WO2012039556A2 - Apparatus and method for transmitting downlink control information in a wireless communication system - Google Patents

Apparatus and method for transmitting downlink control information in a wireless communication system Download PDF

Info

Publication number
WO2012039556A2
WO2012039556A2 PCT/KR2011/006590 KR2011006590W WO2012039556A2 WO 2012039556 A2 WO2012039556 A2 WO 2012039556A2 KR 2011006590 W KR2011006590 W KR 2011006590W WO 2012039556 A2 WO2012039556 A2 WO 2012039556A2
Authority
WO
WIPO (PCT)
Prior art keywords
control information
information
main control
downlink control
mixed field
Prior art date
Application number
PCT/KR2011/006590
Other languages
French (fr)
Korean (ko)
Other versions
WO2012039556A3 (en
Inventor
홍성권
박경민
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2012039556A2 publication Critical patent/WO2012039556A2/en
Publication of WO2012039556A3 publication Critical patent/WO2012039556A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Definitions

  • the present invention relates to wireless communication, and more particularly, to an apparatus and method for transmitting downlink control information in a wireless communication system.
  • the uplink control signal includes an acknowledgment (ACK) / not-acknowledgement (NACK) signal for performing a hybrid automatic repeat request (HARQ), a channel quality indicator (CQI) indicating downlink channel quality, a precoding matrix index (PMI), There are various types such as RI (Rank Indicator).
  • ACK acknowledgment
  • NACK not-acknowledgement
  • HARQ hybrid automatic repeat request
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI Rank Indicator
  • Downlink control information must be added to deal with other new procedures or new information required with the emergence of a new system. To do this, keep the format compatible with the existing system, but consider adding new fields. However, the format of the existing downlink control information is very limited, and there is little room for adding a new field. In addition, even if a new field is added, this causes a problem of a burden of blind decoding of the UE. Therefore, even if new downlink control information to be applied to a new system is added, there is a need for an apparatus and a method for transmitting downlink control information to minimize and change the structure of an existing system.
  • An object of the present invention is to provide an apparatus and method for transmitting downlink control information in a wireless communication system.
  • Another object of the present invention is to provide a method of configuring an existing format of downlink control information into a format of new downlink control information.
  • Another technical problem of the present invention is to provide a method for constructing a mixed field.
  • a method for transmitting downlink control information may optionally include any one of main control information and sub control information, or construct a hybrid field including both the main control information and the sub control information, and including the mixed field.
  • Configuring downlink control information transmitting the downlink control information to a terminal, and receiving uplink information from the terminal based on the downlink control information.
  • a first code point group among all code points indicated by the mixed field is mapped to the main control information, and a second code point group is mapped to the sub control information.
  • a method of receiving downlink control information includes selectively receiving any one of main control information and sub control information, or receiving downlink control information including a mixed field including both the main control information and the sub control information from a base station, and And transmitting uplink information to the base station based on the downlink control information.
  • a first code point group among all code points indicated by the mixed field is mapped to the main control information, and a second code point group is mapped to the sub control information.
  • a base station for transmitting downlink control information.
  • the base station optionally includes any one of the main control information and the sub-control information, or a mixed field configuration unit constituting a mixed field including both the main control information and the sub-control information, the downlink including the mixed field
  • a downlink control information constructing unit constituting link control information, a transmitting unit for transmitting the downlink control information to a terminal, and a receiving unit for receiving uplink information from the terminal based on the downlink control information.
  • the mixed field constructing unit maps a first code point group among all code points indicated by the mixed field to the main control information, and maps a second code point group to the sub control information.
  • a terminal for receiving downlink control information includes a receiving unit for selectively including any one of the main control information or sub-control information, or receiving downlink control information from the base station including a mixed field including both the main control information and the sub-control information, the And a downlink control information analyzer for analyzing the format of the downlink control information, a data generator for generating uplink information based on the analysis, and a data transmitter for transmitting the generated data.
  • the downlink control information analyzing unit analyzes the downlink control information by a first method when the mixed field includes the main control information, and the downlink control when the mixed field includes the sub control information. The information is interpreted in a second manner.
  • New control information can be added while maintaining the existing DCI format, providing compatibility with existing systems without increasing the complexity of blind decoding.
  • 1 shows a wireless communication system.
  • LTE Long Term Evolution
  • 3 shows a structure of a downlink subframe.
  • FIG. 4 is an explanatory diagram showing control information mapped to code points of a mixed field according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method of transmitting DCI including a mixed field according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of transmitting downlink control information of a base station according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of receiving downlink control information of a terminal according to an embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a base station and a terminal according to an embodiment of the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • 'transmitting a channel' may be interpreted as meaning transmitting information through a specific channel.
  • the channel is a concept including both a control channel and a data channel
  • the control channel may be, for example, a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH).
  • the data channel may be, for example, a Physical Downlink Shared CHannel (PDSCH) or a Physical Uplink Shared CHannel (PUSCH).
  • 1 shows a wireless communication system.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a particular geographic area or frequency area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the mobile station (MS) 12 may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an femto base station (femto BS), It may be called other terms such as relay, transmission point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • femto base station femto base station
  • Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station 11, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells. to be.
  • downlink means communication from the base station 11 to the terminal 12, and uplink means communication from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-TDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • LTE Long Term Evolution
  • a radio frame includes 10 subframes, and one subframe includes two slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain.
  • the OFDM symbol is for representing one symbol period and may be called an SC-FDMA symbol or a symbol period according to a multiple access scheme.
  • the RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • 3 shows a structure of a downlink subframe.
  • a subframe includes two slots. Up to three OFDM symbols in the first slot of the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • the downlink control channel includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • the PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
  • PDCCH is a resource allocation and transmission format of downlink shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, random access response transmitted on PDSCH Resource allocation of a higher layer control message, a set of transmission power control commands for individual UEs in an arbitrary UE group, and activation of a Voice over Internet Protocol (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs), which is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to a correlation between the number of CCEs and the coding rate provided by the CCE
  • DCI downlink control information
  • Table 1 shows DCI according to DCI format.
  • Table 1 DCI format Explanation 0 Used for scheduling of PUSCH (Uplink Grant) One Used for scheduling one PDSCH codeword 1A Used for simple scheduling of one PDSCH codeword and a random access procedure initiated by a PDCCH command 1B Used for simple scheduling of one PDSCH codeword using precoding information 1C Used for brief scheduling of one PDSCH codeword and notification of MCCH changes 1D Used for simple scheduling of one PDSCH codeword containing precoding and power offset information 2 Used for PDSCH scheduling for UE configured in spatial multiplexing mode 2A Used for PDSCH scheduling of UE configured in long delay CDD mode 3 Used to transmit TPC commands for PUCCH and PUSCH with power adjustment of 2 bits 3A Used to transmit TPC commands for PUCCH and PUSCH with single bit power adjustment
  • DCI format 0 indicates uplink resource allocation information
  • DCI formats 1 to 2 indicate downlink resource allocation information
  • DCI formats 3 and 3A indicate uplink transmit power control (TPC) commands for arbitrary UE groups.
  • TPC transmit power control
  • Each field of the DCI is sequentially mapped to an information bit. For example, if DCI is mapped to information bits having a total length of 44 bits, the resource allocation field may be mapped to 10th to 23rd bits of the information bits.
  • DCI includes uplink resource allocation information and downlink resource allocation information.
  • the uplink resource allocation information may be referred to as an uplink grant, and the downlink resource allocation information may be referred to as a downlink grant.
  • Table 2 shows fields included in an uplink grant according to an embodiment of the present invention.
  • the flag is an indicator for distinguishing DCI 0 from DCI 1A as 1-bit information.
  • the hopping flag is 1-bit information and indicates whether frequency hopping is applied or not when the terminal performs uplink transmission. For example, if the hopping flag is 1, frequency hopping is applied during uplink transmission, and if hopping flag is 0, frequency hopping is not applied during uplink transmission.
  • Resource block assignment and hopping resource allocation is also called a resource allocation field.
  • the resource allocation field indicates the physical location or amount of resources allocated to the terminal.
  • the uplink grant includes a surplus bit or a padding bit to keep the total number of bits constant.
  • the uplink grant is 27 bits (excluding the CIF field and the CRC field). If the length of the bit determined as the blind decoding input is 28 bits, the base station adds an extra bit of 1 bit to the uplink grant during scheduling so that the total number of bits of the uplink grant is 28 bits. At this time, since the surplus bits do not contain special information, all of them may be set to zero. Of course, the number of surplus bits may be less than two, or may be large.
  • the purpose of the DCI is determined by its format, and the type of the field included in the DCI is also determined by the format.
  • the amount of existing control information may increase or new control information may be required.
  • adding a new field other than the existing field in the DCI will eventually change the DCI format.
  • This increases the complexity of blind decoding, which is a process of extracting the DCI format from the physical downlink control channel (PDCCH).
  • the UE decodes all possible DCI formats from the decoding start point defined in the region of the PDCCH. At this time, the user is distinguished from the Cell-Radio Network Temporary Identifier (C-RNTI) masked in the CRC.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • a method of configuring a field itself, which is not used in the existing DCI format, with new control information may be considered. For example, in DCI format 0, a redundant bit exists for 1 bit for each band. To configure DCI format 0 and DCI format 1A in the same format, these extra bits must be added to match each other. The surplus bits may be used to distinguish whether resource allocation is non-contiguous resource allocation (RA) or contiguous resource allocation. Most of these extra bits do not exist in other DCI formats. Therefore, a method of configuring a field which is not used previously with new control information is very limited.
  • RA non-contiguous resource allocation
  • a hybrid field which is a field corresponding to two types of control information, is provided in the DCI. According to this, even if new control information is added, the existing DCI format can be maintained, thereby providing compatibility with the existing system without increasing the complexity of blind decoding.
  • the mixed field according to the present invention is DCI format 0/1 / 1A /. Of course, it can be applied to all cases such as 1B / 1C / 1D / 2 / 2A / 3 / 3A.
  • the mixed field corresponds to primary control information or secondary control information.
  • the mixed field corresponds to the main control information and the sub control information.
  • the primary control information is uplink MCS-related information
  • the secondary control information is information related to transmission of an aperiodic sounding reference signal.
  • the mixed field may correspond to two or more types of control information. With only one mixed field, various kinds of control information can be contained in DCI.
  • the number of bits of the mixed field is predefined in the DCI format including the mixed field.
  • the number of bits of the mixed field may be predefined as 3 bits, 5 bits, or the like.
  • the number of cases each mixed field can represent is called a code point. As the number of bits in the mixed field increases, the number of code points increases.
  • One code point represents one state of control information corresponding to a mixed field. For example, when a mixed field has 2 bits and a total of 4 code points, each code point may be mapped to one state of control information such as a modulation and coding scheme (MCS) as shown in the following table.
  • MCS modulation and coding scheme
  • code point 0 represented by mixed field 00 is mapped to one state of MCS level called Binary Phase Shift Keying (BPSK).
  • code point 3 represented by mixed field 11 is mapped to one state of control information called 16QAM (Quadrature Amplitude Modulation).
  • the code point of the mixed field may be mapped to main control information or sub-control information according to its range. For example, when 32 code points are used, 20 of them are mapped to main control information, and the remaining 12 are mapped to sub control information. This means that two control information can be defined by the mixed field.
  • FIG. 4 is an explanatory diagram showing control information mapped to code points of a mixed field according to an embodiment of the present invention.
  • the mixed field is n bits, and the code points of the mixed field are 2n (0 to 2n-1) in total.
  • the code points 0 to 2k are mapped to the main control information
  • the code points 2k + 1 to 2n-1 are mapped to the sub control information.
  • the code point is divided into two groups, the first code point group is used to express the main control information, and the second code point group is used to represent the sub control information.
  • Information can be represented.
  • the main control information and the sub control information are defined in terms of the code point as follows.
  • the main control information is control information in which the number of usable code points is limited by higher layer signaling or a constraint condition arbitrarily applied by the system.
  • the sub control information is control information mapped to the code point of the main control information remaining due to the constraint applied to the main control information.
  • the modulation and coding method indicates a modulation order and coding transmitted in uplink.
  • the surplus index indicates a version used for retransmission of data in HARQ (Hybrid Automatic Repeat reQuest).
  • Table 4 shows main control information according to an embodiment of the present invention.
  • each code point is mapped to one state or MCS index I MCS of modulation surplus information.
  • the code point 10 is mapped to the modulation surplus information in a state where the modulation order is 2, the size index of the transport block is 10, and the surplus index is zero.
  • the modulation order (Q 'm) 2 is QPSK
  • the modulation order 4 16QAM the modulation order of 6 denotes 64QAM.
  • the size of an uplink allocated by an uplink grant according to DCI format 0 is determined by a combination of N PRBs determined by an I TBS and a resource allocation field. rv idx indicates a relative overlap with respect to the first transport block when the allocated uplink grant block is a retransmission block.
  • the base station applies a certain constraint by higher layer signaling or a separate control channel such as a Radio Resource Control (RRC) message or a Medium Access Control (MAC) message. Impose on control information.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the base station may assign the code point of the mixed field to the main control information to which the constraint is imposed.
  • the base station may allocate the remaining code points mapped to the main control information to which the constraint is imposed, to the sub control information.
  • Table 5 shows main control information and sub control information according to another example of the present invention.
  • code points 0 to 20 are cases where modulation orders are 2 and 4, and code points 21 to 28 are cases where modulation orders are 6.
  • Code points 0 to 20 and code points 29 to 31 are first group of code points and are used to display main control information (modulation surplus information). If the system imposes a constraint that the modulation order of 64QAM is not used, the code points 21 through 28 of modulation order 6 are not used as the main control information.
  • Table 5 is the same as Table 1, except that the code points that are not used as the main control information due to the constraints are indicated by shading.
  • the coded points 21 to 28 indicated by the shade are the second code point group, and the second code point group includes a total of eight code points. Accordingly, the second code point group may represent three bits of sub-control information. If the system imposes a constraint not to use the modulation order of 16QAM, the second code point group is expanded to 11 to 28. Therefore, sub-control information can be expressed with a total of 18 code points.
  • Table 6 shows main control information and sub control information according to another embodiment of the present invention.
  • Table 6 is the same as Table 1, but code points that are not used as main control information are shaded.
  • the even code points 0, 2, 4, ..., 28 and the code points 29 to 31 are assigned to the main control information as the first code point group, and the odd code points 1, 3, 5, ... 27 are
  • the second code point group includes a total of 14 code points.
  • the second code point group is allocated for transmission of the sub control information. In this way, among all code points of the mixed field, code points corresponding to a certain period (constant pattern) can be allocated to the main control information, and the rest can be allocated to the sub control information.
  • Table 7 shows main control information and sub control information according to another embodiment of the present invention.
  • Table 7 is the same as Table 1, but code points that are not used as main control information are shaded.
  • the code points 22, 24, 26, 28 indicated by the shade are assigned to the sub control information as the second code point group, and the first code point group consisting of the remaining code points is assigned to the main control information.
  • the code point is assigned to the main control information and the sub control information with a periodic pattern only for the modulation order of 64QAM. Since the second code point group includes four code points, two bits of sub-control information can be configured in the mixed field.
  • Table 8 shows main control information and sub control information according to another embodiment of the present invention.
  • Table 8 is the same as Table 1, but the code points not used as the main control information are shown in shaded form.
  • the shaded code points 11 and 21 are allocated to the sub control information as the second code point group, and the first code point group composed of the remaining code points is allocated to the main control information.
  • the size of the transport block depends on the I TBS , and some of the code points in the case where these values have the same case are selected and assigned to the sub-control information.
  • Table 9 shows main control information and sub control information according to another embodiment of the present invention.
  • Table 9 is the same as Table 1, but code points that are not used as main control information are shaded.
  • the code points 11, 21, 26, and 27 indicated by the shade are allocated to the sub control information as the second code point group, and the first code point group composed of the remaining code points is allocated to the main control information.
  • the first constraint as shown in Table 8, only one of the code points having the same transport block size is allocated to the main control information, and the other is allocated to the sub-control information even if the modulation order is different. That is, the size of the transport block depends on the I TBS , and some of the code points in the case where these values have the same case are selected and assigned to the sub-control information.
  • the additional second constraint is that the code points 26 and 27 are assigned to the sub control information with the limitation in the 64QAM modulation order, so that the 2-bit sub control information can be transmitted.
  • the mixing The field may not contain the original main control information.
  • the main control information should be set to a specific state.
  • the state of the main control information most recently transmitted to the same terminal is regarded as the state of the virtual main control information that should be set by the current base station and the terminal.
  • the operation is performed by viewing the state of the main control information corresponding to the specific code point of the second code point group as the current virtual main control information.
  • Table 8 it is assumed in Table 8 that the sub-control information corresponding to the code point 11 of the mixed field is transmitted to the terminal by the base station.
  • the mixed field does not contain main control information.
  • the terminal assumes that the main control information is in a specific state and performs uplink transmission.
  • the terminal returns the main control information corresponding to the code point 11 to the specific state.
  • QPSK and I TBS 10 having a modulation order of two.
  • This setting of the main control information to a virtual specific state may be performed with a preference according to a mode and / or a specific rule in which the main control information is restricted, or may be determined by a higher layer and informed by signaling or a separate control channel. have.
  • additional code points may be provided in the sub control information.
  • the additional code point is provided by another field in the DCI.
  • the field providing this additional code point is called an additional field.
  • additional code points may be provided to sub-control information, but the nature of the additional fields is lost. For example, if the additional field is a frequency hopping field, a constraint that does not apply frequency hopping may be applied. Thus, the bits of the frequency hopping field can be allocated to the sub control information. The surplus bits may also be allocated to the sub control information as additional fields. If the additional field is assigned to the sub control information, the original function of the additional field is lost, so that the control information related to the additional field may be set as a default.
  • the additional field is a frequency hopping field
  • the additional field contains sub control information rather than information about frequency hopping. That is, since there is no information about frequency hopping, it can be promised that frequency hopping is applied or not applied between the base station and the terminal.
  • the constraints on the main control information are often not considered to be a factor that degrades the system performance considering the actual use of the control channel. For example, it is preferable to use a low order modulation order because the channel information is not sufficiently grasped. In such an environment, limiting the main control information does not bring about significant performance degradation.
  • the sub-control information includes information on setting an aperiodic sounding reference signal (hereinafter referred to as ASRS) (hereinafter referred to as ASRS setting information), information indicating triggering on / off of the aperiodic sounding reference signal, and channel state information ( Channel State Information (CSI) includes at least one of the information on the transmission configuration, the information on the ACK / NACK transmission configuration. If the mixed field indicates any code point of the second code point group, the terminal indicates that the DCI including the mixed field has sub-control information (for example, information on transmission setting of ASRS setting information or channel state information or Information on the ACK / NACK transmission setting).
  • ASRS aperiodic sounding reference signal
  • ASRS setting information information indicating triggering on / off of the aperiodic sounding reference signal
  • channel state information Channel State Information (CSI) includes at least one of the information on the transmission configuration, the information on the ACK / NACK transmission configuration. If the mixed field indicates any code point of the second code point group, the terminal indicates
  • the ASRS configuration information includes various fields necessary for the transmission of the ASRS as shown in Table 10.
  • the SRS Activation field is 1 bit information and indicates whether the corresponding DCI is a format related to transmission of the ASRS.
  • the frequency position field is a parameter that determines the start position of an uplink bandwidth with respect to the ASRS.
  • the Transmission Comb field is a parameter that defines an UpPTS section belonging to a special subframe in the TDD system.
  • the SRS Configuration Index field is a parameter that determines the position and offset of a subframe in which the ASRS is transmitted.
  • the cyclic shift field is a parameter for generating a sequence for transmission of the ASRS.
  • sub-control information may include triggering of channel state information (CSI) such as CQI / PMI, uplink component carrier transmitting CSI, or information of downlink component carrier targeted for CSI.
  • CSI channel state information
  • the mixed field may be combined with a carrier indicator format (CIF) or a CQI request field to express sub-control information.
  • CIF carrier indicator format
  • FIG. 5 is a flowchart illustrating a method of transmitting DCI including a mixed field according to an embodiment of the present invention.
  • the base station transmits information about the mixed field to the terminal (S500).
  • the information on the mixed field includes a mixed field indicator indicating whether the mixed field includes main control information, sub control information, or both.
  • the mixed field indicator may be 1 bit. If 0, the mixed field indicator may indicate that the mixed field includes main control information.
  • the information about the mixed field may include code point group information for distinguishing allocation modes of a first code point group and a second code point group among all code points of the mixed field.
  • the code point group information indicates which mode of Tables 4 to 9 is allocated to the first code point group and the second code point group.
  • the information about the mixed field may be any one of a message of a physical layer, a message of a MAC layer, and a message of an RRC layer.
  • step S500 can be omitted.
  • the base station configures a mixed field (S505).
  • the hybrid field may include one or both of main control information and sub control information.
  • the main control information may be modulation surplus information
  • the sub control information may be information about an aperiodic sounding reference signal (ASRS).
  • ASRS aperiodic sounding reference signal
  • the base station transmits downlink control information (DCI) including the mixed field to the terminal (S510).
  • DCI downlink control information
  • the downlink control information may be an uplink grant of DCI format 0.
  • An example of the downlink control information is shown in Table 11 below.
  • the terminal performs uplink transmission according to the main control information or the sub control information included in the downlink control information (S515). If the downlink control information includes main control information that is modulation surplus information, the terminal may generate uplink data according to the modulation order and the redundant version designated by the modulation surplus information and transmit the uplink data to the base station. On the other hand, if the downlink control information includes sub-control information which is ASRS-related information, the terminal may transmit a sounding reference signal to the base station at any time.
  • FIG. 6 is a flowchart illustrating a method of transmitting downlink control information of a base station according to an embodiment of the present invention.
  • the base station determines whether the downlink control information (DCI) to be transmitted is a new DCI format (S600).
  • the new DCI format means that the mixed field of DCI is used for the purpose of sub-control information other than the existing main control information. If the downlink control information is a new DCI format, the base station configures a mixed field to which the constraint is applied (S605).
  • the constraint means a condition that restricts the use of some state of the main control information in the system. The presence of a constraint indicates that some code points are not used as code points for main control information. Therefore, the code point of the mixed field belongs to the second code point group.
  • the base station configures downlink control information including the mixed field (S610) and transmits it to the terminal (S615).
  • step S600 if the downlink control information to be transmitted is not a new DCI format, the base station configures a mixed field as main control information according to the existing method (S620) and downlink including the mixed field. Configure the control information (S610), and transmits it to the terminal (S615).
  • FIG. 7 is a flowchart illustrating a method of receiving downlink control information of a terminal according to an embodiment of the present invention.
  • the terminal receives downlink control information (DCI) from the PDCCH (S700). This is received by the blind decoding process.
  • the terminal determines whether the code point of the mixed field included in the downlink control information belongs to the second code point group (S705). Here, whether the code point of the mixed field belongs to the second code point group is determined using the information on the mixed field as in step S500 in FIG. If belonging to the second code point group of the code point of the mixed field, the terminal interprets the information of the mixed field as sub-control information (S710), and defaults the state of the main control information which is the original use of the mixed field. (default) or determined by a value determined by the rule (S715).
  • step S705 if belonging to the second code point group, not the second code point group of the code point of the mixed field, the terminal interprets the information of the mixed field as the main control information (S720). .
  • FIG. 8 is a block diagram illustrating a base station and a terminal according to an embodiment of the present invention.
  • the terminal 800 includes an uplink grant receiver 805, a DCI analyzer 810, a data generator 815, and a data transmitter 820.
  • the uplink grant receiver 805 receives the uplink grant transmitted on the PDCCH by blind decoding.
  • the uplink grant includes uplink scheduling parameters and mixed fields for uplink transmission.
  • the DCI analyzing unit 810 analyzes whether the mixed field included in the uplink grant includes the main control information or the sub control information. This analysis may be performed by signaling from the base station 850 or by a separate control channel, and the terminal directly determines whether the code point of the mixed field belongs to the first code point group or the second code point group. It may also be performed by. If the code point of the mixed field belongs to the first code point group, the DCI analysis unit 810 includes the main control information, and if the code point of the mixed field belongs to the second code point group, The mixed field may be interpreted as including sub control information.
  • the data generator 815 generates uplink information based on the main control information or the sub control information according to the result of the DCI analyzer 810. If the mixed field includes main control information that is modulation surplus information, the uplink information is uplink data according to a modulation order and a redundant version of the modulation surplus information. If the mixed field includes sub control information which is ASRS related information, the uplink information is a sounding reference signal that is generated aperiodically.
  • the sub-control information which is the ASRS-related information, includes triggering and sounding setting control information for the sounding reference signal.
  • the data transmitter 820 transmits uplink information generated by the data generator 815 to the base station 850.
  • the base station 850 includes a mixed field configuration unit 855, a scheduling unit 860, an uplink grant transmitter 865, and a data receiver 870.
  • the mixed field construction unit 855 constitutes a mixed field.
  • the mixed field may include one or both of main control information and sub control information.
  • the main control information may be modulation surplus information
  • the sub control information may be information about an aperiodic sounding reference signal (ASRS).
  • ASRS aperiodic sounding reference signal
  • the scheduling unit 860 sets uplink scheduling parameters based on the mixed field configured by the mixed field constructing unit 855.
  • the uplink scheduling parameter is a parameter for generating information as shown in Table 11 above.
  • the uplink grant transmitter 865 generates an uplink grant including a mixed field by using an uplink scheduling parameter set by the scheduling unit 860, and transmits the uplink grant to the terminal 800.
  • the data receiver 870 receives uplink data or an ASRS from the terminal 800.
  • the data receiver 870 may send information about the ASRS to the scheduling unit 860 (not shown).
  • the scheduling unit 860 may estimate an uplink channel based on the information on the ASRS, and set an uplink scheduling parameter according to the estimation result.

