WO2012039729A1 - Paper laminates comprising tungsten treated titanium dioxide having improved photostability - Google Patents
Paper laminates comprising tungsten treated titanium dioxide having improved photostability Download PDFInfo
- Publication number
- WO2012039729A1 WO2012039729A1 PCT/US2010/055902 US2010055902W WO2012039729A1 WO 2012039729 A1 WO2012039729 A1 WO 2012039729A1 US 2010055902 W US2010055902 W US 2010055902W WO 2012039729 A1 WO2012039729 A1 WO 2012039729A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- impregnated
- opaque
- cellulose pulp
- titanium dioxide
- Prior art date
Links
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 239000010937 tungsten Substances 0.000 title claims abstract description 46
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 46
- 239000011101 paper laminate Substances 0.000 title claims abstract description 32
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 132
- 239000004408 titanium dioxide Substances 0.000 title claims description 63
- 239000001913 cellulose Substances 0.000 claims abstract description 41
- 229920002678 cellulose Polymers 0.000 claims abstract description 41
- 239000010954 inorganic particle Substances 0.000 claims abstract description 33
- 238000007540 photo-reduction reaction Methods 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims description 75
- 229920005989 resin Polymers 0.000 claims description 36
- 239000011347 resin Substances 0.000 claims description 36
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 22
- 229910044991 metal oxide Inorganic materials 0.000 claims description 17
- 150000004706 metal oxides Chemical class 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 15
- 229920000877 Melamine resin Polymers 0.000 claims description 11
- 229920001187 thermosetting polymer Polymers 0.000 claims description 10
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000005470 impregnation Methods 0.000 claims description 5
- 229920001634 Copolyester Polymers 0.000 claims description 4
- 239000004641 Diallyl-phthalate Substances 0.000 claims description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 4
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 4
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 claims description 4
- 150000002118 epoxides Chemical class 0.000 claims description 4
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 claims description 4
- CGXBXJAUUWZZOP-UHFFFAOYSA-N formaldehyde;phenol;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.OC1=CC=CC=C1.NC1=NC(N)=NC(N)=N1 CGXBXJAUUWZZOP-UHFFFAOYSA-N 0.000 claims description 4
- 229920001568 phenolic resin Polymers 0.000 claims description 4
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 claims description 4
- 229920006305 unsaturated polyester Polymers 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims description 2
- 239000008199 coating composition Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 31
- 239000000123 paper Substances 0.000 description 27
- 235000010980 cellulose Nutrition 0.000 description 19
- 150000001805 chlorine compounds Chemical class 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000049 pigment Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 5
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 238000009824 pressure lamination Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011094 fiberboard Substances 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 244000166124 Eucalyptus globulus Species 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 239000011122 softwood Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012463 white pigment Substances 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000004 White lead Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- VUUAEBBAUMJPRE-UHFFFAOYSA-N ethyl n-fluorocarbamate Chemical compound CCOC(=O)NF VUUAEBBAUMJPRE-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000000569 greater omentum Anatomy 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 235000019988 mead Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000012215 seam sealant Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
- D21H27/30—Multi-ply
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/37—Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/47—Condensation polymers of aldehydes or ketones
- D21H17/48—Condensation polymers of aldehydes or ketones with phenols
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/52—Epoxy resins
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/53—Polyethers; Polyesters
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/28—Colorants ; Pigments or opacifying agents
- D21H21/285—Colorants ; Pigments or opacifying agents insoluble
Definitions
- the present disclosure relates to resin-impregnated, opaque, cellulose pulp-based sheet and paper laminates, and more particularly to resin-impregnated, opaque, cellulose pulp-based sheet and paper laminates prepared therefrom comprising tungsten.
- Paper laminates are in general well-known in the art, being suitable for a variety of uses including table and desk tops, countertops, wall panels, floor surfacing, tableware and the like. Paper laminates have such a wide variety of uses because they can be made to be extremely durable, and can be also made to resemble (both in appearance and texture) a wide variety of construction materials, including wood, stone, marble and tile, and can be decorated to carry images and colors.
- the paper laminates are made from papers by
- Decorative paper laminates can be made by utilizing a printed decorative paper layer as upper paper layer and various support paper layers in the unitary core structure.
- the decorative paper is typically highly opaque so that the appearance of the support layers below the decorative paper does not adversely impact the appearance of the decorative paper laminate.
