WO2012042705A1 - Method of detecting moving object and moving object detecting device - Google Patents

Method of detecting moving object and moving object detecting device Download PDF

Info

Publication number
WO2012042705A1
WO2012042705A1 PCT/JP2011/003321 JP2011003321W WO2012042705A1 WO 2012042705 A1 WO2012042705 A1 WO 2012042705A1 JP 2011003321 W JP2011003321 W JP 2011003321W WO 2012042705 A1 WO2012042705 A1 WO 2012042705A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving object
object detection
detection method
feature
value
Prior art date
Application number
PCT/JP2011/003321
Other languages
French (fr)
Japanese (ja)
Inventor
恵 酒井
隆一 宮腰
北村 臣二
邦博 今村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012042705A1 publication Critical patent/WO2012042705A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/262Analysis of motion using transform domain methods, e.g. Fourier domain methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing

Definitions

  • the present invention relates to a moving object detection method and a moving object detection apparatus for detecting a moving object such as a person or a vehicle based on an input moving image.
  • a technique for automatically detecting a moving object in a screen is known.
  • a method has been used in which a difference image of luminance values existing at the same coordinates is generated in an input image and a background image, and a moving object is present in a portion having a large difference value.
  • the brightness fluctuates due to the flicker of fluorescent lamps, the lighting device turning on / off, sunlight, clouds, etc., so the luminance values at the same coordinates all change with the lighting fluctuations, and the parts that are not moving are also moving objects Detected.
  • Patent Document 1 One of the solutions for erroneous detection of moving objects at the time of illumination fluctuation is disclosed in Patent Document 1.
  • N is a natural number
  • an image is divided into N ⁇ N pixel block units, orthogonal transformation is performed, and among the AC components, the horizontal direction absolute value sum and the vertical direction absolute value sum
  • the moving object is detected using the vertical / horizontal edge ratio based on.
  • orthogonal transforms a discrete cosine transform (DCT) is used.
  • DCT discrete cosine transform
  • FIG. 17 shows an example of the DCT coefficient.
  • the DCT coefficient obtained by performing DCT on the two-dimensional signal f (i, j) is F (k, l)
  • F (0,0) indicated by 1701 is a DC component
  • the coefficient F (k, l) (k> 0, l> 0) is an AC component.
  • k is a horizontal frequency
  • l is a vertical frequency
  • the horizontal direction absolute value sum f (h) is the sum of the absolute values of the coefficients existing in 1702
  • the vertical direction absolute value sum f (v) is the sum of the absolute values of the coefficients existing in 1703.
  • Patent Document 1 when there is no edge in a divided block, the AC components are all 0, and no false detection is made as a moving object even while illumination variation is occurring. Even if an edge is present in the divided block, the AC component changes, but by detecting the vertical / horizontal edge ratio, erroneous detection of a moving object is prevented.
  • FIG. 18 (a) and FIG. 18 (b) show examples of luminance of illumination variation in a 4 ⁇ 4 pixel block unit.
  • the left half has a luminance value of 200 and the right half has a luminance value of 100.
  • FIG. 18B it is assumed that the illumination fluctuation occurs in the same block, the brightness in the block is halved, the left half has the luminance value 100, and the right half has the luminance value 50.
  • FIG. 19 (a) and FIG. 19 (b) show the DCT coefficients for FIG. 18 (a) and FIG. 18 (b), respectively.
  • the arrangement of the coefficients in FIGS. 19A and 19B corresponds to FIG.
  • Patent Document 1 can cope with illumination fluctuations, but cannot detect when the vertical / horizontal edge ratio does not change, for example, when the edge moves in the horizontal direction.
  • FIG. 20A and 20B show an example in which the edge in the 4 ⁇ 4 pixel block unit moves in the horizontal direction.
  • the left column has a luminance value of 100 and the remaining one has a luminance value of 50.
  • FIG. 20B an object having a luminance value of 100 has moved to the right by two columns, the left column has a luminance value of 100, and the right column has a luminance value of 50. This phenomenon occurs when a sufficiently large moving body moves horizontally with respect to the block.
  • FIG. 21 (a) and FIG. 21 (b) show the DCT coefficients for FIG. 20 (a) and FIG. 20 (b), respectively.
  • the coefficient arrangement in FIGS. 21A and 21B corresponds to FIG.
  • This invention solves the said subject, and aims at providing the moving body detection method and moving body detection apparatus which can detect a moving body with high precision, without being influenced by illumination fluctuation.
  • a moving object detection method includes a feature extraction step of extracting a feature amount in block units from an input image, and a normalized feature from the feature amount extracted from the feature extraction step.
  • the moving object detection device includes a feature extraction unit that extracts a feature amount in block units from an input image, and a normalization that calculates a normalized feature amount from the feature amount extracted by the feature extraction unit. And a moving object detection unit that determines whether the object is a moving object according to the normalized feature value normalized by the normalization unit.
  • the present invention can provide a moving object detection method and a moving object detection apparatus that can detect the presence or absence of a luminance pattern change even when illumination changes and can detect a moving object with high accuracy even when illumination changes occur.
  • FIG. 5 It is a block diagram which shows the structure of the imaging system which concerns on Embodiment 5 of this invention. It is a figure which shows the example of a display of a moving body detection result.
  • (A) And (b) is a figure which shows the example of a contraction process of the moving body detection result output from the moving body detection apparatus.
  • (A) And (b) is a figure which shows the example of an expansion process of the moving body detection result output from the moving body detection apparatus. It is an illustration figure of the DCT coefficient in the conventional moving body detection apparatus.
  • (A) And (b) is a figure which shows the luminance example of the illumination fluctuation
  • (A) And (b) is a figure which shows the DCT coefficient with respect to Fig.18 (a) and FIG.18 (b).
  • (A) And (b) is a figure which shows the example of a brightness
  • (A) And (b) is a figure which shows the DCT coefficient with respect to Fig.20 (a) and FIG.20 (b).
  • FIG. 1 is a block diagram showing a configuration of a moving object detection apparatus 100 according to Embodiment 1 of the present invention.
  • the moving object detection apparatus 100 according to the present invention includes a block dividing unit 101, an orthogonal transform unit 102, a feature extracting unit 103, a feature accumulating unit 104, a background updating unit 105, and a moving object detecting unit 106.
  • the block dividing unit 101 divides the input image 150 into predetermined block units, and outputs a predetermined block unit image 151.
  • the input image 150 is a luminance value.
  • the input image 150 may be a color difference, or may be an R value, a G value, or a B value.
  • the predetermined block unit is performed in N ⁇ N pixel units.
  • N is a natural number. Smaller objects can be detected as N is smaller, but are more susceptible to noise. Conversely, as N increases, it is less susceptible to noise, but it is difficult to detect objects that are smaller than the block size. In the following description, it is assumed that processing is performed in blocks of 8 ⁇ 8 pixels.
  • block division may be divided into blocks by predetermined units, or the blocks may overlap each other.
  • the orthogonal transform unit 102 performs orthogonal transform on the block unit image 151 divided by the block dividing unit 101 and calculates a transform coefficient 152.
  • the orthogonal transform includes Hadamard transform, DFT (discrete Fourier transform), DCT, wavelet transform, and the like.
  • the Hadamard transform can calculate a coefficient by the simplest addition / subtraction process, and can realize high-speed processing.
  • FIG. 2 shows an example of the conversion coefficient 152.
  • the coefficient is expressed as F (k, l) (0 ⁇ k ⁇ 7, 0 ⁇ l ⁇ 7), k represents a frequency in the horizontal direction, and l represents a frequency in the vertical direction. The higher k and l, the higher the frequency.
  • the feature extraction unit 103 extracts a necessary coefficient from the transform coefficient 152 obtained from the orthogonal transform unit 102 and outputs it as an input feature quantity 153.
  • the input feature quantity 153 is two feature quantities described below.
  • One is a DC component for normalization.
  • the DC component is 201 in FIG. 2 and is used for normalization at a later stage.
  • the AC component sum (ACsum) is used as the edge feature amount in the block.
  • the AC component sum (ACsum) is a value obtained by integrating the coefficients indicated by 202 in FIG. 2, that is, the sum of the conversion coefficients excluding the DC component.
  • the sum of the AC components is shown as the edge feature amount.
  • the horizontal edge the pixel value changes when viewed in the horizontal direction
  • the horizontal noise in an interlaced image is used.
  • only the horizontal component of the AC component for example, 1702 in FIG. 17
  • the vertical edge the pixel value changes when viewed in the vertical direction
  • only the vertical component of the AC component is detected. (For example, 1703 in FIG. 17) may be used.
  • the AC component may be an (N ⁇ N ⁇ 1) -dimensional feature amount.
  • the average value, median value, maximum value, and minimum value of the input image in the block may be used as values for normalizing the block.
  • the feature storage unit 104 stores an input feature amount 153 and a background feature amount 154.
  • the background feature quantity 154 is a feature quantity generated from an image other than the input image. A past image may be used in time series, or a future image may be obtained by prefetching the image. In this embodiment, when the next input image is processed after the input feature value 153 is used for moving object detection, it can be said that the input feature value 153 is a feature value of the past image, and this is used as the background feature value 154. . Therefore, the background feature quantity 154 is composed of the DC component and the AC component sum as in the case of the input feature quantity 153.
  • the number of frames of the background feature quantity 154 is F frames.
  • F is a natural number, and the smaller the F, the smaller the comparison object, so the difference between the background and the moving object is less likely to occur.
  • the processing amount is smaller, and the more F, the greater the comparison object. It is easy, but the processing amount becomes large. It is assumed that the background feature quantity 154 is calculated in advance for F frames from the monitoring area image during the initial operation of the moving object detection apparatus 100.
  • the F-frame feature quantity may be calculated and accumulated by operating the block dividing unit 101 to the feature extraction unit 103 in advance.
  • the background update unit 105 updates the background feature value 154 from the input feature value 153 stored in the feature storage unit 104.
  • the background update unit 105 There is a method of overwriting and updating with the input feature value 153 at a certain frame interval.
  • a new input feature quantity 153 is input to the background update unit 105, the frame that has the longest passage of time in the background feature quantity 154, that is, the frame that is stored the oldest in time is overwritten.
  • the background update may be performed every time one frame of the input image 150 is input, or the monitoring target moving speed, frame rate, background feature amount F frame, such as once every two frames or once every three frames.
  • the update frequency may be changed according to machine specifications such as the amount of memory to be stored.
  • the background feature quantity 154 may be calculated in advance from a background image that does not have a monitoring target, and an object that has been left without updating or an object that has been removed may be detected as a moving object.
  • the moving object detection unit 106 detects a moving object using the input feature value 153 and the background feature value 154 accumulated in the feature accumulation unit 104, and outputs a moving object detection result 155.
  • the frame number of the background feature quantity 154 is set to f.
  • Cnt be the number of moving objects detected.
  • the sum of the AC components of the block to be processed (hereinafter referred to as a processing block) is ACsum (in), and the DC component is DC (in).
  • the AC component sum is ACsum (f)
  • the DC component is DC (f)
  • 0 ⁇ f ⁇ F the AC component sum
  • FIG. 3 shows the positional relationship between the input feature quantity 153 and the background feature quantity 154 between blocks.
  • 301 is an input feature amount
  • 302 is a background feature amount for F frames.
  • the AC component total ACsum (in) and the DC component DC (in) in the input feature amount are stored.
  • 304, 305, and 306 store the AC component sum and DC component of the block at the same position as 303 in the background feature amount 302.
  • 304 to 306 in the background feature quantity 302 are compared with 303 in the input feature quantity 301, respectively, and it is detected whether a moving object exists in the block by majority vote.
  • the comparison uses the normalized feature value Pat.
  • FIG. 4 is a flowchart of a moving object determination method of the moving object detection unit 106 according to the first embodiment of the present invention.
  • the frame number f of the background feature quantity is set to 0, and the moving object detection number Cnt is set to 0.
  • the frame number f is incremented by 1 in the case where it is determined in S404 that the absolute difference between Pat (in) and Pat (f) is not larger than the normalization threshold TH1, and in the case following S405.
  • S407 it is determined whether the frame number f has been compared for all the background feature amount F frames. If it is determined in S407 that all the background feature F frames have not been compared, the process returns to S403.
  • the normalization threshold value TH1 is a threshold value for determining how large the difference between the input feature value and the background feature value is.
  • the moving object detection threshold value MoveTH is a threshold value that determines how many frames the background feature amount has changed in F frames to be a moving object.
  • Both TH1 and MoveTH are sensitive to changes if they are small, and insensitive to changes if they are large. It is desirable to change according to the monitoring target.
  • FIG. 5 is a flowchart of the moving object detection method according to Embodiment 1 of the present invention.
  • the input image 150 is divided into 8 ⁇ 8 pixel block unit images 151 by the block dividing unit 101 (S501).
  • the orthogonal transform unit 102 performs orthogonal transform on the block unit image 151 divided by the block dividing unit 101, and calculates a transform coefficient 152 (S502).
  • the feature extraction unit 103 extracts the input feature quantity 153 from the transform coefficient 152 calculated by the orthogonal transform unit 102, and stores it in the feature storage unit 104 (S503).
  • the moving object detection unit 106 calculates a normalized feature value from the input feature value 153 and the background feature value 154 stored in the feature storage unit 104 (S504), and performs moving object detection using the normalized feature value (S505). .
  • the background update unit 105 determines whether or not to update the feature storage unit 104 with the input feature value 153 as the background feature value 154 (S506).
  • the moving object detection effect by the normalized feature amount according to the first embodiment will be described using DCT.
  • the block division unit 101, the orthogonal transformation unit 102, and the like are processed inside the moving object detection device 100, they may be processed by an external device.
  • the feature extraction unit 103 may perform the feature extraction step S503 and the normalization step S504. That is, the normalization feature value is calculated by the moving object detection unit 106, but the feature extraction unit 103 calculates the normalization feature value in advance and outputs it as the normalized input feature value 153.
  • the normalized input feature quantity 153 is accumulated. Accordingly, the background feature amount updated by the background update unit 105 becomes the normalized background feature amount 154, and steps S402 and S403 that are normalized by the moving object detection unit 106 are omitted.
  • Embodiment 2 the moving object detection apparatus according to the second embodiment will be described.
  • the moving object detection device according to the present embodiment has a configuration substantially similar to that of the moving object detection device 100 according to the first embodiment, but the moving object detection method of the moving object detection unit 106 is different. Hereinafter, the description will be given focusing on the difference.
  • the moving object detection unit 106 according to the second embodiment can select whether or not to calculate the normalized feature amount.
  • a moving object determination method of the moving object detection unit 106 according to Embodiment 2 will be described with reference to FIG.
  • FIG. 6 is a flowchart of a moving object determination method of the moving object detection unit 106 according to the second embodiment.
  • the frame number f of the background feature quantity is set to 0, and the moving object detection number Cnt is set to 0.
  • S610 it is determined whether the frame number f has been compared for all the background feature amount F frames. If it is determined in S610 that all background feature F frames have not been compared, the process returns to S603.
  • the division processing can be reduced and the calculation processing can be speeded up by using the AC component summation in the portion that does not need to be normalized.
  • Embodiment 3 >> The present invention can be realized without the feature accumulation unit 104 and the background update unit 105 in the first and second embodiments.
  • FIG. 7 shows a moving object detection apparatus 700 according to Embodiment 3 of the present invention. The description of the parts described in the first and second embodiments is omitted.
  • the moving object detection apparatus 700 includes a first block division unit 711, a first orthogonal transformation unit 712, a first feature extraction unit 713, a second block division unit 721, a second orthogonal transformation unit 722, and a second feature extraction. Unit 723 and a moving object detection unit 704.
  • the first block dividing unit 711 divides the input image 750 into predetermined block unit images 751.
  • the first orthogonal transform unit 712 performs orthogonal transform on the block unit image 751 divided by the first block dividing unit 711 and calculates a transform coefficient 752.
  • the first feature extraction unit 713 calculates an input feature amount 753 from the conversion coefficient 752.
  • the AC component sum and the DC component are output as the input feature value 753.
  • the second block dividing unit 721 divides the background image 760 into predetermined block unit images 761.
  • the background image 760 may be a temporally previous frame of the input image 750 or a subsequent frame.
  • the second orthogonal transform unit 722 performs orthogonal transform on the block unit image 761 divided by the second block dividing unit 721 to calculate a transform coefficient 762.
  • the second feature extraction unit 723 outputs the AC component sum and the DC component as the background feature amount 763 from the conversion coefficient 762.
  • the moving object detection unit 704 receives the input feature value 753 and the background feature value 763 and outputs a moving object detection result 770. Since the process of the moving object detection unit 704 is the same as that of the moving object detection unit 106 of the first and second embodiments, the description thereof is omitted.
  • image input for two frames is taken as an example.
  • the second block dividing unit 721, the second orthogonal transform unit 722, and the second feature extracting unit 723 are increased by the third and fourth. By doing so, it is possible to compare in a plurality of frames, as in the first and second embodiments.
  • FIG. 8 is a block diagram showing a configuration of a moving object detection device 800 according to Embodiment 4 of the present invention.
  • the moving object detection apparatus 800 according to the present invention includes a first block dividing unit 801, a first normalized feature value calculating unit 802, a first pattern determining unit 803, a feature accumulating unit 804, a background updating unit 805, A two-block dividing unit 807, a second normalized feature value calculating unit 808, a second pattern determining unit 809, and a moving object detecting unit 806 are provided.
  • the first block dividing unit 801 divides the input image 850 into predetermined block units and outputs a predetermined first block unit image 851.
  • description will be made assuming that processing is performed in blocks of 3 ⁇ 3 pixels.
  • the first normalized feature value calculation unit 802 outputs a first normalized feature value 852 for the first block unit image 851 divided by the first block dividing unit 801.
  • the first normalized feature value 852 is obtained by applying an edge filter to the first block unit image 851 to calculate an edge feature value and normalizing it.
  • a horizontal filter value h and a vertical filter value v are used as edge feature amounts by the edge filter.
  • a Sobel filter is used as the type of edge filter, but the edge filter includes a Canny filter and the like, and is not limited thereto.
  • v ( ⁇ 1) ⁇ f (i ⁇ 1, j ⁇ 1) + ( ⁇ 2) ⁇ f (i, j ⁇ 1) + ( ⁇ 1) ⁇ f (i + 1, j ⁇ 1) + 0 ⁇ f (i ⁇ 1, j) + 0 ⁇ f (i, j) + 0 ⁇ f (i, j)
  • the normalized horizontal filter value H and the normalized vertical filter value V are obtained by normalizing the horizontal filter value h and the vertical filter value v with the luminance average in the block, and these are used as the first normalized feature value 852. Output. As described in the first embodiment, the value to be normalized is not limited to the luminance average.
  • the first pattern determination unit 803 outputs an edge pattern as the input feature value 853 from the first normalized feature value 852 obtained from the first normalized feature value calculation unit 802. There are five types of edge patterns, and any one pattern is output.
  • FIG. 9 shows an edge pattern according to Embodiment 4 of the present invention.
  • Reference numeral 901 denotes a horizontal edge 1, which is a horizontal edge whose luminance value in the left half is lower than that in the right half.
  • Reference numeral 902 denotes a horizontal edge 2, which is a horizontal edge in which the left half luminance value is higher than the right half luminance value.
  • Reference numeral 903 denotes a vertical edge 1, which is a vertical edge whose upper half luminance value is lower than the lower half luminance value.
  • Reference numeral 904 denotes a vertical edge 2, which is a vertical edge in which the upper half luminance value is higher than the lower half luminance value.
  • Reference numeral 905 denotes no edge.
  • FIG. 10 is a flowchart of a pattern extraction method from normalized feature values according to Embodiment 4 of the present invention.
  • S1001 it is determined whether the absolute value of the normalized horizontal filter value H is greater than the horizontal threshold value H_TH or whether the absolute value of the normalized vertical filter value V is greater than the vertical threshold value V_TH.
  • the background update unit 805 generates a new background image 854 from the input image 850 and the background image 854 and outputs it.
  • is set to 1, and the input image 850 is output as it is as the background image 854.
  • 0, it can be left behind and can have a removal detection function.
  • the feature storage unit 804 holds the background image 854 output from the background update unit 805.
  • the background image 854 for at least one frame can be held.
  • the second block dividing unit 807 divides the background image 854 into predetermined block units, and outputs a predetermined second block unit image 855.
  • the second normalized feature value calculation unit 808 outputs the second normalized feature value 856 to the second block unit image 855 divided by the second block dividing unit 807. Since the internal processing is the same as that of the first normalized feature value calculation unit 802, description thereof is omitted.
  • the second pattern determination unit 809 outputs an edge pattern as the background feature value 857 from the normalized feature value 856 obtained from the second normalized feature value calculation unit 808. Since the edge pattern determination process is the same as that of the first pattern determination unit 803, description thereof is omitted.
  • the moving object detection unit 806 outputs the moving object detection result 858 by comparing the input feature value 853 output from the first pattern determination unit 803 with the background feature value 857 output from the second pattern determination unit 809.
  • FIG. 11 is a flowchart of the moving object detection method according to the fourth embodiment of the present invention.
  • the input image 850 is divided by the first block dividing unit 801 into the first block unit image 851 in units of 3 ⁇ 3 pixels, and the background image 854 is divided by the second block dividing unit 807 in units of 3 ⁇ 3 pixels.
  • the image is divided into second block unit images 855 (S1101).
  • the first normalized feature value calculating unit 802 extracts edge features by an edge filter from the first block unit image 851 divided by the first block dividing unit 801 (S1102), and the first normalized feature value 852. (S1103), the second normalized feature value calculation unit 808 extracts edge features from the second block unit image 855 divided by the second block division unit 807 (S1102), and the second normalization feature amount calculation unit 808 extracts the second feature.
  • the normalized feature amount 856 is calculated (S1103).
  • the first pattern determination unit 803 outputs the input feature value 853 from the first normalized feature value 852 calculated by the first normalized feature value calculation unit 802, and the second pattern determination unit 809 outputs the second normalization feature value 805.
  • a background feature value 857 is output from the second normalized feature value 856 calculated by the feature value calculation unit 808 (S1104).
  • the moving object detection unit 806 detects whether or not the object is a moving object by seeing a match between the input feature value 853 and the background feature value 857 (S1105).
  • the background update unit 805 updates the new background image 854 using the input image 850 (S1106).
  • normalization step S1103 is processed by the first normalized feature value calculation unit 802 and the second normalized feature value calculation unit 808, but may be processed by the first and second pattern determination units 803 and 809. Good.
  • the block division unit has been described in units of 3 ⁇ 3 pixels, this is divided into 5 ⁇ 5 pixel units, and 5 ⁇ 5 pixels are divided into detailed blocks. That is, the feature amount to be used is increased from one dimension to multiple dimensions. May be.
  • FIG. 12 is an exemplary diagram of dividing a block of 5 ⁇ 5 pixel units into detailed blocks.
  • the block of 5 ⁇ 5 pixel units is further divided into 3 ⁇ 3 pixel units, and edge patterns are calculated by the above-described pattern determination method using edge filters at 1201, 1202, 1203, 1204, and 1205, respectively.
  • Moving object detection may be performed considering a feature quantity of a dimension. When there are a plurality of feature quantity dimensions, a moving object is selected if the number of matching patterns exceeds a majority. In the case of five dimensions, for example, three patterns out of five patterns need only match.
  • Embodiment 5 In the fifth embodiment of the present invention, an imaging system including the moving object detection device according to the first to fourth embodiments will be described.
  • FIG. 13 is a block diagram showing a configuration of an imaging system 1300 according to Embodiment 5 of the present invention.
  • the imaging system 1300 is, for example, a digital still camera, a network camera, a surveillance camera, or the like.
  • An imaging system 1300 illustrated in FIG. 13 includes an optical system 1301, a sensor 1302, an A / D conversion circuit 1303, an image processing circuit 1304, a recording transfer unit 1305, a reproduction unit 1306, a timing control circuit 1307, a system And a control circuit 1308.
  • the optical system 1301 focuses the incident image light on the sensor 1302.
  • the sensor 1302 generates an electrical signal (image signal) by photoelectrically converting the image light imaged by the optical system 1301.
  • the A / D conversion circuit 1303 converts the electrical signal (analog signal) generated by the sensor 1302 into a digital signal.
  • the image processing circuit 1304 includes the moving object detection apparatus 100 according to the first embodiment described above.
  • the image processing circuit 1304 performs Y / C processing, edge processing, image enlargement / reduction processing, image compression / decompression processing such as JPEG and MPEG, and image compression on the digital signal converted by the A / D conversion circuit 1303. perform the control and the like of the stream.
  • the moving object detection apparatus 100 detects a moving object based on the digital signal converted by the A / D conversion circuit 1303.
  • the recording / transferring unit 1305 records the signal processed by the image processing circuit 1304 and the result detected by the moving object detection apparatus 100 on a recording medium or transmits it via the Internet or the like.
  • the reproduction unit 1306 reproduces the signal recorded or transferred by the recording / transfer unit 1305. Note that the moving object detection result may be displayed over the reproduced image.
  • FIG. 14 is a display example of a moving object detection result.
  • a person 1400 is assumed to be a moving object. Only a block in which a moving object exists can be displayed with a thick frame.
  • Timing control circuit 1307 controls sensor 1302 and image processing circuit 1304.
  • the system control circuit 1308 controls the optical system 1301, the recording / transferring unit 1305, the reproducing unit 1306, and the timing control circuit 1307.
  • the captured image is not stable during the AF (Automatic Focus) operation of the optical system 1301 or the AE (Automatic Exposure) operation of the sensor 1302, so the moving object detection device 100 is stopped. Good.
  • the moving body detection apparatus 100 which concerns on this invention demonstrated the example used for the camera apparatus etc. which photoelectrically convert the image light from the optical system 1301 by the sensor 1302, and input into the A / D conversion circuit 1303 here, It goes without saying that the moving object detection apparatus 100 according to the present invention may be used in other devices. For example, analog video input from an AV device such as a television may be input directly to the A / D conversion circuit 1303.
  • the result output from the moving object detection apparatus 100 may be further judged by performing image processing for contraction or expansion.
  • FIG. 15A shows an example of a moving object detection result output from the moving object detection device 100.
  • the shaded portion is a block detected as a moving object by the moving object detection apparatus 100, and the white block is a block determined not to be a moving object.
  • a block of interest is determined to be a moving object when N or more blocks are determined to be moving objects among the 8 blocks around the block of interest.
  • FIG. 16A shows an example of a moving object detection result output from the moving object detection device 100. The shaded portion is a block detected as a moving object by the moving object detection device 100, and the white block is a block determined not to be a moving object.
  • moving object detection device 100 in FIG. 13 can be replaced with the moving object detection devices 100, 700, and 800 according to the second to fourth embodiments.
  • These moving object detection devices 100, 700, and 800 are typically realized as LSIs that are integrated circuits. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • LSI is used, but it may be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can be applied to a moving object detection method and a moving object detection device, and is particularly useful as a moving object detection method and a moving object detection device for a surveillance camera that detects an intruder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

The present invention detects a moving object using a normalized feature amount unsusceptible to a change in the brightness of a display screen. The normalized feature amount is obtained by dividing an image into block units, calculating the feature amount for each block and normalizing the feature amount with the average of the brightness and so forth. By comparing the normalized feature amount of the blocks of an input image with the normalized feature amount calculated from the same position in the background, a moving object can be detected without being affected by a change in the brightness of a display screen.

Description

動体検出方法及び動体検出装置Moving object detection method and moving object detection apparatus
 本発明は、入力された動画像に基づいて人や車両等の動体を検出する動体検出方法及び動体検出装置に関するものである。 The present invention relates to a moving object detection method and a moving object detection apparatus for detecting a moving object such as a person or a vehicle based on an input moving image.
 カメラを用いた監視システムにおいて、画面中の動体を自動的に検出する技術が知られている。一般的に、入力画像と背景画像とにおいて同座標に存在する輝度値の差分画像を生成し、差分値の大きい部分に動体があるとする方法が用いられてきた。この方法では、蛍光灯のフリッカーや照明装置の点灯消灯、太陽光や雲等により明るさが変動するため、同座標の輝度値は全て照明変動と共に変化してしまい、動いていない部分も動体として検出される。 In a surveillance system using a camera, a technique for automatically detecting a moving object in a screen is known. In general, a method has been used in which a difference image of luminance values existing at the same coordinates is generated in an input image and a background image, and a moving object is present in a portion having a large difference value. In this method, the brightness fluctuates due to the flicker of fluorescent lamps, the lighting device turning on / off, sunlight, clouds, etc., so the luminance values at the same coordinates all change with the lighting fluctuations, and the parts that are not moving are also moving objects Detected.
 この照明変動時における動体誤検出の解決策の1つが特許文献1に開示されている。特許文献1に記載の方法では、Nを自然数とするとき、画像をN×N画素ブロック単位に分割し、直交変換を行い、AC成分のうち、水平方向絶対値和と垂直方向絶対値和とに基づく縦横エッジ比を用いて動体を検出している。直交変換の1つとして、離散コサイン変換(Discrete Cosine Transform:DCT)が利用されている。 One of the solutions for erroneous detection of moving objects at the time of illumination fluctuation is disclosed in Patent Document 1. In the method described in Patent Document 1, when N is a natural number, an image is divided into N × N pixel block units, orthogonal transformation is performed, and among the AC components, the horizontal direction absolute value sum and the vertical direction absolute value sum The moving object is detected using the vertical / horizontal edge ratio based on. As one of orthogonal transforms, a discrete cosine transform (DCT) is used.
 図17にDCT係数の例を示す。2次元の信号f(i,j)に対してDCTを行った結果であるDCT係数をF(k,l)とすると、1701に示されるF(0,0)がDC成分であり、それ以外の係数F(k,l)(k>0,l>0)はAC成分である。kは水平方向周波数、lは垂直方向周波数であり、k又はlが大きくなるほど周波数が高い。 FIG. 17 shows an example of the DCT coefficient. Assuming that the DCT coefficient obtained by performing DCT on the two-dimensional signal f (i, j) is F (k, l), F (0,0) indicated by 1701 is a DC component, and the others The coefficient F (k, l) (k> 0, l> 0) is an AC component. k is a horizontal frequency, l is a vertical frequency, and the higher the k or l, the higher the frequency.
 縦横エッジ比の算出方法を説明する。AC成分のうち、水平方向絶対値総和f(h)は1702に存在する係数の絶対値の総和であり、垂直方向絶対値総和f(v)は1703中に存在する係数の絶対値の総和である。縦横エッジ比BRは、例えば、
 BR=f(v)/f(h)
で表される。
A method for calculating the vertical / horizontal edge ratio will be described. Among the AC components, the horizontal direction absolute value sum f (h) is the sum of the absolute values of the coefficients existing in 1702, and the vertical direction absolute value sum f (v) is the sum of the absolute values of the coefficients existing in 1703. is there. The aspect ratio BR is, for example,
BR = f (v) / f (h)
It is represented by
 特許文献1によると、分割したブロック中にエッジが存在しない場合、AC成分は全て0であり、照明変動が起こっている最中でも、動体として誤検出しない。分割したブロック中にエッジが存在する場合でも、AC成分は変化するが、縦横エッジ比を見ることによって、動体と誤検出することを防ぐ。 According to Patent Document 1, when there is no edge in a divided block, the AC components are all 0, and no false detection is made as a moving object even while illumination variation is occurring. Even if an edge is present in the divided block, the AC component changes, but by detecting the vertical / horizontal edge ratio, erroneous detection of a moving object is prevented.
 図18(a)及び図18(b)に4×4画素ブロック単位中の照明変動の輝度例を示す。図18(a)は左半分が輝度値200であり、右半分が輝度値100である。図18(b)は、同じブロックに照明変動が起こりブロック内の明るさが半分になり、左半分は輝度値100、右半分は輝度値50になったとする。 FIG. 18 (a) and FIG. 18 (b) show examples of luminance of illumination variation in a 4 × 4 pixel block unit. In FIG. 18A, the left half has a luminance value of 200 and the right half has a luminance value of 100. In FIG. 18B, it is assumed that the illumination fluctuation occurs in the same block, the brightness in the block is halved, the left half has the luminance value 100, and the right half has the luminance value 50.
 図18(a)及び図18(b)のそれぞれに対するDCT係数を図19(a)及び図19(b)に示す。図19(a)及び図19(b)の係数の配置は、図17に対応している。 FIG. 19 (a) and FIG. 19 (b) show the DCT coefficients for FIG. 18 (a) and FIG. 18 (b), respectively. The arrangement of the coefficients in FIGS. 19A and 19B corresponds to FIG.
 図19(a)及び図19(b)についてそれぞれ縦横エッジ比BR(a)、BR(b)を算出すると、
 BR(a)=0/(|184.8|+|-76.5|)=0
 BR(b)=0/(|92.3|+|-38.3|)=0
となり、照明変動の影響を受けない動体検出方法である。
When calculating the aspect ratios BR (a) and BR (b) for FIG. 19A and FIG. 19B, respectively.
BR (a) = 0 / (| 184.8 | + | -76.5 |) = 0
BR (b) = 0 / (| 92.3 | + | −38.3 |) = 0
Thus, the moving object detection method is not affected by illumination fluctuations.
特開2002-259985号公報JP 2002-259985 A
 上記特許文献1に記載された装置では、照明変動には対応できるが、縦横エッジ比率が変わらない場合、例えば、エッジが水平方向に移動した場合、検出できない。 The apparatus described in Patent Document 1 can cope with illumination fluctuations, but cannot detect when the vertical / horizontal edge ratio does not change, for example, when the edge moves in the horizontal direction.
 図20(a)及び図20(b)に4×4画素ブロック単位中のエッジが水平方向に移動した場合の例を示す。図20(a)は左1列が輝度値100で残りが輝度値50である。図20(b)は輝度値100の物体が右方向へ2列分移動し、左3列が輝度値100で、右1列が輝度値50となっている。ブロックに対して十分大きい動体が水平方向に移動した場合、この現象が起きる。 20A and 20B show an example in which the edge in the 4 × 4 pixel block unit moves in the horizontal direction. In FIG. 20A, the left column has a luminance value of 100 and the remaining one has a luminance value of 50. In FIG. 20B, an object having a luminance value of 100 has moved to the right by two columns, the left column has a luminance value of 100, and the right column has a luminance value of 50. This phenomenon occurs when a sufficiently large moving body moves horizontally with respect to the block.
 図20(a)及び図20(b)のそれぞれに対するDCT係数を図21(a)及び図21(b)に示す。図21(a)及び図21(b)の係数配置は図17に対応している。 FIG. 21 (a) and FIG. 21 (b) show the DCT coefficients for FIG. 20 (a) and FIG. 20 (b), respectively. The coefficient arrangement in FIGS. 21A and 21B corresponds to FIG.
 図21(a)及び図21(b)についてそれぞれ縦横エッジ比BR(c)、BR(d)を算出すると、
 BR(c)=0/(|65.3|+|50|+|27.1|)=0
 BR(d)=0/(|65.3|+|-50|+|27.1|)=0
となる。つまり、水平垂直いずれかの絶対値総和が0である場合、動体であるにも関わらず検出できなくなる。また、水平垂直のエッジ比が変わらない場合、例えば輝度が反転した場合にも、模様が変わっているにも関わらず、変化を検出できない。
When the vertical / horizontal edge ratios BR (c) and BR (d) are calculated for FIGS. 21 (a) and 21 (b), respectively.
BR (c) = 0 / (| 65.3 | + | 50 | + | 27.1 |) = 0
BR (d) = 0 / (| 65.3 | + | −50 | + | 27.1 |) = 0
It becomes. In other words, when the sum of absolute values of either horizontal or vertical is 0, it cannot be detected regardless of the moving object. Further, when the horizontal / vertical edge ratio does not change, for example, when the luminance is inverted, the change cannot be detected even though the pattern is changed.
 本発明は上記課題を解決するものであり、照明変動に影響されずに高精度に動体検出することができる動体検出方法及び動体検出装置を提供することを目的とする。 This invention solves the said subject, and aims at providing the moving body detection method and moving body detection apparatus which can detect a moving body with high precision, without being influenced by illumination fluctuation.
 上記目的を達成するために、本発明の一形態に係る動体検出方法は、入力画像からブロック単位で特徴量を抽出する特徴抽出ステップと、前記特徴抽出ステップより抽出された特徴量から正規化特徴量を算出する正規化ステップと、前記正規化ステップで正規化された正規化特徴量に応じて動体であるか否か判定する動体検出ステップとを備える。 In order to achieve the above object, a moving object detection method according to an aspect of the present invention includes a feature extraction step of extracting a feature amount in block units from an input image, and a normalized feature from the feature amount extracted from the feature extraction step. A normalizing step for calculating the quantity, and a moving object detecting step for determining whether the object is a moving object according to the normalized feature value normalized in the normalizing step.
 また、本発明の一形態に係る動体検出装置は、入力画像からブロック単位で特徴量を抽出する特徴抽出部と、前記特徴抽出部より抽出された特徴量から正規化特徴量を算出する正規化部と、前記正規化部で正規化された正規化特徴量に応じて動体であるか否か判定する動体検出部とを備える。 The moving object detection device according to an aspect of the present invention includes a feature extraction unit that extracts a feature amount in block units from an input image, and a normalization that calculates a normalized feature amount from the feature amount extracted by the feature extraction unit. And a moving object detection unit that determines whether the object is a moving object according to the normalized feature value normalized by the normalization unit.
 以上より、本発明は、照明変動時でも輝度パターン変化の有無を簡単な処理で捉えることができ、照明変動が起こっても高い精度で動体を検出する動体検出方法及び動体検出装置を提供できる。 As described above, the present invention can provide a moving object detection method and a moving object detection apparatus that can detect the presence or absence of a luminance pattern change even when illumination changes and can detect a moving object with high accuracy even when illumination changes occur.
本発明の実施の形態1に係る動体検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the moving body detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る直交変換係数の例示図である。It is an illustration figure of the orthogonal transformation coefficient which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る入力特徴量と背景特徴量とのブロック間の位置関係例示図である。It is an example of the positional relationship between the block of the input feature-value and background feature-value which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る動体検出部の動体判定方法フローチャートである。It is a moving body determination method flowchart of the moving body detection part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る動体検出方法のフローチャートである。It is a flowchart of the moving body detection method which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る動体検出部の動体判定方法フローチャートである。It is a moving body determination method flowchart of the moving body detection part which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る動体検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the moving body detection apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る動体検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the moving body detection apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係るエッジパターンを示す図である。It is a figure which shows the edge pattern which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る正規化特徴量からのパターン抽出方法のフローチャートである。It is a flowchart of the pattern extraction method from the normalized feature-value which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る動体検出方法のフローチャートである。It is a flowchart of the moving body detection method which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る5×5画素単位のブロックを詳細ブロックに分割する例示図である。It is an illustration figure which divides | segments the block of a 5x5 pixel unit based on Embodiment 4 of this invention into a detailed block. 本発明の実施の形態5に係る撮像システムの構成を示すブロック図である。It is a block diagram which shows the structure of the imaging system which concerns on Embodiment 5 of this invention. 動体検出結果の表示例を示す図である。It is a figure which shows the example of a display of a moving body detection result. (a)及び(b)は動体検出装置から出力された動体検出結果の収縮処理例を示す図である。(A) And (b) is a figure which shows the example of a contraction process of the moving body detection result output from the moving body detection apparatus. (a)及び(b)は動体検出装置から出力された動体検出結果の膨張処理例を示す図である。(A) And (b) is a figure which shows the example of an expansion process of the moving body detection result output from the moving body detection apparatus. 従来の動体検出装置におけるDCT係数の例示図である。It is an illustration figure of the DCT coefficient in the conventional moving body detection apparatus. (a)及び(b)は4×4画素ブロック単位中の照明変動の輝度例を示す図である。(A) And (b) is a figure which shows the luminance example of the illumination fluctuation | variation in a 4x4 pixel block unit. (a)及び(b)は図18(a)及び図18(b)に対するDCT係数を示す図である。(A) And (b) is a figure which shows the DCT coefficient with respect to Fig.18 (a) and FIG.18 (b). (a)及び(b)は4×4画素ブロック単位中のエッジが水平方向に移動した場合の輝度例を示す図である。(A) And (b) is a figure which shows the example of a brightness | luminance when the edge in a 4x4 pixel block unit moves to a horizontal direction. (a)及び(b)は図20(a)及び図20(b)に対するDCT係数を示す図である。(A) And (b) is a figure which shows the DCT coefficient with respect to Fig.20 (a) and FIG.20 (b).
 以下、図面を参照して本発明の実施の形態について説明する。なお、以下で説明する実施の形態はあくまで一例であり、様々な改変を行うことが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment described below is merely an example, and various modifications can be made.
 《実施の形態1》
 まず、本発明の実施の形態1に係る、動体検出装置100の構成を説明する。図1は、本発明の実施の形態1に係る動体検出装置100の構成を示すブロック図である。本発明に係る動体検出装置100は、ブロック分割部101と、直交変換部102と、特徴抽出部103と、特徴蓄積部104と、背景更新部105と、動体検出部106とを備える。
Embodiment 1
First, the configuration of the moving object detection device 100 according to Embodiment 1 of the present invention will be described. FIG. 1 is a block diagram showing a configuration of a moving object detection apparatus 100 according to Embodiment 1 of the present invention. The moving object detection apparatus 100 according to the present invention includes a block dividing unit 101, an orthogonal transform unit 102, a feature extracting unit 103, a feature accumulating unit 104, a background updating unit 105, and a moving object detecting unit 106.
