WO2012040323A2 - Multimeric il-15 soluble fusion molecules and methods of making and using same - Google Patents
Multimeric il-15 soluble fusion molecules and methods of making and using same Download PDFInfo
- Publication number
- WO2012040323A2 WO2012040323A2 PCT/US2011/052545 US2011052545W WO2012040323A2 WO 2012040323 A2 WO2012040323 A2 WO 2012040323A2 US 2011052545 W US2011052545 W US 2011052545W WO 2012040323 A2 WO2012040323 A2 WO 2012040323A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fusion protein
- complex
- cells
- soluble
- protein complex
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 161
- 230000004927 fusion Effects 0.000 title claims description 99
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 403
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 403
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 331
- 102000003812 Interleukin-15 Human genes 0.000 claims abstract description 301
- 108090000172 Interleukin-15 Proteins 0.000 claims abstract description 301
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 195
- 229920001184 polypeptide Polymers 0.000 claims abstract description 189
- 108010053727 Interleukin-15 Receptor alpha Subunit Proteins 0.000 claims abstract description 101
- 239000012634 fragment Substances 0.000 claims abstract description 89
- 108060003951 Immunoglobulin Proteins 0.000 claims abstract description 83
- 102000018358 immunoglobulin Human genes 0.000 claims abstract description 83
- 210000004027 cell Anatomy 0.000 claims description 373
- 108091008874 T cell receptors Proteins 0.000 claims description 266
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 claims description 242
- 108090000623 proteins and genes Proteins 0.000 claims description 223
- 230000027455 binding Effects 0.000 claims description 186
- 102000004169 proteins and genes Human genes 0.000 claims description 173
- 235000018102 proteins Nutrition 0.000 claims description 170
- 239000000427 antigen Substances 0.000 claims description 104
- 102000036639 antigens Human genes 0.000 claims description 101
- 108091007433 antigens Proteins 0.000 claims description 101
- 230000000694 effects Effects 0.000 claims description 99
- 101001055157 Homo sapiens Interleukin-15 Proteins 0.000 claims description 97
- 102000056003 human IL15 Human genes 0.000 claims description 96
- 239000013598 vector Substances 0.000 claims description 65
- 108020004414 DNA Proteins 0.000 claims description 54
- 235000001014 amino acid Nutrition 0.000 claims description 51
- 150000001413 amino acids Chemical class 0.000 claims description 43
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 42
- 150000007523 nucleic acids Chemical group 0.000 claims description 40
- 108010087819 Fc receptors Proteins 0.000 claims description 39
- 102000009109 Fc receptors Human genes 0.000 claims description 39
- 239000000539 dimer Substances 0.000 claims description 39
- 238000006467 substitution reaction Methods 0.000 claims description 39
- 201000010099 disease Diseases 0.000 claims description 38
- 108091006020 Fc-tagged proteins Proteins 0.000 claims description 36
- 206010028980 Neoplasm Diseases 0.000 claims description 36
- 230000001965 increasing effect Effects 0.000 claims description 36
- 210000002865 immune cell Anatomy 0.000 claims description 35
- 102000005962 receptors Human genes 0.000 claims description 34
- 108020003175 receptors Proteins 0.000 claims description 34
- 210000000822 natural killer cell Anatomy 0.000 claims description 30
- 239000000833 heterodimer Substances 0.000 claims description 27
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 26
- 239000003153 chemical reaction reagent Substances 0.000 claims description 25
- 239000013604 expression vector Substances 0.000 claims description 25
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 22
- 239000003446 ligand Substances 0.000 claims description 22
- 238000012258 culturing Methods 0.000 claims description 21
- 102000039446 nucleic acids Human genes 0.000 claims description 20
- 108020004707 nucleic acids Proteins 0.000 claims description 20
- 108040002039 interleukin-15 receptor activity proteins Proteins 0.000 claims description 19
- 102000008616 interleukin-15 receptor activity proteins Human genes 0.000 claims description 19
- 108010017535 Interleukin-15 Receptors Proteins 0.000 claims description 18
- 230000009870 specific binding Effects 0.000 claims description 18
- 102000004556 Interleukin-15 Receptors Human genes 0.000 claims description 17
- 230000028993 immune response Effects 0.000 claims description 17
- 238000001727 in vivo Methods 0.000 claims description 17
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 16
- 238000012217 deletion Methods 0.000 claims description 14
- 230000037430 deletion Effects 0.000 claims description 14
- 230000002147 killing effect Effects 0.000 claims description 14
- 239000005557 antagonist Substances 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 108010090804 Streptavidin Proteins 0.000 claims description 12
- 241000700605 Viruses Species 0.000 claims description 12
- 230000003247 decreasing effect Effects 0.000 claims description 12
- 238000000338 in vitro Methods 0.000 claims description 12
- 210000004962 mammalian cell Anatomy 0.000 claims description 11
- 241000124008 Mammalia Species 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 10
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 9
- 239000000556 agonist Substances 0.000 claims description 9
- 230000000295 complement effect Effects 0.000 claims description 9
- 102000040430 polynucleotide Human genes 0.000 claims description 9
- 108091033319 polynucleotide Proteins 0.000 claims description 9
- 239000002157 polynucleotide Substances 0.000 claims description 9
- 238000001542 size-exclusion chromatography Methods 0.000 claims description 9
- 230000004936 stimulating effect Effects 0.000 claims description 8
- 210000004881 tumor cell Anatomy 0.000 claims description 8
- 108091035707 Consensus sequence Proteins 0.000 claims description 7
- 239000000872 buffer Substances 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 claims description 6
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 claims description 6
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 claims description 6
- 238000010828 elution Methods 0.000 claims description 6
- 102000004190 Enzymes Human genes 0.000 claims description 5
- 108090000790 Enzymes Proteins 0.000 claims description 5
- 101710120037 Toxin CcdB Proteins 0.000 claims description 5
- 229960002685 biotin Drugs 0.000 claims description 5
- 235000020958 biotin Nutrition 0.000 claims description 5
- 239000011616 biotin Substances 0.000 claims description 5
- 201000011510 cancer Diseases 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- 230000014621 translational initiation Effects 0.000 claims description 5
- 102000000844 Cell Surface Receptors Human genes 0.000 claims description 4
- 108010001857 Cell Surface Receptors Proteins 0.000 claims description 4
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 102000006306 Antigen Receptors Human genes 0.000 claims description 3
- 108010083359 Antigen Receptors Proteins 0.000 claims description 3
- 102100026008 Breakpoint cluster region protein Human genes 0.000 claims description 3
- 108010067225 Cell Adhesion Molecules Proteins 0.000 claims description 3
- 102000009410 Chemokine receptor Human genes 0.000 claims description 3
- 108050000299 Chemokine receptor Proteins 0.000 claims description 3
- 108010049207 Death Domain Receptors Proteins 0.000 claims description 3
- 102000009058 Death Domain Receptors Human genes 0.000 claims description 3
- 108010009202 Growth Factor Receptors Proteins 0.000 claims description 3
- 102000009465 Growth Factor Receptors Human genes 0.000 claims description 3
- 101000933320 Homo sapiens Breakpoint cluster region protein Proteins 0.000 claims description 3
- 101500021084 Locusta migratoria 5 kDa peptide Proteins 0.000 claims description 3
- 102000002689 Toll-like receptor Human genes 0.000 claims description 3
- 108020000411 Toll-like receptor Proteins 0.000 claims description 3
- 208000036142 Viral infection Diseases 0.000 claims description 3
- 108010047295 complement receptors Proteins 0.000 claims description 3
- 102000006834 complement receptors Human genes 0.000 claims description 3
- 108091008034 costimulatory receptors Proteins 0.000 claims description 3
- 102000003675 cytokine receptors Human genes 0.000 claims description 3
- 108010057085 cytokine receptors Proteins 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- 230000005298 paramagnetic effect Effects 0.000 claims description 3
- 230000009385 viral infection Effects 0.000 claims description 3
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 claims description 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 claims description 2
- 238000005571 anion exchange chromatography Methods 0.000 claims description 2
- 230000007910 cell fusion Effects 0.000 claims description 2
- 210000003714 granulocyte Anatomy 0.000 claims description 2
- 238000004255 ion exchange chromatography Methods 0.000 claims description 2
- 210000003810 lymphokine-activated killer cell Anatomy 0.000 claims description 2
- 210000002540 macrophage Anatomy 0.000 claims description 2
- 210000001616 monocyte Anatomy 0.000 claims description 2
- 230000009826 neoplastic cell growth Effects 0.000 claims description 2
- 239000006174 pH buffer Substances 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims 1
- 102000008395 cell adhesion mediator activity proteins Human genes 0.000 claims 1
- 239000012636 effector Substances 0.000 description 53
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 52
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 52
- 238000002835 absorbance Methods 0.000 description 47
- 230000014509 gene expression Effects 0.000 description 40
- 230000003993 interaction Effects 0.000 description 37
- 108010058846 Ovalbumin Proteins 0.000 description 36
- 230000035772 mutation Effects 0.000 description 36
- 238000002965 ELISA Methods 0.000 description 35
- 101150031021 birA gene Proteins 0.000 description 35
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 34
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 34
- 230000004071 biological effect Effects 0.000 description 32
- 229940024606 amino acid Drugs 0.000 description 30
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 25
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 25
- 238000000684 flow cytometry Methods 0.000 description 24
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 24
- 230000009258 tissue cross reactivity Effects 0.000 description 24
- 238000003556 assay Methods 0.000 description 23
- 238000001514 detection method Methods 0.000 description 23
- 241000699670 Mus sp. Species 0.000 description 22
- 229940092253 ovalbumin Drugs 0.000 description 22
- 238000003752 polymerase chain reaction Methods 0.000 description 19
- 102200104661 rs73598374 Human genes 0.000 description 19
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 17
- 239000002953 phosphate buffered saline Substances 0.000 description 17
- 102000004127 Cytokines Human genes 0.000 description 16
- 108090000695 Cytokines Proteins 0.000 description 16
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 241001529936 Murinae Species 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 14
- 230000001225 therapeutic effect Effects 0.000 description 14
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 13
- 239000008280 blood Substances 0.000 description 13
- 239000001963 growth medium Substances 0.000 description 13
- 238000010186 staining Methods 0.000 description 13
- 241000283707 Capra Species 0.000 description 12
- 108010088729 HLA-A*02:01 antigen Proteins 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 12
- DEGAKNSWVGKMLS-UHFFFAOYSA-N calcein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(O)=O)CC(O)=O)=C(O)C=C1OC1=C2C=C(CN(CC(O)=O)CC(=O)O)C(O)=C1 DEGAKNSWVGKMLS-UHFFFAOYSA-N 0.000 description 12
- 230000004663 cell proliferation Effects 0.000 description 12
- 238000012512 characterization method Methods 0.000 description 12
- 229960002378 oftasceine Drugs 0.000 description 12
- 239000013642 negative control Substances 0.000 description 11
- 230000012743 protein tagging Effects 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 11
- 230000004614 tumor growth Effects 0.000 description 11
- 108010073807 IgG Receptors Proteins 0.000 description 10
- 102000009490 IgG Receptors Human genes 0.000 description 10
- 230000004913 activation Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 230000001419 dependent effect Effects 0.000 description 10
- 230000005714 functional activity Effects 0.000 description 10
- 230000003308 immunostimulating effect Effects 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 102220578647 Chorion-specific transcription factor GCMb_N65D_mutation Human genes 0.000 description 9
- 241000699660 Mus musculus Species 0.000 description 9
- 206010039509 Scab Diseases 0.000 description 9
- 238000013459 approach Methods 0.000 description 9
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 238000011580 nude mouse model Methods 0.000 description 9
- 230000003389 potentiating effect Effects 0.000 description 9
- 230000035755 proliferation Effects 0.000 description 9
- 230000009257 reactivity Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 108700012359 toxins Proteins 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 238000004113 cell culture Methods 0.000 description 8
- 230000010261 cell growth Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 238000006471 dimerization reaction Methods 0.000 description 8
- -1 CD8a Proteins 0.000 description 7
- 241000238631 Hexapoda Species 0.000 description 7
- 108010076504 Protein Sorting Signals Proteins 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 7
- 102100040247 Tumor necrosis factor Human genes 0.000 description 7
- 239000012228 culture supernatant Substances 0.000 description 7
- 239000003102 growth factor Substances 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 102220311640 rs1382779104 Human genes 0.000 description 7
- JUJBNYBVVQSIOU-UHFFFAOYSA-M sodium;4-[2-(4-iodophenyl)-3-(4-nitrophenyl)tetrazol-2-ium-5-yl]benzene-1,3-disulfonate Chemical compound [Na+].C1=CC([N+](=O)[O-])=CC=C1N1[N+](C=2C=CC(I)=CC=2)=NC(C=2C(=CC(=CC=2)S([O-])(=O)=O)S([O-])(=O)=O)=N1 JUJBNYBVVQSIOU-UHFFFAOYSA-M 0.000 description 7
- 230000008685 targeting Effects 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 238000011740 C57BL/6 mouse Methods 0.000 description 6
- 108010012236 Chemokines Proteins 0.000 description 6
- 102000019034 Chemokines Human genes 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 6
- 230000000259 anti-tumor effect Effects 0.000 description 6
- 230000024203 complement activation Effects 0.000 description 6
- 239000000412 dendrimer Substances 0.000 description 6
- 229920000736 dendritic polymer Polymers 0.000 description 6
- 210000003527 eukaryotic cell Anatomy 0.000 description 6
- 230000013595 glycosylation Effects 0.000 description 6
- 238000006206 glycosylation reaction Methods 0.000 description 6
- 235000005772 leucine Nutrition 0.000 description 6
- 210000003071 memory t lymphocyte Anatomy 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 238000000159 protein binding assay Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000003053 toxin Substances 0.000 description 6
- 231100000765 toxin Toxicity 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 5
- 230000005867 T cell response Effects 0.000 description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 238000001516 cell proliferation assay Methods 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 210000001236 prokaryotic cell Anatomy 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 230000014616 translation Effects 0.000 description 5
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 4
- 101001003140 Homo sapiens Interleukin-15 receptor subunit alpha Proteins 0.000 description 4
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 102000000588 Interleukin-2 Human genes 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 108010004217 Natural Cytotoxicity Triggering Receptor 1 Proteins 0.000 description 4
- 102100032870 Natural cytotoxicity triggering receptor 1 Human genes 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 230000006044 T cell activation Effects 0.000 description 4
- 241000711975 Vesicular stomatitis virus Species 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- OHDRQQURAXLVGJ-AXMZSLBLSA-N azane;(2z)-3-ethyl-2-[(z)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N\N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-AXMZSLBLSA-N 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- BQRGNLJZBFXNCZ-UHFFFAOYSA-N calcein am Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=C(OC(C)=O)C=C1OC1=C2C=C(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(=O)C)C(OC(C)=O)=C1 BQRGNLJZBFXNCZ-UHFFFAOYSA-N 0.000 description 4
- 230000006037 cell lysis Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 239000013599 cloning vector Substances 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000009089 cytolysis Effects 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 238000000099 in vitro assay Methods 0.000 description 4
- 238000005462 in vivo assay Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 4
- 108020001580 protein domains Proteins 0.000 description 4
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 108010032795 CD8 receptor Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000000989 Complement System Proteins Human genes 0.000 description 3
- 108010069112 Complement System Proteins Proteins 0.000 description 3
- 102000016607 Diphtheria Toxin Human genes 0.000 description 3
- 108010053187 Diphtheria Toxin Proteins 0.000 description 3
- 108010008165 Etanercept Proteins 0.000 description 3
- 229930186217 Glycolipid Natural products 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 3
- 241000235058 Komagataella pastoris Species 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 102000003960 Ligases Human genes 0.000 description 3
- 108090000364 Ligases Proteins 0.000 description 3
- 108090001030 Lipoproteins Proteins 0.000 description 3
- 102000004895 Lipoproteins Human genes 0.000 description 3
- 241000282567 Macaca fascicularis Species 0.000 description 3
- 108010085220 Multiprotein Complexes Proteins 0.000 description 3
- 102000007474 Multiprotein Complexes Human genes 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 102100040403 Tumor necrosis factor receptor superfamily member 6 Human genes 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 238000011481 absorbance measurement Methods 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 238000002869 basic local alignment search tool Methods 0.000 description 3
- 210000003651 basophil Anatomy 0.000 description 3
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 3
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 3
- 230000006287 biotinylation Effects 0.000 description 3
- 238000007413 biotinylation Methods 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 230000001461 cytolytic effect Effects 0.000 description 3
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 3
- 229940127089 cytotoxic agent Drugs 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 210000003979 eosinophil Anatomy 0.000 description 3
- 229960000403 etanercept Drugs 0.000 description 3
- 238000002523 gelfiltration Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 210000003630 histaminocyte Anatomy 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000012642 immune effector Substances 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 230000009149 molecular binding Effects 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 238000011809 primate model Methods 0.000 description 3
- 231100000654 protein toxin Toxicity 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 239000012128 staining reagent Substances 0.000 description 3
- 230000002483 superagonistic effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 102220578645 Chorion-specific transcription factor GCMb_N65A_mutation Human genes 0.000 description 2
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102100029211 E3 ubiquitin-protein ligase TTC3 Human genes 0.000 description 2
- 101000633723 Homo sapiens E3 ubiquitin-protein ligase TTC3 Proteins 0.000 description 2
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 2
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 2
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 2
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000000589 Interleukin-1 Human genes 0.000 description 2
- 108010002352 Interleukin-1 Proteins 0.000 description 2
- 102100020789 Interleukin-15 receptor subunit alpha Human genes 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 239000007760 Iscove's Modified Dulbecco's Medium Substances 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 102000043129 MHC class I family Human genes 0.000 description 2
- 108091054437 MHC class I family Proteins 0.000 description 2
- 101001055166 Mus musculus Interleukin-15 Proteins 0.000 description 2
- 108010004729 Phycoerythrin Proteins 0.000 description 2
- 102220479509 Proteasome inhibitor PI31 subunit_D8A_mutation Human genes 0.000 description 2
- 108010039491 Ricin Proteins 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 206010054094 Tumour necrosis Diseases 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000007969 cellular immunity Effects 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000004154 complement system Effects 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 238000002825 functional assay Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 2
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000005965 immune activity Effects 0.000 description 2
- 239000002955 immunomodulating agent Substances 0.000 description 2
- 230000001024 immunotherapeutic effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000014207 opsonization Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000013636 protein dimer Substances 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 229950010131 puromycin Drugs 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102220053806 rs121918461 Human genes 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 102000035160 transmembrane proteins Human genes 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- JVJGCCBAOOWGEO-RUTPOYCXSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-4-amino-2-[[(2s,3s)-2-[[(2s,3s)-2-[[(2s)-2-azaniumyl-3-hydroxypropanoyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]-4-oxobutanoyl]amino]-3-phenylpropanoyl]amino]-4-carboxylatobutanoyl]amino]-6-azaniumy Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O)CC1=CC=CC=C1 JVJGCCBAOOWGEO-RUTPOYCXSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- WUAPFZMCVAUBPE-NJFSPNSNSA-N 188Re Chemical compound [188Re] WUAPFZMCVAUBPE-NJFSPNSNSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 102100040149 Adenylyl-sulfate kinase Human genes 0.000 description 1
- 108010054404 Adenylyl-sulfate kinase Proteins 0.000 description 1
- RTZCUEHYUQZIDE-WHFBIAKZSA-N Ala-Ser-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O RTZCUEHYUQZIDE-WHFBIAKZSA-N 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 102100032528 C-type lectin domain family 11 member A Human genes 0.000 description 1
- 101710167766 C-type lectin domain family 11 member A Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000001327 Chemokine CCL5 Human genes 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 102000039539 Fos family Human genes 0.000 description 1
- 108091067362 Fos family Proteins 0.000 description 1
- 102100020997 Fractalkine Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- SOEGEPHNZOISMT-BYPYZUCNSA-N Gly-Ser-Gly Chemical compound NCC(=O)N[C@@H](CO)C(=O)NCC(O)=O SOEGEPHNZOISMT-BYPYZUCNSA-N 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101150069554 HIS4 gene Proteins 0.000 description 1
- 102000011786 HLA-A Antigens Human genes 0.000 description 1
- 108010075704 HLA-A Antigens Proteins 0.000 description 1
- 241000125500 Hedypnois rhagadioloides Species 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101000854520 Homo sapiens Fractalkine Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101001128634 Homo sapiens NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial Proteins 0.000 description 1
- 101000736088 Homo sapiens PC4 and SFRS1-interacting protein Proteins 0.000 description 1
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000801254 Homo sapiens Tumor necrosis factor receptor superfamily member 16 Proteins 0.000 description 1
- 101000801232 Homo sapiens Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 1
- 101000887051 Homo sapiens Ubiquitin-like-conjugating enzyme ATG3 Proteins 0.000 description 1
- 101000868549 Homo sapiens Voltage-dependent calcium channel gamma-like subunit Proteins 0.000 description 1
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 1
- 102000039990 IL-2 family Human genes 0.000 description 1
- 108091069192 IL-2 family Proteins 0.000 description 1
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 1
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 108010066719 Interleukin Receptor Common gamma Subunit Proteins 0.000 description 1
- 102000018682 Interleukin Receptor Common gamma Subunit Human genes 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 102000039537 Jun family Human genes 0.000 description 1
- 108091067369 Jun family Proteins 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 101000726683 Metarhizium anisopliae Cuticle-degrading protease Proteins 0.000 description 1
- 101000686985 Mouse mammary tumor virus (strain C3H) Protein PR73 Proteins 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 102100032194 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial Human genes 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000000447 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Human genes 0.000 description 1
- 108010055817 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108010084592 Saporins Proteins 0.000 description 1
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 1
- 108010079723 Shiga Toxin Proteins 0.000 description 1
- 101100309436 Streptococcus mutans serotype c (strain ATCC 700610 / UA159) ftf gene Proteins 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 102100030859 Tissue factor Human genes 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 102100039930 Ubiquitin-like-conjugating enzyme ATG3 Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 102100032336 Voltage-dependent calcium channel gamma-like subunit Human genes 0.000 description 1
- 102000040856 WT1 Human genes 0.000 description 1
- 108700020467 WT1 Proteins 0.000 description 1
- 101150084041 WT1 gene Proteins 0.000 description 1
- 108010093038 XCL-2 calpain Proteins 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 108010086434 alanyl-seryl-glycine Proteins 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 229940125385 biologic drug Drugs 0.000 description 1
- JCXGWMGPZLAOME-AKLPVKDBSA-N bismuth-212 Chemical compound [212Bi] JCXGWMGPZLAOME-AKLPVKDBSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000005889 cellular cytotoxicity Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000009146 cooperative binding Effects 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000009133 cooperative interaction Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N cystine group Chemical group C([C@@H](C(=O)O)N)SSC[C@@H](C(=O)O)N LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 239000002619 cytotoxin Substances 0.000 description 1
- 230000022811 deglycosylation Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000447 dimerizing effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000012757 fluorescence staining Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 102000043323 human PSIP1 Human genes 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000005931 immune cell recruitment Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000037451 immune surveillance Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000002062 molecular scaffold Substances 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 238000002732 pharmacokinetic assay Methods 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 108700028325 pokeweed antiviral Proteins 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 102000037983 regulatory factors Human genes 0.000 description 1
- 108091008025 regulatory factors Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 101150025220 sacB gene Proteins 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 231100000617 superantigen Toxicity 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000002992 thymic effect Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- 238000013413 tumor xenograft mouse model Methods 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/177—Receptors; Cell surface antigens; Cell surface determinants
- A61K38/1793—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2086—IL-13 to IL-16
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/001—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
- C07K14/01—DNA viruses
- C07K14/075—Adenoviridae
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5443—IL-15
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/715—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
- C07K14/7155—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/21—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/22—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a Strep-tag
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
Definitions
- Fos and Jun are intracellular proteins that accumulate almost exclusively within the nucleus.
- soluble and secreted Fos and Jun fusions are usually produced using the baculovirus-infected or stably transformed insect
- BOS2 887851.1 1 cell system a relatively low yielding and not easily scalable manufacturing process (6,7).
- 6,7 a relatively low yielding and not easily scalable manufacturing process
- antibody domains linked to Fos-Jun were produced in bacterial or mammalian cells, but the main limitation was subunit homodimerization (8,9) which complicated the purification process and reduced the overall yield (8,9).
- the difference in patterns of glycosylation of proteins produced by insect or bacterial cells raises concerns of potential immunogenicity of the products when used in therapeutic applications.
- immunoglobulin (IgG) constant domains In addition to leucine zipper motifis, immunoglobulin (IgG) constant domains, helix- turn-helix self dimerizing peptides, tri- and tetrameric subdomains of collagen and p53 have been used as scaffolds by which to create multivalent molecules (8,10-13). Aside from the IgG fragments, these interaction domains primarily serve as molecular scaffolds and lack other functional activities per se. Moreover, fusion proteins containing these domains often require further optimization to promote stable multimer formation and specialized production cell lines and purification methods that are tedious or impose regulatory hurdles for therapeutic development (10,12). Many of these scaffolds are derivatives of either nonhuman protein domains or non-native components of plasma that may exhibit poor pharmacokinetic properties and pose the risk of immunogenic responses that could limit their therapeutic potential.
- IgG immunoglobulin
- the invention provides soluble fusion protein complexes having at least two soluble fusion proteins.
- the first fusion protein includes a first biologically active polypeptide covalently linked to interleukin-15 (IL-15) polypeptide or a functional fragment thereof.
- the second fusion protein includes a second biologically active polypeptide covalently linked to soluble interleukin-15 receptor alpha (IL-15Ra) polypeptide or a functional fragment thereof.
- IL-15Ra soluble interleukin-15 receptor alpha
- either one or both of the first and second fusion proteins further include an immunoglobulin Fc domain or a functional fragment thereof.
- the IL-15 domain of the first fusion protein binds to the soluble IL- 15Ra domain of the second fusion protein to form a soluble fusion protein complex.
- one of the first and second biologically active polypeptides includes a first soluble T-cell receptor (TCR) or functional fragment thereof.
- TCR T-cell receptor
- BOS2 887851.1 2 including a first soluble TCR includes a second soluble TCR as the biologically active polypeptide, thereby creating a multivalent TCR fusion protein complex with increased binding activity.
- the TCRs in the complex includes at least two different TCRs. In certain embodiments, all of the TCRs are the same. In certain embodiments when at least two different TCRs are present, the TCRs bind to separate target molecules. In certain embodiments when at least two different TCRs are present, the TCRs bind to distinct epitopes on the same target molecule. In certain embodiments, the TCRs are specific for recognition of a particular antigen.
- the TCRs are independently selected from a heterodimer comprising a and ⁇ chain TCR and a single chain TCR polypeptide.
- the single chain TCR includes a TCR V-a chain covalently linked to a TCR V- ⁇ chain by a peptide linker sequence.
- the single chain TCR further includes a soluble TCR C chain fragment covalently linked to a TCR V- ⁇ chain.
- the single chain TCR further includes a soluble TCR Ca chain fragment covalently linked to a TCR V-a chain.
- the first biologically active polypeptide includes a TCR a polypeptide or functional fragment thereof and the second biologically active polypeptide includes a TCR ⁇ polypeptide or functional fragment thereof.
- one or both of the first and second biologically active polypeptide includes an antibody or functional fragment thereof.
- the antibodies in the complex includes at least two different antibodies. In certain embodiments, all of the antibodies are the same. In certain embodiments when at least two different antibodies are present, the antibodies bind to separate target molecules. In certain embodiments when at least two different antibodies are present, the antibodies bind to distinct epitopes on the same target molecule. In certain embodiments, the antibodies are specific for recognition of a particular antigen.
- the antibody is a single-chain antibody or single-chain Fv.
- the single-chain antibody comprises an immunoglobulin light chain variable domain covalently linked to
- the first biologically active polypeptide comprises an antibody heavy chain
- the IL-15 polypeptide is an IL-15 variant having a different amino acid sequence than native IL- 15 polypeptide.
- the human IL-15 polypeptide is referred to herein as huIL-15, hIL-15, huIL15, hIL15, IL-15 wild type (wt) and the like and variants thereof are referred to using the native amino acid, its position in the mature sequence and the variant amino acid.
- huIL15N72D refers to human IL-15 comprising a substitution of N to D at position 72.
- the IL-15 variant functions as an IL-15 agonist as demonstrated, e.g., by increased binding activity for the IL-15R yC receptors compared to the native IL-15 polypeptide.
- the IL-15 variant functions as an IL-15 antagonist as demonstrated by e.g., decreased binding activity for the IL-15R yC receptors compared to the native IL-15 polypeptide.
- the IL-15 variant has increased binding affinity or a decreased binding activity for the IL-15R yC receptors compared to the native IL-15 polypeptide.
- the sequence of the IL-15 variant has at least one (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) amino acid change compared to the native IL-15 sequence.
- the amino acid change can include one or more of an amino acid substitution or deletion in the domain of IL-15 that interacts with IL-15R and/or IL-15RyC.
- the amino acid change is one or more amino acid substitutions or deletions at position 8, 61, 65, 72, 92, 101, 108, or 111 of the mature human IL-15 sequence (SEQ ID NO: 1).
- the amino acid change is the substitution of D to N or A at position 8, D to A at position 61, N to A at position 65, N to R at position 72 or Q to A at position 108 of the mature human IL-15 sequence, or any combination of these substitutions.
- the amino acid change is the substitution of N to D at position 72 of the mature human IL-15 sequence.
- the Fc domain or functional fragment thereof includes an Fc domain selected from the group consisting of IgG Fc domain, human IgGl Fc domain, human IgG2 Fc domain, human IgG3 Fc domain, human IgG4 Fc domain, IgA Fc domain, IgD Fc domain, IgE Fc domain, and IgM Fc domain; or any combination thereof.
- the Fc domain includes an amino acid change that results in an Fc domain with altered complement or Fc receptor binding properties. Amino acid changes to produce an Fc domain with altered complement or Fc receptor binding properties are known in the art. For example, a substitution of leucine
- such mutations can be combined.
- the first biologically active polypeptide is covalently linked to IL-15 polypeptide (or functional fragment thereof) by a polypeptide linker sequence.
- the second biologically active polypeptide is covalently linked to IL-15Ra polypeptide (or functional fragment thereof) by polypeptide linker sequence.
- the IL-15Ra polypeptide (or functional fragment thereof) is covalently linked to the Fc domain (or functional fragment thereof) by polypeptide linker sequence.
- polypeptide linker sequences are the same. In certain embodiments, they are different.
- the antigen for the TCR domain includes a peptide antigen presented in an MHC or HLA molecule.
- the peptide antigen is derived from (i.e., includes at least a partial sequence of) a tumor associated polypeptide or virus encoded polypeptide.
- the antigen for the antibody domain comprises a cell surface receptor or ligand.
- the antigen for the antibody domain is one or more of a CD antigen, cytokine or chemokine receptor or ligand, growth factor receptor or ligand, cell adhesion molecule, MHC/MHC-like molecules, Fc receptor, Toll-like receptor, NK receptor, TCR, BCR, positive/negative co-stimulatory receptor or ligand, death receptor or ligand, tumor associated antigen, or virus encoded antigen.
- the IL-15Ra polypeptide includes the extracellular domain of the IL-15 receptor alpha capable for binding IL-15 polypeptide.
- the soluble human IL-15Ra polypeptide is referred to herein as hlL- 15Ra, huIL-15Ra, hIL-15Ra, huIL-15Ra, and the like.
- the IL-15Ra polypeptide includes either the IL-15Ra sushi (Su) domain or the IL-15RaAE3 domain.
- the soluble fusion protein complexes of the invention are mutimerized, e.g., dimerized, trimerized, or otherwise multimerized (e.g., 4 complexes, 5 complexes, etc.)
- the multimers are homomultimers.
- the multimers are heteromultimers.
- the soluble fusion protein complexes are joined by covalent bonds, e.g., disulfide bonds, chemical cross-linking agents.
- the disulfide bond covalently links the Fc domain of the second polypeptide of the first soluble fusion protein complex to the Fc domain of the second polypeptide of the second soluble fusion protein complex.
- the soluble fusion protein complexes of the invention include an IL-15 polypeptide, IL-15 variant or a functional fragment thereof and a soluble IL-15Ra polypeptide or a functional fragment thereof, wherein one or both of the IL-15 and IL-15Ra polypeptides further include an immunoglobulin Fc domain or a functional fragment thereof.
- the soluble fusion protein complexes of the invention include at least one of the soluble fusion proteins comprise a detectable label.
- Detectable labels include, but are not limited to, biotin, streptavidin, an enzyme or catalytically active fragment thereof, a radionuclide, a nanoparticle, a paramagnetic metal ion, or a fluorescent, phosphorescent, or chemiluminescent molecule; or any combination thereof.
- the invention provides nucleic acid sequences encoding any of the fusion proteins of the invention.
- the nucleic acid sequence further includes one or more translational and/or transcriptional control sequences, e.g., a promoter, translation initiation signal, and leader sequence; operably linked to the sequence encoding the fusion protein.
- the nucleic acid sequence is in a vector for replication, expression, or both.
- the invention provides method for making the soluble fusion protein complexes of the invention.