- a decorative paper is also known as a decor paper.
- a separate overlay is used as the top layer for paper laminates.
- An overlay usually comprises the same resin as the one that is used for the resin impregnated decorative paper.
- a paper laminate has been made by applying to the outer layer of a composite structure a mixture of an additive amount of a fluorourethane additive, available from E. I. du Pont de Nemours and Company and a melamine resin slurry. Paper laminates may be produced by both low- and high-pressure lamination processes.
- a single opening, quick cycle press can be used where one or more resin-saturated paper sheets are laminated to a sheet of plywood typically with a 1A face, particle board, or fiberboard.
- a melamine overlay and a melamine resin-impregnated decor paper are usually laminated onto a phenolic sheet, which provides additional mechanical support.
- a "continuous laminator" can be used where one or more layers of the resin-saturated paper are pressed into a unitary structure as the layers move through continuous laminating equipment between plates, rollers or belts.
- One or two laminated sheets may be pressed onto a particle or fiberboard, etc. and a "glue line” used to bond the laminated sheet to the board.
- Single or multiple opening presses may also be employed which contain several laminates.
- the decor paper in such paper laminates generally comprises a resin-impregnated, cellulose pulp-based sheet, with the pulp being based predominantly on hardwoods such as eucalyptus, sometimes in
- Pigments such as titanium dioxide
- fillers are added in amounts generally up to and including about 45 wt. % (based on the total dry weight prior to resin impregnation) to obtain the required opacity.
- Other additives such as wet- strength, retention, sizing (internal and surface) and fixing agents may also be added as required to achieve the desired end properties of the paper.
- the resin can be a thermosetting resin selected from the group consisting of a polymer of diallyl phthalate, epoxide, urea formaldehyde, urea-acrylic acid ester copolyester, melamine formaldehyde, melamine phenol formaldehyde, dicyandiamide-formaldehyde, urethane, curable acrylic, unsaturated polyester and phenol formaldehyde and mixtures thereof.
- a thermosetting resin selected from the group consisting of a polymer of diallyl phthalate, epoxide, urea formaldehyde, urea-acrylic acid ester copolyester, melamine formaldehyde, melamine phenol formaldehyde, dicyandiamide-formaldehyde, urethane, curable acrylic, unsaturated polyester and phenol formaldehyde and mixtures thereof.
- Titanium dioxide pigments are prepared using either the chloride process or the sulfate process.
- titanium tetrachloride, TiCI 4 is reacted with an oxygen containing gas at temperatures ranging from about 900 °C to about 1600 °C, the resulting hot gaseous suspension of ⁇ 2 particles and free chlorine is discharged from the reactor and must be quickly cooled below about 600 °C, for example, by passing it through a conduit, i.e., flue, where growth of the titanium dioxide pigment particles and agglomeration of said particles takes place.
- One method of adding elements to the surface of a particle is by impregnation with a solution containing the element. This is difficult to do with pyrogenically prepared metal oxide particles since the properties of the pyrogenically produced metal oxides change upon contact with a liquid medium.
- the disclosure provides a resin-impregnated, opaque, cellulose pulp-based sheet comprising inorganic particles, typically inorganic metal oxide or mixed metal oxide particles, more typically titanium dioxide (TiO 2 ) particles, comprising at least about 0.002 % of tungsten, more typically at least about 0.004 % of tungsten, and still more typically at least about 0.01 % of tungsten, and most typically at least about 0.05 % of tungsten, based on the total weight of the inorganic particles, wherein the inorganic particles, have a photostability ratio (PSR) of at least about 2, more typically at least about 4, and still more typically at least 10, as measured by the Ag + photoreduction rate, and color as depicted by an L* of at least about 97.0, more typically at least about 98, and most typically at least about 99.0, and b* of less than about 4, and more typically less than about 3.
- PSR photostability ratio
- the inorganic particles more typically inorganic metal oxide or mixed metal oxide particles, and most typically titanium dioxide particles, comprising tungsten may further comprise alumina in the amount of about 0.06 to about 5 % of alumina, more typically about 0.2 % to about 4 % of alumina, still more typically about 0.5 % to about 3% of alumina, and most typically about 0.8 % to about 2 %, based on the total weight of the inorganic particles.
