WO2012040868A2 - System for the inductive heating of solutions for bioleaching and electrowinning plants at high altitude - Google Patents
System for the inductive heating of solutions for bioleaching and electrowinning plants at high altitude Download PDFInfo
- Publication number
- WO2012040868A2 WO2012040868A2 PCT/CL2011/000058 CL2011000058W WO2012040868A2 WO 2012040868 A2 WO2012040868 A2 WO 2012040868A2 CL 2011000058 W CL2011000058 W CL 2011000058W WO 2012040868 A2 WO2012040868 A2 WO 2012040868A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- bioleaching
- electro
- height
- fluid
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/109—Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/108—Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
Definitions
- microorganisms are used that provide the chemicals and the space where the chemical reaction of dissolving minerals and concentrates takes place.
- the temperatures at which these reactions must occur are in a range between room temperature up to 80 degrees Celsius and the types of microorganisms present in each type of reaction depend on the process and the required temperature.
- microorganisms found in bioleaching processes that are carried out between 0 to 40 degrees Celsius correspond to a consortium of bacteria called "Gram-Negative" within which ferro are found oxidizers Acidthiobacillus Ferrooxidans and Leptospirillium Ferrooxidands, the sulfur oxidizers Acidithiobacillus Thioxidans and Acidithiobacillus caldus.
- Gram-Negative oxidizers Acidthiobacillus Ferrooxidans and Leptospirillium Ferrooxidands
- sulfur oxidizers Acidithiobacillus Thioxidans and Acidithiobacillus caldus are consortium of bacteria.
- microorganisms such as Sulfobacillus Thermosulfidooxidans have been found that are capable of oxidizing chalcopyrite, a mineral that is found in large quantities in Chile and in the world.
- Sulfobacillus Thermosulfidooxidans have been found that are capable of oxidizing chalcopyrite, a mineral that is found in large quantities in Chile and in the world.
- chalcopyrite a mineral that is found in large quantities in Chile and in the world.
- resistive heating is related to the low power densities can deliver, about 10 [W / cm 2] maximum, so that need large ponds, to increase the residence time of the fluid, and heat exchangers, which raises the investment cost depending on the power required to heat.
- the proposed solution to the problem of heating large flows uses the principle of inductive heating, which brings together several of the advantages of the systems discussed above, highlighting a high power density (around 30 [W / cm 2] which) it translates into equipment of dimensions smaller than its resistive torque for equal powers and a low maintenance cost due to being an indirect type heating system.
- This type of heating is controlled by power electronics responsible for generating the electromagnetic fields that produce the inductive phenomenon, which allows to handle the entire dynamic range of powers, allowing a fine and robust control of both the final temperature, as well as the dynamics of the latter.
- the latter consists of a set of metallic conductive elements of volume, capable of transforming the energy from an alternating magnetic field of fixed or variable frequency, to which it is exposed, in caloric energy to a fluid, in a homogeneous way, with low gradient Thermal, controllable and high efficiency.
- the susceptor is a structure composed of "cellular elements" of heat transfer of stainless steel, titanium or other material of high mechanical resistance to abrasion and chemical corrosion and that receives energy from the magnetic field emitted by the source and transfers it to the solution. For this reason the susceptor must be a relatively good electrical conductor to allow the circulation of currents that heat it, product of the losses.
- the structure of the susceptor can be of various geometries such as spheres, hollow spheres, saddles, rings, links, chains, concentric cylinders, spirally wound strip, etc.
- the parallel resonance property is used to transfer electrical to thermal energy through this alternating magnetic field, connecting the coil with a capacitor bank.
- This principle is similar to that of a transformer whose primary is the coil and the secondary is the susceptor. High energy efficiency is achieved by transferring energy to the resonance frequency.
- the efforts of the scientific community aim to optimize the topologies of the booster-resonant inverter part in order to improve the monitoring of the resonant frequency, which is variable due to the variation of the parameters of the materials with, by for example the temperature, and of the control of the instants of crossing by zero of the tension or the current (ZVT "zero voltage transition” or ZCT “zero current transition”).
- Each block has a power electronics controller (4) and (5), respectively, in the case of the dc / dc converter the trip is controlled by the temperature controller (7) that compare the temperature reference and generate an output according to a certain control action, and in the case of the dc / ac converter, the controller (5) generates the trigger pulses necessary for the system to operate at the resonant frequency of the load.
- the susceptor of figure 3 consists of a stainless steel strip wound on its axis, long h, with a solid center which is responsible for producing small turbulences that allow a homogenization of the outlet temperature of the solution to be heated.
- the dimensions of the susceptor depend on the power levels for which it is designed, varying parameters such as the number of turns, thickness of the steel, separation between layers, length, frequency of the currents, etc.
- the subscriber can adopt different geometries according to each application that is given. Even if the fluid is conductive or circulates through conductive pipes, may not exist and the phenomenon works the same way.
- FIG. 6 shows the block diagram of the reason system of the present patent in closed loop, in which the dependencies between each functional block for a fluid temperature control system at the outlet of the susceptor are shown.
- the error signal enters the "temperature controller" (8) which, by some control method, modifies the duty cycle of the dc / dc converter (9).
- the duty cycle of the DC / DC converter modifies the power delivered by the self-resonant inverter, which then transfers its power to the susceptor (10) which is influenced by the flow rate Qf, inlet temperature and flow ⁇ 3 ⁇ 4 room temperature T am b.
- a cascade topology of the different functional blocks that comprise the heating system is observed.
- a preferred embodiment of the invention consists in the use of a controlled rectifier (12) which receives voltage from the alternating supply network, usually three-phase, and delivers a rectified and controlled voltage by the firing angle of the thyristors that compose it.
- This rectified voltage is then controlled by using a dc / dc converter of the booster type (13) that allows to control and regulate the level of continuous voltage at its output and has the ability to raise the voltage, allowing the connection on the side Alternate can be performed at low voltage.
- the controlled voltage delivered to the booster is received by the resonant inverter (14) composed of four IGBT devices in H-bridge arrangement, which is triggered at zero crossings of the alternating output voltage, thereby achieving frequency operation.
- Resonance The alternating voltage delivered by the inverter feeds the susceptor coil assembly, which electrically consists of a transformer with a certain resistivity on its secondary side.
- the developed system has as its main application the heating of large flows of solution for batteries or leaching dumps located at heights where the existing alternatives are not feasible to use, mainly due to the effects of height on combustion efficiency and available physical space.