Abstract

Provided is an apparatus and method for transmitting downlink control information in a wireless communication system. According to the present disclosure, the method comprises the steps of: configuring a hybrid field including any or both of main control information and sub control information; configuring downlink control information including the hybrid field; transmitting the downlink control information to a terminal; and receiving uplink information from the terminal on the basis of the downlink control information. According to the present invention, new control information can be added while maintaining the existing DCI format, thereby providing compatibility with existing systems without increasing the complexity of blind decoding.

Description

무선통신 시스템에서 하향링크 제어정보의 전송장치 및 방법Apparatus and method for transmitting downlink control information in wireless communication system
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 무선통신 시스템에서 하향링크 제어정보의 전송장치 및 방법에 관한 것이다. The present invention relates to wireless communication, and more particularly, to an apparatus and method for transmitting downlink control information in a wireless communication system.
데이터 또는 다양한 상향링크 제어 정보가 상향링크 제어채널을 통해 전송된다. 상향링크 제어신호로는 HARQ(hybrid automatic repeat request)를 수행하기 위한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호, 하향링크 채널 품질을 가리키는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등 여러 가지 종류가 있다.Data or various uplink control information is transmitted through an uplink control channel. The uplink control signal includes an acknowledgment (ACK) / not-acknowledgement (NACK) signal for performing a hybrid automatic repeat request (HARQ), a channel quality indicator (CQI) indicating downlink channel quality, a precoding matrix index (PMI), There are various types such as RI (Rank Indicator).
새로운 시스템의 등장과 함께 요구되는 다른 새로운 절차나 새로운 정보를 다루기 위해서는 하향링크 제어정보가 필수적으로 추가되어야 한다. 이를 위해 기존의 시스템과 호환가능한 포맷을 유지하되 새로운 필드(field)의 추가를 고려해야 한다. 그러나, 기존 하향링크 제어정보의 포맷(format)은 매우 제한적이며, 새로운 필드의 추가의 여지가 낮다. 그리고, 만약 새로운 필드를 추가하더라도 이는 단말의 블라인드 디코딩(blind decoding)의 부담이 가중시키는 문제가 있다. 따라서, 새로운 시스템에 적용할 새로운 하향링크 제어정보가 추가되더라도 기존의 시스템의 구조에 변경을 최소화하고 호환가능하도록 하는 하향링크 제어정보의 전송장치 및 방법이 요구된다.Downlink control information must be added to deal with other new procedures or new information required with the emergence of a new system. To do this, keep the format compatible with the existing system, but consider adding new fields. However, the format of the existing downlink control information is very limited, and there is little room for adding a new field. In addition, even if a new field is added, this causes a problem of a burden of blind decoding of the UE. Therefore, even if new downlink control information to be applied to a new system is added, there is a need for an apparatus and a method for transmitting downlink control information to minimize and change the structure of an existing system.
본 발명의 기술적 과제는 무선통신 시스템에서 하향링크 제어정보의 전송장치 및 방법을 제공함에 있다.An object of the present invention is to provide an apparatus and method for transmitting downlink control information in a wireless communication system.
본 발명의 다른 기술적 과제는 기존의 하향링크 제어정보의 포맷을 새로운 하향링크 제어정보의 포맷으로 구성하는 방법을 제공함에 있다.Another object of the present invention is to provide a method of configuring an existing format of downlink control information into a format of new downlink control information.
본 발명의 또 다른 기술적 과제는 혼합필드를 구성하는 방법을 제공함에 있다. Another technical problem of the present invention is to provide a method for constructing a mixed field.
본 발명의 일 양태에 따르면, 하향링크 제어정보의 전송방법을 제공한다. 상기 방법은 주 제어정보 또는 부 제어정보 중 어느 하나를 선택적으로 포함하거나, 또는 상기 주 제어정보와 상기 부 제어정보를 모두 포함하는 혼합필드(hybrid field)를 구성하는 단계, 상기 혼합필드를 포함하는 하향링크 제어정보를 구성하는 단계, 상기 하향링크 제어정보를 단말로 전송하는 단계, 및 상기 하향링크 제어정보에 기초하여 상향링크 정보를 상기 단말로부터 수신하는 단계를 포함한다.According to an aspect of the present invention, a method for transmitting downlink control information is provided. The method may optionally include any one of main control information and sub control information, or construct a hybrid field including both the main control information and the sub control information, and including the mixed field. Configuring downlink control information, transmitting the downlink control information to a terminal, and receiving uplink information from the terminal based on the downlink control information.
상기 혼합필드에 의해 지시되는 전체 부호점(code point) 중 제1 부호점 그룹은 상기 주 제어정보에 맵핑되고, 제2 부호점 그룹은 상기 부 제어정보에 맵핑된다.A first code point group among all code points indicated by the mixed field is mapped to the main control information, and a second code point group is mapped to the sub control information.
본 발명의 다른 양태에 따르면, 하향링크 제어정보의 수신방법을 제공한다. 상기 방법은 주 제어정보 또는 부 제어정보 중 어느 하나를 선택적으로 포함하거나, 또는 상기 주 제어정보와 상기 부 제어정보를 모두 포함하는 혼합필드를 포함하는 하향링크 제어정보를 기지국으로부터 수신하는 단계, 및 상기 하향링크 제어정보에 기초하여 상향링크 정보를 상기 기지국으로 전송하는 단계를 포함한다. According to another aspect of the present invention, a method of receiving downlink control information is provided. The method includes selectively receiving any one of main control information and sub control information, or receiving downlink control information including a mixed field including both the main control information and the sub control information from a base station, and And transmitting uplink information to the base station based on the downlink control information.
상기 혼합필드에 의해 지시되는 전체 부호점 중 제1 부호점 그룹은 상기 주 제어정보에 맵핑되고, 제2 부호점 그룹은 상기 부 제어정보에 맵핑된다. A first code point group among all code points indicated by the mixed field is mapped to the main control information, and a second code point group is mapped to the sub control information.
본 발명의 또 다른 양태에 따르면, 하향링크 제어정보를 전송하는 기지국을 제공한다. 상기 기지국은 주 제어정보 또는 부 제어정보 중 어느 하나를 선택적으로 포함하거나, 또는 상기 주 제어정보와 상기 부 제어정보를 모두 포함하는 혼합필드를 구성하는 혼합필드 구성부, 상기 혼합필드를 포함하는 하향링크 제어정보를 구성하는 하향링크 제어정보 구성부, 상기 하향링크 제어정보를 단말로 전송하는 전송부, 및 상기 하향링크 제어정보에 기초하여 상향링크 정보를 상기 단말로부터 수신하는 수신부를 포함한다.According to another aspect of the present invention, there is provided a base station for transmitting downlink control information. The base station optionally includes any one of the main control information and the sub-control information, or a mixed field configuration unit constituting a mixed field including both the main control information and the sub-control information, the downlink including the mixed field A downlink control information constructing unit constituting link control information, a transmitting unit for transmitting the downlink control information to a terminal, and a receiving unit for receiving uplink information from the terminal based on the downlink control information.
상기 혼합필드 구성부는 혼합필드에 의해 지시되는 전체 부호점 중 제1 부호점 그룹을 상기 주 제어정보에 맵핑하고, 제2 부호점 그룹을 상기 부 제어정보에 맵핑한다.The mixed field constructing unit maps a first code point group among all code points indicated by the mixed field to the main control information, and maps a second code point group to the sub control information.
본 발명의 또 다른 양태에 따르면, 하향링크 제어정보를 수신하는 단말을 제공한다. 상기 단말은 주 제어정보 또는 부 제어정보 중 어느 하나를 선택적으로 포함하거나, 또는 상기 주 제어정보와 상기 부 제어정보를 모두 포함하는 혼합필드를 포함하는 하향링크 제어정보를 기지국으로부터 수신하는 수신부, 상기 하향링크 제어정보의 형식을 해석하는 하향링크 제어정보 해석부, 상기 해석에 기초하여 상향링크 정보를 생성하는 데이터 생성부, 및 상기 생성된 데이터를 전송하는 데이터 전송부를 포함한다. According to another aspect of the present invention, a terminal for receiving downlink control information is provided. The terminal includes a receiving unit for selectively including any one of the main control information or sub-control information, or receiving downlink control information from the base station including a mixed field including both the main control information and the sub-control information, the And a downlink control information analyzer for analyzing the format of the downlink control information, a data generator for generating uplink information based on the analysis, and a data transmitter for transmitting the generated data.
상기 하향링크 제어정보 해석부는, 상기 혼합필드가 상기 주 제어정보를 포함하는 경우 상기 하향링크 제어정보를 제1 방식에 의해 해석하고, 상기 혼합필드가 상기 부 제어정보를 포함하는 경우 상기 하향링크 제어정보를 제2 방식에 의해 해석한다. The downlink control information analyzing unit analyzes the downlink control information by a first method when the mixed field includes the main control information, and the downlink control when the mixed field includes the sub control information. The information is interpreted in a second manner.
기존의 DCI 포맷을 유지하면서, 새로운 제어정보를 추가할 수 있어, 블라인드 디코딩의 복잡도를 증가시키지 않고도 기존 시스템과의 호환성을 제공할 수 있다. New control information can be added while maintaining the existing DCI format, providing compatibility with existing systems without increasing the complexity of blind decoding.
도 1은 무선통신 시스템을 나타낸다. 1 shows a wireless communication system.
도 2는 3GPP LTE(Long Term Evolution)에서 무선 프레임의 구조를 나타낸다. 2 shows the structure of a radio frame in 3GPP Long Term Evolution (LTE).
도 3은 하향링크 서브프레임의 구조를 나타낸다. 3 shows a structure of a downlink subframe.
도 4는 본 발명의 일 예에 따른 혼합필드의 부호점에 맵핑되는 제어정보를 나타내는 설명도이다. 4 is an explanatory diagram showing control information mapped to code points of a mixed field according to an embodiment of the present invention.
도 5는 본 발명의 일 예에 따른 혼합필드를 포함하는 DCI의 전송방법을 나타내는 흐름도이다.5 is a flowchart illustrating a method of transmitting DCI including a mixed field according to an embodiment of the present invention.
도 6은 본 발명의 일 예에 따른 기지국의 하향링크 제어정보의 전송방법을 설명하는 순서도이다.6 is a flowchart illustrating a method of transmitting downlink control information of a base station according to an embodiment of the present invention.
도 7은 본 발명의 일 예에 따른 단말의 하향링크 제어정보의 수신방법을 설명하는 순서도이다.7 is a flowchart illustrating a method of receiving downlink control information of a terminal according to an embodiment of the present invention.
도 8은 본 발명의 일 예에 따른 기지국과 단말을 나타내는 블록도이다.8 is a block diagram illustrating a base station and a terminal according to an embodiment of the present invention.
이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한, 본 명세서의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this specification, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be "connected", "coupled" or "connected".
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
본 발명의 실시예들에 따르면, '채널을 전송한다'라는 의미는 특정 채널을 통해 정보가 전송되는 의미로 해석될 수 있다. 여기서, 채널은 제어 채널과 데이터 채널을 모두 포함하는 개념이며, 제어 채널은 일례로 물리 하향링크 제어채널(Physical Downlink Control Channel: PDCCH) 혹은 물리 상향링크 제어채널(Physical Uplink Control Channel: PUCCH)이 될 수 있고, 데이터 채널은 일례로 물리 하향링크 공용채널(Physical Downlink Shared CHannel: PDSCH) 혹은 물리 상향링크 공용채널(Physical Uplink Shared CHannel: PUSCH)이 될 수 있다.According to embodiments of the present invention, 'transmitting a channel' may be interpreted as meaning transmitting information through a specific channel. Here, the channel is a concept including both a control channel and a data channel, and the control channel may be, for example, a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH). The data channel may be, for example, a Physical Downlink Shared CHannel (PDSCH) or a Physical Uplink Shared CHannel (PUSCH).
도 1은 무선통신 시스템을 나타낸다. 1 shows a wireless communication system.
도 1을 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)는 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역 또는 주파수 영역(일반적으로 셀(cell)이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. Referring to FIG. 1, the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a particular geographic area or frequency area (generally called a cell) 15a, 15b, 15c. The cell can in turn be divided into a number of regions (called sectors).
단말(12; mobile station, MS)은 고정되거나 이동성을 가질 수 있으며, UE(user equipment), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto BS), 릴레이(relay), 전송점(transmission point) 등 다른 용어로 불릴 수 있다. 셀(15a, 15b, 15c)은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.The mobile station (MS) 12 may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms. The base station 11 generally refers to a fixed station communicating with the terminal 12, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an femto base station (femto BS), It may be called other terms such as relay, transmission point. Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station 11, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells. to be.
이하에서 하향링크(downlink)는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.In the following, downlink means communication from the base station 11 to the terminal 12, and uplink means communication from the terminal 12 to the base station 11. In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
도 2는 3GPP LTE(Long Term Evolution)에서 무선 프레임의 구조를 나타낸다. 2 shows the structure of a radio frame in 3GPP Long Term Evolution (LTE).
도 2를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. Referring to FIG. 2, a radio frame includes 10 subframes, and one subframe includes two slots. The time it takes for one subframe to be transmitted is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 다수의 RB(resource block)을 포함한다. OFDM 심벌은 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 SC-FDMA 심벌 또는 심벌 구간이라고 불릴 수 있다. RB는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain. The OFDM symbol is for representing one symbol period and may be called an SC-FDMA symbol or a symbol period according to a multiple access scheme. The RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심벌의 수는 다양하게 변경될 수 있다. The structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
도 3은 하향링크 서브프레임의 구조를 나타낸다. 3 shows a structure of a downlink subframe.