- the method includes the steps of:
- BOS2 887851.1 6 d) introducing into a second host cell a DNA vector with appropriate control sequences encoding the second fusion protein, e) culturing the second host cell in media under conditions sufficient to express the second fusion protein in the cell or the media; and f) purifying the second fusion protein from the host cells or media, and g) mixing the first and second fusion proteins under conditions sufficient to allow binding between IL-15 domain of a first fusion protein and the soluble IL-15Ra domain of a second fusion protein to form the soluble fusion protein complex.
- the method further includes mixing the first and second fusion protein under conditions sufficient to allow formation of a disulfide bond between the polypeptides expressed from the expression vectors.
- the invention provides methods for making soluble fusion protein complexes of the invention, the methods including the steps of:
- the method further includes mixing the first and second fusion protein under conditions sufficient to allow formation of a disulfide bond between the polypeptides expressed from the expression vectors.
- the invention provides methods for making soluble fusion protein complexes of the invention, the methods including the steps of: a) introducing into a host cell a DNA vector with appropriate control sequences encoding the first and second fusion proteins,
- BOS2 887851.1 7 b) culturing the host cell in media under conditions sufficient to express the fusion proteins in the cell or the media and allow association between IL-15 domain of a first fusion protein and the soluble IL-15Ra domain of a second fusion protein to form the soluble fusion protein complex, and to allow formation of a disulfide bond between the polypeptides encoded by the nucleic acid of claim 46; c) purifying the soluble fusion protein complex from the host cells or media.
- the method further includes mixing the first and second fusion protein under conditions sufficient to allow formation of a disulfide bond between the polypeptides expressed from the expression vectors.
- the invention provides methods for killing a target cell, the method including the steps of: a) contacting a plurality of cells with a soluble fusion protein complex of the invention, wherein the plurality of cells further include immune cells bearing the IL-15R chains recognized by the IL-15 domain, or immune cells bearing Fc receptor chains recognized by the Fc domain, and the target cells bearing an antigen recognized by at least one of the biologically active polypeptides,
- the target cells are tumor cells or virally infected cells.
- the biologically active polypeptide includes a TCR.
- the antigen on the target cells includes a tumor or virally encoded peptide antigen presented in an MHC or HLA molecule and recognized by the TCR.
- the immune cells are, for example, T-cells, LAK cells, NK cells, macrophages, monocytes or granulocytes.
- BOS2 887851.1 The invention provides methods for preventing or treating disease in a patient in which the diseased cells express a disease associated antigen, the method including the steps of:
- the invention provides method for preventing or treating disease in a patient in which the diseased cells express a disease associated antigen, the method including the steps of: a) mixing immune cells bearing IL-15R chains or Fc receptor chains with a soluble fusion protein complex of the invention including a biologically active polypeptide recognizing a disease-associated antigen, b) administering to the patient the immune cell-fusion protein complex mixture; c) forming a specific binding complex (bridge) between antigen-expressing diseased cells and IL-15R or Fc receptor expressing immune cells sufficient to localize the immune cells; and d) damaging or killing the disease cells sufficient to prevent or treat the disease in the patient.
- the disease is cancer or viral infection.
- the disease associated antigen is a peptide/MHC complex.
- the invention provides methods of stimulating immune responses in a mammal by administering to the mammal an effective amount of the soluble fusion protein complex of the invention.
- BOS2 887851.1 9 The invention provides methods of suppressing immune responses in a mammal by administering to the mammal an effective amount of the soluble fusion protein complex of any one of the invention.
- the invention provides methods for detecting cells or tissue having an antigen presented on the cells or tissue, the method including the steps of: a) contacting the cells or tissue with at least one soluble fusion protein complex of the invention including a detectable label under conditions that form a specific binding complex between the antigen and the biologically active polypeptide of the soluble fusion protein complex, b) washing the cells or tissue under conditions appropriate to remove any soluble fusion protein complex not bound to the antigen; and c) detecting the specific binding complex as being indicative of cells or tissue comprising the antigen.
- the biologically active polypeptide comprises a TCR and the antigen comprises a peptide antigen presented in an MHC or HLA molecule that is recognized by the TCR.
- the detection methods provided herein are highly sensitive. For example, in the methods, the number of copies of the antigen present is 1000 or fewer copies per cell.
- the detection methods provided herein can be practiced in vivo, in vitro, or ex vivo.
- the invention provides methods of increasing the per-molecule binding activity of a soluble fusion protein complex of the invention by forming a dimer of a first soluble fusion protein complex and a second soluble fusion protein complex in which the binding site of the first biologically active polypeptide and the second biologically active peptide of each fusion protein complex are the same or are different.
- the binding is increased synergistically.
- the per-molecule binding activity is increased by
- the invention also provides method of increasing the per-molecule IL-15 activity of a soluble fusion protein complex of the invention by forming a dimer of a first soluble fusion protein complex and a second soluble fusion protein complex.
- the invention provides a method for making an interleukin-15 (IL- 15):interleukin-15 receptor alpha (IL-15Ra) fusion protein complex, the method involving introducing into a host cell (e.g., a mammalian cell) a first DNA vector encoding IL-15 (or IL- 15 variant) and a second DNA vector encoding an IL-15Ra fusion protein; culturing the host cell in media under conditions sufficient to express the IL-15 (or IL-15 variant) and the IL- 15Ra fusion protein; and purifying the IL-15:IL-15Ra fusion protein complex from the host cell or media.
- a host cell e.g., a mammalian cell
- the invention provides a method of making an IL-15:IL-15Ra complex containing an IL-15Ra/Fc fusion protein, the method involving introducing into a host cell a first DNA encoding IL-15 (or IL-15 variant) and a second DNA encoding an IL- 15Ra/Fc fusion protein; culturing the host cell in media under conditions sufficient to express the IL-15 (or IL-15 variant) and the IL-15Ra/Fc fusion protein; and purifying the IL-15:IL- 15Ra/Fc complex from the host cell or media.
- the invention provides a method of making an IL-15:IL-15Ra fusion protein complex containing an IL-15Ra/Fc fusion protein, the method involving co-expressing IL-15 (or IL-15 variant) and an IL-15Ra/Fc fusion protein in a host cell; culturing the host cell in media under conditions sufficient to express the IL-15 (or IL-15 variant) and the IL-15Ra/Fc fusion protein; and purifying the IL-15:IL-15Ra/Fc fusion protein complex from the host cell or media.
- the invention provides a method of making an IL- 15N72D:IL-
- 15RaSu/Fc fusion protein complex involving co-expressing IL-15N72D and an IL-15RaSu/Fc fusion protein in a host cell; culturing the host cell in media under conditions sufficient to express the IL-15N72D and the IL-15RaSu/Fc fusion protein; and purifying the IL- 15N72D:IL-15RaSu/Fc fusion protein complex from the host cell or media where both IL-15 binding sites of the IL-15N72D:IL-15RaSu/Fc complex are fully occupied.
- the invention provides a cell containing a first polynucleotide encoding IL-15 or an IL-15 variant and a second polynucleotide encoding an IL-15 receptor fusion protein.
- the cell comprises a first expression vector encoding IL- 15N72D and a second expression vector encoding an IL-15RaSu/Fc fusion protein.
- the invention provides an isolated fully occupied IL-15N72D:IL-
- the 15RaSu/Fc complex containing a dimeric IL-15RocSu/Fc and two IL-15N72D molecules.
- the complex is at least 90 -95% or more purified fully occupied; has an
- BOS2 887851.1 11 isoelectric point between 5.6 to 6.5; has a molecular weight of about 114 kDa; and/or is glycosylated on either or both the IL-15N72D and IL-15RaSu/Fc polypeptides.
- the invention provides an isolated fully occupied IL-15N72D:IL- 15RaSu/Fc complex produced according to any method of expression and purification delineated herein.
- the invention provides a method of modulating (e.g., increasing or decreasing) an immune response in a subject, the method involving administering to the subject a fully occupied IL-15N72D:IL-15RaSu/Fc complex.
- the invention provides a method of enhancing an immune response in a subject having neoplasia, the method involving administering to the subject the fully occupied IL-15N72D:IL-15RaSu/Fc complex .
- the IL-15Ra fusion protein comprises soluble IL-15Ra covalently linked to a biologically active polypeptide (e.g., the heavy chain constant domain of IgG, an Fc domain of the heavy chain constant domain of IgG).
- IL-15 comprises IL-15 covalently linked to a second biologically active polypeptide.
- purifying the IL-15:IL-15Ra complex from the host cell or media involves capturing the IL-15:IL-15Ra complex on an affinity reagent that specifically binds the IL-15:IL-15Ra fusion protein complex.
- the IL-15Ra fusion protein contains an IL-15Ra/Fc fusion protein and the affinity reagent specifically binds the Fc domain.
- the affinity reagent is Protein A or Protein G.
- the affinity reagent is an antibody.
- purifying the IL- 15:IL-15Ra complex from the host cell or media comprises ion exchange chromatography.
- purifying the IL-15:IL-15Ra complex from the host cell or media comprises size exclusion chromatography.
- the IL-15Ra comprises IL- 15RaSushi (IL-15RaSu).
- the IL-15 is a variant IL-15 (e.g., IL- 15N72D).
- the IL-15 binding sites of the IL-15:IL-15Ra complex are fully occupied.
- both IL-15 binding sites of the IL-15:IL-15RaSu/Fc complex are fully occupied.
- the IL-15:IL-15Ra complex is purified based on the complex charge or size properties.
- the fully occupied IL- 15N72D:IL-15RaSu/Fc fusion protein complex is purified by anion exchange chromatography based on the complex charge properties.
- the fully occupied IL- 15N72D:IL-15RaSu/Fc fusion protein complex is purified using a quaternary amine-based
- kits including one or more of the soluble fusion protein complexes of the invention, one or more specific reagents (e.g., a nucleotide encoding one or more soluble fusion protein complexes of the invention) for making the soluble fusion protein complexes of the invention, and/ or specific materials for using one or more soluble fusion protein complexes of the invention.
- Materials in kits are provided in appropriate packaging, typically with instructions for use.
- T2M fusion protein referred to as the T2 molecule
- Figure 2 shows the vector (pMC.c264scTCR-Su/IgGl.PUR) containing the correct human IL15RaSushi gene insert.
- Figure 3 shows the sequence of the c264scTCR/huIL15RaSushi/huIgGl nucleic acid sequence.
- Figure 4 shows the protein sequence of the c264scTCR/huIL15RaSushi/huIgGl peptide.
- Figure 5 shows the vector designated as c264scTCR/Sushi/hIgGl-pMSGVc or pMSGVc264SuIg.
- Figure 6 shows the sequence of the c264scTCR/huIL15RaSushi/huIgGl nucleic acid sequence.
- Figure 7 shows the protein sequence of the c264scTCR/huIL15RaSushi/huIgGl peptide.
- Figure 8 shows the vector designated as cl49scTCR/IL15N72D-pMSGVn or pMSGV-cl49IL15N72D.
- Figure 9 shows the sequence of the cl49scTCR/huIL15N72D nucleic acid sequence.
- Figure 10 shows the protein sequence of the cl49scTCR/huIL15N72D peptide.
- FIG 11 shows an SDS-PAGE analysis of purification fractions of the T2, c264scTCR/huIgGl and c264scTCR/huIgGlACHl fusion proteins under reducing and non- reducing conditions.
- the T2 molecule bands migrate at molecular weights consisted with the c264scTCR/huIL15 and c264scTCR/huIL15RaSushi/huIgGl polypeptides.
- the T2 molecule bands migrate at molecular weights consisted with the c264scTCR/huIL15 and c264scTCR/huIL15RaSushi/huIgGl polypeptides.
- the non-reducing denaturing conditions the
- c264scTCR/huIL15RaSushi/huIgGl band migrates at a molecular weight consistent with a dimeric disulfide-linked c264scTCR/huIL15RaSushi/huIgGl complex and a
- FIG. 12 shows results from size exclusion gel filtration chromatography demonstrating that the native T2 protein eluted at the expected molecular weight of a four- chain (2 x c264scTCR/IL15N72D, 2 x c264scTCR/huIL15RaSushi/huIgGl) molecule.
- Figure 13 shows results from an in vitro binding assay in which equimolar amounts of purified T2 protein, composed of c264scTCR/huIL15N72D and
- c264scTCR/huIL15RaSushi/huIgGl chains or purified c264scTCR/huIgGl fusion protein were captured on wells coated with anti-human IgGl antibody. Following binding, proteins were detected using anti-human IgGl antibody under standard ELISA conditions.
- Figure 14 shows results from an in vitro binding assay in which equimolar amounts of T2 or c264scTCR/huIgGl proteins were captured on anti -human IgGl Ab coated wells and detected with an anti-human TCR C antibody (W4F).
- Figure 15 shows results from an in vitro binding assay in which the peptide/MHC binding activity of the TCR domains of the T2 molecule was assessed.
- Equimolar amounts of T2 (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains) or c264scTCR/huIgGl proteins were captured on anti-human IgGl Ab coated wells and detected with p53 (aa 264-272) peptide/HLA-A2 streptavidin-HRP tetramers.
- Figure 16 shows results from an in vitro assay to demonstrate the activity of the IL-15 domain of the T2 molecule.
- Microtiter wells were coated with anti-human IL-15 antibody and equivalent molar amounts of purified T2 protein, composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains, or purified c264scTCR/huIL15N72D fusion protein were applied to the wells. Following binding and washing steps, the bound proteins were detected with anti-human IL-15 antibody under standard ELISA conditions.
- FIG. 17 shows the results from a proliferation assay to further characterize the functional activity of the IL-15 domain of the T2 molecules using the cytokine-dependent 32 ⁇ cell line.
- 32D cells (2 x 10 4 cells/well) were incubated with increasing concentrations of T2 protein (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains) or c264scTCR/huIL15N72D fusion protein for 48 h at 37°C.
- Cell proliferation reagent WST-1 (Roche® Applied Science) was added during the last 4 h of cell growth according to the manufacturer's procedures.
- FIGS. 18A-B show the results from an in vivo primate model to determine the ability of the T2 protein to promote proliferation of IL-15 responsive immune cells. Blood was collected five days after injection with T2 protein and was stained for CD8 memory T cells markers (CD 8 and CD95) (A) and NK cell markers (CD56 and CD16) (B) and compared to blood taken prior to treatment.
- Figures 19A-B show cell binding assays characterizing the binding activity of the
- IgGl Fc domain of the T2 molecule IgGl Fc domain of the T2 molecule.
- A. Flow cytometry analysis showing results from an assay in which Fc-gamma receptor bearing U937 cells were incubated with 33 nM of T2 protein (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains), c264scTCR/huIgGl or A2AL9scTCR/IgGl (negative control) for 20 min. Cells were washed once and incubated with PE-conjugated p53 (aa 264-272) peptide/HLA-A2 tetramer for 20 min.
- HLA-A2 -positive T2 target cells were pulsed with 10 ⁇ of p53 aa264-272 peptide and labeled with 50 ⁇ g/ml of Calcein-AM.
- the fusion proteins were mixed with lxl0 4 of the target cell per well and lxl0 6 /well of fresh human PBMC were added. The plate was incubated at 37°C in a CO 2 incubator for 2 hrs and
- BOS2 887851.1 15 100 ⁇ of the conditional medium were collected and analyzed quantitatively for Calcein released from lysed cells.
- Figures 21A and B show results from an assay in which HLA-A2 -positive T2 cells were pulsed with various amounts of p53 aa264-272 peptide to assess the binding activity of T2 protein to peptide/MHC targets on cell surface.
- the peptide-loaded cells were incubated with T2 protein (composed of c264scTCR/huIL15N72D and
- c264scTCR/huIL15RaSushi/huIgGl chains c264scTCR/huIgGl or A2AL9scTCR/IgGl (negative control), each at 83 nM.
- the cells were incubated with biotinylated anti-TCR Ab (BF1) and streptavidin-PE. The cells were then analyzed for antibody staining by flow cytometry for A and the mean fluorescence staining intensity of the cells loaded different concentrations of peptide are plotted for B.
- FIG 22 shows the results from an ELISA in which T2 molecules of
- c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl were captured on microtiter plates coated with the anti -human TCR antibody BF1, and the bound T2 molecules were detected using the anti-human TCR antibody W4F- BN.
- FIG. 23 shows the results from an ELISA in which T2 molecules of
- c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl were captured on microtiter plates coated with the goat anti -human IgG antibody, and bound T2 molecules were detected using the anti-human IL-15 antibody.
- FIG. 24 shows the results from an ELISA in which T2 molecules of
- cl49scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl were captured on microtiter plates were coated with either goat anti-human IgG antibody or anti-human TCR antibody BF1.
- the BF1 -captured T2 molecules were detected with either anti-human TCR antibody W4F-BN or anti-human IL-15 antibody.
- the goat anti- human IgG Ab-captured T2 molecules were detected with either the p53 (aa 149-157) peptide/HLA-A2 streptavidin-HRP tetramers or the p53 (aa 264-272) peptide/HLA-A2 streptavidin-HRP tetramers.
- Figure 25 shows results from a flow cytometry assay in which T2 molecules comprising two different TCR domains, i.e. c264scTCR/huIL15N72D and
- the Fc and TCR activity of these molecules were assessed following binding to Fc-gamma receptor bearing U937 cells and detection with p53 (aa 264-272) peptide/HLA-A2 tetramers followed by flow cytometry.
- Figures 26A and B show the results from pharmacokinetic assay in which A. mice or B. monkeys were injected with purified T2 protein composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains. Samples were collected at the indicated times.
- B. Anti -human IgG Ab was used to coat the wells
- anti-human TCR Ab W4F-BN
- goat anti-human IgG Ab was used to coat the plates
- anti-human IL-15 Ab was used for detection as indicated to quantify the amount of the T2 protein
- TCR Ab F-l was used to coat the wells, and HRP conjugated goat anti-human IgG Ab was used for detection; or anti-human IL-15 Ab was used to coat the plates, and HRP conjugated goat anti -human IgG Ab was used for detection; or anti-human IL-15 Ab was used to coat the plates and anti-human TCR Ab (W4F-BN) was used for detection.
- Figure 27 shows results from a primary tumor growth model using a human p53+
- HLA-A2+ A375 melanoma cell line in nude mice Tumor-bearing mice were injected intravenously with 32 ⁇ g/dose (1.6 mg/kg) T2 protein composed of c264scTCR/huIL15N72D and c264scTCR huIL15RaSushi/huIgGl chains, 32 ⁇ g/dose (1.6 mg/kg) c264scTCR/huIL2, or 60 ⁇ g/dose (3 mg/kg) 264scTCR/huIgGl. Tumor growth was measured and data are shown in the figure.
- Figure 28 shows the results from IL-15 activity assays of T2 molecules with various point mutations in the IL-15 domain as measured by proliferation of 32 ⁇ cells.
- Figure 29 shows results from an antibody dependent cellular cytotoxicity assay using T2 molecules with various point mutations in the IL-15 and IgG Fc domains as measured by PBMC-dependent lysis of peptide-loaded T2 target cells.
- Figure 30 shows results from an assay to detect the effects of the IL-15 and Fc mutations on the ability of the T2 molecules to stimulate human NK and T cell responses.
- Human PBMCs at 1.8 to 5 x 10 5 cells/mL were incubated for 4 days at 37°C in media containing 1 nM T2 molecules comprising the mutations indicated or with 10 ng/mL recombinant human IL-2 or IL-15 as a control.
- NK cell cytotoxicity was then assessed using NK-sensitive K-562 cells as target cells following labeling with 50 ug/ml of Calcein-AM.
- FIG. 31 shows results from NK cell proliferation assay in which human PBMCs were incubated with T2 molecules comprising various point mutations in the IL-15 and IgG Fc domains or with recombinant human IL-2 or IL-15 as a control.
- T2 molecules comprising the c264scTCR/huIL15RaSushi/huIgGl and c264scTCR/huIL15N72D chains or those with the Fc domain LALA and KA variants resulted in an increase in proliferation of CD56+ NK cells whereas T2 molecules comprising IL-15 N65D or D8N substitutions did not provide as much NK cell proliferative activity.
- Figures 32 A and B show results from flow cytometry assays to test the antigen specific binding of T2 molecules including IL-15 and Fc mutations toT2 cells with (T2.265) and without loaded p53 peptide (T2).
- A shows flow cytometry histograms and B shows signal to noise ratio of peptide-specific to non-specific cell staining.
- Figures 33 A to C show results from assays to detect the activity of various T2 molecules and IL-15 molecules A. to support 32 ⁇ cell growth, B. to stimulate expansion of various T cell populations, and C. to stimulate NK cell activity.
- Figure 34 shows results from an in vivo assay to determine the immunostimulatory activity of various T2 molecules in mice as indicated by changes in the percentage of CD8+ T-cells and NK cells in blood and spleen cells as detected using flow cytometry.
- Figures 35 A and B show results from an ELISA using a multispecific T2 molecule comprising 1) the huIL15N72D domain fused to a scTCR specific to the peptide from amino acids 257-264 of ovalbumin and 2) a single chain CD8a/p domain linked to the
- Binding activity of OT1-CD8-T2M was compared to that of the OTlscTCR/huIL15N72D fusion by ELISA. Equal molar amounts of each protein was captured on a well coated with anti-TCR C mAb (H57) and probed with OVA aa257- 264/H-2Kb tetramers or mAbs to IL15, CD8a, CD8 or TCR Va2. Assays were also preformed with wells coated with anti-human Ig and probed with anti-TCR Va2.
- Figure 36 shows a schematic diagram of the c264scTCR/hIL-15:c264scTCR/hIL- 15RaSu/birA complex (c264scTCR dimer).
- the model of the dimeric L-15:hIL-15RaSu domains is based on the published crystal structure of the human IL-15:IL-15Ra complex (33) (PDB 2Z3Q)
- B. shows SEC analysis of c264scTCR fusion proteins. Panels show size analysis of c264scTCR/hIL- 15 (top), c264scTCR/hIL-5RaSu/birA (middle) and
- BOS2 887851.1 lg Figure 37 shows characterization of the binding activity of the c264scTCR dimer comprising the c264scTCR/hIL-15:c264scTCR/hIL-15RaSu/birA complex and
- c264scTCR/cl49scTCR heterodimer comprising the cl49scTCR/hIL-15:c264scTCR/hIL- 15RaSu/birA complex.
- A. T2 cells were pulsed with 0-62.5 nM of p53 (aa264-272) peptide. The cells were stained with equivalent amounts (80 nM) of PE-conjugated multimers of the c264scTCR dimer or c264scTCR/birA.
- Fold increase (Geo mean of T2 cells stained by c264scTCR dimer) / (Geo Mean of T2 cells stained by c264scTCR/birA).
- C. The p53 peptide/HLA-A*0201 binding activity of c264scTCR/c 149scTCR heterodimer was determined by ELISA.
- Anti-hIL- 15 monoclonal antibody (R&D System) was used as a capturing antibody.
- A2/p53.264- 272.HRP or A2/p53.149-157.HRP tetramers were used as the probes. The data represent the means + SD of triplicate determinations.
- Figure 38 shows the characterization of the binding activity of the OTlscTCR dimer comprising the OT 1 scTCR/hIL- 15 : OT 1 scTCR/hIL- 15RaSu/bir A complex.
- EL4 cells were loaded with OVA (aa257-264) peptide and stained with OTlscTCR/birA-SA-PE (top) and OTlscTCR dimer-SA-PE (bottom) at 200 nM.
- Figure 39 shows OTscTCR/scCD8 heterodimer comprising the OTlscTCR/hlL- 15:scCD8/hIL-15RaSu/birA complex exhibits enhanced pMHCI binding activity.
- Murine CD8 expression of OTlscTCR/scCD8 heterodimer was determined by ELISA.
- Anti- mTCR H57-597 mAb was used as capturing antibody.
- the biotinylated anti-murine CD8a or CD8 mAb was used as a probe followed by SA-HRP.
- the data represent the means + SD of triplicate determinations.
- B. EL4 cells were loaded with OVA (aa257-264) peptide at the indicated concentration and stained with OTlscTCR dimer-SA-PE (top) and
- TCRa/hIL-15:TCR /hIL-15RaSu/birA complex retain pMHCI binding activity.
- B Binding activity of 264scTCR/birA and 264 TCRa/ ⁇ heterodimer to p53 (aa264-272)/HLA-A*0201 complex was determined by ELISA. Anti-TCR mAb was used as capturing antibody. A2/p53.264-
- Figure 41 shows IL-15 binding and functional activity of fusion protiens.
- Figure 42 shows OVA (aa257-264)/H-2K b binding activity of OTlscTCR/hlL-
- Figure 43 shows OTlscTCR fusion protein binding curves to OVA (aa257-264)/H- 2K b and control VSV/H-2K b complexes determined by SPR.
- Figure 44A and B shows results from a primary tumor growth model using murine B16 tumor cell line in immunocompetent mice.
- Tumor-bearing mice were injected intravenously with rhIL-15, T2M, T2MACH1 and T2MATCRACH1 proteins or PBS (control). Tumor growth was measured and data are shown in A. Post treatment changes in animal body weight are shown in B.
- Figure 45A and B shows results from a primary tumor growth model using murine EG7 tumor cell line in immunocompetent mice.
- Tumor-bearing mice were injected intravenously with rhIL-15, T2M and T2MATCRACH1 proteins or PBS (control). Tumor growth was measured and data are shown in A. Post treatment changes in animal body weight are shown in B.
- Figure 46 shows the protein sequence of the human IgGl CH2-CH3 domain or Fc domain covalently and/or genetically fused with other protein domains to generate the fusion protein complexes.
- Figure 47 shows results of an assay to determine the antibody dependent cellular cytotoxicity activity mediated by T2M and scTCR-huIgGl proteins against cells expressing peptide MHC targets.
- Various amounts of fusion protein T2M, T2M2 or c264scTCR-Ig
- BOS2 887851.1 20 were mixed with fresh human PBMCs and p53 peptide -pulsed HLA-A2-positive T2 cells (Calcein labeled) (E:T ratio, 40: 1). After 2 hr incubation, the culture medium was collected and analyzed quantitatively for Calcein released from lysed cells.
- Figure 48 shows results from in vivo assays to determine the immunostimulatory activity of various T2 molecules in mice.
- C57BL/6 mice were treated i.v. with equivalent molar IL-15 doses of hIL-15 (1 mg/kg), IL15N72D:IL15Ra-Fc (3.6 mg/kg), T2M (11 mg/kg), T2M2 (10 mg/kg) or an equivalent volume of PBS on study day 1.
- the mice were sacrificed and blood WBC counts and spleen weights were determined as shown in Panel A. Changes in the percentage of peripheral blood mononuclear cells (PBMC) CD8 + and NKp46 + cells were assessed flow cytometry as shown in Panel B.
- PBMCs were also used to assess NK cell activity based on lysis of NK-sensitive Yac-1 target cells in a calcein release assay as shown in Panel C.
- Figure 49 shows results from in vivo assays to determine the dose and temporal responses of various T2 molecules on immune activity in mice.
- A C57BL/6 mice were treated i.v. with equivalent molar IL-15 doses of hIL-15 (1 mg/kg), IL15N72D:IL15Ra-Fc (4 mg/kg), T2M2 (various doses) or an equivalent volume of PBS on study day 1. On study day 4, the percentage of PBMC CD8 + and NKp46 + cells were assessed by flow cytometry.
- B Nude mice were treated i.v. with IL15N72D/IL15Ra-Fc (0.2 mg/kg) or T2M2 (2 mg/kg) of study day 1. On day 4 and 7 post treatment, the percentage of PBMC NKp46 + cells was assessed by flow cytometry.
- Figure 50 shows results from a primary tumor growth model using a human p53+ HLA-A2+ A375 melanoma cell line in nude mice.
- A375 human melanoma tumor cells (1 x 10 6 ) were injected s.c. into nude mice (5-6/group). Tumors were allowed to establish and mice were treated i.v. with equivalent molar doses of IL-15 (0.35 mg/kg), scTCR-IL15 fusions (1.6 mg/kg), scTCR-IL15/scTCR-IL15Ra complex (3.2 mg/kg), or PBS. The mice were treated three times a week for three weeks starting on study day 11.
- B. A375-tumor bearing nude mice were also treated i.v.
- FIG. 51 shows the nucleic acid sequence of c264scTCR/huIL15RaSushi/huIgGl
- CH2-CH3 (Fc) construct also referred to as T2MATCRACH1 and T2M2.
- c264scTCR/huIL15RaSushi/huIgGl CH2-CH3 (Fc) fusion protein also referred to as T2MATCRACH 1 and T2M2.
- Figure 53 shows the nucleic acid sequence of anti-CD20 scAb/hIL-15N72D construct.
- Figure 54 shows the protein sequence of the mature anti-CD20 scAb/hIL-15N72D fusion protein.
- Figure 55 shows the nucleic acid sequence of anti-CD20 scAb/huIL-15RaSu/huIgGl Fc construct.
- Figure 56 shows the protein sequence of the mature anti-CD20 scAb/huIL- 15RaSu/huIgGl Fc fusion protein.
- Figure 57 show results from flow cytometry assays to test the CD20 antigen specific binding of anti-CD20 scAb T2M molecules to Daudi cells.
- Figure 58 shows results of an assay to determine the antibody dependent cellular cytotoxicity activity mediated by anti-CD20 scAb T2Ms against CD20 + human tumor cells.
- Various amounts of fusion protein (anti-CD20 scAb T2M, c264scTCR T2M (negative control) or chimeric anti-CD20 mAb (positive control)) were mixed with fresh human PBMCs (from 2 different donors) and Daudi cells (Calcein labeled) (E:T ratio, 100: 1). After an incubation period, the culture medium was collected and analyzed quantitatively for Calcein released from lysed cells.
- Figure 59 shows results of an assay to determine the antibody dependent cellular cytotoxicity activity mediated by anti-CD20 scAb T2Ms against CD20 + human tumor cells.
- Fusion proteins anti-CD20 scAb T2M, c264scTCR T2M (negative control) or chimeric anti- CD20 mAb (positive control)
- PBMCs fresh human PBMCs
- Daudi cells Daudi cells
- Figure 60 shows the nucleic acid sequence of anti-CD20 light chain V domain/human kappa constant domain/hIL-15N72D construct.
- Figure 61 shows the protein sequence of the mature anti-CD20 light chain V domain/human kappa constant domain/hIL-15N72D fusion protein.
- Figure 63 shows the protein sequence of the mature anti-CD20 heavy chain V domain/human IgGl CHI domain/huIL-15RaSu/huIgGl Fc fusion protein.
- Figure 64 is a schematic drawing of the IL-15N72D:IL-15RaSu/Fc complex consisting IL-15N72D noncovalently associated with the dimeric IL-15RocSu/Fc fusion protein.
- Figure 65 are photographs of gel electrophoresis analysis profiles of IL- 15N72D:IL-15RaSu/Fc preparations.
- A IEF pH 3-10 gel analysis. Lane 1, IEF Marker. Lane 2, IL-15N72D:IL-15RaSu/Fc complex purified by rProtein A column. Lane 3, IL- 15RaSu/Fc. Lane 4, IL-15wt.
- B IEF pH3- 10 gel analysis. Lane 1 , IEF Marker. Lane 2, IL-15N72D:IL-15RaSu/Fc complex purified by Q step 1 elution. Lane 3, Qlc by Q step 2 elution. Lane 4, Q2c by Q step 2 elution.
- Figure 66 is a graph of a SEC chromatogram using Superdex 200 HR 10/30 gel filtration column. The purified IL-15N72D:IL-15Roc/Fc complex was eluted as a single peak.
- Figures 67 is a graph showing a comparison of the pharmacokinetic profile of IL- 15wt and IL-15N72D:IL-15RocSu/Fc complex following intravenous administration in CD-I mice.
- the anti-IL-15 Ab ELISA measures the concentration of IL-15wt ( ⁇ ).
- the anti-IL-15 Ab ELISA measures the concentration of the intact IL-15N72D:IL-15RocSu/Fc molecule ( ⁇ ), whereas the anti-human IgG Fc Ab ELISA measures serum concentration of the IL-
- Figure 68 is a graph showing a comparison of the biological activity of the in vitro assembled IL-15N72D:IL-15RaSu/Fc (IL-15N72D:IL-15RaSu/Fc IV A) with IL- 15N72D:IL-15RocSu/Fc.
- 320 ⁇ cells were incubated with increasing concentrations of the in vitro assembled IL-15N72D:IL-15RaSu/Fc ( ⁇ ) or IL-15N72D:IL-15RaSu/Fc ( ⁇ ) for 72 h prior to addition of WST-1 for 4 h.
- Cell proliferation was quantitated by absorbance reading
- the data points shown are means (+ standard error) of triplicate samples and the lines represent sigmoidal dose-response curve fit for EC5 0 determination.
- the results are representative of at least three experiments.
- Figure 69 is a set of graphs showing the effect of IL-15wt and IL-15N72D:IL- 15RaSu/Fc complex on spleen weight and white blood cell levels.
- C57BL/6 mice (5 mice per group) were injected intravenously with a single dose of IL-15N72D:IL-15RaSu/Fc fusion complex at 1 mg/kg IL-15wt at 0.28 mg/kg (molar equivalent dose), or PBS as a negative control.
- Figure 70 is a set of graphs showing the effect of IL-15wt and IL-15N72D:IL- 15RaSu/Fc complex on mouse lymphocytes.
- C57BL/6 mice (5 mice per group) were injected intravenously with a single dose of IL-15N72D:IL-15RaSu/Fc fusion complex at 1 mg/kg, IL-15wt at 0.28 mg/kg (molar equivalent dose), or PBS as a negative control.
- B cells CD19
- CD4 T cells CD4 T cells
- NKp46 NK cells
- CD8 T cells CD8 T cells
- compositions and methods include the recited elements, but do not exclude other elements.
- Consisting essentially of when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination. Thus, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and pharmaceutically acceptable carriers, such as phosphate buffered saline, preservatives, and the like.
- Consisting of shall mean excluding more than trace elements of other ingredients and substantial method steps for administering the
- IL-15:IL-15Ra fusion protein complex is a complex having IL-15 non-covalently bound to the IL-15Ra domain of a soluble IL-15Ra covalently linked to a biologically active polypeptide.
- the IL-15 can be either IL-15 or IL-15 covalently linked to a second biologically active polypeptide.
- co-expressed is intended to mean that two distinct polypeptides are expressed simultaneously in a host cell such that the two polypeptides can interact or bind either in the host cell or in the host cell culture medium and form a complex.
- affinity reagent is intended to mean any composition that specifically binds to another molecule.
- affinity regents include polyclonal antibodies, monoclonal antibodies, Protein A, and Protein G.
- an “antibody” is any immunoglobulin, including antibodies and fragments thereof, that binds a specific epitope.
- the term encompasses polyclonal, monoclonal, chimeric, Fabs, Fvs, single-chain antibodies and single or multiple immunoglobulin variable chain or CDR domain designs as well as bispecific and multispecific antibodies.
- antigen as used herein is meant any substance that causes the immune system to produce antibodies or specific cell-mediated immune responses against it.
- a disease associated antigen is any substance that is associated with any disease that causes the immune system to produce antibodies or a specific-cell mediated response against it.
- biologically active polypeptide as used herein is meant to refer to an amino acid sequence such as a protein, polypeptide or peptide; a sugar or polysaccharide; a lipid or a glycolipid, glycoprotein, or lipoprotein that can produce the desired effects as discussed herein, including a TCR or antibody with antigen binding activity, a CD molecule including CD8 or an antibody domain including an Fc domain.
- cell as used herein is meant to include any prokaryotic, eukaryotic, primary cell or immortalized cell line, any group of such cells as in, a tissue or an organ.
- the cells are of mammalian and particularly of human origin, and can be infected by one or more pathogens.
- a "host cell” in accord with the invention can be a transfected, transformed, transduced or infected cell of any origin, including prokaryotic, eukaryotic, mammalian, avian, insect, plant or bacteria cells, or it can be a cells of any origin that can be used to propagate a nucleic acid described herein.
- conjugate molecule as it is used herein is meant to refer to a TCR or antibody molecule and an effector molecule usually a chemical or synthesized molecule covalently linked (i.e. fused) by chemical or other suitable method. If desired, the conjugate molecule can be fused at one or several sites through a peptide linker sequence or a carrier molecule. Alternatively, the peptide linker or carrier may be used to assist in construction of the conjugate molecule. Specifically preferred conjugate molecules are conjugate toxins or detectable labels.
- effector molecule as used herein is meant to refer to an amino acid sequence such as a protein, polypeptide or peptide; a sugar or polysaccharide; a lipid or a glycolipid, glycoprotein, lipoprotein or chemical agent that can produce the desired effects as discussed herein, including an IL-15 domain, IL-15 variant or IL-15 receptor such as IL-15R- alpha, IL-15RaSu, IL-15Ra exon 3 deletion, IL-2R-beta or gamma-C, or functional fragments thereof and such polypeptides further comprising an immunoglobulin Fc domain or a functional fragment thereof.
- fusion molecule and “fusion protein” are used interchangeably and are meant to refer to a biologically active polypeptide usually a TCR or antibody and an effector molecule usually a protein or peptide sequence covalently linked (i.e. fused) by recombinant, chemical or other suitable method.
- the fusion molecule can be fused at one or several sites through a peptide linker sequence.
- the peptide linker may be used to assist in construction of the fusion molecule.
- fusion molecules are fusion proteins.
- fusion molecule also can be comprised of conjugate molecules.
- host cell is meant to refer to any prokaryotic or eukaryotic cell that contains either a cloning vector or an expression vector. This term also includes those prokaryotic or eukaryotic cells that have been genetically engineered to contain the cloned gene(s) in the chromosome or genome of the host cell.
- immune response refers to the process whereby immune cells are stimulated and/or recruited from the blood to lymphoid as well as non- lymphoid tissues via a multifactorial process that involves distinct adhesive and/or activation steps.
- Activation conditions cause the release of cytokines, growth factors, chemokines and other factors, upregulate expression of adhesion and other activation molecules on the immune cells, promote adhesion, morphological changes, and/or extravasation concurrent with chemotaxis through the tissues, increase cell proliferation and cytotoxic activity,
- BOS2 887851.1 26 stimulate antigen presentation and provide other phenotypic changes including generation of memory cell types.
- Immune response is also meant to refer to the activity of immune cells to suppress or regulate inflammatory or cytotoxic activity of other immune cells. Immune response refers to the activity of immune cells in vivo or in vitro.
- polynucleotide and “nucleic acid molecule” are used interchangeably to refer to polymeric forms of nucleotides of any length.
- the polynucleotides may contain deoxyribonucleotides, ribonucleotides, and/or their analogs. Nucleotides may have any three-dimensional structure, and may perform any function, known or unknown.
- polynucleotide includes, for example, single-, double- stranded and triple helical molecules, a gene or gene fragment, exons, introns, mRNA, tRNA, rRNA, ribozymes, antisense molecules, cDNA, recombinant polynucleotides, branched polynucleotides, aptamers, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.
- a nucleic acid molecule may also comprise modified nucleic acid molecules (e.g., comprising modified bases, sugars, and/or internucleotide linkers).
- polypeptide is meant to refer to any polymer preferably consisting essentially of any of the 20 natural amino acids regardless of its size.
- protein is often used in reference to relatively large proteins, and “peptide” is often used in reference to small polypeptides, use of these terms in the field often overlaps.
- polypeptide refers generally to proteins, polypeptides, and peptides unless otherwise noted.
- Peptides useful in accordance with the present invention in general will be generally between about 0.1 to 100 KD or greater up to about 1000 KD, preferably between about 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30 and 50 KD as judged by standard molecule sizing techniques such as centrifugation or SDS-polyacrylamide gel electrophoresis.
- the terms "prevent” , “preventing” , “prevention” , “prophylactic treatment” and the like are meant to refer to reducing the probability of developing a disorder or condition in a subject, who does not have, but is at risk of or susceptible to developing a disorder or condition. Prevention and the like do not mean preventing a subject from ever getting the specific disease or disorder. Prevention may require the administration of multiple doses. Prevention can include the prevention of a recurrence of a disease in a subject for whom all disease symptoms were eliminated, or prevention of recurrence in a relapsing- remitting disease.
- Single chain antibody is meant to refer to an antibody based on a single chain format.
- Single chain antibodies can consist of the minimal binding subunit of antibodies.
- Single-chain antibodies can combine only those antigen-binding regions (e.g., all or some of the complement determining regions, CDRs present in the heavy chain variable region and/ or the light chain variable region) of antibodies on a single stably-folded polypeptide chain.
- single-chain antibodies are of considerably smaller size than classical immunoglobulins but retain the antigen-specific binding properties of antibodies.
- Single chain antibodies may be linked to a wide range of ligands, for example effector molecules or drug conjugates.
- soluble as used herein is meant that the fusion molecule and particularly a fusion protein that is not readily sedimented under low G-force centrifugation (e.g. less than about 30,000 revolutions per minute in a standard centrifuge) from an aqueous buffer, e.g., cell media. Further, the fusion molecule is soluble if it remains in aqueous solution at a temperature greater than about 5-37°C and at or near neutral pH in the presence of low or no concentration of an anionic or non- ionic detergent. Under these conditions, a soluble protein will often have a low sedimentation value e.g., less than about 10 to 50 svedberg units.
- Aqueous solutions referenced herein typically have a buffering compound to establish pH, typically within a pH range of about 5-9, and an ionic strength range between about 2 mM and 500 mM, Sometimes a protease inhibitor or mild non-ionic detergent is added. Additionally, a carrier protein may be added if desired such as bovine serum albumin (BSA) to a few mg/ml.
- aqueous buffers include standard phosphate buffered saline, tris- buffered saline, or other well-known buffers and cell media formulations.
- stimulation or “stimulating” is meant to refer to increase, to amplify, to augment, to boost a physiological activity, e.g., an immune response. Stimulation can be a positive alteration.
- An exemplary increase can be e.g., by 5%, 10%, 25%, 50%, 75%, or even 90-100%.
- Other exemplary increases include 2-fold, 5-fold, 10-fold, 20-fold, 40-fold, or even 100-fold.
- suppress or “suppressing” is meant to refer to decrease, to attenuate, to diminish, to arrest, or to stabilize a physiological activity, e.g., an immune response.
- Suppression may be a negative alteration.
- An exemplary decrease can be e.g., by 5%, 10%, 25%, 50%, 75%, or even 90-100%.
- Exemplary decreases include 2-fold, 5-fold, 10-fold, 20- fold, 40-fold, or even 100-fold.
- T-cell Receptor is meant to refer to polypeptides of or derived from a complex of integral membrane proteins that participates in the activation of T cells in response to the presentation of antigen.
- T cells recognize a peptide bound to the MHC product through the ⁇ or ⁇ -heterodimeric T cell receptor (TCR).
- TCR T cell Receptor
- the TCR repertoire has extensive diversity created by the same gene rearrangement mechanisms used in antibody heavy and light chain genes [Tonegawa, S. (1988) Biosci. Rep. 8:3-26].
- TCRs do not undergo somatic point mutations as do antibodies and, perhaps not coincidentally. TCRs also do not undergo the same extent of affinity maturation as antibodies. TCRs as they occur in nature appear to have affinities that range from 10 5 to 10 7 M "1 , whereas antibodies typically have affinities that range from 10 5 to 10 9 M "1 [Davis et al. (1998) Annu. Rev. Immunol. 16:523-544; Eisen et al.
- TCR encompasses polyclonal, monoclonal, chimeric, humanized, heterodimeric and single-chain T-cell receptors or functional fragment thereof, including molecule comprising the TCR Voc and ⁇ domains.
- TCR also encompasses T-cell receptors disclosed in for example, US Provisional Application Entitled “T CELL RECEPTOR FUSIONS AND CONJUGATES AND METHODS OF USE THEREOF", filed Mar. 19, 2008 and US Patent Publication US 20030144474.
- vector is a nucleic acid molecule that is able to replicate autonomously in a host cell and can accept foreign DNA.
- a vector carries its own origin of replication, one or
- BOS2 887851.1 29 more unique recognition sites for restriction endonucleases which can be used for the insertion of foreign DNA, and usually selectable markers such as genes coding for antibiotic resistance, and often recognition sequences (e.g. promoter) for the expression of the inserted DNA.
- Common vectors include plasmid vectors and phage vectors.
- the terms "Fc domain” or "Fc region” is meant to refer to the immunoglobulin heavy chain "fragment crystallizable" region. Generally, an Fc domain is capable of interacting with a second Fc domain to form a dimeric complex.
- the Fc domain may be capable of binding cell surface receptors called Fc receptors and/or proteins of the complement system or may be modified to reduce or augment these binding activities.
- the Fc domain may be derived from IgG, IgA, IgD, IgM or IgE antibody isotypes and effect immune activity including opsonization, cell lysis, degranulation of mast cells, basophils, and eosinophils, and other Fc receptor-dependent processes; activation of the complement pathway; and protien stability in vivo.
- IgG immunoglobulin
- h human
- IL interleukin
- R receptor
- Su sushi domain
- TCR T cell receptor
- sc single-chain
- sTNFR soluble tumor necrosis factor-a (TNF-a) receptor
- NK natural killer
- KD equilibrium dissociation constant
- CTLs cytotoxic T lymphocytes
- aa amino acid(s)
- OVA ovalbumin
- VSV vesicular stomatitis virus
- IMDM Iscove's modified Dulbecco's medium
- CHO Chinese hamster ovary
- mAb monoclonal antibody
- ⁇ 2 ⁇ ⁇ 2 microglobulin
- SA streptavidin
- HRP horse radish peroxidase
- PE phycoerythrin
- ABTS 2,2'-azinobis [3-ethylbenzothiazoline-6- sulfonic acid]- diammoni
- Ranges provided herein are understood to be shorthand for all of the values within the range.
- a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.
- Me than one is understood as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 100, etc., or any value therebetween.
- At least a specific value, is understood to be that value and all values greater than that value.
- the term "about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein can be modified by the term about.
- compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
- Immunoglobulins of IgG class are among the most abundant proteins in human blood.
- the prototype fusion protein is a homodimeric protein linked through cysteine residues in the hinge region of IgG Fc, resulting in a molecule similar to an IgG molecule without the heavy chain variable and CHI domains and light chains.
- the dimer nature of fusion proteins comprising the Fc domain may be advantageous in providing higher order interactions (i.e. bivalent or bispecific binding) with other molecules. Due to the structural homology, Fc fusion proteins exhibit in vivo pharmacokinetic profile comparable to that of human IgG with a similar isotype. To extend the circulating half-life of IL-15 or IL-15
- BOS2 887851.1 31 fusion protein and/or to increase its biological activity it is desirable to make fusion protein complexes containing the IL-15 domain non-covalently bound to IL-15Ra covalently linked to the Fc portion of the human heavy chain IgG protein as disclosed or described in this invention.
- Fc refers to molecule or sequence comprising the sequence of a non- antigen-binding fragment of whole antibody, whether in monomeric or multimeric form.
- the original immunoglobulin source of the native Fc is preferably of human origin and may be any of the immunoglobulins, although IgGl and IgG2 are preferred.
- Native Fc's are made up of monomeric polypeptides that may be linked into dimeric or multimeric forms by covalent (i.e., disulfide bonds) and non-covalent association.
- the number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from 1 to 4 depending on class (e.g., IgG, IgA, IgE) or subclass (e.g., IgGl, IgG2, IgG3, IgAl, IgGA2).
- class e.g., IgG, IgA, IgE
- subclass e.g., IgGl, IgG2, IgG3, IgAl, IgGA2
- One example of a native Fc is a disulfide-bonded dimer resulting from papain digestion of an IgG (see Ellison et al. (1982), Nucleic Acids Res. 10: 4071-9).
- native Fc as used herein is generic to the monomeric, dimeric, and multimeric forms. Fc domains containing binding sites for Protein A, Protein G, various Fc receptors and complement proteins
- the term "Fc variant” refers to a molecule or sequence that is modified from a native Fc but still comprises a binding site for the salvage receptor, FcRn.
- International applications WO 97/34631 (published Sep. 25, 1997) and WO 96/32478 describe exemplary Fc variants, as well as interaction with the salvage receptor, and are hereby incorporated by reference.
- the term “Fc variant” comprises a molecule or sequence that is humanized from a non-human native Fc.
- a native Fc comprises sites that may be removed because they provide structural features or biological activity that are not required for the fusion molecules of the present invention.
- the term "Fc variant” comprises a molecule or sequence that lacks one or more native Fc sites or residues that affect or are involved in (1) disulfide bond formation, (2) incompatibility with a selected host cell (3) N-terminal heterogeneity upon expression in a selected host cell, (4) glycosylation, (5) interaction with complement, (6) binding to an Fc receptor other than a salvage receptor, or (7) antibody-dependent cellular cytotoxicity (ADCC).
- ADCC antibody-dependent cellular cytotoxicity
- Fc domain encompasses native Fc and Fc variant molecules and sequences as defined above. As with Fc variants and native Fc's, the term “Fc domain” includes molecules in monomeric or multimeric form, whether digested from whole antibody or produced by recombinant gene expression or by other means.
- T-cells are a subgroup of cells which together with other immune cell types
- T-cells (polymorphonuclear, eosinophils, basophils, mast cells, B-cells, NK cells), constitute the cellular component of the immune system.
- T-cells function in immune surveillance and in the elimination of foreign antigen.
- pathological conditions there is compelling evidence that T-cells play a major role in the causation and propagation of disease. In these disorders, breakdown of T-cell immunological tolerance, either central or peripheral is a fundamental process in the causation of autoimmune disease.
- the TCR complex is composed of at least seven transmembrane proteins.
- the disulfide-linked ( ⁇ or ⁇ ) heterodimer forms the monotypic antigen recognition unit, while the invariant chains of CD3, consisting of ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ chains, are responsible for coupling the ligand binding to signaling pathways that result in T-cell activation and the elaboration of the cellular immune responses.
- CD3 the invariant chains of CD3, consisting of ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ chains, are responsible for coupling the ligand binding to signaling pathways that result in T-cell activation and the elaboration of the cellular immune responses.
- two structural features are common to all known subunits. Firstly, they are transmembrane proteins with a single transmembrane spanning domain-presumably alpha-helical. Secondly, all the TCR chains have the unusual feature of possessing a charged amino acid within the predicted transmembrane domain.
- the invariant chains have a single negative charge, conserved between the mouse and human, and the variant chains possess one (TCR- ⁇ ) or two (TCR-a) positive charges.
- TCR- ⁇ The transmembrane sequence of TCR-a is highly conserved in a number of species and thus phylogenetically may serve an important functional role.
- the octapeptide sequence containing the hydrophilic amino acids arginine and lysine is identical between the species.
- a T-cell response is modulated by antigen binding to a TCR.
- TCR is a membrane bound heterodimer consisting of an a and ⁇ chain resembling an immunoglobulin variable (V) and constant (C) region.
- the TCR a chain includes a covalently linked V-a and C-a chain, whereas the ⁇ chain includes a V- ⁇ chain covalently linked to a C- ⁇ chain.
- the V- ⁇ and V- ⁇ chains form a pocket or cleft that can bind a superantigen or antigen in the context of a major histocompatibility complex (MHC) (known in humans as an HLA complex).
- MHC major histocompatibility complex
- TCR chains can also engineered as fusions to heterologous transmembrane domains for expression on the cell surface.
- TCRs may include fusions to CD3, CD28, CD8, 4-1BB and/or chimeric activation receptor (CAR) transmembrane or activation domains.
- CAR chimeric activation receptor
- TCRs can also be the soluble proteins comprising one or more of the antigen binding domains of ⁇ or ⁇ chains.
- TCRs may include the TCR variable domains or function fragments thereof with or without the TCR constant domains.
- Soluble TCRs may be heterodimeric or single-chain molecules.
- the soluble fusion protein and conjugate molecule complexes of the invention comprise at least two soluble fusion proteins.
- the first fusion protein comprises a first biologically active polypeptide covalently linked to interleukin-15 (IL-15) or functional fragment thereof; and the second fusion protein comprises a second biologically active polypeptide covalently linked to soluble interleukin-15 receptor alpha (IL-15Roc) polypeptide or functional fragment thereof, and wherein IL-15 domain of a first fusion protein binds to the soluble IL-15R0C domain of the second fusion protein to form a soluble fusion protein complex.
- Fusion protein complexes of the invention also comprise immunoglobulin Fc domain or a functional fragment thereof linked to one or both of the first and second fusion proteins.
- the Fc domains linked to the first and second fusion proteins interact to from a fusion protein complex.
- a fusion protein complex may be stabilized by disulfide bond formation between the immunoglobulin Fc domains.
- the soluble fusion protein complexes of the invention include an IL-15 polypeptide, IL-15 variant or a functional fragment thereof and a soluble IL-15Ra polypeptide or a functional fragment thereof, wherein one or both of the IL-15 and IL-15Ra polypeptides further include an immunoglobulin Fc domain or a functional fragment thereof.
- one of the biologically active polypeptides comprises a first soluble TCR or fragment thereof.
- the other or second biologically active polypeptide comprises the first soluble TCR or functional fragment thereof and thus creates a multivalent TCR fusion protein complex with increased binding activity for cognate ligands compared to the monovalent TCR. Further, the other biologically active polypeptide comprises a second soluble TCR or functional fragment thereof, different than the first soluble TCR. In certain examples, TCRs are produced that have higher affinity, or increased binding affinity for cognate ligands as compared, for example, to the native TCR. If the soluble TCR of the
- BOS2 887851.1 34 invention as described herein has a higher avidity or affinity for its ligand, then it is useful as a specific probe for cell-surface bound antigen.
- the TCR is specific for recognition of a particular antigen.
- TCR is a heterodimer comprising an a chain (herein referred to as a, alpha, or a chain) and a ⁇ chain (herein referred to as ⁇ , beta, or b chain).
- the TCR comprises a single chain TCR polypeptide.
- the single chain TCR may comprise a TCR V-oc chain covalently linked to a TCR V- ⁇ chain by a peptide linker sequence.
- the single chain TCR may further comprise a soluble TCR C chain fragment covalently linked to a TCR V- ⁇ chain.
- the single chain TCR may further comprise a soluble TCR Coc chain fragment covalently linked to a TCR V-oc chain.
- one or both of the first and second biologically active polypeptides comprises an antibody or functional fragment thereof.
- the antigen for the TCR domain comprises peptide antigen presented in an MHC or HLA molecule.
- the peptide antigen is derived from a tumor associated polypeptide or virus encoded polypeptide.
- the antigen for the antibody domain comprises a cell surface receptor or ligand.
- the antigen comprises a CD antigen, cytokine or chemokine receptor or ligand, growth factor receptor or ligand, tissue factor, cell adhesion molecule, MHC/MHC-like molecules, Fc receptor, Toll-like receptor, NK receptor, TCR, BCR, positive/negative co-stimulatory receptor or ligand, death receptor or ligand, tumor associated antigen, or virus encoded antigen.
- biologically active polypeptide or "effector molecule” is meant an amino acid sequence such as a protein, polypeptide or peptide; a sugar or polysaccharide; a lipid or a glycolipid, glycoprotein, or lipoprotein that can produce the desired effects as discussed herein. Effector molecules also include chemical agents. Also contemplated are effector molecule nucleic acids encoding a biologically active or effector protein, polypeptide, or peptide. Thus, suitable molecules include regulatory factors, enzymes, antibodies, or drugs as well as DNA, RNA, and oligonucleotides.
- the biologically active polypeptides or effector molecule can be naturally-occurring or it can be synthesized from known components, e.g., by recombinant or chemical synthesis and can include
- a biologically active polypeptides or effector molecule is generally between about 0.1 to 100 KD or greater up to about 1000 KD, preferably between about 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30 and 50 KD as judged by standard molecule sizing techniques such as centrifugation or SDS-polyacrylamide gel electrophoresis. Desired effects of the invention include, but are not limited to, for example, forming a fusion protein complex of the invention with increased binding activity, killing a target cell, e.g. either to induce cell proliferation or cell death, initiate an immune response, in preventing or treating a disease, or to act as a detection molecule for diagnostic purposes.
- an assay could be used, for example an assay that includes sequential steps of culturing cells to proliferate same, and contacting the cells with a TCR fusion complex of the invention and then evaluating whether the TCR fusion complex inhibits further development of the cells.
- Fusion protein complexes of the invention can be produced that contain a single effector molecule, including such a peptide of known structure. Additionally, a wide variety of effector molecules can be produced in similar DNA vectors. That is, a library of different effector molecules can be linked to the fusion protein complexes for recognition of infected or diseased cells. Further, for therapeutic applications, rather than administration of a the fusion protein complex of the invention to a subject, a DNA expression vector coding for the fusion protein complex can be administered for in vivo expression of the fusion protein complex. Such an approach avoids costly purification steps typically associated with preparation of recombinant proteins and avoids the complexities of antigen uptake and processing associated with conventional approaches.
- components of the fusion proteins disclosed herein can be organized in nearly any fashion provided that the fusion protein has the function for which it was intended.
- each component of the fusion protein can be spaced from another component by at least one suitable peptide linker sequence if desired.
- the fusion proteins may include tags, e.g., to facilitate modification, identification and/or purification of the fusion protein. More specific fusion proteins are in the Examples described below.
- the fusion complexes of the invention preferably also include a flexible linker sequence interposed between the IL-15 or IL-15R0C domains and the biologically active polypeptide.
- the linker sequence should allow effective positioning of the biologically active polypeptide with respect to the IL-15 or IL-15R0C domains to allow functional activity of both domains.
- the linker sequence positions the TCR molecule binding groove so that the T cell receptor can recognize presenting MHC -peptide complexes and can deliver the effector molecule to a desired site.
- Successful presentation of the effector molecule can modulate the activity of a cell either to induce or to inhibit T-cell proliferation, or to initiate or inhibit an immune response to a particular site, as determined by the assays disclosed below, including the in vitro assays that includes sequential steps of culturing T cells to proliferate same, and contacting the T cells with a TCR fusion complex of the invention and then evaluating whether the TCR fusion complex inhibits further development of the cells.
- the soluble fusion protein complex has a linker wherein the first biologically active polypeptide is covalently linked to IL-15 (or functional fragment thereof) by polypeptide linker sequence.
- the soluble fusion protein complex as described herein has a linker wherein the second biologically active polypeptide is covalently linked to IL- 15Ra polypeptide (or functional fragment thereof) by polypeptide linker sequence.
- the linker sequence is preferably encoded by a nucleotide sequence resulting in a peptide that can effectively position the binding groove of a TCR molecule for recognition of a presenting antigen or the binding domain of an antibody molecule for recognition of an antigen.
- the phrase "effective positioning of the biologically active polypeptide with respect to the IL-15 or IL-15R0C domains", or other similar phrase, is intended to mean the biologically active polypeptide linked to the IL-15 or IL-15R0C domains is positioned so that the IL-15 or IL-15R0C domains are capable of interacting with each other to form a protein complex.
- the IL-15 or IL-15R0C domains are effectively positioned to allow interactions with immune cells to initiate or inhibit an immune reaction, or to inhibit or stimulate cell development.
- the fusion complexes of the invention preferably also include a flexible linker sequence interposed between the IL-15 or IL-15R0C domains and the immunoglobulin Fc domain. The linker sequence should allow effective positioning of the Fc domain,
- BOS2 887851.1 37 biologically active polypeptide and IL-15 or IL-15R0C domains to allow functional activity of each domain.
- the Fc domains are effectively positioned to allow proper fusion protein complex formation and/or interactions with Fc receptors on immune cells or protiens of the complement system to stimulate Fc-mediated effects including opsonization, cell lysis, degranulation of mast cells, basophils, and eosinophils, and other Fc receptor-dependent processes; activation of the complement pathway; and enhanced in vivo half-life of the fusion protein complex.
- Linker sequences can also be used to link two or more polypeptides of the biologically active polypeptide to generated a single-chain molecule with the desired functional activity.
- the linker sequence comprises from about 7 to 20 amino acids, more preferably from about 8 to 16 amino acids.
- the linker sequence is preferably flexible so as not hold the biologically active polypeptide or effector molecule in a single undesired conformation.
- the linker sequence can be used, e.g., to space the recognition site from the fused molecule.
- the peptide linker sequence can be positioned between the biologically active polypeptide and the effector molecule, e.g., to chemically cross-link same and to provide molecular flexibility.
- the linker preferably predominantly comprises amino acids with small side chains, such as glycine, alanine and serine, to provide for flexibility.
- the linker sequence comprises glycine, alanine or serine residues, particularly glycine and serine residues.
- the linker sequence is suitably linked to the ⁇ chain of the TCR molecule, although the linker sequence also could be attached to the a chain of the TCR molecule.
- linker sequence may be linked to both a and ⁇ chains of the TCR molecule. When such a ⁇ peptide chain is expressed along with the a chain, the linked TCR polypeptide should fold resulting in a functional TCR molecule as generally depicted in FIG. 1.
- linker sequence is ASGGGGSGGG (i.e., Ala Ser Gly Gly Gly Gly Gly Ser Gly Gly Gly), preferably linked to the first amino acid of the ⁇ domain of the TCR.
- linker sequences could be used including any of a number of flexible linker designs that have been used successfully to join antibody variable regions together, see Whitlow, M. et al., (1991) Methods: A Companion to Methods in Enzymology 2:97-105.
- the amino sequence of the linker should be capable of spanning suitable distance from the C-terminal residue of the TCR ⁇ chain to the N-terminal residue of the effector molecule.
- Suitable linker sequences can be capable of spanning suitable distance from the C-terminal residue of the TCR ⁇ chain to the N-terminal residue of the effector molecule.
- BOS2 887851.1 3g be readily identified empirically. Additionally, suitable size and sequences of linker sequences also can be determined by conventional computer modeling techniques based on the predicted size and shape of the TCR molecule.
- preparation of the fusion protein complexes of the invention can be accomplished by procedures disclosed herein and by recognized recombinant DNA techniques involving, e.g., polymerase chain amplification reactions (PCR), preparation of plasmid DNA, cleavage of DNA with restriction enzymes, preparation of oligonucleotides, ligation of DNA, isolation of mRNA, introduction of the DNA into a suitable cell, transformation or transfection of a host, culturing of the host.
- PCR polymerase chain amplification reactions
- biologically active polypeptides or effector molecules of the invention may include factors such as cytokines, chemokines, growth factors, protein toxins, immunoglobulin domains or other bioactive proteins such as enzymes. Also biologically active polypeptides may include conjugates to other compounds such as non-protein toxins, cytotoxic agents, chemotherapeutic agents, detectable labels, radioactive materials and such.
- Cytokines of the invention are defined by any factor produced by cells that affect other cells and are responsible for any of a number of multiple effects of cellular immunity.
- cytokines include but are not limited to the IL-2 family, interferon (IFN), IL-10, IL-1, IL-17, TGF and TNF cytokine families, and to IL-1 through IL-35, IFN- a, IFN- ⁇ , IFNy, TGF- ⁇ , TNF-a, and TNF .
- the first fusion protein comprises a first biologically active polypeptide covalently linked to interleukin-15 (IL-15) domain or a functional fragment thereof.
- IL-15 is a cytokine that affects T-cell activation and proliferation.
- IL-15 activity in affecting immune cell activation and proliferation is similar in some respects to IL2, although fundamental differences have been well characterized (Waldmann, T A, 2006, Nature Rev. Immunol. 6:595-601).
- the first fusion protein comprises an interleukin-15 (IL-15) domain that is an IL-15 variant (also referred to herein as IL-15 mutant).
- the IL-15 variant preferably comprises a different amino acid sequence that the native (or wild type) IL- 15 protein.
- the IL-15 variant preferably binds the IL-15Ra polypeptide and functions as an IL-15 agonist or antagonist.
- Preferably IL-15 variants with agonist activity have super agonist activity.
- the IL-15 variant can function as an IL-15 agonist or antagonist independent of its association with IL-15Ra.
- IL-15 agonists are exemplified by comparable or increased biological activity compared to wild type IL-15.
- IL-15 antagonists are exemplified by decreased biological activity compared to wild type IL-15 or by the ability to inhibit IL-15-mediated responses.
- the IL-15 variant binds with increased or decreased activity to the IL-15R TC receptors.
- the sequence of the IL-15 variant has at least one amino acid change, e.g. substitution or deletion, compared to the native IL-2 sequence, such changes resulting in IL-15 agonist or antagonist activity.
- the amino acid substitutions/deletions are in the domains of IL-15 that interact with IL-15R and/or 'yC. More preferably, the amino acid substitutions/deletions do not affect binding to the IL-15Ra polypeptide or the ability to produce the IL-15 variant.
- Suitable amino acid substitutions/deletions to generate IL-15 variants can be identified based on putative or known IL-15 structures, comparisons of IL-15 with homologous molecules such as IL-2 with known structure, through rational or random mutagenesis and functional assays, as provided herein, or other empirical methods. Additionally suitable amino acid substitutions can be conservative or non-conservative changes and insertions of additional amino acids.
- IL-15 variants of the invention contain one or more than one amino acid substitutions/deletions at position 6, 8, 10, 61, 65, 72, 92, 101, 104, 105, 108, 109, 111, or 112 of the mature human IL-15 sequence; particularly, D8N ("D8" refers to the amino acid and residue position in the native mature human IL-15 sequence and "N” refers to the substituted amino acid residue at that position in the IL-15 variant), I6S, D8A, D61A, N65A, N72R, V104P or Q108A substitutions result in IL-15 variants with antagonist activity and N72D substitutions result in IL-15 variants with agonist activity.
- D8N refers to the amino acid and residue position in the native mature human IL-15 sequence and “N” refers to the substituted amino acid residue at that position in the IL-15 variant
- I6S, D8A, D61A, N65A, N72R, V104P or Q108A substitutions result in IL-15
- Chemokines similar to cytokines, are defined as any chemical factor or molecule which when exposed to other cells are responsible for any of a number of multiple effects of cellular immunity. Suitable chemokines may include but are not limited to the CXC, CC, C, and CX 3 C chemokine families and to CCL-1 through CCL-28, CXC-1 through CXC-17, XCL-1, XCL-2, CX3CL1, MIP-lb, IL-8, MCP-1, and Rantes.
- Growth factors include any molecules which when exposed to a particular cell induce proliferation and/or differentiation of the affected cell. Growth factors include proteins and chemical molecules, some of which include: GM-CSF, G-CSF, human growth factor and stem cell growth factor. Additional growth factors may also be suitable for uses described herein.
- Toxins or cytotoxic agents include any substance that has a lethal effect or an inhibitory effect on growth when exposed to cells. More specifically, the effector molecule can be a cell toxin of, e.g., plant or bacterial origin such as, e.g., diphtheria toxin (DT), shiga toxin, abrin, cholera toxin, ricin, saporin, pseudomonas exotoxin (PE), pokeweed antiviral protein, or gelonin. Biologically active fragments of such toxins are well known in the art and include, e.g., DT A chain and ricin A chain. Additionally, the toxin can be an agent active at the cell surface such as, e.g., phospholipase enzymes (e.g., phospholipase C).
- the effector molecule can be a chemotherapeutic drug such as, e.g., vindesine, vincristine, vinblastin, methotrexate, adriamycin, bleomycin, or cisplatin. Additionally, the effector molecule can be a detectably-labeled molecule suitable for diagnostic or imaging studies.
- chemotherapeutic drug such as, e.g., vindesine, vincristine, vinblastin, methotrexate, adriamycin, bleomycin, or cisplatin.
- the effector molecule can be a detectably-labeled molecule suitable for diagnostic or imaging studies.
- Such labels include biotin or streptavidin/avidin, a detectable nanoparticles or crystal, an enzyme or catalytically active fragment thereof, a fluorescent label such as green fluorescent protein, FITC, phycoerythrin, cychome, texas red or quantum dots; a radionuclide e.g., iodine-131, yttrium-90, rhenium-188 or bismuth-212; a
- phosphorescent or chemiluminescent molecules or a label detectable by PET, ultrasound or MRI such as Gd- or paramagnetic metal ion-based contrast agents See e.g., Moskaug, et al. /. Biol. Chem. 264, 15709 (1989); Pastan, I. et al. Cell 47, 641, 1986; Pastan et al.,
- a protein fusion or conjugate complex that includes a covalently linked IL-15 and IL- 15Ra domains has several important uses.
- the protein fusion or conjugate complex comprising a TCR can be employed to deliver the IL-15:IL-15Ra complex to certain cells capable of specifically binding the TCR.
- the protein fusion or conjugate complex provide means of selectively damaging or killing cells comprising the ligand.
- Examples of cells or tissue capable of being damaged or killed by the protein fusion or conjugate complexes comprising a TCR include tumors and virally or bacterially infected cells expressing one or more ligands capable of being specifically bound by the TCR. Cells or tissue susceptible to being damaged or killed can be readily assayed by the methods disclosed herein.
- the IL-15 and IL-15Ra polypeptides of the invention suitably correspond in amino acid sequence to naturally occurring IL-15 and IL-15Ra molecules, e.g. IL-15 and IL-15Ra molecules of a human, mouse or other rodent, or other mammal. Sequences of these polypeptides and encoding nucleic acids are known in the literature, including human interleukin 15 (IL15) mRNA - GenBank: U14407.1, Mus musculus interleukin 15 (IL15) mRNA - GenBank: U14332.1, human interleukin- 15 receptor alpha chain precursor
- IL15RA mRNA - GenBank: U31628.1, Mus musculus interleukin 15 receptor, alpha chain - GenBank: BC095982.1.
- the protein fusion or conjugate complexes of the present invention polyvalent, e.g., to increase the valency of the sc-TCR or sc-antibody.
- interactions between the IL-15 and IL-15Ra domains of the fusion protein complex provide a means of generating polyvalent complexes.
- the polyvalent fusion protein can made by covalently or non-covalently linking together between one and four proteins (the same or different) by using e.g., standard biotin- strep tavidin labeling techniques, or by conjugation to suitable solid supports such as latex beads.
- Chemically cross-linked proteins are also suitable polyvalent species.
- the protein can be modified by including sequences encoding tag sequences that can be modified such as the biotinylation BirA tag or amino acid residues with chemically reactive side chains such as Cys or His.
- tag sequences that can be modified such as the biotinylation BirA tag or amino acid residues with chemically reactive side chains such as Cys or His.
- amino acid tags or chemically reactive amino acids may be positioned in a variety of positions in the fusion protein, preferably distal to the active site of the biologically active polypeptide or effector molecule.
- the C-terminus of a soluble fusion protein can be covalently linked to a tag or other fused protein which includes such a reactive amino acid(s).
- Suitable side chains can be included to chemically link two or more fusion proteins to a suitable dendrimer or other nanoparticle to give a multivalent molecule.
- Dendrimers are synthetic chemical polymers that can have any one of a number of different functional groups of their surface (D. Tomalia, Aldrichimica Acta, 26:91:101 (1993)).
- Exemplary dendrimers for use in accordance with the present invention include e.g. E9 starburst polyamine dendrimer and E9 combust polyamine
- BOS2 887851.1 42 dendrimer which can link cystine residues.
- Exemplary nanoparticles include liposomes, core-shell particles or PLGA-based particles.
- one or both of the polypeptides of the fusion protein complex comprises an immunoglobulin domain.
- the protein binding domain-IL-15 fusion protein can be further linked to an immunoglobulin domain.
- the preferred immunoglobulin domains comprise regions that allow interaction with other immunoglobulin domains to form multichain proteins as provided above.
- the immunoglobulin heavy chain regions such as the IgGl C H 2-C H 3, are capable of stably interacting to create the Fc region.
- Preferred immunoglobulin domains including Fc domains also comprise regions with effector functions, including Fc receptor or complement protein binding activity, and/or with glycosylation sites.
- the immunoglobulin domains of the fusion protein complex contain mutations that reduce or augment Fc receptor or complement binding activity or glycosylation, thereby affecting the biological activity of the resulting protein.
- immunoglobulin domains containing mutations that reduce binding to Fc receptors could be used to generate fusion protein complex of the invention with lower binding activity to Fc receptor-bearing cells, which may be
- the invention further provides nucleic acid sequences and particularly DNA sequences that encode the present fusion proteins.
- the DNA sequence is carried by a vector suited for extrachromosomal replication such as a phage, virus, plasmid, phagemid, cosmid, YAC, or episome.
- a DNA vector that encodes a desired fusion protein can be used to facilitate preparative methods described herein and to obtain significant quantities of the fusion protein.
- the DNA sequence can be inserted into an appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted protein-coding sequence.
- a variety of host-vector systems may be utilized to express the protein-coding sequence.
- mammalian cell systems infected with virus e.g., vaccinia virus, adenovirus, etc.
- insect cell systems infected with virus e.g., baculovirus
- microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage DNA, plasmid DNA or cosmid DNA.
- BOS2 887851.1 43 and translation elements may be used. See generally Sambrook et al., supra and Ausubel et al. supra.
- soluble fusion protein complex comprising introducing into a host cell a DNA vector as described herein encoding the first and second fusion proteins, culturing the host cell in media under conditions sufficient to express the fusion proteins in the cell or the media and allow association between IL-15 domain of a first fusion protein and the soluble IL-15Ra domain of a second fusion protein to form the soluble fusion protein complex, purifying the soluble fusion protein complex from the host cells or media.
- a preferred DNA vector according to the invention comprises a nucleotide sequence linked by phosphodiester bonds comprising, in a 5' to 3' direction a first cloning site for introduction of a first nucleotide sequence encoding a biologically active polypeptide, operatively linked to a sequence encoding an effector molecule.
- the fusion protein components encoded by the DNA vector can be provided in a cassette format.
- cassette is meant that each component can be readily substituted for another component by standard recombinant methods.
- a DNA vector configured in a cassette format is particularly desirable when the encoded fusion complex is to be used against pathogens that may have or have capacity to develop serotypes.
- the sequence coding for the biologically active polypeptide is linked to a sequence coding for the effector peptide by use of suitable ligases.
- DNA coding for the presenting peptide can be obtained by isolating DNA from natural sources such as from a suitable cell line or by known synthetic methods, e.g. the phosphate triester method. See, e.g., Oligonucleotide Synthesis, IRL Press (M. J. Gait, ed., 1984). Synthetic oligonucleotides also may be prepared using commercially available automated oligonucleotide synthesizers.
- the gene coding for the biologically active polypeptide can be amplified by the polymerase chain reaction (PCR) or other means known in the art.
- PCR polymerase chain reaction
- Suitable PCR primers to amplify the biologically active polypeptide gene may add restriction sites to the PCR product.
- the PCR product preferably includes splice sites for the effector peptide and leader sequences necessary for proper expression and secretion of the biologically active polypeptide -effector fusion complex.
- the PCR product also preferably includes a sequence coding for the linker sequence, or a restriction enzyme site for ligation of such a sequence.
- the fusion proteins described herein are preferably produced by standard recombinant DNA techniques. For example, once a DNA molecule encoding the biologically active polypeptide is isolated, sequence can be ligated to another DNA molecule encoding the effector polypeptide.
- the nucleotide sequence coding for a biologically active polypeptide may be directly joined to a DNA sequence coding for the effector peptide or, more typically, a DNA sequence coding for the linker sequence as discussed herein may be interposed between the sequence coding for the biologically active polypeptide and the sequence coding for the effector peptide and joined using suitable ligases.
- the resultant hybrid DNA molecule can be expressed in a suitable host cell to produce the fusion protein complex.
- the DNA molecules are ligated to each other in a 5' to 3' orientation such that, after ligation, the translational frame of the encoded polypeptides is not altered (i.e., the DNA molecules are ligated to each other in-frame).
- the resulting DNA molecules encode an in-frame fusion protein.
- nucleotide sequences also can be included in the gene construct.
- a promoter sequence which controls expression of the sequence coding for the biologically active polypeptide fused to the effector peptide, or a leader sequence, which directs the fusion protein to the cell surface or the culture medium, can be included in the construct or present in the expression vector into which the construct is inserted.
- An immunoglobulin or CMV promoter is particularly preferred.
- IL-15, IL-15Ra or Fc domain coding sequences those of ordinary skill in the art will recognize that the polypeptides may be modified by certain amino acid substitutions, additions, deletions, and post-translational modifications, without loss or reduction of biological activity.
- the nonpolar (hydrophobic) group includes alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan and valine
- the polar (uncharged, neutral) group includes asparagine, cysteine, glutamine, glycine, serine, threonine and tyrosine
- the positively charged (basic) group contains arginine, histidine and lysine
- the negatively charged (acidic) group contains aspartic acid and glutamic acid. Substitution in a protein of one amino acid for another within the same group is unlikely to have an adverse effect on the biological activity
- BOS2 887851.1 45 of the protein modifications to amino acid positions can be made to reduce or enhance the biological activity of the protein.
- modifications to amino acid positions can be made to reduce or enhance the biological activity of the protein.
- Such changes can be introduced randomly or via site-specific mutations based on known or presumed structural or functional properties of targeted residue(s).
- the changes in the biological activity due to the modification can be readily assessed using binding or functional assays.
- Homology between nucleotide sequences can be determined by DNA hybridization analysis, wherein the stability of the double- stranded DNA hybrid is dependent on the extent of base pairing that occurs. Conditions of high temperature and/or low salt content reduce the stability of the hybrid, and can be varied to prevent annealing of sequences having less than a selected degree of homology.
- hybridization and wash conditions of 40-50 C, 6 x SSC (sodium chloride/sodium citrate buffer) and 0.1% SDS (sodium dodecyl sulfate) indicate about 60-70% homology
- hybridization and wash conditions of 50-65 C, 1 x SSC and 0.1% SDS indicate about 82-97% homology
- hybridization and wash conditions of 52 C, 0.1 x SSC and 0.1% SDS indicate about 99-100% homology.
- a wide range of computer programs for comparing nucleotide and amino acid sequences (and measuring the degree of homology) are also available, and a list providing sources of both commercially available and free software is found in Ausubel et al. (1999).
- BLAST Basic Local Alignment Search Tool
- ClustalW programs.
- BLAST is available on the world wide web at ncbi.nlm.nih.gov and a version of ClustalW is available at 2.ebi.ac.uk.
- the components of the fusion protein can be organized in nearly any order provided each is capable of performing its intended function.
- the biologically active polypeptide is situated at the C or N terminal end of the effector molecule.
- effector molecules of the invention will have sizes conducive to the function for which those domains are intended.
- the effector molecules of the invention can be made and fused to the biologically active polypeptide by a variety of methods including well- known chemical cross-linking methods. See e.g., Means, G. E. and Feeney, R. E. (1974) in Chemical Modification of Proteins, Holden-Day. See also, S. S. Wong (1991) in Chemistry of Protein Conjugation and Cross-Linking, CRC Press. However it is generally preferred to use recombinant manipulations to make the in-frame fusion protein.
- a fusion molecule or a conjugate molecule in accord with the invention can be organized in several ways.
- the C-terminus of the biologically active polypeptide is operatively linked to the N-terminus of the effector molecule. That linkage can be achieved by recombinant methods if desired.
- the N-terminus of the biologically active polypeptide is linked to the C-terminus of the effector molecule.
- one or more additional effector molecules can be inserted into the biologically active polypeptide or conjugate complexes as needed.
- the fusion protein construct described above can be incorporated into a suitable vector by known means such as by use of restriction enzymes to make cuts in the vector for insertion of the construct followed by ligation.
- the vector containing the gene construct is then introduced into a suitable host for expression of the fusion protein. See, generally, Sambrook et al., supra. Selection of suitable vectors can be made empirically based on factors relating to the cloning protocol. For example, the vector should be compatible with, and have the proper replicon for the host that is being employed. Further the vector must be able to accommodate the DNA sequence coding for the fusion protein complex that is to be expressed.
- Suitable host cells include eukaryotic and prokaryotic cells, preferably those cells that can be easily transformed and exhibit rapid growth in culture medium.
- Specifically preferred hosts cells include prokaryotes such as E. coli, Bacillus subtillus, etc. and eukaryotes such as animal cells and yeast strains, e.g., S. cerevisiae.
- Mammalian cells are generally preferred, particularly J558, NSO, SP2-0 or CHO.
- Other suitable hosts include, e.g., insect cells such as Sf9. Conventional culturing conditions are employed. See Sambrook, supra. Stable transformed or transfected cell lines can then be selected.
- Cells expressing a fusion protein complex of the invention can be determined by known procedures. For example, expression of a fusion protein complex linked to an immunoglobulin can be determined by an ELISA specific for the linked immunoglobulin and/or by immunoblotting. Other methods for detecting expression of fusion proteins comprising biologically active polypeptides linked to IL-15 or IL-15Ra domains are disclosed in the Examples.
- a host cell can be used for preparative purposes to propagate nucleic acid encoding a desired fusion protein.
- a host cell can include a prokaryotic or eukaryotic cell in which production of the fusion protein is specifically intended.
- host cells specifically include yeast, fly, worm, plant, frog, mammalian cells and organs that are capable of propagating nucleic acid encoding the fusion.
- mammalian cell lines which can be used include CHO dhfr-cells (Urlaub and Chasm, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)), 293 cells (Graham et al., / Gen.
- Host cells capable of propagating nucleic acid encoding a desired fusion protein comples encompass non-mammalian eukaryotic cells as well, including insect (e.g., Sp. frugiperda), yeast (e.g., S. cerevisiae, S. pombe, P. pastoris., K. lactis, H. polymorpha; as generally reviewed by Fleer, R., Current Opinion in Biotechnology, 3(5):486496 (1992)), fungal and plant cells.
- insect e.g., Sp. frugiperda
- yeast e.g., S. cerevisiae, S. pombe, P. pastoris.
- K. lactis H. polymorpha
- Nucleic acid encoding a desired fusion protein can be introduced into a host cell by standard techniques for transfecting cells.
- the term "transfecting” or “transfection” is intended to encompass all conventional techniques for introducing nucleic acid into host cells, including calcium phosphate co-precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation, microinjection, viral transduction and/or integration. Suitable methods for transfecting host cells can be found in Sambrook et al. supra, and other laboratory textbooks.
- promoters transcriptional initiation regulatory region
- the selection of the appropriate promoter is dependent upon the proposed expression host. Promoters from heterologous sources may be used as long as they are functional in the chosen host.
- Promoter selection is also dependent upon the desired efficiency and level of peptide or protein production.
- Inducible promoters such as tac are often employed in order to dramatically increase the level of protein expression in E. coli. Overexpression of proteins may be harmful to the host cells. Consequently, host cell growth may be limited.
- the use of inducible promoter systems allows the host cells to be cultivated to acceptable densities prior to induction of gene expression, thereby facilitating higher product yields.
- BOS2 887851.1 48 Various signal sequences may be used according to the invention.
- a signal sequence which is homologous to the biologically active polypeptide coding sequence may be used.
- a signal sequence which has been selected or designed for efficient secretion and processing in the expression host may also be used.
- suitable signal sequence/host cell pairs include the B. subtilis sacB signal sequence for secretion in B.
- the signal sequence may be joined directly through the sequence encoding the signal peptidase cleavage site to the protein coding sequence, or through a short nucleotide bridge consisting of usually fewer than ten codons, where the bridge ensures correct reading frame of the downstream TCR sequence.
- Elements for enhancing transcription and translation have been identified for eukaryotic protein expression systems. For example, positioning the cauliflower mosaic virus (CaMV) promoter 1000 bp on either side of a heterologous promoter may elevate transcriptional levels by 10- to 400-fold in plant cells.
- the expression construct should also include the appropriate translational initiation sequences. Modification of the expression construct to include a Kozak consensus sequence for proper translational initiation may increase the level of translation by 10 fold.
- a selective marker is often employed, which may be part of the expression construct or separate from it (e.g., carried by the expression vector), so that the marker may integrate at a site different from the gene of interest.
- markers that confer resistance to antibiotics (e.g., bla confers resistance to ampicillin for E. coli host cells, nptll confers kanamycin resistance to a wide variety of prokaryotic and eukaryotic cells) or that permit the host to grow on minimal medium (e.g., HIS4 enables P. pastoris or His " S. cerevisiae to grow in the absence of histidine).
- the selectable marker has its own transcriptional and translational initiation and termination regulatory regions to allow for independent expression of the marker. If antibiotic resistance is employed as a marker, the concentration of the antibiotic for selection will vary depending upon the antibiotic, generally ranging from 10 to 600 ⁇ g of the antibiotic/mL of medium.
- the expression construct is assembled by employing known recombinant DNA techniques (Sambrook et al., 1989; Ausubel et al., 1999). Restriction enzyme digestion and ligation are the basic steps employed to join two fragments of DNA. The ends of the DNA fragment may require modification prior to ligation, and this may be accomplished by filling
- Polylinkers and adaptors may be employed to facilitate joining of selected fragments.
- the expression construct is typically assembled in stages employing rounds of restriction, ligation, and transformation of E. coli. Numerous cloning vectors suitable for construction of the expression construct are known in the art ( ⁇ and pBLUESCRIPT SK-1, Stratagene, La Jolla, CA, pET, Novagen Inc., Madison, WI, cited in Ausubel et al., 1999) and the particular choice is not critical to the invention.
- the selection of cloning vector will be influenced by the gene transfer system selected for introduction of the expression construct into the host cell. At the end of each stage, the resulting construct may be analyzed by restriction, DNA sequence, hybridization and PCR analyses.
- the expression construct may be transformed into the host as the cloning vector construct, either linear or circular, or may be removed from the cloning vector and used as is or introduced onto a delivery vector.
- the delivery vector facilitates the introduction and maintenance of the expression construct in the selected host cell type.
- the expression construct is introduced into the host cells by any of a number of known gene transfer systems (e.g., natural competence, chemically mediated transformation, protoplast transformation, electroporation, biolistic transformation, transfection, or conjugation) (Ausubel et al., 1999; Sambrook et al., 1989). The gene transfer system selected depends upon the host cells and vector systems used.
- the expression construct can be introduced into S. cerevisiae cells by protoplast transformation or electroporation. Electroporation of S. cerevisiae is readily accomplished, and yields transformation efficiencies comparable to spheroplast
- the present invention further provides a production process for isolating a fusion protein of interest.
- a host cell e.g., a yeast, fungus, insect, bacterial or animal cell
- a nucleic acid encoding the protein of the interest operatively linked to a regulatory sequence
- the fusion protein of interest is isolated from harvested host cells or from the culture medium.
- Standard protein purification techniques can be used to isolate the protein of interest from the medium or from the harvested cells. In particular, the purification
- BOS2 887851.1 50 techniques can be used to express and purify a desired fusion protein on a large-scale (i.e. in at least milligram quantities) from a variety of implementations including roller bottles, spinner flasks, tissue culture plates, bioreactor, or a fermentor.
- An expressed protein fusion complex can be isolated and purified by known methods. Typically the culture medium is centrifuged or filtered and then the supernatant is purified by affinity or immunoaffinity chromatography, e.g. Protein-A or Protein-G affinity
- fusion proteins of the present invention can be separated and purified by appropriate combination of known techniques. These methods include, for example, methods utilizing solubility such as salt precipitation and solvent precipitation, methods utilizing the difference in molecular weight such as dialysis, ultra-filtration, gel-filtration, and SDS-polyacrylamide gel electrophoresis, methods utilizing a difference in electrical charge such as ion-exchange column chromatography, methods utilizing specific affinity such as affinity chromatography, methods utilizing a difference in hydrophobicity such as reverse-phase high performance liquid chromatography and methods utilizing a difference in isoelectric point, such as isoelectric focusing electrophoresis, metal affinity columns such as Ni-NTA. See generally Sambrook et al. and Ausubel et al. supra for disclosure relating to these methods.
- the fusion proteins of the present invention be substantially pure. That is, the fusion proteins have been isolated from cell substituents that naturally accompany it so that the fusion proteins are present preferably in at least 80% or 90% to 95%
- homogeneity (w/w). Fusion proteins having at least 98 to 99% homogeneity (w/w) are most preferred for many pharmaceutical, clinical and research applications.
- the fusion protein should be substantially free of contaminants for therapeutic applications.
- the soluble fusion proteins can be used therapeutically, or in performing in vitro or in vivo assays as disclosed herein.
- Substantial purity can be determined by a variety of standard techniques such as
- Soluble TCR fusion complexes of the invention contain TCR domains that is sufficiently truncated so the TCR fusion complex can be secreted into culture medium after expression.
- a truncated TCR fusion complex will not include regions rich in hydrophobic residues, typically the transmembrane and cytoplasmic domains of the TCR
- BOS2 887851.1 51 molecule preferably from about the final cysteine to the C-terminal residue of the ⁇ chain and from about the final cysteine to the C-terminal residue of the a chain of the TCR molecule are not included in the truncated TCR fusion complex.
- the present fusion protein complexes are suitable for in vitro or in vivo use with a variety of cells that are cancerous or are infected or that may become infected by one or more diseases.
- Human interleukin-15 is trans-presented to immune effector cells by the human IL-15 receptor a chain (hIL-15Ra) expressed on antigen presenting cells.
- IL-15Ra binds hIL-15 with high affinity (38 pM) mainly through the extracellular sushi domain (hlL- 15RaSu).
- hIL-15 and L-15RaSu domains can be used as a scaffold to construct multi-domain fusion complexes.
- Both bivalent and bispecific T cell receptor (TCR) fusion complexes were formed using this scaffold through the combination of various single-chain (sc) TCR domains fused to the N-termini of the hIL-15 and hIL-15RaSu chains.
- the scTCR domains retain the antigen binding activity and the hlL- 15 domain exhibits receptor binding and biological activity.
- Bivalent scTCR fusions exhibited improved antigen binding capacity due to increased molecular binding avidity whereas fusions comprising two different scTCR domains were capable of binding two cognate peptide/MHC complexes.
- Bispecific molecules containing scTCR and scCD8a domains also exhibit significantly better binding to cognate peptide/MHC complex than either the bivalent or monovalent scTCR molecules, demonstrating that the IL-15:IL-15Ra scaffold exhibits flexibility necessary to support multi-domain interactions with given target.
- TCRs could also be formed by co-expressing the TCR a and ⁇ chains separately as fusions to the hIL-15 and hIL-15RaSu domains.
- the fused hIL-15 domain can be manipulated through site-specific mutations to provide superagonist or antagonist cytokine activity.
- these properties indicate that the hIL-15 and hlL- 15RaSu domains can be used as versatile, functional scaffold for generating novel targeted immune molecules.
- IgG domains particularly the Fc fragment, have been used successfully as dimeric scaffolds for a number of therapeutic molecules including approved biologic drugs.
- etanercept is a dimer of soluble human p75 tumor necrosis factor-a (TNF-a) receptor (sTNFR) linked to the Fc domain of human IgGl.
- TNF-a tumor necrosis factor-a
- sTNFR tumor necrosis factor-a receptor
- the Fc fragment In addition to its dimerization activity, the Fc fragment also provides cytotoxic effector functions through the complement activation and interaction with Fey receptors displayed on natural killer (NK) cells, neutrophils, phagocytes and dendritic cells.
- NK natural killer
- these activities likely play an important role in efficacy observed in animal tumor models and in cancer patients.
- these cytotoxic effector responses may not be sufficient in a number of therapeutic applications.
- IgG domains have been used as a scaffold to form bispecific antibodies to improve the quality and quantity of products generated by the traditional hybridoma fusion technology. Although these methods bypass the shortcomings of other scaffolds, it has been difficult to produce bispecific antibodies in mammalian cells at levels sufficient to support clinical development and use.
- hIL-15 human IL-15
- IL-15Ra human IL-15 receptor a-chain
- KD Equilibrium dissociation constant
- hIL-15 and hIL-15Ra are co-produced in dendritic cells to form complexes intracellularly that are subsequently secreted and displayed as heterodimeric molecules on cell surfaces.
- hIL-15 and hIL-15Ra interactions suggest that these inter chain binding domains could serve as a novel, human-derived immunostimulatory
- TCR T cell receptor
- CD8 binding domains to demonstrate the feasibility of using ML-15:hIL- 15Ra scaffold to create both soluble homodimers with increased functional binding affinity toward target antigens and heterodimers for multiple-site-specific protein complexes.
- these fusion proteins retain potent hIL-15 activity capable of stimulating immune effector cell responses.
- this scaffold could be used to form multivalent fusion complexes, such as the c264scTCR dimer, to increase the overall binding affinity of molecules, or bispecific molecules, such as the
- soluble fusion proteins were produced at relatively high levels in recombinant CHO cell culture (mgs per liter in cell culture supernatant without extensive cell line screening or optimization) and could be readily purified from the cell culture supernatants.
- hlL- 15:hIL-15RaSu-based scaffold could be expanded to create soluble, biologically active, two- chain molecules, such as ⁇ / ⁇ TCRs, by fusing the extracellular domains of the two polypeptide chains to the N-termini of hIL-15 and hIL-15RaSu.
- This format resulted in a moderate decrease in hIL-15 activity, possibly due to steric hindrance between the interfolded TCR ⁇ / ⁇ chains fused to the distal N-termini of the hIL-15:hIL-15RaSu complex and the hlL- 15R yC binding site located in the middle of the complex.
- Other formats are possible and can be generated using routine methods.
- the L-15:hIL-15RaSu-based scaffold was also used to generate an
- OTlscTCR/scCD8 heterodimer in which the CD8 ⁇ / ⁇ and TCR domains are capable of binding the same pMHCI complex but at a spatially distinct sites.
- Previous studies using soluble pMHCI reagents have determined that CD8 stabilizes and enhances TCR:pMHCI interactions at the cell surface through effects on both the off-rate and the on-rate. This effect is important in determining the dependency of the T cells on CD8 co-receptor activity, such that the requirement for CD8 for pMHCI- specific T cell activation is inversely correlated
- OTlscTCR/scCD8 heterodimer complex consistent with the observations for pMHCI binding to CD 8 and TCR molecules on T cells.
- the OTlscTCR/scCD8 heterodimer mimics binding of the OT1 TCR on T cells, which exhibits a strong dependence of CD8 coreceptor activity for pMHC interactions.
- scTCR/scCD8 heterodimer and variants of this molecule could serve as very useful tools for further dissecting molecular interactions between the tertiary TCR:pMHCI:CD8 complex in a cell-free system.
- scTCR/scCD8 heterodimer-based reagents with enhanced pMHCI binding activity could have utility in detecting antigen presentation on diseased cells, without the need of mutating the TCR domain for increased binding affinity.
- the hIL-15:hIL-15RaSu-based scaffold can be exploited much like the Fc domain of the IgG scaffold to generate multivalent or multispecific targeted therapeutics.
- the hIL-15 domain expands the scope of potential immunotherapeutic mechanisms beyond antibody-dependent cellular cytotoxicity and complement activation associated with IgG-based approaches.
- approaches similar to those used to manipulate the activity of the Fc domain of IgG molecules we demonstrate that the IL-15 domain can be mutated to increase or decrease its functional activity.
- IL-15:hIL-15RaSu fusion molecule containing an N72D mutation in the IL-15 domain exhibit a 3-4 fold increase in biological activity, whereas IL-15 D8N mutation exhibit little or no activity.
- an IL-15 antagonist capable of inhibiting IL-15 responsive cells at the disease site may have therapeutic potential in treating allograft rejection and inflammatory autoimmune diseases, particularly if memory CD8 T cells play a role in disease pathology.
- a non- targeted IL-15 mutant/Fcy2a antagonist protein has already been shown to be effective at inhibiting islet and cardiac allograft rejection and preventing development and progression of arthritis in experimental animal models.
- IL-15 antagonist domains in the context of the hIL-15:hIL-15RaSu fusion proteins are possible.
- the hIL-15:hIL-15RaSu scaffold could be used to construct other novel molecules with protein domains derived from antibodies, adhesion molecules, or other receptors. It is also possible to create protein domain fusions to the C-termini of the hIL-15 and hIL-15RaSu which, based on the crystal structure, are accessible for modification. The resulting molecules can contain up to four different target- recognition capabilities. With the appropriate fusion partners, these types of molecules can promote the conjugation of immune effectors cells and target cells and achieve effective killing of target cells. In addition, the IL-15 domain of the complex can further augment these processes by providing immunostimulatory activity to support effector cell proliferation
- BOS2 887851.1 56 and cytotoxicity A variety of multi-functional molecules based on this concept for use as anti-cancer and anti-viral immunotherapeutic agents.
- L-15:hIL-15RaSu fusion protein complexes comprising immunoglobulin Fc domains were found to have additional advantages.
- the fusion protein complexes of the invention comprising the multiple domains of the same scTCR exhibited enhanced antigen binding activity than that expected based on the activity of the dimeric scTCR fusion.
- the fusion complex of the invention is capable of binding and activating both IL- 15R yC -bearing immune cells and Fc receptor-bearing immune cells, allowing for potent immune stimulatory activity.
- the protein fusion complex of the invention comprising two IL-15 domains was found to exhibited better IL-15 activity than that expected when compared to other IL-15 fusion proteins.
- the protein fusion complex of the invention was more effective at mediating antibody Fc depended cellular cytotoxicity against peptide/MHC presenting target cells than the TCR-IgGl fusion protein.
- the improved activity may have been the result of enhanced binding of the protein fusion complexes to the peptide/MHC complex and/or increase reactivity to the effector cells displaying Fc receptors or IL-15 receptors.
- through mutagenesis analysis it was found that of each of the TCR, IL-15 and IgG Fc domains of the fusion protein complexes could be readily and independently manipulated to alter its binding and functional activity to provide a multispecific complex with the desired biological effects.
- the fusion protein complexes of the invention were demonstrated to have a significantly better pharmacokinetic profile in mammals than free IL-15.
- the fusion protein complexes of the invention were demonstrated to have a significantly better pharmacokinetic profile in mammals than free IL-15.
- the fusion protein complexes remains intact in vivo as a multichain molecule with no evidence of polypeptide chain cleavage or dissociation. Additionally, the fusion protein complexes of the invention are shown to be capable of mediating antitumor activity against both target bearing and non- target bearing tumors in animals and exhibited more potent antitumor efficacy than rhIL-15 administered at an equivalent molar dose. Moreover, treatment with effective doses of the fusion proteins was well tolerated in these animal models.
- Example 1 Construction of expression vectors containing c264scTCR/huIL15RaSushi- hulgGI and cl49scTCR/huIL15N72D gene fusions.
- T2M The fusion protein referred to as the T2 molecule (T2M) consists of a multichain polypeptide ( Figure 1).
- one of these polypeptides comprises a fusion between a protein-binding domain and IL-15 (or IL-15 variants) as disclosed in WO2008143794 (incorporated herein by reference).
- a second polypeptide of T2 comprises a fusion between a protein binding domain, an IL-15Ra domain and an immunoglobulin domain.
- the protein binding domain-IL-15 fusion protein can be further linked to an immunoglobulin domain.
- the preferred immunoglobulin domains comprise regions that allow interaction with other immunoglobulin domains to form multichain proteins.
- the immunoglobulin heavy chain regions are capable of interacting to create the Fc region.
- Preferred immunoglobulin domains also comprise regions with effector functions, including Fc receptor or complement protein binding activity, and/or with glycosylation sites.
