される化合物にn型又はp型の遷移金属、希土類金属又は非磁性金属をドープすることが有効である。
 第1粒子12Aは、キャリア密度が高く、表面プラズモンを発生しやすく、また、粒子を形成しやすい材料で構成されることが好ましい。
Particularly in the semiconductive first particles 12A, n-type or p-type transition metals, rare earth metals, or non-type compounds are selected from the group so that 50% or more of excited electrons are generated from the impurity level at room temperature. It is effective to dope magnetic metal.
The first particles 12A are preferably made of a material having a high carrier density, easily generating surface plasmons, and easily forming particles.
 第1粒子12Aの最大幅は、例えば、10μm以下であり、前述の通り、量子効果を発揮させる観点からは、5nm以上100nm以下であることがより好ましく、5nm以上80nm以下であることが更に好ましい。 The maximum width of the first particle 12A is, for example, 10 μm or less, and as described above, from the viewpoint of exerting the quantum effect, it is more preferably 5 nm or more and 100 nm or less, and further preferably 5 nm or more and 80 nm or less. .
 ここで、第1粒子12Aの最大幅とは、第1導電路31及び第2導電路32の延在方向、つまり表面プラズモンの進行方法に沿った第1粒子12Aを含む断面をAFMによって画像を観察し、その断面画像に含まれる100個以上の任意の第1粒子12Aについて最大幅を測定したときの値をいう。 Here, the maximum width of the first particle 12A is an extension image of the first conductive path 31 and the second conductive path 32, that is, a cross section including the first particle 12A along the surface plasmon traveling method is imaged by AFM. This is a value obtained by observing and measuring the maximum width of 100 or more arbitrary first particles 12A included in the cross-sectional image.
 第1粒子12Aの間の距離は、30nm以上3000nm以下であることがよく、より好ましくは、30nm以上1500nm以下であり、更に好ましくは50nm以上1000nm以下である。
 なお、第1粒子12Aの間の距離は、有機高分子に埋め込ませる量(含有量)によって調整できる。
The distance between the first particles 12A is preferably 30 nm or more and 3000 nm or less, more preferably 30 nm or more and 1500 nm or less, and further preferably 50 nm or more and 1000 nm or less.
The distance between the first particles 12A can be adjusted by the amount (content) embedded in the organic polymer.
 ここで、第1粒子12Aの間の距離とは、第1粒子12Aの粒径の測定と同様の方法で断面を観察し、このときに隣り合う第1粒子12Aどうしにおいて、もっとも短い距離を測定したときの値をいう。 Here, the distance between the first particles 12A is a cross section observed by the same method as the measurement of the particle diameter of the first particles 12A, and the shortest distance between the adjacent first particles 12A is measured at this time. This is the value when
 有機高分子は、絶縁物であり、具体的には、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリケトン系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリシロキサン系樹脂、フェノール系樹脂、エポキシ系樹脂、アクリル系樹脂や、天然ゴム、ジエン系ゴム(例えばイソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム等)、非ジエン系ゴム(例えば、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴム等)等が挙げられる。これらは、熱可塑性であってもよく、熱硬化性であってもよく、その未硬化物であってもよい。
 また、有機高分子は、樹脂、ゴムなどの変性物、混合物、共重合物であってもよい。
 これらの中でも、有機高分子は、耐熱性に優れる観点から、ポリイミド系樹脂であることがよい。
 なお、有機高分子は、第1絶縁層21及び第2絶縁層22を構成する絶縁物とは異なる材料であることがよい。
The organic polymer is an insulator, and specifically, for example, polyolefin resin, polyamide resin, polyester resin, polyether resin, polyketone resin, polyimide resin, polyurethane resin, polysiloxane resin. , Phenolic resin, epoxy resin, acrylic resin, natural rubber, diene rubber (eg, isoprene rubber, butadiene rubber, styrene butadiene rubber, etc.), non-diene rubber (eg, butyl rubber, ethylene propylene rubber, urethane rubber, Silicone rubber, etc.). These may be thermoplastic, may be thermosetting, or may be an uncured product thereof.
The organic polymer may be a modified product such as resin or rubber, a mixture, or a copolymer.
Among these, the organic polymer is preferably a polyimide resin from the viewpoint of excellent heat resistance.
The organic polymer is preferably made of a material different from the insulator constituting the first insulating layer 21 and the second insulating layer 22.
 有機高分子は、第1複合層12を形成するための塗液(有機高分子及び第1粒子12Aの混合物)の塗工性、第1複合層12を形成する際、予め形成した有機高分子膜に対して第1粒子12Aを埋め込むときの分散性の観点から、常温での剪断弾性率が、1×10Pa以上1×10Pa以下であることがよく、より好ましくは1×10Pa以上1×10Pa以下、さらに好ましくは1×10Pa以上5×10Pa以下である。
 なお、剪断弾性率は、JIS K 6254により規定された方法により求められる値である。
The organic polymer is coated with a coating liquid (a mixture of the organic polymer and the first particles 12A) for forming the first composite layer 12, and is formed in advance when the first composite layer 12 is formed. From the viewpoint of dispersibility when the first particles 12A are embedded in the film, the shear elastic modulus at room temperature is preferably 1 × 10 3 Pa or more and 1 × 10 7 Pa or less, more preferably 1 × 10 6. It is 3 Pa or more and 1 × 10 6 Pa or less, more preferably 1 × 10 3 Pa or more and 5 × 10 6 Pa or less.
The shear modulus is a value obtained by a method defined by JIS K 6254.
 第1複合層12の厚みは、10μm以上1mm以下であることがよく、より好ましくは10μm以上200μm以下、さらに好ましくは10μm以上100μm以下である。 The thickness of the first composite layer 12 is preferably 10 μm to 1 mm, more preferably 10 μm to 200 μm, and still more preferably 10 μm to 100 μm.
(第1基材)
 第1基材13は、第1導電膜又は第1半導体膜からなり、導電物質、半導体物質のいずれで構成されていてもよい。また、第1基材13は、導電物質又は半導体物質で構成されるが、導電物質又は半導体物質の粒子(導電粒子又は半導体粒子)が接触した状態で集合した膜からなっていてもよいし、導電物質又は半導体物質のバルク状の膜からなっていてもよい。
 ここで、第1基材13(第1導電膜又は第1半導体膜)は、第1複合層12の構成する第1粒子12A(第1導電粒子又は第1半導体粒子)と一体形成されていることがよい。具体的には、例えば、第1基材13と第1複合層12との界面で、第1基材13を構成する導電物質又は半導体物質と第1複合層12を構成する第1粒子12A(第1導電粒子又は第1半導体粒子)とが互いに結合した状態で、第1基材13と第1粒子12Aとが一体形成されていることがよい。これにより、第1基材13と第1複合層の第1粒子12Aとの間に、余分な層(例えば、酸化層)が介在せず、内部抵抗が低下し易くなる。
(First base material)
The 1st base material 13 consists of a 1st electrically conductive film or a 1st semiconductor film, and may be comprised with any of the electrically conductive substance and the semiconductor substance. Further, the first base material 13 is composed of a conductive material or a semiconductor material, but may be made of a film aggregated in a state where particles of the conductive material or the semiconductor material (conductive particles or semiconductor particles) are in contact with each other, It may consist of a bulk film of a conductive material or a semiconductor material.
Here, the first base material 13 (first conductive film or first semiconductor film) is integrally formed with the first particles 12A (first conductive particles or first semiconductor particles) constituting the first composite layer 12. It is good. Specifically, for example, at the interface between the first base material 13 and the first composite layer 12, the first particles 12A (the conductive material or the semiconductor material forming the first base material 13 and the first particles 12A ( The first base material 13 and the first particles 12A may be integrally formed in a state where the first conductive particles or the first semiconductor particles are bonded to each other. Thereby, an extra layer (for example, oxide layer) does not intervene between the 1st base material 13 and the 1st particle 12A of the 1st compound layer, and internal resistance falls easily.
 なお、導電性(導電膜)とは、体積抵抗率が10-3Ω・cm以下であることを意味する。半導電性(半導体膜)とは、体積抵抗率が10-3Ω・cmを超えて10Ω・cm以下であることを意味する Note that the conductivity (conductive film) means that the volume resistivity is 10 −3 Ω · cm or less. Semiconductive (semiconductor film) means that the volume resistivity is more than 10 −3 Ω · cm and not more than 10 6 Ω · cm.
 第1導電膜又は第1半導体膜は、キャリア密度が高く、電荷の移動度が高い材料であることが好ましい。具体的には例えば以下の材料を例示することができる。
 第1導電膜は、導電性を示すものであれば特に限定されないが、例えば、Fe、Al、Co、Cr、Ni、Ag、Mg、Cu、Sn、Au、Pt、Pd、In、Ti、Ta及びCからなる群より選択される少なくとも一種の元素を含むことが好ましく、単一元素で構成されていても、2種以上の元素が含まれていてもよい。2種以上の元素が含まれている場合には、合金若しくは共析物であってもよい。更に前記群より選択される少なくとも一つの元素を含み更に周期律表の3族から14族からなる群より選択される少なくとも一つの元素を含んで構成される合金若しくは共析物あってもよい。なお、合金には固溶限界以下の固溶体も含まれる。また、単独でも導電性を有するFe、Al、Co、Cr、Ni、Ag、Mg、Cu、Sn、Au、Pt、Pd、In、Ti、Ta及びCの場合は単一の元素により形成されていても何ら問題ない。
 また、第1導電膜としてSi含有物を用いる場合、SiにB、Al、Pなどに代表される、周期律表の3族から15族からなる群より選択される少なくとも一つの元素を固溶限界以下にまで固溶させ導電性を付与したものを用いることができる。
The first conductive film or the first semiconductor film is preferably a material having high carrier density and high charge mobility. Specifically, the following materials can be exemplified.
The first conductive film is not particularly limited as long as it exhibits conductivity. For example, Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, In, Ti, Ta And at least one element selected from the group consisting of C, and may be composed of a single element or two or more elements. When two or more elements are contained, an alloy or a eutectoid may be used. Further, there may be an alloy or a eutectoid containing at least one element selected from the above group and further containing at least one element selected from the group consisting of groups 3 to 14 of the periodic table. The alloy includes a solid solution having a solid solution limit or less. In addition, Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, In, Ti, Ta, and C which are electrically conductive are formed of a single element. There is no problem.
When Si-containing material is used as the first conductive film, at least one element selected from the group consisting of groups 3 to 15 of the periodic table, represented by B, Al, P, etc., is dissolved in Si. What was made into solid solution below the limit and provided electroconductivity can be used.
 第1半導体膜は、半導電性を示すものであれば特に限定されないが、ニッケルナイトライド、アナターゼ構造のチタン酸化物、酸化錫混入の酸化インジウム、酸化錫、ジルコニウム酸化物、ガリウムナイトライド、アルミニウムナイトライド、シリコン、カーボンからなる群より選択される少なくとも一種の化合物を含有し、二種以上の化合物を併用してもよい。 The first semiconductor film is not particularly limited as long as it exhibits semiconductivity, but nickel nitride, anatase structure titanium oxide, tin oxide mixed indium oxide, tin oxide, zirconium oxide, gallium nitride, aluminum It contains at least one compound selected from the group consisting of nitride, silicon, and carbon, and two or more compounds may be used in combination.
 特に半導体においては、常温で不純物準位から50%以上の励起電子が発生するよう、前記群より選択される化合物にn型又はp型の遷移金属、希土類金属又は非磁性金属をドープすることが有効である。 In particular, in a semiconductor, a compound selected from the above group may be doped with an n-type or p-type transition metal, rare earth metal or nonmagnetic metal so that 50% or more of excited electrons are generated from the impurity level at room temperature. It is valid.
 第1基材13は、第1導電膜又は第1半導体膜のいずれか1層で構成される単層であっても、異なる材料で構成される第1導電膜を2層以上積層する複層であっても、異なる材料で構成される第1半導体膜を2層以上積層する複層であっても、更には第1導電膜及び第1半導体膜から選択される2層以上を積層してもよい。 Even if the first base material 13 is a single layer composed of either one of the first conductive film or the first semiconductor film, a multilayer in which two or more first conductive films composed of different materials are stacked. Even in the case of a multilayer in which two or more first semiconductor films made of different materials are stacked, two or more layers selected from the first conductive film and the first semiconductor film are stacked. Also good.
 第1基材13の厚みは、20nm以上30000nm以下であることが好ましく、モジュール化した際の電気容量向上のための電荷量の確保の観点から、1μm以上20μm以下であることが好ましい。 The thickness of the first base material 13 is preferably 20 nm or more and 30000 nm or less, and preferably 1 μm or more and 20 μm or less from the viewpoint of securing a charge amount for improving electric capacity when modularized.
 第1基材13の表面粗さRz(μm)は、1μm以上10μm以下であることが好ましく、2μm以上5μm以下であることがより好ましい。 The surface roughness Rz (μm) of the first substrate 13 is preferably 1 μm or more and 10 μm or less, and more preferably 2 μm or more and 5 μm or less.
 表面粗さRzの測定方法は以下の通りである。
 第1基材13の表面の凹凸状態を原子間力顕微鏡(AFM)を用いて測定する。この粗さ曲線からJIS B0601-1994に従い、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定して求める。
The method for measuring the surface roughness Rz is as follows.
The uneven state of the surface of the first substrate 13 is measured using an atomic force microscope (AFM). From this roughness curve, according to JIS B0601-1994, a reference length is extracted in the direction of the average line, and the distance between the peak line and the valley line of the extracted part is measured in the direction of the vertical magnification of the roughness curve.
(第1絶縁層、第2絶縁層)
 第1絶縁層21及び第2絶縁層22としては、有機絶縁物、無機絶縁物、又は有機絶縁物と無機絶縁物の複合体のいずれから形成されていてもよい。
 有機絶縁物としては、ポリエステル、PET(ポリエチレンテレフタレート)、PPC(ポリエステルポリカーボネート)、ビニリデン、ポリイミド、ポリスチレン、ゴム、アクリル、エポキシなどを挙げることができる。
 無機絶縁物としては、ほう珪酸ガラス、ソーダライムガラス、チタン酸バリウムやチタン酸ストロンチウムなどの金属酸化物などを挙げることができる。
(First insulating layer, second insulating layer)
The first insulating layer 21 and the second insulating layer 22 may be formed of any of an organic insulator, an inorganic insulator, or a composite of an organic insulator and an inorganic insulator.
Examples of the organic insulator include polyester, PET (polyethylene terephthalate), PPC (polyester polycarbonate), vinylidene, polyimide, polystyrene, rubber, acrylic, and epoxy.
Examples of the inorganic insulator include metal oxides such as borosilicate glass, soda lime glass, barium titanate and strontium titanate.
 特に、第1絶縁層21及び第2絶縁層22には、実効的に誘電率の高い材料を用いることが、TE成分やTM成分の発生、及び空間電荷分布による容量成分の追加に有利であるため好ましい。
 また、第1絶縁層21及び第2絶縁層22は、アクリル系接着剤で形成されていることがよい。アクリル系接着剤は、高い粘着性を有し、導電路と導電膜の間に空気などが介在することを予防するため該キャパシタの製造性が向上する。
 なお、第1絶縁層21及び第2絶縁層22は、第1複合層12を構成する有機高分子とは異なる材料で形成されていることがよい。
In particular, it is advantageous to use a material having an effectively high dielectric constant for the first insulating layer 21 and the second insulating layer 22 in order to generate a TE component and a TM component and to add a capacitance component due to space charge distribution. Therefore, it is preferable.
The first insulating layer 21 and the second insulating layer 22 are preferably formed of an acrylic adhesive. The acrylic adhesive has high tackiness, and prevents the presence of air or the like between the conductive path and the conductive film, thereby improving the manufacturability of the capacitor.
The first insulating layer 21 and the second insulating layer 22 are preferably formed of a material different from the organic polymer constituting the first composite layer 12.
 第1絶縁層21及び第2絶縁層22は、それぞれ単層であっても、2層以上の複層であってもよい。 The first insulating layer 21 and the second insulating layer 22 may each be a single layer or a multilayer of two or more layers.
 第1絶縁層21及び第2絶縁層22の厚み(2層以上を重ねて使用する場合には総厚)は、電磁波と表面プラズモンのエネルギー交換の効率化の観点から、各々20nm以上10000nm以下が好ましい。この膜厚は耐電圧の配慮もなされ、用途に適した電圧に耐えうる最低の厚みを確保することが好ましい。 The thickness of the first insulating layer 21 and the second insulating layer 22 (the total thickness when two or more layers are used in an overlapping manner) is 20 nm or more and 10,000 nm or less, respectively, from the viewpoint of efficient energy exchange between electromagnetic waves and surface plasmons. preferable. With regard to the film thickness, consideration is given to withstand voltage, and it is preferable to secure the minimum thickness that can withstand the voltage suitable for the application.
(第1導電路、第2導電路)
 第1導電路31及び第2導電路32の組成としては、第1導電膜で説明したものを適用することができ、好適に用いられる材料についても同様である。第1導電路31と第2導電路32は同じ材質で形成してもよいし、異なる材質で形成されていてもよい。
(First conductive path, second conductive path)
As a composition of the 1st conductive path 31 and the 2nd conductive path 32, what was demonstrated by the 1st conductive film can be applied, and it is the same also about the material used suitably. The first conductive path 31 and the second conductive path 32 may be formed of the same material, or may be formed of different materials.
 第1導電路31及び第2導電路32の短尺方向の長さ(幅)wは、例えば各々1μm以上100mm以下であり、第1導電路31と第2導電路32との間隔d(第1導電路31と第2導電路32の間に介在する各膜の層厚み)は、例えば各々1μm以上100mm以下である。また第1導電路31及び第2導電路32の厚み(高さ)tは、例えば各々0.5μm以上10μm以下である。また、幅wと間隔dの関係は、w/d≧1.5が望ましい。また幅wと高さtの関係は、t/w≦1が好ましく、より好ましくはt/w≦0.5である。 The length (width) w in the short direction of the first conductive path 31 and the second conductive path 32 is, for example, not less than 1 μm and not more than 100 mm, respectively, and the distance d between the first conductive path 31 and the second conductive path 32 (first The layer thickness of each film interposed between the conductive path 31 and the second conductive path 32 is, for example, not less than 1 μm and not more than 100 mm. The thickness (height) t of the first conductive path 31 and the second conductive path 32 is, for example, not less than 0.5 μm and not more than 10 μm, respectively. The relationship between the width w and the distance d is preferably w / d ≧ 1.5. The relationship between the width w and the height t is preferably t / w ≦ 1, and more preferably t / w ≦ 0.5.
(作製方法)
 第1の実施形態に係るキャパシタ型蓄電池の製造方法は、上記構成のキャパシタ型蓄電池を形成し得る方法であれば特に限定されるものではない。以下に製造方法の一例について説明する。
(Production method)
The manufacturing method of the capacitor type storage battery according to the first embodiment is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above configuration. An example of the manufacturing method will be described below.
 まず、基材シートの上に、例えばバーコート法などの塗工、貼合、蒸着、めっき、イオンプレーティング、CVD、溶射などの手法で、有機高分子膜を形成した後、形成した有機高分子膜の表面に対して、第1粒子12A(第1導電粒子又は第1半導体粒子)を物理的に高エネルギーで蒸着する。
 これにより、最初に蒸着された第1粒子12Aは有機高分子の結合を破壊し有機高分子膜内部に埋め込まれるようにして分散される結果、第1複合層12が形成される。一方、有機高分子膜の内部に分散後、有機高分子膜の外部に出た第1粒子12Aは、有機高分子膜(第1複合層12)の表面上で互いに結合して膜状に堆積していき、その結果、導電膜又は半導体膜からなる第1基材13が形成される。
 ここで、第1粒子12Aを高エネルギーで蒸着する方法として具体的には、例えば、マグネトロンスパッタ、DCスパッタ、RFスパッタ、イオンビームスパッタ等が挙げられる。また、蒸着するためのエネルギーは、例えば、粒子加速エネルギーと有機高分子の結合エネルギーで決定する。
First, an organic polymer film is formed on a base material sheet by a method such as coating, bonding, vapor deposition, plating, ion plating, CVD, thermal spraying, etc., such as a bar coating method. The first particles 12A (first conductive particles or first semiconductor particles) are physically deposited with high energy on the surface of the molecular film.
As a result, the first particles 12A deposited first are broken so that the bonds of the organic polymer are broken and embedded in the organic polymer film, so that the first composite layer 12 is formed. On the other hand, after being dispersed inside the organic polymer film, the first particles 12A exiting the organic polymer film are bonded to each other on the surface of the organic polymer film (first composite layer 12) and deposited in a film shape. As a result, the first base material 13 made of a conductive film or a semiconductor film is formed.
Here, specific examples of the method for depositing the first particles 12A with high energy include magnetron sputtering, DC sputtering, RF sputtering, and ion beam sputtering. The energy for vapor deposition is determined by, for example, the particle acceleration energy and the binding energy of the organic polymer.
 なお、第1複合層12及び第1基材13の形成方法は、これに限られず、例えば、予め有機高分子と第1粒子12A(第1導電粒子又は第1半導体粒子)との混合物を用い、例えば塗工、貼合、溶射などの手法で、第1複合層12を形成した後、第1複合層12上に、例えばスパッタ、蒸着、めっき、イオンプレーティング、CVD、溶射などの手法で、第1導電膜又は第1半導体膜からなる第1基材13を形成する方法を採用してもよい。 In addition, the formation method of the 1st composite layer 12 and the 1st base material 13 is not restricted to this, For example, the mixture of organic polymer and 1st particle | grains 12A (1st electroconductive particle or 1st semiconductor particle) is used previously. For example, after the first composite layer 12 is formed by a technique such as coating, bonding, or thermal spraying, the first composite layer 12 is formed on the first composite layer 12 by a technique such as sputtering, vapor deposition, plating, ion plating, CVD, or thermal spraying. A method of forming the first base material 13 made of the first conductive film or the first semiconductor film may be employed.
 次に、例えばバーコート法などの塗工、貼合、蒸着、めっき、イオンプレーティング、CVD、溶射などの手法で、第1絶縁層21する。そして、更に、第1絶縁層21の上に第1導電路31を形成する。 Next, the first insulating layer 21 is formed by a technique such as coating, bonding, vapor deposition, plating, ion plating, CVD, thermal spraying or the like such as a bar coating method. Further, the first conductive path 31 is formed on the first insulating layer 21.
 他方、これら各膜を積層した積層体から基材シートを剥がし、その剥がされた面の上つまり第1複合層12の表面(第1基材13と接する面とは反対側の面)の上に、第1絶縁層21の形成方法と同様の方法により第2絶縁層22を形成する。そして、更に第2絶縁層22の上に、第2導電路32を形成する。 On the other hand, the base material sheet is peeled off from the laminate in which these films are laminated, and on the peeled surface, that is, on the surface of the first composite layer 12 (the surface opposite to the surface in contact with the first base material 13). In addition, the second insulating layer 22 is formed by a method similar to the method of forming the first insulating layer 21. Further, a second conductive path 32 is formed on the second insulating layer 22.
 以上の工程を経て、第1の実施形態に係るキャパシタ型蓄電池が製造できる。 Through the above steps, the capacitor-type storage battery according to the first embodiment can be manufactured.
(使用)
 図示しないが、第1の実施形態に係るキャパシタ型蓄電池において、蓄電池の長尺方向の一方の端部では第1導電路31及び第2導電路32が露出している。この露出している部分に、第1導電路31及び第2導電路32に電圧を与えるための第1端子及び第2端子がそれぞれ接続している。第1端子及び第2端子に所定の電位差を与えると、第1基材13と、第1導電路31及び第2導電路32との間に広がった電磁界すなわちフォトンとの間で、フォトン-表面プラズモンのエネルギー交換が行われ、大きな容量で蓄電される。以下の実施形態においても同様である。
(use)
Although not shown, in the capacitor-type storage battery according to the first embodiment, the first conductive path 31 and the second conductive path 32 are exposed at one end in the longitudinal direction of the storage battery. A first terminal and a second terminal for applying a voltage to the first conductive path 31 and the second conductive path 32 are connected to the exposed portions, respectively. When a predetermined potential difference is applied to the first terminal and the second terminal, a photon − is generated between the first base material 13 and the electromagnetic field spread between the first conductive path 31 and the second conductive path 32, that is, photons. Surface plasmon is exchanged for energy storage with a large capacity. The same applies to the following embodiments.
[第2の実施形態]
 図2は、第2の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。
[Second Embodiment]
FIG. 2 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the second embodiment.
 第2の実施形態に係るキャパシタ型蓄電池は、図2に示すように、第1の実施形態に係るキャパシタ型蓄電池において、第1導電膜又は第1半導体膜からなる第1基材13の表面(第1絶縁層21と接する面)に、凸部13A及び凹部13Bで構成された凹凸を有している。 As shown in FIG. 2, the capacitor-type storage battery according to the second embodiment is the surface of the first base material 13 made of the first conductive film or the first semiconductor film in the capacitor-type storage battery according to the first embodiment ( On the surface in contact with the first insulating layer 21, there are irregularities formed by the convex portions 13 </ b> A and the concave portions 13 </ b> B.
(第1基材)
 第1基材13の表面に有する凹凸は、例えば、第1基材13の表面に導電粒子若しくは半導体粒子、又はこれらの集合粒子を複数個点在させて構成している。つまり、例えば、凹凸を構成する凸部13Aが導電粒子若しくは半導体粒子、又はこれらの集合粒子で構成し、凹凸を構成する凹部13Bが点在する粒子又は集合粒子の間で構成している。
 ここで、第1基材13の表面に有する凹凸を構成する導電粒子若しくは半導体粒子は、
導電性又は半導電性の第1粒子12Aで説明したものを適用することができ、好適に用いられる材料についても同様である。
(First base material)
The unevenness on the surface of the first base material 13 is constituted by, for example, a plurality of conductive particles, semiconductor particles, or aggregated particles scattered on the surface of the first base material 13. That is, for example, the convex portions 13A constituting the irregularities are constituted by conductive particles or semiconductor particles, or aggregate particles thereof, and are constituted by particles or aggregate particles interspersed with the concave portions 13B constituting the irregularities.
Here, the conductive particles or semiconductor particles constituting the irregularities on the surface of the first base material 13 are:
What was demonstrated with the electroconductive or semiconductive 1st particle | grains 12A can be applied, and it is the same also about the material used suitably.
 なお、第1基材13の表面に有する凹凸は、上記構成に限られず、第1基材13の表面に窪みが設けられて構成していてもよい。 In addition, the unevenness | corrugation which has on the surface of the 1st base material 13 is not restricted to the said structure, You may comprise the dent provided in the surface of the 1st base material 13. FIG.
 第1基材13の表面に有する凹凸の凸部13Aの最大幅及び最大高さ(本実施形態では、(本実施形態では、導電粒子若しくは半導体粒子、又はこれらの集合粒子の最大幅)は、10μm以下であることが好ましく、100nm以下であることが更に好ましく、80nm以下であることが特に好ましい。 The maximum width and the maximum height of the concavo-convex convex portions 13A on the surface of the first base material 13 (in this embodiment (in this embodiment, the maximum width of conductive particles or semiconductor particles, or aggregate particles thereof) are: It is preferably 10 μm or less, more preferably 100 nm or less, and particularly preferably 80 nm or less.
 ここで、凸部13Aの最大幅及び最大高さとは、第1導電路31及び第2導電路32の延在方向、つまり表面プラズモンの進行方法に沿った凸部13Aを含む断面をAFMによって画像を観察し、その断面画像に含まれる100個以上の任意の凸部13Aについて最大幅及び最大高さを測定したときの値をいう。 Here, the maximum width and the maximum height of the convex portion 13A are an extension image of the first conductive path 31 and the second conductive path 32, that is, a cross section including the convex portion 13A along the surface plasmon traveling method is imaged by AFM. And the maximum width and the maximum height of 100 or more arbitrary convex portions 13A included in the cross-sectional image are measured.
 第1基材13の表面に有する凹凸の凹部13Bの幅(本実施形態では、導電粒子若しくは半導体粒子、又はこれらの集合粒子の間の距離)は、30nm以上3000nm以下であり、より好ましくは、30nm以上1500nm以下であり、更に好ましくは50nm以上1000nm以下である。 The width of the concave-convex concave portion 13B on the surface of the first base material 13 (in this embodiment, the distance between conductive particles or semiconductor particles, or aggregate particles thereof) is 30 nm or more and 3000 nm or less, more preferably They are 30 nm or more and 1500 nm or less, More preferably, they are 50 nm or more and 1000 nm or less.
 ここで、凹部13Bの幅とは、上記凸部13Aの最大幅の測定と同様の方法で断面を観察し、このときに隣り合う凸部13Aどうしにおいて、もっとも短い距離を測定したときの値をいう。 Here, the width of the concave portion 13B is a value obtained by observing the cross section by the same method as the measurement of the maximum width of the convex portion 13A and measuring the shortest distance between the adjacent convex portions 13A. Say.
(作製方法)
 第2の実施形態に係るキャパシタ型蓄電池の製造方法は、上記構成のキャパシタ型蓄電池を形成し得る方法であれば特に限定されるものではない。以下に製造方法の一例について説明する。
(Production method)
The manufacturing method of the capacitor type storage battery according to the second embodiment is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above configuration. An example of the manufacturing method will be described below.
 まず、基材シートの上に、第1の実施形態と同様にして、第1複合層12及び第1基材13をこの順に形成する。
 次に、第1基材13(第1導電膜又は第1半導体膜)の表面に導電粒子又は導電粒子等による凹凸を形成するために、マグネトロンスパッタ、蒸着、めっき、イオンプレーティング、CVD、溶射などの手法により、上記サイズの凹凸となるように、第1基材13の上に導電粒子又は導電粒子を付与する。或いは、電界めっき、イオンプレーティング、CVD、溶射などの手法により、上記サイズの凹凸となるように、第1基材13の上に導電粒子又は導電粒子を析出させる。
 ここで、形成する導電粒子又は導電粒子等による凹凸の大きさの調整は、スパッタ法の場合は製膜条件の最適化を行うこと、電解メッキ法では印加電流条件の最適化により行うことができる。
First, the first composite layer 12 and the first base material 13 are formed in this order on the base material sheet in the same manner as in the first embodiment.
Next, magnetron sputtering, vapor deposition, plating, ion plating, CVD, thermal spraying are used to form irregularities of conductive particles or conductive particles on the surface of the first base material 13 (first conductive film or first semiconductor film). The conductive particles or the conductive particles are applied on the first base material 13 so as to have the unevenness of the above size by a method such as the above. Alternatively, the conductive particles or the conductive particles are deposited on the first base material 13 so as to have the unevenness of the above size by a technique such as electroplating, ion plating, CVD, or thermal spraying.
Here, the size of the unevenness by the conductive particles or conductive particles to be formed can be adjusted by optimizing the film forming conditions in the case of sputtering, or by optimizing the applied current conditions in the electrolytic plating method. .
 なお、第1基材13(第1導電膜又は第1半導体膜)とその表面に形成する導電粒子又は導電粒子等による凹凸を一体形成する場合には、同じ手法による一連のプロセスで、第1基材13の成膜条件と導電粒子又は導電粒子等による凹凸の製膜条件とを変更することで実現できる。無論、これらを各々異なる条件や異なる手法により形成してもよい。 In the case where the first substrate 13 (the first conductive film or the first semiconductor film) and the unevenness formed by the conductive particles or conductive particles formed on the surface thereof are integrally formed, the first process is performed by a series of processes using the same technique. This can be realized by changing the film forming condition of the base material 13 and the film forming condition of the unevenness by the conductive particles or the conductive particles. Of course, these may be formed by different conditions and different methods.
 次に、表面に凹凸を設けた第1基材13上に、上記第1の実施形態と同様にして、第1絶縁層21を形成する。但し、このとき、第1基材13の表面に設けた凹凸の凹部13Bに第1絶縁層21が介在するように、用いる絶縁体の流動性を制御することが有益である。 Next, the first insulating layer 21 is formed on the first base material 13 provided with irregularities on the surface in the same manner as in the first embodiment. However, at this time, it is beneficial to control the fluidity of the insulator to be used so that the first insulating layer 21 is interposed in the concave and convex recesses 13 </ b> B provided on the surface of the first base material 13.
 これ以降は、上記第1の実施形態と同様にして、第1導電路31、第2絶縁層22、第2導電路32を順次形成する。 Thereafter, the first conductive path 31, the second insulating layer 22, and the second conductive path 32 are sequentially formed in the same manner as in the first embodiment.
 以上の工程を経て、第2の実施形態に係るキャパシタ型蓄電池が製造できる。 Through the above steps, the capacitor-type storage battery according to the second embodiment can be manufactured.
 なお、以上説明した以外は、第1の実施形態と同様であるため、説明を省略する。 In addition, since it is the same as that of 1st Embodiment except having demonstrated above, description is abbreviate | omitted.
[第3の実施形態]
 図3は、第3の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。
[Third Embodiment]
FIG. 3 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the third embodiment.
 第3の実施形態に係るキャパシタ型蓄電池は、図3に示すように、第2の実施形態に係るキャパシタ型蓄電池において、表面に凹凸を設けた第1基材13(第1導電膜又は第1半導体膜)側から、第1接着剤層211、第1強度確保層213、及び第2接着剤層212をこの順に積層する3層からなる第1絶縁層21を設けている。
 なお、第1強度確保層213は任意に設けられるが、絶縁層の強度を高めて第1基材13に設けた凹凸(その凸部13A)が第1導電路31に接触するのを確実に防止する観点からは、設けることが好ましい。
As shown in FIG. 3, the capacitor type storage battery according to the third embodiment is the same as the capacitor type storage battery according to the second embodiment. From the (semiconductor film) side, a first insulating layer 21 composed of three layers in which a first adhesive layer 211, a first strength securing layer 213, and a second adhesive layer 212 are laminated in this order is provided.
Although the first strength securing layer 213 is arbitrarily provided, it is ensured that the unevenness (the convex portion 13A) provided on the first base material 13 is in contact with the first conductive path 31 by increasing the strength of the insulating layer. It is preferable to provide from a viewpoint of preventing.
(第1絶縁層)
 第1絶縁層21は、少なくとも、第1基材13に隣接して設ける第1接着剤層211と、第1接着剤層211よりも第1導電路31側に設ける第2接着剤層212とが積層されてなり、更に、第1接着剤層211と第2接着剤層212との間に第1強度確保層213を設けて、第1接着剤層211、第1強度確保層213、及び第2接着剤層212の3層構造となっている。
 なお、第1接着剤層211、第1強度確保層213、及び第2接着剤層212は、それぞれ2層以上から構成されていてもよい。
(First insulation layer)
The first insulating layer 21 includes at least a first adhesive layer 211 provided adjacent to the first base material 13, and a second adhesive layer 212 provided closer to the first conductive path 31 than the first adhesive layer 211. Further, a first strength securing layer 213 is provided between the first adhesive layer 211 and the second adhesive layer 212, and the first adhesive layer 211, the first strength securing layer 213, and The second adhesive layer 212 has a three-layer structure.
The first adhesive layer 211, the first strength securing layer 213, and the second adhesive layer 212 may each be composed of two or more layers.
 第1絶縁層21の総厚は、電磁波と表面プラズモンのエネルギー交換の効率化を高めて電容量を大きくするという観点から、1000nm以上30000nm以下が好ましく、5000nm以上20000nm以下がより好ましい。 The total thickness of the first insulating layer 21 is preferably 1000 nm or more and 30000 nm or less, and more preferably 5000 nm or more and 20000 nm or less from the viewpoint of increasing the efficiency of energy exchange between electromagnetic waves and surface plasmons and increasing the capacitance.
 第1接着剤層211は圧着時に第1基材13表面の凹凸に追従して密着できるほどに軟らかい層とすることが好ましい。第2接着剤層212は、第1接着剤層211と第1導電路31の間に位置し、第1導電路31の角(端)や第1基材13表面の凹凸が第1接着剤層211を貫通して、第1導電路31と第1基材13とが互いに傷付けることなく、一定の間隔を保持しつつ接着させるよう、第1接着剤層211よりも硬い層とすることが好ましい。具体的には、貯蔵弾性率を調節することが好適であり、その具体的な物性値については後述する。 The first adhesive layer 211 is preferably a layer that is soft enough to follow the unevenness of the surface of the first base material 13 during pressure bonding. The second adhesive layer 212 is located between the first adhesive layer 211 and the first conductive path 31, and the first adhesive path 31 has a corner (end) and irregularities on the surface of the first base material 13. The first conductive path 31 and the first base material 13 may be harder than the first adhesive layer 211 so that the first conductive path 31 and the first base material 13 are adhered to each other while maintaining a certain distance without damaging each other. preferable. Specifically, it is preferable to adjust the storage elastic modulus, and specific physical property values thereof will be described later.
 また、第1接着剤層211及び第2接着剤層212が絶縁層として効果的に機能するよう、誘電正接(tanδ)を調節することが好ましい。その具体的な数値については後述する。
 以下、第1接着剤層211、第2接着剤層212、及び第1強度確保層213について説明する。
In addition, the dielectric loss tangent (tan δ) is preferably adjusted so that the first adhesive layer 211 and the second adhesive layer 212 effectively function as an insulating layer. The specific numerical value will be described later.
Hereinafter, the first adhesive layer 211, the second adhesive layer 212, and the first strength ensuring layer 213 will be described.
-第1接着剤層-
 第1接着剤層211は、第1基材13表面の凹凸に追従して密着する接着剤層である。第1接着剤層211は圧着時に第1基材13表面の凹凸に追従して密着できるほどに軟らかい層とすることが好ましい。
 具体的には、第1接着剤層211が有機高分子層である場合に、貯蔵弾性率は1×10Pa以上1×10Pa未満の範囲とすることが好ましく、2×10Pa以上9×10Pa以下の範囲とすることがより好ましく、3×10Pa以上6×10Pa以下の範囲とすることが更に好ましい。
-First adhesive layer-
The first adhesive layer 211 is an adhesive layer that adheres following the unevenness of the surface of the first base material 13. The first adhesive layer 211 is preferably a layer that is soft enough to follow the unevenness on the surface of the first base material 13 during pressure bonding.
Specifically, when the first adhesive layer 211 is an organic polymer layer, the storage elastic modulus is preferably in the range of 1 × 10 4 Pa to less than 1 × 10 5 Pa, preferably 2 × 10 4 Pa. The range is more preferably 9 × 10 4 Pa or less, and still more preferably 3 × 10 4 Pa or more and 6 × 10 4 Pa or less.
 また、第1接着剤層211の誘電正接(tanδ)は、第1粒子層との密着性を向上させるという観点から0.1以上1以下の範囲とすることが好ましく、0.2以上0.8以下の範囲とすることがより好ましく、0.3以上0.6以下の範囲とすることが更に好ましい。 In addition, the dielectric loss tangent (tan δ) of the first adhesive layer 211 is preferably in the range of 0.1 or more and 1 or less from the viewpoint of improving the adhesion with the first particle layer, and is 0.2 or more and 0.00. A range of 8 or less is more preferable, and a range of 0.3 to 0.6 is even more preferable.
 第1接着剤層211には、例えば、アクリル系接着剤、エポキシ系接着剤、シリコン系接着剤、又は低分子のゴム系接着剤などを適用することができる。 For the first adhesive layer 211, for example, an acrylic adhesive, an epoxy adhesive, a silicon adhesive, a low molecular rubber adhesive, or the like can be applied.
 第1接着剤層211は、それぞれ単層であっても、2層以上の複層であってもよい。第1接着剤層211の厚み(2層以上を重ねて使用する場合には総厚)は、第1基材13表面の凹凸に追従して密着させるという観点から、各々500nm以上20000nm以下が好ましく、2000nm以上15000nm以下がより好ましい。 The first adhesive layer 211 may be a single layer or a multilayer of two or more layers. The thickness of the first adhesive layer 211 (the total thickness when two or more layers are used in an overlapping manner) is preferably 500 nm or more and 20000 nm or less, respectively, from the viewpoint of closely following the unevenness of the surface of the first base material 13. 2,000 to 15000 nm is more preferable.
-第2接着剤層-
 第2接着剤層212は、第1接着剤層211よりも第1導電路31側に設けられ、第1基材13表面の凹凸(その凸部13A)が第1導電路31に接触するのを防止する接着剤層である。第1接着剤層211は圧着したときであっても、第1基材13表面の凹凸(その凸部13A)が第1導電路31に接触するのを確実に防止するよう、第1接着剤層211よりも強度の高い層とすることが好ましい。
-Second adhesive layer-
The second adhesive layer 212 is provided closer to the first conductive path 31 than the first adhesive layer 211, and the unevenness (the convex portion 13 </ b> A) on the surface of the first base material 13 is in contact with the first conductive path 31. It is an adhesive layer that prevents Even when the first adhesive layer 211 is pressure-bonded, the first adhesive is used to reliably prevent the unevenness on the surface of the first base material 13 (the convex portion 13A) from coming into contact with the first conductive path 31. A layer having higher strength than the layer 211 is preferable.
 具体的には、第2接着剤層212が有機高分子層である場合に、貯蔵弾性率は1×10Pa以上とすることが好ましく、2×10Pa以上1×10Pa以下の範囲とすることがより好ましく、5×10Pa以上1×10Pa以下の範囲とすることが更に好ましい。 Specifically, when the second adhesive layer 212 is an organic polymer layer, the storage elastic modulus is preferably 1 × 10 5 Pa or more, and preferably 2 × 10 5 Pa or more and 1 × 10 7 Pa or less. The range is more preferable, and the range of 5 × 10 5 Pa to 1 × 10 6 Pa is more preferable.
 また、第2接着剤層212の誘電正接(tanδ)は、第2接着剤層212の強度を上げ第1導電路31の端面により破壊されることを防止する観点から、0.5以下とすることが好ましく、0.05以上0.5以下の範囲とすることがより好ましく、0.1以上0.2以下の範囲とすることが更に好ましい。 Further, the dielectric loss tangent (tan δ) of the second adhesive layer 212 is set to 0.5 or less from the viewpoint of increasing the strength of the second adhesive layer 212 and preventing the second adhesive layer 212 from being broken by the end surface of the first conductive path 31. The range is preferably 0.05 to 0.5, and more preferably 0.1 to 0.2.
 第2接着剤層212には、例えば、プチルゴム、CRゴム、CSMゴムなどのゴム系接着剤、高分子型のアクリル系接着剤、又は高分子型のシリコン系接着剤などを適用することができる。 For the second adhesive layer 212, for example, a rubber adhesive such as butyl rubber, CR rubber, or CSM rubber, a polymer acrylic adhesive, or a polymer silicone adhesive can be applied. .
 第2接着剤層212は、圧着時においても第1導電路31と第1基材13との間を一定の間隔で保持できるよう、樹脂中に無機化合物粉を分散させ形成した層としたり、高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層としたりすることが好適である。 The second adhesive layer 212 is a layer formed by dispersing inorganic compound powder in the resin so that the first conductive path 31 and the first base material 13 can be held at a constant interval even during pressure bonding. It is preferable to form a layer formed by impregnating a porous material using a polymer resin with the resin.
 無機化合物粉としては、SiO、MgO、ZrO及びTiO等を例示することができる。
 また、無機化合物粉を分散させる樹脂としては、無機化合物粉を分散させることができるものであれば、熱可塑性樹脂、熱硬化性樹脂、UV硬化性樹脂などいずれであってもよい。例えば、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル樹脂(例えばPET等)、ポリカーボネートとポリエステルを含むアロイ樹脂、ABS系樹脂、AS系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、塩化ビニル系樹脂、及びフッ素系樹脂等を例示することができる。
As the inorganic compound powder can be exemplified by SiO 2, MgO, ZrO 2 and TiO 2 or the like.
Moreover, as resin which disperse | distributes inorganic compound powder, as long as inorganic compound powder can be disperse | distributed, any, such as a thermoplastic resin, a thermosetting resin, and UV curable resin, may be sufficient. For example, acrylic resin, polycarbonate resin, polyester resin (for example, PET), alloy resin containing polycarbonate and polyester, ABS resin, AS resin, polystyrene resin, polyolefin resin, vinyl chloride resin, and fluorine resin Resin etc. can be illustrated.
 樹脂中の無機化合物粉の含有率は、20質量%以上85質量%以下とすることが好ましく、30質量%以上80質量%以下とすることがより好ましく、40質量%以上80質量%以下とすることが更に好ましい。 The content of the inorganic compound powder in the resin is preferably 20% by mass to 85% by mass, more preferably 30% by mass to 80% by mass, and 40% by mass to 80% by mass. More preferably.
 高分子樹脂を用いた多孔質材料としては、ポリテトラフルオロエチレン(PTFE)またはポリエチレン(PE)などに代表されるような高分子樹脂を例示することができる。多孔質材料とするために、発泡剤を添加してもよい。
 また、多孔質材料に含浸させる樹脂としては、無機化合物粉を分散させる樹脂として例示したもの等を適宜適用することができる。
Examples of the porous material using a polymer resin include polymer resins represented by polytetrafluoroethylene (PTFE) or polyethylene (PE). In order to obtain a porous material, a foaming agent may be added.
Moreover, what was illustrated as resin which disperse | distributes inorganic compound powder | flour etc. can be suitably applied as resin impregnated to a porous material.
 第2接着剤層212は、それぞれ単層であっても、2層以上の複層であってもよい。第2接着剤層212の厚み(2層以上を重ねて使用する場合には総厚)は、第1基材13と第1導電路31の確実な絶縁の観点から、各々500nm以上10000nm以下が好ましく、1000nm以上5000nm以下がより好ましい。 The second adhesive layer 212 may be a single layer or a multilayer of two or more layers. From the viewpoint of reliable insulation between the first base material 13 and the first conductive path 31, the thickness of the second adhesive layer 212 (total thickness when two or more layers are used in an overlapping manner) is 500 nm or more and 10,000 nm or less, respectively. Preferably, 1000 nm or more and 5000 nm or less are more preferable.
-第1接着剤層と第2接着剤層の組み合わせ例-
 第1接着剤層211と第2接着剤層212の組み合わせ例を以下に示す。
(1)第1接着剤層211が、貯蔵弾性率1×10Pa以上1×10Pa未満の範囲にある有機高分子層であり、第2接着剤層212が貯蔵弾性率1×10Pa以上の有機高分子層。
(2)第1接着剤層211が、誘電正接(tanδ)0.1以上1以下の範囲にある有機高分子層であり、第2接着剤層212が誘電正接(tanδ)0.5以下の有機高分子層。
(3)第1接着剤層211が、貯蔵弾性率1×10Pa以上1×10Pa未満の範囲にある有機高分子層であり、第2接着剤層212が無機化合物粉を分散させ形成した層。
(4)第1接着剤層211が、誘電正接(tanδ)0.1以上1以下の範囲にある有機高分子層であり、第2接着剤層212が無機化合物粉を分散させ形成した層。
(5)第1接着剤層211が、貯蔵弾性率1×10Pa以上1×10Pa未満の範囲にある有機高分子層であり、第2接着剤層212が高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層。
(6)第1接着剤層211が、誘電正接(tanδ)0.1以上1以下の範囲にある有機高分子層であり、第2接着剤層212が高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層。
(7)第1接着剤層211が、貯蔵弾性率1×10Pa以上1×10Pa未満の範囲にあり且つ誘電正接(tanδ)0.1以上1以下の範囲にある有機高分子層であり、第2接着剤層212が貯蔵弾性率1×10Pa以上で且つ誘電正接(tanδ)0.5以下の有機高分子層。
(8)第1接着剤層211が、貯蔵弾性率1×10Pa以上1×10Pa未満の範囲にあり且つ誘電正接(tanδ)0.1以上1以下の範囲にある有機高分子層であり、第2接着剤層212が無機化合物粉を分散させ形成した層。
(9)第1接着剤層211が、貯蔵弾性率1×10Pa以上1×10Pa未満の範囲にあり且つ誘電正接(tanδ)0.1以上1以下の範囲にある有機高分子層であり、第2接着剤層212が高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層。
-Combination example of the first adhesive layer and the second adhesive layer-
A combination example of the first adhesive layer 211 and the second adhesive layer 212 is shown below.
(1) The first adhesive layer 211 is an organic polymer layer having a storage elastic modulus in the range of 1 × 10 4 Pa or more and less than 1 × 10 5 Pa, and the second adhesive layer 212 has a storage elastic modulus of 1 × 10. Organic polymer layer of 5 Pa or higher.
(2) The first adhesive layer 211 is an organic polymer layer having a dielectric loss tangent (tan δ) in the range of 0.1 to 1, and the second adhesive layer 212 has a dielectric loss tangent (tan δ) of 0.5 or less. Organic polymer layer.
(3) The first adhesive layer 211 is an organic polymer layer having a storage modulus of 1 × 10 4 Pa or more and less than 1 × 10 5 Pa, and the second adhesive layer 212 disperses the inorganic compound powder. Formed layer.
(4) A layer in which the first adhesive layer 211 is an organic polymer layer having a dielectric loss tangent (tan δ) in the range of 0.1 to 1, and the second adhesive layer 212 is formed by dispersing inorganic compound powder.
(5) The first adhesive layer 211 is an organic polymer layer having a storage modulus of 1 × 10 4 Pa or more and less than 1 × 10 5 Pa, and the second adhesive layer 212 uses a polymer resin. A layer formed by impregnating a porous material with resin.
(6) The first adhesive layer 211 is an organic polymer layer having a dielectric loss tangent (tan δ) in the range of 0.1 to 1, and the second adhesive layer 212 is a porous material using a polymer resin. Layer formed by impregnating resin.
(7) The organic polymer layer in which the first adhesive layer 211 is in the range of the storage elastic modulus 1 × 10 4 Pa or more and less than 1 × 10 5 Pa and the dielectric loss tangent (tan δ) is 0.1 or more and 1 or less. And the second adhesive layer 212 is an organic polymer layer having a storage modulus of 1 × 10 5 Pa or more and a dielectric loss tangent (tan δ) of 0.5 or less.
(8) The organic polymer layer in which the first adhesive layer 211 is in the range of the storage elastic modulus 1 × 10 4 Pa or more and less than 1 × 10 5 Pa and the dielectric loss tangent (tan δ) is 0.1 or more and 1 or less. The second adhesive layer 212 is a layer formed by dispersing inorganic compound powder.
(9) The organic polymer layer in which the first adhesive layer 211 is in the range of the storage elastic modulus 1 × 10 4 Pa or more and less than 1 × 10 5 Pa and the dielectric loss tangent (tan δ) is 0.1 or more and 1 or less. The second adhesive layer 212 is formed by impregnating a porous material using a polymer resin with a resin.
-第1強度確保層-
 第1強度確保層213は、第1接着剤層211と第2接着剤層212の間に配置され、第1基材13表面の凹凸(その凸部13A)が第1導電路31に接触するのをより効果的に防止する層である。
-First strength securing layer-
The first strength securing layer 213 is disposed between the first adhesive layer 211 and the second adhesive layer 212, and the unevenness (the convex portion 13 </ b> A) on the surface of the first base material 13 is in contact with the first conductive path 31. It is a layer which prevents the above more effectively.
 圧着時において、第1基材13表面の凹凸(その凸部13A)が第1導電路31に接触するのを確実に防止するという観点からは、第1強度確保層213に要求される物性値は、第2接着剤層212に要求されるものと同様であり、よって、第2接着剤層212で説明した好適な貯蔵弾性率や誘電正接(tanδ)は、第1強度確保層213にも適用できる。 From the viewpoint of surely preventing the unevenness on the surface of the first base material 13 (the convex portion 13A) from coming into contact with the first conductive path 31 during the pressure bonding, the physical property values required for the first strength securing layer 213 Is the same as that required for the second adhesive layer 212. Therefore, the suitable storage elastic modulus and dielectric loss tangent (tan δ) described in the second adhesive layer 212 are also applied to the first strength securing layer 213. Applicable.
 第1強度確保層213において、より好適な貯蔵弾性率は、2×10Pa以上1×10Pa以下の範囲であり、更に好適には1×10Pa以上1×10Pa以下の範囲である。また、より好適な誘電正接(tanδ)は0.05以上0.2以下の範囲であり、更に好適には0.05以上0.1以下の範囲である。 In the first strength securing layer 213, a more preferable storage elastic modulus is in the range of 2 × 10 5 Pa to 1 × 10 8 Pa, and more preferably 1 × 10 6 Pa to 1 × 10 7 Pa. It is a range. A more preferable dielectric loss tangent (tan δ) is in the range of 0.05 to 0.2, and more preferably in the range of 0.05 to 0.1.
 なお、第1接着剤層211及び第2接着剤層212が接着性を有するため、これらの層の間に設ける第1強度確保層213には接着性が必ずしも要求されず、接着性を有していなくともよい。 Since the first adhesive layer 211 and the second adhesive layer 212 have adhesiveness, the first strength securing layer 213 provided between these layers is not necessarily required to have adhesiveness and has adhesiveness. It does not have to be.
 第1強度確保層213としては、市販の熱可塑性樹脂シートを使用することができ、特に限定されるものではない。例えば、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル樹脂(例えばPET等)、ポリカーボネートとポリエステルを含むアロイ樹脂、ABS系樹脂、AS系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、塩化ビニル系樹脂、及びフッ素系樹脂等の樹脂シートが挙げられる。シートの形状で入手されるものであっても、熱硬化性樹脂・UV硬化樹脂のように非固体であって絶縁層上に付与した後で硬化させるものであってもよい。 As the first strength securing layer 213, a commercially available thermoplastic resin sheet can be used and is not particularly limited. For example, acrylic resin, polycarbonate resin, polyester resin (for example, PET), alloy resin containing polycarbonate and polyester, ABS resin, AS resin, polystyrene resin, polyolefin resin, vinyl chloride resin, and fluorine resin Examples of the resin sheet include resins. Even if it is obtained in the form of a sheet, it may be a non-solid material such as a thermosetting resin or a UV curable resin and cured after being applied on the insulating layer.
 第1強度確保層213は、圧着時においても第1導電路31と第1基材13との間を一定の間隔で保持できるよう、樹脂中に無機化合物粉を分散させ形成した層としたり、高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層としたりすることが好適である。無機化合物粉を分散させ形成した層や、高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層については、第2接着剤層212で説明したものと同様であるため説明を省略する。 The first strength securing layer 213 is a layer formed by dispersing inorganic compound powder in the resin so that the first conductive path 31 and the first base material 13 can be held at a constant interval even during pressure bonding. It is preferable to form a layer formed by impregnating a porous material using a polymer resin with the resin. The layer formed by dispersing the inorganic compound powder and the layer formed by impregnating the porous material using the polymer resin with the resin are the same as those described in the second adhesive layer 212, and thus description thereof is omitted. .
 第1強度確保層213は、表面に、周知の種々の添加剤や安定剤、例えば帯電防止剤、紫外線防止剤、可塑剤、滑剤などが付与されてもよい。また、第1接着剤層211と第2接着剤層212との密着性を向上させるために、前処理としてコロナ放電処理、低温プラズマ処理、イオンボンバード処理、薬品処理、溶剤処理などを施してもよい。 The first strength ensuring layer 213 may be provided with various well-known additives and stabilizers such as an antistatic agent, an ultraviolet ray preventing agent, a plasticizer, and a lubricant on the surface. Further, in order to improve the adhesion between the first adhesive layer 211 and the second adhesive layer 212, a corona discharge treatment, a low temperature plasma treatment, an ion bombardment treatment, a chemical treatment, a solvent treatment, etc. may be performed as a pretreatment. Good.
 第1強度確保層213は、それぞれ単層であっても、2層以上の複層であってもよい。第1強度確保層213の厚み(2層以上を重ねて使用する場合には総厚)は、蓄電池の薄化の観点から、各々200nm以上5000nm以下が好ましく、500nm以上2000nm以下がより好ましい。 The first strength securing layer 213 may be a single layer or a multilayer of two or more layers. From the viewpoint of thinning of the storage battery, the thickness of the first strength securing layer 213 (total thickness when two or more layers are used) is preferably 200 nm or more and 5000 nm or less, and more preferably 500 nm or more and 2000 nm or less.
(作製方法)
 本発明の第3の実施形態に係るキャパシタ型蓄電池の製造方法は、上記構成のキャパシタ型蓄電池を形成し得る方法であれば特に限定されるものではない。以下に製造方法の一例について説明する。
(Production method)
The manufacturing method of the capacitor type storage battery according to the third embodiment of the present invention is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above-described configuration. An example of the manufacturing method will be described below.
 まず、基材シートの上に、第2の実施形態と同様にして、第1複合層12及び、表面に凹凸を設けた第1基材13をこの順に形成する。
 次に、表面に凹凸を設けた第1基材13上に、別途作製した第1絶縁層21(第1接着剤層211、第1強度確保層213、及び第2接着剤層212をこの順に積層する3層からなる積層体)を載せて、圧着させる。このとき、第1基材13の表面に設けた凹凸の凹部13Bに第1絶縁層21の第1接着剤層211が埋込するように、加熱によりラミネートをすることが有益である。
First, in the same manner as in the second embodiment, the first composite layer 12 and the first base material 13 provided with irregularities on the surface are formed in this order on the base material sheet.
Next, a first insulating layer 21 (a first adhesive layer 211, a first strength securing layer 213, and a second adhesive layer 212, which are separately prepared) are formed in this order on the first base material 13 having an uneven surface. A laminate composed of three layers to be laminated) is placed and pressed. At this time, it is beneficial to laminate by heating so that the first adhesive layer 211 of the first insulating layer 21 is embedded in the concave and convex recesses 13 </ b> B provided on the surface of the first base material 13.
 これ以降は、上記第2の実施形態と同様にして、第1導電路31、第2絶縁層22、第2導電路32を順次形成する。 Thereafter, the first conductive path 31, the second insulating layer 22, and the second conductive path 32 are sequentially formed in the same manner as in the second embodiment.
 以上の工程を経て、第3の実施形態に係るキャパシタ型蓄電池が製造できる。 Through the above steps, the capacitor-type storage battery according to the third embodiment can be manufactured.
 なお、以上説明した以外は、第2の実施形態と同様であるため、説明を省略する。 In addition, since it is the same as that of 2nd Embodiment except having demonstrated above, description is abbreviate | omitted.
[第4の実施形態]
 図4は、第4の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。
 第4の実施形態に係るキャパシタ型蓄電池は、図4に示すように、基材シート41上に、導電性又は半導電性の第1粒子12Aが有機高分子中に埋め込まれた第1複合層12と、第1導電膜又は第1半導体膜からなる第1基材13と、がこの順で積層された第1積層基材11を有している。
 第1積層基材11の第1基材13上には第1絶縁層21が設けられている。
 第1絶縁層21上には、第1積層基材11の長尺方向(図4では紙面の手前から奥に向かう方向)に延在する第1導電路31と、第1導電路31に平行する第2導電路32とが設けられている。
[Fourth Embodiment]
FIG. 4 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the fourth embodiment.
As shown in FIG. 4, the capacitor-type storage battery according to the fourth embodiment includes a first composite layer in which conductive or semiconductive first particles 12A are embedded in an organic polymer on a base sheet 41. 12 and the 1st base material 13 which consists of a 1st electrically conductive film or a 1st semiconductor film have the 1st laminated substrate 11 laminated | stacked in this order.
A first insulating layer 21 is provided on the first substrate 13 of the first laminated substrate 11.
On the 1st insulating layer 21, the 1st conductive path 31 extended in the elongate direction (The direction which goes to the back from the near side of a paper surface in FIG. 4) of the 1st lamination | stacking base material 11 is parallel to the 1st conductive path 31. The second conductive path 32 is provided.
(基材シート)
 基材シート41は、第1導電膜又は第1半導体膜からなる第1基材13を積層できるものであれば、導電性、半導電性、及び絶縁性のいずれの性質を有するものであってもよい。絶縁性であれば、本キャパシタ型蓄電池を巻いて使用する場合には、基材シートは導電性又は半導電性のある第1基材13と第1導電路31及び第2導電路32の間を絶縁する役割を果たせる。
(Substrate sheet)
As long as the base material sheet 41 can laminate the first base material 13 made of the first conductive film or the first semiconductor film, the base material sheet 41 has any property of conductivity, semiconductivity, and insulation. Also good. If it is insulative, when the capacitor-type storage battery is wound and used, the base sheet is conductive or semiconductive between the first base 13 and the first conductive path 31 and the second conductive path 32. Can play a role in insulating.
 基材シート41のうち、導電性のシートとしては、第1基材13として第1導電膜で説明したものと適用することができ、半導電性のシートとしては、第1基材13第1半導体膜で説明したものと適用することができ、絶縁性のシートとしては、第1絶縁層21で説明したものを適用することができる。好適に用いられる材料についても同様である。 Among the base sheet 41, the conductive sheet can be applied to the first base 13 as described in the first conductive film, and the semiconductive sheet is the first base 13 first. It can be applied as described for the semiconductor film, and as the insulating sheet, the one described for the first insulating layer 21 can be applied. The same applies to materials that are preferably used.
 基材シート41の厚みは、1μm以上25μm以下が好ましい。
 なお、基材シート41の適用は任意であり、基材シート41を設けなくともよい。
The thickness of the base sheet 41 is preferably 1 μm or more and 25 μm or less.
The application of the base sheet 41 is arbitrary, and the base sheet 41 may not be provided.
(作製方法)
 本発明の第4の実施形態に係るキャパシタ型蓄電池の製造方法は、上記構成のキャパシタ型蓄電池を形成し得る方法であれば特に限定されるものではない。以下に製造方法の一例について説明する。
(Production method)
The manufacturing method of the capacitor type storage battery according to the fourth embodiment of the present invention is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above configuration. An example of the manufacturing method will be described below.
 まず、基材シート41の上に、第1の実施形態と同様にして、第1複合層12、第1基材13、第1絶縁層21を形成する。
 次に、第1絶縁層21の上に第1導電路31と第2導電路32とを、互いが平行するように形成する。
First, the first composite layer 12, the first base material 13, and the first insulating layer 21 are formed on the base material sheet 41 in the same manner as in the first embodiment.
Next, the first conductive path 31 and the second conductive path 32 are formed on the first insulating layer 21 so as to be parallel to each other.
 以上の工程を経て、第4の実施形態に係るキャパシタ型蓄電池が製造できる。 Through the above steps, the capacitor-type storage battery according to the fourth embodiment can be manufactured.
 なお、以上説明した以外は、第1の実施形態と同様であるため、説明を省略する。
 但し、本実施形態では、導電膜又は半導体膜からなる第1基材13の厚みは、特に限定されないが20nm以上30000nm以下であることが好ましく、モジュール化した際の電気容量向上のための電荷量の確保の観点から、1μm以上20μm以下であることが好ましい。
 また、第1絶縁層21の厚みは、電磁波と表面プラズモンのエネルギー交換の効率化の観点から、20nm以上10000nm以下が好ましい。この膜厚は耐電圧の配慮もなされ、用途に適した電圧に耐えうる最低の厚みを確保することが好ましい。
Except for what has been described above, the second embodiment is the same as the first embodiment, and a description thereof will be omitted.
However, in this embodiment, the thickness of the first base material 13 made of a conductive film or a semiconductor film is not particularly limited, but is preferably 20 nm or more and 30000 nm or less, and the charge amount for improving the electric capacity when modularized. From the viewpoint of ensuring the thickness, it is preferably 1 μm or more and 20 μm or less.
The thickness of the first insulating layer 21 is preferably 20 nm or more and 10000 nm or less from the viewpoint of efficiency of energy exchange between electromagnetic waves and surface plasmons. With regard to the film thickness, consideration is given to withstand voltage, and it is preferable to secure the minimum thickness that can withstand the voltage suitable for the application.
 ここで、第4の実施形態に係るキャパシタ型蓄電池は、第2の実施形態で説明した第1基材13と同様に、第1導電膜又は第1半導体膜からなる第1基材13の表面(第1絶縁層21と接する面)に、凸部13A及び凹部13Bで構成された凹凸を有している形態、第3の実施形態で説明した第1絶縁層21と同様に、表面に凹凸を設けた第1基材13(第1導電膜又は第1半導体膜)側から、第1接着剤層211、第1強度確保層213、及び第2接着剤層212をこの順に積層する3層からなる第1絶縁層21を設けた形態であってもよい。 Here, the capacitor-type storage battery according to the fourth embodiment is similar to the first base material 13 described in the second embodiment, and the surface of the first base material 13 made of the first conductive film or the first semiconductor film. The surface having the projections 13A and the depressions 13B on the (surface in contact with the first insulating layer 21), the projections and depressions on the surface in the same manner as the first insulation layer 21 described in the third embodiment Three layers in which the first adhesive layer 211, the first strength securing layer 213, and the second adhesive layer 212 are laminated in this order from the first base material 13 (first conductive film or first semiconductor film) side provided with The form which provided the 1st insulating layer 21 which consists of may be sufficient.
[第5の実施形態]
 図5は、第5の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。
 第5の実施形態に係るキャパシタ型蓄電池は、図5に示すように、第4の実施形態に係るキャパシタ型蓄電池において、更に、第1導電路31及び第2導電路32の外面上に、第2絶縁層23が連続して設けられ、第2絶縁層23の外面上に、第2導電膜又は第2半導体膜からなる第2基材16と、導電性又は半導電性の第2粒子15Aが有機高分子中に埋め込まれた第2複合層15と、をこの順で積層した第2積層基材14を設けている。そして、第2積層基材14の第2複合層15上には、さらに基材シート42が設けている。
[Fifth Embodiment]
FIG. 5 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the fifth embodiment.
As shown in FIG. 5, the capacitor-type storage battery according to the fifth embodiment is the same as that of the capacitor-type storage battery according to the fourth embodiment, on the outer surfaces of the first conductive path 31 and the second conductive path 32. 2 insulating layers 23 are provided continuously, and on the outer surface of the second insulating layer 23, a second base material 16 made of a second conductive film or a second semiconductor film, and conductive or semiconductive second particles 15A. Is provided with a second laminated substrate 14 in which the second composite layer 15 embedded in an organic polymer is laminated in this order. A substrate sheet 42 is further provided on the second composite layer 15 of the second laminated substrate 14.
 ここで、第2絶縁層23は第1の実施形態で説明した第2絶縁層22と、第2基材16は第1の実施形態で説明した第1基材13と、第2複合層15は第1の実施形態で説明した第1複合層12と、基材シート42は第4実施形態で説明した基材シート41と同じものを適用することができ、好適に用いられる材料についても同様である。
 但し、本実施形態では、第2絶縁層23及び第2基材16は平板状のものとして示しているが、このような形状に限定されず、第1導電路31及び第2導電路32による凹凸に沿って設けられていてもよい。
Here, the second insulating layer 23 is the second insulating layer 22 described in the first embodiment, the second base material 16 is the first base material 13 described in the first embodiment, and the second composite layer 15. Can be applied to the first composite layer 12 described in the first embodiment, and the base sheet 42 can be the same as the base sheet 41 described in the fourth embodiment. It is.
However, in this embodiment, although the 2nd insulating layer 23 and the 2nd base material 16 are shown as a flat thing, it is not limited to such a shape, By the 1st conductive path 31 and the 2nd conductive path 32 It may be provided along the unevenness.
(作製方法)
 本発明の第5の実施形態に係るキャパシタ型蓄電池の製造方法は、上記構成のキャパシタ型蓄電池を形成し得る方法であれば特に限定されるものではない。以下に製造方法の一例について説明する。
(Production method)
The manufacturing method of the capacitor type storage battery according to the fifth embodiment of the present invention is not particularly limited as long as it is a method capable of forming the capacitor type storage battery having the above-described configuration. An example of the manufacturing method will be described below.
 まず、基材シート41の上に、第4の実施形態と同様にして、第1複合層12、第1基材13、第1絶縁層21を形成した後、第1絶縁層21の上に第1導電路31と第2導電路32とを互いが平行するように形成する。これを第1の積層体とする。 First, after forming the first composite layer 12, the first base material 13, and the first insulating layer 21 on the base material sheet 41 in the same manner as in the fourth embodiment, on the first insulating layer 21. The first conductive path 31 and the second conductive path 32 are formed so as to be parallel to each other. This is the first laminate.
 次に、他方、基材シート42の上に、第1の実施形態で説明した第1複合層12、第1基材、第1絶縁層21と同様にして、第2複合層15、第2基材16、第2絶縁層23を順次形成する。これを第2の積層体とする。 Next, on the other hand, the second composite layer 15, the second composite layer 12, the second base material 42, and the first composite layer 12, the first base material, and the first insulating layer 21 described in the first embodiment are formed. The base material 16 and the second insulating layer 23 are sequentially formed. This is the second laminate.
 次に、得られた第1の積層体及び第2の積層体を、第1の積層体の第1絶縁層21と第2積層体の第2絶縁層23が対向するようにして、その第1絶縁層21と第2絶縁層23の間に、第1導電路31と第2導電路32とが平行するように配置して挟持するようにして貼り合せる。 Next, the first stacked body and the second stacked body thus obtained are arranged so that the first insulating layer 21 of the first stacked body and the second insulating layer 23 of the second stacked body face each other. Between the 1 insulating layer 21 and the 2nd insulating layer 23, it arrange | positions so that the 1st conductive path 31 and the 2nd conductive path 32 may be parallel, and may be bonded together.
 以上の工程を経て、第5の実施形態に係るキャパシタ型蓄電池が製造できる。 Through the above steps, the capacitor-type storage battery according to the fifth embodiment can be manufactured.
 なお、以上説明した以外は、第4の実施形態と同様であるため、説明を省略する。 In addition, since it is the same as that of 4th Embodiment except having demonstrated above, description is abbreviate | omitted.
 ここで、第5の実施形態に係るキャパシタ型蓄電池は、第2の実施形態で説明した第1基材13と同様に、第1導電膜又は第1半導体膜からなる第1基材13の表面(第1絶縁層21と接する面)に、凸部13A及び凹部13Bで構成された凹凸を有している形態、第3の実施形態で説明した第1絶縁層21と同様に、表面に凹凸を設けた第1基材13(第1導電膜又は第1半導体膜)側から、第1接着剤層211、第1強度確保層213、及び第2接着剤層212をこの順に積層する3層からなる第1絶縁層21を設けた形態であってもよい。
 加えて、第5の実施形態に係るキャパシタ型蓄電池は、第2の実施形態で説明した第1基材13と同様に、第2導電膜又は第2半導体膜からなる第2基材16の表面(第2絶縁層23と接する面)に、凸部13A及び凹部13Bで構成された凹凸を有している形態、第3の実施形態で説明した第1絶縁層21と同様に、表面に凹凸を設けた第2基材16(第2導電膜又は第2半導体膜)側から、第1接着剤層211、第1強度確保層213、及び第2接着剤層212をこの順に積層する3層からなる第2絶縁層23を設けた形態であってもよい。
Here, the capacitor-type storage battery according to the fifth embodiment is similar to the first base material 13 described in the second embodiment, and the surface of the first base material 13 made of the first conductive film or the first semiconductor film. The surface having the projections 13A and the depressions 13B on the (surface in contact with the first insulating layer 21), the projections and depressions on the surface in the same manner as the first insulation layer 21 described in the third embodiment Three layers in which the first adhesive layer 211, the first strength securing layer 213, and the second adhesive layer 212 are laminated in this order from the first base material 13 (first conductive film or first semiconductor film) side provided with The form which provided the 1st insulating layer 21 which consists of may be sufficient.
In addition, the capacitor-type storage battery according to the fifth embodiment is similar to the first substrate 13 described in the second embodiment, and the surface of the second substrate 16 made of the second conductive film or the second semiconductor film. The surface having the projections and recesses 13A and the recesses 13B on the surface in contact with the second insulation layer 23, the projections and depressions on the surface, similar to the first insulation layer 21 described in the third embodiment. Three layers in which the first adhesive layer 211, the first strength securing layer 213, and the second adhesive layer 212 are laminated in this order from the second base material 16 (second conductive film or second semiconductor film) side provided with The form which provided the 2nd insulating layer 23 which consists of may be sufficient.
[第6の実施形態]
 図6は、第6の実施形態に係るキャパシタ型蓄電池の一例を示す短尺方向(幅方向)での断面図である。
 第6の実施形態に係るキャパシタ型蓄電池は、図6に示すように、第5の実施形態に係るキャパシタ型蓄電池において、第1絶縁層21の同一面上に、第1導電路31及び第2導電路32を複数交互に設け、更に図示しないが複数の第1導電路31が同一の第1端子に接続しており、複数の第2導電路32が同一の第2端子に接続している。
[Sixth Embodiment]
FIG. 6 is a cross-sectional view in the short direction (width direction) showing an example of the capacitor-type storage battery according to the sixth embodiment.
As shown in FIG. 6, the capacitor-type storage battery according to the sixth embodiment is the same as the capacitor-type storage battery according to the fifth embodiment, on the same surface of the first insulating layer 21, as shown in FIG. 6. A plurality of conductive paths 32 are alternately provided, and although not shown, a plurality of first conductive paths 31 are connected to the same first terminal, and a plurality of second conductive paths 32 are connected to the same second terminal. .
 対を形成している第1導電路31及び第2導電路32の幅wとその間の距離dとは、w/d≧1.5の関係を満たすことが望ましい。対を形成していない第1導電路31と第2導電路32との距離をsとした場合、s/d≧1を満たすことが望ましい。 It is desirable that the width w of the first conductive path 31 and the second conductive path 32 forming a pair and the distance d therebetween satisfy the relationship of w / d ≧ 1.5. When the distance between the first conductive path 31 and the second conductive path 32 not forming a pair is s, it is desirable to satisfy s / d ≧ 1.
 第1端子及び第2端子は、第1導電路31及び第2導電路32から離れるに従って幅が狭くなる部分を有しており、かつこの部分において、第1導電路31及び第2導電路32が延伸する2辺が互いになす角度θが30°以下である。これにより、第1端子及び第2端子における電力の抵抗損失を少なくすることができる。 The first terminal and the second terminal have a portion whose width becomes narrower as they are separated from the first conductive path 31 and the second conductive path 32, and in this part, the first conductive path 31 and the second conductive path 32. Is an angle θ formed by two sides extending by 30 ° or less. Thereby, the resistance loss of the electric power in a 1st terminal and a 2nd terminal can be decreased.
 また、第1端子は、直接第1導電路31に接続しているが、第2端子は貫通電極(図示せず)を介して第2導電路32に接続している。貫通電極は、第1端子上及び第1導電路31及び第2導電路32上に設けられた絶縁層を貫通している。第2端子は、絶縁層上に位置している。 The first terminal is directly connected to the first conductive path 31, but the second terminal is connected to the second conductive path 32 through a through electrode (not shown). The through electrode passes through the insulating layer provided on the first terminal and on the first conductive path 31 and the second conductive path 32. The second terminal is located on the insulating layer.
 第6の実施形態に係るキャパシタ型蓄電池によっても、第1~第5の実施形態に係るキャパシタ型蓄電池と同様の効果を得ることができる。特に、第6の実施形態に係るキャパシタ型蓄電池では、第1導電路31及び第2導電路32の数を多くしたため、蓄電池の容量がさらに大きくなる。
 なお、第6の実施形態に係るキャパシタ型蓄電池では、第5の実施形態に係るキャパシタ型蓄電池の構成で、第1導電路31及び第2導電路32を複数交互に設けたものを示したが、第1~4の実施形態に係るキャパシタ型蓄電池の構成で、第1導電路31及び第2導電路32を複数交互に設けたものであってもよい。
Even with the capacitor-type storage battery according to the sixth embodiment, the same effects as those of the capacitor-type storage batteries according to the first to fifth embodiments can be obtained. In particular, in the capacitor-type storage battery according to the sixth embodiment, since the number of the first conductive paths 31 and the second conductive paths 32 is increased, the capacity of the storage battery is further increased.
In the capacitor type storage battery according to the sixth embodiment, the capacitor type storage battery according to the fifth embodiment has a configuration in which a plurality of first conductive paths 31 and a plurality of second conductive paths 32 are alternately provided. In the configuration of the capacitor-type storage battery according to the first to fourth embodiments, a plurality of the first conductive paths 31 and the second conductive paths 32 may be alternately provided.
[その他の実施形態]
 第1~6の実施形態に係るキャパシタ型蓄電池は、シート状のものを説明したが、このシートを長尺方向においてロール状に巻いて使用してもよい。
[Other Embodiments]
The capacitor-type storage battery according to the first to sixth embodiments has been described as having a sheet shape, but the sheet may be wound in a roll shape in the longitudinal direction.
<キャパシタ型蓄電池用蓄電層>
 導電粒子又は半導体粒子が有機高分子中に埋め込まれている複合層、及び複合層上に設けられ、導電膜又は半導体膜からなる基材と、が積層された積層基材と、積層基材の基材上に設けられた絶縁層と、を有するものは、キャパシタ型蓄電池用蓄電層として有用である。
 キャパシタ型蓄電池用蓄電層において、複合層、導電膜又は半導体膜からなる基材、絶縁層は、第1の実施形態で説明した第1複合層12、第1基材13、第1絶縁層21とそれぞれ同義であり、好適な範囲についても同様である。
<Capacitor type storage battery storage layer>
A composite layer in which conductive particles or semiconductor particles are embedded in an organic polymer, and a base material formed on the composite layer and made of a conductive film or a semiconductor film; What has the insulating layer provided on the base material is useful as a power storage layer for capacitor-type storage batteries.
In the capacitor-type storage battery storage layer, the composite layer, the base material made of a conductive film or a semiconductor film, and the insulating layer are the first composite layer 12, the first base material 13, and the first insulating layer 21 described in the first embodiment. And the same applies to the preferred range.
 なお、日本出願2010-217128、及び日本出願2011-189599の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese application 2010-217128 and Japanese application 2011-189599 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
 以下、本発明の実施例について比較例と共に説明する。尚、本発明は下記実施例に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。 Hereinafter, examples of the present invention will be described together with comparative examples. The present invention is not limited to the following examples, and various modifications can be made without departing from the spirit of the present invention.
(実施例1)
 支持シートとして12μm厚のポリエチレンテレフタレートフィルム上に、複合層としてシリコーンゴム(常温での剪断弾性率:1×10Pa)とCuナノ粒子分散液(Cuナノ粒子径10nm、体積分率10wt%)を重量比で1:10の割合で混合した分散液を乾燥後の厚みが20μmとなるよう塗工乾燥した。この複合層(有機高分子中に埋め込まれた導電粒子(Cuナノ粒子)又はその粒子集合体の間の距離は50nm)上に、上記Cuナノ粒子分散液を単独で10μm厚みとなるように塗工、140℃以上で加熱し一様な金属板を形成し、これを導電膜からなる基材とし、蓄電基板1を得た。
Example 1
On a polyethylene terephthalate film having a thickness of 12 μm as a support sheet, silicone rubber (shear elastic modulus at normal temperature: 1 × 10 7 Pa) and Cu nanoparticle dispersion (Cu nanoparticle diameter: 10 nm, volume fraction: 10 wt%) as a composite layer The coating liquid was dried so that the thickness after drying was 20 μm. On this composite layer (the distance between the conductive particles embedded in the organic polymer (Cu nanoparticles) or the particle aggregate is 50 nm), the above Cu nanoparticle dispersion is applied alone to a thickness of 10 μm. Then, heating was performed at 140 ° C. or higher to form a uniform metal plate, which was used as a base material made of a conductive film, to obtain a power storage substrate 1.
 次に、メチルアクリレート、2-エチルヘキシルアクリレート、及び2-ヒドロキシエチルアクリレートを用い、これらを混合し、更に硬化剤を適量添加して、有機高分子である樹脂1を合成した。上記の樹脂に関してJIS-K7244に準拠した方法で粘弾性を測定したところ、25℃、1Hzの条件において樹脂1で貯蔵弾性率が1.2×10Pa、tanδが0.4であった。 Next, methyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate were mixed, and an appropriate amount of a curing agent was added to synthesize resin 1 as an organic polymer. When the viscoelasticity of the above resin was measured by a method in accordance with JIS-K7244, the storage elastic modulus was 1.2 × 10 5 Pa and tan δ was 0.4 under the conditions of 25 ° C. and 1 Hz.
 次に、ポリエチレンテレフタレートフィルム側でない蓄電基板1の導電膜からなる基材上に樹脂1を乾燥後の厚みが10μm厚となるようにバーコート法により塗工し、乾燥して、絶縁層1を形成すると共に、さらに絶縁層1上に2cm幅の銅箔を貼合し、導電路を形成した。
 その後、蓄電基板1の支持シートを剥離し、逆面(複合層)上にも同様に乾燥後厚みが10μm厚となるように樹脂1を塗工、乾燥し絶縁層2を形成すると共に、さらに絶縁層2上に2cm幅の銅箔を貼合し、導電路を形成して、試験用キャパシタ型蓄電池を作製した。
Next, the resin 1 is coated on the base material made of the conductive film of the electricity storage substrate 1 that is not on the polyethylene terephthalate film side by a bar coating method so that the thickness after drying becomes 10 μm, and dried to form the insulating layer 1. While forming, a 2 cm wide copper foil was further bonded onto the insulating layer 1 to form a conductive path.
Thereafter, the support sheet of the electricity storage substrate 1 is peeled off, and the resin 1 is applied to the opposite surface (composite layer) so that the thickness after drying is 10 μm, and the insulating layer 2 is further formed by drying. A copper foil having a width of 2 cm was bonded onto the insulating layer 2 to form a conductive path, and a capacitor type storage battery for test was produced.
(実施例2)
 実施例1で作製した蓄電基板1に対して、実施例1で作製した樹脂1を乾燥後の厚みが10μm厚となるようにバーコート法により塗工、乾燥し、絶縁層1を形成した。その絶縁層1上に2cm幅の銅箔を1mm間隔で平行に並べることで、2本の導電路を形成し、試験用キャパシタ型蓄電池を作製した。
(Example 2)
The insulating layer 1 was formed by applying and drying the resin 1 produced in Example 1 on the electricity storage board 1 produced in Example 1 by a bar coating method so that the thickness after drying was 10 μm. Two conductive paths were formed on the insulating layer 1 by arranging copper foils having a width of 2 cm in parallel at intervals of 1 mm, and a test capacitor type storage battery was produced.
(実施例3)
 支持シートとして12μm厚のポリエチレンテレフタレートフィルム(常温での剪断弾性率3.8×10Pa)上に、有機高分子として20μm厚のシリコーンゴム(常温での剪断弾性率:1×10Pa)を設け、この上に、Alを、対向ターゲット型マグネトロンスパッタ法により、基板温度を常温に保ち、7eVの粒子エネルギーを持つよう電圧を印加し、スパッタを行い、複合層(有機高分子中に埋め込まれた導電粒子(Al粒子)又はその粒子集合体の間の距離は45nm)を形成すると共に、複合層上に100nm厚みAl層が形成し、これを導電膜からなる基材とし、蓄電基板2を得た。
(Example 3)
On a 12 μm-thick polyethylene terephthalate film (shear elastic modulus at normal temperature 3.8 × 10 9 Pa) as a support sheet, 20 μm-thick silicone rubber (shear elastic modulus at normal temperature: 1 × 10 7 Pa) as an organic polymer On this substrate, Al is sputtered by applying a voltage so that the substrate temperature is kept at room temperature and having a particle energy of 7 eV by facing target type magnetron sputtering, and a composite layer (embedded in an organic polymer) And a 100 nm thick Al layer is formed on the composite layer, and this is used as a base material made of a conductive film. Got.
 次に、蓄電基板1に代えて、蓄電基板2を使用する以外は、実施例2と同様の作製方法で試験用キャパシタ型蓄電池を作製した。 Next, a capacitor type storage battery for testing was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 2 was used instead of the power storage substrate 1.
(実施例4)
 実施例1で作製した蓄電基板1のポリエチレンテレフタレートフィルム側でない側、つまり導電膜(Cu層)からなる基材上にCuナノ粒子を塗工し120℃以下で乾燥させ、当該基材の表面にCuナノ粒子又はその粒子集合体からなる凹凸(凸部の最大幅及び最大高さ80nm、凹部の幅100nm)を形成し、蓄電基板3を作製した。
Example 4
On the surface of the electricity storage substrate 1 produced in Example 1 that is not on the polyethylene terephthalate film side, that is, on the base material made of a conductive film (Cu layer), Cu nanoparticles are applied and dried at 120 ° C. or lower, and the surface of the base material is Concavities and convexities (the maximum width and maximum height of the protrusions and the width of the recesses of 100 nm) made of Cu nanoparticles or particle aggregates thereof were formed, and the electricity storage substrate 3 was produced.
 次に、蓄電基板1に代えて、蓄電基板3を使用する以外は、実施例2と同様の作製方法で、試験用キャパシタ型蓄電池を作製した。 Next, a test type capacitor type storage battery was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 3 was used instead of the power storage substrate 1.
(実施例5)
 支持シートとして12μm厚のポリエチレンテレフタレートフィルム(常温での剪断弾性率3.8×10Pa)上に、有機高分子として20μm厚のシリコーンゴム(常温での剪断弾性率:3×10Pa)を設け、この上に、Alを、対向ターゲット型マグネトロンスパッタ法により、基板温度を常温に保ち、8eVの粒子エネルギーを持つよう電圧を印加し、スパッタを行い、複合層(有機高分子中に埋め込まれた導電粒子(Al粒子)又はその粒子集合体の間の距離は51nm)を形成すると共に、100nm厚みAl層が形成し、これを導電膜からなる基材とし、蓄電基板4を得た。
(Example 5)
On a 12 μm thick polyethylene terephthalate film (shear elastic modulus at normal temperature 3.8 × 10 9 Pa) as a support sheet, 20 μm thick silicone rubber (shear elastic modulus at normal temperature: 3 × 10 7 Pa) as an organic polymer On the substrate, Al is applied by a facing target type magnetron sputtering method, the substrate temperature is kept at room temperature, a voltage is applied so as to have a particle energy of 8 eV, sputtering is performed, and a composite layer (embedded in an organic polymer) is formed. The electrically conductive particles (Al particles) or the distance between the particle aggregates were 51 nm), and a 100 nm-thick Al layer was formed.
 次に、蓄電基板1に代えて、蓄電基板4を使用する以外は、実施例2と同様の作製方法で試験用キャパシタ型蓄電池を作製した。 Next, a test capacitor type storage battery was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 4 was used instead of the power storage substrate 1.
(実施例6)
 蓄電基板4の導電膜(Al層)からなる基材上に、Snを対向ターゲット型マグネトロンスパッタ法により基板温度を常温に保ち、8eVの粒子エネルギーを持つよう電圧を印加しスパッタを行い、当該基材の表面にSn粒子又はその粒子集合体からなる凹凸(凸部の最大幅及び最大高さ100nm、凹部の幅50nm)を形成し、蓄電基板5を作製した。
(Example 6)
On the base material made of the conductive film (Al layer) of the electricity storage substrate 4, Sn is sputtered by applying a voltage so as to have a particle energy of 8 eV while keeping the substrate temperature at room temperature by the opposed target type magnetron sputtering method. Concavities and convexities (the maximum width and the maximum height of the protrusions and the width of the recesses of 50 nm) made of Sn particles or particle aggregates were formed on the surface of the material, and the electricity storage substrate 5 was manufactured.
 次に、蓄電基板1に代えて、蓄電基板5を使用する以外は、実施例2と同様の作製方法で、試験用キャパシタ型蓄電池を作製した。 Next, a test capacitor-type storage battery was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 5 was used instead of the power storage substrate 1.
(実施例7)
 まず、モノマーとして、2-エチルヘキシルアクリレート、及び2-ヒドロキシエチルアクリレートを用い、これらを混合し、更に硬化剤を適量添加して、有機高分子である樹脂2を合成した。
 また、モノマーとして、メチルアクリレート、2-エチルヘキシルアクリレート、及び2-ヒドロキシエチルアクリレートを用い、これらを混合し、更に硬化剤を適量添加して、有機高分子である樹脂3を合成した。
(Example 7)
First, 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate were used as monomers, and these were mixed, and an appropriate amount of a curing agent was added to synthesize resin 2 as an organic polymer.
In addition, methyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate were used as monomers, mixed, and an appropriate amount of a curing agent was added to synthesize resin 3 as an organic polymer.
 ここで、上記の樹脂に関してJIS-K7244に準拠した方法で粘弾性を測定したところ、25℃、1Hzの条件において、樹脂2で貯蔵弾性率が5.1×10Pa、誘電正接tanδが0.4、樹脂3で貯蔵弾性率が1.2×10Pa、誘電正接tanδが0.4であった。 Here, when the viscoelasticity of the above resin was measured by a method in accordance with JIS-K7244, the storage elastic modulus was 5.1 × 10 4 Pa and the dielectric loss tangent tan δ was 0 under the conditions of 25 ° C. and 1 Hz. 4. Resin 3 had a storage elastic modulus of 1.2 × 10 5 Pa and a dielectric loss tangent tan δ of 0.4.
 支持シートとしての25μm厚のポリエチレンテレフタレートフィルムに、樹脂3を乾燥後の厚みが10μm厚となるようにバーコート法により塗工し乾燥した後、さらに樹脂2を乾燥後の厚みが10μm厚となるように塗工・乾燥し、2層の接着剤層からなる絶縁層3を得た。 After a resin 3 is applied to a 25 μm thick polyethylene terephthalate film as a support sheet by a bar coating method so that the thickness after drying is 10 μm and dried, the thickness after drying the resin 2 further becomes 10 μm thick. Thus, the insulating layer 3 which consists of two adhesive layers was obtained.
 絶縁層3の樹脂2からなる接着剤層の表面に、蓄電基板1を貼合し(蓄電基板1の表面に形成した導電膜(Cu層)からなる基材が対向して貼合し)、絶縁層の樹脂2からなる接着剤層の表面に、2cm幅の銅箔を1mm間隔で平行に並べ貼合して、2本の導電路を形成することで、試験用キャパシタ型蓄電池を作製した。 The power storage substrate 1 is bonded to the surface of the adhesive layer made of the resin 2 of the insulating layer 3 (the base material made of the conductive film (Cu layer) formed on the surface of the power storage substrate 1 is bonded oppositely), A test-capacitor type storage battery was prepared by forming two conductive paths by arranging and bonding 2 cm-wide copper foils in parallel at 1 mm intervals on the surface of the adhesive layer made of the resin 2 of the insulating layer. .
(比較例1)
 支持シートとして12μm厚のポリエチレンテレフタレートフィルム上に、複合層としてシリコーンゴム(常温での剪断弾性率:1×10Pa)とCuナノ粒子分散液(Cuナノ粒子径10nm、体積分率10wt%)を重量比で1:10の割合で混合した分散液を乾燥後の厚みが20μmとなるよう塗工乾燥し、蓄電基板6を得た。
 なお、複合層における有機高分子中に埋め込まれた導電粒子(Cuナノ粒子)又はその粒子集合体の間の距離は50nmであった。
(Comparative Example 1)
On a polyethylene terephthalate film having a thickness of 12 μm as a support sheet, silicone rubber (shear elastic modulus at normal temperature: 1 × 10 7 Pa) and Cu nanoparticle dispersion (Cu nanoparticle diameter: 10 nm, volume fraction: 10 wt%) as a composite layer Was dispersed and coated so that the thickness after drying was 20 μm, whereby an electricity storage substrate 6 was obtained.
The distance between the conductive particles (Cu nanoparticles) embedded in the organic polymer in the composite layer or the particle aggregates was 50 nm.
 次に、蓄電基板1に代えて、蓄電基板6を使用する以外は、実施例1と同様の作製方法で試験用キャパシタ型蓄電池を作製した。 Next, a test capacitor type storage battery was manufactured by the same manufacturing method as in Example 1 except that the power storage substrate 6 was used instead of the power storage substrate 1.
(比較例2)
 蓄電基板1に代えて、蓄電基板6を使用する以外は、実施例2と同様の作製方法で試験用キャパシタ型蓄電池を作製した。
(Comparative Example 2)
A capacitor type storage battery for test was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 6 was used instead of the power storage substrate 1.
(比較例3)
 支持シートとして12μm厚のポリエチレンテレフタレートフィルム上に、Cuナノ粒子分散液(Cuナノ粒子径10nm、体積分率10wt%)を単独で10μm厚みとなるように塗工、140℃以上で加熱し一様な金属板を形成し、これを導電膜からなる基材とし、蓄電基板7を得た。
(Comparative Example 3)
On a 12 μm thick polyethylene terephthalate film as a support sheet, a Cu nanoparticle dispersion (Cu nanoparticle diameter: 10 nm, volume fraction: 10 wt%) was applied alone to a thickness of 10 μm, and heated at 140 ° C. or higher uniformly. A metal plate was formed, and this was used as a base material made of a conductive film to obtain a power storage substrate 7.
 蓄電基板1に代えて、蓄電基板7を使用する以外は、実施例2と同様の作製方法で試験用キャパシタ型蓄電池を作製した。 A capacitor-type storage battery for test was manufactured by the same manufacturing method as in Example 2 except that the power storage substrate 7 was used instead of the power storage substrate 1.
(評価)
 各例で作製した試験用キャパシタ型蓄電池型蓄電池について、定電流充電装置を用いて電気容量を評価した。評価の方法を以下に示す。また、結果を表1に示す。
(Evaluation)
About the capacitor type storage battery type battery for test produced in each example, the electric capacity was evaluated using a constant current charging device. The evaluation method is shown below. The results are shown in Table 1.
(1)被測定物に対し10Cのレートで充電を行い、電源から切り離した状態で10~720時間放置した。
(2)上記(1)の後に1Cのレートで放電を行った。
(3)放電電気量を測定、電気量が60mAh以下となる経過日数を保持時間とし、比較した。
 製品としての合格ラインとしては保持日数が20日以上を基準とした。
(1) The object to be measured was charged at a rate of 10 C and left for 10 to 720 hours in a state disconnected from the power source.
(2) After the above (1), discharging was performed at a rate of 1C.
(3) The amount of electricity discharged was measured, and the elapsed days when the amount of electricity was 60 mAh or less was taken as the holding time and compared.
The acceptable line as a product was based on a retention day of 20 days or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、比較例の試験用キャパシタ型蓄電池では、放置日数が10日も持たないが、実施例の試験用キャパシタ型蓄電池の場合は保持日数が大幅に向上していることがわかる。 As shown in Table 1, the test capacitor type storage battery of the comparative example does not have a standing period of 10 days, but in the case of the test capacitor type storage battery of the example, the retention days are significantly improved. Recognize.
 比較例1、2の試験用キャパシタ型蓄電池では、金属粒子同士の接触が不十分なため放電開始時の電圧降下が大きく必要となる電気容量は放置時間が短い段階で満足できなくなる。一方で、比較例3の試験用キャパシタ型蓄電池において電圧降下は小さくなっており放置開始時の電気容量は大きいが、熱緩和によるエネルギ放出があるため保持特性が悪く基準を満たさない。 In the test capacitor type storage batteries of Comparative Examples 1 and 2, the electrical capacity that requires a large voltage drop at the start of discharge is not satisfactory when the standing time is short due to insufficient contact between the metal particles. On the other hand, in the test capacitor type storage battery of Comparative Example 3, the voltage drop is small and the electric capacity at the start of standing is large, but the retention characteristics are poor and the standard is not satisfied because there is energy release due to thermal relaxation.
 一方、実施例1,3の試験用キャパシタ型蓄電池では、導電性と保持特性を保てているため基準を満たした。
 また、実施例4の試験用キャパシタ型蓄電池では、導電膜からなる基材の一方の面側に複合層に含まれる導電粒子又はその粒子集合体が存在すると共に、他方の面には導電粒子又はその粒子集合体からなる凹凸が存在しているためプラズモンが発生しやすい状態になっており、また、表面積が大きくなるため表面プラズモン密度が向上し、容量が向上したものと考えられる。
 また、実施例5の試験用キャパシタ型蓄電池では、導電膜からなる基材が導電粒子で形成されているため、高い容量と保持特性が同時に満たされている。
 また、実施例6の試験用キャパシタ型蓄電池では、導電膜からなる基材が導電粒子で形成されていると共に、導電膜からなる基材の一方の面側に複合層に含まれる導電粒子又はその粒子集合体が存在すると共に、他方の面には導電粒子又はその粒子集合体からなる凹凸が存在しているためプラズモンが発生しやすい状態になっており、また、表面積が大きくなるため表面プラズモン密度が向上し、容量が飛躍的に向上したものと考えられる。
On the other hand, the test capacitor type storage batteries of Examples 1 and 3 satisfied the standard because they maintained conductivity and retention characteristics.
Further, in the test capacitor type storage battery of Example 4, the conductive particles contained in the composite layer or a particle aggregate thereof are present on one side of the base material made of the conductive film, and the conductive particles or It is considered that plasmons are likely to be generated due to the presence of the irregularities formed by the particle aggregate, and that the surface plasmon density is improved and the capacity is improved because the surface area is increased.
Further, in the test capacitor type storage battery of Example 5, since the base material made of the conductive film is formed of conductive particles, high capacity and retention characteristics are satisfied at the same time.
Further, in the test capacitor-type storage battery of Example 6, the base material made of the conductive film is formed of conductive particles, and the conductive particles contained in the composite layer on one surface side of the base material made of the conductive film or its In addition to the presence of particle aggregates, the other surface has irregularities made of conductive particles or particle aggregates, so that plasmons are likely to be generated, and the surface area is large, resulting in surface plasmon density. It is considered that the capacity has been greatly improved.
 以上の結果から、実施例の試験用キャパシタ型蓄電池では、高静電容量と高い保持特性を両立できる蓄電池が得られることがわかる。 From the above results, it can be seen that the capacitor type storage battery for testing of the example can provide a storage battery that can achieve both high capacitance and high retention characteristics.

Claims (27)

  1.  第1導電粒子又は第1半導体粒子が有機高分子中に埋め込まれている第1複合層と、前記第1複合層上に設けられ、第1導電膜又は第1半導体膜からなる第1基材と、が積層された第1積層基材と
     前記第1積層基材の第1基材上に設けられた第1絶縁層と、
     前記第1積層基材の第1複合層上に設けられた第2絶縁層と、
     前記第1絶縁層上で長尺方向に延在して設けられた第1導電路と、
     前記第2絶縁層上で長尺方向に延在し、前記第1導電路に平行に設けられた第2導電路と、
     を有するキャパシタ型蓄電池。
    A first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first base material that is provided on the first composite layer and includes the first conductive film or the first semiconductor film And a first insulating layer provided on the first substrate of the first laminated substrate,
    A second insulating layer provided on the first composite layer of the first laminated substrate;
    A first conductive path extending in the longitudinal direction on the first insulating layer;
    A second conductive path extending in a longitudinal direction on the second insulating layer and provided in parallel to the first conductive path;
    A capacitor-type storage battery.
  2.  第1導電粒子又は第1半導体粒子が有機高分子中に埋め込まれている第1複合層と、前記第1複合層上に設けられた第1導電膜又は第1半導体膜からなる第1基材と、が積層された第1積層基材と、
     前記第1積層基材の第1基材上に設けられた第1絶縁層と、
     前記第1絶縁層上で該第1積層基材の長尺方向に延在して設けられた第1導電路と、
     前記第1絶縁層上で該第1積層基材の長尺方向に延在し、前記第1導電路に平行に設けられた第2導電路と、
     を有するキャパシタ型蓄電池。
    A first base material comprising a first composite layer in which first conductive particles or first semiconductor particles are embedded in an organic polymer, and a first conductive film or a first semiconductor film provided on the first composite layer. And a first laminated base material laminated,
    A first insulating layer provided on the first substrate of the first laminated substrate;
    A first conductive path provided on the first insulating layer so as to extend in the longitudinal direction of the first laminated substrate;
    A second conductive path extending in the longitudinal direction of the first laminated base material on the first insulating layer and provided in parallel to the first conductive path;
    A capacitor-type storage battery.
  3.  前記第1導電路及び前記第2導電路の外面上に連続して設けられた第2絶縁層と、
     前記第2絶縁層上に設けられた第2導電膜又は第2半導体膜からなる第2基材と、第2基材上に設けられた第2導電粒子又は第2半導体粒子が有機高分子中に埋め込まれている第2複合層と、がこの順に積層された第2積層基材と、
     を有する請求項2に記載のキャパシタ型蓄電池。
    A second insulating layer continuously provided on outer surfaces of the first conductive path and the second conductive path;
    A second base material composed of a second conductive film or a second semiconductor film provided on the second insulating layer, and a second conductive particle or second semiconductor particle provided on the second base material are in an organic polymer. The second composite layer embedded in this order, a second laminated base material laminated in this order,
    The capacitor-type storage battery according to claim 2, comprising:
  4.  前記第1複合層に含まれる第1導電粒子又は第1半導体粒子の粒子間の距離は、30nm以上3000nm以下である請求項1~請求項3のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor-type storage battery according to any one of claims 1 to 3, wherein a distance between the first conductive particles or the first semiconductor particles contained in the first composite layer is 30 nm or more and 3000 nm or less.
  5.  前記第2複合層に含まれる第2導電粒子又は第2半導体粒子の粒子間の距離は、30nm以上3000nm以下である請求項3又は請求項4に記載のキャパシタ型蓄電池。 The capacitor type storage battery according to claim 3 or 4, wherein a distance between the particles of the second conductive particles or the second semiconductor particles contained in the second composite layer is 30 nm or more and 3000 nm or less.
  6.  前記第1絶縁層が接する前記第1基材の表面が凹凸を有し、前記凹凸の凹部の幅が30nm以上3000nm以下である請求項1~請求項5のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor type according to any one of claims 1 to 5, wherein a surface of the first base material in contact with the first insulating layer has unevenness, and a width of the concave portion of the unevenness is 30 nm or more and 3000 nm or less. Storage battery.
  7.  前記第2絶縁層が接する前記第2基材の表面が凹凸を有し、前記凹凸の凹部の幅が30nm以上3000nm以下である請求項3~請求項6のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor type according to any one of claims 3 to 6, wherein a surface of the second base material in contact with the second insulating layer has irregularities, and a width of the concave portion of the irregularities is not less than 30 nm and not more than 3000 nm. Storage battery.
  8.  前記第1絶縁層は、前記第1基材に隣接して設けられる第1接着剤層、及び前記第1接着剤層よりも前記第1基材の表面から遠い側に設けられる第2接着剤層を含む2層以上からなる請求項6又は請求項7に記載のキャパシタ型蓄電池。 The first insulating layer includes a first adhesive layer provided adjacent to the first base material, and a second adhesive provided on a side farther from the surface of the first base material than the first adhesive layer. The capacitor type storage battery according to claim 6 or 7, comprising two or more layers including layers.
  9.  前記第2絶縁層は、前記第2基材に隣接して設けられる第3接着剤層、及び前記第3接着剤層よりも前記第2基材の表面から遠い側に設けられる第4接着剤層を含む2層以上からなる請求項7又は請求項8に記載のキャパシタ型蓄電池。 The second insulating layer includes a third adhesive layer provided adjacent to the second base material, and a fourth adhesive provided on a side farther from the surface of the second base material than the third adhesive layer. The capacitor-type storage battery according to claim 7 or 8, comprising two or more layers including layers.
  10.  前記第1接着剤層は、貯蔵弾性率が、1×10Pa以上1×10Pa未満の範囲にある有機高分子層であり、前記第2接着剤層は、貯蔵弾性率が1×10Pa以上の有機高分子層である請求項8又は請求項9に記載のキャパシタ型蓄電池。 The first adhesive layer is an organic polymer layer having a storage elastic modulus in a range of 1 × 10 4 Pa or more and less than 1 × 10 5 Pa, and the second adhesive layer has a storage elastic modulus of 1 ×. The capacitor-type storage battery according to claim 8 or 9, which is an organic polymer layer of 10 5 Pa or more.
  11.  前記第1接着剤層は、誘電正接(tanδ)が0.1以上1以下の範囲にある有機高分子層であり、前記第2接着剤層は、誘電正接(tanδ)が0.5以下の有機高分子層である請求項8~請求項10のいずれか1項に記載のキャパシタ型蓄電池。 The first adhesive layer is an organic polymer layer having a dielectric loss tangent (tan δ) in the range of 0.1 to 1, and the second adhesive layer has a dielectric loss tangent (tan δ) of 0.5 or less. The capacitor-type storage battery according to any one of claims 8 to 10, which is an organic polymer layer.
  12.  前記第2接着剤層が、樹脂中に無機化合物粉を分散させ形成した層である請求項8~請求項11のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor-type storage battery according to any one of claims 8 to 11, wherein the second adhesive layer is a layer formed by dispersing inorganic compound powder in a resin.
  13.  前記第2接着剤層が、高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層である請求項8~請求項12のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor-type storage battery according to any one of claims 8 to 12, wherein the second adhesive layer is a layer formed by impregnating a porous material using a polymer resin with a resin.
  14.  更に、前記第1接着剤層と前記第2接着剤層の間に、第1強度確保層を有する請求項8~請求項13のいずれか1項に記載のキャパシタ型蓄電池。 14. The capacitor-type storage battery according to claim 8, further comprising a first strength securing layer between the first adhesive layer and the second adhesive layer.
  15.  前記第3接着剤層は、貯蔵弾性率が、1×10Pa以上1×10Pa未満の範囲にあり、前記第4接着剤層は、貯蔵弾性率が1×10Pa以上の有機高分子層である有機高分子層である請求項9~請求項14のいずれか1項に記載のキャパシタ型蓄電池。 The third adhesive layer has a storage elastic modulus in a range of 1 × 10 4 Pa or more and less than 1 × 10 5 Pa, and the fourth adhesive layer has an organic storage elastic modulus of 1 × 10 5 Pa or more. The capacitor-type storage battery according to any one of claims 9 to 14, which is an organic polymer layer which is a polymer layer.
  16.  前記第3接着剤層は、誘電正接(tanδ)が0.1以上1以下の範囲にある有機高分子層であり、前記第4接着剤層は、誘電正接(tanδ)が0.5以下の有機高分子層である請求項9~請求項15のいずれか1項に記載のキャパシタ型蓄電池。 The third adhesive layer is an organic polymer layer having a dielectric loss tangent (tan δ) in the range of 0.1 to 1, and the fourth adhesive layer has a dielectric loss tangent (tan δ) of 0.5 or less. The capacitor-type storage battery according to any one of claims 9 to 15, which is an organic polymer layer.
  17.  前記第4接着剤層が、樹脂中に無機化合物粉を分散させ形成した層である請求項9~請求項16のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor-type storage battery according to any one of claims 9 to 16, wherein the fourth adhesive layer is a layer formed by dispersing inorganic compound powder in a resin.
  18.  前記第4接着剤層が、高分子樹脂を用いた多孔質材料に樹脂を含浸させ形成した層である請求項9~請求項17のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor-type storage battery according to any one of claims 9 to 17, wherein the fourth adhesive layer is a layer formed by impregnating a porous material using a polymer resin with a resin.
  19.  更に、前記第3接着剤層と第4接着剤層の間に、第2強度確保層を有する請求項9~請求項18のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor-type storage battery according to any one of claims 9 to 18, further comprising a second strength securing layer between the third adhesive layer and the fourth adhesive layer.
  20.  前記第1導電膜が、Fe、Al、Co、Cr、Ni、Ag、Mg、Cu、Sn、Au、Pt、Pd、In、Ti,Ta及びCからなる群より選択される少なくとも一つの元素、前記群より選択される少なくとも二種の元素で構成される合金若しくは共析物、又は前記群より選択される少なくとも一つの元素を含み更に周期律表の3族~14族からなる群より選択される少なくとも一つの元素を含んで構成される合金若しくは共析物、を含有する請求項1~請求項19のいずれか1項に記載のキャパシタ型蓄電池。 The first conductive film is at least one element selected from the group consisting of Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, In, Ti, Ta, and C; An alloy or eutectoid composed of at least two elements selected from the above group, or at least one element selected from the above group, and further selected from the group consisting of groups 3 to 14 of the periodic table The capacitor type storage battery according to any one of claims 1 to 19, comprising an alloy or a eutectoid containing at least one element.
  21.  前記第2導電膜が、Fe、Al、Co、Cr、Ni、Ag、Mg、Cu、Sn、Au、Pt、Pd、In、Ti,Ta及びCからなる群より選択される少なくとも一つの元素、前記群より選択される少なくとも二種の元素で構成される合金若しくは共析物、又は前記群より選択される少なくとも一つの元素を含み更に周期律表の3族~14族からなる群より選択される少なくとも一つの元素を含んで構成される合金若しくは共析物、を含有する請求項3~請求項20のいずれか1項に記載のキャパシタ型蓄電池。 The second conductive film is at least one element selected from the group consisting of Fe, Al, Co, Cr, Ni, Ag, Mg, Cu, Sn, Au, Pt, Pd, In, Ti, Ta, and C; An alloy or eutectoid composed of at least two elements selected from the above group, or at least one element selected from the above group, and further selected from the group consisting of groups 3 to 14 of the periodic table The capacitor type storage battery according to any one of claims 3 to 20, comprising an alloy or a eutectoid containing at least one element.
  22.  前記第1半導体膜が、ニッケルナイトライド、アナターゼ構造のチタン酸化物、酸化錫混入の酸化インジウム、酸化錫、ジルコニウム酸化物、ガリウムナイトライド、アルミニウムナイトライド、シリコン及びカーボンからなる群より選択される少なくとも一種の化合物を含有する請求項1~請求項21のいずれか1項に記載のキャパシタ型蓄電池。 The first semiconductor film is selected from the group consisting of nickel nitride, anatase structure titanium oxide, tin oxide mixed indium oxide, tin oxide, zirconium oxide, gallium nitride, aluminum nitride, silicon and carbon. The capacitor-type storage battery according to any one of claims 1 to 21, comprising at least one compound.
  23.  前記第2半導体膜が、ニッケルナイトライド、アナターゼ構造のチタン酸化物、酸化錫混入の酸化インジウム、酸化錫、ジルコニウム酸化物、ガリウムナイトライド、アルミニウムナイトライド、シリコン及びカーボンからなる群より選択される少なくとも一種の化合物を含有する請求項3~請求項22のいずれか1項に記載のキャパシタ型蓄電池。 The second semiconductor film is selected from the group consisting of nickel nitride, anatase structure titanium oxide, tin oxide mixed indium oxide, tin oxide, zirconium oxide, gallium nitride, aluminum nitride, silicon and carbon. The capacitor-type storage battery according to any one of claims 3 to 22, comprising at least one compound.
  24.  常温で不純物準位から50%以上の励起電子が発生するよう、前記化合物にn型またはp型の遷移金属、希土類金属又は非磁性金属をドープしてなる請求項22又は請求項23に記載のキャパシタ型蓄電池。 24. The compound according to claim 22 or 23, wherein the compound is doped with an n-type or p-type transition metal, rare earth metal or nonmagnetic metal so that 50% or more of excited electrons are generated from an impurity level at room temperature. Capacitor type storage battery.
  25.  前記第1絶縁層の同一面上に、複数列の前記第1導電路及び前記第2導電路を備える請求項2~請求項24のいずれか1項に記載のキャパシタ型蓄電池。 The capacitor-type storage battery according to any one of claims 2 to 24, comprising a plurality of rows of the first conductive paths and the second conductive paths on the same surface of the first insulating layer.
  26.  前記複数列の第1導電路に接続する第1端子と、
     前記複数列の第2導電路に接続する第2端子と、
     を備え、
     前記第1端子及び前記第2端子は、前記第1導電路及び前記第2導電路から離れるに従って幅が狭くなる部分を有しており、この部分において、前記第1導電路と同一方向に延伸する2辺は、互いになす角度が30°以下である請求項25に記載のキャパシタ型蓄電池。
    A first terminal connected to the plurality of rows of first conductive paths;
    A second terminal connected to the plurality of rows of second conductive paths;
    With
    The first terminal and the second terminal have a portion whose width becomes narrower as the distance from the first conductive path and the second conductive path increases. In this part, the first terminal and the second terminal extend in the same direction as the first conductive path. 26. The capacitor-type storage battery according to claim 25, wherein an angle formed between the two sides is 30 ° or less.
  27.  導電粒子又は半導体粒子が有機高分子中に埋め込まれている複合層と、前記複合層上に設けられ、導電膜又は半導体膜からなる基材と、が積層された積層基材と
     前記積層基材の基材上に設けられた絶縁層と、
     を有するキャパシタ型蓄電池用蓄電層。
    A laminated base material in which conductive layers or semiconductor particles are embedded in an organic polymer, and a base material formed on the composite layer and made of a conductive film or a semiconductor film, and the laminated base material An insulating layer provided on the base material of
    An electricity storage layer for a capacitor-type storage battery.
PCT/JP2011/072258 2010-09-28 2011-09-28 Capacitive storage cell and storage layer for capacitive storage cell WO2012043667A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010217128 2010-09-28
JP2010-217128 2010-09-28
JP2011189599A JP5901181B2 (en) 2010-09-28 2011-08-31 Capacitor-type storage battery, storage layer for capacitor-type storage battery
JP2011-189599 2011-08-31

Publications (1)

Publication Number Publication Date
WO2012043667A1 true WO2012043667A1 (en) 2012-04-05

Family

ID=45893106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072258 WO2012043667A1 (en) 2010-09-28 2011-09-28 Capacitive storage cell and storage layer for capacitive storage cell

Country Status (2)

Country Link
JP (1) JP5901181B2 (en)
WO (1) WO2012043667A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116668A1 (en) * 2008-03-21 2009-09-24 学校法人明星学苑 Capacitive storage cell
JP2009231573A (en) * 2008-03-24 2009-10-08 Tama Tlo Ltd Capacitor type storage
WO2009142280A1 (en) * 2008-05-22 2009-11-26 学校法人明星学苑 Paired low-characteristic impedance power source line and ground line structure
JP2011211105A (en) * 2010-03-30 2011-10-20 Furukawa Electric Co Ltd:The Capacitor type accumulator
JP2011216238A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Self-light-emitting road rivet
JP2011216556A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Capacitor type storage battery, storage layer for capacitor type storage battery, and on-board storage system
JP2011228654A (en) * 2010-03-30 2011-11-10 Incorporated Educational Institution Meisei Capacitor-type storage battery, substrate for capacitor-type storage battery and power storage layer for capacitor-type storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116668A1 (en) * 2008-03-21 2009-09-24 学校法人明星学苑 Capacitive storage cell
JP2009231573A (en) * 2008-03-24 2009-10-08 Tama Tlo Ltd Capacitor type storage
WO2009142280A1 (en) * 2008-05-22 2009-11-26 学校法人明星学苑 Paired low-characteristic impedance power source line and ground line structure
JP2011211105A (en) * 2010-03-30 2011-10-20 Furukawa Electric Co Ltd:The Capacitor type accumulator
JP2011228654A (en) * 2010-03-30 2011-11-10 Incorporated Educational Institution Meisei Capacitor-type storage battery, substrate for capacitor-type storage battery and power storage layer for capacitor-type storage battery
JP2011216238A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Self-light-emitting road rivet
JP2011216556A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Capacitor type storage battery, storage layer for capacitor type storage battery, and on-board storage system

Also Published As

Publication number Publication date
JP5901181B2 (en) 2016-04-06
JP2012094827A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
Cheng et al. Interlayer structure engineering of MXene‐based capacitor‐type electrode for hybrid micro‐supercapacitor toward battery‐level energy density
Zhang et al. Challenges and opportunities of polymer nanodielectrics for capacitive energy storage
TWI601330B (en) Electrode material and energy storage apparatus
Chen et al. A three‐dimensionally interconnected carbon nanotube–conducting polymer hydrogel network for high‐performance flexible battery electrodes
Xiong et al. Graphitic petal electrodes for all‐solid‐state flexible supercapacitors
Behera et al. A review on polyvinylidene fluoride polymer based nanocomposites for energy storage applications
Zhang et al. Solid-state, flexible, high strength paper-based supercapacitors
US8974967B2 (en) Nanotube-based nanomaterial membrane
JP2020503639A (en) Current collectors, their electrode sheets and electrochemical devices
WO2012135238A1 (en) Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles
KR20160107362A (en) Three-dimensional battery with hybrid nano-carbon layer
KR20130140034A (en) Anode material comprising nanofibres for a lithium-ion cell
CN104577129A (en) electrochemical device structure containing graphene
WO2004023584A1 (en) Composite current collector
EP2367176A2 (en) Conductive resin film, collector and manufacturing process therefor
CN103903869A (en) Paper super capacitor and preparing method thereof
US9530573B2 (en) Electrode structure, method of manufacturing the same, and energy storage device having the same
KR20200005494A (en) Grid current collector and associated devices and methods
TW201007792A (en) Electrodes for electric double layer devices
Uyor et al. Advancement on suppression of energy dissipation of percolative polymer nanocomposites: a review on graphene based
KR20160129939A (en) Current collector
JP5901181B2 (en) Capacitor-type storage battery, storage layer for capacitor-type storage battery
JP5881963B2 (en) Capacitor-type storage battery, capacitor-type storage battery substrate, and capacitor-type storage battery storage layer
JP5705446B2 (en) Capacitor-type storage battery and storage layer for capacitor-type storage battery
CN109346211B (en) Composite structure transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829220

Country of ref document: EP

Kind code of ref document: A1