WO2012042922A1 - Optical information medium, optical information recording and playback device and optical information recording and playback method - Google Patents

Optical information medium, optical information recording and playback device and optical information recording and playback method Download PDF

Info

Publication number
WO2012042922A1
WO2012042922A1 PCT/JP2011/054383 JP2011054383W WO2012042922A1 WO 2012042922 A1 WO2012042922 A1 WO 2012042922A1 JP 2011054383 W JP2011054383 W JP 2011054383W WO 2012042922 A1 WO2012042922 A1 WO 2012042922A1
Authority
WO
WIPO (PCT)
Prior art keywords
bca
data
optical information
recording
pit
Prior art date
Application number
PCT/JP2011/054383
Other languages
French (fr)
Japanese (ja)
Inventor
貴清 安川
星沢 拓
大西 邦一
裕 永井
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Publication of WO2012042922A1 publication Critical patent/WO2012042922A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming

Definitions

  • the present invention relates to an optical information medium, an optical information recording and reproducing apparatus, and an optical information recording and reproducing method.
  • BD Blu-ray Disc
  • BCA Burst Cutting Area
  • BCA formation can be realized by an easy method, and a detection method equivalent to the conventional BCA can be applied.
  • FIG. 2 is a structural diagram of a single-layer ROM disk used in the present embodiment.
  • FIG. 2 is a structural diagram of a two-layer ROM disk used in the present embodiment.
  • FIG. 2 is a structural diagram of a recording layer of a ROM disk used in the present embodiment.
  • FIG. 2 is an LDC block structural diagram of a disk used in the present embodiment.
  • FIG. 7 is a block diagram showing a first interleaving for an LDC block; The block diagram which shows the 2nd interleaving with respect to LDC block.
  • FIG. 2 is a structural diagram of address information of a disk used in the present embodiment.
  • FIG. 2 is a structural diagram of an access block of a disk used in the present embodiment.
  • FIG. 2 is a structural diagram of a BIS block of a disk used in the present embodiment.
  • FIG. 2 is a structural diagram of a BIS cluster of a disk used in the present embodiment. Structure of ECC cluster of disk used in this embodiment
  • FIG. 2 is a structural diagram of a recording frame of a disk used in the present embodiment.
  • FIG. 7 is a conversion diagram of 1-7 modulation used in the disk used in the present embodiment.
  • FIG. 2 is a structural view showing a position of BCA of a disk used in the present embodiment.
  • the conversion table which shows the modulation rule of BCA of the disc used for this embodiment.
  • FIG. 3 is a view showing a recording shape of BCA of a disk used in the present embodiment.
  • Pattern table of synchronization signal of BCA The block diagram of the ECC block of a BCA code.
  • FIG. 1 is a block diagram of an optical disc recording and reproducing apparatus used in the present embodiment.
  • FIG. 1 shows physical characteristics of a conventional BCA structure and its signal waveform.
  • A shows the physical structure, and random data is formed on the embossed portion which is the base portion by the modulation method according to the data area.
  • a cutting part is formed there using a BCA cutter etc. by a post process. By lowering the reflection level in this manner, “1” of the data pattern is formed, and the determination can be made based on the difference between “0” of the other embossed portions and the reflectance.
  • B shows the waveform actually reproduced.
  • the embossed portion is modulated with a data pattern, and a high frequency component is detected.
  • the cutting unit burns out the data pattern, the amount of reflected light is greatly reduced, and the reproduction signal intensity can be reduced to almost zero level.
  • (C) shows the signal waveform after passing through the reproduction LPF.
  • the data pattern is a signal of a high frequency component according to the user data area, and is detected as a signal center level.
  • the embossed portion is lower than I8H (the top level of the original waveform), and the cutting portion is detected near the zero level.
  • FIG. 2 shows physical characteristics of the BCA structure of the optical information medium used in the present embodiment, and the signal waveforms thereof.
  • the physical structure of (a) differs from that of the conventional BCA in that the portion forming the data pattern "0" has no mirror portion, that is, there is no light diffraction structure such as pits, and the structure has the highest reflected light amount.
  • the embossed portion constituting the data pattern "1" has the same physical structure as the embossed portion of the conventional BCA.
  • the embossed portion constituting the data pattern "1" has the same reflectance as that of the embossed portion of the data pattern "0" of the conventional BCA, and the signal level of the conventional BCA Have different waveforms.
  • the signal level is largely shifted from the center level of the high frequency signal of the data pattern to I8H.
  • the pit depth used for BCA is newly defined and can be detected similarly to the conventional BCA. Specifically, it is easiest to detect a change in the amount of reflected light by designing the pit depth to be approximately 1 ⁇ 4 of the laser wavelength. Although such a design makes it difficult to detect a push-pull signal, it can be implemented because it is not necessary to apply tracking servo in BCA reproduction.
  • the result of evaluating the pit shape is shown.
  • the change in the amount of reflected light that is, the condition under which the degree of signal modulation can be secured the most is examined.
  • the conditions were compared between pit length and pit width.
  • pit lengths are compared with continuous patterns of 2T length and continuous patterns of 8T length from the viewpoint of data modulation.
  • 1T is a channel clock.
  • FIG. 3 is a simulation result of a continuous pattern of 2T length.
  • A shows the amount of reflected light when the pit width is 0.16 ⁇ m, which is half the track pitch.
  • G / L respectively indicate the result of the groove or on-track state and the land or off-track state.
  • B shows a pit width of 0.21 ⁇ m, which is about half the spot size at which the amount of reflected light is minimized.
  • the signal level 1 is based on the mirror level and is shown as a relative light amount ratio. From these results, it can be seen that in the case of a continuous pattern of 2T length, when the pit width is 0.21 ⁇ m, the average amount of reflected light can be further reduced.
  • FIG. 4 is a simulation result of a continuous pattern of 8T length.
  • (A) and (b) are respectively the same as FIG.
  • the land portion (non-pit portion) is about 0.9, which is equivalent to the mirror portion.
  • FIG. 5 to 7 show an example of a pit structure BCA.
  • FIG. 5 shows a 2T continuous pattern
  • FIG. 6 shows an 8T continuous pattern
  • FIG. 7 shows a groove structure pattern in which the 8T continuous pattern is expanded.
  • the central portion of a long pit pattern is continuously present. That is, the pit-forming BCA which secures the same signal level as the conventional BCA and does not add a post process is not a pattern having lands as shown in FIGS. 5 and 6, but as shown in FIG. It can be seen that the BCA signal modulation degree can be secured by using a long pit pattern (groove structure).
  • the continuous patterns of 2T and 8T are compared for the sake of simplicity, but the present invention is not limited to this.
  • the length of the pit portion may be secured and the length of the land portion may be as short as possible, for example, BCA also in a pattern such as a combination of 8T pits and 2T lands. It is possible to relatively easily secure the modulation degree.
  • FIG. 8 shows a single-layer ROM (read only) disc.
  • FIG. 9 shows a dual layer ROM (read only) disc.
  • the single-layer ROM disk shown in FIG. 8 has a label side on which a label is written and a recording side on which a light beam for reproduction is incident. It comprises a cover layer for protecting the recording surface from the recording surface side, a recording layer on which a signal is recorded, and a base layer therebelow.
  • the two-layer ROM disk shown in FIG. 9 also has a label surface on which a label is written and a recording surface on which a light beam for reproduction is incident.
  • a cover layer for protecting the recording surface from the recording surface side a recording layer (L1) on which a signal is recorded, a space layer separating the other recording layer, a recording layer (L0 on which another signal is recorded) And the underlying layer below.
  • FIG. 10 schematically shows the cross section of the disk with the left side as the inner periphery and the right side as the outer periphery.
  • FIG. 10A shows the disk structure of the recording layer L0 of the single-layer ROM disk and the double-layer ROM disk.
  • FIG. 10B shows the disk structure of the recording layer L1 of the dual layer ROM disk.
  • L0 disc structure 1001 is a BCA, and information unique to the disc is recorded.
  • Reference numeral 1002 denotes an inner zone 0 in which information on attributes of the disc, control information, and the like are recorded. Also called Lead-in.
  • Reference numeral 1003 denotes Data Zone 0, in which user data such as AV data is recorded.
  • Reference numeral 1004 denotes Outer Zone 0 in which control information and the like are recorded.
  • Inner Zone 0 (1002) includes Protection Zone 1 (1005), PIC (1006), Protection Zone 2 (1007), INFO 02 (1008), reseved (1009), and INFO 01 (1010).
  • Protection Zone 1 (1005) is an area for separating BCA (1001) and PIC (1006).
  • PIC has information on disk type, information on disk size, information on disk version, information on disk structure, information on channel bit length, information on presence or absence of BCA, and maximum application. Information on the transmission rate is recorded. Protection Zone 2 (1007) is an area for separating PIC (1006) and INFO 02 (1008). Control information is recorded in INFO 02 (1008). reseved (1009) is a spare area. Control information is recorded in INFO01 (1010). Outer zone 0 (1004) is composed of INFO 3/4 (1011) and Protection Zone 3 (1012). Control information is recorded in INFO 3/4 (1011). Protection Zone 3 (1012) further separates INFO 3/4 (1011) from the outer peripheral portion. In FIG.
  • the arrow from the inner periphery to the outer periphery of the L0 disk structure is recorded such that the recording layers L0 of the single layer ROM disk and the dual layer ROM disk are read from the inner periphery toward the outer periphery.
  • FIG. 10B L1 disc structure
  • 1014 is Inner Zone 1, and information on attributes of the disc, control information and the like are recorded therein. Also called Lead-out. 1015 is Data Zone 0, and user data such as AV data is recorded. Reference numeral 1016 denotes Outer Zone 1 in which control information and the like are recorded.
  • Inner Zone 1 (1014) consists of Protection Zone 1 (1017), PIC (1018), Protection Zone 2 (1019), INFO 02 (1020), reseved (1021), INFO 01 (1022).
  • Protection Zone 1 (1017) is an area for separating the PIC (1018) from the inner circumference side.
  • the PIC (1018) has information on the type of disc, information on disc size, information on disc version, information on disc structure, information on channel bit length, information on presence or absence of BCA, and maximum application. Information on the transmission rate is recorded. Protection Zone 2 (1019) is an area for separating PIC (1018) and INFO 02 (1020). Control information is recorded in INFO 02 (1020). reseved (1021) is a spare area. Control information is recorded in INFO01 (1022). Outer Zone 1 (1016) is composed of INFO 3/4 (1023) and Protection Zone 3 (1024). Control information is recorded in INFO 3/4 (1023). Protection Zone 3 (1024) further separates INFO 3/4 (1023) from the outer peripheral portion.
  • the arrow from the outer periphery to the inner periphery of the L1 disk structure in FIG. 10B indicates that the recording layer L1 of the dual layer ROM disk is recorded so as to be read from the outer periphery toward the inner periphery.
  • [Data encoding process] The recording process of user data will be described. As shown in FIG. 11, the user data is divided into 2048-byte units, and 4-byte error detection codes are added to each to form a 2052-byte data frame. Next, scramble processing is performed on each data frame as shown in FIG. 12 to construct a scrambled data frame. Next, as shown in FIG. 12, 32 scrambled data frames are collected. Next, rearrangement is performed in order of columns, and data blocks of 216 rows and 304 columns are configured as shown in FIG. Then, as shown in FIG.