- the immunoglobulin domains of the T2 molecule contain mutations that reduce or augment Fc receptor or complement binding activity or glycosylation, thereby affecting the biological activity of the resulting protein.
- immunoglobulin domains containing mutations that reduce binding to Fc receptors could be used to generate T2 molecules with lower binding activity to Fc receptor-bearing cells, which may be advantageous for reagents designed to recognize or detect TCR-specific antigens.
- c264scTCR single-chain TCR fused to human IL-15Ra sushi domain (huIL15RaSushi) and human IgGl constant regions (hulgGI C H 1-C H 2-C H 3) was carried out as follows.
- the c264scTCR/huIgGl gene fragment was removed from the previous constructed the pNEF38-
- BOS2 887851.1 58 c264scTCR/huIgGl vector by restricted digestion with Pad and Mlul.
- the gene fragment was gel-purified and ligated to pMSGV vector digested with the same restriction enzymes, resulted in the construct called as pMSGV-c264scTCR/huIgGl.
- a DNA fragment containing the CMV promoter was purified from pcDNA3.1 following digestion with Nrul and Hindlll. This fragment was ligated into pMSGV-c264scTCR/huIgGl which had been digested with Pad and filled in with DNA polymerase to create blunt ends and then digested with Hindlll.
- the resulting construct was named as pMC-c264scTCR/huIgGl.
- Cloning of the DNA fragment encoding the human IL15RaSushi domain into the pMC- c264scTCR/huIgGlresulted in a c264scTCR/huIL15RaSushi-huIgGl fusion gene comprising the following sequence: 3'- immunoglobulin heavy chain leader - 264 TCR V-a - peptide linker - 264 TCR V- ⁇ - human TCR C- ⁇ - human IL15RaSushi - human IgGl heavy chain.
- the resulting vector (pMC.c264scTCR-Su/IgGl.PUR), shown in Figure 2, containing the correct human IL15RocSushi gene insert was identified based on the diagnostic PCR and reconfirmed by DNA sequencing.
- the sequences of the c264scTCR/huIL15RaSushi/huIgGl gene and protein are shown at Figure 3 and Figure 4, respectively.
- TCR ⁇ constant region of the c264scTCR gene fragment was amplified from c264scTCR/huIgGl vector with front primer:
- the huIL15RaSushi gene fragment was amplified from the
- the hulgGI heavy chain constant region gene fragment was amplified from the c264scTCR/huIgGl vector with front primer:
- the resulting PCR product and the hulgGI gene fragment served as templates to generate a TCR c/huIL15RaSushi/huIgGl fusion gene by PCR with front primer:
- the c264scTCR PCR product was digested with Pad and Hpal and the
- TCR c/huIL15RaSushi/huIgGl fusion gene was digested with Hpal and Nsil.
- the digested gene fragments were ligated into a CMV promoter-containing pMSGV retrovirus vector.
- the resulting vector was designated as c264scTCR/Sushi/hIgGl-pMSGVc or
- pMSGVc264SuIg (Figure 5).
- the sequences of the c264scTCR/huIL15RaSushi/huIgGl gene and protein are shown at Figure 6 and Figure 7, respectively.
- Generation of expression vectors producing a fusion between single-chain TCR binding domain i.e. c264scTCR
- IL-15 or IL-15 variants
- Particularly useful IL-15 variants are those that reduce or eliminate IL-15 biological activity or that increase IL-15 biological activity.
- human IL-15 variants with substitutions at position 72 i.e. N72D substitution
- IL-15 variants are provided in the table below:
- the fusion protein complexes comprising IL-15 variants as described in the table immediately above were characterized for their ability to bind the TCR-specific antigen, p53 (aa264-272)/HLA-A2.1.
- p53 aa264-272
- HLA- A2.1-positive T2 cells (2 x 10 6 /mL) were loaded with 20 ⁇ p53 (aa264-272) peptide at 37° C in the presence of 1 x PLE (Altor Bioscience) for 2-3 hrs.
- T2 cells that were not incubated with peptide and 32 ⁇ cells expressing IL-2/15R yc serve as controls.
- c264scTCR/huIL15D8N+c264scTCR/huIL15Ra Sushi were generated by incubating 160 nM of purified c264scTCRhuIL15 fusion protein and 160 nM of purified c264scTCRhuIL15Roc Sushi fusion protein at 4 C for 3 hours. Following staining, cells were washed once with washing buffer (PBS containing 0.5% BSA and 0.05% sodium azide) and stained with 0.5 ⁇ g of biotinylated mouse monoclonal anti-human TCR C antibody (BF1) in 100 uL of washing buffer for 30 min at 4 C. Cells were washed once and stained with 0.5 ⁇
- c264scTCR/huIL15D8N+c264scTCR/huIL15RaSushi complex exhibited equivalent activity as the c264scTCR/huIL15+c264scTCR/huIL15RaSushi complex for specifically staining p53 peptide-loaded T2 cells.
- T2 molecules it is useful to have multiple different binding domains fused to the IL-15 and IL-15Ra components.
- a single-chain TCR domain (called cl49scTCR), specific to the p53 (aa 149-157) peptide presented in the context of HLA-A2, was linked to the IL-15N72D domain and the resulting fusion protein co-expressed with the c264scTCR/huIL15RaSushi/huIgGl fusion protein to produce a multichain T2 protein with c264scTCR and cl49scTCR binding domains.
- a cl49scTCR gene fragment (TCR- a, linker, TCR- ⁇ and TCR- ⁇ constant fragment) was amplified from
- the huIL15N72D gene was amplified from c264scTCR/huIL15N72D expression vector with the front primer:
- TCR c/huIL15N72D PCR product was digested with Hpa I and BstB I.
- the digested gene fragments were ligated into a CMV promoter-containing pMSGV retrovirus vector.
- the resulting vector was designated as cl49scTCR/IL15N72D-pMSGVn or pMSGV- C149IL15N72D ( Figure 8).
- the sequences of the cl49scTCR/huIL15N72D gene and protein are shown at Figure 9 and Figure 10, respectively.
- Example 2 Generation of transfected host cell lines producing fusion proteins.
- the expression vectors can be introduced into a variety of host cell lines by several different transformation, transfection or transduction methods.
- CHO-K1 cells (5 x 10 5 ) were seeded in a 6-well plate and cultured overnight in a C0 2 incubator. The cells were transfected with 5 ⁇ g of expression vector containing the
- c264scTCR/huIL15N72D fusion genes using 10 ⁇ of Minis TransIT-LTl reagent (Minis) according to the manufacturer's protocol.
- the cells were selected with 4 mg/mL of G418 (Invitrogen) one day after the transfection.
- G418 resistant cells were expanded and
- BOS2 887851.1 64 TCR/IL15 fusion protein expressing cells were subcloned three times by the limiting dilution and production cell lines were screened based on the level of soluble fusion protein secreted into the culture media by TCR and huILl 5 -specific ELISA with a capture antibody, anti- human TCR C antibody (BF1), and a detection antibody, biotinylated anti-human IL-15 antibody (BAM 247, R&D Systems) described previously (see WO2008143794).
- the c264scTCR/IL15N72D producing cell line was then transducted with the pseudotyped retroviral vector containing c264scTCR/huIL15RaSushi-huIgGl fusion gene as follows.
- 2 x 10 6 of the 293GP packaging cells in a poly-lysine coated 10 cm dish were cultured for 2 days at 37°C in a CO 2 incubator.
- the cells were then co-transfected using Lipofectamine 2000 (Invitrogen) with 9 ⁇ g of the plasmid pMC-c264scTCR/huIL15RaSushi/huIgGl and 4 ⁇ g of the plasmid pMD-G encoding VSV-G envelope protein.
- the supernatant containing virus was collected 48 hrs post-transfection and cell debris was removed by passing through a 0.45 ⁇ polyvinylidene fluoride filter.
- Virus was applied to the c264scTCR/IL15N72D producing cells (1 x 10 5 cells/well in a 6- well plate) in the presence of 10 ⁇ g/ml of polybrene (Sigma- Aldrich). Cells were selected with 10 ⁇ g/ml of puromycin and 2 mg/ml of G418 2 days post-transduction.
- the puromycin and G418 resistant cells were expanded and the T2 fusion protein complex expressing cells were subcloned three times by the limiting dilution and production cell lines were screened based on the level of soluble fusion protein secreted into the culture media using a huIgGl/huIL15-specific ELISA with a capture antibody, anti-human IgG antibody (Jackson ImmunoResearch), and a detection antibody, biotinylated anti-human IL-15 antibody (BAM 247, R&D Systems).
- c264scTCR/huIL15RaSushi/huIgGl were cultured under growth conditions (i.e. 25-37°C for 5 to 28 days in small scale culture flasks, spinner or shaker flasks or in large scale hollow- fiber, wave bag or stir tank bioreactors or equivalent culture vessels and reactors) to produce the T2 molecule as a soluble protein in the culture media.
- growth conditions i.e. 25-37°C for 5 to 28 days in small scale culture flasks, spinner or shaker flasks or in large scale hollow- fiber, wave bag or stir tank bioreactors or equivalent culture vessels and reactors
- T2 molecule was pH-adjusted and loaded on to an immunoaffinity column containing an anti-TCR antibody (BF1) covalently coupled to Sepharose.
- BF1 anti-TCR antibody
- BOS2 887851.1 65 buffer exchanged into phosphate buffered saline (PBS) and then loaded on rProtein A- Sepharose column. Following wash steps, the protein was eluted with 0.5 M Na-citrate pH 4.0 and then buffer exchanged into PBS. The resulting protein was characterized by
- the native T2 protein eluted at the expected molecular weight of a four- chain (2 x c264scTCR/IL15N72D, 2 x c264scTCR/huIL15RaSushi/huIgGl) molecule
- In vitro assays were carried out to characterize the binding activities of the domains of the T2 molecule and to compare these activities with those of other fusion molecules.
- microtiter wells were coated with anti -human IgGl antibody and equivalent molar amounts of purified T2 protein, composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains, or purified c264scTCR/huIgGl fusion protein were applied to the wells. Following binding and washing steps, the bound proteins were detected with anti-human IgGl antibody under standard ELISA conditions.
- BOS2 887851.1 66 TCR domain of the T2 molecule was assessed in a similar assay. Equivalent molar amounts of T2 or c264scTCR/huIgGl proteins were captured on anti-human IgGl Ab coated wells and detected with an anti-human TCR C antibody (W4F).
- the T2 protein exhibited 2-fold higher reactivity than the c264scTCR/huIgGl protein to the anti-TCR antibody. This is expected given the four-chain TCR fusion protein composition of the T2 molecule compared with the homodimeric composition of the c264scTCR/huIgGl fusion. The peptide/MHC binding activity of the TCR domains of the T2 molecule was assessed. Equivalent molar amounts of T2 (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains) or
- c264scTCR/huIgGl proteins were captured on anti-human IgGl Ab coated wells and detected with p53 (aa 264-272) peptide/HLA-A2 streptavidin-HRP tetramers. As shown in Figure 15, the T2 protein exhibited 3-fold higher binding activity than the
- T2 molecular structure provides a better antigen-specific binding activity than expected based on the individual components. This enhanced binding activity may be the result of less steric interference, better avidity effects, cooperative interactions and/or a better conformational fit between the TCR domain and peptide/MHC antigen.
- the activity of the IL-15 domain of the T2 molecule was also assessed.
- Microtiter wells were coated with anti-human IL-15 antibody and equivalent molar amounts of purified T2 protein, composed of c264scTCR huIL15N72D and c264scTCR huIL15RaSushi/huIgGl chains, or purified c264scTCR/huIL15N72D fusion protein were applied to the wells.
- the bound proteins were detected with anti-human IL- 15 antibody under standard ELISA conditions.
- the T2 protein exhibited increased reactivity (1.6-fold higher) compared to c264scTCR/huIL15N72D fusion for the anti-IL15 Ab, as expected based on hypothesis that each T2 molecule contains two IL-15 domains.
- the biological activity of the IL-15 domain of the T2 molecules was further characterized in proliferation assays using the
- 32D cells (2 x 10 4 cells/well) were incubated with increasing concentrations of T2 protein (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains) or
- the T2 protein exhibits 3-fold better biological activity than the c264scTCR/huIL15N72D fusion protein. This was unexpected since based on its structure and anti-IL-15 Ab reactivity (see Figure 16), the T2 protein was anticipated to only exhibit 2-fold higher IL-15 activity than c264scTCR/huIL15N72D. Together these results illustrate a number of advantages to the T2 molecular format in providing increased TCR binding activity and IL-15 biological activity than was not observed with these components alone or in the context of other fusion protein formats. The ability of the T2 protein to promote proliferation of IL-15 -responsive immune cells was examined in a primate model.
- the binding activity of the IgGl Fc domain of the T2 molecule was characterized in cell binding assays.
- Fc-gamma receptor bearing U937 cells were incubated with 33 nM of T2 protein (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains), c264scTCR/huIgGl or A2AL9scTCR/IgGl (negative control) for 20 min.
- Cells were washed once and incubated with PE-conjugated p53 (aa 264-272) peptide/HLA-A2 tetramer for 20 min.
- the binding to Fc gamma receptors on U937 cell surface was analyzed
- HLA-A2-positive T2 target cells were pulsed with 10 ⁇ of p53 aa264-272 peptide and labeled with 50 ug/ml of Calcein-AM.
- the fusion proteins were mixed with lxlO 4 of the target cell per well and lxl0 6 /well of fresh human PBMC were added.
- the plate was incubated at 37°C in a CO 2 incubator for 2 hrs and 100 ⁇ of the conditional medium were collected and analyzed for Calcein released from lysed cells. Calcein was quantitated with a fluorescence reader at Ex-485nm, Em-538nm, and Cutoff-530nm.
- the results of triplicate determinations per data point are shown in Figure 20 where two different lots of the T2 proteins were characterized.
- the results indicate that the T2 protein was more effective at mediating ADCC-like activity against peptide/MHC presenting target cells than the TCR-IgGl fusion protein.
- the improved activity may have been the result of enhanced binding of the T2 molecules to the peptide/MHC complex and/or increase reactivity to the effector cells displaying Fc receptors or IL-15 receptors.
- HLA- A2-positive T2 cells were pulsed with various amounts of p53 aa264-272 peptide. The cells were then incubated with T2 protein (composed of c264scTCR/huIL15N72D and
- the cells were incubated with biotinylated anti-TCR Ab (BF1) and streptavidin-PE. The cell were then analyzed by flow cytometry as shown in Figure 21A. The mean fluorescent intensity for the stained cells was plotted in Figure 21B.
- the results show that the T2 molecules exhibit enhanced ability to detect p53 peptide/HLA-A2 complexes on cells compared to the c264scTCR/huIgGl fusion protein. These results indicate that the T2 protein is capable of binding more effectively than c264scTCR/huIgGl fusions to tumor-associated peptide antigens on target cells.
- T2 molecules comprising TCR domains specific to other peptide/MHC targets.
- various peptides derived from the human tumor associated proteins p53, gplOO, MARTI, MAGE- A3, PSMA, PSA, Her2/neu, hTERT, tyrosinase, survivin, WT1, PR1, NY-ESOl, EGFR, BRAF and others, are known to bind HLA molecules and be targets for human T cell responses via TCR interactions.
- TCRs specific to HLA complexes displaying viral peptide antigens from HIV, HCV, HBC, CMV, HTLV, HPV, EBV and other virus have been identified. These TCR could be fused to the IL-15 or huIL15RaSushi proteins and characterized for peptide/MHC reactivity on the appropriate peptide loaded antigen presenting cells as described above.
- TCR domains fused to the IL-15, IL-15Ra and IgG components of the T2 molecule.
- This allows more than one antigen targeting activity to be present in a single multichain protein.
- c264scTCR-Sushi-hIgGl-pMSGVc and cl49scTCR-hIL15N72D-pMSGVn expression vectors were co-transfected into CHO cells cultured in IMDM-10 medium. The culture supernatant was harvested after 6 days culture of the transfectants at room temperature.
- c264scTCR/huIL15RaSushi/huIgGl were characterized with ELISAs.
- the purified T2- molecules of c264scTCR huIL15RaSushi/huIgGl and c264 scTCR huIL15N72D were used as a control.
- wells were coated with anti-human TCR Ab (BF1), the fusion protein was added and the bound protein was detected with biotinylated anti-human TCR Ab (W4F-BN).
- BOS2 887851.1 7Q detectable by anti-TCR antibodies To assess the IgGl and IL-15 domains of the T2 proteins, an ELISA comprised of a goat anti-human IgG Ab capture and anti-human IL-15 Ab detection described above as used.
- the T2 molecule composed of cl49scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl was detectable in this format indicating interaction between the protein chains containing the IgG and IL-15N72D domains.
- the activity of the cl49scTCR domain was also examined in an ELISA using anti -human IgG Ab capture and detection with p53 (aa 149-157) peptide/HLA-A2 streptavidin-HRP tetramers.
- the T2 molecule composed of cl49scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl was detectable in this format indicating molecules with a IgGl domain also have binding activity to the p53 (aa 149-157) peptide/HLA-A2 complex via interactions between the cl49scTCR/huIL15N72D and
- T2 molecules in which these two TCR domains were expressed on the other protein chains i.e. c264scTCR/huIL15N72D and cl49scTCR/huIL15RaSushi/huIgGl chains, were also generated.
- the Fc and TCR activity of these molecules were assessed following binding to U937 cells and detection with p53 (aa 264-272) peptide/HLA-A2 tetramers followed by flow cytometry.
- T2 molecules composed of c264scTCR/huIL15N72D and cl49scTCR/huIL15RaSushi/huIgGl chains were capable of binding Fc gamma receptors on U937 cells via the Fc domain and recognizing p53 (aa 264-272) peptide/HLA-A2 complex via the c264scTCR domain.
- These studies verify the T2 molecules with multiple functional TCR domains and IL-15 and IL15Ra and IgGl domains are capable of forming structures as shown in Figure 1.
- HLA-A2/Kb-transgenic mice (5 mice/timepoint) were injected intravenously with purified T2 protein (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains) at 135 ⁇ g/mouse.
- the HLA-A2/Kb-transgenic mouse model was selected since presence of HLA-A2.1 domain, for which this c264scTCR is restricted, may influence the pharmacokinetics of the protein and should give a more relevant "humanized” view of pharmacokinetics than other non-human models.
- blood was collected at 0, 1, 4, 8, 24, 48, and 72, 96 hours post injection and the levels of T2 protein in the serum was measured by ELISA.
- Two different ELISA formats were used: 1) goat anti- human IgG Ab capture and anti-human TCR Ab (W4F-BN) detection or 2) goat anti-human IgG Ab capture and anti -human IL-15 Ab detection.
- the T2 molecule had a biological half-life of about 9 - 11 hours following intravenous injection. This is considerably longer than the reported ⁇ 1 hour half-life of human IL-15 observed in mice after IP injection (Stoklasek TA et al. 2006. J. Immunol. 177: 6072). Additionally the T2 molecule reached serum concentrations consistent with the dose delivered, whereas very little of the administered dose of IL-15 was recovered in the serum in the study reported previously (Stoklasek TA et al. 2006. J. Immunol. 177: 6072). Thus, the T2 molecule has a significantly better pharmacokinetic profile than free human IL-15.
- the T2 protein remained intact as a multichain molecule with no evidence of cleavage.
- blood was collected at 0, 1, 4, 8, 24, 48, 72, 96 and 120 hours post injection and the levels of T2 protein in the serum was measured by ELISA.
- the T2 molecule had a biological half-life of about 4-6 hours following intravenous injection. This is considerably longer than the reported ⁇ 1 hour half-life of IL-15 observed in monkeys following subcutaneous injection (Villinger, F. et al. 2004. Vaccine 22: 3510). Thus, the T2 molecule appears to have a significantly better pharmacokinetic profile than free IL-15. In addition, based on the similar PK profile observed with the three ELISAs, these data supports the murine PK data that suggests the T2 protein remains intact as a multichain molecule with no evidence of cleavage.
- Example 10 Anti-tumor activity of T2 molecules against solid human tumors in xenograft tumor mouse model
- T2 protein To determine the therapeutic effects of the T2 protein, we examined antitumor activity in a primary tumor growth model with the human p53+ HLA-A2+ A375 melanoma cell line in nude mice. Tumor cells were injected subcutaneously into nude mice and tumors were allowed to grow to 100 mm 3 before treatment began. Tumor-bearing mice were injected intravenously with 32 ⁇ g/dose (1.6 mg/kg) T2 protein composed of
- mice were treated every other day for one week (3 injections) followed by a 9 day rest period and then every other day for an additional week (3 injections). During the study, tumor growth was measured and the tumor volumes were plotted (Figure 27). The results were compared to A375 tumor growth in mice treated with only PBS.
- BOS2 887851.1 73 provide evidence that tumor antigen targeting play a role in the antitumor activity of the T2 molecules.
- mutations can be introduced into the IL-15 domain that increase or decrease its ability to interact with the IL-15RPy chains and affect its biological activities.
- the N72D substitution can increase the IL-15 biological activity 5 to 10 fold.
- c264scTCR/huIL15 constructs containing substitutions at positions 8 (i.e., D8N) and 65 (i.e., N65D) of the IL-15 domain were generated and co- expressed with the c264scTCR/huIL15RaSushi/huIgGl protein.
- the T2 molecules comprising IL-15 D8N and N65D variants exhibited a significant decrease in their ability to support 32 ⁇ cell proliferation compared to the T2 molecules comprising IL-15 N72D domain or the c264scTCR/huIL15 fusions. Consistent with the results of Example 5, the T2 molecules comprising IL-15 N72D domain exhibited more IL-15 activity than either the c264scTCR/huIL15N72D or c264scTCR/huIL15 fusions.
- BOS2 887851.1 74 activity of human PBMCs against p53 aa264-272 peptide-loaded HLA-A2-positive T2 target cells was assessed as described in Example 6.
- Other mutations known to alter Fc function are provided, for example, in Lazar et al., PNAS, 103:4005-4010, 2006 (incorporated herein by reference).
- the T2 complex comprising the
- c264scTCR/huIL15RaSushi/huIgGl-LALA and c264scTCR/huIL15N72D chains was not capable of mediating high levels of ADCC activity consistent with the loss of Fc gamma receptor binding exhibited by the Fc-LALA variant.
- complexes comprising c264scTCR/huIL15RaSushi/huIgGl-KA and c264scTCR/huIL15N72D chains or the IL-15 variants (N65D or D8N) described above exhibited the same level of ADCC activity as the c264scTCR/huIL15RaSushi/huIgGl-c264scTCR/huIL15N72D complex. Without being bound by mechanism, these data are also expected based on the likelihood that the IL-15 domain and the Fc complement-binding domain are not involved in mediating ADCC activity.
- NK cell cytotoxicity was then assessed using NK-sensitive K-562 cells as target cells following labeling with 50 ug/ml of Calcein-AM.
- c264scTCR/huIL15RaSushi/huIgGl and c264scTCR/huIL15N72D chains was capable of stimulating NK cell cytolytic activity of human PBMCs compared to that observed following incubation with media alone.
- T2 molecules comprising the Fc domain LALA
- BOS2 887851.1 75 and KA variants were also capable of stimulating NK cell activity whereas those comprising N65D or D8N substitutions in the IL-15 domain should little or no ability to stimulate NK cell cytotoxicity. Consistent with these results, incubation of human PBMCs with T2 molecules comprising the c264scTCR/huIL15RaSushi/huIgGl and c264scTCR/huIL15N72D chains or those with the Fc domain LALA and KA variants resulted in an increase in proliferation of CD56+ NK cells whereas T2 molecules comprising IL-15 N65D or D8N substitutions did not provide as much NK cell proliferative activity (Figure 31). These results are expected based on the functionality of each of the IL-15 domain.
- T2 molecules containing IL-15 and Fc mutations were evaluated for TCR-specific target cell recognition using T2 cells loaded with peptide.
- Cell staining with the T2 molecules or c264scTCR-streptavidin tetramer positive control was performed on T2 cells with (T2.265) and without loaded p53 peptide (T2) using the method described in Example 7 ( Figure 32A).
- the T2 molecule comprising the c264scTCR/huIL15RaSushi/huIgGl and c264scTCR/huIL15N72D chains shows significant cell binding compared to the c264scTCR-streptavidin tetramer or BF1 antibody controls.
- Introduction of the Fc LALA or IL-15 N65D or D8N mutations reduced this cell binding indicating that interactions with both Fc and IL-15 receptors play a role in T2 complex binding.
- Combination of the Fc LALA and IL-15 N65D or D8N mutations further reduced T2 complex binding such that the molecule comprising c264scTCR/huIL15RaSushi/huIgGl-LALA and c264scTCR/huIL15 D8N did not show binding to unloaded T2 cells above the BF1 antibody negative control. Staining of p53 peptide loaded cells was also effected by introduction of the Fc or IL-15 mutations.
- BOS2 887851.1 7g example targeted complexes relying in part on ADCC activity for their therapeutic effect may require dosing at high levels (i.e.. 1 - 20 mg/kg) that exceed the tolerable dose level of the IL-15 component.
- complexes containing a mutation in the IL-15 domain that reduces its activity are expected to provide better therapeutic activity and lower toxicity.
- T2 molecules containing N65D or D8N substitutions in the IL-15 domain described above or other substitutions including I6S, D8A, D61A, N65A, N72R, V104P or Q108A, which has been found to reduce IL-15 activity, are of particular interest.
- the antigen-specific domains such as the TCR binding domains can be inactivated by mutations or completely deleted.
- T2MATCR the activity of such a molecule comprising huIL15RaSushi/huIgGl and huIL15 D8N chains referred to as T2MATCR was compared to the T2 molecule comprising
- T2M c264scTCR/huIL15RaSushi/huIgGl and c264scTCR/huIL15N72D chains
- T2MAIg or c264scTCR dimer a T2 molecule lacking the hulgGI chain
- T2MAIg or c264scTCR dimer When tested for ability to support 32 ⁇ cell growth as described in Example 5, the T2MATCR exhibited very potent IL-15 activity (Figure 33A) that was >24 fold that observed with recombinant human IL-15.
- T2MATCR The ability of the T2MATCR to support human immune cell growth was also assessed.
- Human PBMC at lxlO 6 cells/ml were incubated with media in the presence or absence of T2M (0.5nM), T2MATCR (0.5nM), or T2MAIg (InM) for 7 days.
- Cells were stained with anti-CD45RO and anti-CD8, or anti-CD8, anti-CD95, and anti-CCR7, or anti- CD56 and anti-CD 16, and analyzed with FACScan.
- the averaged results from 8 different donors shown in Figure 33B indicate that the T2MATCR and other T2 molecules could effectively stimulate expansion of various CD8+ memory T cell and NK cell subsets including effector memory T cells.
- NK cell activity of these cells was examined using the methods described in Example 11. Representative results from 2 donor PBMC preparations shown in Figure 33C indicate that the T2MATCR and other T2 molecules could effectively stimulate NK cell cytolytic activity. Overall these results indicate that the T2MATCR protein is a potent immunostimulatory molecule.
- T2M, T2MATCR, T2MATCR lacking the IgGl CHI domain T2MATCRACH 1
- T2M with the Fc- LALA mutation T2MLALA
- T2 with the IL-15 D8N mutation T2MD8N
- c264scTCR/huIL15N72D, c264scTCR/huIL15RaSushi and c264scTCR/huIL15N72D + c264scTCR/huIL15RaSushi complexes were evaluated.
- mice were i.v. injected on day 1 and 4 with the fusion proteins at an amount equivalent to a 2.5 ⁇ g dose of IL-15.
- blood cells and splenocytes were collected, stained for CD8 T-cells and NK cells, and analyzed by flow cytometry.
- the results shown in Figure 34 indicate that T2 molecules are effective at expanding both blood and splenic NK cells and CD8 T cells in vivo.
- T2MLALA showed similar activity as T2M, suggesting FcR binding and signaling may not play a significant role in NK and CD8 T cell expansion.
- T2MD8N treatment resulted in decreased activity when compared with T2M, confirming the finding that D8N mutation diminished the molecule's immunostimulatory activity in vitro using human PBMC.
- T2MATCRACH1 showed decreased activity. These effects may have been due to the shorter half-lives of these smaller molecules.
- c264scTCR/huIL15RaSushi and c264scTCR/huIL15N72D + c264scTCR/huIL15RaSushi complexes also showed reduced in vivo activity relative to the T2M, verifying the in vitro results indicating that the T2 molecule is a more potent immunostimulatory compound.
- a fusion protein complex (OT1-CD8-T2M) was created comprising a single-chain TCR domain (OTlscTCR) specific for H-2K b - restricted OVA aa257-264 peptide (SIINFEKL) linked to huIL15N72D and a single chain CD8a/ domain linked to the huIL15RaSushi/huIgGl fusion.
- the single chain CD8a/ domain comprises the extracellular domain of murine CD8a linked via a (G 4 S)4 peptide linker to the extracellular domain of murine CD8 . It is well characterized that CD8 binds to
- BOS2 887851.1 78 a site in the MHC molecule distal to the TCR-specific peptide/MHC interface.
- both the OTscTCR and scCD8a/p domains of the OT1-CD8-T2M complex are expected to interact at different sites on the OVA aa257-264/H-2K b -molecule.
- OTlscTCR/huIL15N72D fusion by ELISA Equal molar amounts of each protein was captured on a well coated with anti-TCR C mAb (H57) and probed with OVA aa257- 264/H-2K b tetramers or mAbs to IL15, CD8a, CD8 or TCR Va2. Assays were also preformed with wells coated with anti-human Ig and probed with anti-TCR Va2.
- the OT1-CD8-T2M protein exhibited reactivity to anti- IL15, CD8a, CD8P, TCR Va2 and human Ig antibodies.
- the OTlscTCR/huIL15N72D fusion showed little or no binding to OVA aa257-264/H-2K b tetramers whereas binding was clearly apparent with the OT1-CD8-T2M protein (Figure 35B).
- the active and soluble proteins in complex with the peptides were obtained by the re-folding method described at http://www.microbiology.emory.edu/altman/ jdaWebSite_v3/ptetPrepOverview.shtml.
- the p53 (aa264-272) and (aal49-157)
- peptide/HLA-A*0201 reagents are referred to as A2/p53.264-272 and A2/p53.149-157, respectively, and the OVA (aa257-264) peptide/H-2Kb is referred to as Kb/OVA.257-264.
- ELISA - Immunoplates Maxisorb, Nunc, Rochester, NY) were coated with (BF1)
- BOS2 887851.1 79 OTlscTCR fusion proteins After washing, the proteins were detected using various probes as detailed in the Results section.
- ABTS (2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonic acid]- diammonium salt) substrate was then added and absorbance was measured at 405 nm using a 96-well plate reader (Versamax, Sunnyvale, CA).
- Flow Cytometry For characterization of the c264scTCR fusion protein complexes,
- T2 cells were pulsed with p53 (aa264-272) peptide at 37°C for 2 h in the presence of peptide loading enhancer (PLE, Altor Bioscience Corp., Miramar, FL).
- p53 aa264-272
- PLE Altor Bioscience Corp., Miramar, FL
- murine lymphoma EL4 cells were pulsed with OVA peptide at 100 ⁇ g/ml and PLE at 37°C for 6 h.
- the various birA fusion proteins (complexed with SA-PE) were added and incubated at 4°C for 1 h.
- the samples were washed two times and analyzed on a FACScan flow cytometer using CellQuest software (BD Biosciences, San Jose, CA).
- IL-15 domain binding activity 32 ⁇ cells were incubated with 320 nM of the c264scTCR fusion protein complexes for 30 min at 4°C. The binding of the proteins was in turn detected with biotinylated (BF1) 8A3.31 mAb for 15 min and SA-PE (5 ⁇ g/ml each) for 15 min. The stained cells were analyzed by flow cytometry as described above.
- biotinylated (BF1) 8A3.31 mAb for 15 min
- SA-PE 5 ⁇ g/ml each
- Cell proliferation assays Cell proliferation was measured as previously described (25). Briefly, 32 ⁇ cells (1 x 10 5 cells/well) were incubated with increasing concentrations of scTCR/hIL-15 or scTCR/hIL-15 muteins in the presence or absence of an equal molar concentration of scTCR/hIL-15RaSu for 48 h at 37°C. Cell proliferation reagent WST-1 (Roche Applied Science, Indianapolis, IN) was added during the last 4 h of cell growth according to the manufacturer's procedures. Conversion of WST-1 to the colored formazan dye by metabolically active cells was determined through absorbance measurements at 440 nm. The EC5 0 was determined with the dose-response curve generated from the experimental data by nonlinear regression variable slope curve-fitting with Prizm4 software (GraphPad Software, La Jolla, CA).
- BOS2 887851.1 80 The purified OTlscTCR fusion proteins were diluted to 1 ⁇ , 0.5 ⁇ and 0.25 ⁇ in HBS. Each concentration was injected once (50 ⁇ ) at a flow rate of 10 ⁇ /min over a freshly immobilized pMHCI surface as well as over a control streptavidin surface blocked with biotin (baseline) and the binding curves were registered. The dissociation constant (KD) and association (k on ) and dissociation (k Dff ) rates were calculated from the corrected binding curves (baseline subtracted) using the BIAevaluation 4.1.1 software (GE Healthcare Sciences, Piscataway, NJ).
- c264scTCR/hIL- 15 a biologically active, bifunctional fusion protein, designated as c264scTCR/hIL- 15, could be created by fusing the N-terminus of hIL-15 to a three-domain, HLA-A*0201- restricted chimeric TCR specific for the p53 (aa264-272) peptide antigen (c264scTCR) (25) (Fig. 36A).
- c264scTCR a biologically active, bifunctional fusion protein, designated as c264scTCR/hIL- 15
- c264scTCR a biologically active, bifunctional fusion protein
- This fusion protein was genetically linked to a birA peptide tag to allow for biotinylation and subsequent multimerization in the presence of streptavidin (32).
- This fusion protein is designated c264scTCR/hIL- 15RaSu/birA and its expression and purification from CHO cells were similar to that of c264scTCR/hIL-15 (25).
- These fusion proteins are readily produced at a level of mgs per liter of cell-culture supernatants (data not shown). Based on the high specific binding activity between the hIL-15 and hIL-15RaSu domains, we anticipated that the fusion proteins could form a heterodimeric complex.
- c264scTCR/hIL-15RaSu/birA to capture hIL-15 and c264scTCR/hIL-15 proteins (25).
- c264scTCR dimer dimeric c264scTCR fusion protein complexes
- the complexes and the individual protein fusions were evaluated by size exclusion chromatography.
- the c264scTCR dimer was compared with monomeric c264scTCR/BirA protein for their ability to bind the TCR-specific antigen, p53 (aa264-272)/HLA-A*0201.
- the proteins were biotinylated with biotin ligase followed by complexing with SA-PE (32) to generate multimeric flow cytometry staining reagents as previously described (32).
- SA-PE biotinylated with biotin ligase followed by complexing with SA-PE (32) to generate multimeric flow cytometry staining reagents as previously described (32).
- scTCR A second scTCR (cl49scTCR) was created which recognizes an HLA-A*0201 restricted epitope of the human p53 protein spanning the amino acid residues of 149 to 157 (24). This scTCR was fused to hIL-15 and the resulting protein, designated cl49scTCR/hIL- 15, was co-expressed in CHO cells with the c264scTCR/hIL-15aSu/birA fusion. The fusion complex observed in the supernatant of the recombinant CHO cell culture was immobilized
- BOS2 887851.1 82 using an anti-IL-15 antibody and probed either by HRP-labeled p53 (aa264-272) or p53 (aal49-157) peptide/HLA-A*0201 tetramers.
- the anti-IL-15 antibody captured fusion protein complex was able to bind both of the peptide-loaded HLA tetramers.
- the result demonstrates that the individual scTCR molecules retain functional activity when fused to the hIL-15:hIL-15RaSu scaffold and the spatial arrangement of hlL- 15:hIL-15RaSu complex does not significantly interfere with the packing of the scTCR domains which have an individual molecular weight of approximately 40 kDa.
- OT1 is a well-characterized TCR recognizing an epitope of OVA protein spanning the amino acid residues 257 to 264 in the context of murine H-2Kb (34).
- OT1 single-chain TCR (OTlscTCR) gene was generated and fused to the hIL-15 and OTlscTCR/hIL-15RaSu/birA constructs for recombinant CHO cell expression.
- the affinity purified OTlscTCR fusion proteins were found to have pMHCI binding activity in ELISA using anti-mouse TCR C H57 antibody as a capture reagent and HRP-labeled, OVA (aa257- 264) peptide-loaded H-2Kb tetramer ( Figure 42).
- SA-PE tetramers comprising the OTlscTCR dimer indeed stained significantly better than those comprising monomeric OTlscTCR/birA fusions.
- the apparent binding affinity (KD) of the OTlscTCR dimer to OVA peptide/H-2Kb complexes was estimated to be about 30 ⁇ , whereas no binding was observed for the monomeric OTlscTCR/birA fusion protein (Table 1).
- BOS2 887851.1 83 cognate OVA peptide/H2-Kb complex (35-37), the L-15:hIL-15RaSu scaffold provides an opportunity to assess whether CD8 molecule enhances OT1 TCR binding affinity to OVA peptide/H-2Kb expressed on the cell surface and under cell-free and adhesion molecule-free conditions.
- CD8 molecule enhances OT1 TCR binding affinity to OVA peptide/H-2Kb expressed on the cell surface and under cell-free and adhesion molecule-free conditions.
- scCD8 single-chain format
- This fusion gene was fused to the L-15RaSu/birA construct in a retroviral expression vector.
- Recombinant retrovirus was then used to infect a CHO cell line expressing the OTlscTCR/hIL-15 fusion protein.
- the heterodimeric fusion protein complex was purified from the supernatant of the cultured recombinant CHO cells using the anti-TCR antibody -based affinity chromatography as described above. This purified protein was subjected to ELISA using anti-TCR antibody as the capture reagent and either the biotinylated anti-mCD8a or anti-mCD8 mAbs as probes.
- the anti-TCR Ab-immobilized fusion complex contains both the CD8a and CD8P and, thus, indicates formation of an OTlscTCR/scCD8 heterodimer.
- SA-PE staining reagents comprising the OTlscTCR/scCD8 heterodimer could readily detect OVA peptide/H-2Kb complexes on EL4 cells loaded with as little as 10 ng/ml OVA peptide, whereas little or no staining was observed at this peptide concentration when comparable reagents comprising the OTlscTCR dimer were used.
- Higher background
- OTlscTCR/scCD8 heterodimer staining was observed on EL4 cells that were not pulsed with peptide, suggesting peptide-independent interactions were occurring between the CD8 domain and MHC molecules on the cell surface. Similar effects have been reported for pMHCI tetramers binding to CD8 molecules expressed on T cells (38).
- the results for peptide-specific interactions of the OTlscTCR/scCD8 heterodimer were further confirmed by surface plasmon resonance analysis.
- the binding affinity (KD) of the OTlscTCR/scCD8 heterodimer to OVA peptide/H-2Kb complexes was estimated to be 2.6 ⁇ , which is significantly higher than the -30 ⁇ observed for the OTlscTCR dimer (Table 1, Figure 43). Neither fusion protein showed any binding to control VSV peptide/H- 2Kb complexes.
- BOS2 887851.1 84 The difference in specific pMHCI binding activity is surprising given that the bivalent nature of the OTlscTCR dimer is expected to provide increased functional affinity in this assay format. Additionally, similar SPR binding studies conducted with soluble TCR, CD8 ⁇ / ⁇ and pMHCI proteins as independent components showed only weak interactions (KD 30- 100 ⁇ ) between CD8 protein and peptide/H-2Kb complexes and no apparent cooperative effects of CD8 on TCR:peptide/H-2Kb interactions (39-41). Taken together, these data indicate that the addition of the CD8 ⁇ / ⁇ domain to the OTlscTCR fusion has a greater impact on pMHCI binding than creation of the bivalent OTlscTCR molecule.
- hIL-15:hIL-15RaSu scaffold could be used to create functional bi-specific molecules with the flexibility to accommodate complex protein-protein interactions.
- a functional CD8 molecule can be constructed as a soluble single-chain molecule and demonstrate that the scCD8 domain when complexed with OTlscTCR in a heterodimeric molecule enhances TCR:pMHCI interactions in cell-free conditions without the presence of other adhesion molecules.
- the N-termini of the hIL-15 and hIL-15Ra domains are at distal ends of the complex raising questions as to whether this scaffold is suitable for fusions to polypeptides of a multi-chain protein.
- a soluble, biologically active, heterodimeric TCR ⁇ / ⁇ could be constructed using the hIL-15 and hIL-15RaSu scaffold, the C-terminal ends of the extracellular OTl TCR Va-Ca and ⁇ -CP domains were linked to the N-termini of hIL-15 and hIL-15RaSu/birA chains, respectively.
- the TCR Ca and C C-terminal amino acids of the properly folded OTl TCR ⁇ / ⁇ molecule are expected to be -18 A apart (42).
- the OTl TCRa/hIL-15 and OTl TCR /hIL-15RaSu/birA fusion genes were cloned into two separate expression vectors and co-transfected into CHO cells.
- the secreted fusion protein complex was purified using anti-TCR C mAb affinity chromatography as described above. When analyzed by Coomassie-stained SDS-PAGE under reducing condition, the purified protein bands migrated at 50 kDa, consistent with the calculated monomeric MW (40 kDa) of each of the two fusion molecules (data not shown).
- the purified protein was further characterized in the functional ELISA (anti-TCR C mAb capture: OVA peptide/H2-Kb tetramer probe). As shown in Figure 40A, the purified protein was found to have equivalent pMHCI binding activity as OTl TCR in the single- chain format. Similar results were observed for hIL-15:hIL-15RaSu/birA fusions to the Va- Ca and ⁇ -C chains of the p53-specific 264 TCR (Fig. 40B). Previous attempts to produce
- the fusion to N-termini of the hIL-15:hIL-15RaSu scaffold is able to provide the spatial arrangement sufficient for functionally independent binding domains as observed with the c264scTCR/cl49scTCR heterodimeric complex while retaining flexibility to permit folding of closely paired chains such as the a and ⁇ chains of OT1 TCR and 264 TCR.
- IL-15R yC The IL-15 receptor (IL-15R yC) binding capability of the hIL-15:hIL-15Ra domain of the c264scTCR dimer was evaluated by flow cytometry analysis using 32 ⁇ cells which carries the hIL-15R and the murine yC (myC) chains. These studies were carried out using c264scTCR dimers containing the wild-type hIL-15 domain, as well as dimers with hIL-15 mutein domains previously shown to enhance (N72D) or reduce (D8N) binding to the hIL-15R chain (25). Additionally we have demonstrated that these mutations do not affect formation of the L-15:hIL-15RaSu complex (25).
- the 32 ⁇ cells were stained with anti-TCR mAb to detect cell-bound fusion protein dimers. As shown in Figure 41A, the 32 ⁇ cells were stained positively by the c264scTCR dimers containing hIL-15 wild-type or ML-15N72D domains but not with those containing the L-15D8N domain, indicating that the IL-15:hIL-15RaSu portion of the complex retains the expected IL-15R yC binding activity.
- the hIL-15 biological activity of the fusion protein dimers were also examined in cell proliferation assays using 32 ⁇ cells.
- the hIL-15 wild-type domain in the monomeric (scTCR/hIL-15 fusions) or dimeric (scTCR/hIL-15:scTCR/hIL-15RaSu) fusion formats were able to support the growth of 32 ⁇ cells in a concentration-dependent manner, exhibiting half-maximal stimulation (EC 50 ) at -300 pM.
- the ML-15N72D or D8N domains either increased or eliminated the biological activity of the fusion proteins, respectively, regardless whether they were present in the monomeric or dimeric fusions.
- BOS2 887851.1 gg interact with hIL-15R myC. Additionally, these results indicate that the hIL-15 domain can be readily manipulated to allow enhanced or reduced receptor binding and functional activity, thus providing additional flexibility for the use of the hIL-15:hIL-15RaSu scaffold in different applications.
- T2M lacking the IgGl CHI domain T2MACH1
- T2MACH1 T2MACH1
- B16 5 x 10 5 /mouse
- EG7 1 x 10 6 /mouse
- Tumor-bearing mice were injected intravenously of study days 1, 4, 8 and 11 with 51 or 25.5 ⁇ g/dose T2 protein (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl chains), 47.7 ⁇ g/dose T2MACH1 (composed of c264scTCR/huIL15N72D and c264scTCR/huIL15RaSushi/huIgGl CH2-CH3 chains) (molar equivalent to 51 ⁇ g/dose T2 protein), 16.6 or 8.3 ⁇ g/dose
- T2MATCRACH1 (composed of huIL15N72D and huIL15RaSushi/huIgGl CH2-CH3 chains) (molar equivalent to 51 and 25 ⁇ g/dose T2 protein, respectively), or 1.2 ⁇ g/dose rhIL-15 (molar equivalent to 25 ⁇ g/dose T2 protein).
- Animal weights and tumor volumes were measured and the results were plotted ( Figures 44A-B and 45A-B).
- BOS2 887851.1 87 To further characterize similar targeted IL-15:IL-15Ra-Fc complexes, recombinant CHO cell lines were generated that co-express the c264scTCR/huIL-15 and
- the human IgGl domain contained the entire heavy chain constant (CH1-CH2-CH3) and in a second case the CH2- CH3 domain (i.e. ACHl) or Fc domain was used, as indicated above.
- CH2- CH3 domain i.e. ACHl
- the protein sequence of the human IgGl CH2-CH3 domain or Fc domain is shown in Figure 46.
- T2 molecules T2M
- T2MACH1 T2MACH1
- dimerization through the Fc domains and interactions between IL-15 and IL-15Ra domains yield tetrameric targeting molecules capable of binding to IL-15R y-positive cells and Fc receptor (FcR)-positive cells.
- FcR Fc receptor
- each of these domains can be analyzed by mutants that reduce interactions with the cognate receptors. Following soluble expression by recombinant CHO cells, these complexes were purified to homogeneity by affinity chromatography using anti- TCR C mAb-Sepharose and Protein A Sepharose. Size exclusion chromatography indicated that the molecules migrated at the size expected for intact complexes.
- T2M and T2M2 retain their respective binding activities. Additionally, the IgGl domain of T2M and T2M2 retains the ability to bind Fc receptor (FcR) bearing cells, allowing specific detection with peptide/HLA tetramers with comparable activity to that of scTCR-IgGl fusions.
- FcR Fc receptor
- T2M and T2M2 were capable of mediating ADCC activity of human lymphocytes against target cells displaying the p53 (aa264-272)/HLA-A2 complex (Figure 47).
- T2M and T2M2 retain the antibody-like effector functions previously described for the scTCR-IgG fusions.
- Studies with complexes containing Fc mutations (LALA) that reduce FcR binding activity demonstrated that a functional Fc domain was required for ADCC activity.
- T2M and T2M2 also supported growth of the IL-15 dependent 32 ⁇ cell line, though T2M2 showed about ⁇ 3 fold less in vitro IL-15 activity than T2M. The ability of these molecules to stimulate immune responses in mice was also assessed.
- BOS2 887851.1 88 complex (at a molar equivalent IL-15 dose) resulted in splenomegaly and elevated blood CD8+ T cell levels (Figure 48A & B), consistent with the results observed previously for similar IL-15:IL-15Ra-Fc complexes.
- Both the T2M and T2M2 complexes stimulated an increase in WBC levels, spleen weight and blood NK and CD 8+ T cell populations, with the T2M2 complex showing the more potent immunostimulatory effect at an equivalent molar dose (despite exhibiting lower IL-15 activity on 32 ⁇ cells). Similar treatment dependent effects on NK and CD8+ T cell populations were observed in the spleen.
- T2M2 and IL-15N72D/IL-15Ra-IgG show an increase in the percentage of NK cells in the blood and spleen 4 days post treatment that decreases to near baseline levels 7 days post treatment (Figure 49B).
- T2M2 complex was capable stimulating CD8+ T cell and NK cell responses in mice with significantly higher activity than that of IL-15 and for NK cells than that of the IL- 15N72D/IL-15Ra-IgG complex.
- T2M complexes were tested in this model, they exhibited modest but statistically significant anti-tumor activity consistent with their ability to stimulate NK cell proliferation ( Figure 50B).
- T2M dosing schedule (4 mg/kg every other day for 3 weeks) resulted in significant weight loss and two of 6 mice died after the last dose.
- BOS2 887851.1 89 proliferation exhibited significant more potent anti-tumor activity compared to IL-15 or PBS treatment (Figure 50C). More importantly, this weekly dosing regimen was also well tolerated by the tumor-bearing nude mice and immunocompetent mice.
- scTCR-IL15 fusions and T2M complexes were assessed concurrently with the in vivo activity studies described above. As indicated above, 3 weeks of every other day treatment with scTCR-IL15 fusions was well-tolerated by tumor bearing nude mice but T2M (4 mg/kg) treatment resulted in mortality in >30 of the animals. This was further evaluated in HLA-A*0201/Kb-transgenic mice administered 9, 18, or 36 mg/kg T2M or molar equivalent amounts of T2M2 complexes every other day for 1 week. At 1 week following initiation of treatment, dose and time dependent effects on body weight and clinical observations were seen.
- mice receiving 36 mg/kg T2M exhibited a 20% loss in body weight compared to a 12% decrease observed in mice treated with equivalent amounts of T2M2.
- No change in body weight was observed in mice treated with ⁇ 9 mg/kg T2M or T2M2 over the 1 week period.
- the higher toxicity observed with T2M did not correlate with increased immune cell activation as the mice treated with T2M2 showed higher levels of WBC counts and NK cell levels than T2M-treated mice.
- Minimal effects on mouse body weight, spleen weight and immune cells was observed following single dose i.v.
- T2M2 administered 0.4 mg/kg T2M2.
- T2M2 a single 0.5 mg/kg i.v. dose of T2M did not cause any observed toxicological effect but was capable of inducing CD8+ memory T cell and effector NK cell expansion.
- the results of these studies indicate that targeted IL-15 fusion complexes can be generated that have potent immunostimulatory and anticancer activity and favorable toxicity and pharmacokinetic profiles.
- T2MACH1 composed of c264scTCR/huIL15N72D and
- c264scTCR/huIL15RaSushi/huIgGl CH2-CH3 chains was defined and characterized.
- the nucleic acid and protein sequences of the c264scTCR/huIL15RaSushi/huIgGl CH2-CH3 construct are shown in Figures 51 and 52, respectively.
- Example 18 Characterization of T2 molecules comprising antibody targeting domains
- constructs were made linking the C-terminal end of an anti- human CD20 single chain antibody to the N-termini of huIL-15N72D and huIL-
- the anti-human CD20 single chain antibody (anti- CD20 scAb) sequence comprises the coding regions of the heavy and light chain V domains of the rituximab antibody linked via a flexible linker sequence.
- the nucleic acid and protein sequences of the anti-CD20 scAb/hIL-15N72D construct are shown in Figures 53 and 54, respectively.
- the nucleic acid and protein sequences of the anti-CD20 scAb/huIL- 15RaSu/huIgGl Fc construct are shown in Figures 55 and 56, respectively.
- anti-CD20 scAb T2M soluble anti-CD20 scAb/huIL-15N72D:anti-CD20 scAb/huIL-15RaSu/huIgGl Fc complex
- the ELISA-based methods have confirmed formation of the anti-CD20 scAb/huIL-15N72D:anti-CD20 scAb/huIL-15RaSu/huIgGl Fc complex. Additionally, IL-15 receptor binding and cell proliferation assays using 32 ⁇ cells as described above indicated that the complex exhibited IL-15 binding and biologic activity.
- the anti-CD20 scAb T2M complex was then tested for antigen specific binding activity against the human CD20 + Burkitt lymphoma Daudi cell line. Daudi cells were incubated with anti-CD20 scAb T2M, c264scTCR T2M or PBS.
- the anti-CD20 scAb T2M molecule is expected to exhibit antitumor activity against human lymphoma cells in standard xenograft tumor models (see for example, Rossi et al. Blood 2009;114:3864; Gillis et al. Blood. 2005; 105:3972; and Xuan et al. Blood 2010; 115:2864-2871). Additionally T2M constructs comprising anti-CD20 light chains and heavy chain domains individually fused to the huIL-15N72D and huIL-15RaSu/huIgGl CH2-CH3 (Fc) chains, respectively (or visa versa), could be generated and expressed as described herein.
- nucleic acid and protein sequences of two such fusion constructs are shown in Figures 60 - 63.
- Purified complexes comprising these fusion proteins are expected to exhibit Fc domain and IL-15 biologic activity, and CD20-specific binding activity, as described above. These complexes are expected to mediate ADCC activity against CD20 + tumor cells and antitumor activity against CD20 + tumor cells in vivo.
- T2M constructs comprising scAb or antibody recognition domains could be readily generated with antibody sequences specific to other CD antigens, cytokines or chemokine receptors or ligands, growth factor receptors or ligands, cell adhesion molecules, MHC/MHC-like molecules, Fc receptors, Toll-like receptors, NK receptors, TCRs, BCRs, positive/negative co-stimulatory receptors or ligands, death receptors or ligands, tumor associated antigens, virus-encoded and bacterial-encoded antigens, and bacterial-specific .
- T2M with antibody domains specific to epitopes of CD3, CD4, CD19, CD21, CD22, CD23, CD25, CD30, CD33, CD38, CD40, CD44, CD51, CD52, CD70, CD74, CD80, CD152, CD147, CD221, EGFR, HER-2/neu, HER-1, HER- 3, HER-4, CEA, OX40 ligand, cMet, tissue factor, Nectin-4, PSA, PSMA, EGFL7, FGFR, IL-6 receptor, IGF- 1 receptor, GD2, CA-125, EpCam, death receptor 5 MUC1, VEGFR1, VEGFR2, PDGFR, Trail R2, folate receptor, angiopoietin-2, alphavbeta3 integrin receptor and HLA-DR antigens.
- Antibody domains against viral antigens from HIV, HCV, HBC, CMV, HTLV, HPV, EBV, RSV and other virus are also of interest, particularly those recognizing the HIV envelope spike and/or gpl20 and gp41 epitopes.
- Such antibody domains can be generated from sequences known in the art or isolated de novo from a variety of sources (i.e., vertebrate hosts or cells, combinatorial libraries, random synthetic libraries, computational modeling, etc.) know in the art.
- BOS2 887851.1 92 toxicity of the antibody-targeted T2 complexes Methods of modifying the activity of Fc domains are described above and are well characterized in the art. In such a case, complexes containing a mutation in the IL-15 domain that reduces its activity are expected to provide better therapeutic activity and lower toxicity.
- Example 19 Co-expression of IL-15N72D and IL-15RaSu/Fc fusion gene in CHO cells
- IL- 15 is poorly expressed by mammalian cells (A. Ward et al., Protein Expr Purif 68 (2009) 42-48). However, it has been reported that intracellular complex formation with IL- 15Ra prevents IL- 15 degradation in the ER (C. Bergamaschi et al., J Biol Chem 283 (2008) 4189-4199). Hence, it was postulated that IL- 15 could be produced at a higher level if it is co-expressed with IL- 15R0C. It is known that soluble IL- 15R0C fragment, containing the so-called "sushi" domain (Su) at the N terminus, bears most of the structural elements responsible for cytokine binding.
- IL- 15N72D To co-express IL- 15N72D and the IL- 15RocSu/Fc, two individual retrovirus-based expression vectors, pMSGV-IL- 15RocSu/Fc and pMSGV-IL-15N72D, were constructed and co-transfected into CHO cells.
- the recombinant CHO cells were selected based on the neomycin and puromycin resistance elements provided by the two expression vectors, and individual producing cell lines were then generated using limited dilution cloning.
- IL-15N72D intracellularly in recombinant CHO cells, four different forms of proteins were expected in the cell culture supernatants: 1) dimeric IL-15RocSu/Fc molecule fully occupied with two IL- 15N72D subunits, 2) dimeric IL-15RocSu/Fc molecule partially occupied with one IL- 15N72D subunit, 3) a small amount of free homodimeric IL-15RocSu/Fc molecule with no IL-15 bound, and 4) free IL-15N72D. Since IL-15N72D lacks an Fc region, a rProtein A- based affinity purification step was used to separate the free IL-15N72D from all of the Fc- bearing fusion proteins in the culture supernatant.
- buffers with different ionic strengths were employed to separately elute the partially occupied and fully occupied complexes from the QSFF.
- a single protein fraction (Q step 1) was eluted from QSSF and found to contain mainly the partially occupied complex based on ELISAs determining the fractional occupancy of the IL-15RocSu/Fc molecule.
- Q step 1 a single protein fraction was eluted from QSSF and found to contain mainly the partially occupied complex based on ELISAs determining the fractional occupancy of the IL-15RocSu/Fc molecule.
- two protein fractions designated as Qlc and Q2c were further eluted from the QSFF.
- BOS2 887851.1 94 preparations (Fig. 65B). Proteins eluted from Q step 1 have broad pis ranging from 5.6 to 7.5; proteins of pis 6.8 to 7.5 representing the partially occupied complex. Fraction Qlc of Q step 2 elution mainly contained protein with pis ranging from 5.6 to 6.5 (i.e. fully occupied complex) but with small amounts of contaminant protein with pis of 5.6 to 7.5. The Q2c fraction contained only proteins with pis ranging from 5.6 to 6.5.
- the purified IL-15N72D:IL-15RaSu/Fc Q2c preparation was found to elute as a single molecule with high purity (Fig. 66).
- the estimated molecular weight of the homodimer was approximately 114 kDa, which was larger than the 92 kDa molecular weight calculated based on the deduced amino acid sequence of IL-15N72D and IL- 15RaSu/Fc fusion proteins. This is likely due to the glycosylation of the proteins produced by mammalian cells.
- the purified IL-15N72D:IL-15RaSu/Fc preparation was found to contain three proteins with molecular weights of 40 kDa, 16 kDa and 13 kDa. However, after a digestion with N-Glycosidase F, only two proteins, with molecular weights of -37 kDa and 13 kDa, were detected (Fig. 65D). These molecular weights closely match the calculated molecular weights of IL-15RaSu/Fc and IL-15 or IL- 15N72D.
- IL-15N72D was glycosylated during mammalian cell production and the IL-15N72D was produced in two major glycosylation forms with molecular weights of 13 kDa and 16 kDa.
- the relative abundance of these IL-15N72D species in the different purification fractions shown in Fig. 65C is consistent with levels of complex occupancy determined by ELISA and IEF gel analysis.
- the IL-15N72D and IL-15RaSu/Fc were separated in reducing SDS-PAGE and the N-terminus amino acid sequences of these proteins were determined using the Edman degradation method. Approximately 15 N-terminal amino acid sequences were obtained for IL-15RaSu/Fc and IL15N72D, respectively. The determined N-terminal amino acid sequences of these proteins matched their amino acid sequences deduced from the coding regions of the two genes. The amino acid sequences for the two major bands that appeared on reduced SDS-PAGE at 13 and 16 kDa were confirmed to be IL-15N72D. This sequence confirmation again provided the evidence of glycosylation of IL-15N72D in mammalian cells.
- Example 21 Pharmacokinetic properties of the IL-15N72D:IL-15RaSu/Fc complex
- mice Female mice were injected intravenously with 1.0 mg/kg IL-15:IL-15ocSu/Fc or 0.28 mg/kg IL-15 (a molar equivalent dose) and blood was collected at various time points from 15 min to 8 h for IL-15 and 30 min to 72 h for IL-15N72D:IL-15ocSu/Fc post injection. Serum concentrations of IL-15N72D:IL-15aSu/Fc were evaluated using two ELISA formats, one (anti-IL-15 Ab detection) which detects the intact complex and the other (anti-human IgG Fc Ab detection) which detects only the IL-15ocSu/Fc fusion protein. Concentrations of IL-15 were evaluated with a standard IL-15 -specific ELISA.
- the clearance (CI) of IL- 15 :IL- 15aSu/Fc ranged from 0.059 to 0.051 mL/h and the volume of distribution at steady state (Vss) ranged from 2.1 to 1.3 mL depending on the assay format.
- IL-15 had an absorption half-life of 0.24 h and a terminal half-life of 0.64 h.
- the CI of IL-15 was 49 mL/h, and the Vss was 18.4 mL.
- Example 22 In vitro and in vivo biological activities of the IL-15N72D:IL-15RaSu/Fc complex
- IL-15N72D:IL-15RaSu/Fc complex The biological activity of the co-expressed and purified IL-15N72D:IL-15RaSu/Fc complex was evaluated using an IL-15 dependent 32 ⁇ cell proliferation assay. For this assay, an in vitro assembled (IV A) IL-15N72D:IL-15RaSu/Fc complex (IL-15N72D:IL-
- BOS2 887851.1 9g 15RaSu/Fc IVA was also generated by mixing IL-15N72D and IL-15RaSu/Fc at a 1 : 1 ratio for 30 min at 4°C.
- the IL-15N72D:IL-15RaSu/Fc complex had equivalent biological activity as IL-15N72D:IL-15RaSu/Fc IVA to support growth of 32 ⁇ cells.
- the IL-15N72D:IL-15RaSu/Fc complex exhibited an EC 50 of 15.61 pM and the IL- 15N72D:IL-15RaSu/Fc IVA displayed an EC 50 of 15.83 pM.
- IL-15N72D:IL-15RaSu/Fc complex and IL-15wt were also compared for their ability to induce the expansion of NK cells and CD8 + T cells in C57BL/6 mice.
- IL-15wt has no significant effect on the expansion of NK and CD8 + cells four days after a single intravenous dose of 0.28 mg/kg.
- the IL-15N72D:IL-15RaSu/Fc complex significantly promoted NK and CD8 + T cell proliferation in the blood and spleen, which led to lymphocytosis in blood and splenomegaly ( Figures. 69 and 70).
- This enhanced activity of the IL- 15 N72D: IL-15 RocSu/Fc complex is likely the result of a combination of the increased binding activity of the N72D mutein to the IL-15R y c complex (X. Zhu et al., J Immunol 183 (2009) 3598-3607), optimized cytokine fraws-presentation by the IL-15R0C chain in vivo (through the FcR receptors on dendritic cells and macrophage), the dimeric nature of the cytokine domain (increased avidity of binding to IL-15R y c ) and its increased in vivo half-life compared to IL-15 (25 h vs. ⁇ 40 min).
- the results described herein demonstrate that the IL-15N72D and IL- 15RaSu/Fc genes can be co-expressed in recombinant CHO cells and a fully occupied IL- 15N72D:IL-15RaSu/Fc complex can be highly purified from cell culture supematants using a simple scalable purification method.
- the IL-15RocSu/Fc fusion gene was constructed by overlap PCR amplification of DNA templates encoding the sushi domain of human IL-15Ra (aal-66 of human IL-15Ra) and the human IgGl Fc fragment.
- the signal peptide-IL-15RocSu coding region (R.L. Wong et al., Protein Eng Des Sel 24 (2011) 373-383) and human IgGl-Fc gene fragment (L.A.
- BA550F 5 ' GAGCCGAAATCTTGTGAC AAAACTCAC-3 ' ;
- IL-15RocSu/Fc fusion gene was ligated into a puromycin-resistant expression vector pMSGV-1 (M.S. Hughes et al., Hum Gene Ther 16 (2005) 457-472) to construct the expression vector pMSGV-IL-15RocSu/Fc.
- IL-15N72D The coding sequence of IL-15N72D (X. Zhu et al., J Immunol 183 (2009) 3598-3607) was cloned into a modified retrovirus expression vector pMSGV-1 (M.S. Hughes et al., Hum Gene Ther 16 (2005) 457-472) that carries the neomycin resistance gene after an IRES region to construct the expression vector pMSGV-IL-15N72D.
- IL-15N72D and IL-15RaSu/Fc fusion proteins were co-transfected into CHO cells followed by selection in medium containing 2 mg/mL G418 (Hyclone, Logan, UT) and 10 ⁇ g/mL of puromycin (Hyclone, Logan, UT).
- the IL-15RaSu/Fc fusion protein was also expressed individually in CHO cells for use in loading of recombinant human wild-type IL-15 (IL- 15wt) as a control.
- the recombinant CHO cells were grown in serum free defined medium (SFM4CHO, Hyclone, Logan, UT) at 37°C. When the viable cell density of the cultures reached a maximum, the incubation temperature was shifted down to 30°C for accumulation of the soluble complex. Culture supernatants were then harvested when the viable cell density of the cultures reached approximately 10% viable cells.
- SFM4CHO serum free defined medium
- the recombinant CHO cell culture medium was centrifuged and filtered to remove cells and debris before the supernatant was adjusted to pH 8.0 with 1 M Tris-HCl, pH 8.0.
- the soluble IL-15N72D:IL-15RaSu/Fc fusion protein complex was purified using a two-step affinity and ion exchange chromatography-based process.
- an rProtein A Sepharose Fast Flow (GE Healthcare) column was used as the first step in the purification process. Prior to sample loading, the column was washed with 5 column volumes (CV) of 20 mM Tris-HCl, pH 8.0, sanitized with 5 CV of 0.1 N NaOH for 1 h, and then equilibrated with 7 CV of 20 mM Tris-HCl, pH 8.0.
- CV column volumes
- the supernatant was loaded onto the 11 mL column at 2 mL/min, and the column was then washed with 8 CV of 20 mM Tris- HCl, pH8.0, followed by 7 CV of washing buffer (0.1 M Na-citrate, pH 5.0) to remove non- specifically bound proteins.
- the protein was then eluted with 0.2 M Na-citrate, pH 4.0 and the pH of collected peak fractions was immediately adjusted to pH 3.5 using 0.2 M citric acid; the eluted protein was held at this low pH for 30 minutes as a standard viral clearance step. After the low pH hold step, the pH of the eluted preparation was adjusted to pH 7.7 by using 2 M Tris-HCl, pH 8.0.
- the preparation was concentrated and buffer exchanged into 20 mM Tris-HCl, pH 8.0 by using an Amicon Ultra- 15 centrifugal concentrator (30 kDa cut-off, Millipore, Billerica, MA) before sterile filtration using a 0.22 ⁇ filter (Corning Life Sciences, Lowell, MA).
- the protein preparation was then applied to a Q Sepharose Fast Flow (QSFF; GE Healthcare Bio-Sciences, Piscataway, NJ) ion exchange column.
- QSFF Q Sepharose Fast Flow
- a 5 mL column was washed with buffer A (20 mM Tris-HCl, pH 8.0), sanitized by 5 CV of 0.1 N NaOH for lh, and then equilibrated with buffer A.
- the protein concentration in the preparation was first adjusted to ⁇ 1 mg/mL with 20 mM Tris-HCl, pH 8.0 and was then loaded onto the QSFF column at a rate of 1 mL/min.
- the protein was then eluted from the column using a three- step-gradient process as follows: 20 mM Tris-HCl, pH 8.0, 130 mM NaCl for four CV as the first step, 20 mM Tris-HCl, pH 8.0, 300 mM NaCl for four CV for the second step and 20 mM Tris-HCl, pH 8.0, 1 M NaCl for two CV as the last step.
- Purified proteins were analyzed by different types of gel electrophoresis methods, which included NuPAGE 12% Bis-Tris gel (under reduced and non-reduced conditions), 4- 20% Tris-glycine gel (native condition), and IEF pH3-10 gel (for pi determination). All supplies were from Invitrogen (Carlsbad, CA). Experimental methods were performed as described by the manufacturer. Superdex 200 HR 10/30 (GE Healthcare Bio-Sciences) chromatography with PBS (Hyclone, Logan, UT) as the running buffer was used to examine purity and to estimate molecular mass of the proteins.
- Protein bands of interest were separated on SDS-PAGE gels, blotted onto PVDF membrane and stained by Ponceau S solution. N-terminal amino acids sequencing was performed using the Edman degradation method (Molecular Structure Facility, UC Davis, Davis, CA).
- fusion complex was glycosylated, 50 ⁇ g of the highly purified protein after the ion exchange chromatography was digested with 2 ⁇ of N- Glycosidase F (Calbiochem, La Jolla, CA) in a total volume of 50 ⁇ lL in PBS at room temperature for 48 h and then was subjected to electrophoresis in NuPAGE 12% Bis-Tris gel under a reduced condition.
- N- Glycosidase F Calbiochem, La Jolla, CA
- IL-15N72D occupancy of the purified IL-15N72D:IL-15RaSu/Fc complex Purified IL-15RaSu/Fc was loaded with IL- 15wt (produced in E. coli and refolded, provided by J. Yovandich, NCI, Fredrick, MD) at various ratios for 15 h at 4°C. After incubation, the IL- 15wt:IL-15RaSu/Fc complex was purified using rProtein A affinity chromatography as described above.
- This purified complex was evaluated using two ELISA formats, one (anti -human IgG Fc capture and anti-IL- 15 detection) which detects the intact complex and the other (anti-human IgG Fc capture and anti-human IgG Fc detection) which detects the intact complex and the other (anti-human IgG Fc capture and anti-human IgG Fc detection) which
- BOS2 887851.1 100 detects only the IL-15ocSu/Fc fusion protein.
- Fully occupied complex (pre-associated of IL-15RaSu/Fc and IL-15wt at a 1:3 ratio) was then used as a standard to quantitate the occupancy rate of purified IL-15N72D:IL-15RaSu/Fc fusion protein complexes after purification.
- IL-15N72D:IL-15RaSu/Fc complex The pharmacokinetic profile of IL-15N72D:IL-15RaSu/Fc complex and IL-15wt were evaluated in female CD-I mice (4 mice/time point, Harlan, Indianapolis, IN) as previously described for IL-2 (H. J. Belmont et al., Clin Immunol 121 (2006) 29-39). Serum levels of the IL-15N72D:IL-15RaSu/Fc complex were assessed with the two ELISA formats described above. IL-15wt levels were assessed by ELISA using anti-IL-15 capture
- IL-15N72D:IL-15RaSu/Fc levels from each ELISA format were fit with a one-compartment model using PK Solution 2.0 (Summit Research Services, Montrose, CO). Data from mice treated with IL-15wt were best modeled as a two- compartment model.
- mice Male, 6 wks of age, Harlan, Indianapolis, IN were injected intravenously with a single dose of IL-15N72D:IL-15RaSu/Fc fusion complex at 1 mg/kg or human IL-15wt at 0.28 mg/kg (molar equivalent dose), respectively, or PBS as a negative control.
- IL-15N72D:IL-15RaSu/Fc fusion complex 1 mg/kg or human IL-15wt at 0.28 mg/kg (molar equivalent dose), respectively, or PBS as a negative control.
- pooled blood 5 mice per group
- splenocytes were collected.
- PBMCs were isolated from the blood using histopaque (Sigma, St. Louis, MO).
- BOS2 887851.1 101 The PBMC and splenocytes were then stained with PE-labeled anti-CD19, PE-labeled anti- CD335 (NKp46), FITC-labeled anti-CD4 and FITC-labeled anti-CD8 antibodies (BioLegend, San Diego, CA). The stained cells were analyzed on a FACScan flow cytometer (BD Bioscience, San Jose, CA). All animal studies were performed following Altor's IACUC approved protocols.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Biomedical Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Virology (AREA)
- Oncology (AREA)
- Mycology (AREA)
- Communicable Diseases (AREA)
- Endocrinology (AREA)
- AIDS & HIV (AREA)
- Tropical Medicine & Parasitology (AREA)
Abstract
Description
Claims
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK11827439.8T DK2619229T3 (en) | 2010-09-21 | 2011-09-21 | Multimeric IL-15-SOLUBLE FUSION MOLECULES AND METHODS OF MAKING AND USE THEREOF |
EP24169784.6A EP4385570A3 (en) | 2010-09-21 | 2011-09-21 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
ES11827439.8T ES2579077T3 (en) | 2010-09-21 | 2011-09-21 | Soluble multimeric fusion molecules of IL-15 and methods for making and using them |
EP17200359.2A EP3327040B1 (en) | 2010-09-21 | 2011-09-21 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
CN201180055995.6A CN103370339B (en) | 2010-09-21 | 2011-09-21 | The soluble fusion molecules of polymer IL 15 and its manufacture and use method |
AU2011305476A AU2011305476B2 (en) | 2010-09-21 | 2011-09-21 | Multimeric IL-15 soluble fusion molecules and methods of making and using same |
EP11827439.8A EP2619229B1 (en) | 2010-09-21 | 2011-09-21 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
EP21152304.8A EP3851459B1 (en) | 2010-09-21 | 2011-09-21 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
KR1020187033586A KR102070098B1 (en) | 2010-09-21 | 2011-09-21 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
JP2013529432A JP6251570B2 (en) | 2010-09-21 | 2011-09-21 | Multimeric IL-15 soluble fusion molecule and methods for its production and use |
KR1020137010276A KR20140020228A (en) | 2010-09-21 | 2011-09-21 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
CA2811734A CA2811734C (en) | 2010-09-21 | 2011-09-21 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
AU2017201056A AU2017201056B2 (en) | 2010-09-21 | 2017-02-16 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38481710P | 2010-09-21 | 2010-09-21 | |
US61/384,817 | 2010-09-21 | ||
US201161527911P | 2011-08-26 | 2011-08-26 | |
US61/527,911 | 2011-08-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2012040323A2 true WO2012040323A2 (en) | 2012-03-29 |
WO2012040323A3 WO2012040323A3 (en) | 2012-06-21 |
WO2012040323A8 WO2012040323A8 (en) | 2012-08-09 |
Family
ID=45874349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/052545 WO2012040323A2 (en) | 2010-09-21 | 2011-09-21 | Multimeric il-15 soluble fusion molecules and methods of making and using same |
Country Status (12)
Country | Link |
---|---|
US (11) | US8507222B2 (en) |
EP (5) | EP3327040B1 (en) |
JP (4) | JP6251570B2 (en) |
KR (2) | KR102070098B1 (en) |
CN (3) | CN107880136B (en) |
AU (2) | AU2011305476B2 (en) |
CA (1) | CA2811734C (en) |
DK (3) | DK2918607T3 (en) |
ES (2) | ES2579077T3 (en) |
HK (1) | HK1249533A1 (en) |
PT (2) | PT2619229T (en) |
WO (1) | WO2012040323A2 (en) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8940288B2 (en) | 2005-05-17 | 2015-01-27 | University Of Connecticut | Method for treating cancer by administering IL-15 and IL-15Ralpha complexes |
WO2015103928A1 (en) * | 2014-01-08 | 2015-07-16 | 上海恒瑞医药有限公司 | Il-15 heterogeneous dimer protein and uses thereof |
US9303080B2 (en) | 2006-01-13 | 2016-04-05 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, National Institutes Of Health | Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells |
WO2016057841A1 (en) | 2014-10-08 | 2016-04-14 | Novartis Ag | Compositions and methods of use for augmented immune response and cancer therapy |
WO2016061142A1 (en) | 2014-10-14 | 2016-04-21 | Novartis Ag | Antibody molecules to pd-l1 and uses thereof |
KR20170000388A (en) * | 2014-05-15 | 2017-01-02 | 내셔널 유니버시티 오브 싱가포르 | Modified natural killer cells and uses thereof |
WO2017019894A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
WO2017019897A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
WO2017106656A1 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Antibody molecules to pd-1 and uses thereof |
EP3094351A4 (en) * | 2014-01-15 | 2017-06-28 | Kadmon Corporation, LLC | Immunomodulatory agents |
KR20170094341A (en) * | 2014-12-19 | 2017-08-17 | 지앙수 헨그루이 메디슨 컴퍼니 리미티드 | Interleukin 15 protein complex and use thereof |
WO2017205726A1 (en) | 2016-05-27 | 2017-11-30 | Altor Bioscience Corporation | Construction and characterization of multimeric il-15-based molecules with cd3 binding domains |
WO2017218533A1 (en) * | 2016-06-13 | 2017-12-21 | Torque Therapeutics, Inc. | Methods and compositions for promoting immune cell function |
WO2018011573A1 (en) * | 2016-07-12 | 2018-01-18 | Kymab Limited | Animals, cells, ligands, polypeptides & methods |
US9931377B2 (en) | 2007-06-27 | 2018-04-03 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Cell expressing complexes of IL-15 and IL-15Ralpha |
EP3221351A4 (en) * | 2014-11-19 | 2018-06-27 | Memorial Sloan-Kettering Cancer Center | Methods and compositions for cancer treating conditions relating to over expressions of epha2 |
EP3030575B1 (en) | 2013-08-08 | 2018-07-11 | Cytune Pharma | Il-15 and il-15r-alpha sushi domain based modulokines |
CN108697736A (en) * | 2015-10-06 | 2018-10-23 | 明尼苏达大学董事会 | Therapeutic composition and method |
WO2019046313A1 (en) * | 2017-08-28 | 2019-03-07 | Altor Bioscience Llc | Il-15-based fusions to il-7 and il-21 |
EP3265478B1 (en) | 2015-03-06 | 2019-09-11 | DKFZ Deutsches Krebsforschungszentrum | Fusion proteins comprising a binding protein and an interleukin-15 polypeptide having a reduced affinity for il15ra and therapeutic uses thereof |
WO2019195420A1 (en) * | 2018-04-04 | 2019-10-10 | Nant Holding IP, LLC | Advanced avartar dendritic cells |
US10464982B2 (en) | 2014-04-23 | 2019-11-05 | Emory University | Compositions of GM-CSF and interleukin fusions for immune modulation and uses related thereto |
CN110494449A (en) * | 2017-03-31 | 2019-11-22 | 阿尔托生物科学有限公司 | ALT-803 and 8 antibody combination of AntiCD3 McAb are used for treatment of cancer |
US10550185B2 (en) | 2016-10-14 | 2020-02-04 | Xencor, Inc. | Bispecific heterodimeric fusion proteins containing IL-15-IL-15Rα Fc-fusion proteins and PD-1 antibody fragments |
WO2020047299A1 (en) * | 2018-08-30 | 2020-03-05 | HCW Biologics, Inc. | Multi-chain chimeric polypeptides and uses thereof |
CN111093689A (en) * | 2017-07-03 | 2020-05-01 | 转矩医疗股份有限公司 | Immunostimulatory fusion molecules and uses thereof |
EP3575325A4 (en) * | 2016-12-29 | 2020-12-23 | Timmune Biotech Inc. | Multi-target chimeric antigen receptor |
EP3578570A4 (en) * | 2016-12-29 | 2020-12-23 | Timmune Biotech Inc. | Multifunctional protein |
EP3592778A4 (en) * | 2017-03-06 | 2021-01-13 | Altor BioScience Corporation | Il-15-based fusions to il-12 and il-18 |
US10899821B2 (en) | 2010-09-21 | 2021-01-26 | Altor Bioscience Llc | Method of treating neoplasia with a multimeric IL-15 soluble fusion molecule |
WO2021054867A1 (en) * | 2019-09-19 | 2021-03-25 | Закрытое Акционерное Общество "Биокад" | IMMUNOCYTOKINE COMPRISING HETERODIMERIC PROTEIN COMPLEX BASED ON IL-15/IL-15Rα |
US10973917B2 (en) | 2016-05-18 | 2021-04-13 | Modernatx, Inc. | MRNA combination therapy for the treatment of cancer |
US11034752B2 (en) | 2015-08-12 | 2021-06-15 | Massachusetts Institute Of Technology | Cell surface coupling of nanoparticles |
US11053299B2 (en) | 2010-09-21 | 2021-07-06 | Immunity Bio, Inc. | Superkine |
US11059876B2 (en) | 2018-02-28 | 2021-07-13 | Pfizer Inc. | IL-15 variants and uses thereof |
WO2021142476A1 (en) * | 2020-01-12 | 2021-07-15 | Dragonfly Therapeutics, Inc. | Single-chain polypeptides |
US11084863B2 (en) | 2017-06-30 | 2021-08-10 | Xencor, Inc. | Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains |
US11173191B2 (en) | 2014-06-30 | 2021-11-16 | Altor BioScience, LLC. | IL-15-based molecules and methods of use thereof |
WO2022031440A1 (en) | 2020-08-03 | 2022-02-10 | Immunitybio, Inc. | Drug-specific pharmacokinetic assay for il-15 superagonist |
US11318201B2 (en) | 2016-10-21 | 2022-05-03 | Altor BioScience, LLC. | Multimeric IL-15-based molecules |
US11365231B2 (en) | 2007-05-11 | 2022-06-21 | Altor Bioscience, Llc | Interleukin 15 (IL-15) variants |
US11365236B2 (en) | 2017-03-27 | 2022-06-21 | Nkarta, Inc. | Truncated NKG2D chimeric receptors and uses thereof in natural killer cell immunotherapy |
WO2022140665A1 (en) * | 2020-12-23 | 2022-06-30 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
US11377477B2 (en) | 2018-10-12 | 2022-07-05 | Xencor, Inc. | PD-1 targeted IL-15/IL-15RALPHA fc fusion proteins and uses in combination therapies thereof |
EP4032540A1 (en) | 2013-04-19 | 2022-07-27 | Cytune Pharma | Cytokine derived treatment with reduced vascular leak syndrome |
US11401324B2 (en) | 2018-08-30 | 2022-08-02 | HCW Biologics, Inc. | Single-chain chimeric polypeptides and uses thereof |
US11505595B2 (en) | 2018-04-18 | 2022-11-22 | Xencor, Inc. | TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains |
US11524033B2 (en) | 2017-09-05 | 2022-12-13 | Torque Therapeutics, Inc. | Therapeutic protein compositions and methods of making and using the same |
US11524991B2 (en) | 2018-04-18 | 2022-12-13 | Xencor, Inc. | PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof |
US11529392B2 (en) | 2013-09-27 | 2022-12-20 | Massachusetts Institute Of Technology | Carrier-free biologically-active protein nanostructures |
US11618776B2 (en) | 2018-12-20 | 2023-04-04 | Xencor, Inc. | Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15RA and NKG2D antigen binding domains |
EP3908314A4 (en) * | 2019-01-11 | 2023-05-10 | Memorial Sloan Kettering Cancer Center | Multimerization of il-15/il-15r-alpha-fc complexes to enhance immunotherapy |
US11672826B2 (en) | 2018-08-30 | 2023-06-13 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
US11738052B2 (en) | 2019-06-21 | 2023-08-29 | HCW Biologics, Inc. | Multi-chain chimeric polypeptides and uses thereof |
US11896616B2 (en) | 2017-03-27 | 2024-02-13 | National University Of Singapore | Stimulatory cell lines for ex vivo expansion and activation of natural killer cells |
US11932675B2 (en) | 2019-10-11 | 2024-03-19 | Genentech, Inc. | PD-1 targeted IL-15/IL-15Rα Fc fusion proteins with improved properties |
EP4378957A2 (en) | 2015-07-29 | 2024-06-05 | Novartis AG | Combination therapies comprising antibody molecules to pd-1 |
US12024545B2 (en) | 2020-06-01 | 2024-07-02 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT2529747T (en) | 2005-12-02 | 2018-05-09 | Icahn School Med Mount Sinai | Chimeric newcastle disease viruses presenting non-native surface proteins and uses thereof |
WO2018112219A1 (en) * | 2016-12-14 | 2018-06-21 | Nant Holdings Ip, Llc | Superkine |
EP2663579B1 (en) | 2011-01-14 | 2017-04-26 | The Regents of the University of California | Therapeutic antibodies against ror-1 protein and methods for use of same |
EP2911684B1 (en) | 2012-10-24 | 2019-06-19 | Novartis Ag | Il-15r alpha forms, cells expressing il-15r alpha forms, and therapeutic uses of il-15r alpha and il-15/il-15r alpha complexes |
KR102208505B1 (en) * | 2012-12-11 | 2021-01-27 | 앨버트 아인슈타인 컬리지 오브 메디신 | Methods for high throughput receptor:ligand identification |
MD4655C1 (en) | 2013-03-14 | 2020-06-30 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
CN105408473B9 (en) | 2013-05-14 | 2021-09-17 | 得克萨斯州大学系统董事会 | Human applications of engineered Chimeric Antigen Receptor (CAR) T cells |
EP3105335B1 (en) | 2014-02-14 | 2019-10-02 | Board Of Regents, The University Of Texas System | Chimeric antigen receptors and methods of making |
CN107073099B (en) | 2014-02-27 | 2022-09-27 | 默沙东公司 | Combination methods for treating cancer |
EP2915569A1 (en) | 2014-03-03 | 2015-09-09 | Cytune Pharma | IL-15/IL-15Ralpha based conjugates purification method |
JP6655061B2 (en) | 2014-07-29 | 2020-02-26 | ノバルティス アーゲー | IL-15 and IL-15Ralpha heterodimer dose escalation regimens for treating conditions |
CN104830884A (en) * | 2015-01-22 | 2015-08-12 | 苏州大学 | Construction method of microcircular DNA expression carrier carrying IL-15/sIL-15Ra fusion gene |
CN106380521B (en) * | 2015-07-02 | 2020-12-29 | 博际生物医药科技(杭州)有限公司 | Interleukin-15 fusion protein for tumor targeted therapy |
WO2017053649A1 (en) * | 2015-09-25 | 2017-03-30 | Altor Bioscience Corporation | Interleukin-15 superagonist significantly enhances graft-versus-tumor activity |
US11585805B2 (en) | 2016-02-19 | 2023-02-21 | Nantcell, Inc. | Methods of immunogenic modulation |
WO2017201210A1 (en) | 2016-05-18 | 2017-11-23 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
US11339201B2 (en) | 2016-05-18 | 2022-05-24 | Albert Einstein College Of Medicine | Variant PD-L1 polypeptides, T-cell modulatory multimeric polypeptides, and methods of use thereof |
US20200179447A1 (en) * | 2016-09-23 | 2020-06-11 | The Regents Of The University Of California | Autologous irradiated whole cell tumor vaccines lentivirally engineered to express cd80, il-15 and il-15 receptor alpha |
EP3529350A1 (en) * | 2016-10-19 | 2019-08-28 | H. Hoffnabb-La Roche Ag | Method for producing an immunoconjugate |
AU2017379900A1 (en) | 2016-12-22 | 2019-06-13 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
EP3565829A4 (en) | 2017-01-09 | 2021-01-27 | Cue Biopharma, Inc. | T-cell modulatory multimeric polypeptides and methods of use thereof |
CN110177568A (en) | 2017-01-20 | 2019-08-27 | 诺华股份有限公司 | Combination treatment for treating cancer |
WO2018134784A1 (en) | 2017-01-20 | 2018-07-26 | Novartis Ag | Combination therapy for the treatment of cancer |
EP3596118B1 (en) | 2017-03-15 | 2024-08-21 | Cue Biopharma, Inc. | Combination of multimeric fusion polypeptides and immune checkpoint inhibitor for treating hpv-associated cancer |
JOP20190256A1 (en) | 2017-05-12 | 2019-10-28 | Icahn School Med Mount Sinai | Newcastle disease viruses and uses thereof |
WO2018229706A1 (en) | 2017-06-16 | 2018-12-20 | Novartis Ag | Combination therapy for the treatment of cancer |
WO2018236890A1 (en) | 2017-06-20 | 2018-12-27 | Nantkwest, Inc. | Nk-92 cells and il-15 agonist combination therapy |
UA125971C2 (en) | 2017-07-25 | 2022-07-20 | Джянгсу Хенгруй Медісін Ко., Лтд. | Il-15 protein complex pharmaceutical composition and uses thereof |
EP3717008A1 (en) | 2017-12-01 | 2020-10-07 | Merus N.V. | Use of bispecific antibody and il-15 for combination therapy |
CA3086040A1 (en) * | 2017-12-19 | 2019-06-27 | Blaze Bioscience, Inc. | Tumor homing and cell penetrating peptide-immuno-oncology agent complexes and methods of use thereof |
WO2019135958A2 (en) | 2018-01-05 | 2019-07-11 | Oleg Shikhman | Surgical clip and deployment system |
WO2019139896A1 (en) | 2018-01-09 | 2019-07-18 | Cue Biopharma, Inc. | Multimeric t-cell modulatory polypeptides and methods of use thereof |
US20220211815A1 (en) | 2018-02-02 | 2022-07-07 | Novartis Ag | Combination therapy for the treatment of cancer |
MX2020008772A (en) * | 2018-02-26 | 2020-10-01 | Synthorx Inc | Il-15 conjugates and uses thereof. |
CN111867612A (en) | 2018-03-26 | 2020-10-30 | 阿尔托生物科学有限责任公司 | anti-PDL 1, IL-15 and TGF-beta receptor combination molecules |
WO2019204646A1 (en) * | 2018-04-18 | 2019-10-24 | Xencor, Inc. | Lag-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and lag-3 antigen binding domains |
US11559044B2 (en) | 2018-04-26 | 2023-01-24 | Hoffmann-La Roche Inc. | Method of and system for tracking an animal in a population of animals |
CN110437339B (en) * | 2018-05-04 | 2021-08-13 | 免疫靶向有限公司 | Fusion protein type prodrug with interleukin 15 as active component |
US20220403001A1 (en) | 2018-06-12 | 2022-12-22 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
CA3102823A1 (en) | 2018-06-22 | 2019-12-26 | Cugene Inc. | Cytokine-based bioactivatable drugs and methods of uses thereof |
SG11202011751WA (en) | 2018-06-22 | 2021-01-28 | Kite Pharma Inc | Chimeric transmembrane proteins and uses thereof |
JP7440102B2 (en) * | 2018-06-22 | 2024-02-28 | キュージーン インコーポレイテッド | Novel interleukin-15 (IL-15) fusion proteins and uses thereof |
WO2020023713A1 (en) * | 2018-07-26 | 2020-01-30 | Nantbio, Inc. | Tri-cytokine txm compositions and methods |
JP2021532796A (en) * | 2018-07-30 | 2021-12-02 | 晋宇 張 | Protein heterodimer and its use |
US20210290729A1 (en) * | 2018-08-16 | 2021-09-23 | Nantbio, Inc. | IL7-IL15 TxM Compositions and Methods |
BR112021005907A2 (en) | 2018-09-27 | 2021-08-10 | Xilio Development, Inc. | masked cytokines, nucleic acid, vector, host cell, methods for producing a masked cytokine, for treating or preventing a neoplastic disease and for treating or preventing a neoplastic inflammatory or autoimmune disease, composition, pharmaceutical composition and kit |
US11701408B2 (en) * | 2018-10-11 | 2023-07-18 | Nantcell, Inc. | Treatment of immunosuppressed subjects |
MX2021006589A (en) | 2018-12-13 | 2021-07-07 | Jiangsu Hengrui Medicine Co | Use of il-15 protein complex joint pd-l1 antibody for treating tumor diseases. |
CN113366018A (en) | 2018-12-20 | 2021-09-07 | 美勒斯公司 | CLEC12AxCD3 bispecific antibodies and methods for treating disease |
US20220098268A1 (en) * | 2019-01-15 | 2022-03-31 | Altor Bioscience, Llc | Human immunodeficiency virus-specific t cell receptors |
WO2020231855A1 (en) | 2019-05-10 | 2020-11-19 | Nant Holdings Ip, Llc | Nogapendekin alfa-inbakicept for immune stimulant therapies and treatment of viral infections |
US12085571B2 (en) | 2019-06-13 | 2024-09-10 | Immunitybio, Inc. | Biological deposit labeling and tracking including isotope, rare earth metal or mitochondria tags |
US11453862B2 (en) | 2019-07-08 | 2022-09-27 | Immunitybio, Inc. | Mononuclear cell derived NK cells |
CA3120695A1 (en) | 2019-07-08 | 2021-01-14 | Nantkwest, Inc. | Mononuclear cell derived nk cells |
US11364291B1 (en) * | 2019-07-18 | 2022-06-21 | Nantcell, Inc. | Bacillus Calmette-Guerin (BCG) and antigen presenting cells for treatment of bladder cancer |
CN110478474B (en) * | 2019-08-21 | 2020-06-02 | 启辰生生物科技(珠海)有限公司 | Immunomodulator, vaccine, cell and application |
EP4021928A4 (en) * | 2019-08-29 | 2023-09-20 | NantBio, Inc. | Modified n-810 and methods therefor |
WO2021040736A1 (en) | 2019-08-30 | 2021-03-04 | Obsidian Therapeutics, Inc. | Tandem cd19 car-based compositions and methods for immunotherapy |
EP4069725A4 (en) * | 2019-12-05 | 2024-01-10 | Immune Targeting Inc. | Interleukin 15 fusion proteins and prodrugs, and compositions and methods thereof |
EP4085075A4 (en) * | 2019-12-31 | 2024-04-03 | Navrogen, Inc. | Composition and use of engineered monoclonal antibodies refractory to tumor immuno-suppressive factors |
KR20220139319A (en) | 2020-01-08 | 2022-10-14 | 옵시디안 테라퓨틱스, 인크. | Compositions and methods for modulation of tunable transcription |
CN115003622A (en) * | 2020-01-31 | 2022-09-02 | 奥拉根生物科学有限公司 | Ultra-bright fluorescent nanocomposite structure for enhanced fluorescence bioassay |
CR20220367A (en) | 2020-02-05 | 2022-08-30 | Novartis Ag | Cho cell expressing il-15 heterodimers |
CA3169231A1 (en) | 2020-02-11 | 2021-08-19 | HCW Biologics, Inc. | Methods of treating age-related and inflammatory diseases |
EP4118109A1 (en) | 2020-03-11 | 2023-01-18 | NantCell, Inc. | Proteinaceous therapeutics |
WO2021202354A1 (en) * | 2020-03-30 | 2021-10-07 | Proviva Therapeutics (Hong Kong) Limited | Il-2/il-15 compositions and methods of use thereof |
KR20230004655A (en) | 2020-04-22 | 2023-01-06 | 노파르티스 아게 | Pharmaceutical compositions and pharmaceutical products of heterodimeric human interleukin-15 (hetIL-15) |
IL296209A (en) | 2020-05-12 | 2022-11-01 | Cue Biopharma Inc | Multimeric t-cell modulatory polypeptides and methods of use thereof |
US11318189B1 (en) | 2020-05-13 | 2022-05-03 | Nantcell, Inc. | IL-15 agonist drug combinations for immune therapy |
WO2021253360A1 (en) * | 2020-06-18 | 2021-12-23 | Proviva Therapeutics (Hong Kong) Limited | Activatable procytokines |
CN116348483A (en) | 2020-07-31 | 2023-06-27 | 南特生物公司 | Chimeric T cell receptor, nucleic acids, and methods of making and using the same |
JP2023541366A (en) | 2020-09-09 | 2023-10-02 | キュー バイオファーマ, インコーポレイテッド | MHC class II T cell modulating multimeric polypeptides and methods of use thereof to treat type 1 diabetes mellitus (T1D) |
EP4251741A1 (en) | 2020-11-30 | 2023-10-04 | CRISPR Therapeutics AG | Gene-edited natural killer cells |
US11661459B2 (en) | 2020-12-03 | 2023-05-30 | Century Therapeutics, Inc. | Artificial cell death polypeptide for chimeric antigen receptor and uses thereof |
EP4263600A1 (en) | 2020-12-18 | 2023-10-25 | Century Therapeutics, Inc. | Chimeric antigen receptor systems with adaptable receptor specificity |
CN113321736B (en) * | 2020-12-30 | 2024-01-09 | 苏州复融生物技术有限公司 | Long-acting interleukin 15 fusion protein and preparation method and application thereof |
TW202241508A (en) | 2021-01-29 | 2022-11-01 | 美商艾歐凡斯生物治療公司 | Cytokine associated tumor infiltrating lymphocytes compositions and methods |
CN117769564A (en) * | 2021-03-31 | 2024-03-26 | 安维塔生物科学股份有限公司 | Fusion proteins, pharmaceutical compositions and therapeutic uses |
EP4329887A1 (en) | 2021-04-28 | 2024-03-06 | Minotaur Therapeutics, Inc. | Humanized chimeric bovine antibodies and methods of use |
CN113321740B (en) * | 2021-05-08 | 2023-07-18 | 上海交通大学 | Fusion protein and preparation method and application thereof |
AU2022283438A1 (en) * | 2021-05-28 | 2024-01-18 | Akso Biopharmaceutical, Inc. | BISPECIFIC FC FUSION PROTEINS WITH sPD-1 AND IL-15 |
WO2022260849A1 (en) | 2021-06-09 | 2022-12-15 | Nant Holdings Ip, Llc | Methods and systems for producing a protein of interest in a plant |
CN113736810B (en) * | 2021-09-08 | 2024-05-24 | 苏州因特药物研发有限公司 | Construct, vector, protein, cell, preparation method, product and application |
WO2023081163A1 (en) | 2021-11-02 | 2023-05-11 | Immunitybio, Inc. | Natural killer cells for chordoma therapy |
WO2023086772A1 (en) | 2021-11-12 | 2023-05-19 | Xencor, Inc. | Bispecific antibodies that bind to b7h3 and nkg2d |
WO2023141505A1 (en) | 2022-01-22 | 2023-07-27 | Nantcell, Inc. | Fusion molecules of ctla4 and il-15 |
EP4335870A1 (en) | 2022-09-06 | 2024-03-13 | NantCell, Inc. | Peptide therapeutics against sars-cov-2 spike protein |
WO2024102636A1 (en) | 2022-11-07 | 2024-05-16 | Xencor, Inc. | Bispecific antibodies that bind to b7h3 and mica/b |
WO2024118836A1 (en) | 2022-11-30 | 2024-06-06 | Iovance Biotherapeutics, Inc. | Processes for production of tumor infiltrating lymphocytes with shortened rep step |
WO2024199355A1 (en) * | 2023-03-29 | 2024-10-03 | Starna Therapeutics | Nucleic acids encoding therapeutic polypeptides and lipid nanoparticle composition comprising the nucleic acids |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008143794A1 (en) | 2007-05-11 | 2008-11-27 | Altor Bioscience Corporation | Fusion molecules and il-15 variants |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0687898B2 (en) | 1988-06-29 | 1994-11-09 | 株式会社ニッショー | Balloon infusor |
US5116964A (en) | 1989-02-23 | 1992-05-26 | Genentech, Inc. | Hybrid immunoglobulins |
US5314995A (en) | 1990-01-22 | 1994-05-24 | Oncogen | Therapeutic interleukin-2-antibody based fusion proteins |
AU5098393A (en) | 1992-08-14 | 1994-03-15 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Recombinant toxin with increased half-life |
US5747654A (en) | 1993-06-14 | 1998-05-05 | The United States Of America As Represented By The Department Of Health And Human Services | Recombinant disulfide-stabilized polypeptide fragments having binding specificity |
NZ266264A (en) | 1994-04-06 | 1997-01-29 | Immunex Corp | Mammalian epithelium-derived t-cell factor called interleukin-15 |
JPH09512165A (en) | 1994-04-06 | 1997-12-09 | イミュネックス・コーポレーション | Interleukin 15 |
US5580728A (en) | 1994-06-17 | 1996-12-03 | Perlin; Mark W. | Method and system for genotyping |
US5541087A (en) | 1994-09-14 | 1996-07-30 | Fuji Immunopharmaceuticals Corporation | Expression and export technology of proteins as immunofusins |
US7008624B1 (en) | 1995-02-22 | 2006-03-07 | Immunex Corporation | Antagonists of interleukin-15 |
US5795966A (en) | 1995-02-22 | 1998-08-18 | Immunex Corp | Antagonists of interleukin-15 |
US6096871A (en) | 1995-04-14 | 2000-08-01 | Genentech, Inc. | Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life |
US5534592A (en) | 1995-09-22 | 1996-07-09 | The Goodyear Tire & Rubber Company | High performance blend for tire treads |
EP0904107B1 (en) | 1996-03-18 | 2004-10-20 | Board Of Regents, The University Of Texas System | Immunoglobin-like domains with increased half lives |
US6001973A (en) | 1996-04-26 | 1999-12-14 | Beth Israel Deaconess Medical Center | Antagonists of interleukin-15 |
DE69830257T3 (en) | 1997-02-21 | 2009-10-15 | Amgen Inc., Thousand Oaks | Use of Interleukin-15 |
AU6158501A (en) | 2000-05-12 | 2001-11-26 | Beth Israel Hospital | Compositions and methods for achieving immune suppression |
CN101712721A (en) | 2000-06-05 | 2010-05-26 | 阿尔托生物科学有限公司 | T cell receptor fusions and conjugates and methods of use thereof |
DE60138222D1 (en) * | 2000-09-14 | 2009-05-14 | Beth Israel Hospital | MODULATION OF IL-2 AND IL-15 MEDIATED T ZONE LANGUAGES |
US20030180888A1 (en) | 2000-11-03 | 2003-09-25 | Millennium Pharmaceuticals, Inc. | CD2000 and CD2001 molecules, and uses thereof |
US7043266B2 (en) | 2002-02-04 | 2006-05-09 | Sprint Spectrum L.P. | Method and system for selectively reducing call-setup latency through management of paging frequency |
WO2004028339A2 (en) | 2002-09-27 | 2004-04-08 | Brigham And Women's Hospital, Inc. | Treatment of patients with multiple sclerosis based on gene expression changes in central nervous system tissues |
EA015897B1 (en) * | 2003-02-26 | 2011-12-30 | Генмаб А/С | Use of human monoclonal antibody to il-15 comprising a composition and medical preparation (variants), composition and medical preparation containing them |
DE10324708A1 (en) | 2003-05-30 | 2004-12-16 | Ltn Servotechnik Gmbh | Slip ring element and method for its production |
CN1233822C (en) * | 2003-09-05 | 2005-12-28 | 中国科学技术大学 | Interleukin-15 gene modified natural killing cell strain and its preparation method |
EP1691661B1 (en) | 2003-11-10 | 2014-01-08 | Altor BioScience Corporation | Soluble tcr molecules and methods of use |
ATE516305T1 (en) | 2004-02-27 | 2011-07-15 | Inst Nat Sante Rech Med | IL-15 BINDING SITE FOR IL-15-RALPHA AND SPECIFIC IL-15 MUTANTS ACTING AS AGONISTS/ANTAGONISTS |
EP1586585A1 (en) * | 2004-04-14 | 2005-10-19 | F. Hoffmann-La Roche Ag | Expression system for the production of IL-15/Fc fusion proteins and their use |
CN100334112C (en) | 2004-10-15 | 2007-08-29 | 上海海欣生物技术有限公司 | Interfusion protein of human interleukin 15 and Fe |
LT1814580T (en) | 2004-11-24 | 2016-12-12 | Fred Hutchinson Cancer Research Center | Methods of using il-21 for adoptive immunotherapy and identification of tumor antigens |
RU2007126553A (en) | 2004-12-13 | 2009-01-20 | Цитос Биотехнологи Аг (Ch) | ORDERED SERIES OF IL-15 ANTIGENES AND THEIR APPLICATION |
NZ581779A (en) | 2005-05-17 | 2011-09-30 | Univ Connecticut | Composition and methods for immunomodulation in an organism comprising interleukin-15 polypeptide and interleukin-15 receptor subunit A polypeptide complex |
EP1777294A1 (en) * | 2005-10-20 | 2007-04-25 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | IL-15Ralpha sushi domain as a selective and potent enhancer of IL-15 action through IL-15Rbeta/gamma, and hyperagonist (IL15Ralpha sushi -IL15) fusion proteins |
DE602006016765D1 (en) * | 2006-06-30 | 2010-10-21 | Conaris Res Inst Ag | Improved sgp 130Fc dimer |
US7965180B2 (en) * | 2006-09-28 | 2011-06-21 | Semiconductor Energy Laboratory Co., Ltd. | Wireless sensor device |
CA2682527C (en) | 2007-03-30 | 2017-07-11 | Memorial Sloan-Kettering Cancer Center | Constitutive expression of costimulatory ligands on adoptively transferred t lymphocytes |
AU2013273643C1 (en) | 2007-05-11 | 2016-08-11 | Altor Bioscience Corporation | Fusion molecules and il-15 variants |
AU2008279550B2 (en) * | 2007-06-21 | 2012-08-09 | Angelica Therapeutics, Inc. | Modified toxins |
AU2008269032B2 (en) * | 2007-06-27 | 2013-12-05 | Novartis Ag | Complexes of IL-15 and IL-15Ralpha and uses thereof |
CN100478098C (en) * | 2007-07-03 | 2009-04-15 | 航天晨光股份有限公司 | Seamless forming method for cordiform bending cone abnormity thin wall cylinder |
US20110070191A1 (en) | 2008-03-19 | 2011-03-24 | Wong Hing C | T cell receptor fusions and conjugates and methods of use there of |
CN107880136B (en) | 2010-09-21 | 2021-11-12 | 阿尔托生物科学有限公司 | Multimeric IL-15 soluble fusion molecules and methods of making and using the same |
US11053299B2 (en) | 2010-09-21 | 2021-07-06 | Immunity Bio, Inc. | Superkine |
EP2537933A1 (en) | 2011-06-24 | 2012-12-26 | Institut National de la Santé et de la Recherche Médicale (INSERM) | An IL-15 and IL-15Ralpha sushi domain based immunocytokines |
US20130302274A1 (en) | 2011-11-25 | 2013-11-14 | Roche Glycart Ag | Combination therapy |
US8779908B2 (en) | 2012-07-16 | 2014-07-15 | Shmuel Ur | System and method for social dancing |
US9682143B2 (en) | 2012-08-14 | 2017-06-20 | Ibc Pharmaceuticals, Inc. | Combination therapy for inducing immune response to disease |
WO2014028776A1 (en) | 2012-08-15 | 2014-02-20 | Zyngenia, Inc. | Monovalent and multivalent multispecific complexes and uses thereof |
EP2911684B1 (en) | 2012-10-24 | 2019-06-19 | Novartis Ag | Il-15r alpha forms, cells expressing il-15r alpha forms, and therapeutic uses of il-15r alpha and il-15/il-15r alpha complexes |
AU2015284248B2 (en) | 2014-06-30 | 2020-04-16 | Altor Bioscience Corporation | IL-15-based molecules and methods of use thereof |
CN104672325A (en) | 2015-03-11 | 2015-06-03 | 福建农林大学 | Method for preparing phycocyanin from fresh spirulina |
KR101581763B1 (en) | 2015-06-22 | 2016-02-23 | 건국대학교 산학협력단 | System for inducing tactile sense using pulse laser and medium with high absorption coefficient |
WO2017053649A1 (en) | 2015-09-25 | 2017-03-30 | Altor Bioscience Corporation | Interleukin-15 superagonist significantly enhances graft-versus-tumor activity |
JP2017198256A (en) * | 2016-04-26 | 2017-11-02 | Nok株式会社 | Sealing device |
KR20220148306A (en) | 2016-05-27 | 2022-11-04 | 알토 바이오사이언스 코포레이션 | Construction and characterization of multimeric il-15-based molecules with cd3 binding domains |
-
2011
- 2011-09-21 CN CN201711167564.4A patent/CN107880136B/en active Active
- 2011-09-21 DK DK15162957.3T patent/DK2918607T3/en active
- 2011-09-21 EP EP17200359.2A patent/EP3327040B1/en active Active
- 2011-09-21 DK DK11827439.8T patent/DK2619229T3/en active
- 2011-09-21 PT PT118274398T patent/PT2619229T/en unknown
- 2011-09-21 AU AU2011305476A patent/AU2011305476B2/en active Active
- 2011-09-21 ES ES11827439.8T patent/ES2579077T3/en active Active
- 2011-09-21 EP EP21152304.8A patent/EP3851459B1/en active Active
- 2011-09-21 EP EP11827439.8A patent/EP2619229B1/en active Active
- 2011-09-21 KR KR1020187033586A patent/KR102070098B1/en active IP Right Grant
- 2011-09-21 CN CN201510358540.1A patent/CN105017429B/en active Active
- 2011-09-21 JP JP2013529432A patent/JP6251570B2/en active Active
- 2011-09-21 EP EP15162957.3A patent/EP2918607B1/en active Active
- 2011-09-21 PT PT151629573T patent/PT2918607T/en unknown
- 2011-09-21 CA CA2811734A patent/CA2811734C/en active Active
- 2011-09-21 US US13/238,925 patent/US8507222B2/en active Active
- 2011-09-21 ES ES15162957.3T patent/ES2651170T3/en active Active
- 2011-09-21 KR KR1020137010276A patent/KR20140020228A/en active Application Filing
- 2011-09-21 EP EP24169784.6A patent/EP4385570A3/en active Pending
- 2011-09-21 DK DK17200359.2T patent/DK3327040T3/en active
- 2011-09-21 CN CN201180055995.6A patent/CN103370339B/en active Active
- 2011-09-21 WO PCT/US2011/052545 patent/WO2012040323A2/en active Application Filing
-
2013
- 2013-02-15 US US13/769,179 patent/US9255141B2/en active Active
- 2013-04-01 US US13/854,903 patent/US9328159B2/en active Active
- 2013-07-19 US US13/946,313 patent/US9428573B2/en active Active
-
2014
- 2014-04-22 HK HK18109029.6A patent/HK1249533A1/en unknown
-
2016
- 2016-03-29 US US15/083,998 patent/US10150805B2/en active Active
- 2016-07-19 US US15/213,991 patent/US10358478B2/en active Active
-
2017
- 2017-01-12 JP JP2017003493A patent/JP6408039B2/en active Active
- 2017-02-16 AU AU2017201056A patent/AU2017201056B2/en active Active
- 2017-10-12 JP JP2017198256A patent/JP2018046831A/en not_active Withdrawn
-
2018
- 2018-04-11 US US15/951,042 patent/US10899821B2/en active Active
- 2018-09-19 JP JP2018174697A patent/JP2019033754A/en active Pending
-
2020
- 2020-01-22 US US16/749,967 patent/US11104716B2/en active Active
- 2020-01-22 US US16/749,955 patent/US11046747B2/en active Active
-
2021
- 2021-07-26 US US17/385,714 patent/US11845783B2/en active Active
-
2023
- 2023-10-31 US US18/498,430 patent/US20240076354A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008143794A1 (en) | 2007-05-11 | 2008-11-27 | Altor Bioscience Corporation | Fusion molecules and il-15 variants |
Non-Patent Citations (6)
Title |
---|
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1989, JOHN WILEY & SONS |
KOUZARIDES, T.; ZIFF, E., NATURE, vol. 336, 1988, pages 646 - 651 |
KOUZARIDES, T.; ZIFF, E., NATURE, vol. 340, 1989, pages 568 - 571 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989 |
See also references of EP2619229A4 |
WALDMANN, T A, NATURE REV. IMMUNOL., vol. 6, 2006, pages 595 - 601 |
Cited By (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9969790B2 (en) | 2005-05-17 | 2018-05-15 | University Of Connecticut | Compositions and methods for immunomodulation in an organism |
US10464993B2 (en) | 2005-05-17 | 2019-11-05 | University Of Connecticut | Compositions and methods for immunomodulation in an organism |
US9365630B2 (en) | 2005-05-17 | 2016-06-14 | University Of Connecticut | Compositions and methods for Immunomodulation in an organism |
US9371368B2 (en) | 2005-05-17 | 2016-06-21 | University Of Connecticut | Compositions and methods for immunomodulation in an organism |
US11008378B2 (en) | 2005-05-17 | 2021-05-18 | University Of Connecticut | Compositions and methods for immunomodulation in an organism |
US9932387B2 (en) | 2005-05-17 | 2018-04-03 | University Of Connecticut | Compositions and methods for immunomodulation in an organism |
US8940288B2 (en) | 2005-05-17 | 2015-01-27 | University Of Connecticut | Method for treating cancer by administering IL-15 and IL-15Ralpha complexes |
US9725492B2 (en) | 2006-01-13 | 2017-08-08 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells |
US9303080B2 (en) | 2006-01-13 | 2016-04-05 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, National Institutes Of Health | Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells |
US10428133B2 (en) | 2006-01-13 | 2019-10-01 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells |
US11339198B2 (en) | 2006-01-13 | 2022-05-24 | The United States Of America, As Represented By, The Secretary, Department Of Health And Human Services | Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells |
US9790261B2 (en) | 2006-01-13 | 2017-10-17 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells |
US11673932B2 (en) | 2007-05-11 | 2023-06-13 | Altor BioScience, LLC. | Fusion molecules and IL-15 variants |
US11365231B2 (en) | 2007-05-11 | 2022-06-21 | Altor Bioscience, Llc | Interleukin 15 (IL-15) variants |
US11498950B1 (en) | 2007-05-11 | 2022-11-15 | Altor Bioscience, Llc | Fusion molecules and IL-15 variants |
US10265382B2 (en) | 2007-06-27 | 2019-04-23 | Novartis Ag | Complexes of IL-15 and IL-15Ralpha and uses thereof |
US9931377B2 (en) | 2007-06-27 | 2018-04-03 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Cell expressing complexes of IL-15 and IL-15Ralpha |
US11110150B2 (en) | 2007-06-27 | 2021-09-07 | Novartis Ag | Complexes of IL-15 and IL-15Ralpha and uses thereof |
US11046747B2 (en) | 2010-09-21 | 2021-06-29 | Altor Bioscience Llc | Multimeric IL-15 soluble fusion molecules and methods of making and using same |
US11104716B2 (en) | 2010-09-21 | 2021-08-31 | Altor BioScience, LLC. | Multimeric IL-15 soluble fusion molecules and methods of making and using same |
US11053299B2 (en) | 2010-09-21 | 2021-07-06 | Immunity Bio, Inc. | Superkine |
US11845783B2 (en) | 2010-09-21 | 2023-12-19 | Altor BioScience, LLC. | Multimeric IL-15 soluble fusion molecules and methods of making and using same |
US10899821B2 (en) | 2010-09-21 | 2021-01-26 | Altor Bioscience Llc | Method of treating neoplasia with a multimeric IL-15 soluble fusion molecule |
EP4032540A1 (en) | 2013-04-19 | 2022-07-27 | Cytune Pharma | Cytokine derived treatment with reduced vascular leak syndrome |
US11273204B2 (en) | 2013-08-08 | 2022-03-15 | Cytune Pharma | IL-15 and IL-15RAPLHA sushi domain based immunocytokines |
EP3030575B1 (en) | 2013-08-08 | 2018-07-11 | Cytune Pharma | Il-15 and il-15r-alpha sushi domain based modulokines |
KR102564207B1 (en) | 2013-08-08 | 2023-08-10 | 싸이튠 파마 | IL-15 and IL-15R aplha sushi domain based modulokines |
EP3444271B1 (en) | 2013-08-08 | 2021-10-06 | Cytune Pharma | Il-15 and il-15ralpha sushi domain based modulokines |
KR20220025923A (en) * | 2013-08-08 | 2022-03-03 | 싸이튠 파마 | IL-15 and IL-15R aplha sushi domain based modulokines |
US11529392B2 (en) | 2013-09-27 | 2022-12-20 | Massachusetts Institute Of Technology | Carrier-free biologically-active protein nanostructures |
WO2015103928A1 (en) * | 2014-01-08 | 2015-07-16 | 上海恒瑞医药有限公司 | Il-15 heterogeneous dimer protein and uses thereof |
US10206980B2 (en) | 2014-01-08 | 2019-02-19 | Shanghai Hengrui Pharmaceutical Co., Ltd. | IL-15 heterodimeric protein and uses thereof |
TWI669311B (en) * | 2014-01-08 | 2019-08-21 | 大陸商上海恆瑞醫藥有限公司 | Il-15 heterodimer protein and pharmaceutical use thereof |
EP3094351A4 (en) * | 2014-01-15 | 2017-06-28 | Kadmon Corporation, LLC | Immunomodulatory agents |
EP4079321A1 (en) * | 2014-01-15 | 2022-10-26 | Kadmon Corporation, LLC | Immunomodulatory agents |
US10407502B2 (en) | 2014-01-15 | 2019-09-10 | Kadmon Corporation, Llc | Immunomodulatory agents |
US10464982B2 (en) | 2014-04-23 | 2019-11-05 | Emory University | Compositions of GM-CSF and interleukin fusions for immune modulation and uses related thereto |
US10428305B2 (en) | 2014-05-15 | 2019-10-01 | National University Of Singapore | Modified natural killer cells that express IL15 and uses thereof |
KR102211120B1 (en) | 2014-05-15 | 2021-02-03 | 내셔널 유니버시티 오브 싱가포르 | Modified natural killer cells and uses thereof |
CN106459914B (en) * | 2014-05-15 | 2020-11-06 | 新加坡国立大学 | Modified natural killer cells and uses thereof |
US10774311B2 (en) | 2014-05-15 | 2020-09-15 | National University Of Singapore | Natural killer cells modified to express membrane-bound interleukin 15 and uses thereof |
EP3805371A1 (en) * | 2014-05-15 | 2021-04-14 | National University of Singapore | Modified natural killer cells and uses thereof |
KR20170000388A (en) * | 2014-05-15 | 2017-01-02 | 내셔널 유니버시티 오브 싱가포르 | Modified natural killer cells and uses thereof |
US11560548B2 (en) | 2014-05-15 | 2023-01-24 | National University Of Singapore | Immune cells expressing membrane-bound interleukin 15 (mbIL15) and uses thereof |
EP3143134A4 (en) * | 2014-05-15 | 2017-10-18 | National University of Singapore | Modified natural killer cells and uses thereof |
CN106459914A (en) * | 2014-05-15 | 2017-02-22 | 新加坡国立大学 | Modified natural killer cells and uses thereof |
US11925676B2 (en) | 2014-06-30 | 2024-03-12 | Altor BioScience, LLC. | Method for treating neoplasia with an anti-CD38 antibody and an IL-15:IL-15R complex |
US11471511B2 (en) | 2014-06-30 | 2022-10-18 | Altor Bioscience, Llc | IL-15-based molecules and methods of use thereof |
US12097244B2 (en) | 2014-06-30 | 2024-09-24 | Altor BioScience, LLC. | Methods of treating a neoplasia with IL-15-based molecules and CTLA-4 antibody |
US11992516B2 (en) | 2014-06-30 | 2024-05-28 | Altor BioScience, LLC. | Compositions comprising IL-15-based molecules and immune checkpoint inhibitor antibodies |
US11173191B2 (en) | 2014-06-30 | 2021-11-16 | Altor BioScience, LLC. | IL-15-based molecules and methods of use thereof |
US11679144B2 (en) | 2014-06-30 | 2023-06-20 | Altor BioScience, LLC. | IL-15-based molecules and methods of use thereof |
US11890323B2 (en) | 2014-06-30 | 2024-02-06 | Altor Bioscience, Llc | Method of treating cancer with composition comprising IL-15-based molecules and BCG |
WO2016057841A1 (en) | 2014-10-08 | 2016-04-14 | Novartis Ag | Compositions and methods of use for augmented immune response and cancer therapy |
WO2016061142A1 (en) | 2014-10-14 | 2016-04-21 | Novartis Ag | Antibody molecules to pd-l1 and uses thereof |
EP4245376A2 (en) | 2014-10-14 | 2023-09-20 | Novartis AG | Antibody molecules to pd-l1 and uses thereof |
US10501553B2 (en) | 2014-11-19 | 2019-12-10 | Memorial Sloan-Kettering Cancer Center | Methods and compositions for cancer treating conditions relating to over expressions of EphA2 |
EP3221351A4 (en) * | 2014-11-19 | 2018-06-27 | Memorial Sloan-Kettering Cancer Center | Methods and compositions for cancer treating conditions relating to over expressions of epha2 |
KR102609197B1 (en) | 2014-12-19 | 2023-12-05 | 지앙수 헨그루이 파마슈티컬스 컴퍼니 리미티드 | Interleukin 15 protein complex and use thereof |
EP3235830A4 (en) * | 2014-12-19 | 2018-08-15 | Jiangsu Hengrui Medicine Co., Ltd. | Interleukin 15 protein complex and use thereof |
US10905743B2 (en) | 2014-12-19 | 2021-02-02 | Jiangsu Hengrui Medicine Co., Ltd. | Interleukin 15 protein complex |
TWI714544B (en) * | 2014-12-19 | 2021-01-01 | 大陸商江蘇恆瑞醫藥股份有限公司 | Il-15 protein complex and pharmaceutical use thereof |
RU2711979C2 (en) * | 2014-12-19 | 2020-01-23 | Цзянсу Хэнжуй Медсин Ко., Лтд. | Interleukin 15 protein complex and use thereof |
US11717559B2 (en) | 2014-12-19 | 2023-08-08 | Jiangsu Hengrui Medicine Co., Ltd. | Interleukin 15 protein complex and use thereof |
KR20170094341A (en) * | 2014-12-19 | 2017-08-17 | 지앙수 헨그루이 메디슨 컴퍼니 리미티드 | Interleukin 15 protein complex and use thereof |
AU2015366795B2 (en) * | 2014-12-19 | 2020-12-17 | Jiangsu Hengrui Medicine Co., Ltd. | Interleukin 15 protein complex and use thereof |
EP3265478B1 (en) | 2015-03-06 | 2019-09-11 | DKFZ Deutsches Krebsforschungszentrum | Fusion proteins comprising a binding protein and an interleukin-15 polypeptide having a reduced affinity for il15ra and therapeutic uses thereof |
US10906952B2 (en) | 2015-03-06 | 2021-02-02 | Deutsches Krebsforschungszentrum | Fusion proteins comprising a binding protein and an interleukin-15 polypeptide having a reduced affinity for IL15Ra and therapeutic uses thereof |
EP3964528A1 (en) | 2015-07-29 | 2022-03-09 | Novartis AG | Combination therapies comprising antibody molecules to lag-3 |
WO2017019897A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
WO2017019894A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
EP3878465A1 (en) | 2015-07-29 | 2021-09-15 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
EP4378957A2 (en) | 2015-07-29 | 2024-06-05 | Novartis AG | Combination therapies comprising antibody molecules to pd-1 |
US11261226B2 (en) | 2015-08-12 | 2022-03-01 | Massachusetts Institute Of Technology (Mitn1) | Cell surface coupling of nanoparticles |
US11034752B2 (en) | 2015-08-12 | 2021-06-15 | Massachusetts Institute Of Technology | Cell surface coupling of nanoparticles |
US11098101B2 (en) | 2015-10-06 | 2021-08-24 | Regents Of The University Of Minnesota | Therapeutic compounds and methods |
IL258931B (en) * | 2015-10-06 | 2022-09-01 | Univ Minnesota | Therapeutic compounds and methods |
US11098100B2 (en) | 2015-10-06 | 2021-08-24 | Regents Of The University Of Minnesota | Therapeutic compounds and methods |
EP4056190A1 (en) * | 2015-10-06 | 2022-09-14 | Regents of the University of Minnesota | Therapeutic compounds and methods |
CN108697736A (en) * | 2015-10-06 | 2018-10-23 | 明尼苏达大学董事会 | Therapeutic composition and method |
EP3359168A4 (en) * | 2015-10-06 | 2019-08-07 | Regents of the University of Minnesota | Therapeutic compounds and methods |
WO2017106656A1 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Antibody molecules to pd-1 and uses thereof |
EP4424322A2 (en) | 2015-12-17 | 2024-09-04 | Novartis AG | Antibody molecules to pd-1 and uses thereof |
US11660341B2 (en) | 2016-05-18 | 2023-05-30 | Modernatx, Inc. | mRNA combination therapy for the treatment of cancer |
US10973917B2 (en) | 2016-05-18 | 2021-04-13 | Modernatx, Inc. | MRNA combination therapy for the treatment of cancer |
WO2017205726A1 (en) | 2016-05-27 | 2017-11-30 | Altor Bioscience Corporation | Construction and characterization of multimeric il-15-based molecules with cd3 binding domains |
US10865230B2 (en) | 2016-05-27 | 2020-12-15 | Altor Bioscience, Llc | Construction and characterization of multimeric IL-15-based molecules with CD3 binding domains |
US11472856B2 (en) | 2016-06-13 | 2022-10-18 | Torque Therapeutics, Inc. | Methods and compositions for promoting immune cell function |
WO2017218533A1 (en) * | 2016-06-13 | 2017-12-21 | Torque Therapeutics, Inc. | Methods and compositions for promoting immune cell function |
WO2018011573A1 (en) * | 2016-07-12 | 2018-01-18 | Kymab Limited | Animals, cells, ligands, polypeptides & methods |
US11584794B2 (en) | 2016-10-14 | 2023-02-21 | Xencor, Inc. | Bispecific heterodimeric fusion proteins containing IL-15-IL-15Ralpha Fc-fusion proteins and immune checkpoint antibody fragments |
US10550185B2 (en) | 2016-10-14 | 2020-02-04 | Xencor, Inc. | Bispecific heterodimeric fusion proteins containing IL-15-IL-15Rα Fc-fusion proteins and PD-1 antibody fragments |
US11369679B2 (en) | 2016-10-21 | 2022-06-28 | Altor Bioscience, Llc | Multimeric IL-15-based molecules |
US11318201B2 (en) | 2016-10-21 | 2022-05-03 | Altor BioScience, LLC. | Multimeric IL-15-based molecules |
US11530264B2 (en) | 2016-12-29 | 2022-12-20 | Shenzhen Beike Biotechnology Co., Ltd | Multifunctional protein |
EP3578570A4 (en) * | 2016-12-29 | 2020-12-23 | Timmune Biotech Inc. | Multifunctional protein |
EP3575325A4 (en) * | 2016-12-29 | 2020-12-23 | Timmune Biotech Inc. | Multi-target chimeric antigen receptor |
US11129883B2 (en) | 2017-03-06 | 2021-09-28 | Altor BioScience, LLC. | IL-15-based fusions to IL-12 and IL-18 |
US11975059B2 (en) | 2017-03-06 | 2024-05-07 | Altor BioScience, LLC. | IL-15-based fusions to IL-12 and IL-18 |
US11872272B2 (en) | 2017-03-06 | 2024-01-16 | Altor Bioscience, Llc | IL-15-based fusions to IL-12 and IL-18 |
EP3592778A4 (en) * | 2017-03-06 | 2021-01-13 | Altor BioScience Corporation | Il-15-based fusions to il-12 and il-18 |
US11612645B2 (en) | 2017-03-06 | 2023-03-28 | Altor Bioscience, Llc | IL-15-based fusions to IL-12 and IL-18 |
US11571470B2 (en) | 2017-03-06 | 2023-02-07 | Altor Bioscience Llc | IL-15-based fusions to IL-12 and IL-18 |
US11365236B2 (en) | 2017-03-27 | 2022-06-21 | Nkarta, Inc. | Truncated NKG2D chimeric receptors and uses thereof in natural killer cell immunotherapy |
US11896616B2 (en) | 2017-03-27 | 2024-02-13 | National University Of Singapore | Stimulatory cell lines for ex vivo expansion and activation of natural killer cells |
CN110494449B (en) * | 2017-03-31 | 2024-03-26 | 艾尔特生物科技公司 | ALT-803 in combination with anti-CD 38 antibodies for cancer treatment |
CN110494449A (en) * | 2017-03-31 | 2019-11-22 | 阿尔托生物科学有限公司 | ALT-803 and 8 antibody combination of AntiCD3 McAb are used for treatment of cancer |
US11084863B2 (en) | 2017-06-30 | 2021-08-10 | Xencor, Inc. | Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains |
CN111093689A (en) * | 2017-07-03 | 2020-05-01 | 转矩医疗股份有限公司 | Immunostimulatory fusion molecules and uses thereof |
US11471490B2 (en) | 2017-07-03 | 2022-10-18 | Torque Therapeutics, Inc. | T cells surface-loaded with immunostimulatory fusion molecules and uses thereof |
EP3675892A4 (en) * | 2017-07-03 | 2021-10-06 | Torque Therapeutics, Inc. | Immunostimulatory fusion molecules and uses thereof |
WO2019046313A1 (en) * | 2017-08-28 | 2019-03-07 | Altor Bioscience Llc | Il-15-based fusions to il-7 and il-21 |
US11965007B2 (en) | 2017-08-28 | 2024-04-23 | Altor BioScience, LLC. | IL-15-based fusions to IL-7 and IL-21 |
US11161890B2 (en) | 2017-08-28 | 2021-11-02 | Altor Bioscience LLC. | IL-15-based fusions to IL-7 and IL-21 |
US11524033B2 (en) | 2017-09-05 | 2022-12-13 | Torque Therapeutics, Inc. | Therapeutic protein compositions and methods of making and using the same |
US11059876B2 (en) | 2018-02-28 | 2021-07-13 | Pfizer Inc. | IL-15 variants and uses thereof |
US12043656B2 (en) | 2018-04-04 | 2024-07-23 | Immunitybio, Inc. | Advanced avatar dendritic cells |
US11267866B2 (en) | 2018-04-04 | 2022-03-08 | Nant Holdings Ip, Llc | Immunoglobulin complex comprising interleukin-15 |
WO2019195420A1 (en) * | 2018-04-04 | 2019-10-10 | Nant Holding IP, LLC | Advanced avartar dendritic cells |
US11524991B2 (en) | 2018-04-18 | 2022-12-13 | Xencor, Inc. | PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof |
US11505595B2 (en) | 2018-04-18 | 2022-11-22 | Xencor, Inc. | TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains |
WO2020047299A1 (en) * | 2018-08-30 | 2020-03-05 | HCW Biologics, Inc. | Multi-chain chimeric polypeptides and uses thereof |
US12018071B2 (en) | 2018-08-30 | 2024-06-25 | HCW Biologics, Inc. | Single-chain chimeric polypeptides and uses thereof |
US11884712B2 (en) | 2018-08-30 | 2024-01-30 | HCW Biologics, Inc. | Multi-chain chimeric polypeptides and uses thereof |
US11730762B2 (en) | 2018-08-30 | 2023-08-22 | HCW Biologics, Inc. | Methods for stimulating proliferation or differentiation of an immune cell with a multi-chain chimeric polypeptide |
US11518792B2 (en) | 2018-08-30 | 2022-12-06 | HCW Biologics, Inc. | Multi-chain chimeric polypeptides and uses thereof |
US11987619B2 (en) | 2018-08-30 | 2024-05-21 | HCW Biologics, Inc. | Single-chain chimeric polypeptides and uses thereof |
US11672826B2 (en) | 2018-08-30 | 2023-06-13 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
US11401324B2 (en) | 2018-08-30 | 2022-08-02 | HCW Biologics, Inc. | Single-chain chimeric polypeptides and uses thereof |
US11377477B2 (en) | 2018-10-12 | 2022-07-05 | Xencor, Inc. | PD-1 targeted IL-15/IL-15RALPHA fc fusion proteins and uses in combination therapies thereof |
US11618776B2 (en) | 2018-12-20 | 2023-04-04 | Xencor, Inc. | Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15RA and NKG2D antigen binding domains |
EP3908314A4 (en) * | 2019-01-11 | 2023-05-10 | Memorial Sloan Kettering Cancer Center | Multimerization of il-15/il-15r-alpha-fc complexes to enhance immunotherapy |
US11738052B2 (en) | 2019-06-21 | 2023-08-29 | HCW Biologics, Inc. | Multi-chain chimeric polypeptides and uses thereof |
WO2021054867A1 (en) * | 2019-09-19 | 2021-03-25 | Закрытое Акционерное Общество "Биокад" | IMMUNOCYTOKINE COMPRISING HETERODIMERIC PROTEIN COMPLEX BASED ON IL-15/IL-15Rα |
US11932675B2 (en) | 2019-10-11 | 2024-03-19 | Genentech, Inc. | PD-1 targeted IL-15/IL-15Rα Fc fusion proteins with improved properties |
WO2021142476A1 (en) * | 2020-01-12 | 2021-07-15 | Dragonfly Therapeutics, Inc. | Single-chain polypeptides |
US12024545B2 (en) | 2020-06-01 | 2024-07-02 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
WO2022031440A1 (en) | 2020-08-03 | 2022-02-10 | Immunitybio, Inc. | Drug-specific pharmacokinetic assay for il-15 superagonist |
WO2022140665A1 (en) * | 2020-12-23 | 2022-06-30 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017201056B2 (en) | Multimeric il-15 soluble fusion molecules and methods of making and using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11827439 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2013529432 Country of ref document: JP Kind code of ref document: A Ref document number: 2811734 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011827439 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011305476 Country of ref document: AU Date of ref document: 20110921 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137010276 Country of ref document: KR Kind code of ref document: A |