- the disclosure provides a paper laminate comprising a resin-impregnated, opaque, cellulose pulp-based sheet, wherein the resin-impregnated, opaque, cellulose pulp-based sheet comprises inorganic particles, typically inorganic metal oxide or mixed metal oxide particles, more typically titanium dioxide ( ⁇ 2) particles, comprising at least about 0.002 % of tungsten, more typically at least about 0.004 % of tungsten, and still more typically at least about 0.01 % of tungsten, and most typically at least about 0.05 % of tungsten, based on the total weight of the inorganic particles, wherein the inorganic particles, have a photostability ratio (PSR) of at least about 2, more typically at least about 4, and still more typically at least 10, as measured by the Ag + photoreduction rate, and color as depicted by an L* of at least about 97.0, more typically at least about 98, and most typically at least about 99.0, and b* of less than about 4, and more typically less than about 3.
- PSR photostability ratio
- the inorganic particles more typically inorganic metal oxide or mixed metal oxide particles, and most typically titanium dioxide particles, comprising tungsten may further comprise alumina in the amount of about 0.06 to about 5 % of alumina, more typically about 0.2 % to about 4 % of alumina, still more typically about 0.5 % to about 3 % of alumina, and most typically about 0.8 % to about 2 %, based on the total weight of the inorganic particles.
- the paper laminate further comprises a dried overlay.
- FIG. 1 is a schematic illustration showing the process for preparing titanium dioxide (T1O2).
- This disclosure relates to a paper laminate comprising a resin- impregnated, opaque, cellulose pulp-based sheet, wherein the resin- impregnated, opaque, cellulose pulp-based sheet comprisies inorganic particles, typically inorganic metal oxide or mixed metal oxide particles, more typically titanium dioxide (T1O2) particles, comprising at least about 0.002 % of tungsten, more typically at least about 0.004 % of tungsten, and still more typically at least about 0.01 % of tungsten, and most typically at least about 0.05 % of tungsten, based on the total weight of the inorganic particles.
- inorganic particles typically inorganic metal oxide or mixed metal oxide particles, more typically titanium dioxide (T1O2) particles, comprising at least about 0.002 % of tungsten, more typically at least about 0.004 % of tungsten, and still more typically at least about 0.01 % of tungsten, and most typically at least about 0.05 % of tungsten, based on the total weight of the inorganic particles.
- These inorganic particles have a photostability ratio (PSR) of at least about 2, more typically at least about 4, and still more typically at least 10, as measured by the Ag + photoreduction rate, and color as depicted by an L * of at least about 97.0, more typically at least about 98, and most typically at least about 99.0, and b * of less than about 4, and more typically less than about 3.
- PSR photostability ratio
- the inorganic particles more typically inorganic metal oxide or mixed metal oxide particles, and most typically titanium dioxide particles, comprising tungsten may further comprise alumina in the amount of about 0.06 to about 5 % of alumina, more typically about 0.2 % to about 4 % of alumina, still more typically about 0.5 % to about 3 % of alumina, and most typically about 0.8 % to about 2 %, based on the total weight of the inorganic particles, and the paper laminate made therefrom.
- alumina in the amount of about 0.06 to about 5 % of alumina, more typically about 0.2 % to about 4 % of alumina, still more typically about 0.5 % to about 3 % of alumina, and most typically about 0.8 % to about 2 %, based on the total weight of the inorganic particles, and the paper laminate made therefrom.
- the paper laminate typically comprises a dried overlay and a base sheet wherein at least one of the dried overlay and the base sheet can comprise a resin-impregnated, opaque, cellulose pulp-based sheet.
- the base sheet can comprise a phenolic core or engineered wood comprising substrate such as particle or fiber board.
- the dried overlay and the base sheet can be laminated together utilizing a low pressure or a high pressure lamination process.
- the paper laminate may further comprise components to make it abrasion resistant.
- the resin-impregnated, opaque, cellulose pulp-based sheet is also known in the industry as Decor paper.
- the cellulose pulp used in the pulp- based sheet comprises pulp predominantly from hardwoods such as eucalyptus, sometimes in combination with minor amounts of softwood pulps.
- Pigments such as titanium dioxide, more typically rutile titanium dioxide comprising tungsten and in addition alumina
- fillers can be added in amounts generally up to and including about 60 wt. %, more typically about 20 % to about 40 % , (based on the total dry weight prior to resin impregnation) to obtain the required opacity.