  • each column of the data block is encoded with Reed-Solomon code of (248, 216, 32), 32-byte parity is added, and a new LDC of 248 rows and 304 columns (Long) is added. Construct a Distant Code block.
  • the next first interleaving and second interleaving are processed for the LDC block. As shown in FIG. 15A, the first interleaving rearranges data in even-numbered columns and data in subsequent odd-numbered columns alternately to form a block of 496 rows and 152 columns. For the second interleaving, the first two rows are not shifted, and the next two rows are shifted three bytes to the left, in units of two rows from the top, as shown in FIG.
  • the next two rows are shifted by 6 bytes, the next two rows are shifted by 9 bytes to the left, and relocation is performed to increase the shift amount by 3 bytes.
  • the first interleaved data and the second interleaved data form an LDC cluster.
  • the address added to this data block is generated as follows. As shown in FIG. 16, the data block is divided into 16 address units, each of which is assigned 9 bytes of address information.
  • the 9-byte breakdown consists of 4-byte address, 1-byte flag information, and 4-byte address and parity added to the flag information.
  • the addresses are interleaved to form a matrix of 6 rows and 24 columns.
  • 18 bytes of user control data, 32 units, are arranged in a 24 ⁇ 24 matrix.
  • the matrix of 6 rows and 24 columns described above and the matrix of 24 rows and 24 columns are combined to form 30 rows and 24 columns of access blocks shown in FIG.
  • Each row of the access block is encoded with (62, 33, 32) Reed-Solomon code, added with 32-byte parity, and BIS (Burst Indicating Subcode) block of 62 rows and 24 columns shown in FIG.
  • BIS Burst Indicating Subcode
  • the LDC cluster is divided into 38 columns, and the data of the BIS cluster is inserted one by one between them to form an ECC cluster shown in FIG.
  • a 20-bit frame sync signal is added at the beginning, and the 155-byte data is divided into the first 25 bits and 45 bits thereafter, and DC control bits are inserted between them.
  • the recording frame shown in FIG. The DC control bit is controlled such that the DSV after modulation is close to zero.
  • the modulation of the data of the recording frame is performed by 17 modulation according to the table shown in FIG.
  • the frame synchronization signal is added using a 30-bit synchronization code as shown in FIG. In FIG. 23, # is 1 when the modulated data before the synchronization code is terminated at 0000 or 00, and is 0 otherwise.
  • BCA The arrangement of the BCA shown in FIG. 10 is a plan view seen from above the optical disk 2401 and is shown in FIG.
  • a burst cutting area (BCA) 2402 is formed concentrically in a range from a radius of 21.3 mm to 22.0 mm of the optical disc 2401.
  • Reference numeral 2403 denotes a center hole.
  • the BCA stores information unique to the disk such as a disk ID or format information to which the disk conforms. Such information occupies 4648 channel bits, while one round is approximately 4750 channel bits.
  • FIG. 25 A modulation method of data recorded in the burst cutting area 2402 is shown in FIG.
  • 2-bit data is modulated as 7-bit data.
  • the 7-bit data after modulation is configured such that the first 3 bits are a sync portion and the last 4 bits are a data portion.
  • the synchronization unit is composed only of "010".
  • "1" is set to any one of four bits, and the other bits are set to "0”.
  • FIG. 25 if the original data is "00", the data part is modulated as "1000”. Similarly, the original data "01”, "10” and “11” are modulated as data parts “0100", "0010” and "0001", respectively.
  • FIG. 2402 A state in which the synchronization part and the data part are recorded in the burst cutting area 2402 is schematically shown in FIG. In this case, data of "0101000" is shown. In the case of bit "1”, a low reflectance portion is formed. In the case of the bit "0”, this low reflectance portion is not formed, and the change in the disk reflectance is almost zero.
  • each row is composed of 5 bytes.
  • the first 1 byte of each row is a sync byte, and the last 4 bytes are data.
  • the first line is a preamble, which is all 00h.
  • the first synchronization byte is used only for the first line, it is possible to detect the start position of the BCA code by detecting this. Alternatively, it is possible to detect together with 00h data after the first synchronization byte.
  • the area is divided in units of four lines.
  • 16-byte data of user data I0,0 to I0,15 are arranged.
  • 16-byte parity C0,0 to C0,15 corresponding to user data I0,0 to I0,15 in the second to fifth lines. Is placed.
  • One ECC block is configured by the user data of the second to fifth lines and the parity of the sixth to ninth lines.
  • user data I1,0 to I1,15 are arranged in the tenth to thirteenth rows, and parities C1,0 to C1,15 corresponding to the fourteenth to seventeenth rows are arranged.
  • User data I2, 0 to I2, 15 are arranged on the 18th to 21st lines, and parity C2, 0 to C2, 15 corresponding to the 22nd to 25th lines are arranged.
  • User data I3, 0 to I3, 15 are arranged on the 26th to 29th lines, and parity C3, 0 to C3, 15 corresponding to the 30th to 33rd lines are arranged.
  • the synchronization bytes in the second to fifth lines are SB00.
  • the synchronization byte from the sixth line to the ninth line is SB01.
  • the synchronization byte from the 10th line to the 13th line is SB02.
  • the synchronization byte from the 14th line to the 17th line is SB03.
  • the synchronization byte from the 18th line to the 21st line is SB10.
  • the synchronization byte from the 22nd line to the 25th line is SB11.
  • the synchronization byte from the 26th line to the 29th line is SB12.
  • the synchronization byte from the 30th line to the 33rd line is SB13. No data is placed on the 34th line, and only SB 32 of the synchronization byte is placed. Data in FIG.
  • FIG. 27 shows data before being modulated according to the modulation scheme in FIG.
  • a specific data string of the synchronization signal of FIG. 27 is shown in FIG.
  • the example of FIG. 28 is represented as a channel bit string after modulation.
  • the synchronization byte of 28 channel bits comprises a sync body of 14 channel bits and a sync ID of 14 channel bits.
  • the sync body of 14 channel bits is composed of a sync body 1 of 7 channel bits and a sync body 2 of 7 channel bits.
  • the sync ID of 14 channel bits is formed of a sync ID 1 of 7 channel bits and a sync ID 2 of 7 channel bits.
  • the sink body has a pattern that does not follow the original modulation rule described above. That is, as shown in FIG. 25, according to the present modulation rule, the synchronization part should be "010". However, the synchronization portion of the sync body 2 is "001" different from "010". Thus, it is possible to identify synchronization bytes from the data.
  • the sync body 1 of each synchronization byte is set to "010 0001", and the sync body 2 is set to "001 0100".
  • the sync ID is a different value for each synchronization byte, which makes it possible to identify the synchronization byte. In this way, each synchronization byte is different, so that identification is possible.
  • the configuration of the ECC block of the BCA code is shown in FIG.
  • Reed Solomon code of RS (248, 216, 33) is used. This is a Reed Solomon code similar to the ECC block of FIG.
  • the first 200 bytes are fixed data, and, for example, FFh is used.
  • the 16-byte data following the fixed data is substantially used as BCA user data. Using 200 bytes of fixed data and 16 bytes of BCA data, 36 bytes of parity are calculated.
  • the first 200 bytes are fixed data and are not recorded on the optical disc.
  • the 32 bytes of parity only the first 16 bytes of parity C0 to C15 are recorded on the optical disc 1, and the remaining 16 bytes of parity are not recorded.
  • the same value is used as fixed data of 200 bytes.
  • 16-byte parity not recorded is decoded as an erasure flag. That is, of the 32-byte parity, the latter 16 bytes are processed as if the located parity was lost. Even if one half of the parity is lost, the original parity can be decoded because its position is known.
  • FIG. 30 shows the configuration of the data block of BCA.
  • four ECC blocks are recorded in the burst cutting area 2402.
  • the 16-byte data of each ECC block is composed of the leading 1-byte content code and the subsequent 15-byte content data.
  • the content code of BCA six bits from the first bit 7 to bit 2 are set as an application ID, and two bits of the last bit 1 and bit 0 are set as a sequence number.
  • the optical disk recording and reproducing apparatus can record or reproduce data only on an optical disk having an agreed application ID. For example, it is possible to record content encryption / decryption key information and the like necessary for protecting content data on a disc having a specific application ID.
  • the sequence number is composed of 2 bits and is any one of "00", “01", “10” and "11". When the content data of each ECC block is 14 bytes or less, each sequence number is set to "00".
  • the sequence number of each ECC block is "00". That is, when the same content data is recorded, the sequence numbers of the two ECC blocks are the same.
  • the first sequence number is “00”, and the sequence of the second ECC block is stored.
  • the number is "01”. That is, when straddling a plurality of ECC blocks, serial numbers are stored.
  • the BCA content code and content data of the data block in FIG. 30 correspond to I0,0 to I0,15 in the first ECC block in FIG.
  • FIG. 31 is a block diagram of a recording and reproducing apparatus.
  • 3100 is a read-only disc shown in FIGS. 8, 9, 10, or a recordable disc having a substantially common shape.
  • Reference numeral 3101 denotes a disk motor for rotating the disk 3100.
  • Reference numeral 3102 denotes an optical pickup for irradiating the disk 3100 with a laser beam and detecting reflected light to obtain a reproduction signal.
  • recording is performed by irradiating the disk 3100 with laser light of a waveform shaped properly at the time of recording.
  • An analog front end 3103 performs waveform shaping of a signal detected by the optical pickup 3102 and generation of a servo signal.
  • a demodulation processing circuit 3104 performs binarization of the waveform-shaped signal, demodulation processing based on 1-7 modulation described in the data encoding processing, and the like.
  • Reference numeral 3105 denotes a dynamic random access memory (DRAM), which is used for temporary storage of data subjected to demodulation processing, during correction processing, input / output data, data before modulation processing, and the like.
  • DRAM dynamic random access memory
  • An error correction circuit (ECC) 3106 performs error correction processing on the demodulated data temporarily stored in the DRAM 3105 during reproduction processing, and an error for input data temporarily stored in the DRAM 3105 during recording processing. Add a correction code.
  • An interface circuit 3107 outputs data temporarily stored in the DRAM 105 from the output terminal 3114, stores input data from the input terminal 3113 in the DRAM 3105, and outputs an output terminal 3115 of BCA related information stored in the DRAM 3105. Perform interface processing such as output of. 3113 and 3115 can also be shared. Moreover, it is also possible to share 3311, 3114, and 3115 by making them bidirectional.
  • a modulation circuit 3108 performs modulation processing based on 1-7 modulation described in the data encoding processing for data read from the DRAM 3105 at the time of recording, and supplies the modulation data to an LDD (Laser Diode Driver) 3109. Do.
  • the LDD 3109 supplies a recording waveform suitable for recording to the optical pickup 3102 for modulation data, and the pickup 3102 emits light in accordance with the recording waveform to perform recording.
  • a BCA decoder 3110 decodes BCA data blocks recorded according to the presence or absence of low reflectance as described in [BCA] at the time of BCA reproduction.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the configurations described above may be configured such that part or all of them are configured by hardware or implemented by executing a program by a processor.
  • control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

Writing of BCA data has conventionally been performed by a BCA cutter after formation of a user data area. However, with this type of method, it has been necessary to provide an individual step for BCA formation among the disk manufacturing steps, so that from the perspectives of manufacturing man-hours and, additionally, manufacturing cost of discs, the burden upon disc manufacturers had been significant. By using a pit formation method similar to that for the user data area, it is possible to reduce the steps for BCA manufacture. Furthermore, by setting the pit depth of the BCA portion to approximately 1/4 of the wavelength of the recording and playback laser, it is possible to increase the modulation depth of the BCA portion so as to allow application of a detection method equivalent to that for a conventional BCA.

Description

光情報媒体、光情報記録再生装置及び光情報記録再生方法Optical information medium, optical information recording and reproducing apparatus, and optical information recording and reproducing method
 本発明は、光情報媒体、光情報記録再生装置及び光情報記録再生方法に関する。 The present invention relates to an optical information medium, an optical information recording and reproducing apparatus, and an optical information recording and reproducing method.
 従来の光ディスク、例えばBlu-ray Disc(BD)などにおいては、ユーザデータ領域に格納されているデータの管理及びその著作権の保護のために、光ディスクの内周にはBurst Cutting Area(BCA)が設けられている。BCAに関する技術としては、例えば特許文献1、特許文献2などに開示されている。 In a conventional optical disc, for example, Blu-ray Disc (BD), a Burst Cutting Area (BCA) is provided on the inner circumference of the optical disc to manage data stored in the user data area and protect its copyright. It is provided. The technology relating to BCA is disclosed, for example, in Patent Document 1 and Patent Document 2.
特開2000-149423号公報JP 2000-149423 A 特開2001-043533号公報JP, 2001-043533, A
 BCAデータの書き込みは従来、ユーザデータ領域の形成後にBCAカッター等によって行われていた。しかし、このような方法では、ディスク製造工程にBCA形成用に個別の工程を設けざるを得ず、ディスクの生産工数、更には製造コストの観点で、ディスク生産者の負荷が大きい。 Conventionally, writing of BCA data has been performed by a BCA cutter or the like after the formation of the user data area. However, in such a method, it is necessary to provide a separate process for BCA formation in the disc manufacturing process, and the load on the disc producer is large in terms of the number of disc manufacturing steps and further the manufacturing cost.
 上記課題は特許請求の範囲に記載の発明により解決される。 The above problems are solved by the invention described in the claims.
 本発明によれば、容易な方法でBCA形成が実現でき、従来のBCAと同等の検出方法が適用可能となる。 According to the present invention, BCA formation can be realized by an easy method, and a detection method equivalent to the conventional BCA can be applied.
従来のBCA構造、及びその信号波形を示す図。The figure which shows the conventional BCA structure, and its signal waveform. 本実施形態に用いるBCA構造、及びその信号波形を示す図。The figure which shows the BCA structure used for this embodiment, and its signal waveform. 2T長の連続パターンのシミュレーション結果を示す図。The figure which shows the simulation result of the continuous pattern of 2T length. 8T長の連続パターンのシミュレーション結果を示す図。The figure which shows the simulation result of the continuous pattern of 8 T length. ピット構造のBCAのパターンを示す図。The figure which shows the pattern of BCA of a pit structure. ピット構造のBCAの別のパターンを示す図。The figure which shows another pattern of BCA of a pit structure. ピット構造のBCAの更に別のパターンを示す図。The figure which shows another pattern of BCA of a pit structure. 本実施形態に用いる1層ROMディスクの構造図。FIG. 2 is a structural diagram of a single-layer ROM disk used in the present embodiment. 本実施形態に用いる2層ROMディスクの構造図。FIG. 2 is a structural diagram of a two-layer ROM disk used in the present embodiment. 本実施形態に用いるROMディスクの記録層の構造図。FIG. 2 is a structural diagram of a recording layer of a ROM disk used in the present embodiment. 本実施形態に用いるディスクのデータフレーム構造図。The data frame structure figure of the disc used for this embodiment. 本実施形態に用いるディスクのスクランブルドデータフレーム構造図。The scrambled data frame structure figure of the disc used for this embodiment. 本実施形態に用いるディスクの216行304列のデータブロック構成図。The data block block diagram of 216 rows 304 columns of the disk used for this embodiment. 本実施形態に用いるディスクのLDCブロック構造図。FIG. 2 is an LDC block structural diagram of a disk used in the present embodiment. LDCブロックに対する第1のインターリーブを示す構成図。FIG. 7 is a block diagram showing a first interleaving for an LDC block; LDCブロックに対する第2のインターリーブを示す構成図。The block diagram which shows the 2nd interleaving with respect to LDC block. 本実施形態に用いるディスクのアドレス情報の構造図。FIG. 2 is a structural diagram of address information of a disk used in the present embodiment. 本実施形態に用いるディスクのアクセスブロックの構造図。FIG. 2 is a structural diagram of an access block of a disk used in the present embodiment. 本実施形態に用いるディスクのBISブロックの構造図。FIG. 2 is a structural diagram of a BIS block of a disk used in the present embodiment. 本実施形態に用いるディスクのBISクラスタの構造図。FIG. 2 is a structural diagram of a BIS cluster of a disk used in the present embodiment. 本実施形態に用いるディスクのECCクラスタの構造図Structure of ECC cluster of disk used in this embodiment 本実施形態に用いるディスクの記録フレームの構造図。FIG. 2 is a structural diagram of a recording frame of a disk used in the present embodiment. 本実施形態に用いるディスクで用いられる1-7変調の変換図。FIG. 7 is a conversion diagram of 1-7 modulation used in the disk used in the present embodiment. 同期フレームの同期信号パターン表。Sync signal pattern table of sync frame. 本実施形態に用いるディスクのBCAの位置を示す構造図。FIG. 2 is a structural view showing a position of BCA of a disk used in the present embodiment. 本実施形態に用いるディスクのBCAの変調則を示す変換表。The conversion table which shows the modulation rule of BCA of the disc used for this embodiment. 本実施形態に用いるディスクのBCAの記録形状を示す図。FIG. 3 is a view showing a recording shape of BCA of a disk used in the present embodiment. 本実施形態に用いるディスクのBCAのデータ構造図。The data structure figure of BCA of the disc used for this embodiment. BCAの同期信号のパターン表。Pattern table of synchronization signal of BCA. BCAコードのECCブロックの構成図。The block diagram of the ECC block of a BCA code. BCAのデータブロックの構成図。The block diagram of the data block of BCA. 本実施形態に用いる光ディスク記録再生装置のブロック図。FIG. 1 is a block diagram of an optical disc recording and reproducing apparatus used in the present embodiment.
 [光情報媒体]
 本実施形態に用いる光情報媒体について説明する。なお、説明を簡単にするため、本実施形態においては、BDのシステムを前提とする。図1は従来のBCA構造の物理特性、及びその信号波形を示す。(a)は物理構造を示しており、ベース部分であるエンボス部にはデータ領域に準じた変調方法でランダムデータが形成されている。そこに後工程でBCAカッター等を用いて、カッティング部を形成する。このように反射レベルを下げることで、データパターンの“1”を構成し、その他のエンボス部の“0”と反射率の差異で判定が可能となる。(b)は実際に再生した波形を示す。エンボス部はデータパターンで変調されており、高周波成分が検出される。また、カッティング部はデータパターンを焼き切り、反射光量が大きく低下し、ほぼゼロレベル近くまで再生信号強度を下げることができる。(c)は再生用のLPFを通過した後の信号波形を示している。データパターンはユーザデータ領域に準じた高周波成分の信号であり、信号中心レベルとして検出される。その結果、エンボス部はI8H(元波形のトップレベル)よりも下がり、カッティング部はゼロレベル近くで検出されることになる。
[Optical information medium]
The optical information medium used in the present embodiment will be described. In addition, in order to simplify the description, in the present embodiment, a BD system is assumed. FIG. 1 shows physical characteristics of a conventional BCA structure and its signal waveform. (A) shows the physical structure, and random data is formed on the embossed portion which is the base portion by the modulation method according to the data area. A cutting part is formed there using a BCA cutter etc. by a post process. By lowering the reflection level in this manner, “1” of the data pattern is formed, and the determination can be made based on the difference between “0” of the other embossed portions and the reflectance. (B) shows the waveform actually reproduced. The embossed portion is modulated with a data pattern, and a high frequency component is detected. In addition, the cutting unit burns out the data pattern, the amount of reflected light is greatly reduced, and the reproduction signal intensity can be reduced to almost zero level. (C) shows the signal waveform after passing through the reproduction LPF. The data pattern is a signal of a high frequency component according to the user data area, and is detected as a signal center level. As a result, the embossed portion is lower than I8H (the top level of the original waveform), and the cutting portion is detected near the zero level.
 続いて、図2は本実施形態に用いる光情報媒体のBCA構造の物理特性、及びその信号波形を示す。(a)の物理構造は従来BCAと異なり、データパターン“0”を構成する部分がミラー部、つまりピット等の光回折構造がなく、最も反射光量の高い構造となる。
データパターン“1”を構成するエンボス部は、従来BCAのエンボス部と同様の物理構造となる。
(b)の再生波形でその差異が明確となるが、データパターン“1”を構成するエンボス部は従来BCAのデータパターン“0”のエンボス部と同様の反射率となり、従来BCAの信号レベルとは異なる波形となる。データパターン“0”であるミラー部も同様にデータパターンの高周波信号の中心レベルからI8Hへ信号レベルが大きくシフトすることになる。
Subsequently, FIG. 2 shows physical characteristics of the BCA structure of the optical information medium used in the present embodiment, and the signal waveforms thereof. The physical structure of (a) differs from that of the conventional BCA in that the portion forming the data pattern "0" has no mirror portion, that is, there is no light diffraction structure such as pits, and the structure has the highest reflected light amount.
The embossed portion constituting the data pattern "1" has the same physical structure as the embossed portion of the conventional BCA.
Although the difference becomes clear in the reproduced waveform of (b), the embossed portion constituting the data pattern "1" has the same reflectance as that of the embossed portion of the data pattern "0" of the conventional BCA, and the signal level of the conventional BCA Have different waveforms. Similarly, in the mirror portion having the data pattern "0", the signal level is largely shifted from the center level of the high frequency signal of the data pattern to I8H.
 そのため、本実施形態では、BCAに使用するピット深さを新たに規定し、従来のBCAと同様に検出できるようにした。具体的には、ピット深さをレーザ波長の略1/4となるように設計することで、最も反射光量の変化を検出しやすい。なお、このような設計では、プッシュプル信号の検出が困難となるが、BCAの再生においては、トラッキングサーボをかけなくてもよいので、実現が可能である。 Therefore, in the present embodiment, the pit depth used for BCA is newly defined and can be detected similarly to the conventional BCA. Specifically, it is easiest to detect a change in the amount of reflected light by designing the pit depth to be approximately 1⁄4 of the laser wavelength. Although such a design makes it difficult to detect a push-pull signal, it can be implemented because it is not necessary to apply tracking servo in BCA reproduction.
 次に、ピット形状について評価した結果を示す。特に反射光量の変化つまり信号変調度が最も確保できる条件について検討した。条件はピット長と、ピット幅で比較検討した。 Next, the result of evaluating the pit shape is shown. In particular, the change in the amount of reflected light, that is, the condition under which the degree of signal modulation can be secured the most is examined. The conditions were compared between pit length and pit width.
 まず、ピット長はデータ変調の観点から、2T長の連続パターン、8T長の連続パターンで比較する。なお、1Tはチャネルクロックである。 First, pit lengths are compared with continuous patterns of 2T length and continuous patterns of 8T length from the viewpoint of data modulation. Note that 1T is a channel clock.
 図3は2T長の連続パターンのシミュレーション結果である。(a)はピット幅をトラックピッチの半分である0.16μmとした場合の反射光量を示す。G/Lはそれぞれグルーブつまりオントラック状態と、ランドつまりオフトラック状態の結果を示す。(b)はピット幅を反射光量が極小となるスポットサイズの略半分である0.21μmの結果を示す。信号レベルの1はミラーレベルを基準とし、相対光量比として示す。これらの結果から、2T長の連続パターンの場合、ピット幅が0.21μmとした場合に、より平均反射光量を下げられることがわかる。 FIG. 3 is a simulation result of a continuous pattern of 2T length. (A) shows the amount of reflected light when the pit width is 0.16 μm, which is half the track pitch. G / L respectively indicate the result of the groove or on-track state and the land or off-track state. (B) shows a pit width of 0.21 μm, which is about half the spot size at which the amount of reflected light is minimized. The signal level 1 is based on the mirror level and is shown as a relative light amount ratio. From these results, it can be seen that in the case of a continuous pattern of 2T length, when the pit width is 0.21 μm, the average amount of reflected light can be further reduced.
 図4は8T長の連続パターンのシミュレーション結果である。(a)、(b)はそれぞれ図3と同様である。8T長の連続パターンの場合、ピット中心部分(図中のLength=0)でオントラック、オフトラックによらず、ミラー部基準で、0.3以下となることがわかる。また、ランド部(非ピット部)はミラー部相当の0.9程度となる。この結果から、BCA形成にピットパターンを使用する場合は、ピット部とランド部で信号強度が大きく変わり、BCA再生用のLPFを通過後には、全ての平均化が行われ、限りなく0.5付近に収束することとなる。 FIG. 4 is a simulation result of a continuous pattern of 8T length. (A) and (b) are respectively the same as FIG. In the case of a continuous pattern of 8T length, it can be seen that it becomes 0.3 or less on the basis of the mirror portion regardless of on-track and off-track in the pit center portion (Length = 0 in the figure). Also, the land portion (non-pit portion) is about 0.9, which is equivalent to the mirror portion. From this result, when using a pit pattern for BCA formation, the signal strength largely changes between the pit part and the land part, and after passing through the LPF for BCA reproduction, all averaging is performed, and the limit is 0.5 without limit. It will converge to the vicinity.
 図5から図7はピット構造のBCAの例を示す。図5は2T連続パターン、図6は8T連続パターン、図7は8T連続パターンを拡張した溝構造パターンである。図3,4の条件から、よりBCAの変調度が確保できるピットパターンとしては、長いピットパターンの中央部が連続的に存在する場合であると言える。つまり、従来のBCAと同様の信号レベルを確保し、且つ後工程を追加しないピット形成型のBCAには、図5,図6のようにランド部があるようなパターンではなく、図7のように長いピットパターン(溝構造)とすることによって、BCA信号変調度が確保できることがわかる。 5 to 7 show an example of a pit structure BCA. FIG. 5 shows a 2T continuous pattern, FIG. 6 shows an 8T continuous pattern, and FIG. 7 shows a groove structure pattern in which the 8T continuous pattern is expanded. From the conditions of FIGS. 3 and 4, it can be said that as a pit pattern which can ensure the modulation degree of BCA, the central portion of a long pit pattern is continuously present. That is, the pit-forming BCA which secures the same signal level as the conventional BCA and does not add a post process is not a pattern having lands as shown in FIGS. 5 and 6, but as shown in FIG. It can be seen that the BCA signal modulation degree can be secured by using a long pit pattern (groove structure).
 なお、本実施形態の説明においては、簡単のために2T,8Tの連続パターンで比較したが、これに制限されるものではない。例えば、溝構造の実現が困難である場合は、ピット部の長さを確保し、ランド部の長さをできるだけ短くすればよく、例えば、8Tピットと2Tランドの組み合わせのようなパターンにおいてもBCA変調度を比較的容易に確保することが可能である。 In the description of the present embodiment, the continuous patterns of 2T and 8T are compared for the sake of simplicity, but the present invention is not limited to this. For example, when it is difficult to realize the groove structure, the length of the pit portion may be secured and the length of the land portion may be as short as possible, for example, BCA also in a pattern such as a combination of 8T pits and 2T lands. It is possible to relatively easily secure the modulation degree.
 [ディスクの形状]
  本実施形態に用いる再生専用ディスクの形状について説明する。図8に1層ROM(再生専用)ディスクを示す。また、図9は2層ROM(再生専用)ディスクを示す。図8に示される1層ROMディスクにはレーベルが書かれる側のレーベル面と、再生するための光ビームが入射する側の記録面が存在する。記録面側から記録面を保護するカバー層、信号が記録されている記録層、そしてその下の基盤層からなる。図9に示される2層ROMディスクにもレーベルが書かれる側のレーベル面と、再生するための光ビームが入射する側の記録面が存在する。記録面側から記録面を保護するカバー層、信号が記録されている記録層(L1)、もう一つの記録層との間を隔てるスペース層、もう一つの信号が記録されている記録層(L0)そしてその下の基盤層からなる。
Disc shape
The shape of the read-only disc used in the present embodiment will be described. FIG. 8 shows a single-layer ROM (read only) disc. FIG. 9 shows a dual layer ROM (read only) disc. The single-layer ROM disk shown in FIG. 8 has a label side on which a label is written and a recording side on which a light beam for reproduction is incident. It comprises a cover layer for protecting the recording surface from the recording surface side, a recording layer on which a signal is recorded, and a base layer therebelow. The two-layer ROM disk shown in FIG. 9 also has a label surface on which a label is written and a recording surface on which a light beam for reproduction is incident. A cover layer for protecting the recording surface from the recording surface side, a recording layer (L1) on which a signal is recorded, a space layer separating the other recording layer, a recording layer (L0 on which another signal is recorded) And the underlying layer below.
 次に1層ROMディスク及び2層ROMディスクの記録層の構造を図10に示す。図10はディスク断面を左側を内周、右側を外周とし模式的にあらわしたものである。図10(a)L0ディスク構造は、1層ROMディスク及び2層ROMディスクの記録層L0のディスク構造を示す。図10(b)L1ディスク構造は、2層ROMディスクの記録層L1のディスク構造を示す。 Next, the structure of the recording layer of the single layer ROM disk and the double layer ROM disk is shown in FIG. FIG. 10 schematically shows the cross section of the disk with the left side as the inner periphery and the right side as the outer periphery. FIG. 10A shows the disk structure of the recording layer L0 of the single-layer ROM disk and the double-layer ROM disk. FIG. 10B shows the disk structure of the recording layer L1 of the dual layer ROM disk.
 図10(a)L0ディスク構造において、1001はBCAであり、ディスク固有の情報等が記録されている。1002はInner Zone0であり、ディスクに関する属性の情報や制御情報等が記録されている。Lead-inとも称する。1003はData Zone0であり、AVデータなどのユーザデータが記録されている。1004はOuter Zone0であり制御情報などが記録されている。Inner Zone0(1002)は、Protection Zone1(1005)、PIC(1006)、Protection Zone2(1007)、INFO02(1008)、reseved(1009)、INFO01(1010)からなる。Protection Zone1(1005)はBCA(1001)とPIC(1006)を隔てるための領域である。PIC(1006)はディスクのタイプに関する情報や、ディスクのサイズに関する情報や、ディスクのバージョンに関する情報や、ディスクの構造に関する情報や、チャネルビット長に関する情報や、BCAの有無に関する情報や、適用の最大伝送速度に関する情報などが記録されている。Protection Zone2(1007)は、PIC(1006)とINFO02(1008)を隔てるための領域である。INFO02(1008)には制御情報が記録されている。reseved(1009)は予備の領域である。INFO01(1010)には制御情報が記録されている。Outer Zone0(1004)は、INFO3/4(1011)とProtection Zone3(1012)からなる。INFO3/4(1011)には制御情報が記録されている。Protection Zone3(1012)はINFO3/4(1011)を更に外周部分と隔てる。図10(a)L0ディスク構造の内周から外周に向かっての矢印は、1層ROMディスク及び2層ROMディスクの記録層L0は内周から外周に向かってReadするように記録されていることを示す。 In FIG. 10A (a) L0 disc structure, 1001 is a BCA, and information unique to the disc is recorded. Reference numeral 1002 denotes an inner zone 0 in which information on attributes of the disc, control information, and the like are recorded. Also called Lead-in. Reference numeral 1003 denotes Data Zone 0, in which user data such as AV data is recorded. Reference numeral 1004 denotes Outer Zone 0 in which control information and the like are recorded. Inner Zone 0 (1002) includes Protection Zone 1 (1005), PIC (1006), Protection Zone 2 (1007), INFO 02 (1008), reseved (1009), and INFO 01 (1010). Protection Zone 1 (1005) is an area for separating BCA (1001) and PIC (1006). PIC (1006) has information on disk type, information on disk size, information on disk version, information on disk structure, information on channel bit length, information on presence or absence of BCA, and maximum application. Information on the transmission rate is recorded. Protection Zone 2 (1007) is an area for separating PIC (1006) and INFO 02 (1008). Control information is recorded in INFO 02 (1008). reseved (1009) is a spare area. Control information is recorded in INFO01 (1010). Outer zone 0 (1004) is composed of INFO 3/4 (1011) and Protection Zone 3 (1012). Control information is recorded in INFO 3/4 (1011). Protection Zone 3 (1012) further separates INFO 3/4 (1011) from the outer peripheral portion. In FIG. 10 (a), the arrow from the inner periphery to the outer periphery of the L0 disk structure is recorded such that the recording layers L0 of the single layer ROM disk and the dual layer ROM disk are read from the inner periphery toward the outer periphery. Indicates
 図10(b)L1ディスク構造において、1014はInner Zone1であり、ディスクに関する属性の情報や制御情報等が記録されている。Lead-outとも称する。1015はData Zone0であり、AVデータなどのユーザデータが記録されている。1016はOuter Zone1であり制御情報などが記録されている。Inner Zone1(1014)は、Protection Zone1(1017)、PIC(1018)、Protection Zone2(1019)、INFO02(1020)、reseved(1021)、INFO01(1022)からなる。Protection Zone1(1017)はより内周側とPIC(1018)を隔てるための領域である。PIC(1018)はディスクのタイプに関する情報や、ディスクのサイズに関する情報や、ディスクのバージョンに関する情報や、ディスクの構造に関する情報や、チャネルビット長に関する情報や、BCAの有無に関する情報や、適用の最大伝送速度に関する情報などが記録されている。Protection Zone2(1019)は、PIC(1018)とINFO02(1020)を隔てるための領域である。INFO02(1020)には制御情報が記録されている。reseved(1021)は予備の領域である。INFO01(1022)には制御情報が記録されている。Outer Zone1(1016)は、INFO3/4(1023)とProtection Zone3(1024)からなる。INFO3/4(1023)には制御情報が記録されてい
る。Protection Zone3(1024)はINFO3/4(1023)を更に外周部分と隔てる。図10(b)L1ディスク構造の外周から内周に向かっての矢印は、2層ROMディスクの記録層L1は外周から内周に向かってReadするように記録されていることを示す。
In FIG. 10B (b) L1 disc structure, 1014 is Inner Zone 1, and information on attributes of the disc, control information and the like are recorded therein. Also called Lead-out. 1015 is Data Zone 0, and user data such as AV data is recorded. Reference numeral 1016 denotes Outer Zone 1 in which control information and the like are recorded. Inner Zone 1 (1014) consists of Protection Zone 1 (1017), PIC (1018), Protection Zone 2 (1019), INFO 02 (1020), reseved (1021), INFO 01 (1022). Protection Zone 1 (1017) is an area for separating the PIC (1018) from the inner circumference side. The PIC (1018) has information on the type of disc, information on disc size, information on disc version, information on disc structure, information on channel bit length, information on presence or absence of BCA, and maximum application. Information on the transmission rate is recorded. Protection Zone 2 (1019) is an area for separating PIC (1018) and INFO 02 (1020). Control information is recorded in INFO 02 (1020). reseved (1021) is a spare area. Control information is recorded in INFO01 (1022). Outer Zone 1 (1016) is composed of INFO 3/4 (1023) and Protection Zone 3 (1024). Control information is recorded in INFO 3/4 (1023). Protection Zone 3 (1024) further separates INFO 3/4 (1023) from the outer peripheral portion. The arrow from the outer periphery to the inner periphery of the L1 disk structure in FIG. 10B indicates that the recording layer L1 of the dual layer ROM disk is recorded so as to be read from the outer periphery toward the inner periphery.
 [データのエンコード処理]
  ユーザデータの記録処理について説明する。図11に示すとおり、ユーザデータを2048バイト単位に分割し、それぞれに4バイトの誤り検出コードを付加して2052バイトのデータフレームを構成する。次に、各データフレームに対し図12に示すとおりスクランブル処理を行い、スクランブルドデータフレームを構成する。次に図12に示すとおり、スクランブルドデータフレームを32個集める。次に列順に再配置を行い、図13に示すとおり216行304列のデータブロックを構成する。そして、図14に示すとおり、データブロックの各列に対して(248,216,32)のリードソロモン符号で符号化を行い、32バイトのパリティを付加し新たに248行304列のLDC(Long Distant Code)ブロックを構成する。LDCブロックに対しては次の第1のインターリーブと、第2のインターリーブが処理される。第1のインターリーブは図15aに示されるように、偶数番目の列のデータとそれに続く奇数番目の列のデータを互い違いに挟み込むように再配置を行い496行152列のブロックを構成する。第2のインターリーブは図15b示すとおり、再配置された496行152列のブロックに対し、上から2行単位で、最初の2行はシフトせず、次の2行は左に3バイトシフト、次の2行は6バイトシフト、次の2行は左に9バイトシフトと3バイトずつシフト量を増加させる再配置を行う。第1のインターリーブ、第2のインターリーブを施したデータはLDCクラスタを構成する。
[Data encoding process]
The recording process of user data will be described. As shown in FIG. 11, the user data is divided into 2048-byte units, and 4-byte error detection codes are added to each to form a 2052-byte data frame. Next, scramble processing is performed on each data frame as shown in FIG. 12 to construct a scrambled data frame. Next, as shown in FIG. 12, 32 scrambled data frames are collected. Next, rearrangement is performed in order of columns, and data blocks of 216 rows and 304 columns are configured as shown in FIG. Then, as shown in FIG. 14, each column of the data block is encoded with Reed-Solomon code of (248, 216, 32), 32-byte parity is added, and a new LDC of 248 rows and 304 columns (Long) is added. Construct a Distant Code block. The next first interleaving and second interleaving are processed for the LDC block. As shown in FIG. 15A, the first interleaving rearranges data in even-numbered columns and data in subsequent odd-numbered columns alternately to form a block of 496 rows and 152 columns. For the second interleaving, the first two rows are not shifted, and the next two rows are shifted three bytes to the left, in units of two rows from the top, as shown in FIG. The next two rows are shifted by 6 bytes, the next two rows are shifted by 9 bytes to the left, and relocation is performed to increase the shift amount by 3 bytes. The first interleaved data and the second interleaved data form an LDC cluster.
 一方、このデータブロックに付加されるアドレスは以下のように生成される。
図16に示されるようにデータブロックは16のアドレスユニットに分割され、それぞれに9バイトのアドレス情報が割り当てられる。9バイトの内訳は、4バイトのアドレスと、1バイトのフラグ情報と、4バイトのアドレスとフラグ情報に付加されたパリティとからなる。このアドレスはインターリーブ処理を行ったうえで、6行24列のマトリックスを形成する。同時にユーザー制御データ18バイト、32ユニット分が24行24列のマトリックスに配置される。
上記の6行24列のマトリックスと24行24列のマトリックスは結合され、図17に示す30行24列のアクセスブロックを形成する。アクセスブロックの各列に対して(62,33,32)のリードソロモン符号で符号化を行い、32バイトのパリティを付加して図18に示す、62行24列のBIS(Burst Indicating Subcode)ブロックを形成する。BISブロックのデータに対し再配置を行い図19に示す496行3列のBISクラスタを構成する。
On the other hand, the address added to this data block is generated as follows.
As shown in FIG. 16, the data block is divided into 16 address units, each of which is assigned 9 bytes of address information. The 9-byte breakdown consists of 4-byte address, 1-byte flag information, and 4-byte address and parity added to the flag information. The addresses are interleaved to form a matrix of 6 rows and 24 columns. At the same time, 18 bytes of user control data, 32 units, are arranged in a 24 × 24 matrix.
The matrix of 6 rows and 24 columns described above and the matrix of 24 rows and 24 columns are combined to form 30 rows and 24 columns of access blocks shown in FIG. Each row of the access block is encoded with (62, 33, 32) Reed-Solomon code, added with 32-byte parity, and BIS (Burst Indicating Subcode) block of 62 rows and 24 columns shown in FIG. Form Relocation is performed on the data of the BIS block to form a BIS cluster of 496 rows and 3 columns shown in FIG.
 前記のLDCクラスタを38列ずつに分割し、間にBISクラスタのデータを一列ずつ挿入し図20に示すECCクラスタを構成する。 The LDC cluster is divided into 38 columns, and the data of the BIS cluster is inserted one by one between them to form an ECC cluster shown in FIG.
 ECCクラスタの各行155バイトのデータに対しては、先頭に20ビットのフレーム同期信号が付加し、155バイトのデータは先頭25ビット、以降は45ビットずつに分割し、間にDCコントロールビットを挿入し、図21に示す記録フレームを構成する。DCコントロールビットは変調後のDSVが0に近くなるように制御される。 For each 155-byte data in each row of the ECC cluster, a 20-bit frame sync signal is added at the beginning, and the 155-byte data is divided into the first 25 bits and 45 bits thereafter, and DC control bits are inserted between them. The recording frame shown in FIG. The DC control bit is controlled such that the DSV after modulation is close to zero.
 記録フレームのデータに対する変調は図22に示されるテーブルに従って17変調を行う。フレーム同期信号は図23に示されるように30bitsの同期コードを用いて付加される。図23において、#は同期コードの前の変調後のデータが0000もしくは00で終端された場合は1となり、他の場合は0となる。 The modulation of the data of the recording frame is performed by 17 modulation according to the table shown in FIG. The frame synchronization signal is added using a 30-bit synchronization code as shown in FIG. In FIG. 23, # is 1 when the modulated data before the synchronization code is terminated at 0000 or 00, and is 0 otherwise.
 [BCA]
  図10で示されたBCAの配置を、光ディスク2401の上から見た配置図で、図24に示す。光ディスク2401の半径21.3mmから22.0mmまでの範囲には、同心円状にバーストカッティングエリア(BCA)2402が形成される。また、2403はセンターホールである。このBCAには、ディスクID等のディスク固有の情報もしくは、ディスクの準拠するフォーマット情報等が格納されている。こうした情報は1周が略4750チャネルビットであるのに対し、4648チャネルビットを占める。
[BCA]
The arrangement of the BCA shown in FIG. 10 is a plan view seen from above the optical disk 2401 and is shown in FIG. A burst cutting area (BCA) 2402 is formed concentrically in a range from a radius of 21.3 mm to 22.0 mm of the optical disc 2401. Reference numeral 2403 denotes a center hole. The BCA stores information unique to the disk such as a disk ID or format information to which the disk conforms. Such information occupies 4648 channel bits, while one round is approximately 4750 channel bits.
 バーストカッティングエリア2402に記録されるデータの変調方法を図25に示す。本変調方式では、2ビットのデータが7ビットデータとして変調される。変調後の7ビットデータは、前半3ビットが同期部、後半4ビットがデータ部として構成される。同期部は“010”のみで構成される。データ部は4ビットのうちのいずれかのビットに“1”が設定され、それ以外のビットは“0”と設定される。図25において、元データが“00”であれば、データ部が“1000”と変調される。同様に元データ“01”、“10”、“11”はそれぞれデータ部“0100”、“0010”、“0001”と変調される。 A modulation method of data recorded in the burst cutting area 2402 is shown in FIG. In this modulation method, 2-bit data is modulated as 7-bit data. The 7-bit data after modulation is configured such that the first 3 bits are a sync portion and the last 4 bits are a data portion. The synchronization unit is composed only of "010". In the data part, "1" is set to any one of four bits, and the other bits are set to "0". In FIG. 25, if the original data is "00", the data part is modulated as "1000". Similarly, the original data "01", "10" and "11" are modulated as data parts "0100", "0010" and "0001", respectively.
 同期部とデータ部がバーストカッティングエリア2402に記録されている状態を模式的に図26に示す。この場合、“0101000”のデータを示している。ビット“1”の場合は、低反射率部が形成される。ビット“0”の場合はこの低反射率部が形成されずに、ディスク反射率の変化がほぼゼロとなる。 A state in which the synchronization part and the data part are recorded in the burst cutting area 2402 is schematically shown in FIG. In this case, data of "0101000" is shown. In the case of bit "1", a low reflectance portion is formed. In the case of the bit "0", this low reflectance portion is not formed, and the change in the disk reflectance is almost zero.
 バーストカッティングエリア2402に記録されるデータ構造を図27に示す。図27において、各行が5バイトで構成される。各行の先頭1バイトは同期バイトであり、後方4バイトがデータとされる。 The data structure recorded in the burst cutting area 2402 is shown in FIG. In FIG. 27, each row is composed of 5 bytes. The first 1 byte of each row is a sync byte, and the last 4 bytes are data.
 第1行目はプリアンブルとされ、全て00hとされる。 The first line is a preamble, which is all 00h.
 第1の同期バイトは第1行目のみに用いるため、これを検出することにより、BCAコードの開始位置を検出することが可能である。もしくは、第1の同期バイト以降の00hデータと併せて検出することも可能である。第2行目から第33行目までは、4行単位で領域が区分される。第2行目から第5行目までには、ユーザデータI0,0からI0,15の16バイトのデータが配置される。続いて、第6行目から第9行目までには、第2行目から第5行目までのユーザデータI0,0からI0,15に対応する16バイトのパリティC0,0からC0,15が配置される。この第2行目から第5行目までのユーザデータと第6行目から第9行目までのパリティによって、1つのECCブロックが構成される。 Since the first synchronization byte is used only for the first line, it is possible to detect the start position of the BCA code by detecting this. Alternatively, it is possible to detect together with 00h data after the first synchronization byte. In the second to thirty-third lines, the area is divided in units of four lines. In the second to fifth lines, 16-byte data of user data I0,0 to I0,15 are arranged. Subsequently, in the sixth to ninth lines, 16-byte parity C0,0 to C0,15 corresponding to user data I0,0 to I0,15 in the second to fifth lines. Is placed. One ECC block is configured by the user data of the second to fifth lines and the parity of the sixth to ninth lines.
 同様に、第10行目から第13行目までにユーザデータI1,0からI1,15が配置され、第14行目から第17行目に対応するパリティC1,0からC1,15が配置される。第18行目から第21行目までにユーザデータI2,0からI2,15が配置され、第22行目から第25行目に対応するパリティC2,0からC2,15が配置される。第26行目から第29行目までにユーザデータI3,0からI3,15が配置され、第30行目から第33行目に対応するパリティC3,0からC3,15が配置される。 Similarly, user data I1,0 to I1,15 are arranged in the tenth to thirteenth rows, and parities C1,0 to C1,15 corresponding to the fourteenth to seventeenth rows are arranged. Ru. User data I2, 0 to I2, 15 are arranged on the 18th to 21st lines, and parity C2, 0 to C2, 15 corresponding to the 22nd to 25th lines are arranged. User data I3, 0 to I3, 15 are arranged on the 26th to 29th lines, and parity C3, 0 to C3, 15 corresponding to the 30th to 33rd lines are arranged.
 第2行目から第5行目の同期バイトはSB00とされる。第6行目から第9行目までの同期バイトはSB01とされる。第10行目から第13行目までの同期バイトはSB02とされる。第14行目から第17行目までの同期バイトはSB03とされる。第18行目から第21行目までの同期バイトはSB10とされる。第22行目から第25行目までの同期バイトはSB11とされる。第26行目から第29行目までの同期バイトはSB12とされる。第30行目から第33行目までの同期バイトはSB13とされる。第34行目にはデータは配置されず、同期バイトのSB32のみが配置される。図27のデータは図25の変調方式に従い、変調される前のデータを示している。そのデータ量は166バイトとなる。(=5バイト×4行×8セット+5バイト+1バイト)この情報が変調された結果、4648チャネルビットとなる。(=166×8×7/2)
 図27の同期信号の具体的なデータ列を図28に示す。なお、図28の例は変調後のチャネルビット列として表される。28チャネルビットの同期バイトは14チャネルビットのシンクボディと、14チャネルビットのシンクIDとで構成される。14チャネルビットのシンクボディは7チャネルビットのシンクボディ1と、7チャネルビットのシンクボディ2とで構成される。14チャネルビットのシンクIDは、7チャネルビットのシンクID1と、7チャネルビットのシンクID2とで構成される。
The synchronization bytes in the second to fifth lines are SB00. The synchronization byte from the sixth line to the ninth line is SB01. The synchronization byte from the 10th line to the 13th line is SB02. The synchronization byte from the 14th line to the 17th line is SB03. The synchronization byte from the 18th line to the 21st line is SB10. The synchronization byte from the 22nd line to the 25th line is SB11. The synchronization byte from the 26th line to the 29th line is SB12. The synchronization byte from the 30th line to the 33rd line is SB13. No data is placed on the 34th line, and only SB 32 of the synchronization byte is placed. Data in FIG. 27 shows data before being modulated according to the modulation scheme in FIG. The amount of data is 166 bytes. (= 5 bytes × 4 rows × 8 sets + 5 bytes + 1 byte) As a result of this information being modulated, there are 4648 channel bits. (= 166 x 8 x 7/2)
A specific data string of the synchronization signal of FIG. 27 is shown in FIG. The example of FIG. 28 is represented as a channel bit string after modulation. The synchronization byte of 28 channel bits comprises a sync body of 14 channel bits and a sync ID of 14 channel bits. The sync body of 14 channel bits is composed of a sync body 1 of 7 channel bits and a sync body 2 of 7 channel bits. The sync ID of 14 channel bits is formed of a sync ID 1 of 7 channel bits and a sync ID 2 of 7 channel bits.
 なお、シンクボディは先に記した本来の変調則に従わないパターンとなっている。すなわち、図25に記されるように本変調則に従えば、その同期部は“010”とされるはずである。しかし、シンクボディ2の同期部は“010”とは異なる“001”とされている。従って、同期バイトをデータから識別することが可能である。 The sink body has a pattern that does not follow the original modulation rule described above. That is, as shown in FIG. 25, according to the present modulation rule, the synchronization part should be "010". However, the synchronization portion of the sync body 2 is "001" different from "010". Thus, it is possible to identify synchronization bytes from the data.
 各同期バイトのシンクボディ1はいずれも“010 0001”とされ、シンクボディ2は“001 0100”とされる。これに対し、シンクIDは、同期バイト毎に異なる値とされ、これにより同期バイトを識別することが可能となっている。このように、各同期バイトが異なるため、識別が可能となる。 The sync body 1 of each synchronization byte is set to "010 0001", and the sync body 2 is set to "001 0100". On the other hand, the sync ID is a different value for each synchronization byte, which makes it possible to identify the synchronization byte. In this way, each synchronization byte is different, so that identification is possible.
 BCAコードのECCブロックの構成を図29に示す。ECCはRS(248,216,33)のリードソロモン符号が用いられる。これは、図14のECCブロックと同様のリードソロモン符号である。ただし、BCAコードのECCブロックは図29のように、先頭の200バイトは固定データとされ、例えばFFhが使用される。この固定データに続く16バイトのデータが実質的なBCAのユーザデータとされる。200バイトの固定データと、16バイトのBCAデータとを用いて、36バイトのパリティが計算する。 The configuration of the ECC block of the BCA code is shown in FIG. As the ECC, Reed Solomon code of RS (248, 216, 33) is used. This is a Reed Solomon code similar to the ECC block of FIG. However, in the ECC block of the BCA code, as shown in FIG. 29, the first 200 bytes are fixed data, and, for example, FFh is used. The 16-byte data following the fixed data is substantially used as BCA user data. Using 200 bytes of fixed data and 16 bytes of BCA data, 36 bytes of parity are calculated.
 なお、本実施形態における216バイトのデータのうち、先頭200バイトは固定データであり、光ディスクには記録されない。同様に、32バイトのパリティのうち、先頭16バイトのパリティC0からC15のみが光ディスク1に記録され、残りの16バイトのパリティは記録されない。復号時には、200バイトの固定データは、同一の値がそのまま用いられる。また、記録されない16バイトのパリティは消失フラグとして復号される。つまり、32バイトのパリティのうち、後半の16バイトは位置するパリティが、消失したものとして処理される。パリティの1/2が消失したとしても、その位置が既知であるため、元のパリティを復号することが可能である。 In the 216-byte data in the present embodiment, the first 200 bytes are fixed data and are not recorded on the optical disc. Similarly, among the 32 bytes of parity, only the first 16 bytes of parity C0 to C15 are recorded on the optical disc 1, and the remaining 16 bytes of parity are not recorded. At the time of decoding, the same value is used as fixed data of 200 bytes. Also, 16-byte parity not recorded is decoded as an erasure flag. That is, of the 32-byte parity, the latter 16 bytes are processed as if the located parity was lost. Even if one half of the parity is lost, the original parity can be decoded because its position is known.
 このように、ユーザデータエリアに記録されるユーザデータのECCと同じRS(248,216,33)を用いることで、BCAにおいても非常に強力なエラー訂正能力を実現可能となる。また、同一のハードウェアでの構成が可能となるので、回路規模を低減でき、コスト低減することができる。更に、32バイトのみを記録すればよく、248バイト全てを記録する場合に比べ、データ容量を大きくすることができる。 As described above, by using the same RS (248, 216, 33) as the ECC of the user data recorded in the user data area, a very strong error correction capability can be realized also in the BCA. Further, since the configuration with the same hardware is possible, the circuit scale can be reduced and the cost can be reduced. Furthermore, only 32 bytes need to be recorded, and the data capacity can be increased as compared to the case where all 248 bytes are recorded.
 次に、BCAのデータブロックの構成を図30に示す。本実施形態において、4個のECCブロックがバーストカッティングエリア2402に記録される。各ECCブロックの16バイトのデータは、先頭の1バイトのコンテンツコードと、続く15バイトのコンテンツデータで構成される。BCAのコンテンツコードは、先頭のビット7からビット2までの6ビットがアプリケーションIDとされ、最後のビット1、ビット0の2ビットがシーケンス番号とされる。 Next, FIG. 30 shows the configuration of the data block of BCA. In the present embodiment, four ECC blocks are recorded in the burst cutting area 2402. The 16-byte data of each ECC block is composed of the leading 1-byte content code and the subsequent 15-byte content data. In the content code of BCA, six bits from the first bit 7 to bit 2 are set as an application ID, and two bits of the last bit 1 and bit 0 are set as a sequence number.
 光ディスク記録再生装置は、取り決められたアプリケーションIDを有する光ディスクに対してのみ、データの記録する、もしくは再生することが可能とされる。例えば、特定のアプリケーションIDを有するディスクに対して、コンテンツデータを保護するために必要な、コンテンツの暗号化/復号化の鍵情報等を記録することができる。 The optical disk recording and reproducing apparatus can record or reproduce data only on an optical disk having an agreed application ID. For example, it is possible to record content encryption / decryption key information and the like necessary for protecting content data on a disc having a specific application ID.
 シーケンス番号は2ビットで構成され、“00”、“01”、“10”、“11”のいずれかとされる。各ECCブロックのコンテンツデータが14バイト以下である場合にはそれぞれのシーケンス番号は“00”とされる。 The sequence number is composed of 2 bits and is any one of "00", "01", "10" and "11". When the content data of each ECC block is 14 bytes or less, each sequence number is set to "00".
 次にコンテンツデータの格納方法を示す。例えば、4つのECCブロックのうち、先頭の2個のECCブロックの各コンテンツデータとして、同一のコンテンツデータを格納した場合(この場合は、同一アプリケーションIDの同一コンテンツデータの2重書きである)、それぞれのECCブロックのシーケンス番号は“00”とされる。すなわち、同一のコンテンツデータを記録する場合には、2つのECCブロックのシーケンス番号は同一番号とされる。 Next, a method of storing content data is shown. For example, when the same content data is stored as the content data of the first two ECC blocks among the four ECC blocks (in this case, double writing of the same content data of the same application ID), The sequence number of each ECC block is "00". That is, when the same content data is recorded, the sequence numbers of the two ECC blocks are the same.
 続いて、残りの2個のECCブロックに、最初のECCブロックのアプリケーションIDとは異なるコンテンツデータを24バイト格納する場合、1番目のシーケンス番号は“00”とされ、2番目のECCブロックのシーケンス番号は“01”とされる。すなわち、複数のECCブロックにまたがる場合には、通し番号が格納される。 Subsequently, when storing 24 bytes of content data different from the application ID of the first ECC block in the remaining two ECC blocks, the first sequence number is “00”, and the sequence of the second ECC block is stored. The number is "01". That is, when straddling a plurality of ECC blocks, serial numbers are stored.
 このように、各ECCブロックに、アプリケーションIDとシーケンス番号が記録されるので、それらから判断して、いずれのECCブロックに所望のデータが格納されているのか、また多重書きであるかという識別が可能である。 As described above, since the application ID and the sequence number are recorded in each ECC block, it is determined from them whether the desired data is stored in which ECC block or the multiple writing is performed. It is possible.
 なお、図30のデータブロックのBCAコンテンツコード、及びコンテンツデータが、図27の先頭ECCブロックのI0,0からI0,15に対応する。 The BCA content code and content data of the data block in FIG. 30 correspond to I0,0 to I0,15 in the first ECC block in FIG.
  [ディスクの記録再生装置]
  本実施形態に好適として形状、データのエンコード処理、BCAについて説明した光ディスクの再生を行う記録再生装置の説明を図31を用いて行う。図31は記録再生装置のブロック図である。図31において、3100は図8,9,10に示される再生専用ディスクもしくは、概ね共通の形状をとる記録可能ディスクである。3101はディスク3100を回転させるディスクモータ、3102はディスク3100にレーザー光を照射し、反射光を検出し再生信号を得る光ピックアップである。また3102は記録時には的確に整形された波形のレーザー光をディスク3100に照射して記録を行う。3103はアナログフロントエンドであり、光ピックアップ3102で検出された信号の波形整形やサーボ信号の生成などを行う。3104は復調処理回路であり、波形整形された信号の2値化や、データのエンコード処理で説明した1-7変調に基づいた復調処理などを行う。3105はDRAM(Dynamic Randum Access Memory)であり、復調処理されたデータ、訂正処理中、入出力データ、変調処理前のデータなどの一時記憶に用いられる。3106はECC(Error Correction Circuit)であり、再生処理時にはDRAM3105に一時記憶された復調処理済のデータに対し、誤り訂正処理をおこない、記録処理時には、DRAM3105に一時記憶された入力データに対し、誤り訂正符号の付加を行う。3107はインターフェース回路であり、DRAM105に一時記憶されたデータを出力端子3114から出力したり、入力端子3113からの入力データをDRAM3105に記憶させたり、DRAM3105に記憶されたBCA関連情報の出力端子3115からの出力などインターフェース処理を行う。3113と3115共通化することもできる。また、双方向化することで3113,3114,3115を共通化することも可能である。3108は変調回路であり、記録時には、DRAM3105から読み出したデータに対して、データのエンコード処理で説明した1-7変調に基づいた変調処理を行い、変調データをLDD(Laser Diode Driver)3109に供給する。LDD3109は記録時には、変調データに対して、記録に適切な記録波形を光ピックアップ3102に供給し、ピックアップ3102は記録波形に従って発光して記録を行う。3110はBCAデコーダーであり、BCAの再生時には、[BCA]で説明されたように低反射率の有無によって記録された、BCAのデータブロックのデコード処理を行う。
[Disk recording and playback device]
The recording and reproducing apparatus for reproducing the optical disc described in the shape, data encoding process, and BCA as suitable for the present embodiment will be described with reference to FIG. FIG. 31 is a block diagram of a recording and reproducing apparatus. In FIG. 31, 3100 is a read-only disc shown in FIGS. 8, 9, 10, or a recordable disc having a substantially common shape. Reference numeral 3101 denotes a disk motor for rotating the disk 3100. Reference numeral 3102 denotes an optical pickup for irradiating the disk 3100 with a laser beam and detecting reflected light to obtain a reproduction signal. Further, at 3102, recording is performed by irradiating the disk 3100 with laser light of a waveform shaped properly at the time of recording. An analog front end 3103 performs waveform shaping of a signal detected by the optical pickup 3102 and generation of a servo signal. A demodulation processing circuit 3104 performs binarization of the waveform-shaped signal, demodulation processing based on 1-7 modulation described in the data encoding processing, and the like. Reference numeral 3105 denotes a dynamic random access memory (DRAM), which is used for temporary storage of data subjected to demodulation processing, during correction processing, input / output data, data before modulation processing, and the like. An error correction circuit (ECC) 3106 performs error correction processing on the demodulated data temporarily stored in the DRAM 3105 during reproduction processing, and an error for input data temporarily stored in the DRAM 3105 during recording processing. Add a correction code. An interface circuit 3107 outputs data temporarily stored in the DRAM 105 from the output terminal 3114, stores input data from the input terminal 3113 in the DRAM 3105, and outputs an output terminal 3115 of BCA related information stored in the DRAM 3105. Perform interface processing such as output of. 3113 and 3115 can also be shared. Moreover, it is also possible to share 3311, 3114, and 3115 by making them bidirectional. A modulation circuit 3108 performs modulation processing based on 1-7 modulation described in the data encoding processing for data read from the DRAM 3105 at the time of recording, and supplies the modulation data to an LDD (Laser Diode Driver) 3109. Do. During recording, the LDD 3109 supplies a recording waveform suitable for recording to the optical pickup 3102 for modulation data, and the pickup 3102 emits light in accordance with the recording waveform to perform recording. A BCA decoder 3110 decodes BCA data blocks recorded according to the presence or absence of low reflectance as described in [BCA] at the time of BCA reproduction.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 また、上記の各構成は、それらの一部又は全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, each of the configurations described above may be configured such that part or all of them are configured by hardware or implemented by executing a program by a processor. Further, control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.
 3100…ディスク、3101…ディスクモータ、3102…光ピックアップ 3100 ... disc, 3101 ... disc motor, 3102 ... optical pickup

Claims (4)

  1.  光ディスクのBCA(Burst Cutting Area)であり、検出される信号の上側のレベルとなる領域はデータ変調のないミラーレベルであり、下側のレベルとなる領域に、記録再生を行う光波長の略1/4の深さのピット構造で構成することを特徴とする光情報媒体。 The BCA (Burst Cutting Area) of the optical disc, the area at the upper level of the detected signal is the mirror level without data modulation, and the area at the lower level is approximately 1 of the light wavelength for recording and reproduction. An optical information medium characterized by comprising a pit structure with a depth of 4/4.
  2.  請求項1に記載のBCAのピット構造とは、データ長に制限されない溝構造であることを特徴とする光情報媒体。 An optical information medium characterized in that the pit structure of BCA according to claim 1 is a groove structure not limited to the data length.
  3.  請求項1に記載のBCAのピット構造とは、当該情報記録媒体の最長ピット長と、最短ランド長を組み合わせていることを特徴とする光情報媒体。 An optical information medium characterized in that the pit structure of the BCA according to claim 1 is a combination of the longest pit length of the information recording medium and the shortest land length.
  4.  請求項1に記載のBCAのピット構造であり、ピット幅が記録再生を行うスポットサイズの略半分であることを特徴とする光情報記録再生装置。 An optical information recording and reproducing apparatus according to claim 1, wherein the pit width of the BCA pit structure is approximately half the spot size for recording and reproduction.
PCT/JP2011/054383 2010-09-27 2011-02-25 Optical information medium, optical information recording and playback device and optical information recording and playback method WO2012042922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010214671A JP2012069226A (en) 2010-09-27 2010-09-27 Optical information medium, optical information recording/reproduction device and optical information recording/reproduction method
JP2010-214671 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012042922A1 true WO2012042922A1 (en) 2012-04-05

Family

ID=45892407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054383 WO2012042922A1 (en) 2010-09-27 2011-02-25 Optical information medium, optical information recording and playback device and optical information recording and playback method

Country Status (3)

Country Link
JP (1) JP2012069226A (en)
TW (1) TW201214422A (en)
WO (1) WO2012042922A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208723A (en) * 1992-11-20 1994-07-26 Sony Corp Optical disk and its manufacture
JPH1145461A (en) * 1997-07-23 1999-02-16 Victor Co Of Japan Ltd Disk, its discriminating method and device and its reproducing device
JP2003030856A (en) * 2001-07-17 2003-01-31 Pioneer Electronic Corp Optical disk and recording/reproducing device
JP2003123322A (en) * 2001-08-09 2003-04-25 Sharp Corp Optical recording medium, device and method for discriminating the same
JP2005032427A (en) * 2003-07-10 2005-02-03 Hewlett-Packard Development Co Lp Optical storage medium with optically detectable mark
JP2006517326A (en) * 2003-02-03 2006-07-20 サムスン エレクトロニクス カンパニー リミテッド Optical information recording medium
WO2009075248A1 (en) * 2007-12-11 2009-06-18 Sony Corporation Method for manufacturing reproduction-dedicated optical disc medium and reproduction-dedicated optical disc medium itself

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208723A (en) * 1992-11-20 1994-07-26 Sony Corp Optical disk and its manufacture
JPH1145461A (en) * 1997-07-23 1999-02-16 Victor Co Of Japan Ltd Disk, its discriminating method and device and its reproducing device
JP2003030856A (en) * 2001-07-17 2003-01-31 Pioneer Electronic Corp Optical disk and recording/reproducing device
JP2003123322A (en) * 2001-08-09 2003-04-25 Sharp Corp Optical recording medium, device and method for discriminating the same
JP2006517326A (en) * 2003-02-03 2006-07-20 サムスン エレクトロニクス カンパニー リミテッド Optical information recording medium
JP2005032427A (en) * 2003-07-10 2005-02-03 Hewlett-Packard Development Co Lp Optical storage medium with optically detectable mark
WO2009075248A1 (en) * 2007-12-11 2009-06-18 Sony Corporation Method for manufacturing reproduction-dedicated optical disc medium and reproduction-dedicated optical disc medium itself

Also Published As

Publication number Publication date
TW201214422A (en) 2012-04-01
JP2012069226A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP4751653B2 (en) RECORDING MEDIUM PROVIDED WITH CONNECTION AREA CONTAINING Dummy DATA AND APPARATUS AND METHOD FOR FORMING, RECORDING AND REPRODUCING THE RECORDING MEDIUM
NZ503592A (en) Encoding multiword information by wordwise interleaving
JP2010510610A (en) Recording medium, method and apparatus for reproducing data on recording medium, and method and apparatus for recording data on recording medium
JP4425322B2 (en) Information recording medium
US20040076101A1 (en) High-density read-only optical disc, method for recording disc information (DI) on the high-density read-only optica disc, and method for reproducing data recorded on the high-density read-only optical disc
US7913146B2 (en) Optical disk manufacturing method and device, optical disk, and reproduction method thereof
WO2012042922A1 (en) Optical information medium, optical information recording and playback device and optical information recording and playback method
JP5789661B2 (en) Optical disc, recording method, reproduction method
JP2005536002A (en) High-density optical disk, address or / and servo information recording method for high-density optical disk, and method for reproducing data recorded on high-density optical disk
JP2012190509A (en) Optical information medium, optical information recording and reproducing device and optical information recording and reproducing method
JP2013004155A (en) Optical information medium, optical information recording and playback device and optical information recording and playback method
JP2014032712A (en) Recording method and reproduction method for optical disk and optical disk for recording
WO2012077263A1 (en) Disk recording medium and recorder device of disk recording medium and method of copying disk recording medium
KR100596306B1 (en) Method for recording and reproducing data on linking area of high density read only optical disc and high density read only optical disc thereof
WO2012039145A1 (en) Video signal and audio signal recorder apparatus, and copy processing method in recorder
KR100957798B1 (en) Method for recording additional information of high density read only optical disc and high density read only optical disc therof
WO2012039144A1 (en) Read-only optical disc, optical disc recording and reproducing device, copying method for optical disc
JP2010529579A (en) Improvements to optical disk copy protection or improvements related to optical disk copy protection
JP2013004162A (en) Optical disk, recorder of optical disk and playback device of optical disk
WO2012039147A1 (en) Copy management device, recording and playback device for optical disc, read-only optical disc, and copy management method
KR20040023386A (en) Method for recording address information of high density read only optical disc and high density read only optical disc therof
KR20040039779A (en) Method for recording additional information of high density read only optical disc and high density read only optical disc therof
MXPA00002898A (en) Encoding multiword information by wordwise interleaving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828486

Country of ref document: EP

Kind code of ref document: A1