WO2012039250A1 - Nonaqueous electrolyte for secondary battery and lithium secondary battery - Google Patents

Nonaqueous electrolyte for secondary battery and lithium secondary battery Download PDF

Info

Publication number
WO2012039250A1
WO2012039250A1 PCT/JP2011/069828 JP2011069828W WO2012039250A1 WO 2012039250 A1 WO2012039250 A1 WO 2012039250A1 JP 2011069828 W JP2011069828 W JP 2011069828W WO 2012039250 A1 WO2012039250 A1 WO 2012039250A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
secondary battery
compound
electrolyte solution
Prior art date
Application number
PCT/JP2011/069828
Other languages
French (fr)
Japanese (ja)
Inventor
稔彦 八幡
小野 三千夫
吉憲 金澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012039250A1 publication Critical patent/WO2012039250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous secondary battery and a lithium secondary battery containing the electrolyte, and more specifically, a non-aqueous secondary battery suitably used for a lithium secondary battery containing a specific silicon oligomer.
  • the present invention relates to an electrolytic solution for use and a lithium secondary battery using the same.
  • Lithium secondary batteries are used in personal computers, video cameras, mobile phones, and the like. As these electronic devices become more functional, batteries that serve as power sources are also required to have higher energy density. In recent years, against the background of global environmental issues such as reducing carbon dioxide emissions, the use of lithium secondary batteries has been studied in automotive power supply and natural energy storage applications, and cost, performance, and safety have been improved. There is a growing demand, and there is a need for improvements in electrolytes that enable them.
  • Japanese Patent Application Laid-Open No. 8-88023 discloses an electrolytic solution having a self-extinguishing property and a good charge / discharge performance, which contains a phosphate ester compound as an electrolyte in a conventional hydrocarbon solvent, and uses the same. Although a battery has been proposed, the flame retardancy is still not sufficient for practical use, and further improvement is necessary.
  • a technique for forming the electrolyte itself with a polymer electrolyte such as crosslinked polyether, polyphosphazene, or polysiloxane, which is a material that is difficult to burn is disclosed in, for example, JP-A-11-273733, JP-A-9-92331,
  • Various techniques disclosed in Japanese Patent Laid-Open No. 3-146559, Japanese Patent No. 3648447, and the like, and techniques using a flame-retardant ionic liquid as an electrolyte are disclosed in, for example, Japanese Patent No. 4045252 and Japanese Patent Laid-Open No. 2007-106849. It has been proposed in Japanese Laid-Open Patent Publication No. 2008-239514.
  • Japanese Patent Laid-Open No. 2002-25203 proposes a method of using polysiloxane having a specific structure as an inflammable liquid in an electrolytic solution. According to the method described in the official gazette, the electrolytic solution is difficult. Although the flammability is good and the lithium ion transport number is improved, there is still room for improvement in the ion conductivity due to the high viscosity of the electrolyte.
  • An object of the present invention is an electrolyte solution for a non-aqueous secondary battery that is flame-retardant and excellent in lithium ion conductivity, and is suitably used for a lithium secondary battery, and contains the electrolyte solution for the non-aqueous secondary battery
  • An object of the present invention is to provide a high-power lithium secondary battery.
  • the inventors have obtained a low-viscosity, high ionic conductivity, and flame-retardant electrolyte solution by using a silicon oligomer having a specific structure.
  • the inventors have found that a lithium secondary battery with high output and high safety can be obtained by using the electrolytic solution, and the present invention has been achieved.
  • the first aspect of the present invention is a styrene conversion number average molecular weight of 500 or more including a salt of a metal ion belonging to Group 1 or Group 2 of the Periodic Table and a partial structure represented by the following general formula (1).
  • R 1 represents a hydrocarbon group or —OR 2
  • —OR 2 represents an alkoxy group, a halogenated alkoxy group, or a substituent represented by the following general formula (2)
  • R 2 represents an alkyl group
  • R 2 represents a halogenated alkoxy group
  • R 2 represents a halogenated alkyl group
  • the siloxane oligomer has the following general formula (1-a), general formula (1-b), general formula (1-c), general formula (1-d), and general formula: A partial structure selected from the group consisting of (1-e), and the following general formula (1-a), general formula (1-b), general formula (1-c), and general formula (1-d): ) And a partial structure represented by the general formula (1-e), where xa, xb, xc, xd and xe are respectively, relative to the total amount of all partial structures contained in the siloxane oligomer.
  • Xa + xb is an electrolyte solution for a non-aqueous secondary battery according to the first aspect of the present invention, which is a siloxane oligomer having a total amount of 70 mol% to 100 mol%.
  • R 1 in the partial structure represented by the general formula (1) is a methyl group or —OR 2
  • —OR 2 is an ethoxy group or the following general formula (3): It is electrolyte solution for non-aqueous secondary batteries as described in the said 1st aspect or 2nd aspect of this invention which is group represented.
  • R 3 represents an alkyl group
  • R 4 and R 5 each independently represents an alkyl group or a hydrogen atom
  • R 4 and R 5 are linked to each other to form a ring. You may do it.
  • —OR 2 is a substituent represented by the general formula (2)
  • the siloxane The molar fraction of the substituent represented by the general formula (2) with respect to the total molar amount of R 1 and —OR 2 in the entire partial structure represented by the general formula (1) contained in the oligomer is 30 mol% or more and 75
  • the electrolyte solution for a non-aqueous secondary battery according to any one of the first to third aspects of the present invention, which is at most mol%.
  • R 1 in the general formula (1) is a linear or branched hydrocarbon group
  • —OR 2 is a linear or branched alkoxy group, linear or branched.
  • any one of the first to fifth aspects of the present invention wherein the content of the siloxane oligomer with respect to the total electrolyte solution is 20% by mass or more and 80% by mass or less. It is electrolyte solution for non-aqueous secondary batteries as described in above.
  • the salt of a metal ion belonging to Group 1 or Group 2 of the periodic table is a lithium salt. It is electrolyte solution for non-aqueous secondary batteries of description.
  • the eighth aspect of the present invention is the electrolyte solution for a non-aqueous secondary battery according to any one of the first to seventh aspects of the present invention, further comprising a non-aqueous organic solvent.
  • the siloxane oligomer is synthesized using an alkoxysilane compound and a hydroxycarboxylic acid in the presence of a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table.
  • the electrolyte solution for non-aqueous secondary batteries according to any one of the first to eighth aspects of the present invention obtained by the above.
  • the tenth aspect of the present invention is the electrolyte for a non-aqueous secondary battery according to any one of the first to ninth aspects of the present invention, further comprising a phosphorus compound.
  • the phosphorus compound is at least one selected from the group consisting of a phosphate ester compound, a phosphazene compound, a phosphonate ester compound, and a phosphite compound. It is electrolyte solution for non-aqueous secondary batteries as described in 10 aspects.
  • the twelfth aspect of the present invention is the electrolyte solution for a non-aqueous secondary battery according to the eleventh aspect of the present invention, wherein the phosphate ester compound is a compound represented by the following general formula (p1). is there.
  • Rp 11 , Rp 12 , and Rp 13 each independently represents an alkyl group or an aryl group.
  • the thirteenth aspect of the present invention is the electrolysis for a nonaqueous secondary battery according to the eleventh aspect of the present invention, wherein the phosphazene compound is a compound having a partial structure represented by the following general formula (p2). It is a liquid.
  • Rp 21 and Rp 22 each independently represent a halogen atom, an alkoxy group, or an aryloxy group.
  • n p 2 represents an integer of 1 or more.
  • the fourteenth aspect of the present invention is the electrolyte solution for a non-aqueous secondary battery according to the eleventh aspect of the present invention, wherein the phosphonate compound is a compound represented by the following general formula (p3). is there.
  • Rp 31 , Rp 32 , and Rp 33 each independently represents an alkyl group or an aryl group.
  • the fifteenth aspect of the present invention is the electrolyte solution for a non-aqueous secondary battery according to the eleventh aspect of the present invention, wherein the phosphite compound is a compound represented by the following general formula (p4). .
  • Rp 41 , Rp 42 , and Rp 43 each independently represents an alkyl group or an aryl group.
  • any one of the tenth to fifteenth aspects of the present invention wherein the content of the phosphorus compound with respect to the total electrolyte is 5% by mass or more and 40% by mass or less. It is electrolyte solution for non-aqueous secondary batteries as described in above.
  • a seventeenth aspect of the present invention there is provided a nonaqueous secondary battery electrolytic solution according to any one of the first to sixteenth aspects, and a positive electrode capable of inserting and releasing lithium ions. And a negative electrode capable of inserting and releasing lithium ions and dissolving and depositing lithium ions.
  • the present invention has the above-described configuration, an electrolyte for a non-aqueous secondary battery that has high ion conductivity, good lithium ion transport number, and is difficult to burn is provided.
  • a lithium secondary battery with high safety and high output can be provided.
  • a substituent atomic group
  • the substituent may be unsubstituted or may further have a substituent unless otherwise specified.
  • the alkyl group is used in a meaning including an unsubstituted alkyl group and an alkyl group further having a substituent. The same applies to other substituents (atomic groups).
  • an electrolyte for a non-aqueous secondary battery that is suitable for use in a lithium secondary battery that is flame retardant and excellent in lithium ion conductivity.
  • a high output lithium secondary battery can be provided by using the electrolyte solution for non-aqueous secondary batteries of the said invention.
  • Non-aqueous secondary battery electrolyte The non-aqueous secondary battery electrolyte of the present invention is a metal ion salt belonging to Group 1 or Group 2 of the periodic table, and a general formula (1) described below.
  • a siloxane oligomer having a number average molecular weight of 500 or more and 1500 or less (hereinafter, appropriately referred to as a specific siloxane oligomer) containing a partial structure represented.
  • the electrolyte solution for a non-aqueous secondary battery of the present invention is suitably used for a lithium ion battery.
  • each component contained in the electrolyte solution for non-aqueous secondary batteries of this invention is demonstrated sequentially.
  • the specific siloxane oligomer used in the present invention includes a partial structure represented by the following general formula (1), and the number average molecular weight in terms of styrene is required to be 500 or more and 1500 or less.
  • R 1 represents a hydrocarbon group or —OR 2
  • —OR 2 represents an alkoxy group, a halogenated alkoxy group, or a substituent represented by the following general formula (2):
  • OR 2 represents an alkoxy group
  • R 2 represents an alkyl group
  • —OR 2 represents a halogenated alkoxy group
  • R 2 represents a halogenated alkyl group.
  • the molar fraction of the group represented by the following general formula (2) with respect to the total molar amount of R 1 and —OR 2 in the total partial structure represented by the general formula (1) contained in the siloxane oligomer is 5 It is mol% or more and 100 mol% or less.
  • Q 1 represents an alkylene group
  • R 3 represents an alkyl group.
  • examples of the hydrocarbon group when R 1 in the general formula (1) represents a hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, and an aryl group.
  • R 1 represents an alkyl group
  • a preferable alkyl group is an alkyl group having 1 to 10 carbon atoms (such as methyl, ethyl, hexyl, or cyclohexyl), and is linear or branched having 1 to 6 carbon atoms.
  • a linear alkyl group having 1 to 3 carbon atoms is more preferable.
  • a preferred alkenyl group when R 1 represents an alkenyl group is an alkenyl group having 2 to 10 carbon atoms (such as vinyl, allyl, or -cyclohexenyl), and a linear or branched alkenyl group having 2 to 3 carbon atoms Is more preferable, and a preferable alkynyl group in the case of representing an alkynyl group is an alkynyl group having 1 to 10 carbon atoms (such as ethynyl or propynyl), more preferably a linear or branched alkynyl group having 2 to 3 carbon atoms.
  • a preferable aryl group in the case of representing an aryl group is an aryl group having 6 to 20 carbon atoms (such as phenyl or naphthyl), and more preferably an aryl group having 6 to 10 carbon atoms.
  • R 1 preferably has no ring structure, and from such a viewpoint, it is preferably a linear or branched hydrocarbon group. More specifically, R 1 is preferably a hydrocarbon group selected from a linear or branched alkyl group, a linear or branched alkenyl group, and a linear or branched alkynyl group.
  • R 1 represents -OR 2 in the case -OR 2 is an alkoxy group, the alkyl group represented by R 2, an alkyl group (methyl 1 to 10 carbon atoms, ethyl, or Butyl and the like), and a methyl group or an ethyl group is more preferable. That is, when —OR 2 is an alkoxy group, it is preferably a methoxy group or an ethoxy group. Also -OR 2, wherein R 1 and similarly, from the viewpoint of ion conductivity improvement, preferably a structure having no cyclic structure, R 2 in the -OR 2 is a straight or branched alkyl group It is preferable.
  • the halogenated alkyl group represented by R 2 is preferably a linear or halogenated alkyl group having 1 to 10 carbon atoms, such as methyl, ethyl, butyl, etc.
  • the hydrocarbon group represented by these alkyl groups may further have a substituent, and preferred substituents that can be introduced into the hydrocarbon group include a halogen atom, an alkyl group, an aryl group, and a heterocyclic group.
  • Cyano group nitro group, alkoxy group, silyloxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonyl Amino group, sulfamoylamino group, alkylsulfonylamino group, arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, alkylsulfinyl group, arylsulfinyl group,
  • substituent is an alkyl group, an aryl group, a cyano group, an alkoxy group, a silyloxy group, an alkoxycarbonyloxy group, or a fluorine atom.
  • R 1 and —OR 2 has a cyano group
  • —OR 2 has a fluoroalkyl group, and the like are more preferable.
  • the group represented by —OR 2 in the general formula (1) is a substituent represented by the general formula (2).
  • examples of the alkylene group represented by Q 1 include a linear or branched alkylene group such as a methylene group, an ethylene group, or a propylene group. These alkylene groups may have a substituent.
  • R 3 represents an alkyl group.
  • alkyl group examples include the same alkyl groups as those represented by R 2 in the general formula (1), and preferred examples are also the same.
  • the substituent represented by the general formula (2) is preferably a substituent represented by the following general formula (3).
  • R 4 and R 5 each independently represent an alkyl group or a hydrogen atom, preferably a methyl group or a hydrogen atom, and more preferably both R 4 and R 5 are hydrogen atoms.
  • R 4 and R 5 may be linked to each other to form a ring structure. Examples of the formed ring structure include a ring formed from a 5-membered ring to a 10-membered hydrocarbon (cyclopentane ring, Or a cyclohexane ring).
  • the substituents represented by the general formula (2) and the general formula (3) are one embodiment of —OR 2 which is the above-described substituent, and thus the general formula (2) and the general formula ( As in the case of —OR 2 , the substituent represented by 3) preferably has no ring structure in the structure of the substituent from the viewpoint of improving ionic conductivity. That is, in the substituent represented by the general formula (2), Q 1 is a linear or branched alkylene group, and R 3 represents a linear or branched alkyl group, represented by the general formula (3). In a preferred substituent, R 3 is a linear or branched alkyl group, and both R 4 and R 5 are hydrogen atoms.
  • the specific siloxane oligomer according to one embodiment of the present invention includes the following general formula (1-a), general formula (1-b), general formula (1-c), general formula (1-d), and general formula (1- Comprising a partial structure selected from the group consisting of 1-e).
  • the formula (1-a) represents an example of an embodiment of the partial structure represented by the general formula (1) that exists at the end of the specific siloxane oligomer
  • the formula (1-b) represents the formula (1-b)
  • the aspect which comprises the chain structure in the partial structure represented by 1) is shown.
  • the specific siloxane oligomer further has a branched structure containing at least one selected from the partial structures represented by the general formula (1-c), the general formula (1-d), and the general formula (1-e).
  • the general formula (1-a), the general formula (1-b), the general formula (1-c), the general formula (1-d), and the general formula (1-e) may be used.
  • the total amount of xa + xb is 70 mol% or more with respect to the total amount of all partial structures contained in the siloxane oligomer. It is preferable that it is 100 mol% or less from a viewpoint that the viscosity of a specific siloxane oligomer is maintained appropriately, and it is more preferable that xa + xb is 80 mol% or more.
  • the molar fraction of the branched partial structure is preferably 30 mol% or less, and more preferably 20 mol% or less.
  • xe is preferably 5 mol% or less.
  • the presence or absence of a branched structure or a crosslinked structure contained in the specific siloxane oligomer is confirmed by Si-NMR.
  • Specific examples [(Si-1) to (Si-8)] of the specific siloxane oligomer according to the present invention are confirmed by the content ratio of each substituent in the partial structure represented by the general formula (1) and Si-NMR measurement.
  • Specific branched siloxane oligomers that can be used in the present invention are not limited to the following exemplified compounds, although the branched mole fractions and the number average molecular weights obtained by styrene conversion by GPC measurement are listed.
  • the molecular weight (number average molecular weight in terms of styrene by GPC) of the specific siloxane oligomer according to the present invention needs to be 500 or more and 1,500 or less, and preferably 500 or more and 1,000 or less.
  • the content of the specific siloxane oligomer in the electrolytic solution of the present invention is preferably in the range of 30% by mass to 80% by mass, and more preferably in the range of 60% by mass to 80% by mass with respect to the total amount of the electrolytic solution.
  • Salt of metal ion belonging to Group 1 or Group 2 of periodic table Is appropriately selected.
  • Specific examples of salts of metal ions belonging to Group 1 or Group 2 of the Periodic Table include, for example, lithium salts, potassium salts, sodium salts, calcium salts, magnesium salts, and the like.
  • a lithium salt is preferable from the viewpoint of high output of the secondary battery.
  • the electrolytic solution of the present invention is used as an electrolyte of a non-aqueous electrolytic solution for a lithium secondary battery
  • a lithium salt may be selected as a metal ion salt.
  • the lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBRO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • Fluorine-containing organic lithium salt such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , Perfluoroalkanesulfonylimide salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 2 CF 3 )], Li [PF 3 (CF
  • Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) 2 is preferred, and lithium imide salts such as LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) 2 are further preferable.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the lithium salt used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the content of a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table in the electrolytic solution is added in an amount that provides a preferable salt concentration described below in the method for preparing the electrolytic solution.
  • the salt concentration is selected according to the purpose of the electrolytic solution, but is generally 10% by mass to 50% by mass, and more preferably 15% by mass to 30% by mass in the total mass of the electrolytic solution.
  • the electrolytic solution of the present invention first synthesizes a siloxane oligomer using (4) an alkoxysilane compound and (5) a hydroxycarboxylic acid, and then dissolves the lithium salt.
  • an electrolyte solution is prepared and in the presence of a lithium salt, a siloxane oligomer is synthesized by synthesizing a siloxane oligomer using the above (4) alkoxysilane compound and (5) hydroxycarboxylic acid. Any method of preparing an electrolytic solution containing a salt in one step can be used.
  • the (5) hydroxycarboxylic acid used as the acid catalyst is esterified by transesterification with (4) alkoxysilane to form HOQ 1 COOR. 2 is further exchanged with an alkoxy group on the oligomer and introduced onto the oligomer.
  • (6) another alcohol [HO-Q 2 -X] coexists, (6) the other alcohol is exchanged with the —OR 2 group in the (4) alkoxysilane compound and introduced into the oligomer. (Scheme 1).
  • the other alcohol [HO-Q 2 -X] may be allowed to coexist in the reaction solution from the beginning, or may be added after the condensation has progressed.
  • the (4) alkoxysilane compound is condensed using the (5) hydroxycarboxylic acid as an acid catalyst, and then a volatile component derived from an unreacted raw material and a generated volatile component Obtained by distillation.
  • the reaction temperature during the condensation reaction depends on the boiling point of the alcohol produced during the condensation, but is preferably in the range of room temperature to 200 ° C, more preferably in the range of 50 ° C to 170 ° C, and in the range of 80 ° C to 160 ° C. Is more preferable.
  • the volatile matter after the condensation reaction is usually distilled off at normal pressure and then preferably after reduced pressure and then reduced pressure heating.
  • the preferred heating temperature range during reduced pressure heating is from 60 ° C to 200 ° C. ° C, more preferably 100 ° C to 160 ° C.
  • the degree of vacuum is preferably gradually increased in the range of 600 mmHg to 5 mmHg, and finally the volatile matter is preferably distilled off in the range of 100 mmHg to 5 mmHg and a temperature of 100 ° C to 160 ° C. .
  • the temperature here is the temperature of the heat medium for heating the reactor.
  • Solvent Preparation of the electrolytic solution of the present invention can be performed without a solvent, but may be performed using a solvent.
  • the solvent when a solvent is used, the solvent may finally be completely distilled off, or it can be intentionally left as long as it does not adversely affect the characteristics of the lithium secondary battery.
  • preferably used solvents are organic synthesis such as alcohols such as methanol, ethanol and propanol, aprotic solvents such as acetonitrile, ethyl acetate, dimethylformamide, dimethyl sulfoxide, terahydrofuran (THF), and sulfolane.
  • THF terahydrofuran
  • sulfolane Can be selected from a wide range of solvents.
  • the amount of the solvent to be added is preferably in the range of 0.1 to 10 and more preferably in the range of 0.1 to 1 by mass ratio with respect to the siloxane oligomer.
  • the lithium salt concentration in the prepared electrolytic solution has an appropriate concentration range for exhibiting high ionic conductivity because the viscosity of the electrolytic solution increases as the concentration increases. .
  • a preferable concentration range is 10% by mass to 50% by mass, and more preferably 15% by mass to 30% by mass, based on the total mass of the electrolytic solution.
  • the viscosity of the electrolytic solution of the present invention is controlled by the above (1) raw material charge ratio and (2) reaction conditions, and is preferably 100 mPa ⁇ s or less, but in order to achieve both low volatility and 5 mPa ⁇ s to 50 mPa ⁇ s. The range of is more preferable.
  • hydroxycarboxylic acid (5-1) HOCH 2 COOH, (5-2) HOCH 2 CH 2 COOH, (5-3) HOCH (Me) COOH, (5-4) HOC (Me) 2 COOH, (5-5) HOCH 2 CH (Me) COOH, (5-6) HOCH 2 C (Me) 2 COOH, etc.
  • the electrolytic solution of the present invention may further contain a phosphorus compound.
  • a phosphorus compound in the electrolytic solution, the viscosity of the electrolytic solution is lowered, and thereby the ionic conductivity is improved and the flame retardancy is improved.
  • the improvement of charging / discharging characteristic was seen by using together the preferable phosphorus compound shown below. This is considered to be derived from the fact that the phosphorus compound forms a thin film (SEI) covering the negative electrode and the positive electrode during battery charging.
  • SEI thin film
  • Phosphorus compounds used in the electrolytic solution of the present invention include (7-1) phosphate ester compound, (7-2) phosphazene compound, (7-3) phosphonate ester compound, and (7-4) phosphite.
  • the compound etc. are mentioned, What is necessary is just to select 1 type (s) or 2 or more types from the group which consists of these compounds.
  • preferable phosphorus compounds will be described.
  • (7-1) Phosphate Compound As the phosphate compound, a compound represented by the following general formula (p1) is preferable.
  • Rp 11 , Rp 12 , and Rp 13 each independently represents an alkyl group or an aryl group.
  • two of Rp 11 , Rp 12 , and Rp 13 represent the same substituent, and more preferably, all three represent the same substituent.
  • Rp 11 , Rp 12 , and Rp 13 represents an alkyl group
  • an alkyl group having 1 to 8 carbon atoms is preferable.
  • Rp 11 , Rp 12 , and Rp 13 represents an aryl group
  • an aryl group having 6 to 12 carbon atoms is preferable.
  • Rp 11, Rp 12, and Rp 13, respectively it is preferable that an alkyl group.
  • the unsubstituted alkyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, or a tert-butyl group, and more preferably a methyl group, Or it is an ethyl group.
  • the substituted alkyl group is preferably a halogenated alkyl group, particularly preferably a fluorinated alkyl group, and more preferably a trifluoromethyl group, a difluoromethyl group, a monofluoromethyl group, a trifluoroethyl group, or a tetrafluoro group.
  • Propyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, or a tert-butyl group, and more preferably a
  • Preferable specific embodiment of the phosphate ester compound is a case where Rp 11 , R 12 and R 13 are each independently any of a methyl group, an ethyl group, a trifluoromethyl group, and a trifluoroethyl group. More preferably, all of Rp 11 , Rp 12 and Rp 13 are methyl groups or trifluoroethyl groups.
  • Rp 21 and Rp 22 each independently represent a halogen atom, an alkoxy group, or an aryloxy group.
  • n p 2 represents an integer of 1 or more, preferably an integer of 1 to 4, and particularly preferably 3 or 4.
  • Rp 21 and Rp 22 represents a halogen atom
  • a chlorine atom or a fluorine atom is preferable, and a fluorine atom is more preferable.
  • Rp 21 and Rp 22 represents an alkoxy group
  • an alkoxy group having 1 to 8 carbon atoms is preferable.
  • Rp 21 and Rp 22 represent an aryloxy group
  • an aryloxy group having 6 to 12 carbon atoms is preferable.
  • Rp 21, and Rp 22 are each independently preferably represents a halogen atom or an alkoxy group.
  • the alkoxy group preferably includes a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, and a halogenated alkyloxy group, more preferably a methoxy group, An ethoxy group or a halogenated alkyloxy group.
  • the halogenated alkyloxy group is more preferably a trifluoromethoxy group, a trifluoroethoxy group, or a tetrofluoropropyloxy group.
  • Rp 21 and Rp 22 may be the same or different, but an embodiment in which at least one of Rp 21 and Rp 22 is a fluorine atom is preferable.
  • the phosphazene compound having a partial structure represented by the general formula (P2) one of Rp 21 and Rp 22 is a fluorine atom, the other is a methoxy group, and Np2 is 3 or 4.
  • P2 phosphazene compound having a partial structure represented by the general formula (P2)
  • Rp 31 , Rp 32 , and Rp 33 each independently represents an alkyl group or an aryl group.
  • Rp 31 , Rp 32 , and Rp 33 may be the same or different, but an embodiment in which Rp 32 and Rp 33 are the same is preferable.
  • Rp 31 , Rp 32 , and Rp 332 represents an alkyl group, an alkyl group having 1 to 8 carbon atoms is preferable.
  • Rp 31 , Rp 32 , and Rp 332 represents an aryl group, an aryl group having 6 to 12 carbon atoms is preferable.
  • Rp 31, Rp 32, and Rp 33 are each independently preferably represents an alkyl group.
  • the unsubstituted alkyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and A tert-butyl group, more preferably a methyl group or an ethyl group.
  • the substituted alkyl group is preferably a halogenated alkyl group, particularly preferably a fluorinated alkyl group, and more preferably a trifluoromethyl group, difluoromethyl group, monofluoromethyl group, trifluoroethyl group, or tetra It is a fluoropropyl group.
  • a preferred specific embodiment of the phosphonate compound is a case where Rp 31 is a methyl group, and Rp 32 and Rp 33 are both trifluoroethyl groups.
  • Rp 41 , Rp 42 , and Rp 43 each independently represents an alkyl group or a phenyl group.
  • Rp 41 , Rp 42 , and Rp 43 may be the same or different, but an embodiment in which two of Rp 41 , Rp 42 , and Rp 43 are the same is preferable, and an embodiment in which three are the same substituents Is more preferable.
  • Rp 41 , Rp 42 , and Rp 432 represents an alkyl group, an alkyl group having 1 to 8 carbon atoms is preferable.
  • Rp 41 , Rp 42 , and Rp 432 represents an aryl group
  • an aryl group having 6 to 12 carbon atoms is preferable.
  • Rp 41, Rp 42, and Rp 43 are each independently a phenyl group, or preferably represents an alkyl group.
  • the unsubstituted alkyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and A tert-butyl group, more preferably a methyl group or an ethyl group.
  • the substituted alkyl group is preferably a halogenated alkyl group, particularly preferably a fluorinated alkyl group, and more preferably a trifluoromethyl group, difluoromethyl group, monofluoromethyl group, trifluoroethyl group, or tetra It is a fluoropropyl group.
  • a case Rp 41, Rp 42, and Rp 43 is independently a methyl group, an ethyl group, or a phenyl group, more preferably, Rp 41, Rp 42, And Rp 43 is all a methyl group.
  • Specific preferred examples of the phosphorus compound that can be used in the electrolytic solution of the present invention [Exemplary compounds (A1) to (A5)] are shown below, but the present invention is not limited thereto.
  • the said phosphorus compound may contain only 1 type in electrolyte solution, and may contain 2 or more types.
  • the phosphorus compound may be added at any timing in the process for preparing the electrolytic solution, but is preferably added simultaneously with the addition of the lithium salt.
  • the content of the phosphorus compound is desirably in the range of 5% by mass to 40% by mass with respect to the total electrolyte solution. Preferably, it is the range of 5 mass% or more and 30% mass% or less, Most preferably, it is the range of 10 mass% or more and 20 mass% or less.
  • the addition amount is 5% by mass or more, the effect of improving the flame retardancy due to the addition of the phosphorus compound is sufficiently exhibited, and when it is 40% by mass or less, the battery characteristics, particularly the charge / discharge characteristics are maintained well. .
  • the electrolyte solution of the present invention containing the specific siloxane oligomer is prepared as described above.
  • the electrolyte solution for a non-aqueous secondary battery of the present invention thus obtained is suitable for battery applications that require high ion conductivity because both the ion conductivity and the ion transport number are good. Among them, it is useful as an electrolytic solution for lithium secondary batteries.
  • the lithium secondary battery of the present invention comprises the electrolyte solution for a non-aqueous secondary battery of the present invention, a positive electrode capable of inserting and releasing lithium ions, and insertion and release or dissolution precipitation of lithium ions.
  • Possible negative electrode Possible negative electrode.
  • the battery may be configured to include a separator, a current collecting terminal, and an outer case disposed between the positive electrode and the negative electrode. If necessary, a protective element may be attached to at least one of the inside of the battery and the outside of the battery.
  • the configuration of the lithium secondary battery of the present invention will be described in detail.
  • Battery shape There is no restriction
  • the 2S / T value is preferably 100 or more, and more preferably 200 or more.
  • the lithium secondary battery of the present invention includes (a) an electrolytic solution, (b) a positive electrode / negative electrode electrode mixture, and (c) a separator basic member.