- thermosetting resins include, without limit, polymers of diallyl phthalate, epoxide, urea formaldehyde, urea-acrylic acid ester copolyester, melamine formaldehyde, melamine phenol formaldehyde, dicyandiamide-formaldehyde, urethane, unsaturated polyester, curable acrylic and phenol formaldehyde and mixtures thereof.
- the resin used to impregnate this decorative sheet may contain abrasive inorganic particles selected from the group consisting of aluminum oxide or silicon oxide and mixtures thereof.
- This resin impregnated, opaque, cellulose pulp-based sheet may contain a print, pattern design or solid color and these are generated using known techniques. Some such techniques include various well-known analog and digital printing methods to impart desired coloration and designs as required for the particular end use. Analog printing methods such as screen printing are particularly suitable for large runs and repetitive patterns. Digital printing methods such as inkjet printing are particularly suitable for short runs and customized patterning. Some suitable resin-impregnated, opaque, cellulose pulp-based sheets are available from Mead Westvaco (1 1013 West Broad Street, Glen Allen, Virginia 23060), as, solid colored Duoply® papers or printbase Primebase® papers.
- the dried overlay can be wear resistant and the dried overlay can be used in both low pressure and high pressure lamination processes to provide improved resistance to abrasive wear.
- the dried overlay can be of varying thickness and can be low opacity, more typically substantially optically transparent.
- the dried overlay can comprise a thermosetting resin or can be a resin-impregnated, opaque, cellulose pulp-based sheet as described above.
- the thermosetting resin used in the dried overlay can be subjected to a pre-cure step prior to the lamination process which also includes a curing step.
- pre-cure is used to mean that the cure of the resin particles has been advanced either to the maximum degree possible or at least to a stage of cure where the melt viscosity of the cured resin particles is sufficiently high to prevent these particles from melting and flowing under usual laminating conditions and thus undesirably saturating into the decor paper or other resin-impregnated, opaque, cellulose pulp-based sheet, during the lamination step to form the paper laminate.
- the resins are typically thermosetting resins.
- suitable thermosetting resins include, without limit polymer of diallyl phthalate, epoxide, urea formaldehyde, urea-acrylic acid ester copolyester, melamine formaldehyde, melamine phenol formaldehyde, dicyandiamide- formaldehyde, urethane, curable acrylic, unsaturated polyester and phenol formaldehyde and mixtures thereof. More typically the resin used in the dried overlay is a formaldehyde-melamine polymer.
- the resin used to impregnate the resin-impregnated opaque cellulose pulp-based sheet typically has the same or substantially the same index of refraction as the resin in the dried overlay. More typically, the resin used in the dried overlay is the same resin used to impregnate the resin-impregnated opaque cellulose pulp- based sheet.
- the dried overlay further comprises a binding material, selected from a group consisting of microcrystalline cellulose, carboxyl methyl cellulose, sodium alginate and mixtures thereof.
- the dried overlay further comprises mineral particles, usually ranging is size from about 20 to about 35 ⁇ , comprising aluminum oxide, silicon oxide, or the mixture thereof, to further improve abrasion resistance.
- the dried overlay can be transparent after curing.
- the dried overlay can be made by processes well known in the paper making industry, by forming a suspension of the resin and the binding material together and drying the suspension to form the dried overlay.
- additional ingredients can be employed such as the mineral particles and opacifier, if the dried overlay is to be opaque.
- the dried overlay can also be made by applying a thick layer of pre- cured thermosetting resin particles to the decorative sheet, as disclosed in US Patent No. 5,545,476.
- the paper laminate can comprise other components such as a phenolic core sheet, engineered wood sheet, such as particle board or fiber board or plywood.
- the phenolic core sheet typically comprises a plurality of phenolic resin-impregnated Kraft papers which are laminated together.
- Glues can also be included usually as seam sealants, for example, a hot wax-oil emulsion.
- Other suitable glues are made of acrylic polymer, polyvinylacetate, and polychloroprene and commercially available from Wilsonart International of Fletcher North Carolina. Treated Particle:
- inorganic particle an inorganic particulate material that becomes dispersed throughout a final product such as a polymer melt or coating or paper laminate composition and imparts color and opacity to it.
- inorganic particles include but are not limited to ZnO, ZnS, BaSO 4 , CaCO3, T1O2, Lithopane, white lead, SrTiO3, etc.
- titanium dioxide is an especially useful particle in the processes and products of this disclosure.