도 3을 참조하면, 서브 프레임은 2개의 슬롯을 포함한다. 서브 프레임내의 첫번째 슬롯의 앞선 최대 3 OFDM 심벌들이 제어채널들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. Referring to FIG. 3, a subframe includes two slots. Up to three OFDM symbols in the first slot of the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
하향링크 제어채널에는 PCFICH(Physical Control Format Indicator Channel), 물리 하향링크 제어채널(Physical Downlink Control Channel: PDCCH), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. 서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 정보를 나른다. PHICH는 상향링크 HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다. The downlink control channel includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like. The PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe. The PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷, UL-SCH(Uplink Shared Channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 단말 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링(monitoring)할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 제어채널요소((control channel element: CCE)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다. PDCCH is a resource allocation and transmission format of downlink shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, random access response transmitted on PDSCH Resource allocation of a higher layer control message, a set of transmission power control commands for individual UEs in an arbitrary UE group, and activation of a Voice over Internet Protocol (VoIP). A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs), which is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel. The CCE corresponds to a plurality of resource element groups The format of the PDCCH and the number of bits of the PDCCH are determined according to a correlation between the number of CCEs and the coding rate provided by the CCEs.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information; 이하 DCI)라고 한다. DCI는 그 포맷(format)에 따라 사용용도가 다르고, DCI내에서 정의되는 필드(field)도 다르다. 표 1은 DCI 포맷에 따른 DCI를 나타낸다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). DCI has different uses according to its format, and fields defined in DCI are also different. Table 1 shows DCI according to DCI format.
표 1
DCI 포맷 설명
0 PUSCH(상향링크 그랜트)의 스케줄링에 사용됨
1 1개의 PDSCH 부호어(codeword)의 스케줄링에 사용됨
1A 1개의 PDSCH 부호어의 간략한 스케줄링 및 PDCCH 명령에 의해 초기화되는 랜덤 액세스 절차에 사용됨
1B 프리코딩 정보를 이용한 1개의 PDSCH 부호어의 간략한 스케줄링에 사용됨
1C 1개의 PDSCH 부호어의 간략한 스키줄링 및 MCCH 변경의 통지를 위해 사용됨
1D 프리코딩 및 전력 오프셋 정보를 포함하는 1개의 PDSCH 부호어의 간략한 스케줄링에 사용됨
2 공간 다중화 모드로 구성되는 단말에 대한 PDSCH 스케줄링에 사용됨
2A 긴지연(large delay)의 CDD 모드로 구성된 단말의 PDSCH 스케줄링에 사용됨
3 2비트의 전력 조정을 포함하는 PUCCH와 PUSCH를 위한 TPC 명령의 전송에 사용됨
3A 단일 비트 전력 조정을 포함하는 PUCCH와 PUSCH를 위한 TPC 명령의 전송에 사용됨
Table 1
DCI format Explanation
0 Used for scheduling of PUSCH (Uplink Grant)
One Used for scheduling one PDSCH codeword
1A Used for simple scheduling of one PDSCH codeword and a random access procedure initiated by a PDCCH command
1B Used for simple scheduling of one PDSCH codeword using precoding information
1C Used for brief scheduling of one PDSCH codeword and notification of MCCH changes
1D Used for simple scheduling of one PDSCH codeword containing precoding and power offset information
2 Used for PDSCH scheduling for UE configured in spatial multiplexing mode
2A Used for PDSCH scheduling of UE configured in long delay CDD mode
3 Used to transmit TPC commands for PUCCH and PUSCH with power adjustment of 2 bits
3A Used to transmit TPC commands for PUCCH and PUSCH with single bit power adjustment
DCI 포맷 0은 상향링크 자원 할당 정보를 가리키고, DCI 포맷 1~2는 하향링크 자원 할당 정보를 가리키고, DCI 포맷 3, 3A는 임의의 단말 그룹들에 대한 상향링크 TPC(transmit power control) 명령을 가리킨다. DCI의 각 필드는 정보비트(information bit)에 순차적으로 맵핑된다. 예를 들어, DCI가 총 44비트 길이의 정보비트에 맵핑된다고 하면, 자원할당필드는 정보비트의 10 번째 비트 내지 23 번째 비트에 맵핑될 수 있다. DCI format 0 indicates uplink resource allocation information, DCI formats 1 to 2 indicate downlink resource allocation information, and DCI formats 3 and 3A indicate uplink transmit power control (TPC) commands for arbitrary UE groups. . Each field of the DCI is sequentially mapped to an information bit. For example, if DCI is mapped to information bits having a total length of 44 bits, the resource allocation field may be mapped to 10th to 23rd bits of the information bits.
DCI는 상향링크 자원할당정보와 하향링크 자원할당정보를 포함한다. 상향링크 자원할당정보는 상향링크 그랜트(uplink grant)라 불릴 수 있고, 하향링크 자원할당정보는 하향링크 그랜트(downlink grant)라 불릴 수 있다. DCI includes uplink resource allocation information and downlink resource allocation information. The uplink resource allocation information may be referred to as an uplink grant, and the downlink resource allocation information may be referred to as a downlink grant.
표 2는 본 발명의 일 예에 따른 상향링크 그랜트에 포함되는 필드들(field)을 나타낸다. Table 2 shows fields included in an uplink grant according to an embodiment of the present invention.
표 2
Figure PCTKR2011006590-appb-T000001
TABLE 2
Figure PCTKR2011006590-appb-T000001
플래그(Flag)는 1비트 정보로서 DCI 0과 DCI 1A를 구별하는 지시자이다. 호핑 플래그(hopping flag)는 1비트 정보로서, 단말이 상향링크 전송을 수행할 때 주파수 도약이 적용되는지, 적용되지 않는지를 지시한다. 예를 들어, 호핑 플래그가 1이면 상향링크 전송시 주파수 도약을 적용하고, 0이면 상향링크 전송시 주파수 도약을 적용하지 않음을 나타낸다. The flag is an indicator for distinguishing DCI 0 from DCI 1A as 1-bit information. The hopping flag is 1-bit information and indicates whether frequency hopping is applied or not when the terminal performs uplink transmission. For example, if the hopping flag is 1, frequency hopping is applied during uplink transmission, and if hopping flag is 0, frequency hopping is not applied during uplink transmission.
자원블록할당 및 호핑 자원할당(Resource block assignment and hopping resource allocation)은 자원할당필드(resource allocation field)라 불리기도 한다. 자원할당필드는 단말에 할당되는 자원의 물리적인 위치 또는 양을 지시한다. 상기 표 2에 표시되지는 않았으나, 상향링크 그랜트는 전체비트의 개수를 일정하게 유지하기 위한 잉여비트 또는 패딩비트(padding bit)를 포함한다. DCI는 여러가지 포맷이 있는데, 잉여비트를 이용하여 서로 다른 포맷의 제어정보라 하더라도 비트의 길이를 동일하게 조절할 수 있으며, 이로써 단말이 블라인드 디코딩(blind decoding)을 원활히 수행할 수 있다. Resource block assignment and hopping resource allocation is also called a resource allocation field. The resource allocation field indicates the physical location or amount of resources allocated to the terminal. Although not shown in Table 2, the uplink grant includes a surplus bit or a padding bit to keep the total number of bits constant. There are various formats of DCI. Even if the control information of the different formats is used by using the surplus bits, the length of the bits can be adjusted to be the same, and thus, the UE can smoothly perform blind decoding.
예를 들어, 상기 표 2에서, FDD 20MHz의 대역에서 자원할당필드가 13비트라 하면, 상향링크 그랜트는 총 27비트(CIF필드와 CRC필드는 제외)이다. 만약, 블라인드 디코딩의 입력으로 정해진 비트의 길이가 28비트라 하면, 기지국은 스케줄링시 1비트의 잉여비트를 상향링크 그랜트에 추가하여 상향링크 그랜트의 총 비트수가 28비트가 될 수 있도록 한다. 이 때, 잉여비트는 특별한 정보를 담고 있지 않으므로, 모두 0으로 셋팅될 수 있다. 물론, 잉여비트의 개수는 2보다 적을 수도 있고, 클 수도 있다. For example, in Table 2, if the resource allocation field is 13 bits in the FDD 20MHz band, the uplink grant is 27 bits (excluding the CIF field and the CRC field). If the length of the bit determined as the blind decoding input is 28 bits, the base station adds an extra bit of 1 bit to the uplink grant during scheduling so that the total number of bits of the uplink grant is 28 bits. At this time, since the surplus bits do not contain special information, all of them may be set to zero. Of course, the number of surplus bits may be less than two, or may be large.
이와 같이, DCI는 그 포맷에 따라 그 용도가 정해져 있고, DCI에 포함되는 필드(field)의 종류도 그 포맷에 따라 결정된다. 시스템의 구조가 진화함에 따라, 기존의 제어정보량이 증가하거나, 새로운 제어정보가 필요할 수 있다. 이 경우, DCI내에 기존의 필드 외의 새로운 필드를 추가하는 것은 결국 DCI 포맷의 변화를 가져온다. 이것은 DCI 포맷을 물리하향링크 제어채널(PDCCH)로부터 추출하는 과정인 블라인드 디코딩(blind decoding)의 복잡도를 증가시킨다. 블라인드 디코딩시, 특정한 전송모드(transmission mode)에서 단말은 PDCCH의 영역에 정의된 복호시작점부터 가능한 모든 DCI 포맷에 대해 복호를 수행한다. 이때 CRC에 매스킹(masking)된 C-RNTI(Cell-Radio Network Temporary Identifier)로부터 사용자가 구분된다. 복호되어야 할 DCI 포맷의 개수에 따라 블라인드 디코딩의 복잡도가 증가한다. 그리고 DCI 크기의 차이는 복호되어야 할 DCI 포맷의 개수가 증가함을 의미한다. In this way, the purpose of the DCI is determined by its format, and the type of the field included in the DCI is also determined by the format. As the structure of the system evolves, the amount of existing control information may increase or new control information may be required. In this case, adding a new field other than the existing field in the DCI will eventually change the DCI format. This increases the complexity of blind decoding, which is a process of extracting the DCI format from the physical downlink control channel (PDCCH). In blind decoding, in a specific transmission mode, the UE decodes all possible DCI formats from the decoding start point defined in the region of the PDCCH. At this time, the user is distinguished from the Cell-Radio Network Temporary Identifier (C-RNTI) masked in the CRC. The complexity of blind decoding increases with the number of DCI formats to be decoded. The difference in DCI size means that the number of DCI formats to be decoded increases.
따라서, 새로운 제어정보 또는 제어채널을 추가하더라도, 기존 DCI 포맷이 유지되도록 하는 것이 바람직하다. 일 실시예로서, 기존 DCI 포맷에서 사용되지 않는 필드 자체를 새로운 제어정보로 구성하는 방안이 고려될 수 있다. 예를 들어, DCI 포맷 0에서는 잉여비트(padding bit)가 각 대역별로 1비트씩 존재한다. DCI 포맷 0와 DCI 포맷 1A를 같은 포맷으로 구성하려면, 이 잉여비트를 추가하여 서로의 크기를 맞추어야 한다. 잉여비트는 자원할당이 비연속(non-contiguous) 자원 할당(Resource Allocation; RA)인지, 또는 연속(contiguous) 자원 할당인지를 구분하기 위한 용도로 활용될 수 있다. 다른 DCI형식에서는 이러한 잉여비트가 대부분 존재하지 않는다. 따라서, 기존에 사용되지 않는 필드를 새로운 제어정보로 구성하는 방법은 매우 제한적이다. Therefore, even when adding new control information or control channel, it is desirable to maintain the existing DCI format. As an embodiment, a method of configuring a field itself, which is not used in the existing DCI format, with new control information may be considered. For example, in DCI format 0, a redundant bit exists for 1 bit for each band. To configure DCI format 0 and DCI format 1A in the same format, these extra bits must be added to match each other. The surplus bits may be used to distinguish whether resource allocation is non-contiguous resource allocation (RA) or contiguous resource allocation. Most of these extra bits do not exist in other DCI formats. Therefore, a method of configuring a field which is not used previously with new control information is very limited.
다른 실시예로서, DCI내에 2종류의 제어정보(2 types of control information)에 대응하는 필드인 혼합필드(hybrid field)를 마련하는 것이다. 이에 따르면, 새로운 제어정보가 추가되더라도 기존의 DCI 포맷이 유지될 수 있어, 블라인드 디코딩의 복잡도를 증가시키지 않고도 기존 시스템과의 호환성을 제공할 수 있다. In another embodiment, a hybrid field, which is a field corresponding to two types of control information, is provided in the DCI. According to this, even if new control information is added, the existing DCI format can be maintained, thereby providing compatibility with the existing system without increasing the complexity of blind decoding.
이하에서는 DCI 포맷 0을 유지하면서 새로운 제어정보를 추가할 수 있는 제어채널 구성방법에 관하여 설명한다. DCI 포맷은 다양하므로, 혼합필드의 대상이 되는 필드의 종류도 다양하다. 본 발명에서는 DCI 포맷 0을 기준으로 혼합필드를 설명하나, 이는 설명의 편의를 위한 것일 뿐, 본 발명의 기술적 사상을 제한하는 것은 아니며, 본 발명에 따른 혼합필드는 DCI 포맷 0/1/1A/1B/1C/1D/2/2A/3/3A등 모든 경우에 적용될 수 있음은 물론이다. Hereinafter, a method of configuring a control channel for adding new control information while maintaining DCI format 0 will be described. Since DCI formats vary, the types of fields that are the target of the mixed field also vary. In the present invention, the mixed field will be described based on DCI format 0. However, this is for convenience of description only and does not limit the technical spirit of the present invention. The mixed field according to the present invention is DCI format 0/1 / 1A /. Of course, it can be applied to all cases such as 1B / 1C / 1D / 2 / 2A / 3 / 3A.
혼합필드는 주 제어정보(primary control information) 또는 부 제어정보(secondary control information)에 대응한다. 또는, 혼합필드는 주 제어정보 및 부 제어정보에 대응한다. 예를 들어, 주 제어정보는 상향링크 MCS 관련정보이고, 부 제어정보는 비주기적(aperiodic) 사운딩 기준신호의 전송에 관련된 정보이다. 또는, 혼합필드는 2종류 이상의 제어정보에 대응할 수도 있다. 혼합필드 하나만으로, 여러 종류의 제어정보를 DCI에 담을 수 있다. The mixed field corresponds to primary control information or secondary control information. Alternatively, the mixed field corresponds to the main control information and the sub control information. For example, the primary control information is uplink MCS-related information, and the secondary control information is information related to transmission of an aperiodic sounding reference signal. Alternatively, the mixed field may correspond to two or more types of control information. With only one mixed field, various kinds of control information can be contained in DCI.
혼합필드의 비트수는 혼합필드를 포함하는 DCI 포맷에서 미리 정의된다. 예를 들어, 혼합필드의 비트수가 3비트, 5비트등으로 미리 정의될 수 있다. 혼합필드의 비트수는 혼합필드가 표현할 수 있는 경우의 수를 결정한다. 예를 들어, 혼합필드의 비트수가 2비트이면, 혼합필드가 표현할 수 있는 경우의 수는 총 22=4이다. 혼합필드가 표현할 수 있는 각각의 경우의 수를 부호점(code point)라 한다. 혼합필드의 비트수가 증가할수록, 부호점의 개수는 증가한다. The number of bits of the mixed field is predefined in the DCI format including the mixed field. For example, the number of bits of the mixed field may be predefined as 3 bits, 5 bits, or the like. The number of bits of the mixed field determines the number of cases that the mixed field can represent. For example, if the number of bits of the mixed field is 2 bits, the number of cases that the mixed field can represent is 2 2 = 4 in total. The number of cases each mixed field can represent is called a code point. As the number of bits in the mixed field increases, the number of code points increases.
하나의 부호점은 혼합필드에 대응하는 제어정보의 일 상태를 나타낸다. 예를 들어, 혼합필드가 2비트이고, 부호점이 총 4개라 할 때, 각 부호점은 다음의 표와 같이 MCS(Modulation and Coding Scheme)와 같은 제어정보의 일 상태에 각각 맵핑될 수 있다. One code point represents one state of control information corresponding to a mixed field. For example, when a mixed field has 2 bits and a total of 4 code points, each code point may be mapped to one state of control information such as a modulation and coding scheme (MCS) as shown in the following table.
표 3
혼합필드(2bits) 부호점 제어정보(MCS level)의 일 상태
00 0 BPSK
01 1 QPSK
10 2 8PSK
11 3 16QAM
TABLE 3
Mixed field (2 bits) Sign point One state of control information (MCS level)
00 0 BPSK
01 One QPSK
10 2 8PSK
11 3 16QAM
표 3을 참조하면, 혼합필드 00으로 표현되는 부호점 0에는 BPSK(Binary Phase Shift Keying)라는 MCS 레벨의 일 상태에 맵핑된다. 마찬가지로, 혼합필드 11로 표현되는 부호점 3에는 16QAM(Quadrature Amplitude Modulation)이라는 제어정보의 일 상태에 맵핑된다. Referring to Table 3, code point 0 represented by mixed field 00 is mapped to one state of MCS level called Binary Phase Shift Keying (BPSK). Similarly, code point 3 represented by mixed field 11 is mapped to one state of control information called 16QAM (Quadrature Amplitude Modulation).
또한, 혼합필드의 부호점은 그 범위에 따라 주 제어정보에 맵핑될 수도 있고, 부 제어정보에 맵핑될 수도 있다. 예를 들어, 부호점이 32개라 할 때, 그 중 20개는 주 제어정보에 맵핑되고, 나머지 12개는 부 제어정보에 맵핑된다. 이는 혼합필드에 의해 2가지 제어정보가 정의될 수 있음을 의미한다. Also, the code point of the mixed field may be mapped to main control information or sub-control information according to its range. For example, when 32 code points are used, 20 of them are mapped to main control information, and the remaining 12 are mapped to sub control information. This means that two control information can be defined by the mixed field.
도 4는 본 발명의 일 예에 따른 혼합필드의 부호점에 맵핑되는 제어정보를 나타내는 설명도이다. 4 is an explanatory diagram showing control information mapped to code points of a mixed field according to an embodiment of the present invention.
도 4를 참조하면, 혼합필드는 n비트이고, 혼합필드의 부호점은 총 2n개(0~2n-1)이다. 여기서, 부호점 0 내지 2k는 주 제어정보에 맵핑되고, 부호점 2k+1 내지 2n-1은 부 제어정보에 맵핑된다. 이와 같이 부호점을 2개의 그룹으로 나누어, 제1 부호점 그룹은 주 제어정보의 표현에 사용하고, 제2 부호점 그룹은 부 제어정보의 표현에 사용함으로써, 하나의 혼합필드로써 2개 이상의 제어정보를 표현할 수 있다. 주 제어정보와 부 제어정보를 부호점의 관점에서 정의하면 다음과 같다. 주 제어정보는 상위계층 시그널링 또는 시스템에서 임의로 가해지는 제한조건(limitation condition)에 의해 사용가능한 부호점의 수가 제한되는 제어정보이다. 부 제어정보는 주 제어정보에 가해지는 제한조건에 의해 남는 주 제어정보의 부호점에 맵핑되는 제어정보이다. Referring to FIG. 4, the mixed field is n bits, and the code points of the mixed field are 2n (0 to 2n-1) in total. Here, the code points 0 to 2k are mapped to the main control information, and the code points 2k + 1 to 2n-1 are mapped to the sub control information. In this way, the code point is divided into two groups, the first code point group is used to express the main control information, and the second code point group is used to represent the sub control information. Information can be represented. The main control information and the sub control information are defined in terms of the code point as follows. The main control information is control information in which the number of usable code points is limited by higher layer signaling or a constraint condition arbitrarily applied by the system. The sub control information is control information mapped to the code point of the main control information remaining due to the constraint applied to the main control information.
이하에서, 혼합필드에 대응하는 주 제어정보에 관하여 설명한다. 주 제어정보의 일 예는 변조 및 코딩법(Modulation and Coding Scheme and Redundancy Version information; MCS)/잉여지수 정보(RV information)(이하 변조잉여정보)이다. 변조 및 코딩법은 상향링크로 전송되는 변조차수(modulation order) 및 코딩을 나타낸다. 잉여지수는 HARQ(Hybrid Automatic Repeat reQuest)에서 데이터의 재전송시 사용되는 버전을 나타낸다. Hereinafter, the main control information corresponding to the mixed field will be described. One example of the main control information is Modulation and Coding Scheme and Redundancy Version information (MCS) / RV information (hereinafter referred to as modulation surplus information). The modulation and coding method indicates a modulation order and coding transmitted in uplink. The surplus index indicates a version used for retransmission of data in HARQ (Hybrid Automatic Repeat reQuest).
표 4는 본 발명의 일 예에 따른 주 제어정보이다. Table 4 shows main control information according to an embodiment of the present invention.
표 4
Figure PCTKR2011006590-appb-T000002
Table 4
Figure PCTKR2011006590-appb-T000002
표 4를 참조하면, 변조잉여정보에 관한 부호점(code point)은 총 32개(0 내지 31)이다. Q'm은 변조차수, ITBS는 전송블록(transport block)의 크기지수, rvidx는 잉여지수를 나타낸다. 이후에서, ITBS로 표현된 실시예들은 ITBS를 전송블록크기로 대체한 실시예에 동일하게 적용될 수 있다. 각 부호점은 변조잉여정보의 일 상태(state) 또는 MCS지수(IMCS)에 맵핑된다. 예를 들어, 부호점 10은 변조차수가 2이고, 전송블록의 크기지수가 10이며, 잉여지수가 0인 상태의 변조잉여정보에 맵핑된다. Referring to Table 4, a total of 32 code points (0 to 31) regarding modulation surplus information are provided. Q ' m represents a modulation order, I TBS represents a size index of a transport block, and rv idx represents a surplus index. Thereafter, the embodiment represented by I TBS can equally be applied to an embodiment alternative to the transport block size TBS I. Each code point is mapped to one state or MCS index I MCS of modulation surplus information. For example, the code point 10 is mapped to the modulation surplus information in a state where the modulation order is 2, the size index of the transport block is 10, and the surplus index is zero.
변조차수(Q'm)가 2이면 QPSK, 변조차수가 4이면 16QAM, 변조차수가 6이면 64QAM을 나타낸다. DCI 포맷 0에 의한 상향링크 그랜트에 의해 할당되는 상향블록의 크기는 ITBS와 자원할당필드에 의해 결정되는 NPRB의 조합에 의해 결정된다. rvidx는 할당되는 상향링크 그랜트 블록이 재전송블록일 때 최초전송블록에 대한 상대적인 중복상황을 나타낸다. When the modulation order (Q 'm) 2 is QPSK, if the modulation order 4 16QAM, the modulation order of 6 denotes 64QAM. The size of an uplink allocated by an uplink grant according to DCI format 0 is determined by a combination of N PRBs determined by an I TBS and a resource allocation field. rv idx indicates a relative overlap with respect to the first transport block when the allocated uplink grant block is a retransmission block.
변조차수와 잉여지수를 결정하는 규칙은 다음과 같다. The rules for determining the modulation order and surplus index are as follows.
0≤부호점≤28에 대해서, 변조차수는 다음과 같이 결정된다. i) 만약 단말이 PUSCH에서 64QAM를 지원하고 상위계층에서 QPSK와 16QAM만을 전송하지 않는 것으로 결정되지 않은 상황이라면 변조차수는 위 표 4와 같이 주어진다. ii) 만약 단말이 PUSCH에서 64QAM를 지원하지 않거나 상위계층에서 QPSK와 16QAM만을 전송하는 것으로 결정된 상황이라면 변조차수는 위 표 4에서 얻어진 변조차수를 이용하여 Q’m=min(4,Q'm)에서 얻어진다. iii) 상위계층에서 제공하는 TTI 번들링(Bundling) 계수가 참(TRUE)으로 셋팅된다면 자원할당크기가 NPRB≤3로 제한되어지고 변조차수는 2로 셋팅된다.For 0 ≤ code point ≤ 28, the modulation order is determined as follows. i) If the UE supports 64QAM in PUSCH and is not determined to transmit only QPSK and 16QAM in the upper layer, the modulation order is given in Table 4 above. ii) If the UE does not support 64QAM in the PUSCH or it is determined to transmit only QPSK and 16QAM in the upper layer, the modulation order is Q'm = min (4, Q ' m ) using the modulation order obtained in Table 4 above. Obtained from. iii) If the TTI bundling coefficient provided by the upper layer is set to TRUE, the resource allocation size is limited to N PRB ≤ 3 and the modulation order is set to 2.
29≤부호점≤31에 대하여, 변조차수는 다음의 경우를 제외하고 가장 최근의 PDCCH에서 결정된 것과 같은 것으로 가정된다. 부호점=29이고 DCI 포맷 0의 “CQI 요청”비트가 1로 셋팅되고 NPRB≤4이라면 변조차수는 2로 셋팅된다.For 29≤code≤≤31, the modulation order is assumed to be the same as determined in the most recent PDCCH except for the following cases. If the code point = 29 and the "CQI Request" bit of DCI format 0 is set to 1 and N PRB ≤ 4, then the modulation order is set to 2.
이하에서, 혼합필드에 대응하는 주 제어정보 및 부 제어정보에 관하여 설명한다. 기존의 DCI 포맷 0과 같은 제어채널을 구성하기 위해서 기지국은 RRC(Radio Resource Control) 메시지 또는 MAC(Medium Access Control) 메시지와 같은 상위계층 시그널링(signaling) 또는 별도의 제어채널에 의해서 일정 제한조건을 주 제어정보에 부과한다. 또한, 제한조건이 변경되는 경우, 새로운 시그널링이나 별도의 제어채널로써 상기 변경된 제한조건에 따라 주 제어정보 및 부 제어정보에 관한 새로운 부호점 그룹이 생성된다. 먼저, 기지국은 제한조건이 부과된 주 제어정보에 혼합필드의 부호점을 할당할 수 있다. 그리고, 기지국은 상기 제한조건이 부과된 주 제어정보에 맵핑되고 남은 부호점들을 부 제어정보에 할당할 수 있다. Hereinafter, the main control information and the sub control information corresponding to the mixed field will be described. In order to configure a control channel such as the existing DCI format 0, the base station applies a certain constraint by higher layer signaling or a separate control channel such as a Radio Resource Control (RRC) message or a Medium Access Control (MAC) message. Impose on control information. In addition, when the constraint is changed, a new code point group for main control information and sub-control information is generated according to the changed constraint as a new signaling or a separate control channel. First, the base station may assign the code point of the mixed field to the main control information to which the constraint is imposed. The base station may allocate the remaining code points mapped to the main control information to which the constraint is imposed, to the sub control information.
표 5는 본 발명의 다른 예에 따른 주 제어정보 및 부 제어정보이다.Table 5 shows main control information and sub control information according to another example of the present invention.
표 5
Figure PCTKR2011006590-appb-T000003
Table 5
Figure PCTKR2011006590-appb-T000003
표 5를 참조하면, 부호점 0 내지 20까지는 변조차수가 2, 4인 경우이고, 부호점 21 내지 28은 변조차수가 6인 경우이다. 부호점 0 내지 20, 그리고 부호점 29 내지 31은 제1 부호점 그룹으로서, 주 제어정보(변조잉여정보)를 표시하는데 사용된다. 만약, 시스템에서 64QAM의 변조차수를 사용하지 않는다는 제한조건을 가하면, 변조차수가 6인 부호점 21 내지 28은 주 제어정보로 사용되지 않는다. 표 5는 표 1과 동일하나, 제한조건에 의해 주 제어정보로 사용되지 않는 부호점들은 음영으로 표시되었다. Referring to Table 5, code points 0 to 20 are cases where modulation orders are 2 and 4, and code points 21 to 28 are cases where modulation orders are 6. Code points 0 to 20 and code points 29 to 31 are first group of code points and are used to display main control information (modulation surplus information). If the system imposes a constraint that the modulation order of 64QAM is not used, the code points 21 through 28 of modulation order 6 are not used as the main control information. Table 5 is the same as Table 1, except that the code points that are not used as the main control information due to the constraints are indicated by shading.
표 5에서 음영으로 표시된 부호점 21 내지 28은 제2 부호점 그룹으로서, 제2 부호점 그룹은 총 8개의 부호점들을 포함한다. 따라서, 제2 부호점 그룹은 3비트의 부 제어정보를 표현할 수 있다. 만약, 시스템에서 16QAM의 변조차수까지 사용하지 않는다는 제한조건을 가한다면, 제2 부호점 그룹은 11 내지 28로 확장된다. 따라서, 총 18개의 부호점으로 부 제어정보를 표현할 수 있다. In Table 5, the coded points 21 to 28 indicated by the shade are the second code point group, and the second code point group includes a total of eight code points. Accordingly, the second code point group may represent three bits of sub-control information. If the system imposes a constraint not to use the modulation order of 16QAM, the second code point group is expanded to 11 to 28. Therefore, sub-control information can be expressed with a total of 18 code points.
표 6은 본 발명의 또 다른 예에 따른 주 제어정보 및 부 제어정보이다.Table 6 shows main control information and sub control information according to another embodiment of the present invention.
표 6
Figure PCTKR2011006590-appb-T000004
Table 6
Figure PCTKR2011006590-appb-T000004
표 6을 참조하면, 표 6은 표 1과 동일하나, 주 제어정보로 사용되지 않는 부호점들은 음영으로 표시되었다. 짝수인 부호점 0, 2, 4, ..., 28 및 부호점 29 내지 31은 제1 부호점 그룹으로서 주 제어정보에 할당되고, 홀수인 부호점 1, 3, 5,...27은 제2 부호점 그룹으로서 총 14개의 부호점을 포함한다. 제2 부호점 그룹은 부 제어정보의 전송에 할당된다. 이와 같이, 혼합필드의 전체 부호점 중에서, 일정주기(일정패턴)에 해당하는 부호점을 주 제어정보에 할당하고, 나머지를 부 제어정보에 할당할 수 있다. Referring to Table 6, Table 6 is the same as Table 1, but code points that are not used as main control information are shaded. The even code points 0, 2, 4, ..., 28 and the code points 29 to 31 are assigned to the main control information as the first code point group, and the odd code points 1, 3, 5, ... 27 are The second code point group includes a total of 14 code points. The second code point group is allocated for transmission of the sub control information. In this way, among all code points of the mixed field, code points corresponding to a certain period (constant pattern) can be allocated to the main control information, and the rest can be allocated to the sub control information.
표 7은 본 발명의 또 다른 예에 따른 주 제어정보 및 부 제어정보이다.Table 7 shows main control information and sub control information according to another embodiment of the present invention.
표 7
Figure PCTKR2011006590-appb-T000005
TABLE 7
Figure PCTKR2011006590-appb-T000005
표 7을 참조하면, 표 7은 표 1과 동일하나, 주 제어정보로 사용되지 않는 부호점들은 음영으로 표시되었다. 음영으로 표시된 부호점 22, 24, 26, 28은 제2 부호점 그룹으로서 부 제어정보에 할당되고, 나머지 부호점들로 구성되는 제1 부호점 그룹은 주 제어정보에 할당된다. 여기서는 64QAM의 변조차수에 대해서만 주기적인 패턴을 가지고 부호점이 주 제어정보 및 부 제어정보에 할당되도록 한 것이다. 제2 부호점 그룹은 4개의 부호점을 포함하므로, 혼합필드내에서 2비트의 부 제어정보가 구성될 수 있다. Referring to Table 7, Table 7 is the same as Table 1, but code points that are not used as main control information are shaded. The code points 22, 24, 26, 28 indicated by the shade are assigned to the sub control information as the second code point group, and the first code point group consisting of the remaining code points is assigned to the main control information. In this case, the code point is assigned to the main control information and the sub control information with a periodic pattern only for the modulation order of 64QAM. Since the second code point group includes four code points, two bits of sub-control information can be configured in the mixed field.
표 8은 본 발명의 또 다른 예에 따른 주 제어정보 및 부 제어정보이다.Table 8 shows main control information and sub control information according to another embodiment of the present invention.
표 8
Figure PCTKR2011006590-appb-T000006
Table 8
Figure PCTKR2011006590-appb-T000006
표 8은 표 1과 동일하나, 주 제어정보로 사용되지 않는 부호점들은 음영으로 표시되었다. 음영으로 표시된 부호점 11, 21은 제2 부호점 그룹으로서 부 제어정보에 할당되고, 나머지 부호점들로 구성되는 제1 부호점 그룹은 주 제어정보에 할당된다. 여기서의 제한조건은, 변조차수가 다르더라도 동일한 전송블록 크기를 가지는 부호점들 중 어느 하나만을 주 제어정보에 할당하고, 다른 하나를 부 제어정보에 할당한다. 즉, 전송블록의 크기는 ITBS에 따라 달라지고, 이 값이 같은 경우를 갖는 경우의 부호점들중에 일부를 선택하여 부 제어정보에 할당한다. Table 8 is the same as Table 1, but the code points not used as the main control information are shown in shaded form. The shaded code points 11 and 21 are allocated to the sub control information as the second code point group, and the first code point group composed of the remaining code points is allocated to the main control information. In this case, even if the modulation order is different, only one of the code points having the same transport block size is allocated to the primary control information, and the other is allocated to the secondary control information. That is, the size of the transport block depends on the I TBS , and some of the code points in the case where these values have the same case are selected and assigned to the sub-control information.
표 8에서, 동일한 전송블록 크기를 가지는 부호점들 ITBS=10인 경우와 ITBS=19인 경우에 있어서 어느 하나의 부호점만(예를 들어 변조차수가 큰 부호점 1개)을 주 제어정보에 할당하지 않도록 제한하고 있다. 물론 변조차수가 작은 부호점을 제한할 수도 있다. 이 경우 주 제어정보의 부호점을 제한함으로써 야기될 수 있는 성능저하의 원인이 상당부분 제거될 수 있다. In Table 8, only one code point (e.g., one code point with a high modulation order) is controlled in the case of I TBS = 10 and I TBS = 19 having the same transport block size. It is restricted from assigning the information. Of course, a code point with a small modulation order may be limited. In this case, the cause of the performance degradation which can be caused by limiting the code point of the main control information can be largely eliminated.
표 9는 본 발명의 또 다른 예에 따른 주 제어정보 및 부 제어정보이다.Table 9 shows main control information and sub control information according to another embodiment of the present invention.
표 9
Figure PCTKR2011006590-appb-T000007
Table 9
Figure PCTKR2011006590-appb-T000007
표 9는 표 1과 동일하나, 주 제어정보로 사용되지 않는 부호점들은 음영으로 표시되었다. 음영으로 표시된 부호점 11, 21, 26, 27은 제2 부호점 그룹으로서 부 제어정보에 할당되고, 나머지 부호점들로 구성되는 제1 부호점 그룹은 주 제어정보에 할당된다. 제1 제한조건은, 표 8과 같이 변조차수가 다르더라도 동일한 전송블록 크기를 가지는 부호점들 중 어느 하나만을 주 제어정보에 할당하고, 다른 하나를 부 제어정보에 할당한다. 즉, 전송블록의 크기는 ITBS에 따라 달라지고, 이 값이 같은 경우를 갖는 경우의 부호점들중에 일부를 선택하여 부 제어정보에 할당한다. 추가적인 제2 제한조건은, 64QAM 변조차수에서 부호점 26과 27이 제한을 가지고 부 제어정보에 할당되므로, 2비트의 부 제어정보의 전송이 가능하다.Table 9 is the same as Table 1, but code points that are not used as main control information are shaded. The code points 11, 21, 26, and 27 indicated by the shade are allocated to the sub control information as the second code point group, and the first code point group composed of the remaining code points is allocated to the main control information. In the first constraint, as shown in Table 8, only one of the code points having the same transport block size is allocated to the main control information, and the other is allocated to the sub-control information even if the modulation order is different. That is, the size of the transport block depends on the I TBS , and some of the code points in the case where these values have the same case are selected and assigned to the sub-control information. The additional second constraint is that the code points 26 and 27 are assigned to the sub control information with the limitation in the 64QAM modulation order, so that the 2-bit sub control information can be transmitted.
상기 표 4 내지 표 9와 같이 혼합필드의 주 제어정보(변조잉여정보)에 제한조건을 가하고, 상기 제한조건에 의해 남는 부호점을 이용하여 부 제어정보를 위한 제어채널을 구성하는 경우, 상기 혼합필드는 본래의 주 제어정보를 담지 않을 수 있다. 이 경우, 부 제어정보를 위한 제어채널의 구성에 있어서 주 제어정보를 특정한 상태로 설정하여야 한다. 일 예로서, 가장 최근에 동일 단말에게 전송된 주 제어정보의 상태를 현재 기지국과 단말이 설정해야하는 가상적인 주 제어정보의 상태로 본다. 예를 들어, 가장 최근의 변조잉여정보가 부호점=10인 경우라 하자. 만약 단말이 부 제어정보를 포함하는 혼합필드를 수신한 경우, 단말은 상기 가장 최근의 변조잉여정보인 부호점 10을 가정하고, QPSK 및 ITBS=10을 기초로 상향링크 전송을 수행한다. As shown in Tables 4 to 9, when the control condition is applied to the main control information (modulation surplus information) of the mixed field and the control channel for the sub control information is configured using the code point remaining by the restriction condition, the mixing The field may not contain the original main control information. In this case, in the configuration of the control channel for the sub control information, the main control information should be set to a specific state. As an example, the state of the main control information most recently transmitted to the same terminal is regarded as the state of the virtual main control information that should be set by the current base station and the terminal. For example, assume that the most recent modulation surplus information is code point = 10. If the terminal receives the mixed field including the sub-control information, the terminal assumes the code point 10, which is the most recent modulation surplus information, and performs uplink transmission based on QPSK and I TBS = 10.
다른 예로서, 제2 부호점 그룹의 특정 부호점에 대응하는 주 제어정보의 상태를 현재 가상적인 주 제어정보로 보고 동작하는 방식이다. 예를 들어, 상기 표 8에서 기지국에 의해 혼합필드의 부호점 11에 해당하는 부 제어정보가 단말로 전송된 경우를 가정한다. 상기 혼합필드는 주 제어정보를 포함하지 않는다. 따라서, 단말은 주 제어정보를 특정한 상태라고 가정하고 상향링크 전송을 수행해야 하는데, 이 때, 단말은 혼합필드가 주 제어정보를 포함하였을 때 부호점 11에 해당하는 주 제어정보를 상기 특정한 상태로 설정한다. 이 경우, 변조차수가 2인 QPSK, ITBS=10이 된다. 또는 다른 예로 부호점 6에 해당하여 변조차수가 2인 QPSK, ITBS=6으로 설정할 수도 있다.As another example, the operation is performed by viewing the state of the main control information corresponding to the specific code point of the second code point group as the current virtual main control information. For example, it is assumed in Table 8 that the sub-control information corresponding to the code point 11 of the mixed field is transmitted to the terminal by the base station. The mixed field does not contain main control information. Accordingly, the terminal assumes that the main control information is in a specific state and performs uplink transmission. In this case, when the mixed field includes the main control information, the terminal returns the main control information corresponding to the code point 11 to the specific state. Set it. In this case, QPSK and I TBS = 10 having a modulation order of two. As another example, QPSK and I TBS = 6 having a modulation order of 2 corresponding to the code point 6 may be set.
이렇게 주 제어정보를 가상의 특정 상태로 설정하는 것은 주 제어정보가 제한되는 모드 및/또는 특정한 규칙에 따라 선호도(priority)를 가지고 이뤄지거나, 상위계층에서 정하고 시그널링이나 별도의 제어채널에 의해 알려줄 수 있다. This setting of the main control information to a virtual specific state may be performed with a preference according to a mode and / or a specific rule in which the main control information is restricted, or may be determined by a higher layer and informed by signaling or a separate control channel. have.
혼합필드외에 추가적인 부호점이 부 제어정보에 제공될 수 있다. 상기 추가적인 부호점은 DCI 내의 다른 필드에 의해 제공된다. 이러한 추가적인 부호점을 제공하는 필드를 추가필드(additional field)라 한다. 추가필드를 이용할 경우, 부 제어정보에 추가적인 부호점을 제공할 수 있으나, 그 반대로 추가필드의 본질은 상실된다. 예를 들어, 추가필드가 주파수 호핑필드(frequency hopping field)인 경우, 주파수 호핑을 적용하지 않는 제한조건이 가해질 수 있다. 이로써, 주파수 호핑 필드의 비트를 부 제어정보에 할당할 수 있다. 또한, 잉여비트도 추가필드로서 부 제어정보에 할당될 수 있다. 추가필드가 부 제어정보에 할당되면, 추가필드의 본래 기능을 상실하므로, 추가필드와 관련된 제어정보는 디폴트(default)로 설정될 수 있다. 예를 들어, 추가 필드가 주파수 호핑필드일 경우, 추가필드는 주파수 호핑에 관한 정보가 아닌 부 제어정보를 담고 있다. 즉, 주파수 호핑에 관한 정보가 존재하지 않으므로, 기지국과 단말간에는 주파수 호핑이 적용되거나, 적용되지 않는 것으로 약속할 수 있다. In addition to the mixed field, additional code points may be provided in the sub control information. The additional code point is provided by another field in the DCI. The field providing this additional code point is called an additional field. When additional fields are used, additional code points may be provided to sub-control information, but the nature of the additional fields is lost. For example, if the additional field is a frequency hopping field, a constraint that does not apply frequency hopping may be applied. Thus, the bits of the frequency hopping field can be allocated to the sub control information. The surplus bits may also be allocated to the sub control information as additional fields. If the additional field is assigned to the sub control information, the original function of the additional field is lost, so that the control information related to the additional field may be set as a default. For example, if the additional field is a frequency hopping field, the additional field contains sub control information rather than information about frequency hopping. That is, since there is no information about frequency hopping, it can be promised that frequency hopping is applied or not applied between the base station and the terminal.
주 제어정보에 관한 제한조건은 제어채널의 실제 사용 예를 고려할 때 시스템의 성능을 저하시키는 요인으로 판단되지 않는 경우가 많다. 예를 들어, 채널의 정보를 충분히 파악한 상황이 아니므로 낮은 차수의 변조차수를 사용하는 것이 바람직하고 이런 환경에서 주 제어정보에 제한을 가하는 것은 큰 성능저하를 가져오지 않는다.The constraints on the main control information are often not considered to be a factor that degrades the system performance considering the actual use of the control channel. For example, it is preferable to use a low order modulation order because the channel information is not sufficiently grasped. In such an environment, limiting the main control information does not bring about significant performance degradation.
이하에서, 부 제어정보에 관하여 설명한다. 부 제어정보는 비주기적 사운딩 기준신호(Aperiodic Sounding Reference Signal; 이하 ASRS)의 설정에 관한 정보(이하 ASRS 설정정보), 비주기적 사운딩 기준신호의 트리거링 on/off를 나타내는 정보, 채널상태정보(Channel State Informationl CSI)의 전송 설정에 관한 정보, ACK/NACK 전송 설정에 관한 정보 중 적어도 하나를 포함한다. 혼합필드가 제2 부호점 그룹의 어느 한 부호점을 지시하는 경우, 단말은 상기 혼합필드를 포함하는 DCI가 부 제어정보(예를 들어 ASRS의 설정정보나 채널상태정보의 전송설정에 관한 정보 또는 ACK/NACK 전송 설정에 관한 정보)를 포함하는 것임을 인지할 수 있다. Hereinafter, the sub control information will be described. The sub-control information includes information on setting an aperiodic sounding reference signal (hereinafter referred to as ASRS) (hereinafter referred to as ASRS setting information), information indicating triggering on / off of the aperiodic sounding reference signal, and channel state information ( Channel State Information (CSI) includes at least one of the information on the transmission configuration, the information on the ACK / NACK transmission configuration. If the mixed field indicates any code point of the second code point group, the terminal indicates that the DCI including the mixed field has sub-control information (for example, information on transmission setting of ASRS setting information or channel state information or Information on the ACK / NACK transmission setting).
ASRS 설정정보는 표 10과 같이 ASRS의 전송에 필요한 여러가지 필드를 포함한다.The ASRS configuration information includes various fields necessary for the transmission of the ASRS as shown in Table 10.
표 10
SRS 정보요소 비트수 내용
SRS 활성화 1 DCI 포맷의 해석
전송 대역폭(Transmission BW) 2 동작 대역폭당 4개의 SRS 대역폭
주파수 위치(Frequency Position) 3 or 5 시작 대역폭 위치(3 bits for <=5 MHz)
전송 컴브(Transmission Comb) 1 2개 컴브
SRS 순환 쉬프트(Cyclic Shift) 3 8 순환 쉬프트
SRS 구성 인덱스 ISRS 9 SRS 전송을 위해 할당된 서브프레임들의 구성
듀레이션(Duration) 0 동일 듀레이션 또는 원-샷 전송(One-Shot Transmission)
SRS 대역폭 구성 0 원샷 또는 이미 알려진 SIB를 통해 구성
CRC (UE ID) 16 CRC에 매스킹(mask)된 UE ID
총합 35 or 37
Table 10
SRS Information Element Number of bits Contents
SRS activation One Interpreting the DCI Format
Transmission BW
2 4 SRS Bandwidths per Operating Bandwidth
Frequency Position
3 or 5 Start Bandwidth Location (3 bits for <= 5 MHz)
Transmission Comb One 2 combs
SRS Cyclic Shift 3 8 cyclic shift
SRS Configuration Index I SRS 9 Configuration of Subframes Assigned for SRS Transmission
Duration
0 Same Duration or One-Shot Transmission
SRS Bandwidth Configuration 0 Configure via one shot or known SIB
CRC (UE ID) 16 UE ID masked in CRC
total 35 or 37
표 10을 참조하면, SRS 활성화(Activation) 필드는 1비트 정보로서 해당 DCI가 ASRS의 전송에 관련된 포맷인지 아닌지를 지시한다. 주파수 위치(Frequency Position) 필드는 ASRS에 관한 상향링크 대역폭의 시작위치를 결정하는 파라미터이다. 전송컴브(Transmission Comb)필드는 TDD 시스템에 있어서 특별 서브프레임에 속하는 UpPTS구간을 정의하는 파라미터이다. SRS 설정 인덱스(Configuration Index)필드는 ASRS가 전송되는 서브프레임의 위치와 오프셋(offset)등을 결정하는 파라미터이다. 순환 시프트(Cyclic Shift)필드는 ASRS의 전송을 위한 시퀀스(sequence)를 생성하는 파라미터이다. Referring to Table 10, the SRS Activation field is 1 bit information and indicates whether the corresponding DCI is a format related to transmission of the ASRS. The frequency position field is a parameter that determines the start position of an uplink bandwidth with respect to the ASRS. The Transmission Comb field is a parameter that defines an UpPTS section belonging to a special subframe in the TDD system. The SRS Configuration Index field is a parameter that determines the position and offset of a subframe in which the ASRS is transmitted. The cyclic shift field is a parameter for generating a sequence for transmission of the ASRS.
또 다른 부 제어정보의 예로서, CQI/PMI와 같은 CSI(channel state information)의 트리거링, 또는 CSI를 전송하는 상향링크 요소반송파, 또는 CSI의 대상이 되는 하향링크 요소반송파의 정보를 포함할 수 있다. 이 경우에도, 혼합필드는 CIF(carrier indicator format) 또는 CQI 요청(request)필드와 결합되어 부 제어정보를 표현할 수 있다. As another example of sub-control information, it may include triggering of channel state information (CSI) such as CQI / PMI, uplink component carrier transmitting CSI, or information of downlink component carrier targeted for CSI. . Even in this case, the mixed field may be combined with a carrier indicator format (CIF) or a CQI request field to express sub-control information.
도 5는 본 발명의 일 예에 따른 혼합필드를 포함하는 DCI의 전송방법을 나타내는 흐름도이다.5 is a flowchart illustrating a method of transmitting DCI including a mixed field according to an embodiment of the present invention.
도 5를 참조하면, 기지국은 혼합필드에 관한 정보를 단말로 전송한다(S500). 일 예로서, 혼합필드에 관한 정보는 상기 혼합필드가 주 제어정보를 포함하는지 또는 부 제어정보를 포함하는지, 또는 두 가지를 모두 포함하는지를 지시하는 혼합필드 지시자를 포함한다. 예를 들어, 혼합필드 지시자는 1비트로서, 0이면 상기 혼합필드가 주 제어정보를 포함함을 표시하고, 1이면 부 제어정보를 포함함을 표시할 수 있다. Referring to FIG. 5, the base station transmits information about the mixed field to the terminal (S500). As an example, the information on the mixed field includes a mixed field indicator indicating whether the mixed field includes main control information, sub control information, or both. For example, the mixed field indicator may be 1 bit. If 0, the mixed field indicator may indicate that the mixed field includes main control information.
또는 상기 혼합필드에 관한 정보는 상기 혼합필드의 전체 부호점 중 제1 부호점 그룹과 제2 부호점 그룹의 할당모드를 구별하는 부호점 그룹 정보를 포함할 수 있다. 예를 들어, 상기 부호점 그룹 정보는 제1 부호점 그룹과 제2 부호점 그룹이 상기 표 4 내지 상기 표 9 중 어떤 모드로 할당되는지를 나타낸다. Alternatively, the information about the mixed field may include code point group information for distinguishing allocation modes of a first code point group and a second code point group among all code points of the mixed field. For example, the code point group information indicates which mode of Tables 4 to 9 is allocated to the first code point group and the second code point group.
혼합필드에 관한 정보는 물리계층의 메시지, MAC 계층의 메시지 및 RRC 계층의 메시지 중 어느 하나일 수 있다. The information about the mixed field may be any one of a message of a physical layer, a message of a MAC layer, and a message of an RRC layer.
만약, 단말과 기지국간에 제1 및 제2 부호점 그룹에 관하여 미리 규약되어 있거나, 이미 단말이 알고 있는 경우, 기지국은 별도로 혼합필드에 관한 정보를 전송하지 않아도 된다. 따라서, 이 경우 단계 S500은 생략될 수 있다. If the first and second code point groups are previously regulated between the terminal and the base station, or if the terminal is already known, the base station does not need to separately transmit information about the mixed field. Therefore, in this case, step S500 can be omitted.
기지국은 혼합필드를 구성한다(S505). 혼합필드(hybrid field)는 주 제어정보와 부 제어정보 중 어느 하나 또는 모두를 포함할 수 있다. 주 제어정보는 변조잉여정보일 수 있고, 부 제어정보는 비주기적 사운딩 기준신호(ASRS)에 관한 정보일 수 있다. 전술된 바와 같이, 혼합필드가 주 제어정보를 포함하는 경우를 제한하는 제한조건이 가해지는 경우, 제한조건에 의해 주 제어정보로 할당되지 않는 남는 제2 부호점 그룹이 부 제어정보로 사용된다. The base station configures a mixed field (S505). The hybrid field may include one or both of main control information and sub control information. The main control information may be modulation surplus information, and the sub control information may be information about an aperiodic sounding reference signal (ASRS). As described above, when a constraint is applied that restricts the case where the mixed field includes the main control information, the remaining second code point group which is not assigned as the main control information by the constraint is used as the sub control information.
기지국은 상기 혼합필드를 포함하는 하향링크 제어정보(DCI)를 단말로 전송한다(S510). 상기 하향링크 제어정보는 DCI 포맷 0의 상향링크 그랜트일 수 있다. 상기 하향링크 제어정보의 일 예는 아래의 표 11과 같다.The base station transmits downlink control information (DCI) including the mixed field to the terminal (S510). The downlink control information may be an uplink grant of DCI format 0. An example of the downlink control information is shown in Table 11 below.
표 11
Figure PCTKR2011006590-appb-T000008
Table 11
Figure PCTKR2011006590-appb-T000008
단말은 상기 하향링크 제어정보에 포함된 주 제어정보 또는 부 제어정보에 따라 상향링크 전송을 수행한다(S515). 만약, 상기 하향링크 제어정보가 변조잉여정보인 주 제어정보를 포함하는 경우, 단말은 상기 변조잉여정보에 의해 지정되는 변조차수 및 잉여버전에 따라 상향링크 데이터를 생성하여, 기지국으로 전송할 수 있다. 반면, 상기 하향링크 제어정보가 ASRS 관련 정보인 부 제어정보를 포함하는 경우, 단말은 임의의 시점에 사운딩 기준신호를 기지국으로 전송할 수 있다. The terminal performs uplink transmission according to the main control information or the sub control information included in the downlink control information (S515). If the downlink control information includes main control information that is modulation surplus information, the terminal may generate uplink data according to the modulation order and the redundant version designated by the modulation surplus information and transmit the uplink data to the base station. On the other hand, if the downlink control information includes sub-control information which is ASRS-related information, the terminal may transmit a sounding reference signal to the base station at any time.
도 6은 본 발명의 일 예에 따른 기지국의 하향링크 제어정보의 전송방법을 설명하는 순서도이다.6 is a flowchart illustrating a method of transmitting downlink control information of a base station according to an embodiment of the present invention.
도 6을 참조하면, 기지국은 전송할 하향링크 제어정보(DCI)가 새로운 DCI 형식인지 판단한다(S600). 새로운 DCI 형식이란, DCI의 혼합필드가 기존의 주 제어정보의 용도가 아닌 다른 부 제어정보의 용도로 사용됨을 의미한다. 만약, 상기 하향링크 제어정보가 새로운 DCI 형식인 경우, 기지국은 제한조건이 가해진 혼합필드를 구성한다(S605). 여기서, 제한조건이란 시스템에서 주 제어정보의 일부 상태를 사용하지 않도록 제한하는 조건을 의미한다. 제한조건이 있다는 것은 일부의 부호점이 주 제어정보의 부호점으로 사용되지 않음을 나타낸다. 따라서, 상기 혼합필드의 부호점은 제2 부호점 그룹에 속한다. Referring to FIG. 6, the base station determines whether the downlink control information (DCI) to be transmitted is a new DCI format (S600). The new DCI format means that the mixed field of DCI is used for the purpose of sub-control information other than the existing main control information. If the downlink control information is a new DCI format, the base station configures a mixed field to which the constraint is applied (S605). Here, the constraint means a condition that restricts the use of some state of the main control information in the system. The presence of a constraint indicates that some code points are not used as code points for main control information. Therefore, the code point of the mixed field belongs to the second code point group.
기지국은 상기 혼합필드를 포함하는 하향링크 제어정보를 구성하고(S610), 이를 단말로 전송한다(S615). The base station configures downlink control information including the mixed field (S610) and transmits it to the terminal (S615).
한편, 상기 단계 S600에서, 만약, 전송할 상기 하향링크 제어정보가 새로운 DCI 형식이 아닌 경우, 기지국은 기존의 방식대로 주 제어정보로서 혼합필드를 구성하고(S620), 상기 혼합필드를 포함하는 하향링크 제어정보를 구성하고(S610), 이를 단말로 전송한다(S615). On the other hand, in step S600, if the downlink control information to be transmitted is not a new DCI format, the base station configures a mixed field as main control information according to the existing method (S620) and downlink including the mixed field. Configure the control information (S610), and transmits it to the terminal (S615).
도 7은 본 발명의 일 예에 따른 단말의 하향링크 제어정보의 수신방법을 설명하는 순서도이다.7 is a flowchart illustrating a method of receiving downlink control information of a terminal according to an embodiment of the present invention.
도 7을 참조하면, 단말은 PDCCH로부터 하향링크 제어정보(DCI)를 수신한다(S700). 이는 블라인드 디코딩 과정에 의해 수신된다. 단말은 상기 하향링크 제어정보에 포함된 혼합필드의 부호점이 제2 부호점 그룹에 속하는지를 판단한다(S705). 여기서, 혼합필드의 부호점이 제2 부호점 그룹에 속하는지는, 상기 도 5에서 단계 S500에서와 같은 혼합필드에 관한 정보를 이용하여 판단된다. 만약, 상기 혼합필드의 부호점의 제2 부호점 그룹에 속하면, 단말은 상기 혼합필드의 정보를 부 제어정보로 해석하고(S710), 상기 혼합필드의 원래 용도인 주 제어정보의 상태를 디폴트(default) 또는 규칙에 의해 정해진 값으로 결정한다(S715). Referring to FIG. 7, the terminal receives downlink control information (DCI) from the PDCCH (S700). This is received by the blind decoding process. The terminal determines whether the code point of the mixed field included in the downlink control information belongs to the second code point group (S705). Here, whether the code point of the mixed field belongs to the second code point group is determined using the information on the mixed field as in step S500 in FIG. If belonging to the second code point group of the code point of the mixed field, the terminal interprets the information of the mixed field as sub-control information (S710), and defaults the state of the main control information which is the original use of the mixed field. (default) or determined by a value determined by the rule (S715).
한편, 상기 단계 S705에서, 만약, 상기 혼합필드의 부호점의 제2 부호점 그룹이 아닌, 제2 부호점 그룹에 속하면, 단말은 상기 혼합필드의 정보를 주 제어정보로 해석한다(S720).On the other hand, in step S705, if belonging to the second code point group, not the second code point group of the code point of the mixed field, the terminal interprets the information of the mixed field as the main control information (S720). .
도 8은 본 발명의 일 예에 따른 기지국과 단말을 나타내는 블록도이다.8 is a block diagram illustrating a base station and a terminal according to an embodiment of the present invention.
도 8을 참조하면, 단말(800)은 상향링크 그랜트 수신부(805), DCI 해석부(810), 데이터 생성부(815) 및 데이터 송신부(820)를 포함한다.Referring to FIG. 8, the terminal 800 includes an uplink grant receiver 805, a DCI analyzer 810, a data generator 815, and a data transmitter 820.
상향링크 그랜트 수신부(805)는 PDCCH상으로 전송되는 상향링크 그랜트를 블라인드 디코딩에 의해 수신한다. 상향링크 그랜트는 상향링크 전송에 관한 상향링크 스케줄링 파라미터 및 혼합필드를 포함한다.The uplink grant receiver 805 receives the uplink grant transmitted on the PDCCH by blind decoding. The uplink grant includes uplink scheduling parameters and mixed fields for uplink transmission.
DCI 해석부(810)는 상향링크 그랜트에 포함된 혼합필드가 주 제어정보를 포함하는지, 또는 부 제어정보를 포함하는지 해석한다. 이러한 해석은 기지국(850)으로부터의 시그널링(signaling) 또는 별도의 제어채널에 의해서 수행될 수도 있고, 단말이 직접 혼합필드의 부호점이 제1 부호점 그룹 또는 제2 부호점 그룹에 속하는지의 판단에 의해 수행될 수도 있다. DCI 해석부(810)는, 상기 혼합필드의 부호점이 제1 부호점 그룹에 속하면, 상기 혼합필드는 주 제어정보를 포함하고, 상기 혼합필드의 부호점이 제2 부호점 그룹에 속하면, 상기 혼합필드는 부 제어정보를 포함하는 것으로 해석할 수 있다. The DCI analyzing unit 810 analyzes whether the mixed field included in the uplink grant includes the main control information or the sub control information. This analysis may be performed by signaling from the base station 850 or by a separate control channel, and the terminal directly determines whether the code point of the mixed field belongs to the first code point group or the second code point group. It may also be performed by. If the code point of the mixed field belongs to the first code point group, the DCI analysis unit 810 includes the main control information, and if the code point of the mixed field belongs to the second code point group, The mixed field may be interpreted as including sub control information.
데이터 생성부(815)는 DCI 해석부(810)의 결과에 따라 주 제어정보 또는 부 제어정보를 기초로 상향링크 정보를 생성한다. 만약, 상기 혼합필드가 변조잉여정보인 주 제어정보를 포함하면, 상기 상향링크 정보는 상기 변조잉여정보의 변조차수 및 잉여버전에 따른 상향링크 데이터이다. 만약, 상기 혼합필드가 ASRS 관련 정보인 부 제어정보를 포함하면, 상기 상향링크 정보는 상기 비주기적으로 생성되는 사운딩 기준신호이다. 상기 ASRS 관련 정보인 부 제어정보는 상기 사운딩 기준신호에 대한 트리거링 및 사운딩 설정제어정보를 포함한다. The data generator 815 generates uplink information based on the main control information or the sub control information according to the result of the DCI analyzer 810. If the mixed field includes main control information that is modulation surplus information, the uplink information is uplink data according to a modulation order and a redundant version of the modulation surplus information. If the mixed field includes sub control information which is ASRS related information, the uplink information is a sounding reference signal that is generated aperiodically. The sub-control information, which is the ASRS-related information, includes triggering and sounding setting control information for the sounding reference signal.
데이터 송신부(820)는 데이터 생성부(815)에 의해 생성되는 상향링크 정보를 기지국(850)으로 전송한다.The data transmitter 820 transmits uplink information generated by the data generator 815 to the base station 850.
기지국(850)은 혼합필드 구성부(855), 스케줄링부(860), 상향링크 그랜트 전송부(865) 및 데이터 수신부(870)을 포함한다.The base station 850 includes a mixed field configuration unit 855, a scheduling unit 860, an uplink grant transmitter 865, and a data receiver 870.
혼합필드 구성부(855)는 혼합필드를 구성한다. 혼합필드는 주 제어정보와 부 제어정보 중 어느 하나 또는 모두를 포함할 수 있다. 주 제어정보는 변조잉여정보일 수 있고, 부 제어정보는 비주기적 사운딩 기준신호(ASRS)에 관한 정보일 수 있다. 전술된 바와 같이, 혼합필드가 주 제어정보를 포함하는 경우를 제한하는 제한조건이 가해지는 경우, 제한조건에 의해 주 제어정보로 할당되지 않는 남는 제2 부호점 그룹이 부 제어정보로 사용된다. The mixed field construction unit 855 constitutes a mixed field. The mixed field may include one or both of main control information and sub control information. The main control information may be modulation surplus information, and the sub control information may be information about an aperiodic sounding reference signal (ASRS). As described above, when a constraint is applied that restricts the case where the mixed field includes the main control information, the remaining second code point group which is not assigned as the main control information by the constraint is used as the sub control information.
스케줄링부(860)는 혼합필드 구성부(855)에 의해 구성되는 혼합필드에 기초하여, 상향링크 스케줄링 파라미터를 설정한다. 상기 상향링크 스케줄링 파라미터는 상기 표 11과 같은 정보 생성의 기초가 되는 파라미터이다. The scheduling unit 860 sets uplink scheduling parameters based on the mixed field configured by the mixed field constructing unit 855. The uplink scheduling parameter is a parameter for generating information as shown in Table 11 above.
상향링크 그랜트 전송부(865)는 스케줄링부(860)에 의해 설정되는 상향링크 스케줄링 파라미터를 이용하여 혼합필드를 포함하는 상향링크 그랜트를 생성하고, 이를 단말(800)로 전송한다. The uplink grant transmitter 865 generates an uplink grant including a mixed field by using an uplink scheduling parameter set by the scheduling unit 860, and transmits the uplink grant to the terminal 800.
데이터 수신부(870)는 상향링크 데이터 또는 ASRS를 단말(800)로부터 수신한다. 데이터 수신부(870)가 단말(800)로부터 ASRS를 수신하는 경우, 상기 ASRS에 대한 정보를 스케줄링부(860)로 보낼 수 있다(도면에 미표시). 이에 대해, 스케줄링부(860)는 상기 ASRS에 대한 정보를 기초로 상향링크 채널을 추정하고, 추정 결과에 따라 상향링크 스케줄링 파라미터를 설정할 수 있다. The data receiver 870 receives uplink data or an ASRS from the terminal 800. When the data receiver 870 receives the ASRS from the terminal 800, the data receiver 870 may send information about the ASRS to the scheduling unit 860 (not shown). In this regard, the scheduling unit 860 may estimate an uplink channel based on the information on the ASRS, and set an uplink scheduling parameter according to the estimation result.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (14)

  1. 하향링크 제어정보의 전송방법에 있어서,In the method of transmitting downlink control information,
    주 제어정보 또는 부 제어정보 중 어느 하나를 선택적으로 포함하거나, 또는 상기 주 제어정보와 상기 부 제어정보를 모두 포함하는 혼합필드(hybrid field)를 구성하는 단계;Selectively including any one of main control information and sub control information, or constructing a hybrid field including both the main control information and the sub control information;
    상기 혼합필드를 포함하는 하향링크 제어정보를 구성하는 단계;Constructing downlink control information including the mixed field;
    상기 하향링크 제어정보를 단말로 전송하는 단계; 및Transmitting the downlink control information to a terminal; And
    상기 하향링크 제어정보에 기초하여 상향링크 정보를 상기 단말로부터 수신하는 단계를 포함하되,Receiving uplink information from the terminal based on the downlink control information,
    상기 혼합필드에 의해 지시되는 전체 부호점들(code points) 중 제1 부호점 그룹은 상기 주 제어정보에 맵핑되고, 제2 부호점 그룹은 상기 부 제어정보에 맵핑됨을 특징으로 하는, 하향링크 제어정보의 전송방법.Downlink control, characterized in that the first code point group of all code points indicated by the mixed field is mapped to the main control information, the second code point group is mapped to the sub-control information How information is sent.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 부 제어정보는 상향링크 채널의 상태를 측정하기 위한 기준신호인 사운딩 기준신호(sounding reference signal; SRS)의 비주기적인 전송을 트리거링(triggering)함을 지시하는 정보인 것을 특징으로 하는, 하향링크 제어정보의 전송방법.The sub control information is information indicating that triggering aperiodic transmission of a sounding reference signal (SRS), which is a reference signal for measuring a state of an uplink channel, is downlink. Transmission method of link control information.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 하향링크 제어정보는 상기 단말의 상향링크 전송에 관한 할당정보인 상향링크 그랜트(uplink grant)인, 하향링크 제어정보의 전송방법.The downlink control information is an uplink grant, which is allocation information about uplink transmission of the user equipment.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 주 제어정보는 상기 상향링크 정보의 변조차수(modulation order), 전송블록의 크기(size of transport block), 잉여버전(redundancy version) 중 적어도 하나를 지시하는 정보인 것을 특징으로 하는, 하향링크 제어정보의 전송방법.The main control information is information indicating at least one of a modulation order of the uplink information, a size of a transport block, and a redundancy version. How information is sent.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 혼합필드가 상기 주 제어정보 및 상기 부 제어정보 중 어느 것을 포함하는지를 지시하는 혼합필드에 관한 정보를 상기 단말로 전송하는 단계를 더 포함함을 특징으로 하는, 하향링크 제어정보의 전송방법.And transmitting information about a mixed field indicating whether the mixed field includes one of the main control information and the sub control information to the terminal.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 제2 부호점 그룹은 상기 혼합필드가 상기 주 제어정보로 사용되지 않도록 제한되는 경우, 제한되지 않는 부호점들을 포함함을 특징으로 하는, 하향링크 제어정보의 전송방법.And the second code point group includes code points which are not limited when the mixed field is not used as the main control information.
  7. 하향링크 제어정보의 수신방법에 있어서,In the method for receiving downlink control information,
    주 제어정보 또는 부 제어정보 중 어느 하나를 선택적으로 포함하거나, 또는 상기 주 제어정보와 상기 부 제어정보를 모두 포함하는 혼합필드를 포함하는 하향링크 제어정보를 기지국으로부터 수신하는 단계; 및Selectively receiving any one of main control information and sub control information, or receiving downlink control information including a mixed field including both the main control information and the sub control information from a base station; And
    상기 하향링크 제어정보에 기초하여 상향링크 정보를 상기 기지국으로 전송하는 단계를 포함하되,Transmitting uplink information to the base station based on the downlink control information;
    상기 혼합필드에 의해 지시되는 전체 부호점 중 제1 부호점 그룹은 상기 주 제어정보에 맵핑되고, 제2 부호점 그룹은 상기 부 제어정보에 맵핑됨을 특징으로 하는, 하향링크 제어정보의 수신방법.A first code point group among all code points indicated by the mixed field is mapped to the main control information, and a second code point group is mapped to the sub control information.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 부 제어정보는 상향링크 채널의 상태를 측정하기 위한 기준신호인 사운딩 기준신호의 비주기적인 전송을 트리거링함을 지시하는 정보인 것을 특징으로 하는, 하향링크 제어정보의 수신방법.The sub-control information is information indicating that triggers aperiodic transmission of a sounding reference signal, which is a reference signal for measuring a state of an uplink channel, characterized in that the downlink control information.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 하향링크 제어정보는 상기 단말의 상향링크 전송에 관한 할당정보인 상향링크 그랜트인, 하향링크 제어정보의 수신방법.The downlink control information is an uplink grant which is allocation information regarding uplink transmission of the terminal.
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 주 제어정보는 상기 상향링크 정보의 변조차수, 전송블록의 크기, 잉여버전 중 적어도 하나를 지시하는 정보인 것을 특징으로 하는, 하향링크 제어정보의 수신방법.The main control information is information indicating at least one of the modulation order of the uplink information, the size of a transport block, the redundant version, the method of receiving downlink control information.
  11. 제 7 항에 있어서,The method of claim 7, wherein
    상기 혼합필드가 상기 주 제어정보 및 상기 부 제어정보 중 어느 것을 포함하는지를 지시하는 혼합필드에 관한 정보를 상기 기지국으로부터 수신하는 단계를 더 포함함을 특징으로 하는, 하향링크 제어정보의 수신방법.And receiving, from the base station, information about the mixed field indicating whether the mixed field includes the main control information or the sub control information.
  12. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제2 부호점 그룹은 상기 혼합필드가 상기 주 제어정보로 사용되지 않도록 제한되는 경우, 제한되지 않는 부호점들을 포함함을 특징으로 하는, 하향링크 제어정보의 수신방법.And the second code point group includes code points which are not limited when the mixed field is restricted so as not to be used as the main control information.
  13. 하향링크 제어정보를 전송하는 기지국에 있어서,In the base station for transmitting downlink control information,
    주 제어정보 또는 부 제어정보 중 어느 하나를 선택적으로 포함하거나, 또는 상기 주 제어정보와 상기 부 제어정보를 모두 포함하는 혼합필드를 구성하는 혼합필드 구성부; A mixed field constructing unit selectively including any one of main control information and sub control information, or composing a mixed field including both the main control information and the sub control information;
    상기 혼합필드를 포함하는 하향링크 제어정보를 구성하는 하향링크 제어정보 구성부;A downlink control information constructing unit constituting downlink control information including the mixed field;
    상기 하향링크 제어정보를 단말로 전송하는 전송부; 및A transmitter for transmitting the downlink control information to a terminal; And
    상기 하향링크 제어정보에 기초하여 상향링크 정보를 상기 단말로부터 수신하는 수신부를 포함하되,Includes a receiving unit for receiving uplink information from the terminal based on the downlink control information,
    상기 혼합필드 구성부는 혼합필드에 의해 지시되는 전체 부호점 중 제1 부호점 그룹을 상기 주 제어정보에 맵핑하고, 제2 부호점 그룹을 상기 부 제어정보에 맵핑함을 특징으로 하는, 기지국.And the mixed field constructing unit maps a first code point group among all code points indicated by the mixed field to the main control information, and maps a second code point group to the sub control information.
  14. 하향링크 제어정보를 수신하는 단말에 있어서,In a terminal for receiving downlink control information,
    주 제어정보 또는 부 제어정보 중 어느 하나를 선택적으로 포함하거나, 또는 상기 주 제어정보와 상기 부 제어정보를 모두 포함하는 혼합필드를 포함하는 하향링크 제어정보를 기지국으로부터 수신하는 수신부; A receiving unit for selectively including any one of main control information and sub control information, or receiving downlink control information including a mixed field including both the main control information and the sub control information from a base station;
    상기 하향링크 제어정보의 형식을 해석하는 하향링크 제어정보 해석부;A downlink control information analyzer for analyzing a format of the downlink control information;
    상기 해석에 기초하여 상향링크 정보를 생성하는 데이터 생성부; 및A data generator for generating uplink information based on the interpretation; And
    상기 생성된 데이터를 전송하는 데이터 전송부를 포함하되,Including a data transmission unit for transmitting the generated data,
    상기 하향링크 제어정보 해석부는, 상기 혼합필드가 상기 주 제어정보를 포함하는 경우 상기 하향링크 제어정보를 제1 방식에 의해 해석하고, 상기 혼합필드가 상기 부 제어정보를 포함하는 경우 상기 하향링크 제어정보를 제2 방식에 의해 해석함을 특징으로 하는, 단말.The downlink control information analyzing unit analyzes the downlink control information according to a first scheme when the mixed field includes the main control information, and the downlink control when the mixed field includes the sub control information. Characterized in that the information is interpreted in a second manner.
PCT/KR2011/006590 2010-09-20 2011-09-07 Apparatus and method for transmitting downlink control information in a wireless communication system WO2012039556A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100092589A KR20120030819A (en) 2010-09-20 2010-09-20 Apparatus and method of transmitting downlink control information in wireless communication system
KR10-2010-0092589 2010-09-20