 ブロック分割部101は、入力画像150を所定のブロック単位に分割し、所定のブロック単位画像151を出力する。ここで入力画像150は輝度値である。なお、入力画像150は、色差でもよいし、R値,G値,B値でもよい。所定のブロック単位とは、N×N画素単位で行われる。Nは自然数である。Nが小さいほど小さな物体を検出できるが、ノイズの影響を受けやすい。逆に、Nが大きいほどノイズの影響を受けにくいが、ブロックサイズに対して小さな物体は検出しにくい。以下、8×8画素単位のブロックで処理を行っているものとして説明を行う。 The block dividing unit 101 divides the input image 150 into predetermined block units, and outputs a predetermined block unit image 151. Here, the input image 150 is a luminance value. The input image 150 may be a color difference, or may be an R value, a G value, or a B value. The predetermined block unit is performed in N × N pixel units. N is a natural number. Smaller objects can be detected as N is smaller, but are more susceptible to noise. Conversely, as N increases, it is less susceptible to noise, but it is difficult to detect objects that are smaller than the block size. In the following description, it is assumed that processing is performed in blocks of 8 × 8 pixels.
 なお、ブロック分割は所定の単位ずつブロック分割してもよいし、ブロック同士が重なっていてもよい。 In addition, the block division may be divided into blocks by predetermined units, or the blocks may overlap each other.
 直交変換部102は、ブロック分割部101で分割されたブロック単位画像151に対して直交変換し、変換係数152を算出する。直交変換には、アダマール変換、DFT(離散フーリエ変換)、DCT、ウェーブレット変換等があるが、特に、アダマール変換は最も単純な加減算処理で係数を算出できるため、高速な処理を実現できる。 The orthogonal transform unit 102 performs orthogonal transform on the block unit image 151 divided by the block dividing unit 101 and calculates a transform coefficient 152. The orthogonal transform includes Hadamard transform, DFT (discrete Fourier transform), DCT, wavelet transform, and the like. In particular, the Hadamard transform can calculate a coefficient by the simplest addition / subtraction process, and can realize high-speed processing.
 8×8画素単位のブロックに対して直交変換を行うと、8×8の変換係数152を得ることができる。図2に変換係数152の例を示す。係数はF(k,l)(0≦k≦7,0≦l≦7)と表し、kが水平方向の周波数を表し、lが垂直方向の周波数を表す。またk,lが大きいほど高周波である。 When an orthogonal transformation is performed on a block of 8 × 8 pixel units, an 8 × 8 transformation coefficient 152 can be obtained. FIG. 2 shows an example of the conversion coefficient 152. The coefficient is expressed as F (k, l) (0 ≦ k ≦ 7, 0 ≦ l ≦ 7), k represents a frequency in the horizontal direction, and l represents a frequency in the vertical direction. The higher k and l, the higher the frequency.
 特徴抽出部103は、直交変換部102から得られる変換係数152から必要な係数を抽出し、入力特徴量153として出力する。入力特徴量153は、以下に述べる2つの特徴量である。1つは、正規化するためのDC成分である。DC成分は、図2の201であり、後段で正規化するために用いられる。2つ目はブロック内のエッジ特徴量として、AC成分総和(ACsum)を用いる。AC成分総和(ACsum)は図2の202に示す係数を積算した値、つまり、DC成分を除いた変換係数の総和である。 The feature extraction unit 103 extracts a necessary coefficient from the transform coefficient 152 obtained from the orthogonal transform unit 102 and outputs it as an input feature quantity 153. The input feature quantity 153 is two feature quantities described below. One is a DC component for normalization. The DC component is 201 in FIG. 2 and is used for normalization at a later stage. Second, the AC component sum (ACsum) is used as the edge feature amount in the block. The AC component sum (ACsum) is a value obtained by integrating the coefficients indicated by 202 in FIG. 2, that is, the sum of the conversion coefficients excluding the DC component.
 なお、ここでは、エッジ特徴量として、AC成分総和を示したが、水平エッジ(水平方向に見た場合に画素値が変化している)のみを検出したい場合、例えば、インタレース画像で横線ノイズが発生する場合には、AC成分のうち水平成分のみ(例えば、図17の1702)を使用すればよい。垂直エッジ(垂直方向に見た場合に画素値が変化している)のみを検出したい場合、例えば、画像にスミアが発生し、縦線ノイズが発生する場合には、AC成分のうち垂直成分のみ(例えば、図17の1703)を使用すればよい。ランダムノイズの多い画像、例えば、暗所においてセンサー出力を持ち上げるような画像において、高周波成分の信頼性が低いならば、低周波側のAC成分の一部のみ(例えば、図2の203)を使用してもよい。処理量に制限がないならば、AC成分を(N×N-1)次元の特徴量としてもよい。 Here, the sum of the AC components is shown as the edge feature amount. However, when it is desired to detect only the horizontal edge (the pixel value changes when viewed in the horizontal direction), for example, the horizontal noise in an interlaced image is used. When this occurs, only the horizontal component of the AC component (for example, 1702 in FIG. 17) may be used. When it is desired to detect only the vertical edge (the pixel value changes when viewed in the vertical direction), for example, when smear occurs in the image and vertical line noise occurs, only the vertical component of the AC component is detected. (For example, 1703 in FIG. 17) may be used. In an image with a lot of random noise, for example, an image in which the sensor output is raised in a dark place, if the reliability of the high frequency component is low, only a part of the AC component on the low frequency side (eg, 203 in FIG. 2) is used. May be. If the processing amount is not limited, the AC component may be an (N × N−1) -dimensional feature amount.
 なお、ブロック内の正規化を行う値として、DC成分以外にも、ブロック内の入力画像の平均値や、中央値、最大値、最小値としてもよい。 In addition to the DC component, the average value, median value, maximum value, and minimum value of the input image in the block may be used as values for normalizing the block.
 なお、ブロック単位で正規化を行ったが、画面全体から上述した値を算出して画面内を同一に正規化してもよい。 Although normalization is performed in units of blocks, the above values may be calculated from the entire screen to normalize the screen.
 特徴蓄積部104は、入力特徴量153と、背景特徴量154とを格納している。背景特徴量154は、入力画像以外の画像から生成された特徴量である。時系列的に過去の画像でもよいし、画像を先読みして、未来の画像でもよい。本実施形態では、入力特徴量153が動体検出に使用された後に次の入力画像を処理する時、入力特徴量153は過去画像の特徴量であると言えるので、これを背景特徴量154とする。よって、背景特徴量154は入力特徴量153と同様にDC成分とAC成分総和とからなる。更に画像1枚分の入力画像から抽出される入力特徴量153を1フレームと数えると、背景特徴量154のフレーム数はFフレーム分である。Fは自然数であり、Fが少ないほど比較対象が少なくなるために背景と動体との差が出にくいが処理量は小さく、Fが多いほど比較対象が多くなるために背景と動体の差が出やすいが処理量は大きくなる。動体検出装置100の初期動作時、背景特徴量154は監視領域画像から予めFフレーム分算出しているものとする。 The feature storage unit 104 stores an input feature amount 153 and a background feature amount 154. The background feature quantity 154 is a feature quantity generated from an image other than the input image. A past image may be used in time series, or a future image may be obtained by prefetching the image. In this embodiment, when the next input image is processed after the input feature value 153 is used for moving object detection, it can be said that the input feature value 153 is a feature value of the past image, and this is used as the background feature value 154. . Therefore, the background feature quantity 154 is composed of the DC component and the AC component sum as in the case of the input feature quantity 153. Further, if the input feature quantity 153 extracted from the input image for one image is counted as one frame, the number of frames of the background feature quantity 154 is F frames. F is a natural number, and the smaller the F, the smaller the comparison object, so the difference between the background and the moving object is less likely to occur. However, the processing amount is smaller, and the more F, the greater the comparison object. It is easy, but the processing amount becomes large. It is assumed that the background feature quantity 154 is calculated in advance for F frames from the monitoring area image during the initial operation of the moving object detection apparatus 100.
 なお、背景特徴量154が初期状態で存在しない場合は、ブロック分割部101から特徴抽出部103までを予め稼動させ、Fフレーム分特徴量を算出して蓄積させてもよい。 If the background feature quantity 154 does not exist in the initial state, the F-frame feature quantity may be calculated and accumulated by operating the block dividing unit 101 to the feature extraction unit 103 in advance.
 なお、特徴蓄積部104は、動体検出装置100の内部に持っている例を示したが、装置の外部メモリを利用してもよい。 In addition, although the example which has the characteristic storage part 104 in the inside of the moving body detection apparatus 100 was shown, you may utilize the external memory of an apparatus.
 背景更新部105は、特徴蓄積部104に蓄積された入力特徴量153から背景特徴量154を更新する。 The background update unit 105 updates the background feature value 154 from the input feature value 153 stored in the feature storage unit 104.
 背景更新部105の具体的な処理について説明する。ある一定のフレーム間隔により入力特徴量153で上書き更新する方法がある。新たな入力特徴量153が背景更新部105に入力された場合、背景特徴量154の中で、時間経過の最も大きい、つまり時間的に一番古く保存されたフレームに上書きする。 Specific processing of the background update unit 105 will be described. There is a method of overwriting and updating with the input feature value 153 at a certain frame interval. When a new input feature quantity 153 is input to the background update unit 105, the frame that has the longest passage of time in the background feature quantity 154, that is, the frame that is stored the oldest in time is overwritten.
 なお、背景更新は入力画像150が1フレーム入力される毎に行ってもよいし、2フレームに1回、3フレームに1回等、監視対象の動く速度やフレームレート、背景特徴量Fフレームを蓄えるメモリ量等のマシンスペックにより更新頻度を変えてもよい。 The background update may be performed every time one frame of the input image 150 is input, or the monitoring target moving speed, frame rate, background feature amount F frame, such as once every two frames or once every three frames. The update frequency may be changed according to machine specifications such as the amount of memory to be stored.
 なお、予め監視対象の存在しない背景画像から背景特徴量154を算出しておき、更新を行わずに置き去りされた物体や、持ち去られた物体を動体として検出してもよい。 It should be noted that the background feature quantity 154 may be calculated in advance from a background image that does not have a monitoring target, and an object that has been left without updating or an object that has been removed may be detected as a moving object.
 動体検出部106は、特徴蓄積部104に蓄積された入力特徴量153と、背景特徴量154とを用いて動体を検出し、動体検出結果155を出力する。 The moving object detection unit 106 detects a moving object using the input feature value 153 and the background feature value 154 accumulated in the feature accumulation unit 104, and outputs a moving object detection result 155.
 背景特徴量154がFフレーム分あるとき、背景特徴量154のフレーム番号をfとする。動体検出数をCntとする。入力特徴量153のうち、現在処理するブロック(以下、処理ブロック)のAC成分総和をACsum(in)、DC成分をDC(in)とする。背景特徴量154のうち処理ブロックと同じ位置にあるf番目のブロックについて、AC成分総和をACsum(f)、DC成分をDC(f)とし、0≦f<Fとする。 When the background feature quantity 154 has F frames, the frame number of the background feature quantity 154 is set to f. Let Cnt be the number of moving objects detected. Of the input feature quantity 153, the sum of the AC components of the block to be processed (hereinafter referred to as a processing block) is ACsum (in), and the DC component is DC (in). For the f-th block at the same position as the processing block in the background feature quantity 154, the AC component sum is ACsum (f), the DC component is DC (f), and 0 ≦ f <F.
 図3に入力特徴量153と背景特徴量154とのブロック間の位置関係を示す。301は入力特徴量であり、302はFフレーム分の背景特徴量である。303には、入力特徴量中のAC成分総和ACsum(in)と、DC成分DC(in)とが保存されている。304、305、306には背景特徴量302のうち303と同位置にあるブロックのAC成分総和とDC成分とが格納されている。背景特徴量302中の304から306までを入力特徴量301中の303とそれぞれ比較し、多数決によりそのブロックに動体が存在するか否かを検出する。比較は正規化特徴量Patを用いる。正規化特徴量Patは、AC成分総和をDC成分で除算することによって正規化した特徴量であり、
 Pat=ACsum/DC
である。
FIG. 3 shows the positional relationship between the input feature quantity 153 and the background feature quantity 154 between blocks. 301 is an input feature amount, and 302 is a background feature amount for F frames. In 303, the AC component total ACsum (in) and the DC component DC (in) in the input feature amount are stored. 304, 305, and 306 store the AC component sum and DC component of the block at the same position as 303 in the background feature amount 302. 304 to 306 in the background feature quantity 302 are compared with 303 in the input feature quantity 301, respectively, and it is detected whether a moving object exists in the block by majority vote. The comparison uses the normalized feature value Pat. The normalized feature value Pat is a feature value normalized by dividing the AC component sum by the DC component,
Pat = ACsum / DC
It is.
 動体検出部106の動体判定方法について説明する。図4は本発明の実施の形態1に係る動体検出部106の動体判定方法フローチャートである。 The moving object determination method of the moving object detection unit 106 will be described. FIG. 4 is a flowchart of a moving object determination method of the moving object detection unit 106 according to the first embodiment of the present invention.
 S401では、背景特徴量のフレーム番号fを0とし、動体検出数Cntを0にする。 In S401, the frame number f of the background feature quantity is set to 0, and the moving object detection number Cnt is set to 0.
 S402では、入力特徴量のACsum(in)をDC(in)で除算し、正規化特徴量Pat(in)を算出する。 In S402, ACsum (in) of the input feature value is divided by DC (in) to calculate a normalized feature value Pat (in).
 S403では、背景特徴量のfフレーム目のACsum(f)をDC(f)で除算し、正規化特徴量Pat(f)を算出する。 In S403, the AC feature (f) of the f-th frame of the background feature value is divided by DC (f) to calculate the normalized feature value Pat (f).
 S404では、Pat(in)とPat(f)との差分絶対値が正規化閾値TH1より大きいかどうかを判定する。 In S404, it is determined whether or not the difference absolute value between Pat (in) and Pat (f) is greater than the normalization threshold TH1.
 S405では、S404でPat(in)とPat(f)との差分絶対値が正規化閾値TH1より大きいと判定された場合、動体検出数Cntを1増やす。 In S405, when it is determined in S404 that the difference absolute value between Pat (in) and Pat (f) is larger than the normalization threshold TH1, the moving object detection number Cnt is increased by one.
 S406では、S404でPat(in)とPat(f)との差分絶対値が正規化閾値TH1より大きくないと判定された場合と、S405に続く場合とにおいて、フレーム番号fを1増やす。 In S406, the frame number f is incremented by 1 in the case where it is determined in S404 that the absolute difference between Pat (in) and Pat (f) is not larger than the normalization threshold TH1, and in the case following S405.
 S407では、フレーム番号fが背景特徴量Fフレーム全て比較し終わったかを判定する。S407で背景特徴量Fフレーム全て比較し終わっていないと判定された場合、S403に戻る。 In S407, it is determined whether the frame number f has been compared for all the background feature amount F frames. If it is determined in S407 that all the background feature F frames have not been compared, the process returns to S403.
 S408では、フレーム番号fが背景特徴量Fフレーム分全て比較し終わったと判定された場合、動体検出数Cntが動体検出閾値MoveTHより大きいかどうかを判定する。 In S408, when it is determined that the frame number f has been compared for all the background feature amount F frames, it is determined whether the moving object detection number Cnt is larger than the moving object detection threshold MoveTH.
 S409では、S408で動体検出数Cntが動体検出閾値MoveTHより大きいと判定された場合、動体あり、という検出結果155を出力する。 In S409, if it is determined in S408 that the moving object detection number Cnt is larger than the moving object detection threshold MoveTH, a detection result 155 that there is a moving object is output.
 S410では、動体検出数Cntが動体検出閾値MoveTHより大きくないと判定された場合、動体なし、という検出結果155を出力する。 In S410, when it is determined that the moving object detection number Cnt is not larger than the moving object detection threshold MoveTH, the detection result 155 that there is no moving object is output.
 正規化閾値TH1は、入力特徴量と背景特徴量との差分がどれだけ大きいかを判定する閾値である。動体検出閾値MoveTHは、背景特徴量がFフレーム中何フレーム変化していれば動体とするかを決める閾値である。 The normalization threshold value TH1 is a threshold value for determining how large the difference between the input feature value and the background feature value is. The moving object detection threshold value MoveTH is a threshold value that determines how many frames the background feature amount has changed in F frames to be a moving object.
 TH1、MoveTH共に、小さくすれば変化に敏感になり、大きくすれば変化に鈍感になる。監視対象によって変化させることが望ましい。 Both TH1 and MoveTH are sensitive to changes if they are small, and insensitive to changes if they are large. It is desirable to change according to the monitoring target.
 〈処理の流れ〉
 以上のように構成された動体検出装置100による動体検出方法について、図5を用いて説明する。図5は、本発明の実施の形態1に係る動体検出方法のフローチャートである。
<Process flow>
The moving body detection method by the moving body detection apparatus 100 configured as described above will be described with reference to FIG. FIG. 5 is a flowchart of the moving object detection method according to Embodiment 1 of the present invention.
 まず、入力画像150をブロック分割部101にて、8×8画素単位のブロック単位画像151に分割する(S501)。 First, the input image 150 is divided into 8 × 8 pixel block unit images 151 by the block dividing unit 101 (S501).
 直交変換部102は、ブロック分割部101にて分割されたブロック単位画像151に対して直交変換し、変換係数152を算出する(S502)。 The orthogonal transform unit 102 performs orthogonal transform on the block unit image 151 divided by the block dividing unit 101, and calculates a transform coefficient 152 (S502).
 特徴抽出部103は、直交変換部102にて算出された変換係数152の中から入力特徴量153を抽出し、特徴蓄積部104に保存する(S503)。 The feature extraction unit 103 extracts the input feature quantity 153 from the transform coefficient 152 calculated by the orthogonal transform unit 102, and stores it in the feature storage unit 104 (S503).
 動体検出部106は、特徴蓄積部104に格納された入力特徴量153と背景特徴量154とから正規化特徴量を算出し(S504)、正規化特徴量を用いて動体検出を行う(S505)。 The moving object detection unit 106 calculates a normalized feature value from the input feature value 153 and the background feature value 154 stored in the feature storage unit 104 (S504), and performs moving object detection using the normalized feature value (S505). .
 次に、背景更新部105は、入力特徴量153を背景特徴量154として特徴蓄積部104に更新するかを決定する(S506)。 Next, the background update unit 105 determines whether or not to update the feature storage unit 104 with the input feature value 153 as the background feature value 154 (S506).
 実施の形態1の正規化特徴量による動体検出効果をDCTにより説明する。 The moving object detection effect by the normalized feature amount according to the first embodiment will be described using DCT.
 図18(a)及び図18(b)のブロック内に照明変動が発生した際のDCT係数が図19(a)及び図19(b)であるのは前述の通りであるが、図19(a)及び図19(b)から算出される正規化特徴量をPat(Ca)、Pat(Cb)とすると、
 Pat(Ca)=(184.8+(-76.5))/600≒0.18
 Pat(Cb)=(92.3+(-38.3))/300≒0.18
となり、照明変動時にも変化量がなく、照明変動に強い特徴量である。
As described above, the DCT coefficients when the illumination variation occurs in the blocks of FIGS. 18A and 18B are as shown in FIGS. 19A and 19B. If the normalized feature amounts calculated from a) and FIG. 19B are Pat (Ca) and Pat (Cb),
Pat (Ca) = (184.8 + (− 76.5)) / 600≈0.18
Pat (Cb) = (92.3 + (− 38.3)) / 300≈0.18
Thus, there is no change amount even when the illumination fluctuates, and the feature quantity is strong against the illumination fluctuation.
 図20(a)及び図20(b)の、ブロック内を物体が水平方向に移動した場合のDCT係数が図21(a)及び図21(b)の通りであるのは前述の通りであるが、図21(a)及び図21(b)からそれぞれ算出される正規化特徴量をPat(Ea)、Pat(Eb)とすると、
 Pat(Ea)=(65.3+50+27.1)/250≒0.57
 Pat(Eb)=(65.3+(-50)+27.1)/350≒0.12
となり、水平方向に移動した場合も変化量が算出できるため、動体として検出できる。同様に、ブロック内を物体が垂直方向に移動した場合でも動体として検出できる。
As described above, the DCT coefficients in FIGS. 20 (a) and 20 (b) when the object moves horizontally in the block are as shown in FIGS. 21 (a) and 21 (b). If the normalized feature values calculated from FIGS. 21A and 21B are Pat (Ea) and Pat (Eb), respectively.
Pat (Ea) = (65.3 + 50 + 27.1) /250≈0.57
Pat (Eb) = (65.3 + (− 50) +27.1) /350≈0.12
Thus, since the amount of change can be calculated even when moving in the horizontal direction, it can be detected as a moving object. Similarly, even when an object moves in the block in the vertical direction, it can be detected as a moving object.
 なお、ブロック分割部101、直交変換部102等は動体検出装置100の内部で処理しているが、外部装置で処理をしてもよい。 In addition, although the block division unit 101, the orthogonal transformation unit 102, and the like are processed inside the moving object detection device 100, they may be processed by an external device.
 なお、特徴抽出部103にて、特徴抽出ステップS503と正規化ステップS504とを行ってもよい。つまり、正規化特徴量の算出を動体検出部106で行っているが、特徴抽出部103で予め正規化特徴量を算出し、正規化された入力特徴量153として出力し、特徴蓄積部104に正規化された入力特徴量153が蓄積される。それに伴い、背景更新部105にて更新される背景特徴量が正規化された背景特徴量154となり、動体検出部106での正規化を行っているステップS402,S403が省略される。 Note that the feature extraction unit 103 may perform the feature extraction step S503 and the normalization step S504. That is, the normalization feature value is calculated by the moving object detection unit 106, but the feature extraction unit 103 calculates the normalization feature value in advance and outputs it as the normalized input feature value 153. The normalized input feature quantity 153 is accumulated. Accordingly, the background feature amount updated by the background update unit 105 becomes the normalized background feature amount 154, and steps S402 and S403 that are normalized by the moving object detection unit 106 are omitted.
 なお、ブロック分割部101と直交変換部102との代替として、ブロック単位で直交変換を行い、変換係数を符号化する符号化装置又は復号化装置を利用できることは言うまでもない。 Of course, as an alternative to the block dividing unit 101 and the orthogonal transform unit 102, it is possible to use an encoding device or a decoding device that performs orthogonal transform in units of blocks and encodes transform coefficients.
 《実施の形態2》
 次に、実施の形態2に係る動体検出装置について説明する。本実施の形態に係る動体検出装置は上記実施の形態1に係る動体検出装置100と概ね同様の構成を備える一方、動体検出部106の動体判定方法が相違している。以下、相違点に着目して説明する。
<< Embodiment 2 >>
Next, the moving object detection apparatus according to the second embodiment will be described. The moving object detection device according to the present embodiment has a configuration substantially similar to that of the moving object detection device 100 according to the first embodiment, but the moving object detection method of the moving object detection unit 106 is different. Hereinafter, the description will be given focusing on the difference.
 実施の形態2に係る動体検出部106は、正規化特徴量を算出するか否かを選択できるようにする。実施の形態2に係る動体検出部106の動体判定方法について図6を用いて説明する。図6は、実施の形態2に係る動体検出部106の動体判定方法フローチャートである。 The moving object detection unit 106 according to the second embodiment can select whether or not to calculate the normalized feature amount. A moving object determination method of the moving object detection unit 106 according to Embodiment 2 will be described with reference to FIG. FIG. 6 is a flowchart of a moving object determination method of the moving object detection unit 106 according to the second embodiment.
 S601では、背景特徴量のフレーム番号fを0とし、動体検出数Cntを0にする。 In S601, the frame number f of the background feature quantity is set to 0, and the moving object detection number Cnt is set to 0.
 S602では、入力特徴量のACsum(in)をDC(in)で除算し、正規化特徴量Pat(in)を算出する。 In S602, ACsum (in) of the input feature value is divided by DC (in) to calculate a normalized feature value Pat (in).
 S603では、DC(in)とDC(f)との差分絶対値がDC閾値DCTHより大きいかどうかを判定する。 In S603, it is determined whether or not the difference absolute value between DC (in) and DC (f) is larger than the DC threshold value DCTH.
 S604では、S603でDC(in)とDC(f)との差分絶対値がDC閾値DCTHより大きいと判定された場合、背景特徴量のfフレーム目のACsum(f)をDC(f)で除算し、正規化特徴量Pat(f)を算出する。 In S604, if it is determined in S603 that the absolute difference between DC (in) and DC (f) is greater than the DC threshold DCTH, the ACsum (f) of the fth frame of the background feature is divided by DC (f). Then, the normalized feature value Pat (f) is calculated.
 S605では、S604に続いてPat(in)とPat(f)との差分絶対値が正規化閾値TH1より大きいかどうかを判定する。 In S605, following S604, it is determined whether or not the difference absolute value between Pat (in) and Pat (f) is larger than the normalization threshold TH1.
 S606では、S605でPat(in)とPat(f)との差分絶対値が正規化閾値TH1より大きいと判定された場合、動体検出数Cntを1増やす。 In S606, when it is determined in S605 that the absolute difference between Pat (in) and Pat (f) is larger than the normalization threshold TH1, the moving object detection number Cnt is increased by one.
 S607では、S603でDC(in)とDC(f)との差分絶対値がDC閾値DCTHより大きくないと判定された場合、ACsum(in)とACsum(f)との差分絶対値が閾値TH2より大きいかどうかを判定する。 In S607, if it is determined in S603 that the absolute difference between DC (in) and DC (f) is not greater than the DC threshold DCTH, the absolute difference between ACsum (in) and ACsum (f) is greater than the threshold TH2. Determine if it is larger.
 S608では、S607でACsum(in)とACsum(f)との差分絶対値が閾値TH2より大きいと判定された場合、動体検出数Cntを1増やす。 In S608, when it is determined in S607 that the absolute difference between ACsum (in) and ACsum (f) is greater than the threshold value TH2, the moving object detection number Cnt is increased by one.
 S609では、S605でPat(in)とPat(f)との差分絶対値が正規化閾値TH1より大きくないと判定された場合と、S606の続きと、S607でACsum(in)とACsum(f)との差分絶対値が閾値TH2より大きくないと判定された場合と、S608の続きとにおいて、フレーム番号fを1増やす。 In S609, when it is determined in S605 that the absolute difference between Pat (in) and Pat (f) is not larger than the normalization threshold TH1, the continuation of S606, and ACsum (in) and ACsum (f) in S607. The frame number f is incremented by 1 when it is determined that the difference absolute value between is not greater than the threshold value TH2 and after S608.
 S610では、フレーム番号fが背景特徴量Fフレーム全て比較し終わったかを判定する。S610で背景特徴量Fフレーム全て比較し終わっていないと判定された場合、S603に戻る。 In S610, it is determined whether the frame number f has been compared for all the background feature amount F frames. If it is determined in S610 that all background feature F frames have not been compared, the process returns to S603.
 S611では、フレーム番号fが背景特徴量Fフレーム分全て比較し終わったと判定された場合、動体検出数Cntが動体検出閾値MoveTHより大きいかどうかを判定する。 In S611, when it is determined that the frame number f has been compared for all the background feature amount F frames, it is determined whether or not the moving object detection number Cnt is greater than the moving object detection threshold MoveTH.
 S612では、S611で動体検出数Cntが動体検出閾値MoveTHより大きいと判定された場合、動体あり、という検出結果155を出力する。 In S612, if it is determined in S611 that the moving object detection number Cnt is larger than the moving object detection threshold MoveTH, a detection result 155 that there is a moving object is output.
 S613では、動体検出数Cntが動体検出閾値MoveTHより大きくないと判定された場合、動体なし、という検出結果155を出力する。 In S613, when it is determined that the moving object detection number Cnt is not larger than the moving object detection threshold value MoveTH, the detection result 155 that there is no moving object is output.
 S603の判定の必要性について説明する。DC成分の差分絶対値がほとんどない場合、明るさは変化していないため、明るさに影響されない正規化特徴量を使う必要はない。正規化特徴量は除算処理を行うため、処理量が多い。そこで、DC閾値DCTHを用いて、DC成分の差分絶対値がDC閾値DCTHより大きい場合、正規化特徴量を算出し、DC閾値DCTHより大きくない場合、ACsumを用いることにより処理を軽減している。 The necessity for the determination in S603 will be described. When there is almost no DC component difference absolute value, since the brightness has not changed, there is no need to use a normalized feature amount that is not affected by the brightness. Since the normalized feature amount is divided, the amount of processing is large. Therefore, using the DC threshold value DCTH, when the difference absolute value of the DC component is larger than the DC threshold value DCTH, the normalized feature value is calculated, and when not larger than the DC threshold value DCTH, the processing is reduced by using ACsum. .
 上記の方法により、正規化する必要のない部分ではAC成分総和を使うことで、除算処理を削減し、演算処理を高速化できる。 By using the above method, the division processing can be reduced and the calculation processing can be speeded up by using the AC component summation in the portion that does not need to be normalized.
 《実施の形態3》
 本発明は実施の形態1及び2における特徴蓄積部104と背景更新部105とを備えなくとも実現できる。図7に本発明の実施の形態3に係る動体検出装置700を示す。上述の実施の形態1及び2にて説明した部分の説明は省略する。
<< Embodiment 3 >>
The present invention can be realized without the feature accumulation unit 104 and the background update unit 105 in the first and second embodiments. FIG. 7 shows a moving object detection apparatus 700 according to Embodiment 3 of the present invention. The description of the parts described in the first and second embodiments is omitted.
 動体検出装置700は、第1ブロック分割部711と、第1直交変換部712と、第1特徴抽出部713と、第2ブロック分割部721と、第2直交変換部722と、第2特徴抽出部723と、動体検出部704とを備える。 The moving object detection apparatus 700 includes a first block division unit 711, a first orthogonal transformation unit 712, a first feature extraction unit 713, a second block division unit 721, a second orthogonal transformation unit 722, and a second feature extraction. Unit 723 and a moving object detection unit 704.
 第1ブロック分割部711は、入力画像750を所定のブロック単位画像751に分割する。 The first block dividing unit 711 divides the input image 750 into predetermined block unit images 751.
 第1直交変換部712は、第1ブロック分割部711にて分割されたブロック単位画像751に対して直交変換を行い、変換係数752を算出する。 The first orthogonal transform unit 712 performs orthogonal transform on the block unit image 751 divided by the first block dividing unit 711 and calculates a transform coefficient 752.