- particles useful in the present disclosure may be in the rutile or anatase crystalline form. They are commonly made by either a chloride process or a sulfate process. In the chloride process, TiCI 4 is oxidized to T1O2 particles. In the sulfate process, sulfuric acid and ore containing titanium are dissolved, and the resulting solution goes through a series of steps to yield TiO 2 . Both the sulfate and chloride processes are described in greater detail in "The Pigment Handbook", Vol. 1 , 2nd Ed., John Wiley & Sons, NY (1988), the teachings of which are incorporated herein by reference. The particle may be a pigment or nanoparticle.
- titanium dioxide particles have an average size of less than 1 micron. Typically, the particles have an average size of from about 0.020 to about 0.95 microns, more typically, about 0.050 to about 0.75 microns and most typically about 0.075 to about 0.50 microns.
- nanoparticle it is meant that the primary titanium dioxide particles typically have an average particle size diameter of less than about 100 nanometers (nm) as determined by dynamic light scattering that measures the particle size distribution of particles in liquid suspension. The particles are typically agglomerates that may range from about 3 nm to about 6000 nm.
- the titanium dioxide particle can be substantially pure titanium dioxide or can contain other metal oxides, such as alumina. Other metal oxides may become incorporated into the particles, for example, by co- oxidizing, post-oxidizing, co-precipitating titanium compounds with other metal compounds or precipitating other metal compounds on to the surface of titanium dioxide particles. These are typically hydrous metal oxides. If co-oxidized, post-oxidized, precipitated or co-precipitated the amount of the metal oxide is about 0.06 to about 5 %, more typically about 0.2 % to about 4 %, still more typically about 0.5 % to about 3 %, and most typically about 0.8 % to about 2 %, based on the total weight of the titanium dioxide particles.
- Tungsten may also be introduced into the particle using co-oxidizing, or post-oxidizing. If co-oxidized or post-oxidized at least about 0.002 wt. % of the tungsten, more typically, at least about 0.004 wt. %, still more typically at least about 0.01 wt. % tungsten, and most typically at least about 0.05 wt. % may be present, based on the total particle weight.
- the process for producing titanium dioxide particle comprises: a) mixing of chlorides of, titanium, tungsten or mixtures thereof; wherein at least one of the chlorides is in the vapor phase;
- titanium dioxide (TiO 2 ) particles comprising at least about 0.002 % of tungsten, more typically at least about 0.004 % of tungsten and still more typically at least about 0.01 % of tungsten, and most typically at least about 0.05 % of tungsten, based on the total weight of the titanium dioxide particles.
- These titanium dioxide particles have a photostability ratio (PSR) of at least 2, more typically at least 4, and still more typically at least 10, as measured by the Ag + photoreduction rate, and color as depicted by an L* of at least about 97.0, more typically at least about 98, and most typically at least about 99.0, and b* of less than about 4, and more typically less than about 3.
- PSR photostability ratio
- the titanium dioxide particles comprising tungsten further comprise alumina in the amount of about 0.06 to about 5 % of alumina, more typically about 0.2 % to about 4 % of alumina, still more typically about 0.5 % to about 3 % of alumina, and most typically about 0.8 % to about 2 %, based on the total weight of the titanium dioxide particles.
- tungsten may be added to the titanium dioxide particle from an alloy comprising tungsten.
- the alloy 1 1 and chlorine 12 are added to the generator 10. This reaction can occur in fluidized beds, spouting beds, packed beds, or plug flow reactors.
- the inert generator bed may comprise materials such as silica sand, glass beads, ceramic beads, T1O2 particles, or other inert mineral sands.
- the alloy comprising aluminum, titanium or mixtures thereof and tungsten, 1 1 reacts in the generator 10 according to the following equations:
- the heat of reaction from the chlorination of the aluminum or titanium metal helps provide sufficient heat to drive the kinetics of the reaction between chlorine and one or more of the other elements.
- Titanium tetrachloride 17 may be present during this reaction to absorb the heat of reaction.
- the chlorides formed in-situ comprise chlorides of the tungsten and chlorides of aluminum such as aluminum trichloride, chlorides of titanium such as titanium tetrachloride or mixtures thereof.
- the temperature of the reaction of chlorine with the alloy should be below the melting point of the alloy but sufficiently high enough for the rate of reaction with chlorine to provide the required amount of chlorides to be mixed with the TiCI 4 .