- the system can be used in the processes of electro-obtaining minerals, improving the dynamics of electro-deposition. Since it is a heating system without hot spots or flames, it is also possible to use the equipment in the heating of combustible solutions, such as in oil refinery processes or as a diesel heater for boilers or turbines located in places of low ambient temperature.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
- Hydroponics (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
The invention relates to an electronic inductive heating system for bioleaching and electrowinning plants at high altitude for heating fluids, said system comprising a DC/DC converter that controls the power entering an autoresonant inverter that supplies an inductive coil with a magnetic field, said coil adopting the geometry defined as a magnetic susceptor on which magnetic fields are induced, that, by means of Joule heating, enable the transfer from electric power to thermal power, for heating the fluid circulating inside. The frequency at which the inductive coil is powered corresponds to the resonance frequency which is automatically adjusted by means of an electronic system.
Description
SISTEMA DE CALENTAMIENTO INDUCTIVO DE SOLUCIONES PARA PLANTAS DE BIOLIXIVIACION Y ELECTRO-OBTENCION EN ALTURA INDUCTIVE HEATING SYSTEM OF SOLUTIONS FOR BIOLIXIVIATION AND ELECTRO-OBTAINING PLANTS IN HEIGHT
(i) Campo de Aplicación (i) Field of Application
El calentamiento de grandes flujos de soluciones es un problema real presente en plantas industriales de variados tipos, en particular para aquellas que, por características propias del proceso, se realizan a grandes alturas sobre el nivel del mar, situación que hace que los sistemas de calentamiento existentes en la actualidad presenten una serie de problemas de índole técnico y económico que no son resueltos con los sistemas vigentes basados en la quema de combustibles fósiles. The heating of large flows of solutions is a real problem present in industrial plants of various types, in particular for those that, due to the characteristics of the process, are carried out at great heights above sea level, a situation that makes heating systems Currently, they present a series of problems of a technical and economic nature that are not solved with the current systems based on the burning of fossil fuels.
Para el caso de plantas de biolixiviación de minerales de cobre, se ha demostrado metalúrgicamente que la recuperación de cobre posee una gran dependencia con respecto a la temperatura con la cual son regadas las pilas de lixiviación, obteniéndose favorables cambios, tanto en porcentaje de recuperación como también en la velocidad del proceso, cuando se eleva la temperatura por sobre la ambiental, que por razones geográficas generalmente es baja, en torno a los 3o a 5 grados Celsius. In the case of copper mineral bioleaching plants, it has been metallurgically proven that copper recovery has a great dependence on the temperature with which the leaching batteries are irrigated, obtaining favorable changes, both in percentage of recovery and also in the speed of the process, when the temperature rises above the environmental, which for geographical reasons is generally low, around 3 or 5 degrees Celsius.
En los procesos de biolixiviación, se utilizan microorganismos que proveen los químicos y el espacio donde la reacción química de disolución de los minerales y concentrados se lleva a cabo. Las temperaturas en las cuales estas reacciones se deben producir están en un rango entre la temperatura ambiente hasta los 80 grados Celsius y los tipos de microorganismos presentes en cada tipo de reacción dependen del proceso y de la temperatura requerida. In bioleaching processes, microorganisms are used that provide the chemicals and the space where the chemical reaction of dissolving minerals and concentrates takes place. The temperatures at which these reactions must occur are in a range between room temperature up to 80 degrees Celsius and the types of microorganisms present in each type of reaction depend on the process and the required temperature.
Los microorganismos encontrados en procesos de biolixiviación que se realizan entre los 0 a los 40 grados Celsius corresponden a un consorcio de bacterias denominado "Gram-Negative" dentro de los que se encuentran los ferro
oxidantes Acidthiobacillus Ferrooxidans y Leptospirillium Ferrooxidands, las sulfuro oxidantes Acidithiobacillus Thioxidans y Acidithiobacillus caldus. Estos microorganismos maximizan su actividad en rangos óptimos de temperatura entre los 20 y 35 grados Celsius y por cada 7 grados Celsius de reducción en la temperatura, la actividad de ellos decrece a la mitad lo que incide proporcional y directamente sobre la producción de las plantas. The microorganisms found in bioleaching processes that are carried out between 0 to 40 degrees Celsius correspond to a consortium of bacteria called "Gram-Negative" within which ferro are found oxidizers Acidthiobacillus Ferrooxidans and Leptospirillium Ferrooxidands, the sulfur oxidizers Acidithiobacillus Thioxidans and Acidithiobacillus caldus. These microorganisms maximize their activity in optimal temperature ranges between 20 and 35 degrees Celsius and for every 7 degrees Celsius of reduction in temperature, their activity decreases by half what affects proportionally and directly on the production of plants.
Por otra parte, en el rango de temperatura entre los 45 y 55 grados Celsius se han encontrado microorganismos como los Sulfobacillus Thermosulfidooxidans que son capaces de oxidar las calcopiritas, mineral que se encuentra en grandes cantidades en Chile y en el mundo. Para estos minerales en particular, actualmente no existen operaciones comerciales rentables para su extracción e importantes empresas se encuentran desarrollando nuevas tecnologías e investigando sobre el tema. On the other hand, in the temperature range between 45 and 55 degrees Celsius, microorganisms such as Sulfobacillus Thermosulfidooxidans have been found that are capable of oxidizing chalcopyrite, a mineral that is found in large quantities in Chile and in the world. For these minerals in particular, there are currently no profitable commercial operations for their extraction and important companies are developing new technologies and researching on the subject.
Otra aplicación directa del calentamiento de grandes flujos es en las plantas de electro-obtención de minerales, en las cuales se utilizan grandes cantidades de energía para elevar la temperatura de la solución. A modo de ejemplo, para plantas cuyo método de extracción es SX-EW se requiere elevar la temperatura de la solución a valores a los 45-55 grados Celsius, temperaturas en las cuales se optimiza la velocidad de electro-cristalización del cobre y los procesos de producción de cátodos se hacen más eficientes. Another direct application of the heating of large flows is in electro-obtaining mineral plants, in which large amounts of energy are used to raise the temperature of the solution. As an example, for plants whose extraction method is SX-EW, it is required to raise the temperature of the solution to values of 45-55 degrees Celsius, temperatures at which the electro-crystallization rate of copper and processes is optimized Production of cathodes become more efficient.
(ii) Descripción del Estado de Arte (ii) Description of the State of the Art
Existen varias tecnologías orientadas al calentamiento de soluciones, y a excepción del calentamiento de soluciones mediante reacciones químicas o por microondas, la transferencia de calor a las soluciones es indirecta, es decir, la transferencia de energía se efectúa desde el medio de transporte hasta una superficie sólida o susceptor, y desde esta superficie sólida se transfiere la energía a la solución mediante conducción térmica.
Una de las principales soluciones al calentamiento de grandes fluidos corresponde a la utilización de calderas, que obtienen su energía mediante la quema de fósiles, ya sea gas, petróleo o carbón. Estando en condiciones de operación a nivel del mar, la caldera es una alternativa viable para el problema del calentamiento de grandes flujos, dada la gran capacidad de entrega de energía que es posible obtener desde la quema de fósiles. Las dificultades aparecen cuando estas calderas son instaladas a gran altura, lo que hace que su eficiencia disminuya drásticamente debido a la menor cantidad de oxigeno disponible en el aire a grandes alturas, dado que con bajas concentraciones de oxigeno, el proceso de combustión es extremadamente ineficiente, obteniéndose una menor cantidad de calor disponible para una misma cantidad de combustible inyectado. Junto con los problemas ya mencionados, hay uno que tiene una relevancia mayor, el cual está relacionado con el tema medio ambiental. La utilización de una caldera, independiente del tipo (gas, carbón o petróleo) produce emisiones contaminantes como el dióxido de carbono, extremadamente tóxico para la salud de todos los seres vivos, con consecuencias como las que podemos observar en la actualidad, ya sea SMOG, debilitamiento de la capa de ozono, efecto invernadero, etc. Otro punto bajo consideración es el alto costo de inversión que requiere la instalación de una caldera, ya que se requiere de la instalación de oleoductos y/o gaseoductos para el suministro del combustible, haciéndolo más difícil aún si la caldera se encuentra a gran altura. Otra manera de calentar grandes fluidos es mediante el uso de algún sistema eléctrico, en particular los sistemas de calentamiento resistivo, los cuales son ampliamente utilizados en diversos procesos industriales, pues resulta ser limpio de emisiones contaminantes y de una alta eficiencia, al no verse afectado por la altura de operación. La gran desventaja del calentamiento resistivo tiene relación con las bajas densidades de potencia que puede entregar, alrededor de 10 [W/cmA2] máximo, por lo que se necesitan grandes
estanques, para aumentar el tiempo de residencia del fluido, e intercambiadores de calor, lo cual eleva el costo de inversión en función de la potencia requerida para calentar. Otra desventaja de este tipo de sistemas es que no es posible controlar la potencia que entregan en todo el rango dinámico, solamente es posible realizar control entre rangos escalonados de potencia, lo cual no permite tener un control fino de la temperatura de salida del fluido a calentar, presentando una gran desventaja en aplicaciones donde se requiere controlar tanto la temperatura de salida como también el gradiente de temperatura que se aplica al fluido. There are several technologies aimed at heating solutions, and except for the heating of solutions by chemical or microwave reactions, the heat transfer to the solutions is indirect, that is, the transfer of energy is carried out from the transport medium to a solid surface. or susceptor, and from this solid surface the energy is transferred to the solution by thermal conduction. One of the main solutions to heating large fluids corresponds to the use of boilers, which obtain their energy by burning fossils, whether gas, oil or coal. Being in operating conditions at sea level, the boiler is a viable alternative to the problem of heating large flows, given the large capacity of energy delivery that is possible from fossil burning. Difficulties appear when these boilers are installed at high altitude, which makes their efficiency decrease dramatically due to the lower amount of oxygen available in the air at high altitudes, given that with low concentrations of oxygen, the combustion process is extremely inefficient. , obtaining a smaller amount of available heat for the same amount of fuel injected. Along with the aforementioned problems, there is one that has a greater relevance, which is related to the environmental issue. The use of a boiler, independent of the type (gas, coal or oil) produces polluting emissions such as carbon dioxide, extremely toxic to the health of all living beings, with consequences such as those we can observe today, whether SMOG , weakening of the ozone layer, greenhouse effect, etc. Another point under consideration is the high investment cost required for the installation of a boiler, since it requires the installation of pipelines and / or gas pipelines for the supply of fuel, making it even more difficult if the boiler is at high altitude. Another way to heat large fluids is through the use of some electrical system, in particular resistive heating systems, which are widely used in various industrial processes, as it turns out to be clean of polluting emissions and high efficiency, as it is not affected by the height of operation. The great disadvantage of resistive heating is related to the low power densities can deliver, about 10 [W / cm 2] maximum, so that need large ponds, to increase the residence time of the fluid, and heat exchangers, which raises the investment cost depending on the power required to heat. Another disadvantage of this type of systems is that it is not possible to control the power delivered throughout the dynamic range, it is only possible to control between staggered ranges of power, which does not allow to have a fine control of the fluid outlet temperature at heating, presenting a great disadvantage in applications where it is required to control both the outlet temperature and the temperature gradient that is applied to the fluid.
(iii) Resumen de la Invención (iii) Summary of the Invention
La solución propuesta al problema de calentamiento de grandes flujos utiliza el principio del calentamiento inductivo, el cual reúne varias de las ventajas de los sistemas expuestos anteriormente, destacando una alta densidad de potencia (en torno a los 30 [W/cm 2] lo cual se traduce en equipos de dimensiones menores a su par resistivo para iguales potencias y un costo de mantenimiento bajo debido a ser un sistema de calentamiento del tipo indirecto. Este tipo de calentamiento se controla mediante electrónica de potencia encargada de generar los campos electromagnéticos que producen el fenómeno inductivo, la cual permite manejar todo el rango dinámico de potencias, permitiendo un control fino y robusto tanto de la temperatura final, como también de la dinámica de ésta. Al utilizar un sistema inductivo de calentamiento, es posible realizar un calentamiento de flujo de pasada, sin la necesidad de tener un estanque que aumente el tiempo de residencia del fluido, con lo cual se obtienen dinámicas más rápidas y precisas comparadas con los otros sistemas de calentamiento. Además, al ser un sistema electrónico no se ve afectado por la altura a la cual se encuentre, manteniendo su eficiencia para cualquier altura de operación.
En la presente solicitud de patente chilena se describe una solución que consiste en emplear un sistema de calentamiento de soluciones por inducción magnética (calentamiento inductivo) el cual utiliza una Fuente de Frecuencia Media Auto Resonante - patente de invención en trámite por Ingeniería y Desarrollo Tecnológico S.A., patente USA 6.466.467 B2, patente Brasil BR0106457 (A), patente en Argentina AR 030511 Al, que genera un campo magnético, y un Susceptor Magnético Celular. Este último consiste en un conjunto de elementos conductores metálicos de volumen, capaz de transformar la energía proveniente de un campo magnético alterno de frecuencia fija o variable, al que se encuentra expuesto, en energía calórica a un fluido, en forma homogénea, con bajo gradiente térmico, controlable y de alta eficiencia. The proposed solution to the problem of heating large flows uses the principle of inductive heating, which brings together several of the advantages of the systems discussed above, highlighting a high power density (around 30 [W / cm 2] which) it translates into equipment of dimensions smaller than its resistive torque for equal powers and a low maintenance cost due to being an indirect type heating system.This type of heating is controlled by power electronics responsible for generating the electromagnetic fields that produce the inductive phenomenon, which allows to handle the entire dynamic range of powers, allowing a fine and robust control of both the final temperature, as well as the dynamics of the latter.When using an inductive heating system, it is possible to perform a flow heating of passed, without the need to have a pond that increases the residence time of the fluid, thereby obtaining they have faster and more precise dynamics compared to the other heating systems. In addition, being an electronic system is not affected by the height at which it is, maintaining its efficiency for any operating height. In the present Chilean patent application a solution is described that consists in using a system of heating of solutions by magnetic induction (inductive heating) which uses a Source of Auto Resonant Medium Frequency - patent of invention in process by Ingeniería y Desarrollo Tecnológico SA , US patent 6,466,467 B2, Brazilian patent BR0106457 (A), Argentine patent AR 030511 Al, which generates a magnetic field, and a Cellular Magnetic Susceptor. The latter consists of a set of metallic conductive elements of volume, capable of transforming the energy from an alternating magnetic field of fixed or variable frequency, to which it is exposed, in caloric energy to a fluid, in a homogeneous way, with low gradient Thermal, controllable and high efficiency.
El susceptor es una estructura compuesta por "elementos celulares" de transferencia de calor de acero inoxidable, titanio u otro material de alta resistencia mecánica a la abrasión y a la corrosión química y que recibe la energía desde el campo magnético emitido por la fuente y lo transfiere a la solución. Por este motivo el susceptor debe ser un relativamente buen conductor eléctrico para permitir la circulación de corrientes que lo calientan, producto de las pérdidas. La estructura del susceptor puede ser de diversas geometrías como esferas, esferas huecas, sillas de montar, anillos, eslabones, cadenas, cilindros concéntricos, fleje enrollado en forma de espiral, etc. Las condiciones de diseño principales de la estructura del susceptor del presente invento son lograr una máxima transferencia de potencia desde el sistema eléctrico al fluido, un máximo acoplamiento con el campo magnético y una mínima caída de presión en la tubería por donde circula el fluido a calentar (mínimo "efecto tapón"). Con ello se logra en el presente invento una transferencia de alta potencia en un volumen reducido. Por lo mismo, el susceptor del presente invento presenta una gran capacidad de generar turbulencias.
El método de calentamiento empleado consiste en inducir altas corrientes alternas en el susceptor, las que producen un aumento de temperatura del susceptor por efecto Joule. Estas altas corrientes inducidas provienen de un inversor con tecnología IGBT y se logran mediante un campo magnético muy intenso creado en una bobina que rodea el susceptor. Para transferir la energía eléctrica a térmica a través de este campo magnético alterno se aprovecha la propiedad de resonancia paralelo, conectando la bobina con un banco de condensadores. Este principio es similar al de un transformador cuyo primario es la bobina y el secundario es el susceptor. Al transferir energía a la frecuencia de resonancia se logra una alta eficiencia del proceso. En la actualidad los esfuerzos de la comunidad científica apuntan a optimizar las topologías de la parte booster-inversor resonante de manera de mejorar el control de seguimiento de la frecuencia resonante, que es variable debido a la variación de los parámetros de los materiales con, por ejemplo la temperatura, y del control de los instantes de cruce por cero de la tensión o la corriente (ZVT "zero voltage transition" o ZCT "zero current transition"). The susceptor is a structure composed of "cellular elements" of heat transfer of stainless steel, titanium or other material of high mechanical resistance to abrasion and chemical corrosion and that receives energy from the magnetic field emitted by the source and transfers it to the solution. For this reason the susceptor must be a relatively good electrical conductor to allow the circulation of currents that heat it, product of the losses. The structure of the susceptor can be of various geometries such as spheres, hollow spheres, saddles, rings, links, chains, concentric cylinders, spirally wound strip, etc. The main design conditions of the susceptor structure of the present invention are to achieve maximum power transfer from the electrical system to the fluid, maximum coupling with the magnetic field and a minimum pressure drop in the pipe through which the fluid to be heated circulates (minimum "plug effect"). This achieves a high power transfer in a reduced volume in the present invention. Therefore, the susceptor of the present invention has a great capacity to generate turbulence. The heating method used is to induce high alternating currents in the susceptor, which produce a temperature increase of the susceptor by Joule effect. These high induced currents come from an inverter with IGBT technology and are achieved by a very intense magnetic field created in a coil that surrounds the susceptor. The parallel resonance property is used to transfer electrical to thermal energy through this alternating magnetic field, connecting the coil with a capacitor bank. This principle is similar to that of a transformer whose primary is the coil and the secondary is the susceptor. High energy efficiency is achieved by transferring energy to the resonance frequency. At present, the efforts of the scientific community aim to optimize the topologies of the booster-resonant inverter part in order to improve the monitoring of the resonant frequency, which is variable due to the variation of the parameters of the materials with, by for example the temperature, and of the control of the instants of crossing by zero of the tension or the current (ZVT "zero voltage transition" or ZCT "zero current transition").
En el presente invento se aprovecha la propiedad de transporte de energía del calentamiento por inducción, es decir, es posible transferir grandes volúmenes de energía en un espacio muy pequeño. Adicionalmente, este método se caracteriza por ser no invasivo, es decir, no se aplica llama ni combustión al proceso, ni hay conexiones de conductores eléctricos que deban penetrar en la tubería que transporta el fluido, a excepción del susceptor mismo. (iv) Breve Descripción de los Dibujos In the present invention, the energy transport property of induction heating is used, that is, it is possible to transfer large volumes of energy in a very small space. Additionally, this method is characterized by being non-invasive, that is, no flame or combustion is applied to the process, nor are there any electrical conductor connections that must penetrate the pipe that carries the fluid, except for the susceptor itself. (iv) Brief Description of the Drawings
En la figura 1 se muestra un diagrama de bloques del sistema de calentamiento junto a un esquema simplificado del sistema de control integrado. En la figura 2 se observa un modelo de circuito del sistema resonante, el cual corresponde a un sistema resonante paralelo.
La figura 3 corresponde a la geometría de susceptor utilizado en el sistema de calentamiento. La figura 4 corresponde a una vista frontal de la geometría del susceptor. A block diagram of the heating system is shown in Figure 1 together with a simplified scheme of the integrated control system. Figure 2 shows a circuit model of the resonant system, which corresponds to a parallel resonant system. Figure 3 corresponds to the susceptor geometry used in the heating system. Figure 4 corresponds to a front view of the geometry of the susceptor.
La figura 5 muestra un acercamiento a las capas del susceptor de la figura 4. Figure 5 shows an approach to the layers of the susceptor of Figure 4.
En la figura 6 se observa el diagrama de bloques del sistema de calentamiento de la presente invención en lazo cerrado. Figure 6 shows the block diagram of the heating system of the present invention in closed loop.
En la figura 7 se observa el sistema eléctrico completo del sistema de calentamiento de la presente invención. Figure 7 shows the complete electrical system of the heating system of the present invention.
(v) Modos Preferidos para Realizar la Invención (v) Preferred Modes for Performing the Invention
En la figura 1 se muestra un diagrama de bloques del sistema de calentamiento junto a un esquema simplificado del sistema de control integrado utilizado, en el cual se pueden observar claramente los distintos bloques de electrónica involucrados en el sistema completo junto con las variables necesarias para ejecutar las acciones de control. Los distintos bloques que componen el sistema de calentamiento se pueden simplificar de la siguiente manera, un conversor dc/dc (1) el cual recibe la energía eléctrica continua desde algún punto de alimentación y la convierte en tensión continua regulada, la cual luego ingresa por el conversor dc/ac (2) el cual genera la tensión de alta frecuencia, la cual es controlada por un sistema (6) que, midiendo los cruces por cero de la tensión en el tanque resonante (3) es capaz de realimentar el inversor y generar tensión a la frecuencia de resonancia. Cada bloque posee un controlador de la electrónica de potencia (4) y (5), respectivamente, en el caso del conversor dc/dc el disparo es controlado mediante el controlador de temperatura (7) que
compara la referencia de temperatura y genera una salida de acuerdo a cierta acción de control, y en el caso del conversor dc/ac, el controlador (5) genera los pulsos de disparo necesarios para que el sistema opera a la frecuencia de resonancia de la carga. A block diagram of the heating system is shown in Figure 1 together with a simplified scheme of the integrated control system used, in which the different electronics blocks involved in the complete system can be clearly observed together with the variables necessary to execute Control actions The different blocks that make up the heating system can be simplified as follows, a dc / dc converter (1) which receives the continuous electrical energy from some power point and converts it into regulated continuous voltage, which then enters by the dc / ac converter (2) which generates the high frequency voltage, which is controlled by a system (6) that, by measuring the zero crossings of the voltage in the resonant tank (3) is able to feedback the inverter and generate voltage at the resonant frequency. Each block has a power electronics controller (4) and (5), respectively, in the case of the dc / dc converter the trip is controlled by the temperature controller (7) that compare the temperature reference and generate an output according to a certain control action, and in the case of the dc / ac converter, the controller (5) generates the trigger pulses necessary for the system to operate at the resonant frequency of the load.
El modelo de circuito del sistema resonante de la figura 2 consiste de una bobina conectada en paralelo a un condensador, llamado "condensador resonante". El susceptor es modelado eléctricamente como un secundario en corto circuito de un transformador, siendo el primario la bobina resonante. Se puede observar también que se modelan las componentes resistivas tanto de la bobina como del susceptor ya que son las variables principales que determinan la potencia transferida cuando el sistema se encuentra en resonancia. The circuit model of the resonant system of Figure 2 consists of a coil connected in parallel to a capacitor, called a "resonant capacitor." The susceptor is electrically modeled as a short-circuit secondary of a transformer, the primary being the resonant coil. It can also be seen that the resistive components of both the coil and the susceptor are modeled since they are the main variables that determine the power transferred when the system is in resonance.
El susceptor de la figura 3 consiste en un fleje de acero inoxidable enrollado sobre su eje, de largo h, con un centro macizo el cual se encarga de producir pequeñas turbulencias que permiten una homogeneización de la temperatura de salida de la solución a calentar. Las dimensiones del susceptor dependen de los niveles de potencia para los cuales se diseñe, variando parámetros tales como el número de vueltas, espesor del acero, separación entre capas, longitud, frecuencia de las corrientes, etc. The susceptor of figure 3 consists of a stainless steel strip wound on its axis, long h, with a solid center which is responsible for producing small turbulences that allow a homogenization of the outlet temperature of the solution to be heated. The dimensions of the susceptor depend on the power levels for which it is designed, varying parameters such as the number of turns, thickness of the steel, separation between layers, length, frequency of the currents, etc.
La determinación de la geometría del susceptor presenta diversas soluciones, buscando la optimización de los parámetros de modo de obtener un máximo rendimiento de la transferencia térmica. Además se debe considerar que en el sistema hidráulico donde se instala el susceptor se debe minimizar la pérdida de carga hidráulica. Lo contrario significa afectar el rendimiento debido al mayor trabajo de las bombas. The determination of the geometry of the susceptor presents several solutions, seeking the optimization of the parameters in order to obtain a maximum performance of the thermal transfer. In addition, it should be considered that the loss of hydraulic load must be minimized in the hydraulic system where the susceptor is installed. The opposite means affecting performance due to the increased work of the pumps.
Como ya se ha mencionado el susceptor puede adoptar distintas geometrías de acuerdo a cada aplicación que se le dé. Incluso, si el fluido es conductor o
circula por tuberías conductoras, puede no existir y el fenómeno funciona de igual manera. As already mentioned the subscriber can adopt different geometries according to each application that is given. Even if the fluid is conductive or circulates through conductive pipes, may not exist and the phenomenon works the same way.
En la vista frontal de la geometría del susceptor de la figura 4, se puede observar la separación entre las espiras y la razón entre el diámetro externo y el interno Ds/DNs. Además, en el acercamiento a las capas del susceptor (figura 5), se indica la separación Δ5 y el espesor del fleje &¡. In the front view of the geometry of the susceptor of Figure 4, the separation between the turns and the ratio between the external and the internal diameter Ds / DNs can be observed. In addition, in the approach to the susceptor layers (figure 5), the separation Δ 5 and the thickness of the strip & ¡are indicated.
En la figura 6 se observa el diagrama de bloques del sistema motivo de la presente patente en lazo cerrado, en el cual se muestran las dependencias existentes entre cada bloque funcional para un sistema de control de temperatura del fluido en la salida del susceptor. La señal de error ingresa al "controlador de temperatura" (8) el cual mediante algún método de control modifica el ciclo de trabajo del conversor dc/dc (9). Al variar el ciclo de trabajo del conversor se tiene un control sobre la tensión continua de alimentación al inversor y como el inversor es controlado mediante un sistema auto resonante, el ciclo de trabajo del conversor DC/DC modifica la potencia entregada por el inversor autoresonante, el cual luego transfiere su potencia al susceptor (10) el cual está influenciado por el caudal Qf, la temperatura de entrada del flujo Τ¾ y la temperatura ambiente Tamb. Se observa una topología en cascada de los distintos bloques funcionales que comprenden el sistema de calentamiento. Figure 6 shows the block diagram of the reason system of the present patent in closed loop, in which the dependencies between each functional block for a fluid temperature control system at the outlet of the susceptor are shown. The error signal enters the "temperature controller" (8) which, by some control method, modifies the duty cycle of the dc / dc converter (9). By varying the duty cycle of the converter you have control over the continuous supply voltage to the inverter and as the inverter is controlled by a self-resonant system, the duty cycle of the DC / DC converter modifies the power delivered by the self-resonant inverter, which then transfers its power to the susceptor (10) which is influenced by the flow rate Qf, inlet temperature and flow Τ¾ room temperature T am b. A cascade topology of the different functional blocks that comprise the heating system is observed.
En la figura 7 se observa el sistema eléctrico completo, el cual muestra una etapa inicial conformada por un transformador (11) que alimenta un rectificador trifásico no-controlado (12) seguido de un conversor dc/dc (13). La utilización de un conversor dc/dc y un puente rectificador no controlado permite operar con un factor de potencia alto, minimizando la presencia de armónicos indeseados en la red de alimentación, disminuyendo además las pérdidas en las líneas de alimentación hacia el equipo. Al utilizar un rectificador no controlado es necesaria luego la utilización de un conversor dc/dc que controle la potencia inyectada al inversor autoresonante (14), simplificando las acciones de control
ya que para controlar la potencia sólo se debe manejar el conversor DC/DC, sistema ampliamente utilizado industrialmente y de simple control. La carga conectada al inversor, o tanque resonante (15), es entonces alimentada eléctricamente por todos los elementos antes mencionados. Figure 7 shows the complete electrical system, which shows an initial stage formed by a transformer (11) that feeds a three-phase uncontrolled rectifier (12) followed by a dc / dc converter (13). The use of a dc / dc converter and an uncontrolled rectifier bridge allows to operate with a high power factor, minimizing the presence of unwanted harmonics in the supply network, also reducing losses in the power lines to the equipment. When using an uncontrolled rectifier, it is then necessary to use a dc / dc converter that controls the injected power to the self-tapping inverter (14), simplifying the control actions since to control the power, only the DC / DC converter must be used, a system widely used industrially and with simple control. The load connected to the inverter, or resonant tank (15), is then electrically powered by all the aforementioned elements.
Una realización preferida de la invención consiste en la utilización de un rectificador controlado (12) el cual recibe tensión desde la red de alimentación alterna, usualmente trifásica, y entrega una tensión rectificada y controlada mediante el ángulo de disparo de los tiristores que lo componen. Esta tensión rectificada es luego controlada mediante el uso de un conversor dc/dc del tipo booster (13) que permite controlar y regular el nivel de tensión continuo a su salida y posee la capacidad de elevar la tensión, permitiendo que la conexión en el lado alterno se pueda realizar a baja tensión. La tensión controlada de que entrega al booster es recibida por el inversor resonante (14) compuesto por cuatro dispositivos IGBT en disposición puente H, el cual es disparado en los cruces por cero de la tensión alterna de salida, logrando con esto un funcionamiento a frecuencia de resonancia. La tensión alterna que entrega el inversor alimenta el conjunto bobina susceptor, el cual eléctricamente consiste en un transformador con cierta resistividad en su lado secundario. A preferred embodiment of the invention consists in the use of a controlled rectifier (12) which receives voltage from the alternating supply network, usually three-phase, and delivers a rectified and controlled voltage by the firing angle of the thyristors that compose it. This rectified voltage is then controlled by using a dc / dc converter of the booster type (13) that allows to control and regulate the level of continuous voltage at its output and has the ability to raise the voltage, allowing the connection on the side Alternate can be performed at low voltage. The controlled voltage delivered to the booster is received by the resonant inverter (14) composed of four IGBT devices in H-bridge arrangement, which is triggered at zero crossings of the alternating output voltage, thereby achieving frequency operation. Resonance The alternating voltage delivered by the inverter feeds the susceptor coil assembly, which electrically consists of a transformer with a certain resistivity on its secondary side.
(vi) Aplicación Industrial (vi) Industrial Application
El sistema desarrollado tiene como principal aplicación el calentamiento de pasada de grandes flujos de solución para pilas o botaderos de lixiviación ubicados en alturas en las cuales las alternativas existentes no son factibles de utilizar, debido principalmente a efectos de la altura sobre la eficiencia en la combustión y espacio físico disponible. De igual manera, el sistema puede ser utilizado en los procesos de electro-obtención de minerales, mejorando la dinámica de electro-depositación. Dado que se trata de un sistema de calentamiento sin puntos calientes ni llamas, es posible también utilizar el equipo en el calentamiento de soluciones combustibles, como por ejemplo en
procesos de refinería de petróleo o como calentador de diesel para calderas o turbinas ubicadas en lugares de baja temperatura ambiental. Además, es posible utilizar el sistema en edificios u otras instalaciones de modo de tener un sistema de agua caliente ecológico, dada la naturaleza electrónica del calentamiento que no genera gases de efecto invernadero al ambiente.
The developed system has as its main application the heating of large flows of solution for batteries or leaching dumps located at heights where the existing alternatives are not feasible to use, mainly due to the effects of height on combustion efficiency and available physical space. In the same way, the system can be used in the processes of electro-obtaining minerals, improving the dynamics of electro-deposition. Since it is a heating system without hot spots or flames, it is also possible to use the equipment in the heating of combustible solutions, such as in oil refinery processes or as a diesel heater for boilers or turbines located in places of low ambient temperature. In addition, it is possible to use the system in buildings or other facilities so as to have an ecological hot water system, given the electronic nature of heating that does not generate greenhouse gases into the environment.
Claims
1.- Sistema electrónico de calentamiento inductivo para plantas de biolixiviación y electro-obtención en altura para el calentamiento de fluidos, CARACTERIZADO por un conversor DC/DC que controla la potencia que ingresa a un inversor autoresonante que alimenta a una bobina inductora de campo magnético, la cual abraza la geometría definida como susceptor magnético sobre el cual se inducen los campos magnéticos que mediante calentamiento joule permiten la transferencia de potencia eléctrica a térmica para el calentamiento del fluido que circula por su interior, en donde, la frecuencia a la cual se alimenta la bobina inductora corresponde a la frecuencia de resonancia, la cual es ajustada automáticamente mediante un sistema electrónico. 1.- Electronic inductive heating system for bioleaching and electro-obtaining plants in height for fluid heating, CHARACTERIZED by a DC / DC converter that controls the power that enters a self-tapping inverter that feeds a magnetic field inductor coil , which embraces the geometry defined as a magnetic susceptor on which the magnetic fields are induced that by means of joule heating allow the transfer of electrical to thermal power for the heating of the fluid that circulates inside, where, the frequency at which The inductor coil feeds corresponds to the resonance frequency, which is automatically adjusted by an electronic system.
2 - Sistema electrónico de calentamiento inductivo para plantas de biolixiviación y electro-obtención en altura para el calentamiento de fluidos según la reivindicación N°l, CARACTERIZADO por su capacidad de entregar la potencia máxima hacia el fluido de manera instantánea dada la naturaleza electrónica con la cual se genera el campo magnético con el cual se inducen corrientes sobre el susceptor magnético y a la vez sin puntos calientes al distribuirse este campo a lo largo del susceptor. 2 - Electronic inductive heating system for bioleaching and electro-obtaining plants in height for fluid heating according to claim No. 1, CHARACTERIZED for its ability to deliver maximum power to the fluid instantaneously given the electronic nature with the which generates the magnetic field with which currents are induced on the magnetic susceptor and at the same time without hot spots when this field is distributed along the susceptor.
3.- Sistema electrónico de calentamiento inductivo para plantas de biolixiviación y electro-obtención en altura para el calentamiento de fluidos según la reivindicación N°l, CARACTERIZADO por la posibilidad de controlar la temperatura final del fluido como también controlar el gradiente de temperatura que se aplica con transientes acotados y un seguimiento sin errores permanentes y sin verse afectado por la variación de las condiciones ambientales de operación, dada la naturaleza adaptativa de los algoritmos de control utilizados. 3. Electronic inductive heating system for bioleaching and electro-obtaining plants in height for fluid heating according to claim No. 1, CHARACTERIZED by the possibility of controlling the final temperature of the fluid as well as controlling the temperature gradient that is It applies with bounded transients and a follow-up without permanent errors and without being affected by the variation of the environmental operating conditions, given the adaptive nature of the control algorithms used.
4.- Sistema electrónico de calentamiento inductivo para plantas de biolixiviación y electro-obtención en altura para el calentamiento de fluidos según la reivindicación N°l, CARACTERIZADO por un sistema de transferencia de energía eléctrica a térmica desde un inversor resonante el cual se alimenta desde una fuente de tensión continua, la cual puede estar formada por un transformador alimentado desde una red de corriente alterna y un rectificador controlado. 4. Electronic inductive heating system for bioleaching and electro-obtaining plants in height for the heating of fluids according to claim No. 1, CHARACTERIZED by a system of transfer of electrical to thermal energy from a resonant inverter which is fed from a DC voltage source, which can be formed by a transformer fed from an alternating current network and a controlled rectifier.
5 - Sistema electrónico de calentamiento inductivo para plantas de biolixiviación y electro-obtención en altura para el calentamiento de fluidos según la reivindicación N°l, CARACTERIZADO por un sistema de transferencia de energía eléctrica a térmica desde un inversor resonante el cual se alimenta desde una fuente de tensión continua, la cual puede estar formada por un transformador alimentado desde un grupo generador y un rectificador controlado o convertidor DC/DC. 5 - Electronic inductive heating system for bioleaching and electro-obtaining plants in height for the heating of fluids according to claim No. 1, CHARACTERIZED by a system of transfer of electrical to thermal energy from a resonant inverter which is fed from a DC voltage source, which can be formed by a transformer fed from a generator group and a controlled rectifier or DC / DC converter.
6 - Sistema electrónico de calentamiento inductivo para plantas de biolixiviación y electro-obtención en altura para el calentamiento de fluidos según la reivindicación N°l, CARACTERIZADO por un sistema de transferencia de energía eléctrica a térmica desde un inversor resonante el cual se alimenta desde una fuente de tensión continua, la cual puede estar formada por un generador de corriente continua autoexcitado (shunt) o de excitación independiente, controlada o no controlada y un convertidor DC/DC. 7 - Sistema electrónico de calentamiento inductivo para plantas de biolixiviación y electro-obtención en altura para el calentamiento de fluidos según la reivindicación N°l, CARACTERIZADO por un sistema de transferencia de energía eléctrica a térmica desde un inversor auto resonante el cual se alimenta desde una fuente de tensión continua, la cual puede ser generada de cualquier forma ya sean baterías, energía solar, energía eólica, energía geotérmica, energía mareomotriz o energía hidráulica. 6 - Electronic inductive heating system for bioleaching and electro-obtaining plants in height for the heating of fluids according to claim No. 1, CHARACTERIZED by a system of transfer of electrical to thermal energy from a resonant inverter which is fed from a DC voltage source, which can be formed by a self-excited (shunt) or independent, controlled or uncontrolled direct current generator and a DC / DC converter. 7 - Electronic inductive heating system for bioleaching and electro-obtaining plants in height for the heating of fluids according to claim No. 1, CHARACTERIZED by a system of transfer of electrical to thermal energy from a self-resonant inverter which is fed from a continuous voltage source, which can be generated in any way be it batteries, solar energy, wind energy, geothermal energy, tidal power or hydraulic energy.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CL2010001053A CL2010001053A1 (en) | 2010-09-30 | 2010-09-30 | Inductive heating system of solutions for bioleaching and electro-obtaining plants in height. |
ES1053-2010 | 2010-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012040868A2 true WO2012040868A2 (en) | 2012-04-05 |
WO2012040868A3 WO2012040868A3 (en) | 2012-07-05 |
Family
ID=45893563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CL2011/000058 WO2012040868A2 (en) | 2010-09-30 | 2011-09-27 | System for the inductive heating of solutions for bioleaching and electrowinning plants at high altitude |
Country Status (2)
Country | Link |
---|---|
CL (1) | CL2010001053A1 (en) |
WO (1) | WO2012040868A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018119227A1 (en) * | 2016-12-22 | 2018-06-28 | Abbott Laboratories | Inductive heating systems and methods of controlling the same to reduce biological carryover |
CN111107681A (en) * | 2018-10-26 | 2020-05-05 | 佛山市顺德区美的电热电器制造有限公司 | Water boiling control method and device, storage medium and electromagnetic heating equipment |
US11452787B2 (en) | 2011-12-28 | 2022-09-27 | Abbott Laboratories | Methods and apparatus to reduce biological carryover using induction heating |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5990465A (en) * | 1995-03-27 | 1999-11-23 | Omron Corporation | Electromagnetic induction-heated fluid energy conversion processing appliance |
US20080223850A1 (en) * | 2007-03-14 | 2008-09-18 | Omron Corporation | Heat exchanging apparatus |
US20090092384A1 (en) * | 2007-08-09 | 2009-04-09 | Shimin Luo | High frequency induction heating instantaneous tankless water heaters |
-
2010
- 2010-09-30 CL CL2010001053A patent/CL2010001053A1/en unknown
-
2011
- 2011-09-27 WO PCT/CL2011/000058 patent/WO2012040868A2/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5990465A (en) * | 1995-03-27 | 1999-11-23 | Omron Corporation | Electromagnetic induction-heated fluid energy conversion processing appliance |
US20080223850A1 (en) * | 2007-03-14 | 2008-09-18 | Omron Corporation | Heat exchanging apparatus |
US20090092384A1 (en) * | 2007-08-09 | 2009-04-09 | Shimin Luo | High frequency induction heating instantaneous tankless water heaters |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11452787B2 (en) | 2011-12-28 | 2022-09-27 | Abbott Laboratories | Methods and apparatus to reduce biological carryover using induction heating |
US12115266B2 (en) | 2011-12-28 | 2024-10-15 | Abbott Laboratories | Methods and apparatus to reduce biological carryover using induction heating |
WO2018119227A1 (en) * | 2016-12-22 | 2018-06-28 | Abbott Laboratories | Inductive heating systems and methods of controlling the same to reduce biological carryover |
CN110291843A (en) * | 2016-12-22 | 2019-09-27 | 雅培制药有限公司 | For reducing the induction heating system and its control method that biology is left |
US11065352B2 (en) | 2016-12-22 | 2021-07-20 | Abbott Laboratories | Inductive heating systems and methods of controlling the same to reduce biological carryover |
CN110291843B (en) * | 2016-12-22 | 2022-06-28 | 雅培制药有限公司 | Induction heating system for reducing biological carryover and control method thereof |
CN111107681A (en) * | 2018-10-26 | 2020-05-05 | 佛山市顺德区美的电热电器制造有限公司 | Water boiling control method and device, storage medium and electromagnetic heating equipment |
Also Published As
Publication number | Publication date |
---|---|
WO2012040868A3 (en) | 2012-07-05 |
CL2010001053A1 (en) | 2010-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205403153U (en) | Boiler flue gas condensation waste heat recovery device with it is corrosion -resistant | |
US20100243228A1 (en) | Method and Apparatus to Effect Heat Transfer | |
WO2012040868A2 (en) | System for the inductive heating of solutions for bioleaching and electrowinning plants at high altitude | |
CN104966534A (en) | Cold fusion power generation device | |
CN202470425U (en) | Molten salt system | |
EP2492600B1 (en) | Assembly for heating a room | |
CN105571120A (en) | Oil, gas and electricity three-purpose vacuum boiler | |
CN102840676A (en) | Instant heating type electromagnetic water heater heating element with safe, efficient, and low electromagnetic radiation | |
US9841008B2 (en) | Solar and steam hybrid power generation system | |
CN202364102U (en) | Wind generating set current converter/transformer cooling system | |
US9567874B2 (en) | Electric induction fluid heaters for fluids utilized in turbine-driven electric generator systems | |
CN201184498Y (en) | Solar energy heating apparatus of oil delivery pipeline | |
CN106287918A (en) | A kind of across solar energy storage heating system and control method thereof in season | |
CN206073217U (en) | A kind of multi-functional complementary heating plant | |
CN102418990A (en) | Electromagnetic induction heat exchanger | |
CN103216932A (en) | Fire tube type gas hot-water boiler | |
Guo et al. | Application and research progress of heater in natural gas industry | |
CN207019071U (en) | A kind of gas cracker and emission-control equipment | |
CN108506914A (en) | A kind of electric heat storage preheating steam generator | |
CN107062612A (en) | A kind of graphene electromagnetism core superaudio induction heating apparatus | |
CN113566192A (en) | Heat energy system using carbon dioxide as energy source | |
CN201024993Y (en) | High-heat efficiency and high power heating device | |
CN206875403U (en) | A kind of New-type boiler system for producing double heat carriers | |
CN205261905U (en) | Oil gas electricity three way plant specimen | |
CN203964337U (en) | The fluid preheating device of snake pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11827888 Country of ref document: EP Kind code of ref document: A2 |