 第1特徴抽出部713は、変換係数752より入力特徴量753を算出する。ここでは実施の形態1の特徴抽出部103と同様にAC成分総和とDC成分とを入力特徴量753として出力する。 The first feature extraction unit 713 calculates an input feature amount 753 from the conversion coefficient 752. Here, as in the feature extraction unit 103 of the first embodiment, the AC component sum and the DC component are output as the input feature value 753.
 第2ブロック分割部721は、背景画像760を所定のブロック単位画像761に分割する。背景画像760は、入力画像750の時間的に前のフレームでもよいし、後のフレームでもよい。 The second block dividing unit 721 divides the background image 760 into predetermined block unit images 761. The background image 760 may be a temporally previous frame of the input image 750 or a subsequent frame.
 第2直交変換部722は、第2ブロック分割部721にて分割されたブロック単位画像761に対して直交変換を行い、変換係数762を算出する。 The second orthogonal transform unit 722 performs orthogonal transform on the block unit image 761 divided by the second block dividing unit 721 to calculate a transform coefficient 762.
 第2特徴抽出部723は、変換係数762よりAC成分総和とDC成分とを背景特徴量763として出力する。 The second feature extraction unit 723 outputs the AC component sum and the DC component as the background feature amount 763 from the conversion coefficient 762.
 動体検出部704は、入力特徴量753と背景特徴量763とが入力され、動体検出結果770を出力する。動体検出部704の処理は実施の形態1及び2の動体検出部106と同様であるため説明を省略する。 The moving object detection unit 704 receives the input feature value 753 and the background feature value 763 and outputs a moving object detection result 770. Since the process of the moving object detection unit 704 is the same as that of the moving object detection unit 106 of the first and second embodiments, the description thereof is omitted.
 なお、本実施形態では、2フレーム分の画像入力を例としているが、第2ブロック分割部721と、第2直交変換部722と、第2特徴抽出部723とを第3、第4と増やしていくことにより、実施の形態1及び2と同様に、複数フレームで比較することが可能となる。 In this embodiment, image input for two frames is taken as an example. However, the second block dividing unit 721, the second orthogonal transform unit 722, and the second feature extracting unit 723 are increased by the third and fourth. By doing so, it is possible to compare in a plurality of frames, as in the first and second embodiments.
 《実施の形態4》
 本発明の実施の形態4に係る動体検出装置800の構成を説明する。図8は、本発明の実施の形態4に係る動体検出装置800の構成を示すブロック図である。本発明に係る動体検出装置800は、第1ブロック分割部801と、第1正規化特徴量算出部802と、第1パターン判定部803と、特徴蓄積部804と、背景更新部805と、第2ブロック分割部807と、第2正規化特徴量算出部808と、第2パターン判定部809と、動体検出部806とを備える。
<< Embodiment 4 >>
A configuration of a moving object detection apparatus 800 according to Embodiment 4 of the present invention will be described. FIG. 8 is a block diagram showing a configuration of a moving object detection device 800 according to Embodiment 4 of the present invention. The moving object detection apparatus 800 according to the present invention includes a first block dividing unit 801, a first normalized feature value calculating unit 802, a first pattern determining unit 803, a feature accumulating unit 804, a background updating unit 805, A two-block dividing unit 807, a second normalized feature value calculating unit 808, a second pattern determining unit 809, and a moving object detecting unit 806 are provided.
 第1ブロック分割部801は、入力画像850を所定のブロック単位に分割し、所定の第1ブロック単位画像851を出力する。ここでは、3×3画素単位のブロックで処理を行っているものとして、説明する。 The first block dividing unit 801 divides the input image 850 into predetermined block units and outputs a predetermined first block unit image 851. Here, description will be made assuming that processing is performed in blocks of 3 × 3 pixels.
 第1正規化特徴量算出部802は、第1ブロック分割部801で分割された第1ブロック単位画像851に対して第1正規化特徴量852を出力する。第1正規化特徴量852は、第1ブロック単位画像851にエッジフィルタをかけエッジ特徴量を算出し、正規化することにより求められる。エッジフィルタによるエッジ特徴量として、水平フィルタ値hと垂直フィルタ値vとを用いる。エッジフィルタの種類としてはSobelフィルタを用いるが、エッジフィルタは他にもCannyフィルタ等がありこれに限定されるものではない。3×3画素単位のブロックの中心画素を座標f(i,j)とすると、Sobelフィルタを用いた水平フィルタ値h、垂直フィルタ値vは、
 h=(-1)×f(i-1,j-1)+0×f(i,j-1)+1×f(i+1,j-1)+(-2)×f(i-1,j)+0×f(i,j)+2×f(i+1,j)+(-1)×f(i-1,j+1)+0×f(i,j+1)+1×f(i+1,j+1)
 v=(-1)×f(i-1,j-1)+(-2)×f(i,j-1)+(-1)×f(i+1,j-1)+0×f(i-1,j)+0×f(i,j)+0×f(i+1,j)+1×f(i-1,j+1)+2×f(i,j+1)+1×f(i+1,j+1)
で表される。
The first normalized feature value calculation unit 802 outputs a first normalized feature value 852 for the first block unit image 851 divided by the first block dividing unit 801. The first normalized feature value 852 is obtained by applying an edge filter to the first block unit image 851 to calculate an edge feature value and normalizing it. A horizontal filter value h and a vertical filter value v are used as edge feature amounts by the edge filter. A Sobel filter is used as the type of edge filter, but the edge filter includes a Canny filter and the like, and is not limited thereto. If the central pixel of a 3 × 3 pixel unit block is a coordinate f (i, j), the horizontal filter value h and the vertical filter value v using the Sobel filter are
h = (− 1) × f (i−1, j−1) + 0 × f (i, j−1) + 1 × f (i + 1, j−1) + (− 2) × f (i−1, j ) + 0 × f (i, j) + 2 × f (i + 1, j) + (− 1) × f (i−1, j + 1) + 0 × f (i, j + 1) + 1 × f (i + 1, j + 1)
v = (− 1) × f (i−1, j−1) + (− 2) × f (i, j−1) + (− 1) × f (i + 1, j−1) + 0 × f (i −1, j) + 0 × f (i, j) + 0 × f (i + 1, j) + 1 × f (i−1, j + 1) + 2 × f (i, j + 1) + 1 × f (i + 1, j + 1)
It is represented by
 水平フィルタ値h、垂直フィルタ値vをブロック内の輝度平均で正規化することにより、正規化水平フィルタ値Hと正規化垂直フィルタ値Vとが得られ、これらを第1正規化特徴量852として出力する。なお、実施の形態1でも述べた通り、正規化する値は輝度平均に限定しない。 The normalized horizontal filter value H and the normalized vertical filter value V are obtained by normalizing the horizontal filter value h and the vertical filter value v with the luminance average in the block, and these are used as the first normalized feature value 852. Output. As described in the first embodiment, the value to be normalized is not limited to the luminance average.
 第1パターン判定部803は、第1正規化特徴量算出部802から得られた第1正規化特徴量852から入力特徴量853としてエッジパターンを出力する。エッジパターンは5種類であり、いずれか1パターンを出力する。 The first pattern determination unit 803 outputs an edge pattern as the input feature value 853 from the first normalized feature value 852 obtained from the first normalized feature value calculation unit 802. There are five types of edge patterns, and any one pattern is output.
 図9に本発明の実施の形態4に係るエッジパターンを示す。901は、水平エッジ1とし、左半分の輝度値が右半分より低い水平エッジである。902は、水平エッジ2とし、左半分の輝度値が右半分の輝度値より高い水平エッジである。903は、垂直エッジ1とし、上半分の輝度値が下半分の輝度値より低い垂直エッジである。904は、垂直エッジ2とし、上半分の輝度値が下半分の輝度値より高い垂直エッジである。905は、エッジなしとする。 FIG. 9 shows an edge pattern according to Embodiment 4 of the present invention. Reference numeral 901 denotes a horizontal edge 1, which is a horizontal edge whose luminance value in the left half is lower than that in the right half. Reference numeral 902 denotes a horizontal edge 2, which is a horizontal edge in which the left half luminance value is higher than the right half luminance value. Reference numeral 903 denotes a vertical edge 1, which is a vertical edge whose upper half luminance value is lower than the lower half luminance value. Reference numeral 904 denotes a vertical edge 2, which is a vertical edge in which the upper half luminance value is higher than the lower half luminance value. Reference numeral 905 denotes no edge.
 パターン抽出方法について以下に説明する。図10は本発明の実施の形態4に係る正規化特徴量からのパターン抽出方法のフローチャートである。 The pattern extraction method is described below. FIG. 10 is a flowchart of a pattern extraction method from normalized feature values according to Embodiment 4 of the present invention.
 S1001では、正規化水平フィルタ値Hの絶対値が、水平閾値H_THより大きい、又は、正規化垂直フィルタ値Vの絶対値が垂直閾値V_THより大きいかを判定する。 In S1001, it is determined whether the absolute value of the normalized horizontal filter value H is greater than the horizontal threshold value H_TH or whether the absolute value of the normalized vertical filter value V is greater than the vertical threshold value V_TH.
 S1002では、S1001にて正規化水平フィルタ値Hの絶対値が水平閾値H_THより大きい、又は、正規化垂直フィルタ値Vの絶対値が垂直閾値V_THより大きいと判定された場合、正規化水平フィルタ値Hの絶対値が正規化垂直フィルタ値Vの絶対値より大きいかを判定する。 In S1002, if it is determined in S1001 that the absolute value of the normalized horizontal filter value H is greater than the horizontal threshold value H_TH or the absolute value of the normalized vertical filter value V is greater than the vertical threshold value V_TH, the normalized horizontal filter value It is determined whether the absolute value of H is greater than the absolute value of the normalized vertical filter value V.
 S1003では、S1002にて正規化水平フィルタ値Hの絶対値が正規化垂直フィルタ値Vの絶対値より大きいと判定された場合、正規化水平フィルタ値Hが0より大きいかを判定する。 In S1003, when it is determined in S1002 that the absolute value of the normalized horizontal filter value H is greater than the absolute value of the normalized vertical filter value V, it is determined whether the normalized horizontal filter value H is greater than 0.
 S1004では、S1003にて正規化水平フィルタ値Hが0より大きいと判定された場合、エッジパターンは水平エッジ1(901)とする。 In S1004, when it is determined in S1003 that the normalized horizontal filter value H is greater than 0, the edge pattern is set to horizontal edge 1 (901).
 S1005では、S1003にて正規化水平フィルタ値Hが0より大きくないと判定された場合、エッジパターンは水平エッジ2(902)とする。 In S1005, when it is determined in S1003 that the normalized horizontal filter value H is not greater than 0, the edge pattern is set to horizontal edge 2 (902).
 S1006では、S1002にて正規化水平フィルタ値Hの絶対値が正規化垂直フィルタ値Vの絶対値より大きくないと判定された場合、正規化垂直フィルタ値Vが0より大きいかを判定する。 In S1006, if it is determined in S1002 that the absolute value of the normalized horizontal filter value H is not greater than the absolute value of the normalized vertical filter value V, it is determined whether the normalized vertical filter value V is greater than 0.
 S1007では、S1006にて正規化垂直フィルタ値Vが0より大きいと判定された場合、エッジパターンは垂直エッジ1(903)とする。 In S1007, when it is determined in S1006 that the normalized vertical filter value V is greater than 0, the edge pattern is set to vertical edge 1 (903).
 S1008では、S1006にて正規化垂直フィルタ値Vが0より大きくないと判定された場合、エッジパターンは垂直エッジ2(904)とする。 In S1008, when it is determined in S1006 that the normalized vertical filter value V is not larger than 0, the edge pattern is set to the vertical edge 2 (904).
 S1009では、S1001にて正規化水平フィルタ値Hの絶対値が水平閾値H_THより大きくなく、かつ、正規化垂直フィルタ値Vの絶対値が垂直閾値V_THより大きくないと判定された場合、エッジパターンはエッジなし(905)とする。 In S1009, if it is determined in S1001 that the absolute value of the normalized horizontal filter value H is not larger than the horizontal threshold value H_TH and the absolute value of the normalized vertical filter value V is not larger than the vertical threshold value V_TH, the edge pattern is No edge (905).
 背景更新部805は、入力画像850と背景画像854とから新たな背景画像854を生成し、出力する。入力画像をf(t)とし、背景画像をg(t)とすると、背景更新率α(0≦α≦1)を用いて生成される背景画像g(t+1)は、
 g(t+1)=αf(t)+(1-α)g(t)
で生成される。背景画像854が保存されていない初期状態では、αを1とし、入力画像850をそのまま背景画像854として出力する。α=0のとき、置き去り、持ち去り検知機能を持たせることができる。
The background update unit 805 generates a new background image 854 from the input image 850 and the background image 854 and outputs it. When the input image is f (t) and the background image is g (t), the background image g (t + 1) generated using the background update rate α (0 ≦ α ≦ 1) is
g (t + 1) = αf (t) + (1−α) g (t)
Is generated. In an initial state where the background image 854 is not stored, α is set to 1, and the input image 850 is output as it is as the background image 854. When α = 0, it can be left behind and can have a removal detection function.
 特徴蓄積部804は、背景更新部805から出力された背景画像854を保持する。少なくとも1フレーム分の背景画像854を保持することができる。 The feature storage unit 804 holds the background image 854 output from the background update unit 805. The background image 854 for at least one frame can be held.
 第2ブロック分割部807は、背景画像854を所定のブロック単位に分割し、所定の第2ブロック単位画像855を出力する。 The second block dividing unit 807 divides the background image 854 into predetermined block units, and outputs a predetermined second block unit image 855.
 第2正規化特徴量算出部808は、第2ブロック分割部807で分割された第2ブロック単位画像855に対して第2正規化特徴量856を出力する。内部処理は第1正規化特徴量算出部802と同様なので説明を省略する。 The second normalized feature value calculation unit 808 outputs the second normalized feature value 856 to the second block unit image 855 divided by the second block dividing unit 807. Since the internal processing is the same as that of the first normalized feature value calculation unit 802, description thereof is omitted.
 第2パターン判定部809は、第2正規化特徴量算出部808から得られた正規化特徴量856から背景特徴量857としてエッジパターンを出力する。エッジパターンの判定処理は第1パターン判定部803と同様なので説明を省略する。 The second pattern determination unit 809 outputs an edge pattern as the background feature value 857 from the normalized feature value 856 obtained from the second normalized feature value calculation unit 808. Since the edge pattern determination process is the same as that of the first pattern determination unit 803, description thereof is omitted.
 動体検出部806は、第1パターン判定部803から出力された入力特徴量853と、第2パターン判定部809から出力された背景特徴量857とを比較することにより動体検出結果858を出力する。 The moving object detection unit 806 outputs the moving object detection result 858 by comparing the input feature value 853 output from the first pattern determination unit 803 with the background feature value 857 output from the second pattern determination unit 809.
 ブロック間の動体が一致するかはパターンの一致を見ればよい。エッジパターンは901から905の5パターンしかないので、同じパターンでなければ動体であるとする。F=1のときは、背景特徴量857に格納されているエッジパターンと入力特徴量853に格納されているエッジパターンとが一致しない時、動体として検出結果858を出力する。 は Check the pattern match to see if the moving objects between the blocks match. Since there are only five edge patterns 901 to 905, the edge pattern is assumed to be a moving object unless it is the same pattern. When F = 1, the detection result 858 is output as a moving object when the edge pattern stored in the background feature value 857 and the edge pattern stored in the input feature value 853 do not match.
 F>1のときはFフレーム中半分以上が一致していなければ動体と判定し、検出結果858を出力する。 When F> 1, if more than half of the F frames do not match, it is determined to be a moving object, and a detection result 858 is output.
 〈処理の流れ〉
 以上のように構成された動体検出装置800による動体検出方法について、図11を用いて説明する。図11は、本発明の実施の形態4に係る動体検出方法のフローチャートである。