- Typical amounts of chlorine used in step (a) are about 0.4 % to about 20 %, more typically about 2 % to about 5 %, by weight, based on the total amount of all reactants.
- Typical amounts of titanium tetrachloride are about 75 % to about 99.5 % added in step (a) and (b), and more typically about 93 % to about 98 %, by weight, based on the total amount of all reactants.
- the reaction of chlorine with the alloy occurs at temperature of above 190 °C, more typically at temperature of about 250 °C to about 650 °C , and most typically at temperatures of about 300 °C to about 500 °C.
- the chlorides formed in the in-situ step 13 flows into an oxidation reactor 14 and titanium tetrachloride 15 is then added to the chlorides, such that titanium tetrachloride is present in a major amount.
- Vapor phase oxidation of the chlorides from step (a) and titanium tetrachloride is by a process similar to that disclosed, for example, in U.S. Pat. Nos. 2,488,439, 2,488,440, 2,559,638, 2,833,627, 3,208,866, 3,505,091 , and 7,476,378.
- the reaction may occur in the presence of neucleating salts such as
- Such reaction usually takes place in a pipe or conduit, wherein oxygen 16, titanium tetrachloride 15 and the in-situ fomned chlorides comprising chlorides of tungsten and chlorides of aluminum such as aluminum trichloride, chlorides of titanium such as titanium tetrachloride or mixtures thereof 13 are introduced at a suitable temperature and pressure for production of the treated titanium dioxide.
- a flame is generally produced.
- the treated titanium dioxide produced Downstream from the flame, the treated titanium dioxide produced is fed through an additional length of conduit wherein cooling takes place.
- conduit For the purposes herein, such conduit will be referred to as the flue.
- the flue should be as bng as necessary to accomplish the desired cooling.
- the flue is water cooled and can be about 50 feet (15.24 m) to about 3000 feet (914.4 m), typically about 100 feet (30.48 m) to about 1500 feet (457.2 m), and most typically about 200 feet (60.96 m) to 1200 feet (365.76 m) long.
- Photostabilitv ratio is the rate of photoreduction of Ag+ by T1O2 particles without tungsten (control samples) divided by the rate of photoreduction of Ag+ by the otherwise same ⁇ 2 particles comprising tungsten.
- the rate of photoreduction of Ag+ can be determined by various methods. A convenient method was to suspend the ⁇ 2 particles in 0.1 M AgNO3 aqueous solution at a fixed ratio of ⁇ 2 to solution, typically 1 :1 by weight. The suspended particles were exposed to UV light at about 0.2 mW./cm 2 intensity. The reflectance of visible light by the suspension of TiO 2 particles was monitored versus time. The reflectance decreased from the initial value to smaller values as silver metal was formed by the photoreduction reaction, Ag + -> Ag°. The rate of reflectance decrease versus time was measured from the initial reflectance ( 100 % visible reflectance with no UV light exposure) to a reflectance of 90 % after UV exposure; that rate was defined as the rate of Ag + photoreduction.
- Titanium dioxide made by the chloride process comprising 1 .23 % alumina by weight and having an L*a*b* color index of (99.98, 0.60, 2.13) and a rate of Ag + photoreduction of 0.0528 sec "1 was fired under flowing oxygen at 4 °C/min to 1000 °C and held at temperature for 3 hours;
- Titanium dioxide made by the chloride process comprising 0.06 % alumina by weight and having an L*a*b* color index of (99.43, -0.58, 1 .36) and a photoractivity rate of 0.3322 was fired under flowing oxygen at 4 °C/min to 1000 °C and held at temperature for 3 hours; furnace cooled to 750 °C and held at temperature for 1 hour; furnace cooled to 500 °C and held at temperature for 3 hours; furnace cooled to 250 °C and held at temperature for 3 hours; and finally furnace cooled to room temperature. After firing the sample had an L*a*b* color index of (97.71 , -0.03, 1 .89) and a photoactivity rate of 0.2229 sec "1 .
- Titanium dioxide similar to that described in Comparative Example
- Titanium dioxide similar to that described in Comparative Example 1 was impregnated via incipient wetness with various amounts of ammonium tungstate, (NH )i 0 Wi2O 4 i -5H 2 O, to give samples having the W contents listed below. These samples were fired as described in
- Titanium dioxide similar to that described in Comparative Example 2 was well mixed with amounts of ammonium tungstate,
- Titanium dioxide similar to that described in Comparative Example 1 was well mixed with various amounts of ammonium molybdate,
- Titanium dioxide similar to that described in Comparative Example 1 was impregnated via incipient wetness with various amounts of ammonium molybdate, ( ⁇ ) 6 ⁇ 7 ⁇ 24 -4 ⁇ 2 ⁇ , to give samples having Mo to Al atomic ratios of 0.1 , 0.5, and 1 .0 versus 0.0 for the undoped control. These samples were fired as described in Comparative Example 1 . After firing the samples had L * a * b * color and photostability ratios as given in the following table:
- Whatman #1 filter paper is impregnated with a slurry consisting of 10 wt. % of the dry titanium dioxide samples having W contents as listed in Example 3 and a 50 wt. % aqueous solution of Kauramin® 773
- Laminate lay-ups are constructed between two steel caul plates. From the bottom up, the construction is as follows: a) single overlay sheet (LK2050FK MELAMINE IMPREGNATED 20# BASE WEIGHT, WHITE OVERLAY) b) single white backing sheet (L2028050 MELAMINE
- the laminate is formed using a Carver press heated to 300 °F under a force of 36,000 pounds for six minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Paper (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/505,485 US20120216976A1 (en) | 2010-09-21 | 2010-11-09 | Paper laminates comprising tungsten treated titanium dioxide having improved photostability |
CN201080049685.9A CN102686800A (en) | 2010-09-21 | 2010-11-09 | Paper laminates comprising tungsten treated titanium dioxide having improved photostability |
AU2010361147A AU2010361147A1 (en) | 2010-09-21 | 2010-11-09 | Paper laminates comprising tungsten treated titanium dioxide having improved photostability |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38489210P | 2010-09-21 | 2010-09-21 | |
US61/384,892 | 2010-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012039729A1 true WO2012039729A1 (en) | 2012-03-29 |
Family
ID=43568707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/055902 WO2012039729A1 (en) | 2010-09-21 | 2010-11-09 | Paper laminates comprising tungsten treated titanium dioxide having improved photostability |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120216976A1 (en) |
CN (1) | CN102686800A (en) |
AU (1) | AU2010361147A1 (en) |
WO (1) | WO2012039729A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103422392A (en) * | 2012-05-15 | 2013-12-04 | 李跃怡 | Disinfecting, sterilizing, antiseptic and deodorizing toilet paper (TCF) and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2517459C1 (en) * | 2013-05-29 | 2014-05-27 | Константин Сергеевич Сахаров | Paper laminate (versions) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2488440A (en) | 1946-11-30 | 1949-11-15 | Du Pont | Titanium dioxide pigment production |
US2488439A (en) | 1946-03-09 | 1949-11-15 | Du Pont | Production of titanium oxide pigments |
US2559638A (en) | 1947-07-25 | 1951-07-10 | Du Pont | Production of titanium dioxide |
US2833627A (en) | 1956-01-03 | 1958-05-06 | Du Pont | Method for cooling the hot, gas-containing reaction products resulting from the oxidation of titanium tetrachloride |
US3208866A (en) | 1963-07-15 | 1965-09-28 | Du Pont | Tio2 manufacture |
US3505091A (en) | 1968-07-29 | 1970-04-07 | Du Pont | Production of titanium dioxide pigments |
US4460655A (en) * | 1983-04-04 | 1984-07-17 | E. I. Du Pont De Nemours And Company | TiO2 Pigment bearing a coating with fluoride ions and laminate and coating based thereon |
US5545476A (en) | 1993-04-07 | 1996-08-13 | International Paper Company | Wear resistant glossy laminates |
WO2002079572A1 (en) * | 2001-03-28 | 2002-10-10 | Technocell Dekor Gmbh & Co. Kg | Decorative paper base with improved opacity |
US20040025749A1 (en) * | 2002-08-08 | 2004-02-12 | Kronos International Inc. | Method for the surface treatment of a titanium dioxide pigment |
US20070175365A1 (en) * | 2006-01-30 | 2007-08-02 | Kronos International Inc. | Titanium dioxide pigment particles with doped, dense SiO2 skin and methods for their manufacture |
US7476378B2 (en) | 2005-10-27 | 2009-01-13 | E.I. Dupont Denemours & Company | Process for producing titanium dioxide |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120216711A1 (en) * | 2010-09-21 | 2012-08-30 | E.I. Du Pont De Nemours And Company | Coating composition comprising tungsten treated titanium dioxide having improved photostability |
CN102695754A (en) * | 2010-09-21 | 2012-09-26 | 纳幕尔杜邦公司 | Polymer composition comprising tungsten treated titanium dioxide having improved photostability |
AU2010361148A1 (en) * | 2010-09-21 | 2012-05-24 | E. I. Du Pont De Nemours And Company | Tungsten containing inorganic particles with improved photostability |
-
2010
- 2010-11-09 AU AU2010361147A patent/AU2010361147A1/en not_active Abandoned
- 2010-11-09 CN CN201080049685.9A patent/CN102686800A/en active Pending
- 2010-11-09 WO PCT/US2010/055902 patent/WO2012039729A1/en active Application Filing
- 2010-11-09 US US13/505,485 patent/US20120216976A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2488439A (en) | 1946-03-09 | 1949-11-15 | Du Pont | Production of titanium oxide pigments |
US2488440A (en) | 1946-11-30 | 1949-11-15 | Du Pont | Titanium dioxide pigment production |
US2559638A (en) | 1947-07-25 | 1951-07-10 | Du Pont | Production of titanium dioxide |
US2833627A (en) | 1956-01-03 | 1958-05-06 | Du Pont | Method for cooling the hot, gas-containing reaction products resulting from the oxidation of titanium tetrachloride |
US3208866A (en) | 1963-07-15 | 1965-09-28 | Du Pont | Tio2 manufacture |
US3505091A (en) | 1968-07-29 | 1970-04-07 | Du Pont | Production of titanium dioxide pigments |
US4460655A (en) * | 1983-04-04 | 1984-07-17 | E. I. Du Pont De Nemours And Company | TiO2 Pigment bearing a coating with fluoride ions and laminate and coating based thereon |
US5545476A (en) | 1993-04-07 | 1996-08-13 | International Paper Company | Wear resistant glossy laminates |
WO2002079572A1 (en) * | 2001-03-28 | 2002-10-10 | Technocell Dekor Gmbh & Co. Kg | Decorative paper base with improved opacity |
US20040025749A1 (en) * | 2002-08-08 | 2004-02-12 | Kronos International Inc. | Method for the surface treatment of a titanium dioxide pigment |
US7476378B2 (en) | 2005-10-27 | 2009-01-13 | E.I. Dupont Denemours & Company | Process for producing titanium dioxide |
US20070175365A1 (en) * | 2006-01-30 | 2007-08-02 | Kronos International Inc. | Titanium dioxide pigment particles with doped, dense SiO2 skin and methods for their manufacture |
Non-Patent Citations (1)
Title |
---|
"The Pigment Handbook", vol. 1, 1988, JOHN WILEY & SONS |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103422392A (en) * | 2012-05-15 | 2013-12-04 | 李跃怡 | Disinfecting, sterilizing, antiseptic and deodorizing toilet paper (TCF) and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20120216976A1 (en) | 2012-08-30 |
AU2010361147A1 (en) | 2012-05-24 |
CN102686800A (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9120074B2 (en) | Laminate paper treated with inorganic pigments having improved dispersability | |
US20060275597A1 (en) | Paper and paper laminates containing modified titanium dioxide | |
AU2012249899B2 (en) | Treated inorganic pigments having improved bulk flow and their use in paper slurries | |
JP6118824B2 (en) | Paper laminate made from decor paper with improved optical performance comprising treated inorganic particles | |
AU2012275788B2 (en) | Treated inorganic pigments having reduced photoactivity and anti-microbial properties and their use in paper slurries | |
JP6242812B2 (en) | Dispersions prepared from treated inorganic particles for producing decor paper with improved optical performance | |
US20120216976A1 (en) | Paper laminates comprising tungsten treated titanium dioxide having improved photostability | |
US20120216717A1 (en) | Tungsten containing inorganic particles with improved photostability | |
JP7086867B2 (en) | Titanium dioxide product | |
JPH0576426B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080049685.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010361147 Country of ref document: AU Ref document number: 13505485 Country of ref document: US Ref document number: 3853/DELNP/2012 Country of ref document: IN Ref document number: 2010779389 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10779389 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010361147 Country of ref document: AU Date of ref document: 20101109 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |