WO2012039339A1 - Rotation system - Google Patents

Rotation system Download PDF

Info

Publication number
WO2012039339A1
WO2012039339A1 PCT/JP2011/071075 JP2011071075W WO2012039339A1 WO 2012039339 A1 WO2012039339 A1 WO 2012039339A1 JP 2011071075 W JP2011071075 W JP 2011071075W WO 2012039339 A1 WO2012039339 A1 WO 2012039339A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotation
rotating shaft
motors
shaft
Prior art date
Application number
PCT/JP2011/071075
Other languages
French (fr)
Japanese (ja)
Inventor
栗田泰生
Original Assignee
株式会社栗田工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社栗田工業 filed Critical 株式会社栗田工業
Publication of WO2012039339A1 publication Critical patent/WO2012039339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to a rotating system for rotating a rotating shaft having a load.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a rotating system that can efficiently rotate the rotating shaft with less power than when the rotating shaft is rotated by one motor.
  • the rotation system according to claim 1 includes two motors having a rotational force equal to or greater than the rotational torque at the time of steady rotation of the rotation shaft, and the two motors rotate both ends of the rotation shaft, respectively. It is characterized by synthesizing forces on the rotation axis.
  • the rotation system according to claim 2 is characterized in that the two motors are DC motors, the two motors are connected in series in the power supply wiring, and the two motors are driven by one DC power supply.
  • the rotation system according to claim 3 is characterized in that a rotary shaft is provided with a flywheel.
  • the rotating system according to claim 4 is characterized in that the rotating shaft is a rotor of a generator or connected to the rotor of the generator, and power is generated by rotating the rotating shaft.
  • the two motors are DC motors, the two motors are connected in series in the power supply wiring, the two motors are driven by one DC power source, and the flywheel is mounted on the rotating shaft. It is characterized by providing.
  • the rotation system according to claim 7 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is a difference between a rotational torque at the time of starting rotation of the rotating shaft and a rotational force of the first motor, and the first motor and the second motor at the time of starting rotation of the rotating shaft;
  • the rotating shaft is rotated by both, and after the rotating shaft starts to rotate steadily, the rotation of the second motor is stopped, and the rotating shaft is rotated only by the first motor.
  • the rotation system according to claim 8 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is a difference between a rotational torque at the time of starting rotation of the rotating shaft and a rotational force of the first motor, and the first motor and the second motor at the time of starting rotation of the rotating shaft;
  • the rotation shaft is rotated by both of them, the rotation torque of the rotation shaft is no longer applied to the second motor, it is determined that the rotation is steady, the second motor rotation is stopped, and the rotation shaft is rotated only by the first motor. It is characterized by making it.
  • the rotation system according to claim 9 is a first motor in which one of the motors is less than the rotation torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotation torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is a difference between a rotational torque at the time of starting rotation of the rotating shaft and a rotational force of the first motor, and the first motor and the second motor at the time of starting rotation of the rotating shaft;
  • the rotating shaft is rotated by both, and when the rotating shaft reaches a predetermined rotational speed, it is determined that the rotating shaft is in a steady state, the second motor rotation is stopped, and the rotating shaft is rotated only by the first motor.
  • the rotation system according to claim 10 is a first motor in which one of the motors is less than the rotation torque at the time of starting rotation of the rotation shaft but has a rotation force corresponding to the rotation torque at the time of steady rotation, and the other of the motors is ,
  • a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotating shaft and the rotational force of the first motor, the rotating shaft having a flywheel, and at the time of starting rotation of the rotating shaft, the first motor
  • the rotating shaft is rotated by both the first motor and the second motor, and after the rotating shaft starts to rotate steadily, the rotation of the second motor is stopped and the rotating shaft is rotated only by the first motor.
  • the rotation system according to claim 11 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotational shaft and the rotational force of the first motor, and the rotational shaft is a rotor of the generator or the rotation of the generator
  • the rotating shaft is rotated by both the first motor and the second motor at the time of starting rotation of the rotating shaft, and after the rotating shaft starts to rotate normally, the rotation of the second motor is stopped.
  • the rotating shaft is rotated only by the first motor, and power generation is performed by rotating the rotating shaft.
  • the rotation system according to claim 12 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is ,
  • a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotating shaft and the rotational force of the first motor, the rotating shaft having a flywheel, and at the time of starting rotation of the rotating shaft, the first motor
  • the rotation shaft is rotated by both the first motor and the second motor, the rotation torque of the rotation shaft is no longer applied to the second motor, so that the rotation is determined to be steady, the second motor rotation is stopped, and the first motor is stopped.
  • the rotating shaft is rotated only by the motor.
  • the rotation system according to claim 13 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force equivalent to the rotational torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotational shaft and the rotational force of the first motor, and the rotational shaft is a rotor of the generator or the rotation of the generator
  • the rotating shaft is rotated by both the first motor and the second motor at the time of starting rotation of the rotating shaft, and the rotation torque of the rotating shaft is not applied to the second motor. Judgment is made, the second motor rotation is stopped, the rotation shaft is rotated only by the first motor, and the rotation shaft is rotated to generate power.
  • the rotation system according to claim 14 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotary shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is ,
  • a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotating shaft and the rotational force of the first motor, the rotating shaft having a flywheel, and at the time of starting rotation of the rotating shaft, the first motor
  • the rotating shaft is rotated by both the first motor and the second motor.
  • the rotating shaft reaches a predetermined rotational speed, it is determined that the rotating shaft is in a steady state, the second motor is stopped, and only the first motor is used.
  • the rotating shaft is rotated.
  • the rotation system according to claim 15 is a first motor in which one of the motors is less than the rotation torque at the time of starting rotation of the rotation shaft but has a rotation force equivalent to the rotation torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotational shaft and the rotational force of the first motor, and the rotational shaft is a rotor of the generator or the rotation of the generator
  • the rotating shaft is rotated by both the first motor and the second motor at the time of starting rotation of the rotating shaft, and when the rotating shaft reaches a predetermined rotational speed, it is determined as steady rotation.
  • the rotation of the motor No. 2 is stopped, the rotation shaft is rotated only by the first motor, and the rotation shaft is rotated to generate electric power.
  • two motors having a rotational force equal to or greater than the rotational torque at the time of steady rotation of the rotary shaft are respectively rotated at both ends of the rotary shaft, and the rotational force of the two motors is Since synthesis is performed on the rotating shaft, the rotating shaft can be efficiently rotated with less electric power than when the rotating shaft is rotated by one motor.
  • the rotating shaft is rotated by both the first motor and the second motor, and after the rotating shaft starts to rotate normally, the second shaft Since the rotation of the motor is stopped and the rotation shaft is rotated only by the first motor, the rotation shaft can be rotated more reliably when a large rotation force is required, and conversely, only a predetermined rotation force is required. In this case, the rotating shaft can be efficiently rotated with an optimum rotational force.
  • the eighth, twelfth, and thirteenth inventions since the rotation torque of the rotating shaft is not applied to the second motor, it is determined that the rotation is steady, and the second motor is stopped. It is possible to prevent the motor 2 from rotating unnecessarily and to rotate the rotating shaft more efficiently.
  • the rotary shaft can be efficiently rotated at the time of steady rotation by providing the rotary shaft with the flywheel.
  • the rotating shaft is a rotor of a generator or connected to a rotor of a generator, and the rotating shaft Since the power is generated by rotating, the rotating shaft is rotated more reliably when a large rotational force is required. On the contrary, when only a predetermined rotational force is required, the rotating shaft is efficiently rotated with the optimal rotational force. Power can be generated more efficiently by rotating the shaft.
  • the rotation system in the embodiment of the present invention is a rotation system for rotating a rotation shaft having a load, and particularly has a motor on each side of the rotation shaft.
  • FIG. 1 is an explanatory diagram showing an example of the structure of a rotation system according to a first embodiment of the present invention.
  • a first motor 20 and a second motor 22 are connected to both ends of a rotating shaft 10 having a load 5 via shaft couplings 12 and 14, respectively.
  • the first motor 20 has a rotational force that is less than the rotational torque at the time of starting rotation of the rotary shaft 10 but is equivalent to the rotational torque at the time of steady rotation.
  • the steady rotation is a state in which the rotating shaft 10 rotates at a desired number of rotations.
  • the second motor 22 has a rotational force that is the difference between the rotational torque at the start-up rotation of the rotating shaft 10 and the rotational force of the first motor 20.
  • the first motor 20 having a rotational force of 0.6 is used.