<Process flow>
A moving object detection method by the moving object detection apparatus 800 configured as described above will be described with reference to FIG. FIG. 11 is a flowchart of the moving object detection method according to the fourth embodiment of the present invention.
 まず、入力画像850を第1ブロック分割部801にて、3×3画素単位の第1ブロック単位画像851に分割し、背景画像854を第2ブロック分割部807にて、3×3画素単位の第2ブロック単位画像855に分割する(S1101)。 First, the input image 850 is divided by the first block dividing unit 801 into the first block unit image 851 in units of 3 × 3 pixels, and the background image 854 is divided by the second block dividing unit 807 in units of 3 × 3 pixels. The image is divided into second block unit images 855 (S1101).
 第1正規化特徴量算出部802で、第1ブロック分割部801にて分割された第1ブロック単位画像851に対してエッジフィルタによるエッジ特徴を抽出し(S1102)、第1正規化特徴量852を算出し(S1103)、第2正規化特徴量算出部808で、第2ブロック分割部807にて分割された第2ブロック単位画像855に対してエッジ特徴を抽出し(S1102)、第2正規化特徴量856を算出する(S1103)。 The first normalized feature value calculating unit 802 extracts edge features by an edge filter from the first block unit image 851 divided by the first block dividing unit 801 (S1102), and the first normalized feature value 852. (S1103), the second normalized feature value calculation unit 808 extracts edge features from the second block unit image 855 divided by the second block division unit 807 (S1102), and the second normalization feature amount calculation unit 808 extracts the second feature. The normalized feature amount 856 is calculated (S1103).
 第1パターン判定部803は、第1正規化特徴量算出部802にて算出された第1正規化特徴量852から入力特徴量853を出力し、第2パターン判定部809は、第2正規化特徴量算出部808にて算出された第2正規化特徴量856から背景特徴量857を出力する(S1104)。 The first pattern determination unit 803 outputs the input feature value 853 from the first normalized feature value 852 calculated by the first normalized feature value calculation unit 802, and the second pattern determination unit 809 outputs the second normalization feature value 805. A background feature value 857 is output from the second normalized feature value 856 calculated by the feature value calculation unit 808 (S1104).
 動体検出部806は、入力特徴量853と背景特徴量857との一致を見ることにより動体か否かを検出する(S1105)。 The moving object detection unit 806 detects whether or not the object is a moving object by seeing a match between the input feature value 853 and the background feature value 857 (S1105).
 次に、背景更新部805は、入力画像850を用いて新しい背景画像854に更新する(S1106)。 Next, the background update unit 805 updates the new background image 854 using the input image 850 (S1106).
 なお、正規化ステップS1103は第1正規化特徴量算出部802及び第2正規化特徴量算出部808にて処理されたが、第1及び第2パターン判定部803,809にて処理してもよい。 Note that the normalization step S1103 is processed by the first normalized feature value calculation unit 802 and the second normalized feature value calculation unit 808, but may be processed by the first and second pattern determination units 803 and 809. Good.
 また、ブロック分割単位を3×3画素単位で説明したが、これを5×5画素単位にし、5×5画素を詳細ブロックに分割する、つまり、使用する特徴量を1次元から複数次元に増やしてもよい。 Moreover, although the block division unit has been described in units of 3 × 3 pixels, this is divided into 5 × 5 pixel units, and 5 × 5 pixels are divided into detailed blocks. That is, the feature amount to be used is increased from one dimension to multiple dimensions. May be.
 図12は、5×5画素単位のブロックを詳細ブロックに分割する例示図である。5×5画素単位のブロックを更にその内部を3×3画素単位に分割し、1201、1202、1203、1204、1205それぞれでエッジフィルタを用いて上述のパターン判定方法でエッジパターンを算出し、5次元の特徴量と考えて動体検出を行ってもよい。特徴量の次元数が複数である場合は一致パターンの数が過半数を超えていれば動体とする。5次元の場合は、例えば5つのパターンのうち3パターンが一致していればよい。 FIG. 12 is an exemplary diagram of dividing a block of 5 × 5 pixel units into detailed blocks. The block of 5 × 5 pixel units is further divided into 3 × 3 pixel units, and edge patterns are calculated by the above-described pattern determination method using edge filters at 1201, 1202, 1203, 1204, and 1205, respectively. Moving object detection may be performed considering a feature quantity of a dimension. When there are a plurality of feature quantity dimensions, a moving object is selected if the number of matching patterns exceeds a majority. In the case of five dimensions, for example, three patterns out of five patterns need only match.
 《実施の形態5》
 本発明の実施の形態5では、上述した実施の形態1から実施の形態4に係る動体検出装置を備える撮像システムについて説明する。
<< Embodiment 5 >>
In the fifth embodiment of the present invention, an imaging system including the moving object detection device according to the first to fourth embodiments will be described.
 図13は、本発明の実施の形態5に係る撮像システム1300の構成を示すブロック図である。この撮像システム1300は、例えば、デジタルスチルカメラ、ネットワークカメラ、監視カメラ等である。 FIG. 13 is a block diagram showing a configuration of an imaging system 1300 according to Embodiment 5 of the present invention. The imaging system 1300 is, for example, a digital still camera, a network camera, a surveillance camera, or the like.
 図13に示す撮像システム1300は、光学系1301と、センサー1302と、A/D変換回路1303と、画像処理回路1304と、記録転送部1305と、再生部1306と、タイミング制御回路1307と、システム制御回路1308とを備える。 An imaging system 1300 illustrated in FIG. 13 includes an optical system 1301, a sensor 1302, an A / D conversion circuit 1303, an image processing circuit 1304, a recording transfer unit 1305, a reproduction unit 1306, a timing control circuit 1307, a system And a control circuit 1308.
 光学系1301は、入射した画像光をセンサー1302に結像する。 The optical system 1301 focuses the incident image light on the sensor 1302.
 センサー1302は、光学系1301により結像された画像光を光電変換することにより電気信号(画像信号)を生成する。 The sensor 1302 generates an electrical signal (image signal) by photoelectrically converting the image light imaged by the optical system 1301.
 A/D変換回路1303は、センサー1302により生成された電気信号(アナログ信号)をデジタル信号に変換する。 The A / D conversion circuit 1303 converts the electrical signal (analog signal) generated by the sensor 1302 into a digital signal.
 画像処理回路1304は、上述した実施の形態1に係る動体検出装置100を備える。この画像処理回路1304は、A/D変換回路1303により変換されたデジタル信号に、Y/C処理、エッジ処理、画像の拡大縮小処理、JPEG及びMPEG等の画像圧縮/伸張処理、及び画像圧縮されたストリームの制御等を行う。また、動体検出装置100は、A/D変換回路1303により変換されたデジタル信号により動体を検出する。 The image processing circuit 1304 includes the moving object detection apparatus 100 according to the first embodiment described above. The image processing circuit 1304 performs Y / C processing, edge processing, image enlargement / reduction processing, image compression / decompression processing such as JPEG and MPEG, and image compression on the digital signal converted by the A / D conversion circuit 1303. perform the control and the like of the stream. The moving object detection apparatus 100 detects a moving object based on the digital signal converted by the A / D conversion circuit 1303.
 記録転送部1305は、画像処理回路1304により画像処理された信号や、動体検出装置100によって検出された結果を、記録メディアへ記録する、又はインターネット等を介して伝送する。 The recording / transferring unit 1305 records the signal processed by the image processing circuit 1304 and the result detected by the moving object detection apparatus 100 on a recording medium or transmits it via the Internet or the like.
 再生部1306は、記録転送部1305により記録又は転送された信号を再生する。なお、再生画像に重ねて動体検出結果を表示してもよい。図14は動体検出結果の表示例である。人物1400を動体とする。動体が存在するブロックのみを太枠で表示する、といった表示ができる。 The reproduction unit 1306 reproduces the signal recorded or transferred by the recording / transfer unit 1305. Note that the moving object detection result may be displayed over the reproduced image. FIG. 14 is a display example of a moving object detection result. A person 1400 is assumed to be a moving object. Only a block in which a moving object exists can be displayed with a thick frame.
 タイミング制御回路1307は、センサー1302及び画像処理回路1304を制御する。 Timing control circuit 1307 controls sensor 1302 and image processing circuit 1304.
 システム制御回路1308は、光学系1301、記録転送部1305、再生部1306及びタイミング制御回路1307を制御する。 The system control circuit 1308 controls the optical system 1301, the recording / transferring unit 1305, the reproducing unit 1306, and the timing control circuit 1307.
 また、システム制御回路1308において、光学系1301のAF(Automatic Focus)の動作中や、センサー1302のAE(Automatic Exposure)の動作中は撮影される画像が安定しないため、動体検出装置100を止めてよい。 Further, in the system control circuit 1308, the captured image is not stable during the AF (Automatic Focus) operation of the optical system 1301 or the AE (Automatic Exposure) operation of the sensor 1302, so the moving object detection device 100 is stopped. Good.
 なお、強い光によってセンサー1302より出力される画像の飽和や、明かりのない場所でセンサー1302の出力画像が黒つぶれしている場合、画像のパターンが変化するため、動体検出装置100の動作を止めてもよい。 Note that when the image output from the sensor 1302 is saturated by strong light, or when the output image of the sensor 1302 is blacked out in a place with no light, the image pattern changes, so the operation of the moving object detection device 100 is stopped. May be.
 なお、ここでは本発明に係る動体検出装置100を、光学系1301からの画像光をセンサー1302で光電変換してA/D変換回路1303に入力するカメラ機器等に用いた例を説明したが、本発明に係る動体検出装置100を、その他の機器に用いてもよいことは言うまでもない。例えば、テレビ等のAV機器のアナログ映像入力を直接にA/D変換回路1303に入力してよい。 In addition, although the moving body detection apparatus 100 which concerns on this invention demonstrated the example used for the camera apparatus etc. which photoelectrically convert the image light from the optical system 1301 by the sensor 1302, and input into the A / D conversion circuit 1303 here, It goes without saying that the moving object detection apparatus 100 according to the present invention may be used in other devices. For example, analog video input from an AV device such as a television may be input directly to the A / D conversion circuit 1303.
 動体検出装置100から出力された結果を更に収縮又は膨張の画像処理を行って再判定させてもよい。 The result output from the moving object detection apparatus 100 may be further judged by performing image processing for contraction or expansion.
 収縮の画像処理について説明する。着目ブロックの周辺8ブロックのうちNブロック以上が動体と判断されていない場合に着目ブロックを背景と判定する。図15(a)は動体検出装置100から出力された動体検出結果の例である。斜線部が動体検出装置100によって動体として検出されたブロックであり、白色ブロックは動体ではないと判定されたブロックである。図15(b)はN=6として収縮処理を行った結果である。太線で囲まれたブロックは周辺8ブロックのうち6ブロック以上が動体とされていないので、誤検出として表示させないようにする。以上の処理によりノイズの影響により単発的に発生する誤検出の低減を図る。 The shrinking image processing will be described. The block of interest is determined to be the background when N blocks or more of the 8 blocks around the block of interest are not determined to be moving objects. FIG. 15A shows an example of a moving object detection result output from the moving object detection device 100. The shaded portion is a block detected as a moving object by the moving object detection apparatus 100, and the white block is a block determined not to be a moving object. FIG. 15B shows the result of contraction processing with N = 6. In the block surrounded by the thick line, since 6 or more blocks out of the surrounding 8 blocks are not moving objects, they are not displayed as false detections. Through the above processing, false detection that occurs once due to the influence of noise is reduced.
 膨張の画像処理について説明する。着目ブロックの周辺8ブロックのうちNブロック以上が動体と判断されている場合に着目ブロックを動体と判定する。図16(a)は動体検出装置100から出力された動体検出結果の例である。斜線部が動体検出装置100によって動体として検出されたブロックであり、白色ブロックは動体ではないと判定されたブロックである。図16(b)はN=6として膨張処理を行った結果である。太線で囲まれたブロックは周辺8ブロックのうち6ブロック以上が動体とされているので、動体として表示に追加する。以上の処理により動体の未検出による中抜けを防ぐ。 The expansion image processing will be described. A block of interest is determined to be a moving object when N or more blocks are determined to be moving objects among the 8 blocks around the block of interest. FIG. 16A shows an example of a moving object detection result output from the moving object detection device 100. The shaded portion is a block detected as a moving object by the moving object detection device 100, and the white block is a block determined not to be a moving object. FIG. 16B shows the result of the expansion process with N = 6. Since the blocks surrounded by the bold lines are moving bodies in 6 blocks or more out of the surrounding 8 blocks, they are added to the display as moving bodies. Through the above processing, the hollowing out due to the undetected moving object is prevented.
 上記、収縮・膨張処理を用いることにより、周辺ブロックの判定結果に基づいて再度動体か背景かを判定することができる。更に、収縮と膨張とを交互に繰り返すことにより、誤検出、未検出を低減させることができる。 By using the above-described contraction / expansion processing, it is possible to determine again whether the object is moving or background based on the determination result of the surrounding blocks. Furthermore, false detection and non-detection can be reduced by alternately repeating contraction and expansion.
 なお、図13中の動体検出装置100は、実施の形態2から実施の形態4に係る動体検出装置100,700,800に置き換え可能である。これらの動体検出装置100,700,800は、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 Note that the moving object detection device 100 in FIG. 13 can be replaced with the moving object detection devices 100, 700, and 800 according to the second to fourth embodiments. These moving object detection devices 100, 700, and 800 are typically realized as LSIs that are integrated circuits. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
 ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Here, LSI is used, but it may be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 更には、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてあり得る。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. There is a possibility of adaptation of biotechnology.
 本発明は、動体検出方法及び動体検出装置に適用でき、特に、侵入者を検知する監視カメラ向けの動体検出方法及び動体検出装置として有用である。 The present invention can be applied to a moving object detection method and a moving object detection device, and is particularly useful as a moving object detection method and a moving object detection device for a surveillance camera that detects an intruder.
100 動体検出装置
101 ブロック分割部
102 直交変換部
103 特徴抽出部
104 特徴蓄積部
105 背景更新部
106 動体検出部
150 入力画像
151 ブロック単位画像
152 変換係数
153 入力特徴量
154 背景特徴量
155 動体検出結果
DESCRIPTION OF SYMBOLS 100 Moving object detection apparatus 101 Block division part 102 Orthogonal transformation part 103 Feature extraction part 104 Feature accumulation part 105 Background update part 106 Moving body detection part 150 Input image 151 Block unit image 152 Conversion coefficient 153 Input feature-value 154 Background feature-value 155 Motion detection result

Claims (30)

  1.  入力画像からブロック単位で特徴量を抽出する特徴抽出ステップと、
     前記特徴抽出ステップより抽出された特徴量から正規化特徴量を算出する正規化ステップと、
     前記正規化ステップで正規化された正規化特徴量に応じて動体であるか否か判定する動体検出ステップとを備えたことを特徴とする動体検出方法。
    A feature extraction step of extracting feature quantities from the input image in units of blocks;
    A normalization step of calculating a normalized feature amount from the feature amount extracted by the feature extraction step;
    A moving object detection method comprising: a moving object detection step of determining whether or not the object is a moving object in accordance with the normalized feature value normalized in the normalization step.
  2.  請求項1記載の動体検出方法において、
     前記特徴量は、直交変換による変換係数であることを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    The moving object detection method, wherein the feature amount is a transform coefficient by orthogonal transform.
  3.  請求項2記載の動体検出方法において、
     前記直交変換は、アダマール変換又はコサイン変換又はウェーブレット変換又はフーリエ変換であることを特徴とする動体検出方法。
    The moving object detection method according to claim 2,
    The orthogonal detection is a Hadamard transform, a cosine transform, a wavelet transform, or a Fourier transform.
  4.  請求項3記載の動体検出方法において、
     前記特徴量は、前記変換係数のAC成分のうち、水平成分及び垂直成分であることを特徴とする動体検出方法。
    In the moving body detection method of Claim 3,
    The moving object detection method, wherein the feature amount is a horizontal component and a vertical component of the AC component of the conversion coefficient.
  5.  請求項3記載の動体検出方法において、
     前記特徴量は、前記変換係数のAC成分の総和であることを特徴とする動体検出方法。
    In the moving body detection method of Claim 3,
    The moving object detection method, wherein the feature amount is a sum of AC components of the conversion coefficients.
  6.  請求項3記載の動体検出方法において、
     前記特徴量は、前記変換係数のAC成分の一部であることを特徴とする動体検出方法。
    In the moving body detection method of Claim 3,
    The moving object detection method, wherein the feature amount is a part of an AC component of the conversion coefficient.
  7.  請求項3記載の動体検出方法において、
     前記正規化特徴量は、前記特徴量を前記変換係数のDC成分により正規化していることを特徴とする動体検出方法。
    In the moving body detection method of Claim 3,
    The moving object detection method, wherein the normalized feature value is obtained by normalizing the feature value with a DC component of the conversion coefficient.
  8.  請求項2記載の動体検出方法において、
     前記特徴量を背景特徴量として更新する背景更新ステップを更に備えたことを特徴とする動体検出方法。
    The moving object detection method according to claim 2,
    A moving object detection method further comprising a background update step of updating the feature quantity as a background feature quantity.
  9.  請求項8記載の動体検出方法において、
     前記動体検出ステップでは、前記正規化特徴量と、前記背景特徴量を正規化した特徴量とを比較して動体を検出することを特徴とする動体検出方法。
    The moving object detection method according to claim 8,
    In the moving object detection step, a moving object is detected by comparing the normalized feature value with a feature value obtained by normalizing the background feature value.
  10.  請求項9記載の動体検出方法において、
     前記動体検出ステップは、
     前記特徴量を正規化する前記変換係数のDC成分と前記背景特徴量を正規化する前記変換係数のDC成分とを比較するステップと、
     前記両DC成分の差分が小さい場合には、正規化されない前記特徴量と正規化されない前記背景特徴量とを比較することにより動体か否かを判定するステップとを更に備えたことを特徴とする動体検出方法。
    The moving object detection method according to claim 9, wherein
    The moving object detection step includes:
    Comparing the DC component of the transform coefficient that normalizes the feature quantity with the DC component of the transform coefficient that normalizes the background feature quantity;
    A step of determining whether or not the object is a moving object by comparing the unnormalized feature quantity and the unnormalized background feature quantity when the difference between the two DC components is small. Motion detection method.
  11.  請求項2記載の動体検出方法において、
     前記正規化特徴量を正規化された背景特徴量として更新する背景更新ステップを更に備えたことを特徴とする動体検出方法。
    The moving object detection method according to claim 2,
    A moving object detection method further comprising a background update step of updating the normalized feature value as a normalized background feature value.
  12.  請求項1記載の動体検出方法において、
     前記特徴量は、エッジフィルタによって算出されることを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    The moving object detection method, wherein the feature amount is calculated by an edge filter.
  13.  請求項12記載の動体検出方法において、
     前記エッジフィルタはSobelフィルタであることを特徴とする動体検出方法。
    The moving object detection method according to claim 12,
    The moving object detection method, wherein the edge filter is a Sobel filter.
  14.  請求項12記載の動体検出方法において、
     前記エッジフィルタはCannyフィルタであることを特徴とする動体検出方法。
    The moving object detection method according to claim 12,
    The moving object detection method, wherein the edge filter is a Canny filter.
  15.  請求項12記載の動体検出方法において、
     前記特徴量は、前記ブロックを更に詳細ブロックに分割し、前記詳細ブロック毎にエッジフィルタによって算出される複数次元のエッジ特徴量であることを特徴とする動体検出方法。
    The moving object detection method according to claim 12,
    The moving object detection method, wherein the feature amount is a multi-dimensional edge feature amount calculated by an edge filter for each detail block by further dividing the block into detail blocks.
  16.  請求項12記載の動体検出方法において、
     背景画像を保持するステップと、
     前記入力画像より前記背景画像を更新する背景更新ステップと、
     前記背景画像から背景特徴量を算出するステップとを更に備えたことを特徴とする動体検出方法。
    The moving object detection method according to claim 12,
    Holding a background image;
    A background update step of updating the background image from the input image;
    And a step of calculating a background feature amount from the background image.
  17.  請求項1記載の動体検出方法において、
     周辺ブロックの判定結果に基づいて再度動体か背景かを判定する再判定ステップを更に備えたことを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    A moving object detection method further comprising a re-determination step of determining again whether the object is a moving object or a background based on a determination result of peripheral blocks.
  18.  請求項1記載の動体検出方法において、
     前記正規化特徴量は、前記特徴量を前記入力画像の輝度平均により正規化したものであることを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    The moving object detection method, wherein the normalized feature value is obtained by normalizing the feature value by a luminance average of the input image.
  19.  請求項1記載の動体検出方法において、
     前記正規化特徴量は、前記特徴量を前記入力画像の最大値により正規化したものであることを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    The moving object detection method, wherein the normalized feature amount is obtained by normalizing the feature amount with a maximum value of the input image.
  20.  請求項1記載の動体検出方法において、
     前記正規化特著量は、前記特徴量を前記入力画像の最小値により正規化したものであることを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    The moving body detection method, wherein the normalized special feature amount is obtained by normalizing the feature amount with a minimum value of the input image.
  21.  請求項1記載の動体検出方法において、
     前記正規化特徴量は、前記特徴量を前記入力画像の中央値により正規化したものであることを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    The moving object detection method, wherein the normalized feature amount is obtained by normalizing the feature amount with a median value of the input image.
  22.  請求項1記載の動体検出方法において、
     前記入力画像は、輝度値であることを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    The moving object detection method, wherein the input image is a luminance value.
  23.  請求項1記載の動体検出方法において、
     前記入力画像は、色差又はR値又はG値又はB値であることを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    The moving object detection method, wherein the input image is a color difference, an R value, a G value, or a B value.
  24.  請求項1記載の動体検出方法において、
     背景画像を少なくとも1フレーム蓄積する特徴蓄積ステップを更に備えたことを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    A moving object detection method further comprising a feature storage step of storing at least one frame of a background image.
  25.  請求項1記載の動体検出方法において、
     処理ブロック毎に動体の有無を表示する結果表示ステップを更に備えたことを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    A moving object detection method further comprising a result display step of displaying the presence or absence of a moving object for each processing block.
  26.  請求項1記載の動体検出方法において、
     背景画像からブロック単位で特徴量を抽出する第2特徴抽出ステップと、
     前記第2特徴抽出ステップより抽出された特徴量から第2正規化特徴量を算出する第2正規化ステップとを更に備え、
     前記動体検出ステップでは、前記正規化特徴量と前記第2正規化特徴量とを比較することにより動体か否かを検出することを特徴とする動体検出方法。
    The moving object detection method according to claim 1,
    A second feature extraction step of extracting feature quantities in block units from the background image;
    A second normalization step of calculating a second normalized feature amount from the feature amount extracted in the second feature extraction step;
    In the moving object detection step, it is detected whether the object is a moving object by comparing the normalized feature quantity with the second normalized feature quantity.
  27.  入力画像からブロック単位で特徴量を抽出する特徴抽出部と、
     前記特徴抽出部より抽出された特徴量から正規化特徴量を算出する正規化部と、
     前記正規化部で正規化された正規化特徴量に応じて動体であるか否か判定する動体検出部とを備えたことを特徴とする動体検出装置。
    A feature extraction unit that extracts feature amounts from the input image in units of blocks;
    A normalization unit that calculates a normalized feature amount from the feature amount extracted by the feature extraction unit;
    A moving object detection apparatus comprising: a moving object detection unit that determines whether the object is a moving object according to the normalized feature value normalized by the normalization unit.
  28.  光を結像する光学系と、
     前記光学系により結像された光を画像信号に変換するセンサーと、
     前記画像信号からブロック単位で動体を検出する請求項27記載の動体検出装置を含む画像処理回路と、
     前記光学系と前記センサーと前記画像処理回路とを制御するシステム制御回路とを備えたことを特徴とする撮像システム。
    An optical system for imaging light;
    A sensor that converts light imaged by the optical system into an image signal;
    An image processing circuit including a moving object detection device according to claim 27, wherein a moving object is detected from the image signal in units of blocks.
    An imaging system comprising: a system control circuit that controls the optical system, the sensor, and the image processing circuit.
  29.  請求項28記載の撮像システムにおいて、
     前記システム制御回路にてAF又はAEの制御中は前記動体検出装置の動作を停止させることを特徴とする撮像システム。
    The imaging system according to claim 28, wherein
    An imaging system characterized in that the operation of the moving object detection device is stopped during AF or AE control by the system control circuit.
  30.  請求項28記載の撮像システムにおいて、
     前記センサーによって出力される画像信号が強い光によって飽和する場合、又は、弱い光によって黒つぶれする場合、前記動体検出装置の動作を停止させることを特徴とする撮像システム。
    The imaging system according to claim 28, wherein
    An imaging system characterized in that the operation of the moving object detection device is stopped when an image signal output from the sensor is saturated by strong light or blackened by weak light.
PCT/JP2011/003321 2010-09-27 2011-06-10 Method of detecting moving object and moving object detecting device WO2012042705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010215637 2010-09-27
JP2010-215637 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012042705A1 true WO2012042705A1 (en) 2012-04-05

Family

ID=45892204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003321 WO2012042705A1 (en) 2010-09-27 2011-06-10 Method of detecting moving object and moving object detecting device

Country Status (1)

Country Link
WO (1) WO2012042705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110490025A (en) * 2018-05-14 2019-11-22 杭州海康威视数字技术股份有限公司 A kind of object detection method, device, equipment and system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729014A (en) * 1993-06-24 1995-01-31 Sharp Corp Image processor
JPH10247247A (en) * 1997-03-04 1998-09-14 Oki Electric Ind Co Ltd Moving object extracting device
JP2000059796A (en) * 1998-06-03 2000-02-25 Matsushita Electric Ind Co Ltd Motion detecting device, motion detecting method and recording medium with motion detection program recorded therein
JP2002098615A (en) * 2000-09-22 2002-04-05 Sharp Corp Fringe detector, sensing drum inspection device thereof, liquid crystal panel inspection device thereof, fringe detection method and recording medium for recording fringe detection program
JP2002259985A (en) * 2001-03-02 2002-09-13 Hitachi Ltd Image monitoring method, image monitoring device and storage medium
JP2009110152A (en) * 2007-10-29 2009-05-21 Panasonic Corp Congestion estimation device
JP2010041322A (en) * 2008-08-04 2010-02-18 Sumitomo Electric Ind Ltd Mobile object identification device, image processing apparatus, computer program and method of specifying optical axis direction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729014A (en) * 1993-06-24 1995-01-31 Sharp Corp Image processor
JPH10247247A (en) * 1997-03-04 1998-09-14 Oki Electric Ind Co Ltd Moving object extracting device
JP2000059796A (en) * 1998-06-03 2000-02-25 Matsushita Electric Ind Co Ltd Motion detecting device, motion detecting method and recording medium with motion detection program recorded therein
JP2002098615A (en) * 2000-09-22 2002-04-05 Sharp Corp Fringe detector, sensing drum inspection device thereof, liquid crystal panel inspection device thereof, fringe detection method and recording medium for recording fringe detection program
JP2002259985A (en) * 2001-03-02 2002-09-13 Hitachi Ltd Image monitoring method, image monitoring device and storage medium
JP2009110152A (en) * 2007-10-29 2009-05-21 Panasonic Corp Congestion estimation device
JP2010041322A (en) * 2008-08-04 2010-02-18 Sumitomo Electric Ind Ltd Mobile object identification device, image processing apparatus, computer program and method of specifying optical axis direction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110490025A (en) * 2018-05-14 2019-11-22 杭州海康威视数字技术股份有限公司 A kind of object detection method, device, equipment and system

Similar Documents

Publication Publication Date Title
US9137424B2 (en) Method for flicker detection in image signal
EP2359604B1 (en) Modifying color and panchromatic channel cfa image
US8929601B2 (en) Imaging detecting with automated sensing of an object or characteristic of that object
US8509481B2 (en) Image processing apparatus, image processing method, imaging apparatus
US8248481B2 (en) Method and apparatus for motion artifact removal in multiple-exposure high-dynamic range imaging
US7957592B2 (en) Video object segmentation method and system
US7705885B2 (en) Image and video motion stabilization system
EP2608529B1 (en) Camera and method for optimizing the exposure of an image frame in a sequence of image frames capturing a scene based on level of motion in the scene
US20150229824A1 (en) Imaging device, integrated circuit, and flicker reduction method
US9367907B2 (en) Flicker reducing device, imaging device, and flicker reducing method
Andreopoulos et al. On sensor bias in experimental methods for comparing interest-point, saliency, and recognition algorithms
JP6924064B2 (en) Image processing device and its control method, and image pickup device
US8084730B2 (en) Dual mode source follower for low and high sensitivity applications
KR20150146424A (en) Method for determining estimated depth in an image and system thereof
WO2012042705A1 (en) Method of detecting moving object and moving object detecting device
US9866809B2 (en) Image processing system with aliasing detection mechanism and method of operation thereof
US10467730B2 (en) Image-processing apparatus to reduce staircase artifacts from an image signal
TWI381735B (en) Image processing system and method for automatic adjustment of image resolution for image surveillance apparatus
JP4140402B2 (en) Image processing device
JP2009116686A (en) Imaging target detection apparatus and method
US9466094B1 (en) Method to improve video quality under low light conditions
Nemra et al. Quantitative analysis of real-time image mosaicing algorithms
JP5091880B2 (en) Moving image noise removing apparatus and moving image noise removing program
JP2005182732A (en) Image processing device, image processing method and motion detector
US8174602B2 (en) Image sensing system and method utilizing a MOSFET

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP