WO2012043456A1 - Device for isolating spirillum and isolation method - Google Patents

Device for isolating spirillum and isolation method Download PDF

Info

Publication number
WO2012043456A1
WO2012043456A1 PCT/JP2011/071849 JP2011071849W WO2012043456A1 WO 2012043456 A1 WO2012043456 A1 WO 2012043456A1 JP 2011071849 W JP2011071849 W JP 2011071849W WO 2012043456 A1 WO2012043456 A1 WO 2012043456A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
bacteria
spiral
campylobacter
bacterium
Prior art date
Application number
PCT/JP2011/071849
Other languages
French (fr)
Japanese (ja)
Inventor
伸二 山崎
昌博 朝倉
Original Assignee
扶桑薬品工業株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扶桑薬品工業株式会社, 公立大学法人大阪府立大学 filed Critical 扶桑薬品工業株式会社
Priority to JP2012536431A priority Critical patent/JP5963675B2/en
Publication of WO2012043456A1 publication Critical patent/WO2012043456A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/20Assays involving biological materials from specific organisms or of a specific nature from bacteria from Spirochaetales (O), e.g. Treponema, Leptospira

Definitions

  • the present invention relates to a novel device for separating spiral bacteria and a separation method that can be used for testing spiral bacteria such as Campylobacter in a specimen (clinical specimen, food, etc.).
  • Campylobacter jejuni and Campylobacter coli are designated as food poisoning bacteria, and both of these species account for 90% to 95% or more of Campylobacter infection-causing bacteria.
  • Non-Patent Document 1 used a mixed cellulose filter with a pore size of 0.65 ⁇ m to physically separate the bacteria by motility.
  • Non-Patent Document 4 Developed charcoal, ferrous sulfate and sodium pyruvate, casein hydrolyzate, sodium deoxycholate instead of blood, and cefoperazone as an antibacterial agent.
  • Modified ⁇ CCDA medium using amphotericin B Amphotericin B; suppresses fungal growth
  • Non-Patent Document 5 a blood-free medium developed by Karmali et al., A Karmali medium containing charcoal, sodium pyruvate, cefoperazone, and cycloheximide (Non-patent Document 5) are known.
  • Non-patent Document 6 For example, C. fetus subsp. Fetus, C. cinaedi (current Helicobacter cinaedi), C. fennelliae, C. hyointestinalis, etc. are sensitive to Cephalothin and do not grow in Butzler medium containing this. In addition, Goosens and Butzler oppose the use of a medium containing an antibacterial agent and recommend the use of a filtration culture method using a filter (Non-patent Document 6). In 1998, Roux and Lastvica performed filter filtration culture using non-selective medium at 37 ° C under hydrogenated microaerobic conditions (Cape Town Protocol), and C. ⁇ concisus, C. upsaliensis, Various bacterial species such as C. fetus, C. hyointestinalis, and C. lari were isolated (Non-patent Document 7).
  • the separation medium containing an antibacterial agent is a medium mainly for the separation of C. jejuni and C. coli, and none can be applied to all Campylobacter species.
  • the filter method that can be separated regardless of the species of Campylobacter spp. Is mentioned.
  • the present invention is an improved filter method that can increase the separation rate of spiral bacteria than the existing filter method, a device (filter unit, etc.) that can be used in the method, and separation and detection of spiral bacteria that can be easily inspected. It is an object to provide a method.
  • the present inventors have found a filter showing a separation rate of spiral bacteria that is inferior to that of an existing selective medium. It came to be completed. That is, the present invention includes the following: [1] A device for separating spiral bacteria, comprising a filter comprising polycarbonate. [2] The device according to [1] above, wherein the filter has a pore size in the range of 0.2 to 0.8 ⁇ m. [3] The device according to [2] above, wherein the filter has a pore size in the range of 0.45 to 0.6 ⁇ m.
  • a method for detecting spiral bacteria comprising the following steps: (I) a step of bringing a specimen capable of containing a spiral bacterium into contact with the filter of the device according to any one of the above [1] to [3], and allowing the spiral bacterium to pass through the filter; (Ii) A step of detecting the filamentous fungus after passing through the filter.
  • the device and method of the present invention by using a specific filter that selectively allows spiral bacteria to pass through, the spiral bacteria contained in the sample can be easily separated at a separation rate comparable to that of an existing selective medium, Can be detected. Therefore, the device and method of the present invention can be suitably applied to the inspection and identification of causative agents of food poisoning.
  • spiral bacteria such as Campylobacter spp., Helicobacter spp., Arcobacter spp., Etc. that have been overlooked other than C. jejuni and C. coli, and C. jejuni sensitive to antibacterial agents C. coli can be separated and examined efficiently. Furthermore, by applying the present invention to the inspection, it is possible to easily identify and inspect colonies of spiral bacteria including Campylobacter spp.
  • the term “spiral bacterium” means a bacterium having a spiral shape, for example, a bacterium belonging to the order of Campylobacterales, including, for example, the genus Campylobacter (for example, C. jejuni, C. coli, C. fetus, C. hyointestinalis, C. concisus, C. upsaliensis, C. lari, C. helveticus, C. hominis, C. lanienae, C. canadensis, C. curvus, C.
  • the genus Campylobacter for example, C. jejuni, C. coli, C. fetus, C. hyointestinalis, C. concisus, C. upsaliensis, C. lari, C. helveticus, C. hominis, C. lanienae, C. canadensis, C. curvus, C.
  • Helicobacter genus examples include fungi (for example, Helicobacter pylori, Helicobacter cinaedi, etc.), Alcobacter bacteria (for example, A. butzleri, A. Cryaerophilus, A. skirrowii, A. nitrofigilis, etc.).
  • the filter according to the present invention comprises polycarbonate as a material and can selectively pass spiral bacteria.
  • the filter may contain a material other than polycarbonate as long as the effects of the present invention are not impaired.
  • the filter contains other materials up to 50% by weight, preferably up to 60% by weight. May be.
  • Such a material is not particularly limited as long as it can be used for a filter.
  • the polycarbonate may be chemically modified, for example, may be subjected to treatment with vinyl chloride, polyester, epoxy, urethane, silicon, polyethylene, fluorine, or the like.
  • the pore size of the filter is preferably in the range of 0.2 to 0.8 ⁇ m, more preferably in the range of 0.45 to 0.6 ⁇ m, from the viewpoint of selectively separating spiral bacteria.
  • the hole diameter as used in this specification is the maximum hole diameter determined by the bubble point test method.
  • the filter preferably has a thickness of about 7 to 22 ⁇ m, is translucent, and has a smooth surface such as glass. Moreover, what is produced so that a hole diameter is exact and a hole diameter distribution becomes constant is preferable.
  • the device for separating spiral bacteria of the present invention is not particularly limited as long as it contains the filter as an essential component.
  • the filter itself may be used, or a filter unit (one integrated with the filter) or a kit (one not integrated with the filter) may be configured together with other components.
  • components other than the filter in the device include, for example, a member for supporting the filter (such as a frame member), a specimen receiver, and a member for introducing the specimen into the filter by applying pressure (for syringes and centrifuges). Cups, adapters such as suction units, etc.), various members of conventional filter units such as filtration filters, medium for cultivating fungi when passing through the filter, members for collecting fungi when passing through the filter, etc. Can be mentioned.
  • the medium for culturing the above spiral bacteria is not particularly limited, for example, blood agar medium, Brucella medium, Mueller Hinton medium, Nutrient broth medium, skilow medium, mCCDA medium, Kalmari medium, Butler medium, Bolton medium, Examples include media usually used for culturing spiral bacteria such as Preston's medium and CAT medium.
  • the medium may contain various antibacterial agents, and may contain, for example, trimethoprim, vancomycin, polymyxin B, bacitracin, cycloheximide, colistin sulfate, cephalothin, novobiocin, cefoperazone, amphotericin B, and the like.
  • the present invention also provides a method for separating spiral bacteria using the above device.
  • the method includes the step of bringing a specimen that may contain a spiral bacterium into contact with the filter of the device and allowing the spiral bacterium to pass through the filter.
  • the specimen that can contain the above spiral fungus is not particularly limited as long as it is a specimen that may contain a spiral fungus, for example, feces, food, milk, pet food, excrement, rivers, ponds, Environmental water such as aquarium, well water, and drinking water.
  • the method for bringing the specimen into contact with the filter of the device is not particularly limited.
  • the specimen may be dropped or poured on the filter, or the specimen may be applied on the filter.
  • the above step may be performed without applying pressure, or may be performed under pressure (under pressure).
  • it can carry out, for example, pressing a test substance on a filter using a syringe etc.
  • suction filtration may be performed using a suction unit.
  • centrifugation can be performed after the sample is introduced onto the filter.
  • the rate of the spiral bacteria passing through the filter is increased, so that the spiral bacteria can be separated from other bacterial species more rapidly.
  • a selective medium such as a skilow medium, mCCDA medium, butler medium, and karmari medium can be used in combination.
  • the present invention also provides a method for separating spiral bacteria using the above device and then detecting the spiral bacteria.
  • the method includes the step of (i) bringing the specimen that may contain a spiral bacterium into contact with the filter of the device and allowing the spiral bacterium to pass through the filter, and (ii) detecting the bacterium after passing through the filter.
  • the said process (i) can be performed similarly to the isolation
  • the detection of spiral bacteria in the above step (ii) was performed using Gram staining, catalase test and oxidase test, Multiplex PCR, PCR of hippuric acid hydrolase gene specifically possessed by C. jejuni, and live using API Campy (BIOMERIEUX). It can be carried out by using conventional methods for identifying spiral bacteria such as chemical property tests and modified methods based thereon.
  • the method for detecting a spiral bacterium according to the present invention may further include a step of culturing the bacterium after passing through the filter before detecting the spiral bacterium in the step (ii). Thereby, even when the number of spiral bacteria contained in the sample is small, the spiral bacteria can be detected.
  • cultivation the culture medium etc. which were illustrated in description of the said device are mentioned, for example.
  • the culture medium may contain an antibacterial agent such as the antibacterial agent exemplified in the description of the above device. In that case, without growing other bacterial species sensitive to the antibacterial agent to be used, a spiral bacterium Can be selectively grown.
  • the culture conditions such as temperature and carbon dioxide (or oxygen) concentration are not particularly limited, and conditions usually used for culture of spiral bacteria can be used.
  • a microaerobic condition at 37 ° C. on a blood agar medium O 2 concentration: about 3 to 10%, CO 2 concentration: 5 to 15%, N 2 concentration: about 75% to 92%, for bacterial species that require hydrogen gas replaces with H 2 concentration of about 0-60% in place of nitrogen gas as required
  • H 2 concentration about 0-60% in place of nitrogen gas as required
  • C. jejuni 81-176 (hereinafter referred to as Cj 81-176) was used as Campylobacter, and Citrobacter amalonaticus (patient specimen isolate P3211f + 4), Escherichia coli ( Three strains of patient specimen isolate P3210f + 6) and Pseudomonas aeruginosa (patient specimen isolate P2497f + 4) were used.
  • MC filters mixed cellulose filters with pore sizes of 0.45 ⁇ m, 0.65 ⁇ m, and 0.8 ⁇ m
  • PC filters polycarbonate filters with pore sizes of 0.4 ⁇ m, 0.6 ⁇ m, and 0.8 ⁇ m
  • Three 100 ⁇ L each were inoculated on a filter and a PC filter having a pore size of 0.4 ⁇ m, 0.6 ⁇ m, and 0.8 ⁇ m. After standing at 37 ° C.
  • the filter was removed, and the cells were cultured for 2 days under 37 ° C microaerobic conditions, and the average number of colonies that passed through (hereinafter referred to as the number of bacteria passing through) was calculated.
  • the colony count in the added bacterial solution was similarly performed using a blood agar medium, and the ratio of the number of passaged bacteria to the number of bacteria in the added bacterial solution was calculated as the passage rate.
  • the passage rates were 0.6%, 0.7%, and 1.7% for the MC filter pore sizes of 0.45 ⁇ m, 0.65 ⁇ m, and 0.8 ⁇ m, respectively.
  • Example 4 and Comparative Example 4 The methods for culturing Cj 81-176 and non-Campylobacter and preparing a diluted bacterial solution were the same as described above.
  • C. amalonaticus, E. coli, and P. aeruginosa are mixed with Cj 81-176, and the number of non-Campylobacter bacteria against Cj 81-176 is 1: 100, 1:10, 1: 1.
  • each of the mixed bacterial solution was inoculated on two types of filters, a MC filter having a pore size of 0.65 ⁇ m and a PC filter having a pore size of 0.6 ⁇ m, placed on a blood agar medium. After leaving still at 37 ° C under microaerobic condition for 30 minutes, the filter was removed, and further cultured under microaerobic condition for 2 days. After culturing, the numbers of bacteria passing through Cj 81-176 and C. amalonaticus, E. coli and P. aeruginosa at each concentration were calculated according to the above method. Each colony was identified by colony shape and Gram staining.
  • aeruginosa had the highest concentration of 0.7 cfu, and the other 4 No passage was seen at different bacterial concentrations. That is, it was found that the PC filter not only has a high passing rate of Campylobacter but also eliminates other bacteria more efficiently than the MC filter. The results are shown in Table 2.
  • Example 5 44 rectal swabs from 44 Campylobacter-positive diarrhea patients were suspended in 500 ⁇ L of sterile physiological saline, and separated according to the above method using a filter method using a PC filter with a pore size of 0.6 ⁇ m and mCCDA medium. Comparison of methods was performed. Using 44 specimens of Campylobacter positive diarrhea patients, we compared the mCCDA medium, which had the highest positive rate in the examination of patient specimens, with the filter method using a PC filter with a pore size of 0.6 ⁇ m. As a result, Campylobacter was separated from 36 of 44 positive samples in mCCDA medium, and the separation rate was 81.8% (Table 3).
  • Example 6 and Comparative Example 6 The performance of the separation device of the present invention is evaluated for bacteria belonging to the order of Campylobacterales.
  • Methodhod> C. jejuni (81-176), C. coli (ATCC33559), C. fetus (ATCC27374), C. lari (ATCC43675), C. upsaliensis (ATCC43954), C. hyointestinalis (ATCC35217), A. butzleri (ATCC49616) Was cultured overnight at 37 ° C. under microaerobic conditions (5% O 2 , 10% CO 2 , 85% N 2 ), and the resulting cells were diluted with sterile PBS ( ⁇ ).
  • jejuni (81-176) with the MC filter was 1.74 ⁇ 0.32%, while that of the PC filter was 12.63 ⁇ 2.1%, about 7 times higher than that of the MC filter.
  • C. fetus (ATCC27374), C. lari (ATCC43675), and A. butzleri (ATCC49616) also showed higher values of the PC filter, about 5 times, about 9 times, and about 4 times, respectively.
  • C. upsaliensis (ATCC43954) and C. hyointestinalis (ATCC35217) could not be recovered at all with the MC filter, but the PC filter showed a high recovery rate of 41 ⁇ 18% and 6.22 ⁇ 1.68%, respectively.
  • C. fetus (ATCC27374), C. lari (ATCC43675), and A. butzleri (ATCC49616) also showed higher values of the PC filter, about 5 times, about 9 times, and about 4 times, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides an improved filter method capable of more increasing the isolation rate of spirillum than the existing filter method and a device to be used for the same, and more specifically, a device for isolating spirillum, the device including a filter composed of polycarbonate, and an isolation method for spirillum using the device.

Description

らせん菌の分離用デバイスおよび分離方法Device and method for separating spiral bacteria
 本特許出願は、日本国特許出願第2010-214851号について優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、検体(臨床検体、食品など)中のカンピロバクター属菌等のらせん菌の検査に用いることのできる、らせん菌の新規分離用デバイスおよび分離方法に関する。
This patent application claims priority with respect to Japanese Patent Application No. 2010-214851, which is hereby incorporated by reference in its entirety.
The present invention relates to a novel device for separating spiral bacteria and a separation method that can be used for testing spiral bacteria such as Campylobacter in a specimen (clinical specimen, food, etc.).
 近年、食の安全が叫ばれ、関係者による対策がなされているにもかかわらず、食中毒の発生は少しも減少していない。なかでも、カンピロバクター属菌による食中毒は日本で最も発生件数が高く、ノロウイルスによる食中毒とほぼ同件数発生している。カンピロバクター属には現在19種以上菌種が報告されている。 In recent years, although food safety has been screamed and countermeasures have been taken by related parties, the incidence of food poisoning has not decreased at all. Among them, the number of food poisoning caused by Campylobacter spp. Is the highest in Japan, and is almost the same as that caused by norovirus. More than 19 species of genus Campylobacter have been reported.
 日本においては、Campylobacter jejuniおよびCampylobacter coliのみが食中毒細菌に指定されており、この両菌種がカンピロバクター感染症起因菌の90%~95%以上を占めている。カンピロバクター属菌の検査には様々な問題点: (1) 培養に微好気条件(85% N2、10%O2、5%C02等)が求められるために特殊な機器を要し、(2) 2日から3日の培養日数を要し、菌種決定には全行程で8~10日を要する、(3) 生化学的性状が酷似しており菌種の鑑別が容易でない等が指摘されている。 In Japan, only Campylobacter jejuni and Campylobacter coli are designated as food poisoning bacteria, and both of these species account for 90% to 95% or more of Campylobacter infection-causing bacteria. Various problems in testing for Campylobacter spp .: (1) Special equipment is required because microaerobic conditions (85% N 2 , 10% O 2 , 5% C0 2 etc.) are required for culture, (2) It takes 2 to 3 days of culture, and it takes 8 to 10 days to determine the bacterial species. (3) The biochemical properties are very similar, making it difficult to distinguish bacterial species. Has been pointed out.
 さらに、日本ではC. jejuniおよびC. coliのみが検査対象となっており、現在用いられている培地はC. jejuniおよびC. coliを対象に開発されたものであるため、他のカンピロバクター属菌による感染症が見逃されている可能性がある。このようにnon-C. jejuni/ non-C. coliのカンピロバクターによる感染症についての調査は未だ十分ではない。 In addition, only C. jejuni and C. coli are tested in Japan, and the currently used medium was developed for C. jejuni and C. coli, so other Campylobacter spp. Infections caused by may be missed. Thus, the investigation of infectious diseases by Campylobacter in non-C. Jejuni / non-C. ク タ ー coli is not yet sufficient.
 カンピロバクター属菌がヒトおよび動物における重要な病原菌として認識されて以来、様々な分離法および培地の改良、開発が行われてきた。最初に用いられたのは、1972年、Dekeyserら(非特許文献1)によって孔径0.65 μmの混合セルロースフィルターを用い、運動性によって物理的に菌を分離する方法であった。 Since the identification of Campylobacter spp. As an important pathogen in humans and animals, various separation methods and media improvements and developments have been made. First used in 1972, Dekeyser et al. (Non-Patent Document 1) used a mixed cellulose filter with a pore size of 0.65 μm to physically separate the bacteria by motility.
 その後、1977年、Skirrowらは、大部分のカンピロバクター属菌が、抗菌剤であるトリメトプリム(Trimethoprim;グラム陽性、陰性の桿菌および球菌の発育を抑制)、バンコマイシン(Vancomycin;グラム陽性球菌の発育を抑制)およびポリミキシンB(Polymyxin B;グラム陰性桿菌の発育を抑制)に耐性であり、かつ、糞便中の正常細菌叢には感受性を示すことを利用したSkirrow培地を開発した(非特許文献2)。 Later, in 1977, Skirrow et al. Found that most Campylobacter bacteria suppressed the growth of antibacterial agents, trimethoprim (Trimethoprim; Gram-positive, negative Neisseria gonorrhoeae and cocci), and vancomycin (Vancomycin). ) And polymyxin B (Polymyxin B; suppresses the growth of Gram-negative gonococci), and developed a Skirrow medium utilizing the sensitivity to the normal bacterial flora in feces (Non-patent Document 2).
 さらに、Lauwers、Butzlerらによって開発された、バシトラシン(Bacitracin;グラム陽性、陰性の桿菌および球菌の発育を抑制)、シクロヘキシミド(Cycloheximide;真菌の発育を抑制)、硫酸コリスチン(Colistin sulfate;グラム陰性菌、緑膿菌の発育を抑制)、セファロチン(Cephalothin;グラム陽性、陰性の桿菌および球菌の発育を抑制)、ノボビオシン(Novobiocin;グラム陽性、グラム陰性菌の発育を抑制)を含むButzler培地(非特許文献3)、さらにBoltonらは血液の代わりに木炭、硫酸第一鉄およびピルビン酸ナトリウム、カゼイン加水分解物、デオキシコール酸ナトリウムを、抗菌剤としてセフォペラゾン(Cefoperazone;腸球菌以外ほとんどの腸内細菌の発育を抑制)、アムホテリシンB(Amphotericin B;真菌の増殖を抑制)を用いたmodified CCDA培地を開発した(非特許文献4)。その他、Karmaliらが開発した血液不含の培地、木炭、ピルビン酸ナトリウム、セフォペラゾン、シクロヘキシミドを含むKarmali培地(非特許文献5)等が知られている。 Further, developed by Lauwers, Butzler et al., Bacitracin (Bacitracin; suppresses the growth of Gram-positive and negative Neisseria gonorrhoeae and cocci), cycloheximide (Cycloheximide; suppresses the growth of fungi), colistin sulfate (Colistin sulfate; Gram-negative bacteria, Butzler medium (suppressing the growth of Pseudomonas aeruginosa), cephalothin (Cephalothin; suppressing the growth of Gram-positive and negative Neisseria gonorrhoeae and cocci), Novobiocin (Novobiocin; suppressing the growth of Gram-positive and Gram-negative bacteria) (non-patent literature) 3) Furthermore, Bolton et al. Developed charcoal, ferrous sulfate and sodium pyruvate, casein hydrolyzate, sodium deoxycholate instead of blood, and cefoperazone as an antibacterial agent. Modified 、 CCDA medium using amphotericin B (Amphotericin B; suppresses fungal growth) Developed (Non-Patent Document 4). In addition, a blood-free medium developed by Karmali et al., A Karmali medium containing charcoal, sodium pyruvate, cefoperazone, and cycloheximide (Non-patent Document 5) are known.
 このように1977年SkirrowらによりSkirrow培地が開発されて以来、多くの抗菌剤を含む分離選択培地の開発、比較が行われてきた。しかしながら、抗菌剤を含む培地および現在の培養法では、主にC. jejuniおよびC. coliの検出を目的としているため、これら2菌種以外は見逃されている可能性が高い。 Thus, since the Skirrow medium was developed by Skirrow et al. In 1977, separation and selection media containing many antibacterial agents have been developed and compared. However, since the medium containing antibacterial agents and the current culture method are mainly intended for detection of C. jejuni and C. coli, it is highly possible that other than these two species are missed.
 例えば、C. fetus subsp. fetus、C. cinaedi(現在のHelicobacter cinaedi)、C. fennelliae、C. hyointestinalisなどはCephalothinに感受性であるため、これを含むButzler培地等では発育しない。また、GoosensとButzlerは抗菌剤を含んだ培地を使用することに反対し、フィルターを用いたろ過培養法の使用を推奨している(非特許文献6)。さらに、1998年RouxとLastvicaは非選択培地を用いたフィルターろ過培養法を37℃、水素添加微好気条件(Cape Town Protocol)で行い、下痢症患者糞便検体からC. concisus、C. upsaliensis、C. fetus、C. hyointestinalis、C. lariなどのさまざまな菌種を分離した(非特許文献7)。 For example, C. fetus subsp. Fetus, C. cinaedi (current Helicobacter cinaedi), C. fennelliae, C. hyointestinalis, etc. are sensitive to Cephalothin and do not grow in Butzler medium containing this. In addition, Goosens and Butzler oppose the use of a medium containing an antibacterial agent and recommend the use of a filtration culture method using a filter (Non-patent Document 6). In 1998, Roux and Lastvica performed filter filtration culture using non-selective medium at 37 ° C under hydrogenated microaerobic conditions (Cape Town Protocol), and C. 痢 concisus, C. upsaliensis, Various bacterial species such as C. fetus, C. hyointestinalis, and C. lari were isolated (Non-patent Document 7).
 このように、抗菌剤を含まない、最初に開発されたフィルター法の利点は広く知られており、改良フィルター法も開発されているが(例えば、特許文献1)、操作が煩雑であること、C. jejuniおよびC. coliの分離率が他の抗菌剤を含む選択培地に比べて若干劣ること等の欠点から、あまり利用されていない。日本国内において、糞便などの患者検体には主にSkirrow培地が、食品検査にはmCCDA培地がよく用いられている。 As described above, the advantages of the originally developed filter method that does not contain an antibacterial agent are widely known, and an improved filter method has also been developed (for example, Patent Document 1), but the operation is complicated. C. jejuni and C. coli are not widely used because of their disadvantages, such as slightly inferior to selective media containing other antibacterial agents. In Japan, the Skirrow medium is mainly used for patient specimens such as feces, and the mCCDA medium is often used for food inspection.
特表2009-532062Special table 2009-532562
 以上述べたように、抗菌剤を含んだ分離培地は、主にC. jejuniおよびC. coliの分離のための培地であり、全てのカンピロバクター属菌に適用できるものはない。
 一方、カンピロバクター属菌の検査法として、カンピロバクター属菌の菌種、薬剤感受性に関わらずに分離が可能なフィルター法が現在あまり利用されていないのは、その検出率の低さ、簡便性の問題が挙げられる。
 本発明は、既存のフィルター法よりもらせん菌の分離率を高めることのできる改良フィルター法、該方法に利用可能なデバイス(フィルターユニット等)、および簡便に検査が可能ならせん菌の分離および検出方法を提供することを課題とする。
As described above, the separation medium containing an antibacterial agent is a medium mainly for the separation of C. jejuni and C. coli, and none can be applied to all Campylobacter species.
On the other hand, as a test method for Campylobacter spp., The filter method that can be separated regardless of the species of Campylobacter spp. Is mentioned.
The present invention is an improved filter method that can increase the separation rate of spiral bacteria than the existing filter method, a device (filter unit, etc.) that can be used in the method, and separation and detection of spiral bacteria that can be easily inspected. It is an object to provide a method.
 本発明者らは、上記課題を解決することを目的としてフィルター法に用いるメンブレンの材質について詳細に検討した結果、既存の選択培地と遜色ないらせん菌の分離率を示すフィルターを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のものを含む:
[1] ポリカーボネートを含んでなるフィルターを含む、らせん菌分離用デバイス。
[2] フィルターが、0.2~0.8 μmの範囲内の孔径を有する、上記[1]に記載のデバイス。
[3] フィルターが、0.45~0.6 μmの範囲内の孔径を有する、上記[2]に記載のデバイス。
[4] らせん菌が、カンピロバクター目に属する細菌から選択される、上記[1]または[2]に記載のデバイス。
[5] カンピロバクター目に属する細菌が、カンピロバクター属菌、ヘリコバクター属細菌およびアルコバクター属細菌から選択される、上記[4]に記載のデバイス。
[6] 上記[1]~[3]のいずれかに記載のデバイスのフィルターに、らせん菌を含み得る検体を接触させて、らせん菌をフィルターに対して通過させる工程を含む、らせん菌の分離方法。
[7] 上記工程を圧力下、吸引減圧下、または遠心濾過で行う、上記[6]に記載の方法。
[8] らせん菌が、カンピロバクター目に属する細菌から選択される、上記[6]または[7]に記載の方法。
[9] カンピロバクター目に属する細菌が、カンピロバクター属菌、ヘリコバクター属細菌およびアルコバクター属細菌から選択される、上記[8]に記載の方法。
[10] 以下の工程を含む、らせん菌の検出方法:
(i)上記[1]~[3]のいずれかに記載のデバイスのフィルターに、らせん菌を含み得る検体を接触させて、らせん菌をフィルターに対して通過させる工程、
(ii)フィルターを通過したらせん菌を検出する工程。
[11] フィルターを通過したらせん菌を、検出前に培養する工程をさらに含む、上記[10]に記載の方法。
[12] 上記工程(i)を圧力下、吸引減圧下、または遠心濾過で行う、上記[10]または[11]に記載の方法。
[13] らせん菌が、カンピロバクター目に属する細菌から選択される、上記[10]~[12]のいずれかに記載の方法。
[14] カンピロバクター目に属する細菌が、カンピロバクター属菌、ヘリコバクター属細菌およびアルコバクター属細菌から選択される、上記[13]に記載の方法。
As a result of examining the membrane material used for the filter method in detail for the purpose of solving the above-mentioned problems, the present inventors have found a filter showing a separation rate of spiral bacteria that is inferior to that of an existing selective medium. It came to be completed.
That is, the present invention includes the following:
[1] A device for separating spiral bacteria, comprising a filter comprising polycarbonate.
[2] The device according to [1] above, wherein the filter has a pore size in the range of 0.2 to 0.8 μm.
[3] The device according to [2] above, wherein the filter has a pore size in the range of 0.45 to 0.6 μm.
[4] The device according to [1] or [2] above, wherein the spiral bacterium is selected from bacteria belonging to the order of Campylobacter.
[5] The device according to [4] above, wherein the bacterium belonging to Campylobacter is selected from Campylobacter, Helicobacter and Arcobacter.
[6] Separation of spiral bacteria, comprising the step of bringing a specimen that may contain spiral bacteria into contact with the filter of the device according to any one of [1] to [3] above and allowing the spiral bacteria to pass through the filter Method.
[7] The method according to [6] above, wherein the step is performed under pressure, under reduced pressure by suction, or by centrifugal filtration.
[8] The method according to [6] or [7] above, wherein the spiral bacterium is selected from bacteria belonging to the order of Campylobacter.
[9] The method according to [8] above, wherein the bacterium belonging to Campylobacter is selected from Campylobacter, Helicobacter and Arcobacter.
[10] A method for detecting spiral bacteria comprising the following steps:
(I) a step of bringing a specimen capable of containing a spiral bacterium into contact with the filter of the device according to any one of the above [1] to [3], and allowing the spiral bacterium to pass through the filter;
(Ii) A step of detecting the filamentous fungus after passing through the filter.
[11] The method according to [10] above, further comprising a step of culturing the spiral fungus passing through the filter before detection.
[12] The method according to [10] or [11] above, wherein the step (i) is performed under pressure, reduced pressure by suction, or centrifugal filtration.
[13] The method according to any one of [10] to [12] above, wherein the spiral bacterium is selected from bacteria belonging to the order of Campylobacter.
[14] The method according to [13] above, wherein the bacterium belonging to Campylobacter is selected from Campylobacter, Helicobacter, and Arcobacter.
 本発明のデバイスおよび方法によれば、らせん菌を選択的に通過させる特定のフィルターを用いることで、既存の選択培地と遜色ない分離率で、簡便に検体中に含まれるらせん菌を分離し、検出することができる。したがって、本発明のデバイスおよび方法は、食中毒の原因菌の検査および特定に好適に適用することができる。
 また、本発明によれば、C. jejuniおよびC. coli以外のこれまで見逃されていたカンピロバクター属菌、ヘリコバクター属菌、アルコバクター属菌等のらせん菌や、抗菌剤に感受性のC. jejuniおよびC. coliを効率よく分離検査することができる。
 さらに、本発明を検査に適用することで、熟練者でなくともカンピロバクター属菌をはじめとするらせん菌のコロニーを容易に識別し、検査することができる。
According to the device and method of the present invention, by using a specific filter that selectively allows spiral bacteria to pass through, the spiral bacteria contained in the sample can be easily separated at a separation rate comparable to that of an existing selective medium, Can be detected. Therefore, the device and method of the present invention can be suitably applied to the inspection and identification of causative agents of food poisoning.
In addition, according to the present invention, spiral bacteria such as Campylobacter spp., Helicobacter spp., Arcobacter spp., Etc. that have been overlooked other than C. jejuni and C. coli, and C. jejuni sensitive to antibacterial agents C. coli can be separated and examined efficiently.
Furthermore, by applying the present invention to the inspection, it is possible to easily identify and inspect colonies of spiral bacteria including Campylobacter spp.
カンピロバクター属菌およびアルコバクター属菌を用いたフィルター通過実験を示す図である。It is a figure which shows the filter passage experiment using Campylobacter genus bacteria and Alcobacter genus bacteria.
 本発明における「らせん菌」とは、らせん状の形状を有する細菌、例えば、カンピロバクター目(Campylobacterales)に属する細菌を意味し、これには、例えば、カンピロバクター属菌(例えば、C. jejuni、C. coli、C. fetus、C. hyointestinalis、C. concisus、C. upsaliensis、C. lari、C. helveticus、C. hominis、C. lanienae、C. canadensis、C. curvus、C. insulaenigrae等)、ヘリコバクター属菌(例えば、Helicobacter pylori、Helicobacter cinaedi等)、アルコバクター属菌(例えば、A. butzleri、A. Cryaerophilus、A. skirrowii、A. nitrofigilis等)等が含まれる。 In the present invention, the term “spiral bacterium” means a bacterium having a spiral shape, for example, a bacterium belonging to the order of Campylobacterales, including, for example, the genus Campylobacter (for example, C. jejuni, C. coli, C. fetus, C. hyointestinalis, C. concisus, C. upsaliensis, C. lari, C. helveticus, C. hominis, C. lanienae, C. canadensis, C. curvus, C. insulaenigrae, etc.), Helicobacter genus Examples include fungi (for example, Helicobacter pylori, Helicobacter cinaedi, etc.), Alcobacter bacteria (for example, A. butzleri, A. Cryaerophilus, A. skirrowii, A. nitrofigilis, etc.).
 本発明におけるフィルターは、材料として、ポリカーボネートを含んでなり、そして、らせん菌を選択的に通過させることができるものである。
 上記フィルターは、本発明の効果を損なわない範囲で、ポリカーボネート以外の材料を含んでいてもよく、例えば、材料全体のうち、50重量%まで、好ましくは60重量%までの他の材料を含んでいてもよい。このような材料としては、フィルター用として使用することができる材料であれば特に限定されない。
 また、ポリカーボネートは、化学的に変性されたものでもよく、例えば、塩化ビニル、ポリエステル、エポキシ、ウレタン、シリコン、ポリエチレン、フッ素等の処理等が施されたものでもよい。
The filter according to the present invention comprises polycarbonate as a material and can selectively pass spiral bacteria.
The filter may contain a material other than polycarbonate as long as the effects of the present invention are not impaired. For example, the filter contains other materials up to 50% by weight, preferably up to 60% by weight. May be. Such a material is not particularly limited as long as it can be used for a filter.
Further, the polycarbonate may be chemically modified, for example, may be subjected to treatment with vinyl chloride, polyester, epoxy, urethane, silicon, polyethylene, fluorine, or the like.
 上記フィルターの孔径は、らせん菌を選択的に分離する観点から、好ましくは0.2~0.8 μmの範囲内、より好ましくは0.45~0.6 μmの範囲内である。
 なお、本明細書中でいう孔径は、バブルポイント試験法によって決定された最大孔径である。
The pore size of the filter is preferably in the range of 0.2 to 0.8 μm, more preferably in the range of 0.45 to 0.6 μm, from the viewpoint of selectively separating spiral bacteria.
In addition, the hole diameter as used in this specification is the maximum hole diameter determined by the bubble point test method.
 また、上記フィルターとしては、厚さが7~22μm程度であり、半透明で、ガラスのような滑らかな表面を有するものであることが好ましい。また、孔径が正確で、孔径分布が一定になるように作製されているものが好ましい。 Further, the filter preferably has a thickness of about 7 to 22 μm, is translucent, and has a smooth surface such as glass. Moreover, what is produced so that a hole diameter is exact and a hole diameter distribution becomes constant is preferable.
 本発明のらせん菌分離用デバイスは、上記フィルターを必須の構成要素として含むものであれば特に限定されない。例えば、フィルターそのものでもよく、その他の構成要素と共にフィルターユニット(フィルターと一体になっているもの)またはキット(フィルターと一体になっていないもの)を構成していてもよい。
 上記デバイスにおけるフィルター以外の構成要素としては、例えば、フィルターを支持するための部材(枠材等)、検体の受容器、フィルターに検体を、圧力をかけて導入するための部材(注射器および遠心用カップ、吸引ユニットなどのアダプター等)、濾過フィルター等の従来のフィルターユニットにおける各種の部材、フィルターを通過したらせん菌を培養するための培地、フィルターを通過したらせん菌を回収するための部材等が挙げられる。
The device for separating spiral bacteria of the present invention is not particularly limited as long as it contains the filter as an essential component. For example, the filter itself may be used, or a filter unit (one integrated with the filter) or a kit (one not integrated with the filter) may be configured together with other components.
Examples of components other than the filter in the device include, for example, a member for supporting the filter (such as a frame member), a specimen receiver, and a member for introducing the specimen into the filter by applying pressure (for syringes and centrifuges). Cups, adapters such as suction units, etc.), various members of conventional filter units such as filtration filters, medium for cultivating fungi when passing through the filter, members for collecting fungi when passing through the filter, etc. Can be mentioned.
 上記らせん菌を培養するための培地としては、特に限定されず、例えば、血液寒天培地、ブルセラ培地、ミューラーヒントン培地、ニュートリエントブロス培地、スキロー培地、mCCDA培地、カルマリ培地、バツラー培地、ボルトン培地、プレストン培地、CAT培地等のらせん菌の培養に通常使用される培地が挙げられる。
 また、上記培地は、各種の抗菌剤を含んでいてもよく、例えば、トリメトプリム、バンコマイシン、ポリミキシンB、バシトラシン、シクロヘキシミド、硫酸コリスチン、セファロチン、ノボビオシン、セフォペラゾン、アムホテリシンB等を含んでいてもよい。
The medium for culturing the above spiral bacteria is not particularly limited, for example, blood agar medium, Brucella medium, Mueller Hinton medium, Nutrient broth medium, skilow medium, mCCDA medium, Kalmari medium, Butler medium, Bolton medium, Examples include media usually used for culturing spiral bacteria such as Preston's medium and CAT medium.
The medium may contain various antibacterial agents, and may contain, for example, trimethoprim, vancomycin, polymyxin B, bacitracin, cycloheximide, colistin sulfate, cephalothin, novobiocin, cefoperazone, amphotericin B, and the like.
 また、本発明は、上記デバイスを使用するらせん菌の分離方法を提供する。当該方法は、上記デバイスのフィルターに、らせん菌を含み得る検体を接触させて、らせん菌をフィルターに対して通過させる工程を含む。 The present invention also provides a method for separating spiral bacteria using the above device. The method includes the step of bringing a specimen that may contain a spiral bacterium into contact with the filter of the device and allowing the spiral bacterium to pass through the filter.
 上記らせん菌を含み得る検体としては、らせん菌を含む可能性のある検体であれば特に限定されず、例えば、糞便、食品、牛乳、愛玩動物の食餌、排泄物等の他、河川、池、水槽、井戸水などの環境水や飲料水等が挙げられる。 The specimen that can contain the above spiral fungus is not particularly limited as long as it is a specimen that may contain a spiral fungus, for example, feces, food, milk, pet food, excrement, rivers, ponds, Environmental water such as aquarium, well water, and drinking water.
 上記らせん菌を含み得る検体を上記デバイスのフィルターに接触させると、検体中にらせん菌が存在する場合、らせん菌はフィルターを通過しやすく、他の菌種はフィルターを通過しにくいため、結果として、らせん菌を選択的に分離することができる。
 上記検体を上記デバイスのフィルターに接触させる方法は特に限定されず、例えば、フィルター上に検体を滴下または注いでもよく、フィルター上に検体を塗布してもよい。
When a specimen that can contain the above spiral bacteria is brought into contact with the filter of the above device, if spiral bacteria are present in the specimen, the spiral bacteria are likely to pass through the filter, and other bacterial species are difficult to pass through the filter. It is possible to selectively isolate spiral bacteria.
The method for bringing the specimen into contact with the filter of the device is not particularly limited. For example, the specimen may be dropped or poured on the filter, or the specimen may be applied on the filter.
 上記工程は、圧力をかけずに行ってもよく、圧力下(加圧下)で行ってもよい。上記工程を圧力下で行う場合、例えば、注射器等を用いて検体をフィルター上に押し付けながら行うことができる。また、吸引ユニットを用いて吸引濾過させてもよい。或いは、検体をフィルター上に導入した後、遠心分離を行うこともできる。
 圧力下で行う場合、らせん菌のフィルター通過速度が高められるので、より迅速にらせん菌を他の菌種から分離することができる。
The above step may be performed without applying pressure, or may be performed under pressure (under pressure). When performing the said process under pressure, it can carry out, for example, pressing a test substance on a filter using a syringe etc. Alternatively, suction filtration may be performed using a suction unit. Alternatively, centrifugation can be performed after the sample is introduced onto the filter.
When carried out under pressure, the rate of the spiral bacteria passing through the filter is increased, so that the spiral bacteria can be separated from other bacterial species more rapidly.
 また、上記らせん菌の分離方法においては、スキロー培地、mCCDA培地、バツラー培地、カルマリ培地などの選択培地を併用することもできる。 In addition, in the above-mentioned method for separating spiral bacteria, a selective medium such as a skilow medium, mCCDA medium, butler medium, and karmari medium can be used in combination.
 また、本発明は、上記デバイスを使用してらせん菌を分離し、次いで、らせん菌を検出する方法を提供する。当該方法は、(i)上記デバイスのフィルターに、らせん菌を含み得る検体を接触させて、らせん菌をフィルターを通過させる工程、(ii)フィルターを通過したらせん菌を検出する工程を含む。
 上記工程(i)は、上記らせん菌の分離方法と同様に行うことができる。
The present invention also provides a method for separating spiral bacteria using the above device and then detecting the spiral bacteria. The method includes the step of (i) bringing the specimen that may contain a spiral bacterium into contact with the filter of the device and allowing the spiral bacterium to pass through the filter, and (ii) detecting the bacterium after passing through the filter.
The said process (i) can be performed similarly to the isolation | separation method of the said spiral bacterium.
 上記工程(ii)におけるらせん菌の検出は、グラム染色、カタラーゼ試験およびオキシダーゼ試験、Multiplex PCR、C. jejuniが特異的に保有する馬尿酸水解酵素遺伝子のPCR、API Campy(BIOMERIEUX)を用いた生化学的性状試験等の従来のらせん菌の同定方法およびそれに基づく変法等を用いて行うことができる。 The detection of spiral bacteria in the above step (ii) was performed using Gram staining, catalase test and oxidase test, Multiplex PCR, PCR of hippuric acid hydrolase gene specifically possessed by C. jejuni, and live using API Campy (BIOMERIEUX). It can be carried out by using conventional methods for identifying spiral bacteria such as chemical property tests and modified methods based thereon.
 本発明のらせん菌の検出方法においては、上記工程(ii)においてらせん菌を検出する前に、フィルターを通過したらせん菌を培養する工程をさらに含んでいてもよい。これにより、検体中に含まれるらせん菌の数が少ない場合であっても、らせん菌を検出することができる。
 上記培養に使用する培地としては、例えば、上記デバイスの説明において例示した培地等が挙げられる。また、培養培地には、上記デバイスの説明において例示した抗菌剤等の抗菌剤が含まれていてもよく、その場合、使用する抗菌剤に感受性の他の菌種を増殖させずに、らせん菌を選択的に増殖させることができる。
 また、温度、二酸化炭素(または酸素)濃度等の培養条件は、特に限定されず、らせん菌の培養に通常使用される条件を用いることができる。例えば、血液寒天培地上、37℃の微好気条件(O濃度約3~10%、CO濃度5~15%、N濃度約75%~92%、水素ガスを要求する菌種に関しては、必要に応じて窒素ガスの代わりにH濃度約0~60%で置換する)下、12~72時間程度、増殖の遅い菌株に関しては10日程度の条件下で培養することができる。
The method for detecting a spiral bacterium according to the present invention may further include a step of culturing the bacterium after passing through the filter before detecting the spiral bacterium in the step (ii). Thereby, even when the number of spiral bacteria contained in the sample is small, the spiral bacteria can be detected.
As a culture medium used for the said culture | cultivation, the culture medium etc. which were illustrated in description of the said device are mentioned, for example. In addition, the culture medium may contain an antibacterial agent such as the antibacterial agent exemplified in the description of the above device. In that case, without growing other bacterial species sensitive to the antibacterial agent to be used, a spiral bacterium Can be selectively grown.
Moreover, the culture conditions such as temperature and carbon dioxide (or oxygen) concentration are not particularly limited, and conditions usually used for culture of spiral bacteria can be used. For example, a microaerobic condition at 37 ° C. on a blood agar medium (O 2 concentration: about 3 to 10%, CO 2 concentration: 5 to 15%, N 2 concentration: about 75% to 92%, for bacterial species that require hydrogen gas replaces with H 2 concentration of about 0-60% in place of nitrogen gas as required) under about 12 to 72 hours, with respect to the slow strain of growth can be cultured under the conditions of about 10 days.
 また、上記らせん菌の検出方法においては、寒天培地上に形成されたクリアーもしくは、灰色がかった薄ピンク色のらせん菌に特徴的なコロニーが形成され、かつグラム染色によって顕微鏡下でグラム陰性、らせん状形態を観察することでできる。また、直接顕微鏡下で観察し、高い運動性を持ち、直線的な動きを行うらせん形状の菌体を観察することでもできる。また、必要に応じて、らせん菌を検出出来る遺伝子を標的としたPCR法、コロニーハイブリダイゼーション法、16S rRNA遺伝子の解析等の遺伝子検査を併用することもできる。
 以下、実施例をあげて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
In the above method for detecting spiral bacteria, colonies characteristic of clear or grayish light pink spiral bacteria formed on an agar medium are formed, and gram-staining and spiraling are performed under the microscope by Gram staining. This can be done by observing the shape. It can also be observed directly under a microscope to observe spirally-shaped cells with high mobility and linear movement. Further, if necessary, genetic tests such as PCR, colony hybridization, and analysis of 16S rRNA gene targeting genes capable of detecting spiral bacteria can be used in combination.
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
 以下の実施例において、カンピロバクター属菌として、C. jejuni 81-176株(以下、Cj 81-176)を用い、非カンピロバクター属菌として、Citrobacter amalonaticus(患者検体分離株P3211f+4)、Escherichia coli(患者検体分離株P3210f+6)およびPseudomonas aeruginosa(患者検体分離株P2497f+4)の3菌種を用いた。
 また、フィルターとして、孔径0.45 μm、0.65 μm、0.8 μmの混合セルロースフィルター(以下、MCフィルター)(日本ミリポア株式会社)および孔径0.4 μm、0.6 μm、0.8 μmのポリカーボネートフィルター(以下、PCフィルター)(日本ミリポア株式会社)を用いた。
In the following examples, C. jejuni 81-176 (hereinafter referred to as Cj 81-176) was used as Campylobacter, and Citrobacter amalonaticus (patient specimen isolate P3211f + 4), Escherichia coli ( Three strains of patient specimen isolate P3210f + 6) and Pseudomonas aeruginosa (patient specimen isolate P2497f + 4) were used.
As filters, mixed cellulose filters with pore sizes of 0.45 μm, 0.65 μm, and 0.8 μm (hereinafter referred to as MC filters) (Nihon Millipore Corporation) and polycarbonate filters with pore sizes of 0.4 μm, 0.6 μm, and 0.8 μm (hereinafter referred to as PC filters) ( Japan Millipore Corporation) was used.
(実施例1~3および比較例1~3)
 Cj 81-176を血液寒天培地上で18時間培養し、培地上のコロニーを掻き取り、PBSに懸濁後、OD600=0.1の菌液を調製した。濁度0.1の菌液を10倍段階希釈して作製した103、102、101 cfu/100 μLの菌液を、血液寒天培地上に載せた孔径0.45 μm、0.65 μm、0.8 μmのMCフィルターおよび孔径0.4 μm、0.6 μm、0.8 μmのPCフィルター上にそれぞれ100 μL、3枚ずつ接種した。37℃の微好気条件下で30分間静置後、フィルターを取り除き、37℃微好気条件下で2日間培養し、通過したコロニーの平均数(以下、通過菌数)をそれぞれ算出した。添加した菌液中のコロニーカウントも血液寒天培地を用いて同様に行い、添加菌液中の菌数に対する通過菌数の割合を通過率としてそれぞれ算出した。
 Cj 81-176の純培養を用いたフィルター通過実験では、MCフィルターの孔径0.45 μm、0.65 μm、0.8 μmでは、通過率はそれぞれ0.6%、0.7%、1.7%であった。また、PCフィルターの孔径0.4 μm、0.6 μm、0.8 μmでは、通過率はそれぞれ1.9%、10.9%、21.8%であった(表1)。両フィルター共に、孔径が大きくなるに従って、通過率が上昇する傾向が見られたが、孔径0.6 μmおよび0.8 μmでは、MCフィルターとPCフィルターではPCフィルターの通過率が10倍以上高い値を示した。
(Examples 1 to 3 and Comparative Examples 1 to 3)
Cj 81-176 was cultured on a blood agar medium for 18 hours, colonies on the medium were scraped off, suspended in PBS, and a bacterial solution with an OD 600 = 0.1 was prepared. 10 3 , 10 2 , 10 1 cfu / 100 μL of bacterial solution prepared by serially diluting bacterial solution with turbidity of 0.1 on a blood agar medium 0.45 μm, 0.65 μm, 0.8 μm Three 100 μL each were inoculated on a filter and a PC filter having a pore size of 0.4 μm, 0.6 μm, and 0.8 μm. After standing at 37 ° C. for 30 minutes under microaerobic conditions, the filter was removed, and the cells were cultured for 2 days under 37 ° C microaerobic conditions, and the average number of colonies that passed through (hereinafter referred to as the number of bacteria passing through) was calculated. The colony count in the added bacterial solution was similarly performed using a blood agar medium, and the ratio of the number of passaged bacteria to the number of bacteria in the added bacterial solution was calculated as the passage rate.
In the filter passage experiment using a pure culture of Cj 81-176, the passage rates were 0.6%, 0.7%, and 1.7% for the MC filter pore sizes of 0.45 μm, 0.65 μm, and 0.8 μm, respectively. Moreover, when the pore sizes of the PC filter were 0.4 μm, 0.6 μm, and 0.8 μm, the passing rates were 1.9%, 10.9%, and 21.8%, respectively (Table 1). Both filters showed a tendency for the passage rate to increase as the pore size increased. However, with the pore sizes of 0.6 μm and 0.8 μm, the MC filter and the PC filter showed a PC filter passage rate 10 times higher. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例4および比較例4)
 Cj 81-176および非カンピロバクター属菌の培養および希釈菌液の作製方法は、上記の方法に準じた。Cj 81-176を102 cfu/100 μL、C. amalonaticus、E. coli、およびP. aeruginosaを104、103、102、101、100 cfu/100 μLにそれぞれ調製した。Cj 81-176の菌液にC. amalonaticus、E. coli、P. aeruginosaの菌液を混合し、Cj 81-176に対する非カンピロバクター属菌の菌数が1:100、1:10、1:1、10:1、100:1となるように混合菌液を作製した。この混合菌液を、血液寒天培地上に載せた孔径0.65 μmのMCフィルターおよび孔径0.6 μmのPCフィルターの2種類のフィルター上に100 μL、3枚ずつ接種した。37℃微好気条件下で30分間静置後、フィルターを取り除き、さらに微好気条件下で2日間培養した。培養後、各濃度におけるCj 81-176とC. amalonaticus、E. coliおよびP. aeruginosaの通過菌数を、上記の方法に準じてそれぞれ算出した。各コロニーの判別はコロニー形状およびグラム染色にて行った。
(Example 4 and Comparative Example 4)
The methods for culturing Cj 81-176 and non-Campylobacter and preparing a diluted bacterial solution were the same as described above. Cj 81-176 of 10 2 cfu / 100 μL, C . Amalonaticus, E. Coli, and were prepared to P. aeruginosa of 10 4, 10 3, 10 2 , 10 1, 10 0 cfu / 100 μL. C. amalonaticus, E. coli, and P. aeruginosa are mixed with Cj 81-176, and the number of non-Campylobacter bacteria against Cj 81-176 is 1: 100, 1:10, 1: 1. , 10: 1, 100: 1 mixed bacterial solution was prepared. 100 μL each of the mixed bacterial solution was inoculated on two types of filters, a MC filter having a pore size of 0.65 μm and a PC filter having a pore size of 0.6 μm, placed on a blood agar medium. After leaving still at 37 ° C under microaerobic condition for 30 minutes, the filter was removed, and further cultured under microaerobic condition for 2 days. After culturing, the numbers of bacteria passing through Cj 81-176 and C. amalonaticus, E. coli and P. aeruginosa at each concentration were calculated according to the above method. Each colony was identified by colony shape and Gram staining.
 Cj 81-176とC. amalonaticus、E. coliおよびP. aeruginosaを混合して各フィルターの通過菌数をそれぞれ比較したところ、孔径0.65 μmのMCフィルターにおいて、Cj 81-176とC. amalonaticusの混合菌液ではCj 81-176の平均通過菌数は0.1 cfuであったのに対し、C. amalonaticusは104、103、102、101、100 cfu/100 μLの5種類の菌濃度でそれぞれ9.7 cfu、0.67 cfu、0.3 cfu、1.3 cfu、0 cfuであった。Cj 81-176とE. coliの混合菌液ではCj 81-176の平均通過菌数は0.3 cfuであったのに対し、E. coliでは上記5種類の菌濃度でそれぞれ2.0 cfu、0.3 cfu、0 cfu、0.7 cfu、1.7 cfuであった。同様にCj 81-176とP. aeruginosaの混合菌液ではCj 81-176の平均通過菌数は0.3 cfuであったのに対し、P. aeruginosaは上記5種類の菌濃度でそれぞれ43 cfu、5.7 cfu、0 cfu、0.7 cfu、1.0 cfuであった。 When Cj 81-176 and C. amalonaticus, E. coli and P. aeruginosa were mixed and the number of bacteria passed through each filter was compared, the MC filter with a pore size of 0.65 μm mixed Cj 81-176 and C. amalonaticus. In the bacterial solution, the average number of bacteria passing through Cj 81-176 was 0.1 cfu, while that of C. amalonaticus was 10 4 , 10 3 , 10 2 , 10 1 , 10 0 cfu / 100 μL. And 9.7 cfu, 0.67 cfu, 0.3 cfu, 1.3 cfu, and 0 cfu, respectively. In the mixed bacterial solution of Cj 81-176 and E. coli, the average number of bacteria passing through Cj 81-176 was 0.3 cfu, whereas in E. coli, 2.0 cfu, 0.3 cfu, 0 cfu, 0.7 cfu, and 1.7 cfu. Similarly, in the mixed bacterial solution of Cj 81-176 and P. aeruginosa, the average passage number of Cj 81-176 was 0.3 cfu, whereas P. aeruginosa was 43 cfu and 5.7 at the above five types of bacterial concentrations, respectively. cfu, 0 cfu, 0.7 cfu, 1.0 cfu.
 また孔径0.6 μmのPCフィルターにおいて、Cj 81-176とC. amalonaticusの混合菌液ではCj 81-176の平均通過菌数は5.9 cfuであったのに対し、C. amalonaticusはどの菌濃度でも通過が見られなかった。Cj 81-176とE. coliの混合菌液ではCj 81-176の平均通過菌数は10 cfuであったのに対し、E. coliではどの菌濃度でも通過が見られなかった。同様にCj 81-176とP. aeruginosaの混合菌液ではCj 81-176の平均通過菌数は3.4 cfuであったのに対し、P. aeruginosaは最も濃い菌濃度で0.7 cfu、それ以外の4種類の菌濃度では通過は見られなかった。すなわち、PCフィルターはカンピロバクターの通過率が高いのみならず、MCフィルターより効率的に他菌を排除することがわかった。
 以上の結果を表2に示す。
In the PC filter with a pore size of 0.6 μm, the average number of cells passing through Cj 81-176 was 5.9 cfu in the mixed bacterial solution of Cj 81-176 and C. amalonaticus, whereas C. amalonaticus passed at any bacterial concentration. Was not seen. In the mixed solution of Cj 81-176 and E. coli, the average passage number of Cj 81-176 was 10 cfu, whereas in E. coli, no passage was seen at any concentration. Similarly, in the mixed bacterial solution of Cj 81-176 and P. aeruginosa, the average number of bacteria passing through Cj 81-176 was 3.4 cfu, whereas P. aeruginosa had the highest concentration of 0.7 cfu, and the other 4 No passage was seen at different bacterial concentrations. That is, it was found that the PC filter not only has a high passing rate of Campylobacter but also eliminates other bacteria more efficiently than the MC filter.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、らせん菌(Campylobacter jejuni: Cj 81-176株)とC. amalonaticusを1:100の割合で混合したサンプルを混合セルロース(MC)およびポリカーボネート(PC)フィルターをもちいてフィルター法にて分離培養したところ、混合セルロース(MC)フィルターではらせん菌(Cj)の通過は全く見られず、混合したC. amalonaticusは平均9.7個のコロニーが観察された。しかしながら、ポリカーボネート(PC)フィルターを用いた場合、混合したC. amalonaticusのコロニーは認められず、らせん菌(Cj)は平均3.7個のコロニーが観察された。混合比率を変えた場合や他菌種を混合した場合でも通過は同様の結果が見られていることから、ポリカーボネート(PC)フィルターを用いたフィルター法では明らかにらせん菌以外の菌が効率よく排除されていることがわかった。 From the results in Table 2, a sample prepared by mixing spiral bacteria (Campylobacter jejuni: Cj 81-176) and C.lonamalonaticus at a ratio of 1: 100 was applied to the filter method using mixed cellulose (MC) and polycarbonate (PC) filters. When isolated and cultured, the mixed cellulose (MC) filter showed no passage of spiral bacteria (Cj), and an average of 9.7 colonies were observed in the mixed C. amalonaticus. However, when a polycarbonate (PC) filter was used, mixed C. amalonaticus colonies were not observed, and an average of 3.7 colonies of spiral bacteria (Cj) were observed. Even if the mixing ratio is changed or other bacterial species are mixed, the same results are seen in the passage, so the filter method using a polycarbonate (PC) filter clearly eliminates bacteria other than spiral bacteria. I found out.
(実施例5および比較例5)
 カンピロバクター属菌陽性の下痢症患者44検体の直腸スワブを500 μLの滅菌生理食塩水に懸濁後、孔径0.6 μmのPCフィルターを用いたフィルター法と、mCCDA培地を用いて、上記の方法に従って分離法の比較を行った。
 カンピロバクター属菌陽性の下痢症患者44検体を用いて、患者検体の検査で最も陽性率の高かったmCCDA培地と、孔径0.6 μmのPCフィルターによるフィルター法を比較した。
 その結果、mCCDA培地では陽性44検体の内、36検体からカンピロバクターが分離され、その分離率は81.8%であった(表3)。これは、最初に患者検体を調べた時とほぼ変わらない結果であった(表3)。一方、孔径0.6 μmのPCフィルターを用いた場合、陽性44検体の内、37検体からカンピロバクターが分離され、分離率は84%であった(表3)。
 これらのことより、PCフィルターを用いた新規カンピロバクターの分離法は目視による菌の判別も容易な優れた分離法であると考えられた。
(Example 5 and Comparative Example 5)
44 rectal swabs from 44 Campylobacter-positive diarrhea patients were suspended in 500 μL of sterile physiological saline, and separated according to the above method using a filter method using a PC filter with a pore size of 0.6 μm and mCCDA medium. Comparison of methods was performed.
Using 44 specimens of Campylobacter positive diarrhea patients, we compared the mCCDA medium, which had the highest positive rate in the examination of patient specimens, with the filter method using a PC filter with a pore size of 0.6 μm.
As a result, Campylobacter was separated from 36 of 44 positive samples in mCCDA medium, and the separation rate was 81.8% (Table 3). This was almost the same result as when the patient specimens were first examined (Table 3). On the other hand, when a PC filter having a pore size of 0.6 μm was used, Campylobacter was separated from 37 samples out of 44 positive samples, and the separation rate was 84% (Table 3).
From these facts, the new Campylobacter separation method using a PC filter was considered to be an excellent separation method that facilitates visual discrimination of bacteria.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例6および比較例6)
<目的>
 カンピロバクター目(Campylobacterales)に属する細菌について本発明の分離用デバイスの性能を評価する。
<方法>
 C. jejuni (81-176)、C. coli (ATCC33559)、C. fetus (ATCC27374)、C. lari (ATCC43675)、C. upsaliensis (ATCC43954)、C. hyointestinalis (ATCC35217)、A. butzleri (ATCC49616)を微好気条件下(5% O2, 10% CO2, 85% N2)37℃で1晩培養し、得られた菌体を滅菌PBS(-)で希釈した。希釈した菌液を段階希釈し、血液寒天培地上に乗せた孔径(φ)0.65 μmの混合セルロース(MC)フィルターおよびφ0.6 μmのポリカーボネート(PC)フィルター上にそれぞれ100 μl、3枚ずつ接種した。37℃の微好気条件下で30分静置後、フィルターを取り除き、37℃、微好気条件下で2日から3日間培養し、得られたコロニー数を算出した。調製した菌液も同様に血液寒天培地で培養し、添加菌数を算出した。それぞれのフィルター通過菌数を添加菌数で除し、通過率を算出した。
<結果>
 C. jejuni (81-176)のMCフィルターでの回収率は1.74 ± 0.32%であったのに対し、PCフィルターでは12.63 ± 2.1%と、MCフィルターの約7倍高い値を示した。また、C. fetus (ATCC27374)、C. lari (ATCC43675)、A. butzleri (ATCC49616)についてもそれぞれ約5倍、約9倍、約4倍とPCフィルターの方が高い値を示した。C. upsaliensis (ATCC43954)とC. hyointestinalis (ATCC35217)はMCフィルターでは全く回収できなかったが、PCフィルターではそれぞれ41 ± 18%および6.22 ± 1.68%と、高い回収率を示した。一方、C. coli (ATCC33559)では他菌の様な著明な回収率向上は認められなかったが、MCフィルターでの回収率1.57 ± 0.71%に対して、PCフィルターでは1.90 ± 1.24%と、約1.2倍PCフィルターの方が高い値を示した(表4、図1)。
<考察>
 食中毒細菌として重要な菌種であるC. jejuni、C. coliをはじめ、他のカンピロバクター属細菌や、近年食中毒細菌として注目されているアルコバクター属菌でもPCフィルターによる分離が有効であった。
Figure JPOXMLDOC01-appb-T000004
(Example 6 and Comparative Example 6)
<Purpose>
The performance of the separation device of the present invention is evaluated for bacteria belonging to the order of Campylobacterales.
<Method>
C. jejuni (81-176), C. coli (ATCC33559), C. fetus (ATCC27374), C. lari (ATCC43675), C. upsaliensis (ATCC43954), C. hyointestinalis (ATCC35217), A. butzleri (ATCC49616) Was cultured overnight at 37 ° C. under microaerobic conditions (5% O 2 , 10% CO 2 , 85% N 2 ), and the resulting cells were diluted with sterile PBS (−). Dilute the diluted bacterial solution serially and inoculate 100 µl each on a mixed cellulose (MC) filter with a pore size (φ) of 0.65 µm and a polycarbonate (PC) filter with φ0.6 µm on a blood agar medium. did. After leaving still at 37 ° C under microaerobic condition for 30 minutes, the filter was removed, and the cells were cultured at 37 ° C under microaerobic condition for 2 to 3 days, and the number of colonies obtained was calculated. The prepared bacterial solution was similarly cultured on a blood agar medium, and the number of added bacteria was calculated. The number of bacteria passing through each filter was divided by the number of added bacteria, and the passage rate was calculated.
<Result>
The recovery rate of C. jejuni (81-176) with the MC filter was 1.74 ± 0.32%, while that of the PC filter was 12.63 ± 2.1%, about 7 times higher than that of the MC filter. In addition, C. fetus (ATCC27374), C. lari (ATCC43675), and A. butzleri (ATCC49616) also showed higher values of the PC filter, about 5 times, about 9 times, and about 4 times, respectively. C. upsaliensis (ATCC43954) and C. hyointestinalis (ATCC35217) could not be recovered at all with the MC filter, but the PC filter showed a high recovery rate of 41 ± 18% and 6.22 ± 1.68%, respectively. On the other hand, C. coli (ATCC33559) did not show a significant recovery improvement like other bacteria, but the recovery rate with the MC filter was 1.57 ± 0.71%, while the PC filter was 1.90 ± 1.24%, About 1.2 times the PC filter showed a higher value (Table 4, FIG. 1).
<Discussion>
Separation with PC filters was effective for C. jejuni and C. coli, which are important as food poisoning bacteria, as well as other Campylobacter bacteria, and Alcobacter bacteria that have recently attracted attention as food poisoning bacteria.
Figure JPOXMLDOC01-appb-T000004

Claims (14)

  1.  ポリカーボネートを含んでなるフィルターを含む、らせん菌分離用デバイス。 A device for separating spiral bacteria, including a filter comprising polycarbonate.
  2.  フィルターが、0.2~0.8 μmの範囲内の孔径を有する、請求項1に記載のデバイス。 2. The device according to claim 1, wherein the filter has a pore diameter in the range of 0.2 to 0.8 μm.
  3.  フィルターが、0.45~0.6 μmの範囲内の孔径を有する、請求項2に記載のデバイス。 3. The device according to claim 2, wherein the filter has a pore diameter in the range of 0.45 to 0.6 μm.
  4.  らせん菌が、カンピロバクター目に属する細菌から選択される、請求項1または2に記載のデバイス。 The device according to claim 1, wherein the spiral bacterium is selected from bacteria belonging to Campylobacter.
  5.  カンピロバクター目に属する細菌が、カンピロバクター属菌、ヘリコバクター属細菌およびアルコバクター属細菌から選択される、請求項4に記載のデバイス。 The device according to claim 4, wherein the bacteria belonging to the order of Campylobacter are selected from Campylobacter, Helicobacter and Arcobacter.
  6.  請求項1~3のいずれかに記載のデバイスのフィルターに、らせん菌を含み得る検体を接触させて、らせん菌をフィルターに対して通過させる工程を含む、らせん菌の分離方法。 A method for separating a spiral bacterium, comprising a step of bringing a specimen that may contain a spiral bacterium into contact with the filter of the device according to any one of claims 1 to 3, and allowing the spiral bacterium to pass through the filter.
  7.  上記工程を圧力下、吸引減圧下、または遠心濾過で行う、請求項6に記載の方法。 The method according to claim 6, wherein the step is performed under pressure, under reduced pressure by suction, or by centrifugal filtration.
  8.  らせん菌が、カンピロバクター目に属する細菌から選択される、請求項6または7に記載の方法。 The method according to claim 6 or 7, wherein the spiral bacterium is selected from bacteria belonging to Campylobacter.
  9.  カンピロバクター目に属する細菌が、カンピロバクター属菌、ヘリコバクター属細菌およびアルコバクター属細菌から選択される、請求項8に記載の方法。 The method according to claim 8, wherein the bacterium belonging to the order Campylobacter is selected from Campylobacter, Helicobacter and Arcobacter.
  10.  以下の工程を含む、らせん菌の検出方法:
    (i)請求項1~3のいずれかに記載のデバイスのフィルターに、らせん菌を含み得る検体を接触させて、らせん菌をフィルターに対して通過させる工程、
    (ii)フィルターを通過したらせん菌を検出する工程。
    A method for detecting spiral bacteria comprising the following steps:
    (I) contacting the sample that may contain spiral bacteria with the filter of the device according to any one of claims 1 to 3, and passing the spiral bacteria through the filter;
    (Ii) A step of detecting the filamentous fungus after passing through the filter.
  11.  フィルターを通過したらせん菌を、検出前に培養する工程をさらに含む、請求項10に記載の方法。 The method according to claim 10, further comprising a step of culturing the filamentous fungus that passes through the filter before detection.
  12.  上記工程(i)を圧力下、吸引減圧下、または遠心濾過で行う、請求項10または11に記載の方法。 The method according to claim 10 or 11, wherein the step (i) is carried out under pressure, under reduced pressure by suction, or by centrifugal filtration.
  13.  らせん菌が、カンピロバクター目に属する細菌から選択される、請求項10~12のいずれかに記載の方法。 The method according to any one of claims 10 to 12, wherein the spiral fungus is selected from bacteria belonging to the order of Campylobacter.
  14.  カンピロバクター目に属する細菌が、カンピロバクター属菌、ヘリコバクター属細菌およびアルコバクター属細菌から選択される、請求項13に記載の方法。 The method according to claim 13, wherein the bacterium belonging to the order Campylobacter is selected from Campylobacter, Helicobacter and Arcobacter.
PCT/JP2011/071849 2010-09-27 2011-09-26 Device for isolating spirillum and isolation method WO2012043456A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536431A JP5963675B2 (en) 2010-09-27 2011-09-26 Device and method for separating spiral bacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010214851 2010-09-27
JP2010-214851 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012043456A1 true WO2012043456A1 (en) 2012-04-05

Family

ID=45892902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071849 WO2012043456A1 (en) 2010-09-27 2011-09-26 Device for isolating spirillum and isolation method

Country Status (2)

Country Link
JP (1) JP5963675B2 (en)
WO (1) WO2012043456A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086754A (en) * 2014-11-06 2016-05-23 Jnc株式会社 Culture medium for campylobacter detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022336A (en) * 2008-07-24 2010-02-04 Hokkaido Univ Radioactive probe for counting live campylobacter quickly and specifically by method of culture combined with in situ hybridization, and method by the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022336A (en) * 2008-07-24 2010-02-04 Hokkaido Univ Radioactive probe for counting live campylobacter quickly and specifically by method of culture combined with in situ hybridization, and method by the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Millipore Catalog, Filter-hen", ISOPORE, vol. 3, 15 March 2008 (2008-03-15), pages 8 *
ANNETTE BOLLMANN ET AL.: "Incubation of Environmental Samples in a Diffusion Chamber Increases the Diversity of Recovered Isolates", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 73, no. 20, 2007, pages 6386 - 6390, XP002579303, DOI: doi:10.1128/AEM.01309-07 *
M. B. SKIRROW: "Campylobacter enteritis: a "new" disease", BRITISH MEDICAL JOURNAL, vol. 2, 2 July 1977 (1977-07-02), pages 9 - 11 *
OLIVIER VANDENBERG ET AL.: "Arcobacter Species in Humans", EMERGING INFECTIOUS DISEASES, vol. 10, no. 10, October 2004 (2004-10-01), pages 1863 - 1867 *
SHINJI YAMAZAKI: "Important Campylobacter- related organisms other than C. jejuni and C. coli", JAPANESE JOURNAL OF FOOD MICROBIOLOGY, vol. 28, no. 2, 30 June 2011 (2011-06-30), pages 86 - 91 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086754A (en) * 2014-11-06 2016-05-23 Jnc株式会社 Culture medium for campylobacter detection

Also Published As

Publication number Publication date
JP5963675B2 (en) 2016-08-03
JPWO2012043456A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
Matsuda et al. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR
Timms et al. How accurately can we detect Mycobacterium avium subsp. paratuberculosis infection?
El-Badry et al. Blastocystis subtypes isolated from irritable bowel syndrome patients and co-infection with Helicobacter pylori
Whipple et al. Comparison of a commercial DNA probe test and three cultivation procedures for detection of Mycobacterium paratuberculosis in bovine feces
Fitzgerald et al. Diagnosis and antimicrobial susceptibility of Campylobacter species
Lehtola et al. Fluorescence in situ hybridization using peptide nucleic acid probes for rapid detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in potable-water biofilms
Jokinen et al. An enhanced technique combining pre-enrichment and passive filtration increases the isolation efficiency of Campylobacter jejuni and Campylobacter coli from water and animal fecal samples
Kanchana et al. Evaluation of the BACTEC™ MGIT™ 960 system for the recovery of mycobacteria
Sachidanandham et al. Monitoring of active but non‐culturable bacterial cells by flow cytometry
Piqueres et al. A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability
Salmanzadeh-Ahrabi et al. Molecular epidemiology of Escherichia coli diarrhoea in children in Tehran
Sihvonen et al. Yersinia enterocolitica and Y. enterocolitica-like species in clinical stool specimens of humans: identification and prevalence of bio/serotypes in Finland
Abdulrazzaq et al. Efficiency of hichrome Enterococcus faecium agar in the isolation of Enterococcus spp. and other associated bacterial genera from water
Corea et al. Melioidosis in Sri Lanka: an emerging infection
Tanih et al. Helicobacter pylori infection in Africa: Pathology and microbiological diagnosis
JP2017108721A (en) Long-term storable culture medium for culturing obligate anaerobes or microaerophilic bacteria in aerobic environment, and detection method of obligate anaerobes or microaerophilic bacteria using the same culture medium
JP5963675B2 (en) Device and method for separating spiral bacteria
Santos et al. Rapid detection of bacteria, Enterococcus faecalis, in airborne particles of Hermosillo, Sonora, México
CN113512601B (en) Molecular targets for screening for Proteus and quantitative detection methods
Goyani et al. Sputum-Spotted Solid Matrix Designed to Release Diagnostic-Grade Mycobacterium tuberculosis DNA Demonstrate Optimal Biocontainment Property
Jabbar et al. Isolation and Molecular Detection of Helicobacter Pylori from Biopsy Samples of Gastritis Patients in Iraq
Diergaardt et al. Evaluation of the Cape Town Protocol for the isolation of Campylobacter spp. from environmental waters
Sobsey Methods to identify and detect microbial contaminants in drinking water
Farshad et al. An improvement in isolation and preservation of clinical strains of Helicobacter pylori
Yılmaz et al. Investigation of Cryptosporidium spp. in Immunosuppressive and Immunocompetent Cases with Diarrhea by Microscopic, Serological and Molecular Methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829010

Country of ref document: EP

Kind code of ref document: A1