  • the second motor 22 has a rotational force of 0.4.
  • the rotational forces of the first motor 20 and the second motor 22 are merely examples, and are not limited to these values.
  • the second motor 22 has a structure capable of stopping the rotation without disturbing the rotation of the rotating shaft 10 while the rotating shaft 10 is rotating.
  • the second motor 22 itself has a structure in which the rotor rotates idly without generating a rotational force and does not consume energy, or a clutch is provided so that the second motor 22 is released from the rotating shaft 10.
  • it is not limited by the structure.
  • the rotation system 1 having such a configuration, when the rotation is started with the rotation shaft 10 stopped (when starting rotation), the first motor 20 and the second motor provided on both sides of the rotation shaft 10 are used. The rotating shaft 10 is rotated by both of them. Then, after the rotation shaft 10 starts to rotate normally, the rotation of the second motor 22 is stopped, and the rotation shaft 10 is rotated only by the first motor 20.
  • the rotational torque of the rotating shaft 10 is not applied to the second motor 22 as a condition for stopping the second motor 22 by determining that the rotating shaft 10 has made steady rotation.
  • the first motor 20 and the second motor 22 may be motors having any structure as long as the above usage method is possible.
  • the rotation shaft 10 is rotated by both the first motor 20 and the second motor 22 during the start-up rotation of the rotation shaft 10, and the rotation shaft 10 is in a steady state.
  • the rotation of the second motor 22 is stopped, and the rotation shaft 10 is rotated only by the first motor 20, so that the rotation shaft 10 can be rotated more reliably when a large rotational force is required.
  • the rotational shaft can be efficiently rotated with the optimal rotational force.
  • the rotating shaft 10 can be rotated more efficiently. Moreover, even if it is determined that the rotation shaft 10 has reached a predetermined rotation speed and the rotation is steady and the second motor 22 is stopped, the second motor 22 is prevented from rotating unnecessarily. The rotating shaft 10 can be efficiently rotated.
  • FIG. 2 is an explanatory diagram showing an example of the structure of the rotation system according to the second embodiment of the present invention.
  • the rotation system 2 has a first motor 40 and a second motor 42 connected to both ends of a rotation shaft 30 provided with a generator 6 as a load via shaft couplings 32 and 34, respectively.
  • the first motor 40 has a rotational force that is less than the rotational torque at the time of starting rotation of the rotary shaft 30 but is equivalent to the rotational torque at the time of steady rotation.
  • the steady rotation is a state in which the rotating shaft 30 is rotated at a desired number of revolutions, which is necessary for efficiently generating power with the generator 6.
  • the second motor 42 has a rotational force that is the difference between the rotational torque at the start-up rotation of the rotating shaft 30 and the rotational force of the first motor 40.
  • the first motor 40 having a rotational force of 0.6 is used.
  • the second motor 42 has a rotational force of 0.4.
  • the rotational forces of the first motor 40 and the second motor 42 are merely examples, and are not limited to these values.
  • the second motor 42 has a structure capable of stopping the rotation without disturbing the rotation of the rotating shaft 30 while the rotating shaft 30 is rotating.
  • the second motor 42 itself has a structure in which the rotor rotates idly without generating rotational force and does not consume energy, or a clutch is provided to release the rotary shaft 30.
  • it is not limited by the structure.
  • the rotation system 2 having such a configuration, when the rotation is started in a state where the rotation shaft 30 is stopped (when starting rotation), the first motor 40 and the second motor provided on both sides of the rotation shaft 30 are used. The rotating shaft 30 is rotated with both of them. Then, after the rotating shaft 30 starts to rotate steadily, the rotation of the second motor 42 is stopped, and the rotating shaft 30 is rotated only by the first motor 40 so that the generator 6 can efficiently generate power. To.
  • the fact that the rotating torque of the rotating shaft 30 is no longer applied to the second motor 42 can be used.
  • the first motor 40 and the second motor 42 may be motors having any structure as long as the above usage method is possible.
  • the rotating shaft 30 is the rotor of the generator 6, and the rotating shaft 30 rotates to generate electric power.
  • the rotating shaft 30 is rotated more reliably and only a predetermined rotating force is required, the rotating shaft 30 can be efficiently rotated with the optimal rotating force, thereby generating power more efficiently.
  • FIG. 3 is an explanatory diagram showing an example of the structure of the rotation system according to the third embodiment of the present invention.
  • the rotating system 3 includes the generator 8 as a load, but does not include the generator 8 directly on the rotating shaft 50.
  • the flywheel 9 is provided at the center of the rotation shaft 50, both sides of the rotation shaft 50 are held via bearings 52 and 54, and shaft couplings 56 and 58 are respectively attached to both ends of the rotation shaft 50.
  • the 1st motor 60 and the 2nd motor 62 are connected via.
  • the first motor 60 has a rotational force that is less than the rotational torque at the time of starting rotation of the rotary shaft 50, but is equivalent to the rotational torque at the time of steady rotation.
  • the steady rotation is a state in which the rotating shaft 50 rotates at a desired number of rotations, which is necessary for efficiently generating power with the generator 8.
  • the second motor 62 has a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft 50 and the rotational force of the first motor 60.
  • the first motor 60 having a rotational force of 0.6 is used.
  • the second motor 62 has a rotational force of 0.4.
  • the rotational forces of the first motor 60 and the second motor 62 are merely examples, and are not limited to these values.
  • the second motor 62 has a structure capable of stopping the rotation without disturbing the rotation of the rotating shaft 50 while the rotating shaft 50 is rotating.
  • the second motor 62 itself has a structure in which the rotor rotates idly without generating a rotational force and does not consume energy, or a clutch is provided so as to be released from the rotating shaft 50.
  • it is not limited by the structure.
  • the rotation system 3 having such a configuration, when the rotation is started in a state where the rotation shaft 50 is stopped (during start-up rotation), the first motor 60 and the second motor provided on both sides of the rotation shaft 50 are used. The rotating shaft 50 is rotated by both of them. Then, after the rotation shaft 50 starts to rotate steadily, the rotation of the second motor 62 is stopped, the rotation shaft 50 is rotated only by the first motor 60 while receiving the assistance of the flywheel 9, and the generator 8 To generate electricity efficiently.
  • the fact that the rotation torque of the rotation shaft 50 is no longer applied to the second motor 62 can be used.
  • the first motor 60 and the second motor 62 may be motors having any structure as long as the above usage method is possible.
  • the rotating shaft 50 is connected to the rotor of the generator 8 via the flywheel 9 and the gear 8a, and the rotating shaft 50 rotates to generate power. Therefore, when a large rotational force is required, the rotational shaft 50 is rotated more reliably. On the contrary, when only a predetermined rotational force is required, the rotational shaft 50 is efficiently rotated with an optimal rotational force. Power generation can be performed efficiently.
  • the rotary shaft 50 can be efficiently rotated during steady rotation.
  • the flywheel 9 is not connected to the rotor of the generator 8 as in this embodiment, and the flywheel 9 is provided on the rotating shaft 50 separately from the generator 8, so that the rotating shaft 50 is connected to the flywheel 9. You may make it connect with the rotor of the generator 8 not through.
  • the type of the motor is not limited, but the various rotating shafts can be rotated more efficiently by using a DC motor as the motor.
  • FIG. 4 is an explanatory view showing an example of the structure of the rotation system of the fourth embodiment according to the present invention.
  • the rotation system 4 has a first motor 80 and a second motor 82 connected to both ends of a rotation shaft 70 provided with a generator 6 as a load via shaft couplings 72 and 74, respectively. Both the first motor 80 and the second motor 82 are DC motors.
  • the first motor 80 is a motor having a rotational force equal to or greater than the rotational torque at the time of steady rotation of the rotating shaft 70
  • the second motor 82 is also at the time of steady rotation of the rotating shaft 70, similar to the first motor 80.
  • This is a motor having a rotational force equal to or greater than the rotational torque.
  • both ends of the rotating shaft 70 are rotated by the first motor 80 and the second motor 82 via the shaft couplings 72 and 74, respectively, and the rotational force of the first motor 80 and the second motor 82 is increased.
  • the composition is such that they are combined on the rotating shaft 70.
  • the first motor 80 and the second motor 82 are connected in series to form one DC power source 84. In order to measure the voltage and current of the power source, the DC power source 84 portion is connected.
  • a voltmeter 86 and an ammeter 88 are provided.
  • the same torque is used for the rotation torque of the rotating shaft 70 and the rotation force of the first motor 80 and the second motor 82.
  • the rotational forces of the first motor 80 and the second motor 82 are merely examples, and are not limited to this configuration.
  • first motor 80 and the second motor 82 DC motors rated for an input of 1.5 V are used, and the first motor 80 and the second motor 82 are used.
  • the motor used was used as the generator 6.
  • the first motor 80 is connected to the rotating shaft 70 of the generator 6, and the rotating shaft 70 of the generator 6 is rotated only by the first motor 80 connected to the DC power supply 84.
  • the input of the first motor 80 is 0.6V with a voltage of 1.5V and a current of 0.44A, and the rotating shaft 70 of the generator 6 is rotated. It was possible to make it.
  • the two motors of the first motor 80 and the second motor 82 having a rotational force equal to or larger than the rotational torque at the time of steady rotation of the rotation shaft 70 are: Since both ends of the rotating shaft 70 are rotated and the rotational forces of the two motors are combined on the rotating shaft 70, the rotating shaft can be efficiently rotated with less power than when the rotating shaft is rotated by one motor. Can do.

Abstract

Provided is a rotation system in which a rotating shaft can be rotated with less electric power than when the rotating shaft is rotated by a single motor. This is achieved by combining the rotational force of two motors on the rotating shaft. The system is characterized by comprising two motors having a rotational force commensurate with at least a rotational torque achieved during a steady rotation of the rotating shaft, the two motors rotating the two ends of the rotating shaft, the rotational forces of the two motors being combined on the rotating shaft, the two motors being DC motors, the two motors being connected in series by power source wiring, and the two motors being driven by a single DC power source.

Description

回転システムRotating system
 本発明は、負荷を有する回転軸を回転させるための回転システムに関する。 The present invention relates to a rotating system for rotating a rotating shaft having a load.
 従来より、負荷を有する回転軸を、複数のモータで回転させる方法が提案されている。その1つの方法として、回転軸の両側にそれぞれ別々のモータを設け、回転軸を回転させるものがある。例えば、特許文献1に示すコンベヤ自動除雪装置がある。この従来のコンベヤ自動除雪装置では、回転軸の両側にメカクラッチを設け、このメカクラッチを介して2つのモータを備えている。この2つのモータは、一方が高速モータであり、他方が低速モータである。そして、通常運転時は、高速モータ側のメカクラッチを接続して、高速モータで回転軸を回転させる(通常回転時は、低速モータ側のメカクラッチが解除され、低速モータは回転軸には接続されていない)。他方、除雪運転時は、高速モータ側のメカクラッチが解除され、低速モータ側のメカクラッチを接続して、低速モータで回転軸を回転させるようにしている。これにより、モータの効率的な使用を行っている。 Conventionally, a method of rotating a rotating shaft having a load with a plurality of motors has been proposed. As one of the methods, a separate motor is provided on each side of the rotating shaft, and the rotating shaft is rotated. For example, there is a conveyor automatic snow removal device shown in Patent Document 1. In this conventional automatic conveyor snow removal device, mechanical clutches are provided on both sides of the rotating shaft, and two motors are provided via the mechanical clutches. One of these two motors is a high-speed motor, and the other is a low-speed motor. During normal operation, connect the mechanical clutch on the high-speed motor side and rotate the rotating shaft with the high-speed motor (during normal rotation, the mechanical clutch on the low-speed motor side is released and the low-speed motor is connected to the rotating shaft. It has not been). On the other hand, during the snow removal operation, the mechanical clutch on the high-speed motor side is released, the mechanical clutch on the low-speed motor side is connected, and the rotating shaft is rotated by the low-speed motor. Thereby, the efficient use of the motor is performed.
特開2000-289837号公報JP 2000-289837 A
 しかしながら、従来の回転システムであるコンベヤ自動除雪装置では、回転軸が所望の回転数(定常回転)になってしまえば、それぞれのモータの一番効率的な回転が可能になり、モータの効率的な使用が可能になるが、起動回転時にはモータには大きな起動負荷が掛かり、かえって効率的に回転させられない。 However, in the conventional automatic conveyor snow removal device, which is a conventional rotation system, the most efficient rotation of each motor becomes possible if the rotation shaft reaches the desired number of rotations (steady rotation). However, a large starting load is applied to the motor during the starting rotation, and the motor cannot be rotated efficiently.
 本発明は、このような事情に鑑みてなされたもので、1つのモータで回転軸を回転させた場合より少ない電力で回転軸を効率よく回転させることができる回転システムを提供することにある。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a rotating system that can efficiently rotate the rotating shaft with less power than when the rotating shaft is rotated by one motor.
 請求項1記載の回転システムは、回転軸の定常回転時の回転トルク分以上の回転力を有するモータを2つ備え、2つのモータで、回転軸の両端をそれぞれ回転させ、2つのモータの回転力を回転軸上で合成することを特徴とする。 The rotation system according to claim 1 includes two motors having a rotational force equal to or greater than the rotational torque at the time of steady rotation of the rotation shaft, and the two motors rotate both ends of the rotation shaft, respectively. It is characterized by synthesizing forces on the rotation axis.
 請求項2記載の回転システムは、2つのモータがDCモータであり、2つのモータが電源配線において直列に接続され、1つの直流電源で2つのモータが駆動されることを特徴とする。 The rotation system according to claim 2 is characterized in that the two motors are DC motors, the two motors are connected in series in the power supply wiring, and the two motors are driven by one DC power supply.
 請求項3記載の回転システムは、回転軸に、フライホイールを備えることを特徴とする。 The rotation system according to claim 3 is characterized in that a rotary shaft is provided with a flywheel.
 請求項4記載の回転システムは、回転軸が、発電機の回転子であるか、または発電機の回転子に接続され、回転軸が回転することで発電が行われることを特徴とする。 The rotating system according to claim 4 is characterized in that the rotating shaft is a rotor of a generator or connected to the rotor of the generator, and power is generated by rotating the rotating shaft.
 請求項5記載の回転システムは、2つのモータがDCモータであり、2つのモータが電源配線において直列に接続され、1つの直流電源で2つのモータが駆動されると共に、回転軸に、フライホイールを備えることを特徴とする。 In the rotating system according to claim 5, the two motors are DC motors, the two motors are connected in series in the power supply wiring, the two motors are driven by one DC power source, and the flywheel is mounted on the rotating shaft. It is characterized by providing.
 請求項6記載の回転システムは、2つのモータがDCモータであり、2つのモータが電源配線において直列に接続され、1つの直流電源で2つのモータが駆動されると共に、回転軸が、発電機の回転子であるか、または発電機の回転子に接続され、回転軸が回転することで発電が行われることを特徴とする。 The rotation system according to claim 6, wherein the two motors are DC motors, the two motors are connected in series in the power supply wiring, the two motors are driven by one DC power supply, and the rotating shaft is a generator Or is connected to the rotor of a generator, and the rotating shaft rotates to generate power.
 請求項7記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸の起動回転時に、第1のモータと第2のモータと両方で回転軸を回転させ、回転軸が定常回転し始めた後に、第2のモータの回転を停止させ、第1のモータのみで回転軸を回転させることを特徴とする。 The rotation system according to claim 7 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is a difference between a rotational torque at the time of starting rotation of the rotating shaft and a rotational force of the first motor, and the first motor and the second motor at the time of starting rotation of the rotating shaft; The rotating shaft is rotated by both, and after the rotating shaft starts to rotate steadily, the rotation of the second motor is stopped, and the rotating shaft is rotated only by the first motor.
 請求項8記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸の起動回転時に、第1のモータと第2のモータとの両方で回転軸を回転させ、第2のモータに回転軸の回転トルクが掛からなくなったことで定常回転と判断し、第2のモータ回転を停止させ、第1のモータのみで回転軸を回転させることを特徴とする。 The rotation system according to claim 8 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is a difference between a rotational torque at the time of starting rotation of the rotating shaft and a rotational force of the first motor, and the first motor and the second motor at the time of starting rotation of the rotating shaft; The rotation shaft is rotated by both of them, the rotation torque of the rotation shaft is no longer applied to the second motor, it is determined that the rotation is steady, the second motor rotation is stopped, and the rotation shaft is rotated only by the first motor. It is characterized by making it.
 請求項9記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸の起動回転時に、第1のモータと第2のモータとの両方で回転軸を回転させ、回転軸が所定の回転速度に達したことで定常回転と判断し、第2のモータ回転を停止させ、第1のモータのみで回転軸を回転させることを特徴とする。 The rotation system according to claim 9 is a first motor in which one of the motors is less than the rotation torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotation torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is a difference between a rotational torque at the time of starting rotation of the rotating shaft and a rotational force of the first motor, and the first motor and the second motor at the time of starting rotation of the rotating shaft; The rotating shaft is rotated by both, and when the rotating shaft reaches a predetermined rotational speed, it is determined that the rotating shaft is in a steady state, the second motor rotation is stopped, and the rotating shaft is rotated only by the first motor. And
 請求項10記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸にフライホイールを備え、回転軸の起動回転時に、第1のモータと第2のモータと両方で回転軸を回転させ、回転軸が定常回転し始めた後に、第2のモータの回転を停止させ、第1のモータのみで回転軸を回転させることを特徴とする。 The rotation system according to claim 10 is a first motor in which one of the motors is less than the rotation torque at the time of starting rotation of the rotation shaft but has a rotation force corresponding to the rotation torque at the time of steady rotation, and the other of the motors is , A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotating shaft and the rotational force of the first motor, the rotating shaft having a flywheel, and at the time of starting rotation of the rotating shaft, the first motor The rotating shaft is rotated by both the first motor and the second motor, and after the rotating shaft starts to rotate steadily, the rotation of the second motor is stopped and the rotating shaft is rotated only by the first motor. And
 請求項11記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸が発電機の回転子であるか、または発電機の回転子に接続され、回転軸の起動回転時に、第1のモータと第2のモータと両方で回転軸を回転させ、回転軸が定常回転し始めた後に、第2のモータの回転を停止させ、第1のモータのみで回転軸を回転させ、回転軸が回転することで発電が行われることを特徴とする。 The rotation system according to claim 11 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotational shaft and the rotational force of the first motor, and the rotational shaft is a rotor of the generator or the rotation of the generator The rotating shaft is rotated by both the first motor and the second motor at the time of starting rotation of the rotating shaft, and after the rotating shaft starts to rotate normally, the rotation of the second motor is stopped. The rotating shaft is rotated only by the first motor, and power generation is performed by rotating the rotating shaft.
 請求項12記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸にフライホイールを備え、回転軸の起動回転時に、第1のモータと第2のモータとの両方で回転軸を回転させ、第2のモータに回転軸の回転トルクが掛からなくなったことで定常回転と判断し、第2のモータ回転を停止させ、第1のモータのみで回転軸を回転させることを特徴とする。 The rotation system according to claim 12 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is , A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotating shaft and the rotational force of the first motor, the rotating shaft having a flywheel, and at the time of starting rotation of the rotating shaft, the first motor The rotation shaft is rotated by both the first motor and the second motor, the rotation torque of the rotation shaft is no longer applied to the second motor, so that the rotation is determined to be steady, the second motor rotation is stopped, and the first motor is stopped. The rotating shaft is rotated only by the motor.
 請求項13記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸が発電機の回転子であるか、または発電機の回転子に接続され、回転軸の起動回転時に、第1のモータと第2のモータとの両方で回転軸を回転させ、第2のモータに回転軸の回転トルクが掛からなくなったことで定常回転と判断し、第2のモータ回転を停止させ、第1のモータのみで回転軸を回転させ、回転軸が回転することで発電が行われることを特徴とする。 The rotation system according to claim 13 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotating shaft but has a rotational force equivalent to the rotational torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotational shaft and the rotational force of the first motor, and the rotational shaft is a rotor of the generator or the rotation of the generator The rotating shaft is rotated by both the first motor and the second motor at the time of starting rotation of the rotating shaft, and the rotation torque of the rotating shaft is not applied to the second motor. Judgment is made, the second motor rotation is stopped, the rotation shaft is rotated only by the first motor, and the rotation shaft is rotated to generate power.
 請求項14記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸にフライホイールを備え、回転軸の起動回転時に、第1のモータと第2のモータとの両方で回転軸を回転させ、回転軸が所定の回転速度に達したことで定常回転と判断し、第2のモータ回転を停止させ、第1のモータのみで回転軸を回転させることを特徴とする。 The rotation system according to claim 14 is a first motor in which one of the motors is less than the rotational torque at the time of starting rotation of the rotary shaft but has a rotational force corresponding to the rotational torque at the time of steady rotation, and the other of the motors is , A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotating shaft and the rotational force of the first motor, the rotating shaft having a flywheel, and at the time of starting rotation of the rotating shaft, the first motor The rotating shaft is rotated by both the first motor and the second motor. When the rotating shaft reaches a predetermined rotational speed, it is determined that the rotating shaft is in a steady state, the second motor is stopped, and only the first motor is used. The rotating shaft is rotated.
 請求項15記載の回転システムは、モータの一方が、回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、モータの他方が、回転軸の起動回転時の回転トルクと第1のモータの回転力との差分の回転力を有する第2のモータであり、回転軸が発電機の回転子であるか、または発電機の回転子に接続され、回転軸の起動回転時に、第1のモータと第2のモータとの両方で回転軸を回転させ、回転軸が所定の回転速度に達したことで定常回転と判断し、第2のモータ回転を停止させ、第1のモータのみで回転軸を回転させ、回転軸が回転することで発電が行われることを特徴とする。 The rotation system according to claim 15 is a first motor in which one of the motors is less than the rotation torque at the time of starting rotation of the rotation shaft but has a rotation force equivalent to the rotation torque at the time of steady rotation, and the other of the motors is A second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotational shaft and the rotational force of the first motor, and the rotational shaft is a rotor of the generator or the rotation of the generator The rotating shaft is rotated by both the first motor and the second motor at the time of starting rotation of the rotating shaft, and when the rotating shaft reaches a predetermined rotational speed, it is determined as steady rotation. The rotation of the motor No. 2 is stopped, the rotation shaft is rotated only by the first motor, and the rotation shaft is rotated to generate electric power.
 請求項1~請求項15の発明によれば、回転軸の定常回転時の回転トルク分以上の回転力を有する2つのモータで、回転軸の両端をそれぞれ回転させ、2つのモータの回転力を回転軸上で合成することから、1つのモータで回転軸を回転させた場合より少ない電力で回転軸を効率よく回転させることができる。 According to the first to fifteenth aspects of the present invention, two motors having a rotational force equal to or greater than the rotational torque at the time of steady rotation of the rotary shaft are respectively rotated at both ends of the rotary shaft, and the rotational force of the two motors is Since synthesis is performed on the rotating shaft, the rotating shaft can be efficiently rotated with less electric power than when the rotating shaft is rotated by one motor.
 請求項7~請求項15の発明によれば、回転軸の起動回転時に、第1のモータと第2のモータと両方で回転軸を回転させ、回転軸が定常回転し始めた後に、第2のモータの回転を停止させ、第1のモータのみで回転軸を回転させることから、大きな回転力が必要な時にはより確実に回転軸を回転させることができ、逆に所定の回転力のみでよい場合には、最適な回転力で効率的に回転軸を回転させることができる。 According to the seventh to fifteenth aspects of the present invention, at the time of starting rotation of the rotating shaft, the rotating shaft is rotated by both the first motor and the second motor, and after the rotating shaft starts to rotate normally, the second shaft Since the rotation of the motor is stopped and the rotation shaft is rotated only by the first motor, the rotation shaft can be rotated more reliably when a large rotation force is required, and conversely, only a predetermined rotation force is required. In this case, the rotating shaft can be efficiently rotated with an optimum rotational force.
 請求項8、請求項12及び請求項13の発明によれば、第2のモータに回転軸の回転トルクが掛からなくなったことで定常回転と判断し、第2のモータが停止することから、第2のモータが不必要に回転することを抑え、より効率的に回転軸を回転させることができる。 According to the eighth, twelfth, and thirteenth inventions, since the rotation torque of the rotating shaft is not applied to the second motor, it is determined that the rotation is steady, and the second motor is stopped. It is possible to prevent the motor 2 from rotating unnecessarily and to rotate the rotating shaft more efficiently.
 請求項9、請求項14及び請求項15の発明によれば、回転軸が所定の回転速度に達したことで定常回転と判断し、第2のモータが停止することから、第2のモータが不必要に回転することを抑え、より効率的に回転軸を回転させることができる。 According to the invention of claim 9, claim 14 and claim 15, it is determined that the rotation axis has reached a predetermined rotation speed, so that the rotation is steady, and the second motor is stopped. Unnecessary rotation can be suppressed and the rotating shaft can be rotated more efficiently.
 請求項3、請求項5、請求項10、請求項12及び請求項14の発明によれば、回転軸にフライホイールを備えることで、定常回転時に効率的に回転軸を回転させることができる。 According to the invention of claim 3, claim 5, claim 10, claim 12 and claim 14, the rotary shaft can be efficiently rotated at the time of steady rotation by providing the rotary shaft with the flywheel.
 請求項4、請求項6、請求項11、請求項13及び請求項15の発明によれば、回転軸が、発電機の回転子であるか、または発電機の回転子に接続され、回転軸が回転することで発電が行われることから、大きな回転力が必要な時にはより確実に回転軸を回転させ、逆に所定の回転力のみでよい場合には、最適な回転力で効率的に回転軸を回転させ、より効率的に発電を行うことができる。 According to the invention of claim 4, claim 6, claim 11, claim 13 and claim 15, the rotating shaft is a rotor of a generator or connected to a rotor of a generator, and the rotating shaft Since the power is generated by rotating, the rotating shaft is rotated more reliably when a large rotational force is required. On the contrary, when only a predetermined rotational force is required, the rotating shaft is efficiently rotated with the optimal rotational force. Power can be generated more efficiently by rotating the shaft.
本発明に係る第1の実施例の回転システムの構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the rotation system of 1st Example which concerns on this invention. 本発明に係る第2の実施例の回転システムの構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the rotation system of 2nd Example which concerns on this invention. 本発明に係る第3の実施例の回転システムの構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the rotation system of 3rd Example which concerns on this invention. 本発明に係る第4の実施例の回転システムの構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the rotation system of the 4th Example which concerns on this invention.
 本発明の形態における回転システムは、負荷を有する回転軸を回転させるための回転システムで、特に回転軸の両側にそれぞれモータを有するものである。 The rotation system in the embodiment of the present invention is a rotation system for rotating a rotation shaft having a load, and particularly has a motor on each side of the rotation shaft.
 以下、本発明の形態について図面を参照しながら具体的に説明する。図1は、本発明に係る第1の実施例の回転システムの構造の一例を示す説明図である。図1において、回転システム1は、負荷5を備えた回転軸10の両端に、それぞれ軸継手12,14を介して第1のモータ20及び第2のモータ22が接続されている。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of the structure of a rotation system according to a first embodiment of the present invention. In FIG. 1, in the rotating system 1, a first motor 20 and a second motor 22 are connected to both ends of a rotating shaft 10 having a load 5 via shaft couplings 12 and 14, respectively.
 第1のモータ20は、回転軸10の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有するものである。ここで、定常回転とは、回転軸10が所望の回転数で回転する状態のことである。一方、第2のモータ22は、回転軸10の起動回転時の回転トルクと第1のモータ20の回転力との差分の回転力を有するものである。 The first motor 20 has a rotational force that is less than the rotational torque at the time of starting rotation of the rotary shaft 10 but is equivalent to the rotational torque at the time of steady rotation. Here, the steady rotation is a state in which the rotating shaft 10 rotates at a desired number of rotations. On the other hand, the second motor 22 has a rotational force that is the difference between the rotational torque at the start-up rotation of the rotating shaft 10 and the rotational force of the first motor 20.
 例えば、回転軸10の起動回転時の回転トルクを1.0とし、定常回転時の回転トルクを0.4とした場合、第1のモータ20には回転力が0.6のものを用い、第2のモータ22には回転力が0.4のものを用いるようにする。この第1のモータ20と第2のモータ22の回転力は、あくまでも例示で、この値に限られるものではない。 For example, when the rotational torque at the starting rotation of the rotary shaft 10 is 1.0 and the rotational torque at the steady rotation is 0.4, the first motor 20 having a rotational force of 0.6 is used. The second motor 22 has a rotational force of 0.4. The rotational forces of the first motor 20 and the second motor 22 are merely examples, and are not limited to these values.
 尚、第2のモータ22は、回転軸10が回転している最中に、回転軸10の回転を妨げることなく回転を停止させることが可能な構造を有している。具体的には、第2のモータ22自身が回転力を生まずにエネルギーを消耗しない状態で回転子が空回りするような構造であったり、またはクラッチを設けて回転軸10から解除されるようにしてもよく、その構造によって限定されるものではない。 The second motor 22 has a structure capable of stopping the rotation without disturbing the rotation of the rotating shaft 10 while the rotating shaft 10 is rotating. Specifically, the second motor 22 itself has a structure in which the rotor rotates idly without generating a rotational force and does not consume energy, or a clutch is provided so that the second motor 22 is released from the rotating shaft 10. However, it is not limited by the structure.
 そして、このような構成の回転システム1では、回転軸10が停止した状態で回転を開始させる場合(起動回転時)、回転軸10の両側に設けられた第1のモータ20と第2のモータ22との両方で回転軸10を回転させる。そして、回転軸10が定常回転し始めた後、第2のモータ22の回転を停止させ、第1のモータ20のみで回転軸10を回転させるようにする。 In the rotation system 1 having such a configuration, when the rotation is started with the rotation shaft 10 stopped (when starting rotation), the first motor 20 and the second motor provided on both sides of the rotation shaft 10 are used. The rotating shaft 10 is rotated by both of them. Then, after the rotation shaft 10 starts to rotate normally, the rotation of the second motor 22 is stopped, and the rotation shaft 10 is rotated only by the first motor 20.
 尚、回転軸10が定常回転になったと判断し第2のモータ22を停止させる条件としては、第2のモータ22に回転軸10の回転トルクが掛からなくなったことを用いることができる。また、他には、回転軸10が所定の回転速度に達したことで定常回転と判断する方法もある。尚、他の方法で、定常回転を検出するようにしてもよい。また、第1のモータ20及び第2のモータ22は、上記のような使用方法が可能であれば、どのような構造のモータであってもかまわない。 In addition, it can be used that the rotational torque of the rotating shaft 10 is not applied to the second motor 22 as a condition for stopping the second motor 22 by determining that the rotating shaft 10 has made steady rotation. In addition, there is another method for determining that the rotating shaft 10 is in a steady rotation when the rotating shaft 10 reaches a predetermined rotation speed. The steady rotation may be detected by other methods. Further, the first motor 20 and the second motor 22 may be motors having any structure as long as the above usage method is possible.
 以上のように、本実施例における回転システム1によれば、回転軸10の起動回転時に、第1のモータ20と第2のモータ22と両方で回転軸10を回転させ、回転軸10が定常回転し始めた後に、第2のモータ22の回転を停止させ、第1のモータ20のみで回転軸10を回転させることから、大きな回転力が必要な時にはより確実に回転軸10を回転させることができ、逆に所定の回転力のみでよい場合には、最適な回転力で効率的に回転軸を回転させることができる。 As described above, according to the rotation system 1 of the present embodiment, the rotation shaft 10 is rotated by both the first motor 20 and the second motor 22 during the start-up rotation of the rotation shaft 10, and the rotation shaft 10 is in a steady state. After the rotation starts, the rotation of the second motor 22 is stopped, and the rotation shaft 10 is rotated only by the first motor 20, so that the rotation shaft 10 can be rotated more reliably when a large rotational force is required. On the contrary, when only a predetermined rotational force is required, the rotational shaft can be efficiently rotated with the optimal rotational force.
 また、第2のモータ22に回転軸10の回転トルクが掛からなくなったことで定常回転と判断し、第2のモータ22を停止させることで、第2のモータ22が不必要に回転することを抑え、より効率的に回転軸10を回転させることができる。また、回転軸10が所定の回転速度に達したことで定常回転と判断し、第2のモータ22を停止させるようにしても、第2のモータ22が不必要に回転することを抑え、より効率的に回転軸10を回転させることができる。 Further, it is determined that the second motor 22 is in a steady state rotation because the rotation torque of the rotary shaft 10 is no longer applied to the second motor 22, and the second motor 22 is stopped so that the second motor 22 rotates unnecessarily. Therefore, the rotating shaft 10 can be rotated more efficiently. Moreover, even if it is determined that the rotation shaft 10 has reached a predetermined rotation speed and the rotation is steady and the second motor 22 is stopped, the second motor 22 is prevented from rotating unnecessarily. The rotating shaft 10 can be efficiently rotated.
 実施例1では、回転軸10で回転させるものとして負荷5として、各種の回転物を想定しているが、より具体的に示すのが、本実施例である。以下、本発明の形態について図面を参照しながら具体的に説明する。図2は、本発明に係る第2の実施例の回転システムの構造の一例を示す説明図である。図2において、回転システム2は、負荷として発電機6を備えた回転軸30の両端に、それぞれ軸継手32,34を介して第1のモータ40及び第2のモータ42が接続されている。 In the first embodiment, various rotating objects are assumed as the load 5 to be rotated by the rotating shaft 10, but the present embodiment shows more specifically. Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 2 is an explanatory diagram showing an example of the structure of the rotation system according to the second embodiment of the present invention. In FIG. 2, the rotation system 2 has a first motor 40 and a second motor 42 connected to both ends of a rotation shaft 30 provided with a generator 6 as a load via shaft couplings 32 and 34, respectively.
 第1のモータ40は、回転軸30の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有するものである。ここで、定常回転とは、発電機6で効率的に発電を行うために必要な、回転軸30が所望の回転数で回転する状態のことである。一方、第2のモータ42は、回転軸30の起動回転時の回転トルクと第1のモータ40の回転力との差分の回転力を有するものである。 The first motor 40 has a rotational force that is less than the rotational torque at the time of starting rotation of the rotary shaft 30 but is equivalent to the rotational torque at the time of steady rotation. Here, the steady rotation is a state in which the rotating shaft 30 is rotated at a desired number of revolutions, which is necessary for efficiently generating power with the generator 6. On the other hand, the second motor 42 has a rotational force that is the difference between the rotational torque at the start-up rotation of the rotating shaft 30 and the rotational force of the first motor 40.
 例えば、回転軸30の起動回転時の回転トルクを1.0とし、定常回転時の回転トルクを0.4とした場合、第1のモータ40には回転力が0.6のものを用い、第2のモータ42には回転力が0.4のものを用いるようにする。この第1のモータ40と第2のモータ42の回転力は、あくまでも例示で、この値に限られるものではない。 For example, when the rotational torque at the starting rotation of the rotary shaft 30 is 1.0 and the rotational torque at the steady rotation is 0.4, the first motor 40 having a rotational force of 0.6 is used. The second motor 42 has a rotational force of 0.4. The rotational forces of the first motor 40 and the second motor 42 are merely examples, and are not limited to these values.
 尚、第2のモータ42は、回転軸30が回転している最中に、回転軸30の回転を妨げることなく回転を停止させることが可能な構造を有している。具体的には、第2のモータ42自身が回転力を生まずにエネルギーを消耗しない状態で回転子が空回りするような構造であったり、またはクラッチを設けて回転軸30から解除されるようにしてもよく、その構造によって限定されるものではない。 The second motor 42 has a structure capable of stopping the rotation without disturbing the rotation of the rotating shaft 30 while the rotating shaft 30 is rotating. Specifically, the second motor 42 itself has a structure in which the rotor rotates idly without generating rotational force and does not consume energy, or a clutch is provided to release the rotary shaft 30. However, it is not limited by the structure.
 そして、このような構成の回転システム2では、回転軸30が停止した状態で回転を開始させる場合(起動回転時)、回転軸30の両側に設けられた第1のモータ40と第2のモータ42との両方で回転軸30を回転させる。そして、回転軸30が定常回転し始めた後、第2のモータ42の回転を停止させ、第1のモータ40のみで回転軸30を回転させ、発電機6での発電を効率的に行うようにする。 In the rotation system 2 having such a configuration, when the rotation is started in a state where the rotation shaft 30 is stopped (when starting rotation), the first motor 40 and the second motor provided on both sides of the rotation shaft 30 are used. The rotating shaft 30 is rotated with both of them. Then, after the rotating shaft 30 starts to rotate steadily, the rotation of the second motor 42 is stopped, and the rotating shaft 30 is rotated only by the first motor 40 so that the generator 6 can efficiently generate power. To.
 尚、回転軸30が定常回転になったと判断し第2のモータ42を停止させる条件としては、第2のモータ42に回転軸30の回転トルクが掛からなくなったことを用いることができる。また、他には、回転軸30が所定の回転速度に達したことで定常回転と判断する方法もある。尚、他の方法で、定常回転を検出するようにしてもよい。また、第1のモータ40及び第2のモータ42は、上記のような使用方法が可能であれば、どのような構造のモータであってもかまわない。 It should be noted that, as a condition for determining that the rotating shaft 30 has made steady rotation and stopping the second motor 42, the fact that the rotating torque of the rotating shaft 30 is no longer applied to the second motor 42 can be used. In addition, there is also a method for determining that the rotating shaft 30 has reached steady rotation when the rotating shaft 30 has reached a predetermined rotational speed. The steady rotation may be detected by other methods. Further, the first motor 40 and the second motor 42 may be motors having any structure as long as the above usage method is possible.
 以上のように、本実施例における回転システム2によれば、回転軸30が、発電機6の回転子であり、回転軸30が回転することで発電が行われることから、大きな回転力が必要な時にはより確実に回転軸30を回転させ、逆に所定の回転力のみでよい場合には、最適な回転力で効率的に回転軸30を回転させ、より効率的に発電を行うことができる。 As described above, according to the rotation system 2 in the present embodiment, the rotating shaft 30 is the rotor of the generator 6, and the rotating shaft 30 rotates to generate electric power. When the rotating shaft 30 is rotated more reliably and only a predetermined rotating force is required, the rotating shaft 30 can be efficiently rotated with the optimal rotating force, thereby generating power more efficiently. .
 実施例1及び実施例2では、回転軸10及び回転軸30に直接負荷になるものを設けるようにしているが、そのような構造ではない例を本実施例では示す。以下、本発明の形態について図面を参照しながら具体的に説明する。図3は、本発明に係る第3の実施例の回転システムの構造の一例を示す説明図である。図3において、回転システム3は、負荷としては発電機8を備えるが、回転軸50に直接発電機8を備えていない。回転システム3では、まず、回転軸50の中央にフライホイール9が設けられ、回転軸50の両側がベアリング52,54を介して保持され、その回転軸50の両端に、それぞれ軸継手56,58を介して第1のモータ60及び第2のモータ62が接続されている。 In the first and second embodiments, the rotary shaft 10 and the rotary shaft 30 are directly provided with loads. However, in this embodiment, an example that does not have such a structure is shown. Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 3 is an explanatory diagram showing an example of the structure of the rotation system according to the third embodiment of the present invention. In FIG. 3, the rotating system 3 includes the generator 8 as a load, but does not include the generator 8 directly on the rotating shaft 50. In the rotation system 3, first, the flywheel 9 is provided at the center of the rotation shaft 50, both sides of the rotation shaft 50 are held via bearings 52 and 54, and shaft couplings 56 and 58 are respectively attached to both ends of the rotation shaft 50. The 1st motor 60 and the 2nd motor 62 are connected via.
 そして、フライホイール9の外周に当接してフライホイール9の回転を発電機8に伝える歯車8aを備える発電機8が設けられている。 And the generator 8 provided with the gearwheel 8a which contact | abuts to the outer periphery of the flywheel 9 and transmits rotation of the flywheel 9 to the generator 8 is provided.
 第1のモータ60は、回転軸50の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有するものである。ここで、定常回転とは、発電機8で効率的に発電を行うために必要な、回転軸50が所望の回転数で回転する状態のことである。一方、第2のモータ62は、回転軸50の起動回転時の回転トルクと第1のモータ60の回転力との差分の回転力を有するものである。 The first motor 60 has a rotational force that is less than the rotational torque at the time of starting rotation of the rotary shaft 50, but is equivalent to the rotational torque at the time of steady rotation. Here, the steady rotation is a state in which the rotating shaft 50 rotates at a desired number of rotations, which is necessary for efficiently generating power with the generator 8. On the other hand, the second motor 62 has a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft 50 and the rotational force of the first motor 60.
 例えば、回転軸50の起動回転時の回転トルクを1.0とし、定常回転時の回転トルクを0.4とした場合、第1のモータ60には回転力が0.6のものを用い、第2のモータ62には回転力が0.4のものを用いるようにする。この第1のモータ60と第2のモータ62の回転力は、あくまでも例示で、この値に限られるものではない。 For example, when the rotational torque at the starting rotation of the rotating shaft 50 is 1.0 and the rotational torque at the steady rotation is 0.4, the first motor 60 having a rotational force of 0.6 is used. The second motor 62 has a rotational force of 0.4. The rotational forces of the first motor 60 and the second motor 62 are merely examples, and are not limited to these values.
 尚、第2のモータ62は、回転軸50が回転している最中に、回転軸50の回転を妨げることなく回転を停止させることが可能な構造を有している。具体的には、第2のモータ62自身が回転力を生まずにエネルギーを消耗しない状態で回転子が空回りするような構造であったり、またはクラッチを設けて回転軸50から解除されるようにしてもよく、その構造によって限定されるものではない。 The second motor 62 has a structure capable of stopping the rotation without disturbing the rotation of the rotating shaft 50 while the rotating shaft 50 is rotating. Specifically, the second motor 62 itself has a structure in which the rotor rotates idly without generating a rotational force and does not consume energy, or a clutch is provided so as to be released from the rotating shaft 50. However, it is not limited by the structure.
 そして、このような構成の回転システム3では、回転軸50が停止した状態で回転を開始させる場合(起動回転時)、回転軸50の両側に設けられた第1のモータ60と第2のモータ62との両方で回転軸50を回転させる。そして、回転軸50が定常回転し始めた後、第2のモータ62の回転を停止させ、フライホイール9の補助を受けつつ、第1のモータ60のみで回転軸50を回転させ、発電機8での発電を効率的に行うようにする。 In the rotation system 3 having such a configuration, when the rotation is started in a state where the rotation shaft 50 is stopped (during start-up rotation), the first motor 60 and the second motor provided on both sides of the rotation shaft 50 are used. The rotating shaft 50 is rotated by both of them. Then, after the rotation shaft 50 starts to rotate steadily, the rotation of the second motor 62 is stopped, the rotation shaft 50 is rotated only by the first motor 60 while receiving the assistance of the flywheel 9, and the generator 8 To generate electricity efficiently.
 尚、回転軸50が定常回転になったと判断し第2のモータ62を停止させる条件としては、第2のモータ62に回転軸50の回転トルクが掛からなくなったことを用いることができる。また、他には、回転軸50が所定の回転速度に達したことで定常回転と判断する方法もある。尚、他の方法で、定常回転を検出するようにしてもよい。また、第1のモータ60及び第2のモータ62は、上記のような使用方法が可能であれば、どのような構造のモータであってもかまわない。 It should be noted that, as a condition for stopping the second motor 62 after determining that the rotation shaft 50 has been in steady rotation, the fact that the rotation torque of the rotation shaft 50 is no longer applied to the second motor 62 can be used. In addition, there is also a method for determining that the rotation shaft 50 has reached a predetermined rotation speed when the rotation shaft 50 has reached a predetermined rotation speed. The steady rotation may be detected by other methods. Further, the first motor 60 and the second motor 62 may be motors having any structure as long as the above usage method is possible.
 以上のように、本実施例における回転システム3によれば、回転軸50がフライホイール9及び歯車8aを介して発電機8の回転子に接続され、回転軸50が回転することで発電が行われることから、大きな回転力が必要な時にはより確実に回転軸50を回転させ、逆に所定の回転力のみでよい場合には、最適な回転力で効率的に回転軸50を回転させ、より効率的に発電を行うことができる。 As described above, according to the rotation system 3 in the present embodiment, the rotating shaft 50 is connected to the rotor of the generator 8 via the flywheel 9 and the gear 8a, and the rotating shaft 50 rotates to generate power. Therefore, when a large rotational force is required, the rotational shaft 50 is rotated more reliably. On the contrary, when only a predetermined rotational force is required, the rotational shaft 50 is efficiently rotated with an optimal rotational force. Power generation can be performed efficiently.
 また、回転軸50にフライホイール9を備えることで、定常回転時に効率的に回転軸50を回転させることができる。尚、本実施例のようにフライホイール9を発電機8の回転子と繋げないで、フライホイール9を発電機8とは別に回転軸50に設けるようにして、回転軸50をフライホイール9を介さず発電機8の回転子と接続するようにしてもよい。 Also, by providing the rotary shaft 50 with the flywheel 9, the rotary shaft 50 can be efficiently rotated during steady rotation. The flywheel 9 is not connected to the rotor of the generator 8 as in this embodiment, and the flywheel 9 is provided on the rotating shaft 50 separately from the generator 8, so that the rotating shaft 50 is connected to the flywheel 9. You may make it connect with the rotor of the generator 8 not through.
 尚、上記の各実施例で、モータの種類を限定していないが、特にモータをDCモータにすることにより、より効率的に上記各種の回転軸を回転させることができる。 In each of the above embodiments, the type of the motor is not limited, but the various rotating shafts can be rotated more efficiently by using a DC motor as the motor.
 実施例1では、回転軸10で回転させる負荷5として、各種の回転物を想定しているが、より具体的に示すのが、本実施例である。以下、本発明の形態について図面を参照しながら具体的に説明する。図4は、本発明に係る第4の実施例の回転システムの構造の一例を示す説明図である。図4において、回転システム4は、負荷として発電機6を備えた回転軸70の両端に、それぞれ軸継手72,74を介して第1のモータ80及び第2のモータ82が接続されている。第1のモータ80と第2のモータ82とは、共にDCモータである。 In the first embodiment, various rotating objects are assumed as the load 5 to be rotated by the rotating shaft 10, but this embodiment shows more specifically. Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 4 is an explanatory view showing an example of the structure of the rotation system of the fourth embodiment according to the present invention. In FIG. 4, the rotation system 4 has a first motor 80 and a second motor 82 connected to both ends of a rotation shaft 70 provided with a generator 6 as a load via shaft couplings 72 and 74, respectively. Both the first motor 80 and the second motor 82 are DC motors.
 第1のモータ80は、回転軸70の定常回転時の回転トルク分以上の回転力を有するモータで、第2のモータ82も、第1のモータ80と同様に、回転軸70の定常回転時の回転トルク分以上の回転力を有するモータである。そして、軸継手72,74を介して、第1のモータ80と第2のモータ82とで、回転軸70の両端をそれぞれ回転させ、第1のモータ80と第2のモータ82の回転力を回転軸70上で合成するするような構成になっている。電源の接続については、第1のモータ80と第2のモータ82とを直列に接続して1つの直流電源84としている、尚、電源の電圧及び電流を測定するために、直流電源84部分に電圧計86と電流計88とが設けられている。 The first motor 80 is a motor having a rotational force equal to or greater than the rotational torque at the time of steady rotation of the rotating shaft 70, and the second motor 82 is also at the time of steady rotation of the rotating shaft 70, similar to the first motor 80. This is a motor having a rotational force equal to or greater than the rotational torque. Then, both ends of the rotating shaft 70 are rotated by the first motor 80 and the second motor 82 via the shaft couplings 72 and 74, respectively, and the rotational force of the first motor 80 and the second motor 82 is increased. The composition is such that they are combined on the rotating shaft 70. Regarding the connection of the power source, the first motor 80 and the second motor 82 are connected in series to form one DC power source 84. In order to measure the voltage and current of the power source, the DC power source 84 portion is connected. A voltmeter 86 and an ammeter 88 are provided.
 そして、例えば、回転軸70の定常回転時の回転トルクと、第1のモータ80及び第2のモータ82の回転力が、同一のものを用いるようにする。この第1のモータ80と第2のモータ82の回転力は、あくまでも例示で、この構成に限られるものではない。 Then, for example, the same torque is used for the rotation torque of the rotating shaft 70 and the rotation force of the first motor 80 and the second motor 82. The rotational forces of the first motor 80 and the second motor 82 are merely examples, and are not limited to this configuration.
 より具体的な実験結果を示すと、まず、第1のモータ80及び第2のモータ82として、入力1.5Vを定格とするDCモータを用い、第1のモータ80及び第2のモータ82に用いたモータを発電機6として用いた。 More specific experimental results will be described. First, as the first motor 80 and the second motor 82, DC motors rated for an input of 1.5 V are used, and the first motor 80 and the second motor 82 are used. The motor used was used as the generator 6.
 まず、図4とは異なり、第1のモータ80のみを発電機6の回転軸70に接続し、直流電源84を接続した第1のモータ80のみで発電機6の回転軸70を回転させた結果を示すと、第1のモータ80の入力(電圧計86及び電流計88の測定値)が電圧1.5Vで電流が0.44Aの0.66Wで、発電機6の回転軸70を回転させることが可能であった。 First, unlike FIG. 4, only the first motor 80 is connected to the rotating shaft 70 of the generator 6, and the rotating shaft 70 of the generator 6 is rotated only by the first motor 80 connected to the DC power supply 84. As a result, the input of the first motor 80 (measured values of the voltmeter 86 and the ammeter 88) is 0.6V with a voltage of 1.5V and a current of 0.44A, and the rotating shaft 70 of the generator 6 is rotated. It was possible to make it.
 これに対し、図4の構成のように、第1のモータ80及び第2のモータ82を発電機6の回転軸70の両側にそれぞれ接続して回転させたところ、電圧計86で測定された電圧が1.5Vで、電流計88で測定された電流が0.23Aの0.345Wで、発電機6の回転軸70を回転させることが可能であった。 On the other hand, when the first motor 80 and the second motor 82 were connected to both sides of the rotating shaft 70 of the generator 6 and rotated as shown in the configuration of FIG. It was possible to rotate the rotating shaft 70 of the generator 6 with a voltage of 1.5 V and a current measured by the ammeter 88 of 0.345 W of 0.23 A.
 ここで、第1のモータ80のみの場合と、第1のモータ80と第2のモータ82との2個のモータを用いた場合を比較すると、同一の発電機6を回したにも関わらず、0.66Wと0.345Wとの差が生じている。すなわち、入力電力を約2分の1に抑えることができている。このように、本実施例における回転システム4によれば、回転軸70の定常回転時の回転トルク分以上の回転力を有する第1のモータ80と第2のモータ82との2つのモータで、回転軸70の両端をそれぞれ回転させ、2つのモータの回転力を回転軸70上で合成することから、1つのモータで回転軸を回転させた場合より少ない電力で回転軸を効率よく回転させることができる。 Here, when the case of using only the first motor 80 and the case of using two motors of the first motor 80 and the second motor 82 are compared, although the same generator 6 is rotated, There is a difference between 0.66 W and 0.345 W. That is, the input power can be suppressed to about one half. As described above, according to the rotation system 4 in the present embodiment, the two motors of the first motor 80 and the second motor 82 having a rotational force equal to or larger than the rotational torque at the time of steady rotation of the rotation shaft 70 are: Since both ends of the rotating shaft 70 are rotated and the rotational forces of the two motors are combined on the rotating shaft 70, the rotating shaft can be efficiently rotated with less power than when the rotating shaft is rotated by one motor. Can do.
 以上のように、本発明によれば、1つのモータで回転軸を回転させた場合より少ない電力で回転軸を効率よく回転させることができる回転システムを提供することができる。 As described above, according to the present invention, it is possible to provide a rotating system that can efficiently rotate the rotating shaft with less power than when the rotating shaft is rotated by one motor.
1・・・・回転システム
2・・・・回転システム
3・・・・回転システム
4・・・・回転システム
5・・・・負荷
6・・・・発電機
8・・・・発電機
8a・・・歯車
9・・・・フライホイール
10・・・回転軸
12・・・軸継手
14・・・軸継手
20・・・第1のモータ
22・・・第2のモータ
30・・・回転軸
32・・・軸継手
34・・・軸継手
40・・・第1のモータ
42・・・第2のモータ
50・・・回転軸
52・・・ベアリング
54・・・ベアリング
56・・・軸継手
58・・・軸継手
60・・・第1のモータ
62・・・第2のモータ
70・・・回転軸
72・・・軸継手
74・・・軸継手
80・・・第1のモータ
82・・・第2のモータ
84・・・直流電源
86・・・電圧計
88・・・電流計
DESCRIPTION OF SYMBOLS 1 ... Rotary system 2 ... Rotary system 3 ... Rotary system 4 ... Rotary system 5 ... Load 6 ... Generator 8 ... Generator 8a ... ··· Gear 9 ··· Flywheel 10 · · · Rotary shaft 12 · · · Joint 14 · · · Joint 20 · · · First motor 22 · · · Second motor 30 · · · Rotary shaft 32 ... Shaft coupling 34 ... Shaft coupling 40 ... First motor 42 ... Second motor 50 ... Rotating shaft 52 ... Bearing 54 ... Bearing 56 ... Shaft coupling 58 ... shaft coupling 60 ... first motor 62 ... second motor 70 ... rotating shaft 72 ... shaft coupling 74 ... shaft coupling 80 ... first motor 82 ..Second motor 84 ... DC power supply 86 ... Voltmeter 88 ... Ammeter

Claims (15)

  1.  負荷を有する回転軸を回転させるための回転システムにおいて、
    該回転軸の定常回転時の回転トルク分以上の回転力を有するモータを2つ備え、
    該2つのモータで、該回転軸の両端をそれぞれ回転させ、該2つのモータの回転力を該回転軸上で合成することを特徴とする回転システム。
    In a rotating system for rotating a rotating shaft having a load,
    Including two motors having a rotational force equal to or greater than the rotational torque during steady rotation of the rotary shaft;
    A rotating system characterized in that both ends of the rotating shaft are rotated by the two motors and the rotational forces of the two motors are combined on the rotating shaft.
  2.  前記2つのモータがDCモータであり、該2つのモータが電源配線において直列に接続され、1つの直流電源で該2つのモータが駆動されることを特徴とする請求項1記載の回転システム。 The rotation system according to claim 1, wherein the two motors are DC motors, the two motors are connected in series in a power supply wiring, and the two motors are driven by one DC power source.
  3.  前記回転軸に、フライホイールを備えることを特徴とする請求項1記載の回転システム。 The rotation system according to claim 1, wherein the rotation shaft includes a flywheel.
  4.  前記回転軸が、発電機の回転子であるか、または発電機の回転子に接続され、該回転軸が回転することで発電が行われることを特徴とする請求項1記載の回転システム。 The rotating system according to claim 1, wherein the rotating shaft is a rotor of a generator or connected to a rotor of a generator, and the rotating shaft rotates to generate electric power.
  5.  前記2つのモータがDCモータであり、該2つのモータが電源配線において直列に接続され、1つの直流電源で該2つのモータが駆動されると共に、
    前記回転軸に、フライホイールを備えることを特徴とする請求項1記載の回転システム。
    The two motors are DC motors, the two motors are connected in series in a power supply wiring, the two motors are driven by one DC power source,
    The rotation system according to claim 1, wherein the rotation shaft includes a flywheel.
  6.  前記2つのモータがDCモータであり、該2つのモータが電源配線において直列に接続され、1つの直流電源で該2つのモータが駆動されると共に、
    前記回転軸が、発電機の回転子であるか、または発電機の回転子に接続され、該回転軸が回転することで発電が行われることを特徴とする請求項1記載の回転システム。
    The two motors are DC motors, the two motors are connected in series in a power supply wiring, the two motors are driven by one DC power source,
    The rotating system according to claim 1, wherein the rotating shaft is a rotor of a generator or connected to a rotor of the generator, and the rotating shaft rotates to generate electric power.
  7.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸の起動回転時に、該第1のモータと該第2のモータと両方で該回転軸を回転させ、該回転軸が定常回転し始めた後に、該第2のモータの回転を停止させ、該第1のモータのみで該回転軸を回転させることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    At the time of starting rotation of the rotary shaft, the rotary shaft is rotated by both the first motor and the second motor, and after the rotary shaft starts to rotate normally, the rotation of the second motor is stopped. 2. The rotating system according to claim 1, wherein the rotating shaft is rotated only by the first motor.
  8.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸の起動回転時に、該第1のモータと該第2のモータとの両方で該回転軸を回転させ、
    該第2のモータに該回転軸の回転トルクが掛からなくなったことで該定常回転と判断し、該第2のモータ回転を停止させ、該第1のモータのみで該回転軸を回転させることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    At the time of starting rotation of the rotating shaft, the rotating shaft is rotated by both the first motor and the second motor,
    The rotation torque of the rotation shaft is no longer applied to the second motor, so that the steady rotation is determined, the second motor rotation is stopped, and the rotation shaft is rotated only by the first motor. The rotation system according to claim 1, wherein:
  9.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸の起動回転時に、該第1のモータと該第2のモータとの両方で該回転軸を回転させ、
    該回転軸が所定の回転速度に達したことで該定常回転と判断し、該第2のモータ回転を停止させ、該第1のモータのみで該回転軸を回転させることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    At the time of starting rotation of the rotating shaft, the rotating shaft is rotated by both the first motor and the second motor,
    The rotation shaft is determined to be the steady rotation when it reaches a predetermined rotation speed, the second motor rotation is stopped, and the rotation shaft is rotated only by the first motor. The rotation system according to 1.
  10.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸にフライホイールを備え、
    該回転軸の起動回転時に、該第1のモータと該第2のモータと両方で該回転軸を回転させ、該回転軸が定常回転し始めた後に、該第2のモータの回転を停止させ、該第1のモータのみで該回転軸を回転させることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    The rotary shaft is provided with a flywheel,
    At the time of starting rotation of the rotary shaft, the rotary shaft is rotated by both the first motor and the second motor, and after the rotary shaft starts to rotate normally, the rotation of the second motor is stopped. 2. The rotating system according to claim 1, wherein the rotating shaft is rotated only by the first motor.
  11.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸が発電機の回転子であるか、または発電機の回転子に接続され、
    該回転軸の起動回転時に、該第1のモータと該第2のモータと両方で該回転軸を回転させ、該回転軸が定常回転し始めた後に、該第2のモータの回転を停止させ、該第1のモータのみで該回転軸を回転させ、該回転軸が回転することで発電が行われることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    The rotating shaft is the rotor of the generator or connected to the rotor of the generator;
    At the time of starting rotation of the rotary shaft, the rotary shaft is rotated by both the first motor and the second motor, and after the rotary shaft starts to rotate normally, the rotation of the second motor is stopped. The rotating system according to claim 1, wherein the rotating shaft is rotated only by the first motor, and the rotating shaft rotates to generate electric power.
  12.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸にフライホイールを備え、
    該回転軸の起動回転時に、該第1のモータと該第2のモータとの両方で該回転軸を回転させ、
    該第2のモータに該回転軸の回転トルクが掛からなくなったことで該定常回転と判断し、該第2のモータ回転を停止させ、該第1のモータのみで該回転軸を回転させることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    The rotary shaft is provided with a flywheel,
    At the time of starting rotation of the rotating shaft, the rotating shaft is rotated by both the first motor and the second motor,
    The rotation torque of the rotation shaft is no longer applied to the second motor, so that the steady rotation is determined, the second motor rotation is stopped, and the rotation shaft is rotated only by the first motor. The rotation system according to claim 1, wherein:
  13.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸が発電機の回転子であるか、または発電機の回転子に接続され、
    該回転軸の起動回転時に、該第1のモータと該第2のモータとの両方で該回転軸を回転させ、
    該第2のモータに該回転軸の回転トルクが掛からなくなったことで該定常回転と判断し、該第2のモータ回転を停止させ、該第1のモータのみで該回転軸を回転させ、該回転軸が回転することで発電が行われることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    The rotating shaft is the rotor of the generator or connected to the rotor of the generator;
    At the time of starting rotation of the rotating shaft, the rotating shaft is rotated by both the first motor and the second motor,
    The rotation torque of the rotary shaft is no longer applied to the second motor, so that the steady rotation is determined, the second motor rotation is stopped, the rotary shaft is rotated only by the first motor, The rotating system according to claim 1, wherein power generation is performed by rotating the rotating shaft.
  14.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸にフライホイールを備え、
    該回転軸の起動回転時に、該第1のモータと該第2のモータとの両方で該回転軸を回転させ、
    該回転軸が所定の回転速度に達したことで該定常回転と判断し、該第2のモータ回転を停止させ、該第1のモータのみで該回転軸を回転させることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    The rotary shaft is provided with a flywheel,
    At the time of starting rotation of the rotating shaft, the rotating shaft is rotated by both the first motor and the second motor,
    The rotation shaft is determined to be the steady rotation when it reaches a predetermined rotation speed, the second motor rotation is stopped, and the rotation shaft is rotated only by the first motor. The rotation system according to 1.
  15.  前記モータの一方が、前記回転軸の起動回転時の回転トルクには満たないが定常回転時の回転トルク分の回転力を有する第1のモータで、
    前記モータの他方が、該回転軸の起動回転時の回転トルクと該第1のモータの回転力との差分の回転力を有する第2のモータであり、
    該回転軸が発電機の回転子であるか、または発電機の回転子に接続され、
    該回転軸の起動回転時に、該第1のモータと該第2のモータとの両方で該回転軸を回転させ、
    該回転軸が所定の回転速度に達したことで該定常回転と判断し、該第2のモータ回転を停止させ、該第1のモータのみで該回転軸を回転させ、該回転軸が回転することで発電が行われることを特徴とする請求項1記載の回転システム。
    One of the motors is a first motor that has a rotational force that is less than the rotational torque at the time of starting rotation of the rotating shaft but is equivalent to the rotational torque at the time of steady rotation,
    The other of the motors is a second motor having a rotational force that is the difference between the rotational torque at the time of starting rotation of the rotary shaft and the rotational force of the first motor;
    The rotating shaft is the rotor of the generator or connected to the rotor of the generator;
    At the time of starting rotation of the rotating shaft, the rotating shaft is rotated by both the first motor and the second motor,
    When the rotation shaft reaches a predetermined rotation speed, it is determined as the steady rotation, the second motor rotation is stopped, the rotation shaft is rotated only by the first motor, and the rotation shaft rotates. The rotating system according to claim 1, wherein power generation is performed.
PCT/JP2011/071075 2010-09-20 2011-09-15 Rotation system WO2012039339A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010210306 2010-09-20
JP2010-210306 2010-09-20
JP2011199041A JP2012090519A (en) 2010-09-20 2011-09-13 Rotation system
JP2011-199041 2011-09-13

Publications (1)

Publication Number Publication Date
WO2012039339A1 true WO2012039339A1 (en) 2012-03-29

Family

ID=45873826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071075 WO2012039339A1 (en) 2010-09-20 2011-09-15 Rotation system

Country Status (2)

Country Link
JP (1) JP2012090519A (en)
WO (1) WO2012039339A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201535A (en) * 2018-05-17 2019-11-21 長司 古川 System of generating electricity while maintaining constant number of revolution of flywheel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461615B2 (en) * 2015-01-09 2019-01-30 株式会社栗田工業 Rotating system
CN106558941B (en) * 2015-09-30 2019-04-12 徐夫子 Kenel flywheel energy storage and the power device of resonating and resonance kenel flywheel energy storage and dynamical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486116A (en) * 1977-12-19 1979-07-09 Toyo Electric Mfg Co Ltd Electric rolling stock controller
JPS62281705A (en) * 1986-05-30 1987-12-07 Hitachi Ltd Slip control method for electric rolling stock
JPH06121500A (en) * 1992-10-07 1994-04-28 Rootasu Res Kk Motor
JPH0919116A (en) * 1995-04-27 1997-01-17 Satake Eng Co Ltd Induction motor driver and method for its starting operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486116A (en) * 1977-12-19 1979-07-09 Toyo Electric Mfg Co Ltd Electric rolling stock controller
JPS62281705A (en) * 1986-05-30 1987-12-07 Hitachi Ltd Slip control method for electric rolling stock
JPH06121500A (en) * 1992-10-07 1994-04-28 Rootasu Res Kk Motor
JPH0919116A (en) * 1995-04-27 1997-01-17 Satake Eng Co Ltd Induction motor driver and method for its starting operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201535A (en) * 2018-05-17 2019-11-21 長司 古川 System of generating electricity while maintaining constant number of revolution of flywheel

Also Published As

Publication number Publication date
JP2012090519A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
Ragheb et al. Wind turbine gearbox technologies
WO2008090853A1 (en) Rotating electric machine
US20130165288A1 (en) Drive system for a wind turbine
JP6734279B2 (en) Permanent magnet machine
WO2015099596A1 (en) A method of locking a planetary gearing when driving a vehicle
CN104736887B (en) Wind turbine machine gearbox
US20100129222A1 (en) Wind turbine drive shaft connection arrangement
WO2012039339A1 (en) Rotation system
US11855573B2 (en) Large dynamic range electric motor
WO2009100720A3 (en) Device for limiting torque in a drivetrain of a wind power plant
CN103671845B (en) Wind turbine gearbox test bench connecting device and wind turbine gearbox testing stand
WO2008004266A2 (en) Twin variable speed asyncronous generator
CN105257794B (en) Pulley for alternator
CN105317971A (en) Pulley for alternator
WO2008118037A1 (en) Electric motor with an electromechanical transmission ratio converter
CN105257805B (en) Pulley for alternator
JP5752365B2 (en) Power generation system
JP2010101388A (en) Bearing housing and spindle supporting structure of wind-driven generator
WO2012093492A1 (en) Test equipment for rotary machine
CN105782409B (en) Torsion shaft device, gear-box and wind-driven generator
CN208587423U (en) A kind of phase modifier rotor turning brake gear and large capacity phase modifier
CN108217490A (en) The hoist engine drum apparatus that rimless combination type permanent-magnet linear synchronous motor directly drives
WO2022242486A1 (en) An electric drive unit for a vehicle
JP2019103250A (en) Electric vehicle
JP2002327678A (en) Wind power generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826784

Country of ref document: EP

Kind code of ref document: A1