Publications (2)

Publication Number Publication Date
WO2012039556A2 true WO2012039556A2 (en) 2012-03-29
WO2012039556A3 WO2012039556A3 (en) 2012-05-24

Family

ID=45874236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006590 WO2012039556A2 (en) 2010-09-20 2011-09-07 Apparatus and method for transmitting downlink control information in a wireless communication system

Country Status (2)

Country Link
KR (1) KR20120030819A (en)
WO (1) WO2012039556A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10834748B2 (en) 2018-05-11 2020-11-10 At&T Intellectual Property I, L.P. Indication of additional information in 5G systems with legacy downlink control channel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102439542B1 (en) 2017-06-23 2022-09-02 삼성전자 주식회사 Method and apparatus for transmission and reception of uplink control channel in wirelss communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048496A (en) * 2008-10-31 2010-05-11 삼성전자주식회사 Device and method for controlling downlink control information in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048496A (en) * 2008-10-31 2010-05-11 삼성전자주식회사 Device and method for controlling downlink control information in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: '3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 9).' 3GPP TS 36.212 V9.2.0, [Online] June 2010, Retrieved from the Internet: <URL:http://www.3gpp.org/ftp/Specs/archive/ 36 series/36.212> [retrieved on 2012-03-28] *
3GPP: '3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 9).' 3GPP TS 36.213 V9.2.0, [Online] June 2010, Retrieved from the Internet: <URL:http://www.3gpp.org/ftp/Specs/html-info/36213.htm> [retrieved on 2012-03-28] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10834748B2 (en) 2018-05-11 2020-11-10 At&T Intellectual Property I, L.P. Indication of additional information in 5G systems with legacy downlink control channel

Also Published As

Publication number Publication date
WO2012039556A3 (en) 2012-05-24
KR20120030819A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2017116120A1 (en) Method and apparatus for transmitting ack/nack for nb-iot in wireless communication system
WO2011025195A2 (en) Transmission method of downlink signal in wireless communication system and transmission apparatus therefor
WO2010013970A2 (en) Method and apparatus for transmitting data in multiple carrier system
WO2009116789A1 (en) Method of transmitting uplink data in wireless communication system
WO2016159656A1 (en) Method and apparatus for designing downlink control information in wireless communication system
WO2013191518A1 (en) Scheduling method for device-to-device communication and apparatus for same
WO2016182391A1 (en) Method and apparatus for performing initial access procedure for low cost user equipment in wireless communication system
WO2016144076A1 (en) Method and apparatus for configuring frame structure and frequency hopping for mtc ue in wireless communication system
WO2011013986A2 (en) Apparatus and method for transmitting channel state information in a mobile communication system
WO2010117225A2 (en) Downlink control information receiving method in wireless communication system and apparatus therefor
WO2011062459A2 (en) Ack/nack transmission method and apparatus therefor
WO2012177073A2 (en) Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
WO2015170933A1 (en) Scheduling method and apparatus for d2d communication
WO2013032202A2 (en) Method and user equipment for receiving downlink signals, and method and base station for transmitting downlink signals
WO2017179784A1 (en) Dynamic subband-based signal transceiving method and apparatus therefor in wireless communication system
WO2013015637A2 (en) Method for transmitting uplink signal, user equipment, method for receiving uplink signal, and base station
WO2012144842A2 (en) Method for reporting channel state information in a wireless communication system, and apparatus therefor
WO2011074885A2 (en) Method and apparatus for reporting a channel quality in a wireless communication system
WO2010140748A1 (en) Method for transmitting information of ack/nack sequence in wireless communication system and apparatus therefor
WO2010117239A2 (en) Control information receiving method in wireless communication system and apparatus therefor
WO2010126259A2 (en) Method for receiving control information in a wireless communication system, and apparatus for same
WO2016195278A1 (en) Scheduling method and device in wireless communication system providing broadband service
WO2017116114A1 (en) Method and apparatus for defining basic resource unit for nb-iot user equipment in wireless communication system
WO2013095041A1 (en) Method for transmitting and receiving signal based on dynamic change of wireless resource in wireless communication system and apparatus therefor
WO2020040534A1 (en) Method for receiving physical control channel in wireless communication system, and device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826984

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826984

Country of ref document: EP

Kind code of ref document: A2