  • the lithium secondary battery of the present invention contains (a) the electrolyte solution for a non-aqueous battery of the present invention at least.
  • (A) Electrolytic Solution The electrolytic solution used for the lithium secondary battery of the present invention is the non-aqueous secondary battery of the present invention containing at least a specific siloxane oligomer and a lithium salt as an electrolyte salt, prepared by the method described above. Contains an electrolytic solution as a main component.
  • (a) electrolyte solution is an electrolyte solution for non-aqueous secondary batteries containing the specific siloxane oligomer as a non-aqueous electrolyte solution and a lithium salt as an electrolyte salt.
  • the electrolyte salt used in the electrolyte for a non-aqueous secondary battery is a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table, and the electrolyte for a non-aqueous secondary battery of the present invention. Those described in detail in the embodiment can be used.
  • the (a) electrolyte used in the lithium secondary battery of the present invention is further improved in performance by adding the following solvent and other additives to the extent that the effects of the present invention are not impaired.
  • the electrolyte solution prepared by the method of the present invention can be used as it is as an electrolyte solution for a lithium secondary battery. Further, it is a non-aqueous solution generally used for lithium secondary batteries.
  • An organic solvent may be added. Examples of such solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, and propylene glycol dialkyl ether.
  • Chain ethers such as polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether and polypropylene glycol monoalkyl ether, ethylene Glycol, propylene glycol, polyethylene glycol Polyhydric alcohols such as polypropylene glycol and glycerin, nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile and benzonitrile, esters such as carboxylic acid esters, aprotic polar substances such as dimethyl sulfoxide and sulfolane And the like.
  • alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether and polypropylene glycol
  • carbonate compounds such as ethylene carbonate and propylene carbonate
  • heterocyclic compounds such as 3-methyl-2-oxazolidinone
  • nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile
  • esters are particularly preferred. preferable. These may be used alone or in combination of two or more.
  • the preferable solvent property is that the boiling point at normal pressure (1 atm) is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, from the viewpoint of improving durability due to volatility resistance, and 270 ° C. More preferably, it is the above.
  • the addition amount when adding the organic solvent is preferably 1% by mass to 50% by mass, and more preferably 5% by mass to 40% by mass with respect to the electrolytic solution of the present invention. Since the electrolyte solution of the present invention has a good lithium transport number, it does not contain an organic solvent as compared with the conventional case, or even if it is added in a small amount, both excellent ionic conductivity and lithium transport number are compatible.
  • additives can be used in the electrolytic solution according to the present invention depending on the purpose so as to improve the performance of the battery as long as the effects of the present invention are not impaired.
  • a functional additive such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent; and the like may be used.
  • the compound used for the functional additive include, for example, biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran and the like.
  • Aromatic compounds such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; and 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6- Overcharge inhibitors such as fluorine-containing anisole compounds such as difluoroanisole and 3,5-difluoroanisole; Negative electrode coatings such as vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, trifluoropropylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, and cyclohexanedicarboxylic anhydride Forming agent; Ethylene sulfite, propylene sulfite, dimethyl sulfite, propane sultone, butane sultone,
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. Two or more of these may be used in combination. When two or more types are used in combination, it is particularly preferable to use cyclohexylbenzene or terphenyl (or a partially hydrogenated product thereof) together with t-butylbenzene or t-amylbenzene.
  • vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, succinic anhydride, and maleic anhydride are preferable. Two or more of these may be used in combination. When using 2 or more types together, the combination of vinylene carbonate and vinyl ethylene carbonate, fluoroethylene carbonate, succinic anhydride, or maleic anhydride is preferable.
  • ethylene sulfite, propylene sulfite, propane sultone, butane sultone, methyl methanesulfonate, and busulfan are preferable. Two or more of these may be used in combination.
  • the combined use of a negative electrode film forming agent and a positive electrode protective agent, and the combined use of an overcharge inhibitor, a negative electrode film forming agent, and a positive electrode protective agent are particularly preferable.
  • the content of the functional additive in the non-aqueous electrolyte solution is not particularly limited, but is preferably 0.01% by mass or more, particularly preferably 0.1% by mass or more, based on the whole non-aqueous electrolyte solution.
  • the upper limit is preferably 5% by mass or less, particularly preferably 3% by mass or less, and further preferably 2% by mass or less.
  • Electrode mixture The electrode mixture is obtained by applying a dispersion of an active material, a conductive agent, a binder, and a filler onto a current collector.
  • the active material is a positive electrode active material.
  • a negative electrode mixture in which the active material is a negative electrode active material.
  • the positive electrode active material, the negative electrode active material, the conductive agent, the binder, the filler, and the current collector that constitute the electrode mixture will be described.
  • (B-1) Cathode Active Material The electrolyte solution for a non-aqueous secondary battery of the present invention may contain a particulate cathode active material.
  • the positive electrode active material used in the present invention a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but a lithium-containing transition metal oxide is preferably used.
  • the lithium-containing transition metal oxide preferably used as the positive electrode active material includes lithium-containing Ti, lithium-containing V, lithium-containing Cr, lithium-containing Mn, lithium-containing Fe, lithium-containing Co, lithium-containing Ni, and lithium-containing Preferable examples include an oxide containing one or more of Cu, lithium-containing Mo, and lithium-containing W.
  • Alkali metals other than lithium (elements of Group 1 (Ia) and Group 2 (IIa) of the periodic table) and / or Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P , B, etc. may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the transition metal.
  • lithium-containing transition metal oxides preferably used as the positive electrode active material
  • a lithium compound / transition metal compound (wherein the transition metal is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo, W) And a mixture synthesized so that the total molar ratio is 0.3 to 2.2 is more preferable.
  • Li g M3O 2 (M3 represents one or more elements selected from Co, Ni, Fe, and Mn. G represents 0 to 1.2. ) Or a material having a spinel structure represented by Li h M4 2 O (M4 represents Mn, h represents 0 to 2).
  • M3 and M4 Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, and B may be mixed in addition to the transition metal.
  • the mixing amount is preferably 0 to 30 mol% with respect to the transition metal.
  • the Li g M3O material containing 2, among the materials having the spinel structure represented by Li h M4 2 O, Li g CoO 2, Li g NiO 2, Li g MnO 2, Li g Co j Ni 1-j O 2, Li h Mn 2 O 4 , LiNi j Mn 1-j O 2, LiCo j Ni h Al 1-j-h O 2, LiCo j Ni h Mn 1-j-h O 2, LiMn h Al 2-h O 4 , and LiMn h Ni 2-h O 4 (wherein g represents 0.02 to 1.2, j represents 0.1 to 0.9, and h represents 0 to 2) Is particularly preferred.
  • the g value and the h value are values before the start of charge / discharge, and are values that increase / decrease due to charge / discharge.
  • LiNi 0.5 Mn 0.5 O 2 LiNi 0.85 Co 0.01 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 1.8 Al 0.2 O 4 , or LiMn 1.5 Ni 0.5 O 4 and the like.
  • transition metal of the lithium-containing transition metal phosphate compound V, Ti, Cr, Mn, Fe, Co, Ni, Cu, and the like are preferable.
  • Specific examples include, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Examples thereof include those substituted with other metals such as Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, or Si.
  • the positive electrode active material can be synthesized by a method of mixing and baking a lithium compound and a transition metal compound or by a solution reaction, and a compound obtained by a baking method is particularly preferable.
  • the firing temperature may be any temperature at which a part of the mixed compound is decomposed and melted. For example, 250 ° C. to 2000 ° C. is preferable. 350 ° C. to 1500 ° C. is more preferable.
  • it is preferably calcined at 250 ° C. to 900 ° C.
  • the firing time is preferably 1 hour to 72 hours, more preferably 2 hours to 20 hours.
  • the raw material mixing method may be dry or wet. Further, annealing may be performed at 200 ° C. to 900 ° C. after firing.
  • a material in which a substance having a composition different from that of the main constituent of the positive electrode active material is attached to the surface of the positive electrode active material can be used.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide and other oxides, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, sulfuric acid Examples thereof include sulfates such as calcium and aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
  • These surface adhering substances are, for example, a method of dissolving or suspending in a solvent and impregnating and drying the positive electrode active material, and a method of dissolving or suspending a surface adhering substance precursor in a solvent and impregnating and adding to the positive electrode active material, followed by heating. It can be made to adhere to the positive electrode active material surface by the method of making it react by the method etc., the method of adding to a positive electrode active material precursor, and baking simultaneously.
  • the firing gas atmosphere is not particularly limited, and both an oxidizing atmosphere and a reducing atmosphere can be used.
  • air gas adjusted to an arbitrary oxygen concentration, hydrogen, carbon monoxide, nitrogen, argon, helium, krypton, xenon, carbon dioxide, and the like can be given.
  • the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size.
  • a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the negative electrode active material used in the electrolyte for a non-aqueous secondary battery of the present invention is not particularly limited as long as it can reversibly insert and release lithium ions.
  • examples include materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and metals that can form alloys with lithium such as Sn and Si. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. .
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
  • Examples thereof include spheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization.
  • the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • the metal oxide and metal composite oxide which are the negative electrode active materials used in the lithium secondary battery of the present invention need only contain at least one of them.
  • amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used.
  • chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table.
  • the term “amorphous” as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • an amorphous oxide of a semimetal element and a chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table are preferable.
  • An oxide consisting of Al, Ga, Si, Sn, Ge, Pb, Sb and Bi alone or a combination of two or more thereof, and chalcogenide are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , And SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • amorphous oxides and chalcogenide compound groups that can be used as the negative electrode active material used in the lithium secondary battery of the present invention
  • amorphous oxides centered on Sn, Si, and Ge are more preferred.
  • An amorphous oxide represented by the following general formula (12) is particularly preferable. SnM 1 dM 2 eOf General formula (12)
  • M 1 represents at least one element selected from Al, B, P, and Ge.
  • M 2 represents at least one element selected from Group 1 (Ia) group elements, Group 2 (IIa) elements, Group 3 (IIIa) elements, and halogen elements in the periodic table.
  • d represents a number of 0.2 to 2
  • e represents a number of 0.01 to 1
  • f represents a number from 1 to 6.
  • a firing method or a solution method can be adopted, but a firing method is more preferable. preferable.
  • a firing method is more preferable. preferable.
  • the firing temperature in the firing method is preferably 500 ° C. or more and 1500 ° C. or less, and the firing time is preferably 1 hour or more and 100 hours or less.
  • the temperature drop after firing may be cooled in a firing furnace, or may be taken out of the firing furnace and cooled, for example, in water.
  • a super rapid cooling method such as the gun method, Hammer-Anvil method, slap method, gas atomization method, plasma spray method, centrifugal quenching method, or melt drag method described on page 217 of ceramics processing (Gihodo Publishing 1987) can also be used.
  • cooling may be performed using the single roller method or the double roller method described in page 172 of the New Glass Handbook (Maruzen 1991).
  • the fired product may be continuously taken out while supplying raw materials during firing.
  • the firing gas atmosphere in the firing method is preferably an atmosphere having an oxygen content of 5% by volume or less, more preferably an inert gas atmosphere.
  • the inert gas include nitrogen, argon, helium, krypton, and xenon. Among these, pure argon is particularly preferable.
  • the average particle size of the negative electrode active material used is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • pulverizers such as a mortar, ball mill, sand mill, vibration ball mill, satellite ball mill, and planetary ball mill, a pulverizer having a classification function such as a swirling airflow type jet mill, and a sieve as a classifier are preferably used.
  • pulverizers such as a mortar, ball mill, sand mill, vibration ball mill, satellite ball mill, and planetary ball mill
  • a pulverizer having a classification function such as a swirling airflow type jet mill
  • a sieve as a classifier
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be
  • the chemical formula of the compound obtained by the firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • a negative electrode active material that can be used in combination with an amorphous oxide negative electrode active material centered on Sn, Si, or Ge includes a carbon material capable of inserting and extracting lithium ions or lithium metal, lithium Preferable examples include lithium alloys and metals that can be alloyed with lithium.
  • any electronic conductive material that does not cause a chemical change in the configured secondary battery may be used, and any known conductive material may be used.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)
  • a conductive material such as a metal fiber or a polyphenylene derivative (described in JP-A-59-20971) as a single type or a mixture of two or more types thereof. it can.
  • the addition amount of the conductive agent is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass. In the case of carbon or graphite, 2% by mass to 15% by mass is particularly preferable.
  • Binder In the present invention, a binder for holding the electrode mixture is used.
  • the binder include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethylcellulose, cellulose, diacetylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium alginate, Water-soluble polymers such as polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, and styrene-maleic acid copolymer, polyvinyl Chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylide (Meta) such as fluoride-tetrafluoroethylene-hexafluoroprop
  • a binder can be used individually by 1 type or in mixture of 2 or more types.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases.
  • the amount of binder added is preferably 1% by mass to 30% by mass, and more preferably 2% by mass to 10% by mass.
  • the electrolytic solution of the present invention may contain a filler.
  • a filler As the material for forming the filler, any fibrous material that does not cause a chemical change in the secondary battery of the present invention can be used. Usually, fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used. The amount of filler added is not particularly limited, but is preferably 0 to 30% by mass.
  • (B-6) Current collector As the positive and negative electrode current collectors, an electron conductor that does not cause a chemical change in the nonaqueous electrolyte secondary battery of the present invention is used.
  • As the positive electrode current collector aluminum, stainless steel, nickel, titanium, and the like, and those obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium, or silver are preferable. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector copper, stainless steel, nickel, and titanium are preferable, and copper or a copper alloy is more preferable.
  • a film sheet shape is usually used, but a net shape, a film sheet having an opening formed by punching, a lath body, a porous body, a foam, and a fiber group are formed.
  • the fiber sheet body obtained by doing in this way can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • An electrode mixture for a lithium secondary battery is formed by a member appropriately selected from these materials.
  • the separator used in the lithium secondary battery of the present invention is a material that mechanically insulates the positive electrode and the negative electrode, has ion permeability, and has oxidation / reduction resistance on the contact surface between the positive electrode and the negative electrode. If there is no particular limitation.
  • a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used.
  • These separators preferably have a shutdown function for ensuring safety, that is, a function of closing a gap at 80 ° C. or higher to increase resistance and interrupting current, and the closing temperature is 90 ° C. or higher and 180 ° C. or lower. It is preferable.
  • the shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 ⁇ m to 30 ⁇ m, preferably 0.1 ⁇ m to 20 ⁇ m. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method.
  • the ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
  • the polymer material may be a single material such as polyethylene or polypropylene, or two or more composite materials. What laminated
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • alumina particles having a 90% particle diameter of less than 1 ⁇ m are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
  • the lithium secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape.
  • a positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
  • FIG. 1 is a schematic cross-sectional view showing an example of a bottomed cylindrical lithium secondary battery 10 in which a positive electrode sheet 14 and a negative electrode sheet 16 stacked with a separator 12 interposed therebetween are wound and stored in an outer can 18.
  • a negative electrode active material is mixed with a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture.
  • the obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer.
  • the laminate of the current collector and the negative electrode mixture layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet) 16.
  • Preferred examples of the method for applying the negative electrode mixture include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method. .
  • the blade method, the knife method, and the extrusion method are preferable as the method for applying the negative electrode mixture.
  • the coating is preferably performed at a speed of 0.1 m / min to 100 m / min. Under the present circumstances, the surface state of a favorable application layer can be obtained by selecting the said application
  • the negative electrode mixture may be applied in a continuous layer, may be applied intermittently (discontinuously with respect to the application direction), or applied in stripes parallel to the application direction. May be.
  • the thickness, length and width of the negative electrode mixture coating layer are determined by the shape and size of the battery, but the thickness of the coating layer on one side is preferably 1 ⁇ m to 2000 ⁇ m in a compressed state after drying. .
  • drying and dehydrating a negative electrode mixture coated product for obtaining an electrode sheet obtained by rolling a laminate of the current collector and the negative electrode mixture layer hot air, vacuum, infrared rays, far infrared rays, electron beams and Examples thereof include a method in which low-humidity air is used alone or in combination.
  • the drying temperature is preferably 80 ° C to 350 ° C, more preferably 100 ° C to 250 ° C.
  • the water content is preferably 2000 ppm or less for the entire battery, and the water content of each of the positive electrode mixture, the negative electrode mixture and the electrolyte is preferably 500 ppm or less.
  • the calendar pressing method is particularly preferable.
  • the pressing pressure is not particularly limited, but is preferably 0.2 t / cm 2 to 3 t / cm 2 .
  • the press speed of the calendar press method is preferably 0.1 m / min to 50 m / min, and the press temperature is preferably room temperature (25 ° C.) to 200 ° C.
  • a positive electrode active material and a carbon-based conductive agent, a binder or the like used as desired are mixed in an organic solvent to prepare a slurry-like or paste-like positive electrode mixture.
  • the obtained positive electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a positive electrode mixture layer on the current collector surface.
  • the laminated body of a collector and a positive mix layer is rolled with a roll press etc., and it adjusts to predetermined thickness and obtains the positive electrode sheet 14.
  • the application method of the positive electrode mixture at the time of preparing the positive electrode sheet 16 and the drying method of the positive electrode mixture layer formed by the application may be the same as the conditions at the time of forming the negative electrode sheet 14.
  • the obtained positive electrode sheet 16 and negative electrode sheet 14 are laminated via the separator 12 and wound to obtain a spiral electrode body in a cylindrical shape.
  • the ratio of the width of the negative electrode sheet 14 to the positive electrode sheet 16 is preferably 0.9 to 1.1 when the width of the positive electrode sheet 16 is 1. 95 to 1.0 is particularly preferred.
  • the content ratio of the positive electrode active material and the negative electrode active material in the spiral electrode body varies depending on the compound type and the mixture formulation.
  • the electrode body is attached to the outer can 18 from the opening of the outer can 18 that also serves as a negative electrode terminal formed into a cylindrical shape by pressing from a single plate. Insert inside. Thereafter, a negative electrode current collecting tab (not shown) extending from the negative electrode sheet 14 of the electrode body is welded and electrically connected to the inner bottom portion of the outer can 18, and a positive electrode extending from the positive electrode sheet 16 of the electrode body.
  • the current collecting tab 24 is welded and electrically connected to the bottom of the bottom plate of the sealing plate 22.
  • the electrolytic solution of the present invention is injected into the outer can 18, covered with the sealing plate 22, and the opening of the outer can 18 is sealed using the gasket 26, so that the bottomed cylindrical lithium secondary battery 10 is sealed. Is formed.
  • the sealing plate 22 is provided with a pressure sensitive valve body 28 as a safety valve and a current interruption element 30 as an overcurrent prevention element.
  • a cylindrical battery is taken as an example, but the shape of the lithium secondary battery of the present invention is not limited thereto.
  • a positive / negative electrode sheet manufactured by the above method is used as a separator. After being stacked, it is processed into a sheet-like battery as it is, or after being folded and inserted into a rectangular can, the can and the sheet are electrically connected, an electrolyte is injected, and a sealing plate is used.
  • a square battery may be formed by sealing the opening.
  • the safety valve can be used as a sealing plate for sealing the opening.
  • the sealing member represented by the sealing plate may be provided with various conventionally known safety elements.
  • a fuse, a bimetal, a PTC element, or the like is suitably used as a safety element attached to the sealing member.
  • a countermeasure against the increase in internal pressure of the battery can, in addition to the method of attaching the safety valve, a method of cutting the battery can, a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate is used.
  • the lithium secondary battery is provided with a protection circuit in which an overcharge countermeasure member and an overdischarge countermeasure member are incorporated in a charger, or the protection circuit is provided independently of a thirium secondary battery. May be connected to each other.
  • electrically conductive metals and alloys can be used.
  • metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
  • a known method for example, a DC or AC electric welding method, a laser welding method, an ultrasonic welding method, or the like
  • a sealing agent used for sealing the lithium secondary battery conventionally known compounds and mixtures such as asphalt can be used.
  • the lithium secondary battery of the present invention has high output while using a flame-retardant electrolyte, and can be applied to various applications.
  • the application mode of the lithium secondary battery of the present invention is not particularly limited, for example, when mounted on an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager , Handy Terminal, Mobile Fax, Mobile Copy, Mobile Printer, Headphone Stereo, Video Movie, LCD TV, Handy Cleaner, Portable CD, Mini Disc, Electric Shaver, Walkie Talkie, Electronic Notebook, Calculator, Memory Card, Portable Tape Recorder, Radio, Examples include backup power supplies and memory cards.
  • lithium secondary battery of the present invention can be combined with a solar battery.
  • the temperature was maintained at 150 ° C., and the volatile components were distilled off while gradually decreasing the vacuum from normal pressure to 5 mmHg to obtain 16 g of a specific siloxane oligomer (Si-1) as a colorless liquid.
  • the number average molecular weight in terms of styrene as measured by GPC was 1,200.
  • 0.96 g of N-lithiotrifluoromethanesulfonimide hereinafter appropriately referred to as LiTFSI was dissolved to obtain an electrolytic solution E-1.
  • the fraction was 52 mol%, and the branched molar fraction (xc + xd + xe) confirmed by Si-NMR measurement was 20%.
  • the siloxane oligomer (Si-3) obtained above 0.96 g of LiTFSI was dissolved to obtain an electrolytic solution E-2.
  • the number average molecular weight in terms of styrene as measured by GPC is 1,450, and the content of the substituent —OQ 1 —COOR 3 contained in the partial structure represented by the general formula (1) as measured by H 1 -NMR
  • the fraction was 41 mol%, and the branched molar fraction (xc + xd + xe) confirmed by Si-NMR measurement was 23%.
  • 0.96 g of LiTFSI was dissolved to obtain an electrolytic solution E-3.
  • the number average molecular weight in terms of styrene by GPC measurement of the specific siloxane oligomer (Si-8) contained in the colorless liquid is 650, and is contained in the partial structure represented by the general formula (1) measured by H 1 -NMR.
  • the content mole fraction of the substituent —O—Q 1 —COOR 3 was 21 mole%, and the branched mole fraction (xc + x + xe) confirmed by Si-NMR measurement was 5%.
  • Preparation Example 2-2 Preparation of electrolytic solution E-5) Tetraethoxysilane (4-2) 50.0 g, glycolic acid (5-1) 5.25 g, and LiTFSI 9.5 g were mixed and heated to reflux at 150 ° C.
  • the specific siloxane oligomer (Si-9) contained in the colorless liquid has a styrene-equivalent number average molecular weight of 800 by PC measurement and is contained in the partial structure represented by the general formula (1) measured by H 1 -NMR.
  • the mole fraction of the substituent —O—Q 1 —COOR 3 to be obtained is.
  • the branched mole fraction (xc + xd + xe) confirmed by Si-NMR measurement was 3%.
  • the specific siloxane oligomer (Si-4) contained in the colorless liquid has a styrene-equivalent number average molecular weight of 620 by PC measurement and is contained in the partial structure represented by the general formula (1) measured by H 1 -NMR.
  • the contained mole fraction of the substituent —O—Q 1 —COOR 3 was 37 mole%, and the branched mole fraction (xc + xd + xe) confirmed by Si-NMR measurement was 8%.
  • the specific siloxane oligomer (Si-7) contained in the colorless liquid has a styrene-equivalent number average molecular weight of 750 by PC measurement, and is contained in the partial structure represented by the general formula (1) measured by H 1 -NMR.
  • the contained mole fraction of the substituent —O—Q 1 —COOR 3 was 34 mole%, and the branched mole fraction (xc + xd + xe) confirmed by Si-NMR measurement was 11%.
  • Electrolytic solution E-8 was prepared by adding 5 wt% vinyl carbonate (VC) to the electrolytic solution E-6 obtained in the above (Preparation Example 2-1).
  • Preparation Example 3-2 Preparation of electrolytic solution E-9)
  • 5 wt% ethylene sulfite (ES) was added to the electrolytic solution to prepare an electrolytic solution E-9.
  • Preparation Example 5-2 Preparation of comparative electrolytic solution RE-2) JP, 2002-252030, A polysiloxane synthesized according to Example 1 and 0.6 g of propylene carbonate were mixed with 0.32 g of LiPF 6 to prepare an electrolytic solution RE-2.
  • the polysiloxane used in the comparative electrolyte RE-2 is the same compound as that used in the comparative electrolyte RE-1, and is a compound whose styrene-equivalent number average molecular weight by GPC measurement is outside the scope of the present invention.
  • a comparative electrolyte RE-4 was prepared by mixing 3 g of the siloxane compound (15) described in JP-A-2005-154697, 0.6 g of propylene carbonate, and 0.32 g of LiPF 6 .
  • the siloxane compound used in the comparative electrolytic solution RE-4 is the same compound as that used in the comparative electrolytic solution RE-3 and is out of the scope of the present invention.
  • the evaluation of the flame resistance of the electrolyte was performed by a method based on the UL94HB method of the UL (Underwriting Laboratory) standard, which is a polymer flame retardancy test standard. Specifically, a nonflammable glass fiber filter paper is cut into a size of 13 mm ⁇ 125 mm, 1.5 mL of an electrolytic solution to be evaluated is soaked, a test sample (test piece) is adjusted, and 25 mm and 100 mm from the end. A marked line was drawn and ignited with a gas burner having a test flame height of 20 mm from the end on the 25 mm surface side. The state of combustion was observed visually, and flame retardancy was evaluated according to the following criteria.
  • the electrolytes E-1 to E-21 of Examples 1 to 21 are more lithium ion conductive (compared to the electrolytes RE-1 to RE-4 of Comparative Examples 1 to 4). (Ion conductivity x transport number) is high.
  • electrolyte solutions E-1 to E-7 containing a siloxane oligomer having a lower molecular weight and fewer branched chains have a slightly lower transport number, but have a lower ion conductivity. Since the improvement is great, the lithium ion conductivity that is the product is high.
  • Electrolyte solution RE-3 (Comparative Example) using a siloxane compound whose main component is an ethyleneoxy group has good ionic conductivity, but has a low transport number, and therefore its product lithium ion conductivity is low. I understand that.
  • the electrolytic solutions E-1 to E-7 and the electrolytic solution E-11 (PC mixed system) of the present invention include electrolytic solutions RE-3 and RE-4 (polyethylene oxide-containing siloxane compounds linked with polyethyleneoxy groups).
  • the ionic conductivity is equal to or less than that, but since the lithium ion transport number is high, it is understood that the lithium ion conductivity which is the product is high.
  • Lithium secondary battery Lithium cobaltate mixture sheet (electrode capacity 1.5 mAh / cm 2 : aluminum foil base, 16 mm ⁇ ) on the positive electrode, natural spherical graphite electrode sheet (electrode capacity 1.6 mAh / cm2: Cu foil base, 16 mm ⁇ ) on the negative electrode, and separator Using a polypropylene porous film (thickness 25 ⁇ m, 24 mm ⁇ ), a lithium secondary battery for evaluation using an electrolytic solution shown in Table 2 below was produced.
  • the battery was charged at a constant current of 3.02 mA until the battery voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V until the current value reached 0.1 mA.
  • the lithium secondary battery cell was placed in a constant temperature bath at 60 ° C., and discharged at 0.6 mA corresponding to 0.2 C until the battery voltage dropped to 2.5V.
  • the above charge / discharge was repeated twice, and the second discharge efficiency (discharged electricity / charged electricity ⁇ 100%) was evaluated.
  • the results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

This nonaqueous electrolyte for a secondary battery contains a salt of a metal ion from group 1 or group 2 of the periodic table, and a siloxane oligomer containing a partial structure represented by general formula (1) and having a number average molecular weight of 500 - 1500 for the styrene conversion. In general formula (1), R1 represents a hydrocarbon or OR2; -OR2 represents an alkoxy group or a substituent group represented by the general formula (2) -O-Q1-COOR3; and the molar fraction of the group represented by the general formula (2) is 5 - 100 mol% of the total molar amount of R1and -OR2 in all partial structures represented by general formula (1). This constitution provides a nonaqueous electrolyte for a secondary battery that has flame resistance and superior lithium ion conductivity and is suitably used in a lithium secondary battery, and a high output lithium secondary battery containing this nonaqueous electrolyte for a secondary battery is provided.

Description

非水二次電池用電解液及びリチウム二次電池Non-aqueous secondary battery electrolyte and lithium secondary battery
 本発明は、非水二次電池用電解液及びそれを含有するリチウムニ次電池に関するものであり、詳しくは、特定のシリコンオリゴマーを含有する、リチウム二次電池に好適に用いられる非水二次電池用電解液と、それを用いたリチウム二次電池に関するものである。 TECHNICAL FIELD The present invention relates to an electrolyte for a non-aqueous secondary battery and a lithium secondary battery containing the electrolyte, and more specifically, a non-aqueous secondary battery suitably used for a lithium secondary battery containing a specific silicon oligomer. The present invention relates to an electrolytic solution for use and a lithium secondary battery using the same.
 リチウム二次電池は、パソコン、ビデオカメラ、携帯電話等に用いられるが、これら電子機器の高機能化に伴い、電源となる電池もまた、高エネルギー密度化が要望されている。また、近年、二酸化炭素排出量削減という地球規模の環境課題を背景に、自動車動力電源や自然エネルギー蓄電の用途においてもリチウム二次電池の大型化が検討され、コスト、性能、更には安全性に対する要求が高まっており、それらを可能とする電解液の改良が求められている。 Lithium secondary batteries are used in personal computers, video cameras, mobile phones, and the like. As these electronic devices become more functional, batteries that serve as power sources are also required to have higher energy density. In recent years, against the background of global environmental issues such as reducing carbon dioxide emissions, the use of lithium secondary batteries has been studied in automotive power supply and natural energy storage applications, and cost, performance, and safety have been improved. There is a growing demand, and there is a need for improvements in electrolytes that enable them.
 従来のリチウム二次電池には、電解液に可燃性有機溶媒が使用されているため、過充電時の暴走や内部短絡により電池が発火するという危険が内在している。そこで、リチウム二次電池に用いられる電解液を燃え難いものとし、安全性を図る種々の検討がなされてきた。 In conventional lithium secondary batteries, a flammable organic solvent is used in the electrolyte, and therefore there is a danger that the battery may ignite due to runaway or internal short circuit during overcharge. Therefore, various studies have been made to make the electrolyte used in the lithium secondary battery difficult to burn and to ensure safety.
 例えば、特開平8-88023号公報には、従来の炭化水素系溶媒に電解質としてリン酸エステル化合物を含有してなる、自己消火性を有し、充電放電性能が良好な電解液及びそれを用いる電池が提案されているが、難燃性については未だ実用上充分とは言えず、さらなる改良が必要であった。
 また、電解質そのものを燃え難い素材である、架橋ポリエーテル、ポリフォスファゼン或いは、ポリシロキサン等のポリマー電解質で構成する技術が、例えば、特開平11-273733号公報、特開平9-92331号公報、特開平3-146559号公報、及び、特許第3648447号公報等に種々開示され、また、難燃性のイオン液体を電解質として用いる技術が、例えば、特許第4045252号公報、特開2007-106849号公報、及び、特開2008-239514号公報などにおいて提案されている。しかしながら、ポリマー電解質や無機ガラスなどの固体電解質は、イオン伝導性が低く、イオン液体は、イオン伝導度の高いものもあるが、リチウムイオン輸率が低く、リチウム二次電池に使用した場合には高い性能を得ることができなかった。
 燃え難い液体として特定の構造を有するポリシロキサンを電解液に使用する方法が、例えば、特開2002-25203号公報に提案されており、当該公報に記載の方法によれば、当該電解液は難燃性が良好であり、リチウムイオン輸率は改良されるものの、電解液の粘性が高いためイオン伝導性については、なお改良の余地があった。
For example, Japanese Patent Application Laid-Open No. 8-88023 discloses an electrolytic solution having a self-extinguishing property and a good charge / discharge performance, which contains a phosphate ester compound as an electrolyte in a conventional hydrocarbon solvent, and uses the same. Although a battery has been proposed, the flame retardancy is still not sufficient for practical use, and further improvement is necessary.
Further, a technique for forming the electrolyte itself with a polymer electrolyte such as crosslinked polyether, polyphosphazene, or polysiloxane, which is a material that is difficult to burn, is disclosed in, for example, JP-A-11-273733, JP-A-9-92331, Various techniques disclosed in Japanese Patent Laid-Open No. 3-146559, Japanese Patent No. 3648447, and the like, and techniques using a flame-retardant ionic liquid as an electrolyte are disclosed in, for example, Japanese Patent No. 4045252 and Japanese Patent Laid-Open No. 2007-106849. It has been proposed in Japanese Laid-Open Patent Publication No. 2008-239514. However, solid electrolytes such as polymer electrolytes and inorganic glasses have low ionic conductivity, and some ionic liquids have high ionic conductivity, but the lithium ion transport number is low, and when used in lithium secondary batteries High performance could not be obtained.
For example, Japanese Patent Laid-Open No. 2002-25203 proposes a method of using polysiloxane having a specific structure as an inflammable liquid in an electrolytic solution. According to the method described in the official gazette, the electrolytic solution is difficult. Although the flammability is good and the lithium ion transport number is improved, there is still room for improvement in the ion conductivity due to the high viscosity of the electrolyte.
 このように、難燃性であって、イオン伝導度とリチウムイオン輸率が両立した非水二次電池用電解液が求められている。
 本発明の課題は、難燃性であり、リチウムイオン伝導性に優れた、リチウム二次電池に好適に使用される非水二次電池用電解液、及び該非水二次電池用電解液を含有する高出力のリチウム二次電池を提供することにある。
Thus, there is a need for a non-aqueous secondary battery electrolyte that is flame retardant and has both ionic conductivity and lithium ion transport number.
An object of the present invention is an electrolyte solution for a non-aqueous secondary battery that is flame-retardant and excellent in lithium ion conductivity, and is suitably used for a lithium secondary battery, and contains the electrolyte solution for the non-aqueous secondary battery An object of the present invention is to provide a high-power lithium secondary battery.
 発明者らは、上記課題を考慮して検討した結果、特定構造のシリコンオリゴマーを用いることで、粘性が低く、イオン伝導性が高く、難燃性の電解液が得られること、更には、当該電解液を用いることによって、高出力で安全性の高いリチウム二次電池が得られることを見出し、本発明に至った。 As a result of examining the above problems, the inventors have obtained a low-viscosity, high ionic conductivity, and flame-retardant electrolyte solution by using a silicon oligomer having a specific structure. The inventors have found that a lithium secondary battery with high output and high safety can be obtained by using the electrolytic solution, and the present invention has been achieved.
 すなわち、本発明の第1の態様は、周期律表第一族又は第二族に属する金属イオンの塩と、下記一般式(1)で表される部分構造を含むスチレン換算数平均分子量500以上1500以下であるシロキサンオリゴマーと、を含有する電池用電解液である。 That is, the first aspect of the present invention is a styrene conversion number average molecular weight of 500 or more including a salt of a metal ion belonging to Group 1 or Group 2 of the Periodic Table and a partial structure represented by the following general formula (1). An electrolyte solution for a battery containing a siloxane oligomer that is 1500 or less.
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
 (前記一般式(1)中、Rは炭化水素基又は-ORを表し、-ORはアルコキシ基、ハロゲン化アルコキシ基、又は下記一般式(2)で表される置換基を表し、-ORがアルコキシ基を表す場合、Rはアルキル基を表し、-ORがハロゲン化アルコキシ基を表す場合、Rはハロゲン化アルキル基を表す。但し、前記シロキサンオリゴマーに含まれる一般式(1)で表される全部分構造におけるRと-ORの総モル量に対する、下記一般式(2)で表される置換基のモル分率は5モル%以上100モル%以下である。) (In the general formula (1), R 1 represents a hydrocarbon group or —OR 2 , —OR 2 represents an alkoxy group, a halogenated alkoxy group, or a substituent represented by the following general formula (2); When -OR 2 represents an alkoxy group, R 2 represents an alkyl group, and when -OR 2 represents a halogenated alkoxy group, R 2 represents a halogenated alkyl group, provided that the general formula contained in the siloxane oligomer is The molar fraction of the substituent represented by the following general formula (2) with respect to the total molar amount of R 1 and —OR 2 in the entire partial structure represented by (1) is 5 mol% or more and 100 mol% or less. .)
Figure JPOXMLDOC01-appb-C000010

 
 (前記一般式(2)中、Qはアルキレン基を表し、Rはアルキル基を表す。)
 本発明の第2の態様は、前記シロキサンオリゴマーが、下記一般式(1-a)、一般式(1-b)、一般式(1-c)、一般式(1-d)、及び一般式(1-e)からなる群より選択される部分構造を含み、且つ、下記一般式(1-a)、一般式(1-b)、一般式(1-c)、一般式(1-d)、及び一般式(1-e)で表される部分構造のモル分率を、それぞれxa、xb、xc、xd及びxeとした時に、前記シロキサンオリゴマーに含まれる全部分構造の合計量に対し、xa+xbの合計量が70モル%以上100モル%以下であるシロキサンオリゴマーである前記本発明の第1の態様に記載の非水二次電池用電解液である。
Figure JPOXMLDOC01-appb-C000010


(In the general formula (2), Q 1 represents an alkylene group, and R 3 represents an alkyl group.)
According to a second aspect of the present invention, the siloxane oligomer has the following general formula (1-a), general formula (1-b), general formula (1-c), general formula (1-d), and general formula: A partial structure selected from the group consisting of (1-e), and the following general formula (1-a), general formula (1-b), general formula (1-c), and general formula (1-d): ) And a partial structure represented by the general formula (1-e), where xa, xb, xc, xd and xe are respectively, relative to the total amount of all partial structures contained in the siloxane oligomer. , Xa + xb is an electrolyte solution for a non-aqueous secondary battery according to the first aspect of the present invention, which is a siloxane oligomer having a total amount of 70 mol% to 100 mol%.
Figure JPOXMLDOC01-appb-C000011

 
Figure JPOXMLDOC01-appb-C000011

 
 (前記一般式(1-a)~一般式(1-e)中、*及び**は、他の部分構造との連結部位であり、一般式(1-a)~一般式(1-e)で表される部分構造が連結する場合、**と*との部位で連結する。R及びRは、それぞれ前記一般式(1)におけるR及びRと同義である。)
 本発明の第3の態様は、前記一般式(1)で表される部分構造におけるRがメチル基又は-ORであり、且つ、-ORがエトキシ基又は下記一般式(3)で表される基である前記本発明の第1の態様又は第2の態様に記載の非水二次電池用電解液である。
(In the general formula (1-a) to the general formula (1-e), * and ** are linking sites with other partial structures, and the general formula (1-a) to the general formula (1-e When the partial structures represented by) are linked, they are linked at the position of ** and * .R 1 and R 2 are respectively synonymous with R 1 and R 2 in the general formula (1).
In a third aspect of the present invention, R 1 in the partial structure represented by the general formula (1) is a methyl group or —OR 2 , and —OR 2 is an ethoxy group or the following general formula (3): It is electrolyte solution for non-aqueous secondary batteries as described in the said 1st aspect or 2nd aspect of this invention which is group represented.
Figure JPOXMLDOC01-appb-C000012

 
Figure JPOXMLDOC01-appb-C000012

 
 (前記一般式(3)中、Rはアルキル基を表し、R及びRは、それぞれ独立にアルキル基、又は水素原子を表し、RとRとは互いに連結して環を形成してもよい。)
 前記本発明の第4の態様は、前記シロキサンオリゴマーに含まれる一般式(1)で表される部分構造中、-ORが前記一般式(2)で表される置換基であり、前記シロキサンオリゴマーに含まれる一般式(1)で表される全部分構造におけるRと-ORの総モル量に対する前記一般式(2)で表される置換基のモル分率が30モル%以上75モル%以下である前記本発明の第1の態様から第3の態様のいずれか1つに記載の非水二次電池用電解液である。
 前記本発明の第5の態様は、前記一般式(1)におけるRが直鎖又は分岐の炭化水素基であり、且つ、-ORが、直鎖又は分岐のアルコキシ基、直鎖又は分岐のハロゲン化アルコキシ基、又は前記一般式(2)で表される置換基であって、一般式(2)におけるQが直鎖又は分岐のアルキレン基を表し、Rは直鎖又は分岐のアルキル基を表す前記本発明の第1の態様から第4の態様のいずれか1つに記載の非水二次電池用電解液。
 前記本発明の第6の態様は、前記シロキサンオリゴマーの、全電解液に対する含有量が20質量%以上80質量%以下である前記本発明の第1の態様から第5の態様のいずれか1つに記載の非水二次電池用電解液である。
(In the general formula (3), R 3 represents an alkyl group, R 4 and R 5 each independently represents an alkyl group or a hydrogen atom, and R 4 and R 5 are linked to each other to form a ring. You may do it.)
In the fourth aspect of the present invention, in the partial structure represented by the general formula (1) contained in the siloxane oligomer, —OR 2 is a substituent represented by the general formula (2), and the siloxane The molar fraction of the substituent represented by the general formula (2) with respect to the total molar amount of R 1 and —OR 2 in the entire partial structure represented by the general formula (1) contained in the oligomer is 30 mol% or more and 75 The electrolyte solution for a non-aqueous secondary battery according to any one of the first to third aspects of the present invention, which is at most mol%.
In the fifth aspect of the present invention, R 1 in the general formula (1) is a linear or branched hydrocarbon group, and —OR 2 is a linear or branched alkoxy group, linear or branched. Or a substituent represented by the general formula (2), wherein Q 1 in the general formula (2) represents a linear or branched alkylene group, and R 3 represents a linear or branched alkylene group. The electrolyte solution for nonaqueous secondary batteries according to any one of the first to fourth aspects of the present invention, which represents an alkyl group.
In the sixth aspect of the present invention, any one of the first to fifth aspects of the present invention, wherein the content of the siloxane oligomer with respect to the total electrolyte solution is 20% by mass or more and 80% by mass or less. It is electrolyte solution for non-aqueous secondary batteries as described in above.
 前記本発明の第7の態様は、周期律表第一族又は第二族に属する金属イオンの塩がリチウム塩である前記本発明の第1の態様から第6の態様のいずれか1つに記載の非水二次電池用電解液である。
 前記本発明の第8の態様は、さらに、非水系有機溶媒を含有する前記本発明の第1の態様から第7の態様のいずれか1つに記載の非水二次電池用電解液である。
 前記本発明の第9の態様は、前記周期律表第一族又は第二族に属する金属イオンの塩の存在下で、アルコシキシラン化合物とヒドロキシカルボン酸とを用いて前記シロキサンオリゴマーを合成することにより得られる前記本発明の第1の態様から第8の態様のいずれか1つに記載の非水二次電池用電解液である。
 前記本発明の第10の態様は、さらに、リン化合物を含有する前記本発明の第1の態様から第9の態様のいずれか1つに記載の非水二次電池用電解液である。
 前記本発明の第11の態様は、前記リン化合物が、リン酸エステル化合物、ホスファゼン化合物、ホスホン酸エステル化合物、及び、ホスファイト化合物からなる群より選択される少なくとも1種である前記本発明の第10の態様に記載の非水二次電池用電解液である。
 前記本発明の第12の態様は、前記リン酸エステル化合物が、下記一般式(p1)で表される化合物である前記本発明の第11の態様に記載の非水二次電池用電解液である。
According to a seventh aspect of the present invention, in any one of the first to sixth aspects of the present invention, the salt of a metal ion belonging to Group 1 or Group 2 of the periodic table is a lithium salt. It is electrolyte solution for non-aqueous secondary batteries of description.
The eighth aspect of the present invention is the electrolyte solution for a non-aqueous secondary battery according to any one of the first to seventh aspects of the present invention, further comprising a non-aqueous organic solvent. .
In the ninth aspect of the present invention, the siloxane oligomer is synthesized using an alkoxysilane compound and a hydroxycarboxylic acid in the presence of a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table. The electrolyte solution for non-aqueous secondary batteries according to any one of the first to eighth aspects of the present invention obtained by the above.
The tenth aspect of the present invention is the electrolyte for a non-aqueous secondary battery according to any one of the first to ninth aspects of the present invention, further comprising a phosphorus compound.
In an eleventh aspect of the present invention, the phosphorus compound is at least one selected from the group consisting of a phosphate ester compound, a phosphazene compound, a phosphonate ester compound, and a phosphite compound. It is electrolyte solution for non-aqueous secondary batteries as described in 10 aspects.
The twelfth aspect of the present invention is the electrolyte solution for a non-aqueous secondary battery according to the eleventh aspect of the present invention, wherein the phosphate ester compound is a compound represented by the following general formula (p1). is there.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 前記一般式(p1)中、Rp11、Rp12、及びRp13は、それぞれ独立にアルキル基又はアリール基を表す。
 前記本発明の第13の態様は、前記ホスファゼン化合物が、下記一般式(p2)で表される部分構造を有する化合物である前記本発明の第11の態様に記載の非水二次電池用電解液である。
In the general formula (p1), Rp 11 , Rp 12 , and Rp 13 each independently represents an alkyl group or an aryl group.
The thirteenth aspect of the present invention is the electrolysis for a nonaqueous secondary battery according to the eleventh aspect of the present invention, wherein the phosphazene compound is a compound having a partial structure represented by the following general formula (p2). It is a liquid.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 前記一般式(p2)中、Rp21、及びRp22は、それぞれ独立にハロゲン原子、アルコキシ基、又はアリールオキシ基を表す。n は1以上の整数を表す。
 前記本発明の第14の態様は、前記ホスホン酸エステル化合物が、下記一般式(p3)で表される化合物である前記本発明の第11の態様に記載の非水二次電池用電解液である。
In the general formula (p2), Rp 21 and Rp 22 each independently represent a halogen atom, an alkoxy group, or an aryloxy group. n p 2 represents an integer of 1 or more.
The fourteenth aspect of the present invention is the electrolyte solution for a non-aqueous secondary battery according to the eleventh aspect of the present invention, wherein the phosphonate compound is a compound represented by the following general formula (p3). is there.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記一般式(p3)において、Rp31、Rp32、及び、Rp33は、それぞれ独立にアルキル基、又はアリール基を表す。
 前記本発明の第15の態様は、前記ホスファイト化合物が、下記一般式(p4)で表される化合物である前記本発明の第11の態様に記載の非水二次電池用電解液である。
In the general formula (p3), Rp 31 , Rp 32 , and Rp 33 each independently represents an alkyl group or an aryl group.
The fifteenth aspect of the present invention is the electrolyte solution for a non-aqueous secondary battery according to the eleventh aspect of the present invention, wherein the phosphite compound is a compound represented by the following general formula (p4). .
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 前記一般式(p4)中、Rp41、Rp42、及びRp43は、それぞれ独立にアルキル基、又はアリール基を表す。
 前記本発明の第16の態様は、前記リン化合物の、全電解液に対する含有量が5質量%以上40質量%以下である前記本発明の第10の態様から第15の態様のいずれか1つに記載の非水二次電池用電解液である。
 前記本発明の第17の態様は、前記本発明の第1の態様から第16の態様のいずれか1つに記載の非水二次電池用電解液と、リチウムイオンの挿入放出が可能な正極と、リチウムイオンの挿入放出又は溶解析出が可能な負極とを備えるリチウム二次電池である。
In the general formula (p4), Rp 41 , Rp 42 , and Rp 43 each independently represents an alkyl group or an aryl group.
In a sixteenth aspect of the present invention, any one of the tenth to fifteenth aspects of the present invention, wherein the content of the phosphorus compound with respect to the total electrolyte is 5% by mass or more and 40% by mass or less. It is electrolyte solution for non-aqueous secondary batteries as described in above.
According to a seventeenth aspect of the present invention, there is provided a nonaqueous secondary battery electrolytic solution according to any one of the first to sixteenth aspects, and a positive electrode capable of inserting and releasing lithium ions. And a negative electrode capable of inserting and releasing lithium ions and dissolving and depositing lithium ions.
 本発明は上記構成としたために、イオン伝導性が高く、リチウムイオン輸率が良好で、且つ、燃え難い非水二次電池用電解液が提供され、該電解液は入手容易な原材料から、簡便な方法により提供でき、さらには、当該電解質を用いると安全性が高く高出力のリチウム二次電池を提供することができる。
 なお、本明細書において置換基(原子団)を表す場合、特に断りのない限り、該置換基は、無置換のものであっても、置換基をさらに有するものであってもよい。例えば、「アルキル基」と記載する場合、アルキル基は、無置換のアルキル基、及び置換基をさらに有するアルキル基を包含する意味で用いられる。その他の置換基(原子団)も同様である。
Since the present invention has the above-described configuration, an electrolyte for a non-aqueous secondary battery that has high ion conductivity, good lithium ion transport number, and is difficult to burn is provided. In addition, when the electrolyte is used, a lithium secondary battery with high safety and high output can be provided.
In the present specification, when a substituent (atomic group) is represented, the substituent may be unsubstituted or may further have a substituent unless otherwise specified. For example, when describing as an “alkyl group”, the alkyl group is used in a meaning including an unsubstituted alkyl group and an alkyl group further having a substituent. The same applies to other substituents (atomic groups).
 本発明によれば、難燃性であり、リチウムイオン伝導性に優れた、リチウム二次電池に好適に使用される非水二次電池用電解液が提供される。また、本発明によれば、前記本発明の非水二次電池用電解液を用いることにより、高出力のリチウム二次電池を提供することができる。 According to the present invention, there is provided an electrolyte for a non-aqueous secondary battery that is suitable for use in a lithium secondary battery that is flame retardant and excellent in lithium ion conductivity. Moreover, according to this invention, a high output lithium secondary battery can be provided by using the electrolyte solution for non-aqueous secondary batteries of the said invention.
本発明のリチウム二次電池の一態様を示す概略断面図である。It is a schematic sectional drawing which shows the one aspect | mode of the lithium secondary battery of this invention.
 以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定はされない。その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and is not specified by these contents. Various modifications can be made within the scope of the gist.
〔1〕非水二次電池用電解液
 本発明の非水二次電池用電解液は、周期律表第一族又は第二族に属する金属イオンの塩と、後述する一般式(1)で表される部分構造を含む、スチレン換算数平均分子量500以上1500以下であるシロキサンオリゴマー〔以下、適宜、特定シロキサンオリゴマーと称する〕と、を含有する。
 本発明の非水用二次電池用電解液は、リチウムイオン電池に好適に用いられる。
 以下、本発明の非水用二次電池用電解液に含まれる各成分について順次説明する。
〔(A)一般式(1)で表される部分構造を含む、スチレン換算数平均分子量500以上1500以下であるシロキサンオリゴマー〕
 本発明に用いられる特定シロキサンオリゴマーは、下記一般式(1)で表される部分構造を含むものであり、且つ、スチレン換算数平均分子量が500以上1500以下であることを要する。
[1] Non-aqueous secondary battery electrolyte The non-aqueous secondary battery electrolyte of the present invention is a metal ion salt belonging to Group 1 or Group 2 of the periodic table, and a general formula (1) described below. A siloxane oligomer having a number average molecular weight of 500 or more and 1500 or less (hereinafter, appropriately referred to as a specific siloxane oligomer) containing a partial structure represented.
The electrolyte solution for a non-aqueous secondary battery of the present invention is suitably used for a lithium ion battery.
Hereafter, each component contained in the electrolyte solution for non-aqueous secondary batteries of this invention is demonstrated sequentially.
[(A) Siloxane oligomer containing a partial structure represented by the general formula (1) and having a number average molecular weight of 500 to 1500 in terms of styrene]
The specific siloxane oligomer used in the present invention includes a partial structure represented by the following general formula (1), and the number average molecular weight in terms of styrene is required to be 500 or more and 1500 or less.
Figure JPOXMLDOC01-appb-C000017

 
Figure JPOXMLDOC01-appb-C000017

 
 前記一般式(1)中、Rは炭化水素基又は-ORを表し、-ORはアルコキシ基、ハロゲン化アルコキシ基、又は下記一般式(2)で表される置換基を表し、-ORがアルコキシ基を表す場合、Rはアルキル基を表し、-ORがハロゲン化アルコキシ基を表す場合、Rはハロゲン化アルキル基を表す。但し、前記シロキサンオリゴマーに含まれる一般式(1)で表される全部分構造におけるRと-ORの総モル量に対する、下記一般式(2)で表される基のモル分率は5モル%以上100モル%以下である。 In the general formula (1), R 1 represents a hydrocarbon group or —OR 2 , —OR 2 represents an alkoxy group, a halogenated alkoxy group, or a substituent represented by the following general formula (2): When OR 2 represents an alkoxy group, R 2 represents an alkyl group, and when —OR 2 represents a halogenated alkoxy group, R 2 represents a halogenated alkyl group. However, the molar fraction of the group represented by the following general formula (2) with respect to the total molar amount of R 1 and —OR 2 in the total partial structure represented by the general formula (1) contained in the siloxane oligomer is 5 It is mol% or more and 100 mol% or less.
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000018

 
 前記一般式(2)中、Qはアルキレン基を表し、Rはアルキル基を表す。
 前記一般式(1)におけるRが炭化水素基を表す場合の炭化水素基としては、アルキル基、アルケニル基、アルキニル基、アリール基などが挙げられる。
 ここで、Rがアルキル基を表す場合の好ましいアルキル基としては、炭素数1から10のアルキル基(メチル、エチル、ヘキシル、又はシクロヘキシルなど)であり、炭素数1~6の直鎖又は分岐のアルキル基が好ましく、炭素数1から3の直鎖アルキル基がさらに好ましい。Rがアルケニル基を表す場合の好ましいアルケニル基としては、炭素数2から10のアルケニル基(ビニル、アリル、又は-シクロヘキセニルなど)であり、炭素数2から3の直鎖又は分岐のアルケニル基がさらに好ましく、アルキニル基を表す場合の好ましいアルキニル基としては、炭素数1から10のアルキニル基(エチニル、又はプロピニルなど)であり、炭素数2から3の直鎖又は分岐のアルキニル基がさらに好ましく、アリール基を表す場合の好ましいアリール基としては、炭素数6から20のアリール基(フェニル、又はナフチルなど)であり、炭素数6から10のアリール基がさらに好ましい。
 なお、イオン伝導度向上の観点から、Rは環構造を有しないことが好ましく、そのような観点からは、直鎖又は分岐の炭化水素基であることが好ましい。
 より具体的には、Rは、直鎖又は分岐のアルキル基、直鎖又は分岐のアルケニル基、及び直鎖又は分岐のアルキニル基から選ばれる炭化水素基であることが好ましい。
 一般式(1)におけるRが-ORを表し、-ORがアルコキシ基である場合、Rで表されるアルキル基としては、炭素数1から10のアルキル基(メチル、エチル、又はブチルなど)が挙げられ、メチル基又はエチル基がさらに好ましい。即ち、-ORがアルコキシ基である場合、メトキシ基及びエトキシ基であることが好ましい。なお、-ORも、前記Rと同様に、イオン伝導度向上の観点から、環構造を有しない構造であることが好ましく、-ORにおけるRは直鎖又は分岐のアルキル基であることが好ましい。
 -ORがハロゲン化アルコキシ基である場合、Rで表されるハロゲン化アルキル基としては、炭素数1から10の直鎖又はハロゲン化アルキル基が好ましく、例えば、メチル、エチル、ブチルなどのアルキル基における水素原子の少なくとも1つがフッ素原子、ヨウ素原子、塩素原子に置き換わったハロゲン化アルキル基、特に、炭素数が2~3の直鎖アルキル基における水素原子のうち2~6の水素原子がフッ素原子に置き換わったものが好ましい。
In the general formula (2), Q 1 represents an alkylene group, and R 3 represents an alkyl group.
Examples of the hydrocarbon group when R 1 in the general formula (1) represents a hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, and an aryl group.
Here, when R 1 represents an alkyl group, a preferable alkyl group is an alkyl group having 1 to 10 carbon atoms (such as methyl, ethyl, hexyl, or cyclohexyl), and is linear or branched having 1 to 6 carbon atoms. And a linear alkyl group having 1 to 3 carbon atoms is more preferable. A preferred alkenyl group when R 1 represents an alkenyl group is an alkenyl group having 2 to 10 carbon atoms (such as vinyl, allyl, or -cyclohexenyl), and a linear or branched alkenyl group having 2 to 3 carbon atoms Is more preferable, and a preferable alkynyl group in the case of representing an alkynyl group is an alkynyl group having 1 to 10 carbon atoms (such as ethynyl or propynyl), more preferably a linear or branched alkynyl group having 2 to 3 carbon atoms. A preferable aryl group in the case of representing an aryl group is an aryl group having 6 to 20 carbon atoms (such as phenyl or naphthyl), and more preferably an aryl group having 6 to 10 carbon atoms.
From the viewpoint of improving the ionic conductivity, R 1 preferably has no ring structure, and from such a viewpoint, it is preferably a linear or branched hydrocarbon group.
More specifically, R 1 is preferably a hydrocarbon group selected from a linear or branched alkyl group, a linear or branched alkenyl group, and a linear or branched alkynyl group.
Formula (1) R 1 represents -OR 2 in the case -OR 2 is an alkoxy group, the alkyl group represented by R 2, an alkyl group (methyl 1 to 10 carbon atoms, ethyl, or Butyl and the like), and a methyl group or an ethyl group is more preferable. That is, when —OR 2 is an alkoxy group, it is preferably a methoxy group or an ethoxy group. Also -OR 2, wherein R 1 and similarly, from the viewpoint of ion conductivity improvement, preferably a structure having no cyclic structure, R 2 in the -OR 2 is a straight or branched alkyl group It is preferable.
When —OR 2 is a halogenated alkoxy group, the halogenated alkyl group represented by R 2 is preferably a linear or halogenated alkyl group having 1 to 10 carbon atoms, such as methyl, ethyl, butyl, etc. A halogenated alkyl group in which at least one of the hydrogen atoms in the alkyl group is replaced by a fluorine atom, an iodine atom, or a chlorine atom, particularly 2 to 6 hydrogen atoms among the hydrogen atoms in a linear alkyl group having 2 to 3 carbon atoms; Those substituted with fluorine atoms are preferred.
 これらアルキル基に代表される炭化水素基は、さらに置換基を有するものであってもよく、該炭化水素基に導入可能な好ましい置換基としては、ハロゲン原子、アルキル基、アリール基、ヘテロ環基、シアノ基、ニトロ基、アルコキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、及びシリル基などが挙げられる。
 置換基としてさらに好ましくは、アルキル基、アリール基、シアノ基、アルコキシ基、シリルオキシ基、アルコキシカルボニルオキシ基、又はフッ素原子である。また、電解液の物性を疎水的に維持しうる点で、R及び-ORの少なくとも1つがシアノ基を有する態様、及び-ORがフルオロアルキル基を有する態様などがより好ましい。
The hydrocarbon group represented by these alkyl groups may further have a substituent, and preferred substituents that can be introduced into the hydrocarbon group include a halogen atom, an alkyl group, an aryl group, and a heterocyclic group. , Cyano group, nitro group, alkoxy group, silyloxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonyl Amino group, sulfamoylamino group, alkylsulfonylamino group, arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, alkylsulfinyl group, arylsulfinyl group, alkyls Honiru group, an arylsulfonyl group, an acyl group, an aryloxycarbonyl group, an alkoxycarbonyl group, a carbamoyl group, and the like silyl groups.
More preferred as a substituent is an alkyl group, an aryl group, a cyano group, an alkoxy group, a silyloxy group, an alkoxycarbonyloxy group, or a fluorine atom. Further, from the viewpoint that the physical properties of the electrolytic solution can be maintained hydrophobic, an embodiment in which at least one of R 1 and —OR 2 has a cyano group, an embodiment in which —OR 2 has a fluoroalkyl group, and the like are more preferable.
 前記特定シロキサンオリゴマー中、前記一般式(1)における-ORで表される基の少なくとも一部は前記一般式(2)で表される置換基である。
 本発明に係る特定シロキサンオリゴマーに含まれる一般式(1)で表される全部分構造におけるRと-ORの総モル量に対する、前記一般式(2)で表される置換基のモル分率は5モル%以上100モル%以下であることを要する。
 前記一般式(2)中、Qで表されるアルキレン基の例としては、メチレン基、エチレン基、又はプロピレン基などの、直鎖又は分岐のアルキレン基が挙げられる。これらアルキレン基は置換基を有していてもよい。
 また、Rはアルキル基を表すが、アルキル基としては、前記一般式(1)におけるRで示されるアルキル基と同様のものが例示され、好ましい例も同じである。
 一般式(2)で示される置換基は、さらに下記一般式(3)で表される置換基であることが好ましい。
In the specific siloxane oligomer, at least a part of the group represented by —OR 2 in the general formula (1) is a substituent represented by the general formula (2).
The molar fraction of the substituent represented by the general formula (2) with respect to the total molar amount of R 1 and —OR 2 in the entire partial structure represented by the general formula (1) contained in the specific siloxane oligomer according to the present invention. The rate is required to be 5 mol% or more and 100 mol% or less.
In the general formula (2), examples of the alkylene group represented by Q 1 include a linear or branched alkylene group such as a methylene group, an ethylene group, or a propylene group. These alkylene groups may have a substituent.
R 3 represents an alkyl group. Examples of the alkyl group include the same alkyl groups as those represented by R 2 in the general formula (1), and preferred examples are also the same.
The substituent represented by the general formula (2) is preferably a substituent represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000019

 
Figure JPOXMLDOC01-appb-C000019

 
 前記一般式(3)中、Rで示されるアルキル基としては、前記一般式(1)におけるRで示されるアルキル基と同様のものが例示され、好ましい例も同じである。
 R及びRは、それぞれ独立にアルキル基又は水素原子を表し、メチル基又は水素原子であることが好ましく、R及びRの双方が水素原子であることがさらに好ましい。
 R及びRは、互いに連結して環構造を形成してもよく、形成される環構造としては、例えば、5員環から10員環の炭化水素で形成される環(シクロペンタン環、又はシクロヘキサン環など)が挙げられる。
 なお、前記一般式(2)及び一般式(3)で表される置換基は、既述の置換基である-ORの一態様であるために、前記一般式(2)及び一般式(3)で表される置換基は-ORと同様にイオン伝導度向上の観点から、該置換基の構造内に環構造を有しない態様が好ましい。即ち、一般式(2)で表される置換基において、Qが直鎖又は分岐のアルキレン基であり、Rが直鎖又は分岐のアルキル基を表す態様、一般式(3)で表される置換基において、Rが直鎖又は分岐のアルキル基であり、R及びRの双方が水素原子である態様が好ましい。
In the general formula (3), the alkyl group represented by R 3, the general formula in (1) the same as the alkyl group represented by R 2 are exemplified, and preferred examples are also the same.
R 4 and R 5 each independently represent an alkyl group or a hydrogen atom, preferably a methyl group or a hydrogen atom, and more preferably both R 4 and R 5 are hydrogen atoms.
R 4 and R 5 may be linked to each other to form a ring structure. Examples of the formed ring structure include a ring formed from a 5-membered ring to a 10-membered hydrocarbon (cyclopentane ring, Or a cyclohexane ring).
The substituents represented by the general formula (2) and the general formula (3) are one embodiment of —OR 2 which is the above-described substituent, and thus the general formula (2) and the general formula ( As in the case of —OR 2 , the substituent represented by 3) preferably has no ring structure in the structure of the substituent from the viewpoint of improving ionic conductivity. That is, in the substituent represented by the general formula (2), Q 1 is a linear or branched alkylene group, and R 3 represents a linear or branched alkyl group, represented by the general formula (3). In a preferred substituent, R 3 is a linear or branched alkyl group, and both R 4 and R 5 are hydrogen atoms.
 本発明の一実施形態に係る特定シロキサンオリゴマーは、下記一般式(1-a)、一般式(1-b)、一般式(1-c)、一般式(1-d)、及び一般式(1-e)からなる群より選択される部分構造を含んで構成される。 The specific siloxane oligomer according to one embodiment of the present invention includes the following general formula (1-a), general formula (1-b), general formula (1-c), general formula (1-d), and general formula (1- Comprising a partial structure selected from the group consisting of 1-e).
Figure JPOXMLDOC01-appb-C000020

 
Figure JPOXMLDOC01-appb-C000020

 
 前記式(1-a)は、前記一般式(1)で表される部分構造のうち、特定シロキサンオリゴマーの末端に存在する態様の例を示し、式(1-b)は、前記一般式(1)で表される部分構造における鎖状構造を構成する態様を示すものである。特定シロキサンオリゴマーは、さらに、前記一般式(1-c)、一般式(1-d)、及び一般式(1-e)で表される部分構造から選択される1種以上を含む分岐構造を有するオリゴマーであってもよいが、前記一般式(1-a)、一般式(1-b)、一般式(1-c)、一般式(1-d)、及び一般式(1-e)で表される部分構造のモル分率を、それぞれxa、xb、xc、xd及びxeとしたとき、前記シロキサンオリゴマーに含まれる全部分構造の合計量に対し、xa+xbの合計量が70モル%以上100モル%以下であることが、特定シロキサンオリゴマーの粘度が適切に維持されるという観点から好ましく、xa+xbが80モル%以上であることがより好ましい。言い換えれば、分岐を有する部分構造のモル分率が30モル%以下であることが好ましく、20モル%以下であることがより好ましい。また、分岐構造や架橋構造を高密度で有することによる粘度上昇を抑制するといった観点からは、xeは5モル%以下であることが好ましい。
 特定シロキサンオリゴマーが含む分岐構造や架橋構造の有無は、Si-NMRにより確認される。
The formula (1-a) represents an example of an embodiment of the partial structure represented by the general formula (1) that exists at the end of the specific siloxane oligomer, and the formula (1-b) represents the formula (1-b) The aspect which comprises the chain structure in the partial structure represented by 1) is shown. The specific siloxane oligomer further has a branched structure containing at least one selected from the partial structures represented by the general formula (1-c), the general formula (1-d), and the general formula (1-e). The general formula (1-a), the general formula (1-b), the general formula (1-c), the general formula (1-d), and the general formula (1-e) may be used. And xa, xb, xc, xd, and xe, respectively, the total amount of xa + xb is 70 mol% or more with respect to the total amount of all partial structures contained in the siloxane oligomer. It is preferable that it is 100 mol% or less from a viewpoint that the viscosity of a specific siloxane oligomer is maintained appropriately, and it is more preferable that xa + xb is 80 mol% or more. In other words, the molar fraction of the branched partial structure is preferably 30 mol% or less, and more preferably 20 mol% or less. Moreover, from the viewpoint of suppressing an increase in viscosity due to having a branched structure or a crosslinked structure at a high density, xe is preferably 5 mol% or less.
The presence or absence of a branched structure or a crosslinked structure contained in the specific siloxane oligomer is confirmed by Si-NMR.
 本発明に係る特定シロキサンオリゴマーの具体例〔(Si-1)~(Si-8)〕を、前記一般式(1)で示される部分構造における各置換基の含有比率、Si-NMR測定により確認された分岐モル分率、及び、GPC測定によるスチレン換算により得た数平均分子量を挙げて以下に示すが、本発明に用いうる特定シロキサンオリゴマーは下記例示化合物に限定されない。 Specific examples [(Si-1) to (Si-8)] of the specific siloxane oligomer according to the present invention are confirmed by the content ratio of each substituent in the partial structure represented by the general formula (1) and Si-NMR measurement. Specific branched siloxane oligomers that can be used in the present invention are not limited to the following exemplified compounds, although the branched mole fractions and the number average molecular weights obtained by styrene conversion by GPC measurement are listed.
Figure JPOXMLDOC01-appb-C000021

 
Figure JPOXMLDOC01-appb-C000021

 
 本発明に係る特定シロキサンオリゴマーの分子量(GPCによるスチレン換算数平均分子量)は、500以上1,500以下であることを要し、500以上1,000以下の範囲であることが好ましい。
 本発明の電解液における特定シロキサンオリゴマーの含有量は、電解液全量に対し30質量%~80質量%の範囲であることが好ましく、60質量%~80質量%の範囲であることがより好ましい。
The molecular weight (number average molecular weight in terms of styrene by GPC) of the specific siloxane oligomer according to the present invention needs to be 500 or more and 1,500 or less, and preferably 500 or more and 1,000 or less.
The content of the specific siloxane oligomer in the electrolytic solution of the present invention is preferably in the range of 30% by mass to 80% by mass, and more preferably in the range of 60% by mass to 80% by mass with respect to the total amount of the electrolytic solution.
(2)周期律表第一族又は第二族に属する金属イオンの塩
 本発明の電解液に含まれる周期律表第一族又は第二族に属する金属イオンの塩は、電解液の使用目的により適宜選択される。周期律表第一族又は第二族に属する金属イオンの塩の具体例としては、例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩などが挙げられ、本発明の電解液が二次電池などに使用される場合には、二次電池の出力が高いという観点からリチウム塩が好ましい。本発明の電解液をリチウム二次電池用非水系電解液の電解質として用いる場合には、金属イオンの塩としてリチウム塩を選択すればよい。リチウム塩としては、リチウム二次電池用非水系電解液の電解質に通常用いられるリチウム塩であれば特に制限はないが、例えば、以下に述べるものが好ましい。
(2) Salt of metal ion belonging to Group 1 or Group 2 of periodic table Is appropriately selected. Specific examples of salts of metal ions belonging to Group 1 or Group 2 of the Periodic Table include, for example, lithium salts, potassium salts, sodium salts, calcium salts, magnesium salts, and the like. When used for a secondary battery or the like, a lithium salt is preferable from the viewpoint of high output of the secondary battery. When the electrolytic solution of the present invention is used as an electrolyte of a non-aqueous electrolytic solution for a lithium secondary battery, a lithium salt may be selected as a metal ion salt. The lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
 (2-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBRO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。 (2-1) Inorganic lithium salts: inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBRO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
 (2-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。 (2-2) Fluorine-containing organic lithium salt: perfluoroalkane sulfonate such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , Perfluoroalkanesulfonylimide salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 2 CF 3) 2], Li [PF 3 (CF 2 CF 2 CF 2 CF 3) 3] fluoroalkyl fluoride such as potash Acid salts, and the like.
 (2-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。 (2-3) Oxalatoborate salt: lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSOが好ましく、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSOなどのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 なお、電解液に用いるリチウム塩は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
 電解液における周期律表第一族又は第二族に属する金属イオンの塩の含有量は、以下に電解液の調製法で述べる好ましい塩濃度となる量で添加される。塩濃度は電解液の目的により選択されるが、一般的には電解液全質量中10質量%から50質量%であり、さらに好ましくは15質量%から30質量%である。
Among these, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) 2 is preferred, and lithium imide salts such as LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) 2 are further preferable. Here, Rf 1 and Rf 2 each represent a perfluoroalkyl group.
In addition, the lithium salt used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
The content of a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table in the electrolytic solution is added in an amount that provides a preferable salt concentration described below in the method for preparing the electrolytic solution. The salt concentration is selected according to the purpose of the electrolytic solution, but is generally 10% by mass to 50% by mass, and more preferably 15% by mass to 30% by mass in the total mass of the electrolytic solution.
(3)電解液の調製方法
 次に、本発明の電解液の代表的な調製方法を、(2)金属イオンの塩としてリチウム塩を用いた場合を例に挙げて説明する。
 本発明の電解液は、下記スキーム1に示すように、まず、(4)アルコシキシラン化合物と(5)ヒドロキシカルボン酸と、を用いてシロキサンオリゴマーを合成した後、前記リチウム塩を溶解して添加することで、電解液を調製する方法と、リチウム塩の共存下で、上記(4)アルコシキシラン化合物と(5)ヒドロキシカルボン酸とを用いシロキサンオリゴマーを合成することで、シロキサンオリゴマーとリチウム塩とを含む電解液を、1工程で調製する方法の、いずれの方法をも、とり得る。
(3) Method for Preparing Electrolytic Solution Next, a typical method for preparing the electrolytic solution of the present invention will be described by taking (2) a case where a lithium salt is used as a salt of metal ions as an example.
As shown in the following scheme 1, the electrolytic solution of the present invention first synthesizes a siloxane oligomer using (4) an alkoxysilane compound and (5) a hydroxycarboxylic acid, and then dissolves the lithium salt. By adding the method, an electrolyte solution is prepared and in the presence of a lithium salt, a siloxane oligomer is synthesized by synthesizing a siloxane oligomer using the above (4) alkoxysilane compound and (5) hydroxycarboxylic acid. Any method of preparing an electrolytic solution containing a salt in one step can be used.
 上記(4)アルコシキシラン化合物と(5)ヒドロキシカルボン酸との縮合反応では、酸触媒として用いた(5)ヒドロキシカルボン酸が、(4)アルコキシシランとのエステル交換によりエステル化されHOQCOORとなり、さらにオリゴマー上のアルコキシ基と交換され、オリゴマー上に導入される。この時、(6)他のアルコール〔HO-Q-X〕を共存させると(6)他のアルコールは、(4)アルコキシシラン化合物における-OR基と交換され、オリゴマー中に導入される(スキーム1)。
 (6)他のアルコール〔HO-Q-X〕は、最初から反応液に共存させておいてもよく、縮合が進んだ後に添加してもよい。
In the condensation reaction of the above (4) alkoxysilane compound and (5) hydroxycarboxylic acid, the (5) hydroxycarboxylic acid used as the acid catalyst is esterified by transesterification with (4) alkoxysilane to form HOQ 1 COOR. 2 is further exchanged with an alkoxy group on the oligomer and introduced onto the oligomer. At this time, when (6) another alcohol [HO-Q 2 -X] coexists, (6) the other alcohol is exchanged with the —OR 2 group in the (4) alkoxysilane compound and introduced into the oligomer. (Scheme 1).
(6) The other alcohol [HO-Q 2 -X] may be allowed to coexist in the reaction solution from the beginning, or may be added after the condensation has progressed.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 前記式(4)及び式(5)中のR、R及びQは前記一般式(1)及び一般式(2)におけるR、R及びQとそれぞれ同義であり、QはQと同義であり、XはRにおいて述べた置換基と同じものを表す。
 以下、電解液の調整方法の諸条件を詳細に説明する。
Formula (4) and R 1, R 2 and Q 1 in the formula (5) is respectively R 1, R 2 and Q 1 synonymous in Formula (1) and the general formula (2), Q 2 Is synonymous with Q 1 and X represents the same substituent as described for R 2 .
Hereinafter, various conditions of the electrolytic solution adjustment method will be described in detail.
(i)縮合条件(組成比、温度、留去条件、溶媒)
 (1)原料の仕込み比:
 本発明における電解液調製において、前記(4)アルコシキシラン化合物の仕込みモル量をa、前記(5)ヒドロキシカルボン酸の仕込みモル量をbとしたとき、反応液の仕込みモル比b/aの好ましい範囲は0.1から2であり、さらに好ましくは0.2から1の範囲であり、より好ましくは0.3から0.8の範囲である。(4)アルコキシシラン化合物及び(5)ヒドロキシカルボン酸は、それぞれ、1種を単独で使用してもよく、構造の異なる化合物を複数種混合して用いてもよい。
(I) Condensation conditions (composition ratio, temperature, distillation conditions, solvent)
(1) Raw material charge ratio:
In the preparation of the electrolytic solution in the present invention, when the charged molar amount of the (4) alkoxysilane compound is a and the charged molar amount of the (5) hydroxycarboxylic acid is b, the charged molar ratio b / a of the reaction solution is A preferred range is from 0.1 to 2, more preferably from 0.2 to 1, more preferably from 0.3 to 0.8. (4) Alkoxysilane compounds and (5) hydroxycarboxylic acids may be used singly or as a mixture of compounds having different structures.
 (2)反応温度、反応時間等:
 本発明におけるシロキサンオリゴマーは、前記(4)アルコキシシラン化合物を、前記(5)ヒドロキシカルボン酸を、酸触媒として用いて縮合させ、その後、未反応の原料に由来する揮発成分と生成する揮発成分を留去して得られる。前記縮合反応時の反応温度は、縮合に伴い生成するアルコールの沸点に依存するが、室温から200℃までの範囲が好ましく、50℃から170℃の範囲がさらに好ましく、80℃から160℃の範囲がより好ましい。縮合反応後の揮発分の留去は、通常、常圧加熱で行った後、留去分が少なくなった後に減圧加熱で行うことが好ましく、減圧加熱時の好ましい加熱温度範囲は60℃から200℃であり、100℃から160℃がさらに好ましい。減圧度は、600mmHgから5mmHgの範囲で徐々に減圧度を上げていくことが好ましく、最終的には減圧度100mmHgから5mmHg、温度100℃から160℃の範囲で揮発分を留去することが好ましい。なお、ここでの温度は反応器を加熱する熱媒体の温度である。
 (3)溶媒:
 本発明の電解液の調製は、無溶媒で行うことが可能であるが、溶媒を用いて行ってもよい。また、溶媒を用いた場合、該溶媒は最終的に完全に留去してもよく、リチウム二次電池の特性に悪影響を及ぼさない溶媒であれば意図的に残存させることも可能である。
 ここで、好ましく用いられる溶媒は、メタノール、エタノール、及びプロパノールなどのアルコール類、アセトニトリル、酢酸エチル、ジメチルホルムアミド、ジメチルスルホキシド、テロラヒドロフラン(THF)、及びスルホランなどの非プロトン性溶媒など、有機合成で用いられる溶媒から広く選択できる。また、後述するリチウム二次電池で用いられる溶媒から選択して、電解液調整時の溶媒として用いることも可能である。
 溶媒を用いる場合、添加する溶媒の量は、シロキサンオリゴマーに対し質量比で0.1から10の範囲が好ましく、0.1から1の範囲がさらに好ましい。
(2) Reaction temperature, reaction time, etc .:
In the siloxane oligomer of the present invention, the (4) alkoxysilane compound is condensed using the (5) hydroxycarboxylic acid as an acid catalyst, and then a volatile component derived from an unreacted raw material and a generated volatile component Obtained by distillation. The reaction temperature during the condensation reaction depends on the boiling point of the alcohol produced during the condensation, but is preferably in the range of room temperature to 200 ° C, more preferably in the range of 50 ° C to 170 ° C, and in the range of 80 ° C to 160 ° C. Is more preferable. The volatile matter after the condensation reaction is usually distilled off at normal pressure and then preferably after reduced pressure and then reduced pressure heating. The preferred heating temperature range during reduced pressure heating is from 60 ° C to 200 ° C. ° C, more preferably 100 ° C to 160 ° C. The degree of vacuum is preferably gradually increased in the range of 600 mmHg to 5 mmHg, and finally the volatile matter is preferably distilled off in the range of 100 mmHg to 5 mmHg and a temperature of 100 ° C to 160 ° C. . The temperature here is the temperature of the heat medium for heating the reactor.
(3) Solvent:
Preparation of the electrolytic solution of the present invention can be performed without a solvent, but may be performed using a solvent. In addition, when a solvent is used, the solvent may finally be completely distilled off, or it can be intentionally left as long as it does not adversely affect the characteristics of the lithium secondary battery.
Here, preferably used solvents are organic synthesis such as alcohols such as methanol, ethanol and propanol, aprotic solvents such as acetonitrile, ethyl acetate, dimethylformamide, dimethyl sulfoxide, terahydrofuran (THF), and sulfolane. Can be selected from a wide range of solvents. Moreover, it is also possible to select from the solvent used by the lithium secondary battery mentioned later, and to use as a solvent at the time of electrolyte solution adjustment.
When the solvent is used, the amount of the solvent to be added is preferably in the range of 0.1 to 10 and more preferably in the range of 0.1 to 1 by mass ratio with respect to the siloxane oligomer.
(ii)電解液の組成と物性
 調製された電解液中のリチウム塩濃度は、濃度が高くなるにつれて電解液の粘度が高くなるため、高いイオン伝導度を示すための適正な濃度範囲が存在する。好ましい濃度範囲は、電解液全質量中10質量%から50質量%であり、さらに好ましくは15質量%から30質量%である。
 リチウム塩共存下で縮合反応を行って電解液を調製する際には、リチウム塩濃度は、上記(1)で述べた原料の仕込み比と(2)で述べた反応条件により制御されるため、最終的な濃度が上記の範囲に入るように、原料の仕込み比率を調整すればよい。
 本発明の電解液の粘度は、上記(1)原料仕込み比率と(2)反応条件により制御され、100mPa・s以下が好ましいが、低い揮発性を両立させるためには5mPa・sから50mPa・sの範囲がより好ましい。
(Ii) Composition and Physical Properties of Electrolytic Solution The lithium salt concentration in the prepared electrolytic solution has an appropriate concentration range for exhibiting high ionic conductivity because the viscosity of the electrolytic solution increases as the concentration increases. . A preferable concentration range is 10% by mass to 50% by mass, and more preferably 15% by mass to 30% by mass, based on the total mass of the electrolytic solution.
When preparing an electrolyte by performing a condensation reaction in the presence of a lithium salt, the lithium salt concentration is controlled by the raw material charge ratio described in (1) above and the reaction conditions described in (2). What is necessary is just to adjust the preparation ratio of a raw material so that a final density | concentration may enter into said range.
The viscosity of the electrolytic solution of the present invention is controlled by the above (1) raw material charge ratio and (2) reaction conditions, and is preferably 100 mPa · s or less, but in order to achieve both low volatility and 5 mPa · s to 50 mPa · s. The range of is more preferable.
(Vii)特定シロキサンオリゴマーの調製に用いる具体的な化合物例
 上記合成方法において、本発明に係る特定シロキサンオリゴマーの合成に用いる、原料の具体的な化合物例を以下に挙げるが、これらに限定されない。
(4)アルコキシシラン化合物
(4-1) Si(OMe)、(4-2) Si(OEt)
(4-3) Si(OPr)、(4-4) Si(OBu)
(4-5) MeSi(OMe)、(4-6) MeSi(OEt)
(4-7) MeSi(OMe)など
(Vii) Specific compound examples used for preparation of specific siloxane oligomer In the above synthesis method, specific compound examples of raw materials used for the synthesis of the specific siloxane oligomer according to the present invention are listed below, but are not limited thereto.
(4) Alkoxysilane compound (4-1) Si (OMe) 4 , (4-2) Si (OEt) 4 ,
(4-3) Si (OPr) 4 , (4-4) Si (OBu) 4 ,
(4-5) MeSi (OMe) 3 , (4-6) MeSi (OEt) 3 ,
(4-7) Me 2 Si (OMe) 2 etc.
(5)ヒドロキシカルボン酸
(5-1) HOCHCOOH、(5-2) HOCHCHCOOH、
(5-3) HOCH(Me)COOH、(5-4)HOC(Me)COOH、
(5-5) HOCHCH(Me)COOH、
(5-6)HOCHC(Me)COOHなど
(5) hydroxycarboxylic acid (5-1) HOCH 2 COOH, (5-2) HOCH 2 CH 2 COOH,
(5-3) HOCH (Me) COOH, (5-4) HOC (Me) 2 COOH,
(5-5) HOCH 2 CH (Me) COOH,
(5-6) HOCH 2 C (Me) 2 COOH, etc.
(6)置換基含有アルコール
(6-1) HOCHCOOC、(6-1)HOCHCHCN、
(6-2) HOCHCFCFH、(6-3)HOCHCF
(6-4) HOCHCHF、(6-5) HOCHCHSi(CHなど
 なお、ここで、Meはメチル基を、OMeはメトキシ基を、OEtはエトキシ基を、OPrはプロポキシ基を、OBuはブトキシ基を、それぞれ表す。
(6) Substituent-containing alcohol (6-1) HOCH 2 COOC 2 H 5 , (6-1) HOCH 2 CH 2 CN,
(6-2) HOCH 2 CF 2 CF 2 H, (6-3) HOCH 2 CF 3 ,
(6-4) HOCH 2 CH 2 F, (6-5) HOCH 2 CH 2 Si (CH 3 ) 3, etc. Here, Me represents a methyl group, OMe represents a methoxy group, OEt represents an ethoxy group, OPr represents a propoxy group, and OBu represents a butoxy group.
(7)リン化合物
 本発明の電解液には、さらに、リン化合物を含有してもよい。電解液にリン化合物を用いることで、電解液の粘度が低下し、これに起因してイオン伝導度が向上し、且つ、難燃性が改良されるという効果を奏する。また、以下に示す好ましいリン化合物を併用することで、充放電特性の向上が見られた。これは、リン化合物が、電池充電時に負極、正極を被覆する薄い皮膜(SEI)を形成することに由来するものと考えられる。
 本発明の電解液に用いられるリン化合物としては、(7-1)リン酸エステル化合物、(7-2)ホスファゼン化合物、(7-3)ホスホン酸エステル化合物、及び、(7-4)ホスファイト化合物などが挙げられ、これらの化合物からなる群より1種又は2種以上を選択して用いればよい。
 以下、好ましいリン化合物について説明する。
(7-1)リン酸エステル化合物
 リン酸エステル化合物としては、下記一般式(p1)で表される化合物が好ましい。
(7) Phosphorus compound The electrolytic solution of the present invention may further contain a phosphorus compound. By using a phosphorus compound in the electrolytic solution, the viscosity of the electrolytic solution is lowered, and thereby the ionic conductivity is improved and the flame retardancy is improved. Moreover, the improvement of charging / discharging characteristic was seen by using together the preferable phosphorus compound shown below. This is considered to be derived from the fact that the phosphorus compound forms a thin film (SEI) covering the negative electrode and the positive electrode during battery charging.
Phosphorus compounds used in the electrolytic solution of the present invention include (7-1) phosphate ester compound, (7-2) phosphazene compound, (7-3) phosphonate ester compound, and (7-4) phosphite. The compound etc. are mentioned, What is necessary is just to select 1 type (s) or 2 or more types from the group which consists of these compounds.
Hereinafter, preferable phosphorus compounds will be described.
(7-1) Phosphate Compound As the phosphate compound, a compound represented by the following general formula (p1) is preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記一般式(p1)中、Rp11、Rp12、及びRp13は、それぞれ独立にアルキル基又はアリール基を表す。好ましくは、Rp11、Rp12、及びRp13のうち2つが同じ置換基を表す態様であり、さらに好ましくは、3つのすべてが同じ置換基を表す態様である。
 Rp11、Rp12、及びRp13の少なくともいずれかがアルキル基を表す場合、炭素数1~8のアルキル基が好ましい。また、Rp11、Rp12、及びRp13の少なくともいずれかがアリール基を表す場合、炭素数6~12のアリール基が好ましい。なかでも、Rp11、Rp12、及びRp13が、それぞれ、アルキル基を表すことが好ましい。
 より具体的には、無置換のアルキル基としては、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、又は、tert-ブチル基であり、更に好ましくはメチル基、又はエチル基である。
 置換アルキル基として、好ましくはハロゲン化アルキル基であり、特に好ましくは、フッ化アルキル基であり、更に好ましくはトリフルオロメチル基、ジフルオロメチル基、モノフルオロメチル基、トリフルオロエチル基、又はテトラフルオロプロピル基である。
 リン酸エステル化合物の好ましい具体的な態様を挙げれば、Rp11、R12、及びR13がそれぞれ独立にメチル基、エチル基、トリフルオロメチル基、及びトリフルオロエチル基のいずれかの場合であり、より好ましくは、Rp11、Rp12、及びRp13の全てが、メチル基又はトリフルオロエチル基の場合である。
In the general formula (p1), Rp 11 , Rp 12 , and Rp 13 each independently represents an alkyl group or an aryl group. Preferably, two of Rp 11 , Rp 12 , and Rp 13 represent the same substituent, and more preferably, all three represent the same substituent.
When at least one of Rp 11 , Rp 12 , and Rp 13 represents an alkyl group, an alkyl group having 1 to 8 carbon atoms is preferable. In addition, when at least one of Rp 11 , Rp 12 , and Rp 13 represents an aryl group, an aryl group having 6 to 12 carbon atoms is preferable. Among them, Rp 11, Rp 12, and Rp 13, respectively, it is preferable that an alkyl group.
More specifically, the unsubstituted alkyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, or a tert-butyl group, and more preferably a methyl group, Or it is an ethyl group.
The substituted alkyl group is preferably a halogenated alkyl group, particularly preferably a fluorinated alkyl group, and more preferably a trifluoromethyl group, a difluoromethyl group, a monofluoromethyl group, a trifluoroethyl group, or a tetrafluoro group. Propyl group.
Preferable specific embodiment of the phosphate ester compound is a case where Rp 11 , R 12 and R 13 are each independently any of a methyl group, an ethyl group, a trifluoromethyl group, and a trifluoroethyl group. More preferably, all of Rp 11 , Rp 12 and Rp 13 are methyl groups or trifluoroethyl groups.
(7-2)ホスファゼン化合物
 ホスファゼン化合物としては、下記一般式(p2)で表される部分構造を有する化合物が好ましい。
(7-2) Phosphazene Compound As the phosphazene compound, a compound having a partial structure represented by the following general formula (p2) is preferable.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 前記一般式(p2)中、Rp21、及びRp22は、それぞれ独立にハロゲン原子、アルコキシ基、又はアリールオキシ基を表す。n は1以上の整数を表し、好ましくは1~4の整数であり、特に好ましくは3又は4である。
 Rp21、及びRp22の少なくともいずれかがハロゲン原子を表す場合、塩素原子、又はフッ素原子が好ましく、フッ素原子がより好ましい。また、Rp21、及びRp22の少なくともいずれかがアルコキシ基を表す場合、炭素数1~8のアルコキシ基が好ましい。Rp21、及びRp22の少なくともいずれかがアリールオキシ基を表す場合、炭素数6~12のアリールオキシ基が好ましい。なかでも、Rp21、及びRp22が、それぞれ独立に、ハロゲン原子又はアルコキシ基を表すことが好ましい。
 アルコキシ基としては、好ましくは、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、及びハロゲン化アルキルオキシ基が挙げられ、更に好ましくは、メトキシ基、エトキシ基、又はハロゲン化アルキルオキシ基である。ハロゲン化アルキルオキシ基として更に好ましくは、トリフルオロメトキシ基、トリフルオロエトキシ基、又はテトロフルオロプロピルオキシ基である。
 Rp21、及びRp22が同じであっても異なってもよいが、Rp21、及びRp22の少なくとも一方がフッ素原子である態様が好ましい。
 前記一般式(P2)で表される部分構造を有するホスファゼン化合物としては、Rp21、及びRp22のうち、一方がフッ素原子であり、他方がメトキシ基であり、Np2が3又は4であり、末端が連結している環状構造を有する化合物が挙げられる。
In the general formula (p2), Rp 21 and Rp 22 each independently represent a halogen atom, an alkoxy group, or an aryloxy group. n p 2 represents an integer of 1 or more, preferably an integer of 1 to 4, and particularly preferably 3 or 4.
When at least one of Rp 21 and Rp 22 represents a halogen atom, a chlorine atom or a fluorine atom is preferable, and a fluorine atom is more preferable. In addition, when at least one of Rp 21 and Rp 22 represents an alkoxy group, an alkoxy group having 1 to 8 carbon atoms is preferable. When at least one of Rp 21 and Rp 22 represents an aryloxy group, an aryloxy group having 6 to 12 carbon atoms is preferable. Among them, Rp 21, and Rp 22 are each independently preferably represents a halogen atom or an alkoxy group.
The alkoxy group preferably includes a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, and a halogenated alkyloxy group, more preferably a methoxy group, An ethoxy group or a halogenated alkyloxy group. The halogenated alkyloxy group is more preferably a trifluoromethoxy group, a trifluoroethoxy group, or a tetrofluoropropyloxy group.
Rp 21 and Rp 22 may be the same or different, but an embodiment in which at least one of Rp 21 and Rp 22 is a fluorine atom is preferable.
As the phosphazene compound having a partial structure represented by the general formula (P2), one of Rp 21 and Rp 22 is a fluorine atom, the other is a methoxy group, and Np2 is 3 or 4. The compound which has the cyclic structure which the terminal has connected is mentioned.
(7-3)ホスホン酸エステル化合物
 ホスホン酸エステル化合物としては、下記一般式(p3)で表される化合物が好ましい。
(7-3) Phosphonate Compound As the phosphonate compound, a compound represented by the following general formula (p3) is preferable.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 前記一般式(p3)において、Rp31、Rp32、及びRp33は、それぞれ独立にアルキル基、又はアリール基を表す。
 Rp31、Rp32、及びRp33は同じであっても異なっていてもよいが、Rp32と、Rp33とが同じである態様が好ましい。
 Rp31、Rp32、及びRp332の少なくともいずれかがアルキル基を表す場合、炭素数1~8のアルキル基が好ましい。また、Rp31、Rp32、及びRp332の少なくともいずれかがアリール基を表す場合、炭素数6~12のアリール基が好ましい。なかでも、Rp31、Rp32、及びRp33が、それぞれ独立に、アルキル基を表すことが好ましい。
 Rp31、Rp32、及びRp332の少なくともいずれかがアルキル基を表す場合の無置換のアルキル基としては、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、及びtert-ブチル基であり、更に好ましくはメチル基、又はエチル基である。置換アルキル基としては、好ましくはハロゲン化アルキル基であり、特に好ましくは、フッ化アルキル基であり、更に好ましくはトリフルオロメチル基、ジフルオロメチル基、モノフルオロメチル基、トリフルオロエチル基、又はテトラフルオロプロピル基である。
 ホスホン酸エステル化合物の好ましい具体的な態様を挙げれば、Rp31がメチル基であり、Rp32及び、Rp33がいずれもトリフルオロエチル基の場合である。
In the general formula (p3), Rp 31 , Rp 32 , and Rp 33 each independently represents an alkyl group or an aryl group.
Rp 31 , Rp 32 , and Rp 33 may be the same or different, but an embodiment in which Rp 32 and Rp 33 are the same is preferable.
When at least one of Rp 31 , Rp 32 , and Rp 332 represents an alkyl group, an alkyl group having 1 to 8 carbon atoms is preferable. Further, when at least one of Rp 31 , Rp 32 , and Rp 332 represents an aryl group, an aryl group having 6 to 12 carbon atoms is preferable. Among them, Rp 31, Rp 32, and Rp 33 are each independently preferably represents an alkyl group.
When at least one of Rp 31 , Rp 32 , and Rp 332 represents an alkyl group, the unsubstituted alkyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and A tert-butyl group, more preferably a methyl group or an ethyl group. The substituted alkyl group is preferably a halogenated alkyl group, particularly preferably a fluorinated alkyl group, and more preferably a trifluoromethyl group, difluoromethyl group, monofluoromethyl group, trifluoroethyl group, or tetra It is a fluoropropyl group.
A preferred specific embodiment of the phosphonate compound is a case where Rp 31 is a methyl group, and Rp 32 and Rp 33 are both trifluoroethyl groups.
(7-4)ホスファイト化合物
 ホスファイト化合物としては、下記一般式(p4)で表される化合物が挙げられる。
(7-4) Phosphite Compound Examples of the phosphite compound include compounds represented by the following general formula (p4).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 前記一般式(p4)中、Rp41、Rp42、及びRp43は、それぞれ独立にアルキル基、又はフェニル基を表す。
 Rp41、Rp42、及びRp43は同じであっても異なっていてもよいが、Rp41、Rp42、及びRp43のうち2つが同じである態様が好ましく、3つが同じ置換基である態様がさらに好ましい。
 Rp41、Rp42、及びRp432の少なくともいずれかがアルキル基を表す場合、炭素数1~8のアルキル基が好ましい。また、Rp41、Rp42、及びRp432の少なくともいずれかがアリール基を表す場合、炭素数6~12のアリール基が好ましい。なかでも、Rp41、Rp42、及びRp43が、それぞれ独立に、フェニル基、又は、アルキル基を表すことが好ましい。
 Rp31、Rp32、及びRp332の少なくともいずれかがアルキル基を表す場合の無置換のアルキル基としては、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、及びtert-ブチル基であり、更に好ましくはメチル基、又はエチル基である。置換アルキル基としては、好ましくはハロゲン化アルキル基であり、特に好ましくは、フッ化アルキル基であり、更に好ましくはトリフルオロメチル基、ジフルオロメチル基、モノフルオロメチル基、トリフルオロエチル基、又はテトラフルオロプロピル基である。
 ホスファイト化合物の好ましい具体的な態様を挙げれば、Rp41、Rp42、及びRp43がそれぞれ独立にメチル基、エチル基、又はフェニル基の場合であり、より好ましくは、Rp41、Rp42、及びRp43の全てがメチル基の場合である。
 以下に、本発明の電解液に用いうるリン化合物の好ましい具体例〔例示化合物(A1)~(A5)〕を挙げるが、本発明はこれらに制限されるものではない。
In the general formula (p4), Rp 41 , Rp 42 , and Rp 43 each independently represents an alkyl group or a phenyl group.
Rp 41 , Rp 42 , and Rp 43 may be the same or different, but an embodiment in which two of Rp 41 , Rp 42 , and Rp 43 are the same is preferable, and an embodiment in which three are the same substituents Is more preferable.
When at least one of Rp 41 , Rp 42 , and Rp 432 represents an alkyl group, an alkyl group having 1 to 8 carbon atoms is preferable. In addition, when at least one of Rp 41 , Rp 42 , and Rp 432 represents an aryl group, an aryl group having 6 to 12 carbon atoms is preferable. Among them, Rp 41, Rp 42, and Rp 43 are each independently a phenyl group, or preferably represents an alkyl group.
When at least one of Rp 31 , Rp 32 , and Rp 332 represents an alkyl group, the unsubstituted alkyl group is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and A tert-butyl group, more preferably a methyl group or an ethyl group. The substituted alkyl group is preferably a halogenated alkyl group, particularly preferably a fluorinated alkyl group, and more preferably a trifluoromethyl group, difluoromethyl group, monofluoromethyl group, trifluoroethyl group, or tetra It is a fluoropropyl group.
By way of preferred specific embodiments of the phosphite compound, a case Rp 41, Rp 42, and Rp 43 is independently a methyl group, an ethyl group, or a phenyl group, more preferably, Rp 41, Rp 42, And Rp 43 is all a methyl group.
Specific preferred examples of the phosphorus compound that can be used in the electrolytic solution of the present invention [Exemplary compounds (A1) to (A5)] are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 前記リン化合物は電解液中に1種のみを含んでもよく、2種以上を含んでいてもよい。
 リン化合物は、上記電解液の調製プロセスにおいて、いずれのタイミングで添加されてもよいが、リチウム塩を添加する際に同時に添加することが好ましい。
 リン化合物の含有量は、全電解液に対し、5質量%以上40質量%以下の範囲であることが望ましい。好ましくは、5質量%以上30%質量%以下の範囲であり、特に好ましくは10質量%以上20質量%以下の範囲である。
 添加量が5質量%以上であることにより、リン化合物添加による難燃性の向上効果が十分に発揮され、40質量%以下であることにより、電池特性、特に充放電特性が良好に維持される。
The said phosphorus compound may contain only 1 type in electrolyte solution, and may contain 2 or more types.
The phosphorus compound may be added at any timing in the process for preparing the electrolytic solution, but is preferably added simultaneously with the addition of the lithium salt.
The content of the phosphorus compound is desirably in the range of 5% by mass to 40% by mass with respect to the total electrolyte solution. Preferably, it is the range of 5 mass% or more and 30% mass% or less, Most preferably, it is the range of 10 mass% or more and 20 mass% or less.
When the addition amount is 5% by mass or more, the effect of improving the flame retardancy due to the addition of the phosphorus compound is sufficiently exhibited, and when it is 40% by mass or less, the battery characteristics, particularly the charge / discharge characteristics are maintained well. .
 上述のようにして特定シロキサンオリゴマーを含有する本発明の電解液が調製される。このようにして得られた本発明の非水二次電池用電解液は、イオン伝導性と、イオン輸率のいずれもが良好であるため、高いイオン伝導性を必要とする電池用途に好適に使用されるが、なかでも、リチウム二次電池の電解液として有用である。 The electrolyte solution of the present invention containing the specific siloxane oligomer is prepared as described above. The electrolyte solution for a non-aqueous secondary battery of the present invention thus obtained is suitable for battery applications that require high ion conductivity because both the ion conductivity and the ion transport number are good. Among them, it is useful as an electrolytic solution for lithium secondary batteries.
〔2〕リチウム二次電池
 本発明のリチウム二次電池は、上記本発明の非水二次電池用電解液と、リチウムイオンの挿入放出が可能な正極と、リチウムイオンの挿入放出又は溶解析出が可能な負極とを備える。
 これらの部材に加え、電池が使用される目的、電位の形状などを考慮し、正極と負極の間に配設されるセパレータ、集電端子、及び外装ケース等を含んで構成されてもよい。必要に応じて、電池の内部及び電池の外部の少なくともいずれかに保護素子を装着してもよい。
 以下、本発明のリチウム二次電池の構成について詳細に説明する。
(1)電池形状
 本発明のリチウム二次電池が適用される電池形状には、特に制限はなく、例えば、有底筒型形状、有底角型形状、薄型形状、シート形状、及び、ペーパー形状などが挙げられ、これらのいずれであってもよい。また、組み込まれるシステムや機器の形を考慮した馬蹄形や櫛型形状等の異型の電池形状であってもよい。
 なかでも、電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する有底角型形状や薄型形状などの角型の電池形状が好ましい。
[2] Lithium secondary battery The lithium secondary battery of the present invention comprises the electrolyte solution for a non-aqueous secondary battery of the present invention, a positive electrode capable of inserting and releasing lithium ions, and insertion and release or dissolution precipitation of lithium ions. Possible negative electrode.
In addition to these members, in consideration of the purpose for which the battery is used, the shape of the potential, and the like, the battery may be configured to include a separator, a current collecting terminal, and an outer case disposed between the positive electrode and the negative electrode. If necessary, a protective element may be attached to at least one of the inside of the battery and the outside of the battery.
Hereinafter, the configuration of the lithium secondary battery of the present invention will be described in detail.
(1) Battery shape There is no restriction | limiting in particular in the battery shape to which the lithium secondary battery of this invention is applied, For example, a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape Any of these may be used. Also, it may be an unusual battery shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated.
In particular, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a rectangular battery shape such as a bottomed square shape or a thin shape having at least one surface that is relatively flat and has a large area is preferable.
 有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。 In the case of a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging or discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced.
 有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させるとともに、異常発熱時の放熱効率を上げることができ、「弁作動」や「破裂」といった状態になることを抑制することができる。 In the bottomed square shape, the ratio of the area S of the largest surface (the product of the width and height of the outer dimensions excluding the terminal portion, unit cm 2 ) to the thickness T (unit cm) of the battery outer shape The 2S / T value is preferably 100 or more, and more preferably 200 or more. By increasing the maximum surface, it is possible to improve characteristics such as cycle performance and high-temperature storage, even for high-power and large-capacity batteries, as well as increase the heat dissipation efficiency during abnormal heat generation. ”Can be suppressed.
(2)電池を構成する部材
 本発明のリチウム二次電池は、(a)電解液、(b)正極及び負極の電極合剤、(c)セパレータの基本部材を含んで構成される。以下、これらの各部材について述べる。本発明のリチウム二次電池は、(a)電解液として、少なくとも前記本発明の非水電池用電解液を含む。
(a)電解液
 本発明のリチウム二次電池に用いられる電解液は、前述した方法により調製された、少なくとも特定シロキサンオリゴマーと電解質塩としてのリチウム塩とを含有する本発明の非水二次電池用電解液を主成分として含有する。
 即ち、(a)電解液は、前記特定シロキサンオリゴマーを非水電解液と、電解質塩としてのリチウム塩とを含有する非水二次電池用電解液である。
 非水二次電池用電解液に用いられる電解質塩としては、前述の周期律表第一族又は第二族に属する金属イオンの塩であり、前記本発明の非水二次電池用電解液の実施の態様で詳細に記載したものを用いることができる。
 また、本発明のリチウム二次電池に用いられる(a)電解液には、本発明の効果を損なわない範囲において、以下に述べる溶媒、さらには他の添加剤を加えて、より一層性能を向上させることができる。
(a-1)電解液用溶媒
 本発明の方法により調製される電解液は、リチウム二次電池用電解液としてそのまま使用することができるが、さらに、リチウム二次電池用として一般に用いられる非水有機溶媒を添加してもよい。
 このような溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3-メチル-2-オキサゾリジノンなどの複素環化合物、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、カルボン酸エステル等のエステル類、ジメチルスルフォキシド、スルフォランなど非プロトン極性物質、などが好適に挙げられる。
 なかでも、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3-メチル-2-オキサゾリジノンなどの複素環化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、エステル類が特に好ましい。これらは、一種単独で用いても2種以上を併用してもよい。
(2) Members Constructing the Battery The lithium secondary battery of the present invention includes (a) an electrolytic solution, (b) a positive electrode / negative electrode electrode mixture, and (c) a separator basic member. Hereinafter, each of these members will be described. The lithium secondary battery of the present invention contains (a) the electrolyte solution for a non-aqueous battery of the present invention at least.
(A) Electrolytic Solution The electrolytic solution used for the lithium secondary battery of the present invention is the non-aqueous secondary battery of the present invention containing at least a specific siloxane oligomer and a lithium salt as an electrolyte salt, prepared by the method described above. Contains an electrolytic solution as a main component.
That is, (a) electrolyte solution is an electrolyte solution for non-aqueous secondary batteries containing the specific siloxane oligomer as a non-aqueous electrolyte solution and a lithium salt as an electrolyte salt.
The electrolyte salt used in the electrolyte for a non-aqueous secondary battery is a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table, and the electrolyte for a non-aqueous secondary battery of the present invention. Those described in detail in the embodiment can be used.
In addition, the (a) electrolyte used in the lithium secondary battery of the present invention is further improved in performance by adding the following solvent and other additives to the extent that the effects of the present invention are not impaired. Can be made.
(A-1) Solvent for Electrolyte Solution The electrolyte solution prepared by the method of the present invention can be used as it is as an electrolyte solution for a lithium secondary battery. Further, it is a non-aqueous solution generally used for lithium secondary batteries. An organic solvent may be added.
Examples of such solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, and propylene glycol dialkyl ether. , Chain ethers such as polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether and polypropylene glycol monoalkyl ether, ethylene Glycol, propylene glycol, polyethylene glycol Polyhydric alcohols such as polypropylene glycol and glycerin, nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile and benzonitrile, esters such as carboxylic acid esters, aprotic polar substances such as dimethyl sulfoxide and sulfolane And the like.
Among them, carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile, and esters are particularly preferred. preferable. These may be used alone or in combination of two or more.
 前記の好ましい溶媒の性質としては、耐揮発性による耐久性向上の観点から、常圧(1気圧)における沸点が200℃以上であることが好ましく、250℃以上であることがより好ましく、270℃以上であることがさらに好ましい。
 有機溶媒を添加する際の添加量は、本発明の電解液に対して、1質量%から50質量%が好ましく、5質量%から40質量%がさらに好ましい。
 本発明の電解液はリチウム輸率が良好であるために、従来に比較して有機溶媒を含まないか、或いは、少量の添加によっても、優れたイオン導電率とリチウム輸率が両立する。
The preferable solvent property is that the boiling point at normal pressure (1 atm) is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, from the viewpoint of improving durability due to volatility resistance, and 270 ° C. More preferably, it is the above.
The addition amount when adding the organic solvent is preferably 1% by mass to 50% by mass, and more preferably 5% by mass to 40% by mass with respect to the electrolytic solution of the present invention.
Since the electrolyte solution of the present invention has a good lithium transport number, it does not contain an organic solvent as compared with the conventional case, or even if it is added in a small amount, both excellent ionic conductivity and lithium transport number are compatible.
(a-2) 機能性添加剤
 本発明による電解液には、電池の性能を向上させるため、本発明の効果を損なわない限りにおいて、目的に応じて各種の添加剤を用いることができる。
 このような添加剤として、過充電防止剤、負極被膜形成剤、正極保護剤;等のような機能性添加剤を用いてもよい。
 前記機能性添加剤に用いられる化合物の例としては、例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;及び2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等の過充電防止剤;
 ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、及びシクロヘキサンジカルボン酸無水物等の負極被膜形成剤;
 亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、及びジピリジニウムジスルフィド等の正極保護剤;等が挙げられる。
(A-2) Functional Additive Various additives can be used in the electrolytic solution according to the present invention depending on the purpose so as to improve the performance of the battery as long as the effects of the present invention are not impaired.
As such an additive, a functional additive such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent; and the like may be used.
Examples of the compound used for the functional additive include, for example, biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran and the like. Aromatic compounds; partially fluorinated products of the aromatic compounds such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; and 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6- Overcharge inhibitors such as fluorine-containing anisole compounds such as difluoroanisole and 3,5-difluoroanisole;
Negative electrode coatings such as vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, trifluoropropylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, and cyclohexanedicarboxylic anhydride Forming agent;
Ethylene sulfite, propylene sulfite, dimethyl sulfite, propane sultone, butane sultone, methyl methanesulfonate, busulfan, methyl toluene sulfonate, dimethyl sulfate, ethylene sulfate, sulfolane, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, And positive electrode protecting agents such as diphenyl sulfide, thioanisole, diphenyl disulfide, and dipyridinium disulfide.
 過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、及びジベンゾフラン等の芳香族化合物が好ましい。これらは2種類以上併用して用いてもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンやターフェニル(又はその部分水素化体)と、t-ブチルベンゼンやt-アミルベンゼンを併用するのが好ましい。 As the overcharge inhibitor, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. Two or more of these may be used in combination. When two or more types are used in combination, it is particularly preferable to use cyclohexylbenzene or terphenyl (or a partially hydrogenated product thereof) together with t-butylbenzene or t-amylbenzene.
 負極被膜形成剤としては、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、無水コハク酸、及び無水マレイン酸が好ましい。これらは2種類以上併用して用いてもよい。2種類以上を併用する場合は、ビニレンカーボネートと、ビニルエチレンカーボネート、フルオロエチレンカーボネート、無水コハク酸若しくは無水マレイン酸との組み合わせが好ましい。 As the negative electrode film forming agent, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, succinic anhydride, and maleic anhydride are preferable. Two or more of these may be used in combination. When using 2 or more types together, the combination of vinylene carbonate and vinyl ethylene carbonate, fluoroethylene carbonate, succinic anhydride, or maleic anhydride is preferable.
 正極保護剤としては、亜硫酸エチレン、亜硫酸プロピレン、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、及びブスルファンが好ましい。これらは2種類以上併用して用いてもよい。 As the positive electrode protective agent, ethylene sulfite, propylene sulfite, propane sultone, butane sultone, methyl methanesulfonate, and busulfan are preferable. Two or more of these may be used in combination.
 また、負極皮膜形成剤と正極保護剤との併用や、過充電防止剤と負極皮膜形成剤と正極保護剤との併用が特に好ましい。 Also, the combined use of a negative electrode film forming agent and a positive electrode protective agent, and the combined use of an overcharge inhibitor, a negative electrode film forming agent, and a positive electrode protective agent are particularly preferable.
 非水系電解液中における前記機能性添加剤の含有量には特に限定はないが、非水系電解液全体に対し、それぞれ、0.01質量%以上が好ましく、特に好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、特に好ましくは3質量%以下、更に好ましくは2質量%以下である。これらの化合物を添加することにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。 The content of the functional additive in the non-aqueous electrolyte solution is not particularly limited, but is preferably 0.01% by mass or more, particularly preferably 0.1% by mass or more, based on the whole non-aqueous electrolyte solution. The upper limit is preferably 5% by mass or less, particularly preferably 3% by mass or less, and further preferably 2% by mass or less. By adding these compounds, it is possible to suppress rupture / ignition of the battery at the time of abnormality due to overcharge, and to improve the capacity maintenance characteristic and cycle characteristic after high-temperature storage.
(b)電極合剤
 電極合剤は、集電体上に活物質と導電剤、結着剤、及びフィラーなどの分散物を塗布したものであり、リチウム電池においては、活物質が正極活物質である正極合剤と活物質が負極活物質である負極合剤が使用される。
 次に、電極合剤を構成する、正極活物質、負極活物質、導電剤、結着剤、フィラー及び集電体について説明する。
(b-1)正極活物質
 本発明の非水二次電池用電解液は、粒子状の正極活性物質を含んでいてもよい。本発明に用いられる正極活物質としては、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、リチウム含有遷移金属酸化物を用いるのが好ましい。本発明において、正極活物質として好ましく用いられるリチウム含有遷移金属酸化物としては、リチウム含有Ti、リチウム含有V、リチウム含有Cr、リチウム含有Mn、リチウム含有Fe、リチウム含有Co、リチウム含有Ni、リチウム含有Cu、リチウム含有Mo、及びリチウム含有Wのうち1つ以上を含む酸化物等が好適に挙げられる。またリチウム以外のアルカリ金属(周期律表の第1(Ia)族、第2(IIa)族の元素)、及び/又はAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量としては、遷移金属に対して0~30mol%が好ましい。
(B) Electrode mixture The electrode mixture is obtained by applying a dispersion of an active material, a conductive agent, a binder, and a filler onto a current collector. In a lithium battery, the active material is a positive electrode active material. And a negative electrode mixture in which the active material is a negative electrode active material.
Next, the positive electrode active material, the negative electrode active material, the conductive agent, the binder, the filler, and the current collector that constitute the electrode mixture will be described.
(B-1) Cathode Active Material The electrolyte solution for a non-aqueous secondary battery of the present invention may contain a particulate cathode active material. As the positive electrode active material used in the present invention, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but a lithium-containing transition metal oxide is preferably used. In the present invention, the lithium-containing transition metal oxide preferably used as the positive electrode active material includes lithium-containing Ti, lithium-containing V, lithium-containing Cr, lithium-containing Mn, lithium-containing Fe, lithium-containing Co, lithium-containing Ni, and lithium-containing Preferable examples include an oxide containing one or more of Cu, lithium-containing Mo, and lithium-containing W. Alkali metals other than lithium (elements of Group 1 (Ia) and Group 2 (IIa) of the periodic table) and / or Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P , B, etc. may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the transition metal.
 前記正極活物質として好ましく用いられるリチウム含有遷移金属酸化物の中でも、リチウム化合物/遷移金属化合物(ここで遷移金属とは、Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種のことをいう。)の合計のモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。 Among the lithium-containing transition metal oxides preferably used as the positive electrode active material, a lithium compound / transition metal compound (wherein the transition metal is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo, W) And a mixture synthesized so that the total molar ratio is 0.3 to 2.2 is more preferable.
 さらに、前記リチウム化合物/遷移金属化合物の中でも、LiM3O(M3はCo、Ni、Fe、及びMnから選択される1種以上の元素を表す。gは、0~1.2を表す。)を含む材料、又はLiM4O(M4はMnを表す。hは、0~2を表す。)で表されるスピネル構造を有する材料が特に好ましい。前記M3、M4としては、遷移金属以外にAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量は遷移金属に対して0~30mol%が好ましい。 Further, among the lithium compounds / transition metal compounds, Li g M3O 2 (M3 represents one or more elements selected from Co, Ni, Fe, and Mn. G represents 0 to 1.2. ) Or a material having a spinel structure represented by Li h M4 2 O (M4 represents Mn, h represents 0 to 2). As M3 and M4, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, and B may be mixed in addition to the transition metal. The mixing amount is preferably 0 to 30 mol% with respect to the transition metal.
 前記LiM3Oを含む材料、LiM4Oで表されるスピネル構造を有する材料の中でも、LiCoO、LiNiO、LiMnO、LiCoNi1-j、LiMn、LiNiMn1-j、LiCoNiAl1-j-h、LiCoNiMn1-j-h、LiMnAl2-h、及びLiMnNi2-h(前記式中、gは0.02~1.2を表す。jは0.1~0.9を表す。hは0~2を表す。)が特に好ましい。ここで、前記g値及びh値は、充放電開始前の値であり、充放電により増減する値である。具体的には、
LiNi0.5Mn0.5、LiNi0.85Co0.01Al0.05
LiNi0.33Co0.33Mn0.33、LiMn1.8Al0.2、又は、
LiMn1.5Ni0.5等が挙げられる。
The Li g M3O material containing 2, among the materials having the spinel structure represented by Li h M4 2 O, Li g CoO 2, Li g NiO 2, Li g MnO 2, Li g Co j Ni 1-j O 2, Li h Mn 2 O 4 , LiNi j Mn 1-j O 2, LiCo j Ni h Al 1-j-h O 2, LiCo j Ni h Mn 1-j-h O 2, LiMn h Al 2-h O 4 , and LiMn h Ni 2-h O 4 (wherein g represents 0.02 to 1.2, j represents 0.1 to 0.9, and h represents 0 to 2) Is particularly preferred. Here, the g value and the h value are values before the start of charge / discharge, and are values that increase / decrease due to charge / discharge. In particular,
LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.01 Al 0.05 O 2 ,
LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 1.8 Al 0.2 O 4 , or
LiMn 1.5 Ni 0.5 O 4 and the like.
 リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、及びCu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、又はSi等の他の金属で置換したもの等が挙げられる。 As the transition metal of the lithium-containing transition metal phosphate compound, V, Ti, Cr, Mn, Fe, Co, Ni, Cu, and the like are preferable. Specific examples include, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Examples thereof include those substituted with other metals such as Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, or Si.
 前記正極活物質は、リチウム化合物と遷移金属化合物を混合、焼成する方法や溶液反応により合成することができるが、特に焼成法により得られた化合物が好ましい。
 本発明において正極活物質の合成に適用される前記焼成法において、焼成温度としては、前記混合された化合物の一部が分解、溶融する温度であればよく、例えば、250℃~2000℃が好ましく、350℃~1500℃がより好ましい。また焼成に際しては、250℃~900℃で仮焼することが好ましい。前記焼成法において、焼成時間としては、1時間~72時間が好ましく、2時間~20時間がより好ましい。また、原料の混合法としては、乾式でも湿式でもよい。また、焼成後に200℃~900℃でアニールしてもよい。
The positive electrode active material can be synthesized by a method of mixing and baking a lithium compound and a transition metal compound or by a solution reaction, and a compound obtained by a baking method is particularly preferable.
In the firing method applied to the synthesis of the positive electrode active material in the present invention, the firing temperature may be any temperature at which a part of the mixed compound is decomposed and melted. For example, 250 ° C. to 2000 ° C. is preferable. 350 ° C. to 1500 ° C. is more preferable. In firing, it is preferably calcined at 250 ° C. to 900 ° C. In the firing method, the firing time is preferably 1 hour to 72 hours, more preferably 2 hours to 20 hours. The raw material mixing method may be dry or wet. Further, annealing may be performed at 200 ° C. to 900 ° C. after firing.
 また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。
 表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、及び酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、及び硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、及び炭酸マグネシウム等の炭酸塩等が挙げられる。
In addition, a material in which a substance having a composition different from that of the main constituent of the positive electrode active material is attached to the surface of the positive electrode active material can be used.
Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide and other oxides, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, sulfuric acid Examples thereof include sulfates such as calcium and aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
 これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。 These surface adhering substances are, for example, a method of dissolving or suspending in a solvent and impregnating and drying the positive electrode active material, and a method of dissolving or suspending a surface adhering substance precursor in a solvent and impregnating and adding to the positive electrode active material, followed by heating. It can be made to adhere to the positive electrode active material surface by the method of making it react by the method etc., the method of adding to a positive electrode active material precursor, and baking simultaneously.
 前記焼成法において、焼成ガス雰囲気は特に限定されず、酸化雰囲気、還元雰囲気いずれも用いることができる。例えば、空気、酸素濃度を任意の割合に調製したガス、水素、一酸化炭素、窒素、アルゴン、ヘリウム、クリプトン、キセノン、及び二酸化炭素等が挙げられる。 In the firing method, the firing gas atmosphere is not particularly limited, and both an oxidizing atmosphere and a reducing atmosphere can be used. For example, air, gas adjusted to an arbitrary oxygen concentration, hydrogen, carbon monoxide, nitrogen, argon, helium, krypton, xenon, carbon dioxide, and the like can be given.
 本発明の非水電解質二次電池において、用いられる前記正極活物質の平均粒子サイズは特に限定されないが、0.1μm~50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01m/g~50m/gであるのが好ましい。また、正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては、7以上12以下が好ましい。 In the nonaqueous electrolyte secondary battery of the present invention, the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 μm to 50 μm. The specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method. The pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
 前記正極活性物質を所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。前記焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。 A well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size. For example, a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
(b-2)負極活物質
 本発明の非水二次電池用電解液に用いられる負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。
 これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
 また、金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
(B-2) Negative electrode active material The negative electrode active material used in the electrolyte for a non-aqueous secondary battery of the present invention is not particularly limited as long as it can reversibly insert and release lithium ions. Examples include materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and metals that can form alloys with lithium such as Sn and Si.
These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.
Further, the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. .
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro Examples thereof include spheres, graphite whiskers, and flat graphite.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。 These carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
 本発明のリチウム二次電池において用いられる負極活物質である金属酸化物及び金属複合酸化物は、これらの少なくとも1種を含んでいればよい。金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。
 ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
The metal oxide and metal composite oxide which are the negative electrode active materials used in the lithium secondary battery of the present invention need only contain at least one of them. As the metal oxide and metal complex oxide, amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used.
The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
 前記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及び、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。
 好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、及びSnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
Among the compound group consisting of the amorphous oxide and the chalcogenide, an amorphous oxide of a semimetal element and a chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table are preferable. An oxide consisting of Al, Ga, Si, Sn, Ge, Pb, Sb and Bi alone or a combination of two or more thereof, and chalcogenide are particularly preferable.
Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , And SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 本発明のリチウム二次電池に用いられる負極活物質として用いうる好ましい非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、Sn、Si、Geを中心とする非晶質酸化物がさらに好ましく、下記一般式(12)で表される非晶質酸化物が特に好ましい。
 SnMdMeOf 一般式(12)
Among the preferred amorphous oxides and chalcogenide compound groups that can be used as the negative electrode active material used in the lithium secondary battery of the present invention, amorphous oxides centered on Sn, Si, and Ge are more preferred. An amorphous oxide represented by the following general formula (12) is particularly preferable.
SnM 1 dM 2 eOf General formula (12)
 前記一般式(12)において、Mは、Al、B、P、及びGeから選択される少なくとも一種以上の元素を表す。Mは、周期律表第1(Ia)族元素、第2(IIa)族元素、第3(IIIa)族元素、及びハロゲン元素から選択される少なくとも一種以上の元素を表す。dは0.2以上2以下の数を表し、eは0.01以上1以下の数を表し、0.2<d+e<2の関係にある。fは1以上6以下の数を表す。 In the general formula (12), M 1 represents at least one element selected from Al, B, P, and Ge. M 2 represents at least one element selected from Group 1 (Ia) group elements, Group 2 (IIa) elements, Group 3 (IIIa) elements, and halogen elements in the periodic table. d represents a number of 0.2 to 2, e represents a number of 0.01 to 1, and a relation of 0.2 <d + e <2. f represents a number from 1 to 6.
 本発明における負極活物質として好適な非晶質酸化物及びカルコゲナイトからなる群より選ばれる化合物の合成法としては、焼成法、溶液法のいずれの方法も採用することができるが、焼成法がより好ましい。
 焼成法により負極活物質を合成する際には、それぞれ対応する元素の酸化物、カルコゲナイトあるいは化合物をよく混合した後、焼成して非晶質酸化物及びカルコゲナイトを得るのが好ましい。
 前記焼成法における焼成温度としては、500℃以上1500℃以下が好ましく、焼成時間としては、1時間以上100時間以下であることが好ましい。
As a method for synthesizing a compound selected from the group consisting of an amorphous oxide and a chalcogenite suitable as a negative electrode active material in the present invention, either a firing method or a solution method can be adopted, but a firing method is more preferable. preferable.
When synthesizing a negative electrode active material by a firing method, it is preferable to obtain an amorphous oxide and a chalcogenite by thoroughly mixing oxides, chalcogenites or compounds of the corresponding elements and then firing them.
The firing temperature in the firing method is preferably 500 ° C. or more and 1500 ° C. or less, and the firing time is preferably 1 hour or more and 100 hours or less.
 前記焼成法において、焼成後の降温は焼成炉中で冷却してもよく、また焼成炉外に取り出して、例えば水中に投入して冷却してもよい。またセラミックスプロセッシング(技報堂出版1987)217頁記載のgun法・Hammer-Anvil法・slap法・ガスアトマイズ法・プラズマスプレー法・遠心急冷法・melt drag法などの超急冷法を用いることもできる。またニューガラスハンドブック(丸善1991)172頁記載の単ローラ法、双ローラ法を用いて冷却してもよい。焼成中に溶融する材料の場合には、焼成中に原料を供給しつつ焼成物を連続的に取り出してもよい。焼成中に溶融する材料の場合には融液を攪拌することが好ましい。 In the firing method, the temperature drop after firing may be cooled in a firing furnace, or may be taken out of the firing furnace and cooled, for example, in water. In addition, a super rapid cooling method such as the gun method, Hammer-Anvil method, slap method, gas atomization method, plasma spray method, centrifugal quenching method, or melt drag method described on page 217 of ceramics processing (Gihodo Publishing 1987) can also be used. Alternatively, cooling may be performed using the single roller method or the double roller method described in page 172 of the New Glass Handbook (Maruzen 1991). In the case of a material that melts during firing, the fired product may be continuously taken out while supplying raw materials during firing. In the case of a material that melts during firing, it is preferable to stir the melt.
 前記焼成法における焼成ガス雰囲気は、酸素含有率が5体積%以下の雰囲気が好ましく、不活性ガス雰囲気がより好ましい。前記不活性ガスとしては、例えば窒素、アルゴン、ヘリウム、クリプトン、キセノン等が好適に挙げられる。その中でも、純アルゴンが特に好ましい。 The firing gas atmosphere in the firing method is preferably an atmosphere having an oxygen content of 5% by volume or less, more preferably an inert gas atmosphere. Preferable examples of the inert gas include nitrogen, argon, helium, krypton, and xenon. Among these, pure argon is particularly preferable.
 本発明の非水電解質二次電池において、用いられる前記負極活物質の平均粒子サイズは、0.1μm~60μmが好ましい。負極活物質を所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、及び遊星ボールミル等の粉砕機、旋回気流型ジェットミルなどの分級機能を有する粉砕器、分級機としての篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。 In the nonaqueous electrolyte secondary battery of the present invention, the average particle size of the negative electrode active material used is preferably 0.1 μm to 60 μm. To make the negative electrode active material have a predetermined particle size, a well-known pulverizer or classifier is used. For example, pulverizers such as a mortar, ball mill, sand mill, vibration ball mill, satellite ball mill, and planetary ball mill, a pulverizer having a classification function such as a swirling airflow type jet mill, and a sieve as a classifier are preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle size, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
 前記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and a mass difference between powders before and after firing as a simple method.
 本発明において、Sn、Si、又はGeを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。 In the present invention, a negative electrode active material that can be used in combination with an amorphous oxide negative electrode active material centered on Sn, Si, or Ge includes a carbon material capable of inserting and extracting lithium ions or lithium metal, lithium Preferable examples include lithium alloys and metals that can be alloyed with lithium.
(b-3)導電材
 導電材は、構成された二次電池において、化学変化を起こさない電子伝導性材料であれば何を用いてもよく、公知の導電材を任意に用いることができる。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63-10148,554号に記載)等)、又は金属繊維あるいはポリフェニレン誘導体(特開昭59-20,971号に記載)などの導電性材料を1種又はこれらの2種以上の混合物として含ませることができる。その中でも、黒鉛とアセチレンブラックの併用が特に好ましい。
 前記導電剤の添加量としては、1質量%~50質量%が好ましく、2質量%~30質量%がより好ましい。カーボンや黒鉛の場合は、2質量%~15質量%が特に好ましい。
(B-3) Conductive Material As the conductive material, any electronic conductive material that does not cause a chemical change in the configured secondary battery may be used, and any known conductive material may be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) Or a conductive material such as a metal fiber or a polyphenylene derivative (described in JP-A-59-20971) as a single type or a mixture of two or more types thereof. it can. Among these, the combined use of graphite and acetylene black is particularly preferable.
The addition amount of the conductive agent is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass. In the case of carbon or graphite, 2% by mass to 15% by mass is particularly preferable.
(b-3)結着剤
 本発明では、前記電極合剤を保持するための結着剤を用いる。
 結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどが挙げられ、その中でも、例えば、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、及びスチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ビニリデンフロライド-テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエン ターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、及び2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、及びビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、及びエポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフロロエチレン、及びポリフッ化ビニリデンが、より好ましい。
(B-3) Binder In the present invention, a binder for holding the electrode mixture is used.
Examples of the binder include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethylcellulose, cellulose, diacetylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium alginate, Water-soluble polymers such as polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, and styrene-maleic acid copolymer, polyvinyl Chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylide (Meta) such as fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, and 2-ethylhexyl acrylate (Meth) acrylic acid ester copolymer containing acrylic acid ester, (meth) acrylic acid ester-acrylonitrile copolymer, polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene-butadiene copolymer , Acrylonitrile-butadiene copolymer, polybutadiene, neoprene rubber, fluororubber, polyethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate Over preparative polyurethane resins, polyester resins, phenolic resins, and emulsion (latex) or a suspension such as an epoxy resin is preferable, a latex of polyacrylate, carboxymethyl cellulose, polytetrafluoroethylene, and polyvinylidene fluoride is more preferable.
 結着剤は、一種単独又は二種以上を混合して用いることができる。
 結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で結着剤の添加量は1質量%~30質量%が好ましく、2質量%~10質量%がより好ましい。
A binder can be used individually by 1 type or in mixture of 2 or more types.
When the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For these reasons, the amount of binder added is preferably 1% by mass to 30% by mass, and more preferably 2% by mass to 10% by mass.
(b-5)フィラー
 本発明の電解液は、フィラーを含んでいてもよい。フィラーを形成する材料は、本発明の二次電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの材料からなる繊維状のフィラーが用いられる。
 フィラーの添加量は特に限定されないが、0~30質量%が好ましい。
(B-5) Filler The electrolytic solution of the present invention may contain a filler. As the material for forming the filler, any fibrous material that does not cause a chemical change in the secondary battery of the present invention can be used. Usually, fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used.
The amount of filler added is not particularly limited, but is preferably 0 to 30% by mass.
(b-6)集電体
 正・負極の集電体としては、本発明の非水電解質二次電池において化学変化を起こさない電子伝導体が用いられる。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、及びチタンなど、並びにアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
(B-6) Current collector As the positive and negative electrode current collectors, an electron conductor that does not cause a chemical change in the nonaqueous electrolyte secondary battery of the present invention is used. As the positive electrode current collector, aluminum, stainless steel, nickel, titanium, and the like, and those obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium, or silver are preferable. Among them, aluminum and aluminum alloys are preferable. More preferred.
 負極の集電体としては、銅、ステンレス鋼、ニッケル、及びチタンが好ましく、銅あるいは銅合金がより好ましい。 As the negative electrode current collector, copper, stainless steel, nickel, and titanium are preferable, and copper or a copper alloy is more preferable.
 前記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット状、パンチされて形成された開口を有するフィルムシート、ラス体、多孔質体、発泡体、繊維群を成形して得られた繊維シート体なども用いることができる。前記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 これらの材料から適宜選択した部材によりリチウム二次電池の電極合剤が形成される。
As the shape of the current collector, a film sheet shape is usually used, but a net shape, a film sheet having an opening formed by punching, a lath body, a porous body, a foam, and a fiber group are formed. The fiber sheet body obtained by doing in this way can also be used. The thickness of the current collector is not particularly limited, but is preferably 1 μm to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
An electrode mixture for a lithium secondary battery is formed by a member appropriately selected from these materials.
(c)セパレータ
 本発明のリチウム二次電池に用いられるセパレータは、正極と負極を電子的に絶縁する機械的強度、イオン透過性、及び正極と負極の接触面で酸化・還元耐性のある材料であれば特に限定されることはない。
 このような材料として多孔質のポリマー材料や無機材料、有機無機ハイブリッド材料、あるいはガラス繊維などが用いられる。これらセパレータは安全性確保のためのシャットダウン機能、すなわち、80℃以上で隙間を閉塞して抵抗を上げ、電流を遮断する機能、を持つことが好ましく、閉塞温度は90℃以上180℃以下であることが好ましい。
(C) Separator The separator used in the lithium secondary battery of the present invention is a material that mechanically insulates the positive electrode and the negative electrode, has ion permeability, and has oxidation / reduction resistance on the contact surface between the positive electrode and the negative electrode. If there is no particular limitation.
As such a material, a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used. These separators preferably have a shutdown function for ensuring safety, that is, a function of closing a gap at 80 ° C. or higher to increase resistance and interrupting current, and the closing temperature is 90 ° C. or higher and 180 ° C. or lower. It is preferable.
 前記セパレータの孔の形状は、通常は円形や楕円形で、大きさは0.05μm~30μmであり、0.1μm~20μmが好ましい。さらに延伸法、相分離法で作った場合のように、棒状や不定形の孔であってもよい。これらの隙間の占める比率すなわち気孔率は、20%~90%であり、35%~80%が好ましい。 The shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 μm to 30 μm, preferably 0.1 μm to 20 μm. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method. The ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
 前記ポリマー材料としては、ポリエチレン、ポリプロピレンなどの単一の材料を用いたものでも、2種以上の複合化材料を用いたものであってもよい。孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものが、好ましい。 The polymer material may be a single material such as polyethylene or polypropylene, or two or more composite materials. What laminated | stacked the 2 or more types of microporous film which changed the hole diameter, the porosity, the obstruction | occlusion temperature of a hole, etc. is preferable.
 前記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01μm~1μm、厚さが5μm~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、前記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させることが挙げられる。 As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used. As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. As the thin film shape, those having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm are preferably used. In addition to the independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, alumina particles having a 90% particle diameter of less than 1 μm are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
(4)非水電解質二次電池の作製
 ここでは、本発明の非水電解質リチウム二次電池の作製方法について説明する。
 本発明のリチウム二次電池の形状としては、既述のように、シート状、角型、シリンダー状などいずれの形にも適用できる。正極活物質や負極活物質の合剤は、集電体の上に、塗布(コート)、乾燥、圧縮されて、主に用いられる。
(4) Production of Nonaqueous Electrolyte Secondary Battery Here, a production method of the nonaqueous electrolyte lithium secondary battery of the present invention will be described.
As described above, the lithium secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape. A positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
 以下、図1により、有底筒型形状リチウム二次電池10を例に挙げて、その構成及び作製方法について説明する。図1は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を卷回して外装缶18内に収納した有底筒型リチウム二次電池10の一例を示す概略断面図である。 Hereinafter, with reference to FIG. 1, a configuration and a manufacturing method thereof will be described using a bottomed cylindrical lithium secondary battery 10 as an example. FIG. 1 is a schematic cross-sectional view showing an example of a bottomed cylindrical lithium secondary battery 10 in which a positive electrode sheet 14 and a negative electrode sheet 16 stacked with a separator 12 interposed therebetween are wound and stored in an outer can 18.
 まず、負極活物質と、所望により用いられる結着剤やフィラーなどを有機溶剤に溶解したものを混合して、スラリー状あるいはペースト状の負極合剤を調製する。得られた負極合剤を集電体としての金属芯体の両面の全面にわたって均一に塗布し、その後、有機溶剤を除去して負極合剤層を形成する。さらに、集電体と負極合剤層との積層体をロールプレス機等により圧延して、所定の厚みに調製して負極シート(電極シート)16を得る。 First, a negative electrode active material is mixed with a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture. The obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer. Further, the laminate of the current collector and the negative electrode mixture layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet) 16.
 前記負極合剤の塗布方法としては、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法等が好適に挙げられる。その中でも、負極合剤の塗布方法としては、ブレード法、ナイフ法及びエクストルージョン法が好ましい。
 また、塗布は、0.1m/分~100m/分の速度で実施されることが好ましい。この際、合剤の溶液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。塗布は、片面ずつ逐時でも、両面同時に行ってもよい。
Preferred examples of the method for applying the negative electrode mixture include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method. . Among these, the blade method, the knife method, and the extrusion method are preferable as the method for applying the negative electrode mixture.
The coating is preferably performed at a speed of 0.1 m / min to 100 m / min. Under the present circumstances, the surface state of a favorable application layer can be obtained by selecting the said application | coating method according to the solution physical property and dryability of a mixture. Application may be performed one side at a time or both sides simultaneously.
 さらに、前記塗布は、負極合剤を連続層となるように塗布してもよく、間欠的に(塗布方向に対して不連続に)塗布してもよく、塗布方向に平行したストライプ状に塗布してもよい。負極合剤塗布層の厚み、長さ及び巾は、電池の形状や大きさにより決められるが、片面の塗布層の厚みは、乾燥後の圧縮された状態で、1μm~2000μmとすることが好ましい。 Further, in the application, the negative electrode mixture may be applied in a continuous layer, may be applied intermittently (discontinuously with respect to the application direction), or applied in stripes parallel to the application direction. May be. The thickness, length and width of the negative electrode mixture coating layer are determined by the shape and size of the battery, but the thickness of the coating layer on one side is preferably 1 μm to 2000 μm in a compressed state after drying. .
 前記集電体と負極合剤層との積層体を圧延して得られる電極シートを得るための負極合剤塗布物の乾燥及び脱水方法としては、熱風、真空、赤外線、遠赤外線、電子線及び低湿風を、単独あるいは組み合わせた方法が挙げられる。乾燥温度は80℃~350℃が好ましく、100℃~250℃がより好ましい。
 含水量としては、電池全体で2000ppm以下とすることが好ましく、正極合剤、負極合剤や電解質の含水量は、それぞれ500ppm以下にすることが好ましい。
 集電体と負極合剤層との積層体を圧延する際の、シートのプレス法は、一般に採用されている方法を用いることができるが、特にカレンダープレス法が好ましい。プレス圧は特に限定されないが、0.2t/cm~3t/cmが好ましい。
 カレンダープレス法のプレス速度としては、0.1m/分~50m/分が好ましく、プレス温度は室温(25℃)~200℃が好ましい。
As a method for drying and dehydrating a negative electrode mixture coated product for obtaining an electrode sheet obtained by rolling a laminate of the current collector and the negative electrode mixture layer, hot air, vacuum, infrared rays, far infrared rays, electron beams and Examples thereof include a method in which low-humidity air is used alone or in combination. The drying temperature is preferably 80 ° C to 350 ° C, more preferably 100 ° C to 250 ° C.
The water content is preferably 2000 ppm or less for the entire battery, and the water content of each of the positive electrode mixture, the negative electrode mixture and the electrolyte is preferably 500 ppm or less.
As the sheet pressing method when rolling the laminate of the current collector and the negative electrode mixture layer, a generally adopted method can be used, and the calendar pressing method is particularly preferable. The pressing pressure is not particularly limited, but is preferably 0.2 t / cm 2 to 3 t / cm 2 .
The press speed of the calendar press method is preferably 0.1 m / min to 50 m / min, and the press temperature is preferably room temperature (25 ° C.) to 200 ° C.
 次に、正極活物質と、所望により用いられる炭素系導電剤や結着剤等とを、有機溶剤等に溶解したものを混合して、スラリー状あるいはペースト状の正極合剤を調製する。得られた正極合剤を集電体としての金属芯体の両面の全面にわたって均一に塗布し、その後、有機溶剤を除去して集電体表面に正極合剤層を形成する。さらに、集電体と正極合剤層との積層体をロールプレス機等により圧延して、所定の厚みに調製して正極シート14を得る。
 正極シート16作製時の正極合剤の塗布法、及び塗布により形成された正極合剤層の乾燥法などは、前記負極シート14形成時の条件と同様のものを選択すればよい。
 得られた正極シート16と負極シート14とを、セパレータ12を介して積層し、これを巻き回して円筒状として渦巻状電極体を得る。
 渦巻状電極体を形成するとき、正極シート16に対する負極シート14幅の比としては、正極シート16の幅を1としたとき、負極シート14幅は0.9~1.1が好ましく、0.95~1.0が特に好ましい。渦巻状電極体における正極活物質と負極活物質との含有量比は、化合物種類や合剤処方により異なる。
Next, a positive electrode active material and a carbon-based conductive agent, a binder or the like used as desired are mixed in an organic solvent to prepare a slurry-like or paste-like positive electrode mixture. The obtained positive electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a positive electrode mixture layer on the current collector surface. Furthermore, the laminated body of a collector and a positive mix layer is rolled with a roll press etc., and it adjusts to predetermined thickness and obtains the positive electrode sheet 14. FIG.
The application method of the positive electrode mixture at the time of preparing the positive electrode sheet 16 and the drying method of the positive electrode mixture layer formed by the application may be the same as the conditions at the time of forming the negative electrode sheet 14.
The obtained positive electrode sheet 16 and negative electrode sheet 14 are laminated via the separator 12 and wound to obtain a spiral electrode body in a cylindrical shape.
When forming the spiral electrode body, the ratio of the width of the negative electrode sheet 14 to the positive electrode sheet 16 is preferably 0.9 to 1.1 when the width of the positive electrode sheet 16 is 1. 95 to 1.0 is particularly preferred. The content ratio of the positive electrode active material and the negative electrode active material in the spiral electrode body varies depending on the compound type and the mixture formulation.
 得られた渦巻き状電極体の上下にそれぞれ絶縁板20を配置した後、1枚板からプレス加工により円筒状に成形した負極端子を兼ねる外装缶18の開口部より、この電極体を外装缶18内に挿入する。その後、電極体の負極シート14より延出する負極集電タブ(図示せず)を外装缶18の内底部に溶接して電気的に接続するとともに、電極体の正極シート16より延出する正極集電タブ24を封口板22の底板の底部と溶接して電気的に接続する。
 その後、外装缶18内に前記本発明の電解液を注入し、封口板22かぶせ、ガスケット26を用いて外装缶18の開口部を封止することで、有底筒型形状リチウム二次電池10が形成される。本実施形態では、前記封口板22には、安全弁としての圧力感応弁体28及び過電流防止素子としての電流遮断素子30が備えられる。
After the insulating plates 20 are respectively arranged above and below the obtained spiral electrode body, the electrode body is attached to the outer can 18 from the opening of the outer can 18 that also serves as a negative electrode terminal formed into a cylindrical shape by pressing from a single plate. Insert inside. Thereafter, a negative electrode current collecting tab (not shown) extending from the negative electrode sheet 14 of the electrode body is welded and electrically connected to the inner bottom portion of the outer can 18, and a positive electrode extending from the positive electrode sheet 16 of the electrode body. The current collecting tab 24 is welded and electrically connected to the bottom of the bottom plate of the sealing plate 22.
Thereafter, the electrolytic solution of the present invention is injected into the outer can 18, covered with the sealing plate 22, and the opening of the outer can 18 is sealed using the gasket 26, so that the bottomed cylindrical lithium secondary battery 10 is sealed. Is formed. In the present embodiment, the sealing plate 22 is provided with a pressure sensitive valve body 28 as a safety valve and a current interruption element 30 as an overcurrent prevention element.
 本実施形態では、円筒形の電池を例に挙げたが、本発明のリチウム二次電池の形状はこれに制限されず、例えば、前記方法で作製された正・負の電極シートを、セパレータを介して重ね合わせた後、そのままシート状電池に加工するか、或いは、折りまげた後角形缶に挿入して、缶とシートを電気的に接続した後、電解質を注入し、封口板を用いて開口部を封止して角形電池を形成してもよい。 In the present embodiment, a cylindrical battery is taken as an example, but the shape of the lithium secondary battery of the present invention is not limited thereto. For example, a positive / negative electrode sheet manufactured by the above method is used as a separator. After being stacked, it is processed into a sheet-like battery as it is, or after being folded and inserted into a rectangular can, the can and the sheet are electrically connected, an electrolyte is injected, and a sealing plate is used. A square battery may be formed by sealing the opening.
 いずれの実施形態においても、本実施形態と同様に、安全弁を、開口部を封止するための封口板として用いることができる。また、封口板に代表される封口部材には、安全弁の他、従来から知られている種々の安全素子を備えつけてもよい。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが、封口部材に取り付けられる安全素子として好適に用いられる。 In any of the embodiments, similarly to the present embodiment, the safety valve can be used as a sealing plate for sealing the opening. In addition to the safety valve, the sealing member represented by the sealing plate may be provided with various conventionally known safety elements. For example, as an overcurrent prevention element, a fuse, a bimetal, a PTC element, or the like is suitably used as a safety element attached to the sealing member.
 また、電池缶の内圧上昇の対策としては、前記安全弁を取り付ける方法のほかに、電池缶に切込を入れる方法、ガスケット亀裂方法、封口板亀裂方法、又は、リード板との切断方法を利用することができる。また、リチウム二次電池には、充電器に過充電対策部材や過放電対策部材を組み込んだ保護回路を具備させるか、あるいは、前記保護回路をチリウム二次電池とは独立して設けて、両者を互いに接続させてもよい。 Further, as a countermeasure against the increase in internal pressure of the battery can, in addition to the method of attaching the safety valve, a method of cutting the battery can, a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate is used. be able to. In addition, the lithium secondary battery is provided with a protection circuit in which an overcharge countermeasure member and an overdischarge countermeasure member are incorporated in a charger, or the protection circuit is provided independently of a thirium secondary battery. May be connected to each other.
 缶やリード板の作製には、電気伝導性をもつ金属や合金を用いることができる。缶やリード板の素材としては、例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、及びアルミニウムなどの金属あるいはそれらの合金が好適に用いられる。 For the production of cans and lead plates, electrically conductive metals and alloys can be used. As the material for the can and the lead plate, for example, metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
 キャップ、缶、シート、及びリード板を溶接する際の溶接法は、公知の方法(例えば、直流又は交流の電気溶接法、レーザー溶接法、及び超音波溶接法など)を用いることができる。リチウム二次電池を封口する際に用いる封口用シール剤としては、アスファルトなどの従来から知られている化合物や混合物を用いることができる。 As a welding method for welding the cap, the can, the sheet, and the lead plate, a known method (for example, a DC or AC electric welding method, a laser welding method, an ultrasonic welding method, or the like) can be used. As the sealing agent used for sealing the lithium secondary battery, conventionally known compounds and mixtures such as asphalt can be used.
[3]本発明のリチウム二次電池の用途
 本発明のリチウム二次電池は、難燃性の電解液を用いながら高出力であり、種々の用途に適用される。
 本発明のリチウム二次電池の適用態様には特に限定なはいが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、及びメモリーカードなどが挙げられる。その他民生用の用途として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、及びカメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用電池、宇宙用電池として用いることができる。また、本発明のリチウム二次電池を太陽電池と組み合わせることもできる。
[3] Use of the lithium secondary battery of the present invention The lithium secondary battery of the present invention has high output while using a flame-retardant electrolyte, and can be applied to various applications.
Although the application mode of the lithium secondary battery of the present invention is not particularly limited, for example, when mounted on an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager , Handy Terminal, Mobile Fax, Mobile Copy, Mobile Printer, Headphone Stereo, Video Movie, LCD TV, Handy Cleaner, Portable CD, Mini Disc, Electric Shaver, Walkie Talkie, Electronic Notebook, Calculator, Memory Card, Portable Tape Recorder, Radio, Examples include backup power supplies and memory cards. Other consumer applications include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, and cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used as various munitions batteries and space batteries. In addition, the lithium secondary battery of the present invention can be combined with a solar battery.
 以下、本発明の実施例を説明するが、本発明はこれらの実施例によって、何ら限定されるものではない。
[実施例1~21、比較例1~4]
 非水二次電池用電解液の調製
〔1.シロキサンオリゴマーを合成した後リチウム塩を溶解する方法〕
(調製例1-1:電解液E-1の調製)
 メチルトリエトキシシラン(4-6)50.0gとグリコール酸(5-1)7.65gとを混合し、150℃にて1時間加熱還流させた。反応後、温度を150℃に保ち、真空度を常圧から5mmHgまで、徐々に下げながら揮発成分を留去し、無色液体として特定シロキサンオリゴマー(Si-1)16gを得た。GPC測定によるスチレン換算数平均分子量は1,200であった。また、H-NMRにより測定した、一般式(1)で示される部分構造中に含まれる全置換基に対する、-O-Q-COORに相当する置換基の含有モル分率は、32モル%であり、Si-NMR測定により確認された特定シロキサンオリゴマーに含まれる全部分構造中の分岐モル分率(xc+xd+xe)は25モル%であった。
 上記で得た、シロキサンオリゴマー(Si-1)3gに、N-リチオトリフルオロメタンスルホンイミド(以下、適宜、LiTFSIと記載する)0.96gを溶解して電解液E-1を得た。
(調製例1-2:電解液E-2の調製)
 テトラエトキシシラン(4-2)50.0gとグリコール酸(5-1)18.6gとを混合し、150℃にて1時間加熱還流させた。反応後、温度を150℃に保ち、真空度を常圧から5mmHgまで、徐々に下げながら揮発成分を留去し、無色液体として特定シロキサンオリゴマー(Si-3)を42.7g得た。GPC測定によるスチレン換算数平均分子量は1,500であり、H-NMRにより測定した、一般式(1)で示される部分構造中に含まれる置換基-O-Q-COORの含有モル分率は、52モル%であり、Si-NMR測定により確認された分岐モル分率(xc+xd+xe)は20%であった。
 上記で得た、シロキサンオリゴマー(Si-3)3gに、LiTFSI 0.96gを溶解して電解液E-2を得た。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
[Examples 1 to 21, Comparative Examples 1 to 4]
Preparation of electrolyte for non-aqueous secondary battery [1. Method of dissolving lithium salt after synthesizing siloxane oligomer]
(Preparation Example 1-1: Preparation of electrolytic solution E-1)
Methyltriethoxysilane (4-6) 50.0 g and glycolic acid (5-1) 7.65 g were mixed and heated to reflux at 150 ° C. for 1 hour. After the reaction, the temperature was maintained at 150 ° C., and the volatile components were distilled off while gradually decreasing the vacuum from normal pressure to 5 mmHg to obtain 16 g of a specific siloxane oligomer (Si-1) as a colorless liquid. The number average molecular weight in terms of styrene as measured by GPC was 1,200. Further, the content mole fraction of the substituent corresponding to —O—Q 1 —COOR 3 with respect to all the substituents contained in the partial structure represented by the general formula (1), measured by H 1 -NMR, was 32 The branched mole fraction (xc + xd + xe) in the total partial structure contained in the specific siloxane oligomer confirmed by Si-NMR measurement was 25 mol%.
In 3 g of the siloxane oligomer (Si-1) obtained above, 0.96 g of N-lithiotrifluoromethanesulfonimide (hereinafter appropriately referred to as LiTFSI) was dissolved to obtain an electrolytic solution E-1.
(Preparation Example 1-2: Preparation of electrolytic solution E-2)
Tetraethoxysilane (4-2) 50.0 g and glycolic acid (5-1) 18.6 g were mixed and heated to reflux at 150 ° C. for 1 hour. After the reaction, the temperature was maintained at 150 ° C., and the volatile component was distilled off while gradually decreasing the degree of vacuum from normal pressure to 5 mmHg to obtain 42.7 g of a specific siloxane oligomer (Si-3) as a colorless liquid. The number average molecular weight in terms of styrene by GPC measurement is 1,500, and the content of the substituent —OQ 1 —COOR 3 contained in the partial structure represented by the general formula (1), measured by H 1 -NMR. The fraction was 52 mol%, and the branched molar fraction (xc + xd + xe) confirmed by Si-NMR measurement was 20%.
In 3 g of the siloxane oligomer (Si-3) obtained above, 0.96 g of LiTFSI was dissolved to obtain an electrolytic solution E-2.
(調製例1-3:電解液E-3の調製)
 メチルテトラエチルシラン(4-2)50g、グリコール酸(5-1)7.65g及びグリコール酸エチル(6-1)24.2gを混合し、150℃にて1時間加熱還流させた。反応後、温度を150℃に保ち、真空度を常圧から5mmHgまで、徐々に下げながら揮発成分を留去し、無色液体として特定シロキサンオリゴマー(Si-2)16gを得た。GPC測定によるスチレン換算数平均分子量は1,450であり、H-NMRにより測定した、一般式(1)で示される部分構造中に含まれる置換基-O-Q-COORの含有モル分率は、41モル%であり、Si-NMR測定により確認された分岐モル分率(xc+xd+xe)は23%であった。
 上記で得た、シロキサンオリゴマー(Si-2)3gに、LiTFSI 0.96gを溶解して電解液E-3を得た。
(Preparation Example 1-3: Preparation of electrolytic solution E-3)
50 g of methyltetraethylsilane (4-2), 7.65 g of glycolic acid (5-1) and 24.2 g of ethyl glycolate (6-1) were mixed and heated to reflux at 150 ° C. for 1 hour. After the reaction, the temperature was maintained at 150 ° C., and the volatile components were distilled off while gradually decreasing the degree of vacuum from normal pressure to 5 mmHg to obtain 16 g of a specific siloxane oligomer (Si-2) as a colorless liquid. The number average molecular weight in terms of styrene as measured by GPC is 1,450, and the content of the substituent —OQ 1 —COOR 3 contained in the partial structure represented by the general formula (1) as measured by H 1 -NMR The fraction was 41 mol%, and the branched molar fraction (xc + xd + xe) confirmed by Si-NMR measurement was 23%.
In 3 g of the siloxane oligomer (Si-2) obtained above, 0.96 g of LiTFSI was dissolved to obtain an electrolytic solution E-3.
〔2・リチウム塩共存下でオリゴマーを合成し、1工程で電解液を調製する方法〕
(調製例2-1:電解液E-4の調製〕
 メチルトリエトキシシラン(4-5)100.0g、グリコール酸(5-1)13.1g及びLiTFSI 14.0gを混合し、150℃にて1時間加熱還流させた。反応後、温度を150℃に保ち、真空度を常圧から5mmHgまで、徐々に下げながら揮発成分を留去し、無色液体(E-4)を54g得た。
 無色液体中に含まれる特定シロキサンオリゴマー(Si-8)のGPC測定によるスチレン換算数平均分子量は650であり、H-NMRにより測定した、一般式(1)で示される部分構造中に含まれる置換基-O-Q-COORの含有モル分率は、21モル%であり、Si-NMR測定により確認された分岐モル分率(xc+x+xe)は5%であった。
(調製例2-2:電解液E-5の調製〕
 テトラエトキシシラン(4-2)50.0g、グリコール酸(5-1)5.25g及びLiTFSI 9.5gを混合し、150℃にて1時間加熱還流させた。反応後、温度を150℃煮保ち、真空度を常圧から5mmHgまで、徐々に下げながら揮発成分を留去し、無色液体(E-5)を37g得た。
 無色液体中に含まれる特定シロキサンオリゴマー(Si-9)の、PC測定によるスチレン換算数平均分子量は800であり、H-NMRにより測定した、一般式(1)で示される部分構造中に含まれる置換基-O-Q-COORの含有モル分率は.50モル%であり、Si-NMR測定により確認された分岐モル分率(xc+xd+xe)は3%であった。
[2. Method of synthesizing oligomer in the presence of lithium salt and preparing electrolyte in one step]
(Preparation Example 2-1: Preparation of electrolyte E-4)
100.0 g of methyltriethoxysilane (4-5), 13.1 g of glycolic acid (5-1) and 14.0 g of LiTFSI were mixed and heated to reflux at 150 ° C. for 1 hour. After the reaction, the temperature was maintained at 150 ° C., and the volatile components were distilled off while gradually decreasing the degree of vacuum from normal pressure to 5 mmHg to obtain 54 g of colorless liquid (E-4).
The number average molecular weight in terms of styrene by GPC measurement of the specific siloxane oligomer (Si-8) contained in the colorless liquid is 650, and is contained in the partial structure represented by the general formula (1) measured by H 1 -NMR. The content mole fraction of the substituent —O—Q 1 —COOR 3 was 21 mole%, and the branched mole fraction (xc + x + xe) confirmed by Si-NMR measurement was 5%.
(Preparation Example 2-2: Preparation of electrolytic solution E-5)
Tetraethoxysilane (4-2) 50.0 g, glycolic acid (5-1) 5.25 g, and LiTFSI 9.5 g were mixed and heated to reflux at 150 ° C. for 1 hour. After the reaction, the temperature was kept at 150 ° C., and the volatile components were distilled off while gradually decreasing the degree of vacuum from normal pressure to 5 mmHg to obtain 37 g of colorless liquid (E-5).
The specific siloxane oligomer (Si-9) contained in the colorless liquid has a styrene-equivalent number average molecular weight of 800 by PC measurement and is contained in the partial structure represented by the general formula (1) measured by H 1 -NMR. The mole fraction of the substituent —O—Q 1 —COOR 3 to be obtained is. The branched mole fraction (xc + xd + xe) confirmed by Si-NMR measurement was 3%.
(調製例2-3:電解液E-6の調製〕
 テトラメトキシシラン(4-1)50g、テトラエトキシシラン(4-2)36.6g、グリコール酸(5-1)13.1g及びLiTFSI 13.1gを混合し、150℃にて1時間加熱還流させた。反応後、温度を150℃に保ち、真空度を常圧から5mmHgまで、徐々に下げながら揮発成分を留去し、無色液体(E-6)を58.9g得た。
 無色液体中に含まれる特定シロキサンオリゴマー(Si-4)の、PC測定によるスチレン換算数平均分子量は620であり、H-NMRにより測定した、一般式(1)で示される部分構造中に含まれる置換基-O-Q-COORの含有モル分率は、37モル%であり、Si-NMR測定により確認された分岐モル分率(xc+xd+xe)は8%であった。
(調製例2-4:電解液E-7の調製)
 テトラエトキシシラン(4-2)40g、2-シアノエチルトリエトキシシラン(6-1)10.4g、グリコール酸(5-1)6.57g及びLiTFSI 13.1gを混合し、150℃にて1時間加熱還流させた。反応後、温度を150℃に保ち、真空度を常圧から5mmHgまで、徐々に下げながら揮発成分を留去し、無色液体(E-7)を29.0g得た。
 無色液体中に含まれる特定シロキサンオリゴマー(Si-7)の、PC測定によるスチレン換算数平均分子量は750であり、H-NMRにより測定した、一般式(1)で示される部分構造中に含まれる置換基-O-Q-COORの含有モル分率は、34モル%であり、Si-NMR測定により確認された分岐モル分率(xc+xd+xe)は11%であった。
(Preparation Example 2-3: Preparation of electrolyte E-6)
50 g of tetramethoxysilane (4-1), 36.6 g of tetraethoxysilane (4-2), 13.1 g of glycolic acid (5-1) and 13.1 g of LiTFSI were mixed and heated to reflux at 150 ° C. for 1 hour. It was. After the reaction, the temperature was maintained at 150 ° C., and the volatile components were distilled off while gradually decreasing the degree of vacuum from normal pressure to 5 mmHg to obtain 58.9 g of colorless liquid (E-6).
The specific siloxane oligomer (Si-4) contained in the colorless liquid has a styrene-equivalent number average molecular weight of 620 by PC measurement and is contained in the partial structure represented by the general formula (1) measured by H 1 -NMR. The contained mole fraction of the substituent —O—Q 1 —COOR 3 was 37 mole%, and the branched mole fraction (xc + xd + xe) confirmed by Si-NMR measurement was 8%.
(Preparation Example 2-4: Preparation of electrolytic solution E-7)
40 g of tetraethoxysilane (4-2), 10.4 g of 2-cyanoethyltriethoxysilane (6-1), 6.57 g of glycolic acid (5-1), and 13.1 g of LiTFSI were mixed, and the mixture was stirred at 150 ° C. for 1 hour. Heated to reflux. After the reaction, the temperature was maintained at 150 ° C., and the volatile components were distilled off while gradually decreasing the degree of vacuum from normal pressure to 5 mmHg to obtain 29.0 g of colorless liquid (E-7).
The specific siloxane oligomer (Si-7) contained in the colorless liquid has a styrene-equivalent number average molecular weight of 750 by PC measurement, and is contained in the partial structure represented by the general formula (1) measured by H 1 -NMR. The contained mole fraction of the substituent —O—Q 1 —COOR 3 was 34 mole%, and the branched mole fraction (xc + xd + xe) confirmed by Si-NMR measurement was 11%.
〔3.添加剤を含有する電解液の調製〕
(調製例3-1:電解液E-8の調製)
 上記(調製例2-1)で得た電解液E-6に、電解液に対し5wt%のビニルカーボネート(VC)を添加し電解液E-8を調製した。
(調製例3-2:電解液E-9の調製)
 上記(調製例2-1)で得た電解液E-6に、電解液に対し5wt%のエチレンサルファイト(ES)を添加し、電解液E-9を調製した。
(調製例3-3:電解液E-10の調製)
 上記(調製例2-1)で得た電解液E-6に、電解液に対し10wt%のリン酸エチル(PE)を添加し、電解液E-10を調製した。
(調製例3-4:電解液E-12の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し20wt%のリン酸トリメチルを添加し、電解液E-12を調製した。
(調製例3-5:電解液E-13の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し20wt%のtris(2,2,2-trifluoroethyl) phosphate(A1)を添加し、電解液E-13を調製した。
(調製例3-6:電解液E-14の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し20wt%のホスファゼン化合物(A2)を添加し、電解液E-14を調製した。
(調製例3-7:電解液E-15の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し20wt%のホスファゼン化合物(A3)を添加し、電解液E-15を調製した。
(調製例3-8:電解液E-16の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し20wt%のホスホン酸エステル化合物(A4)を添加し、電解液E-16を調製した。
(調製例3-9:電解液E-17の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し20wt%のホスファイト化合物(A5)を添加し、電解液E-17を調製した。
(調整例3-10:電解液E-18の調整)
 特定ケイ素化合物として(Si-8)を用いること以外は電解液E-1の調整法と同様にして、電解液E-18を調整した。
(調製例3-11:電解液E-19の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し50wt%のリン酸トリメチルを添加し、電解液E-19を調製した。
(調製例3-12:電解液E-20の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し40wt%のリン酸トリメチルを添加し、電解液E-19を調製した。
(調製例3-13:電解液E-20の調製)
 上記(調製例1-1)で得た電解液E-1に、電解液に対し1wt%のリン酸トリメチルを添加し、電解液E-21を調製した。
[3. Preparation of electrolyte containing additive]
(Preparation Example 3-1: Preparation of Electrolytic Solution E-8)
Electrolytic solution E-8 was prepared by adding 5 wt% vinyl carbonate (VC) to the electrolytic solution E-6 obtained in the above (Preparation Example 2-1).
(Preparation Example 3-2: Preparation of electrolytic solution E-9)
To the electrolytic solution E-6 obtained in (Preparation Example 2-1), 5 wt% ethylene sulfite (ES) was added to the electrolytic solution to prepare an electrolytic solution E-9.
(Preparation Example 3-3: Preparation of electrolytic solution E-10)
10% by weight of ethyl phosphate (PE) was added to the electrolytic solution E-6 obtained in the above (Preparation Example 2-1) to prepare an electrolytic solution E-10.
(Preparation Example 3-4: Preparation of electrolytic solution E-12)
Electrolytic solution E-12 was prepared by adding 20 wt% trimethyl phosphate to electrolytic solution E-1 obtained in Preparation Example 1-1 above.
(Preparation Example 3-5: Preparation of electrolytic solution E-13)
To electrolyte solution E-1 obtained in (Preparation Example 1-1), 20 wt% of tris (2,2,2-trifluoroethyl) phosphate (A1) was added to the electrolyte solution to prepare electrolyte solution E-13. did.
(Preparation Example 3-6: Preparation of Electrolytic Solution E-14)
Electrolytic solution E-14 was prepared by adding 20 wt% of the phosphazene compound (A2) to electrolytic solution E-1 obtained in (Preparation Example 1-1) above.
(Preparation Example 3-7: Preparation of Electrolytic Solution E-15)
20% by weight of the phosphazene compound (A3) was added to the electrolytic solution E-1 obtained in the above (Preparation Example 1-1) to prepare an electrolytic solution E-15.
(Preparation Example 3-8: Preparation of electrolytic solution E-16)
20% by weight of the phosphonic acid ester compound (A4) was added to the electrolytic solution E-1 obtained in the above (Preparation Example 1-1) to prepare an electrolytic solution E-16.
(Preparation Example 3-9: Preparation of Electrolytic Solution E-17)
Electrolytic solution E-17 was prepared by adding 20 wt% of the phosphite compound (A5) to the electrolytic solution E-1 obtained in the above (Preparation Example 1-1).
(Adjustment Example 3-10: Adjustment of Electrolyte E-18)
An electrolytic solution E-18 was prepared in the same manner as the electrolytic solution E-1, except that (Si-8) was used as the specific silicon compound.
(Preparation Example 3-11: Preparation of electrolytic solution E-19)
To the electrolytic solution E-1 obtained in the above (Preparation Example 1-1), 50 wt% trimethyl phosphate was added to the electrolytic solution to prepare an electrolytic solution E-19.
(Preparation Example 3-12: Preparation of electrolytic solution E-20)
40% by weight of trimethyl phosphate was added to the electrolytic solution E-1 obtained in the above (Preparation Example 1-1) to prepare an electrolytic solution E-19.
(Preparation Example 3-13: Preparation of electrolytic solution E-20)
1% by weight of trimethyl phosphate was added to the electrolytic solution E-1 obtained in the above (Preparation Example 1-1) to prepare an electrolytic solution E-21.
〔4.有機溶剤との混合電解液の調製〕
(調製例:4-1:電解液E-11の調製)
 上記(調製例1-1)で合成したオリゴマー(Si-1)3gと、プロピレンカーボネート0.6gにLiPF 0.32gを溶解してなる溶液と、を混合し、電解液E-11を調製した。
[4. Preparation of mixed electrolyte with organic solvent]
(Preparation Example: 4-1 Preparation of Electrolytic Solution E-11)
3 g of the oligomer (Si-1) synthesized in (Preparation Example 1-1) above and a solution obtained by dissolving 0.32 g of LiPF 6 in 0.6 g of propylene carbonate were mixed to prepare an electrolytic solution E-11. did.
〔5.比較電解液の調製〕
(調製例5-1:比較電解液RE-1の調製)
 特開2002-252030号公報の実施例3記載の電解液組成物(SiE-3)
 特開2002-252030号公報の実施例1に従って合成したポリシロキサンの平均分子量は、5,300、Si-NMR測定により確認された分岐モル分率(xc+xd+xe)は35%であった。特開2002-252030号公報の実施例1に従って合成したポリシロキサンは下記部分構造(A-1)を含むものの、GPC測定によるスチレン換算数平均分子量が本発明の範囲外である。
 特開2002-252030実施例3に従って調製した電解液をRE-1とした。
[5. Preparation of comparative electrolyte
(Preparation Example 5-1: Preparation of Comparative Electrolyte RE-1)
Electrolyte composition (SiE-3) described in Example 3 of JP-A-2002-252030
The average molecular weight of the polysiloxane synthesized according to Example 1 of JP-A-2002-252030 was 5,300, and the branched mole fraction (xc + xd + xe) confirmed by Si-NMR measurement was 35%. Although the polysiloxane synthesized according to Example 1 of JP-A-2002-252030 contains the following partial structure (A-1), the number average molecular weight in terms of styrene by GPC measurement is outside the scope of the present invention.
The electrolytic solution prepared according to Example 3 of JP-A-2002-252030 was designated as RE-1.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(調製例5-2:比較電解液RE-2の調製)
 特開2002-252030号 実施例1に従って合成したポリシロキサン3g、プロピレンカーボネート0.6gにLiPF 0.32gを混合し、電解液RE-2を調製した。比較電解液RE-2に用いられたポリシロキサンは、比較電解液RE-1で用いられたものと同じ化合物であり、GPC測定によるスチレン換算数平均分子量が本発明の範囲外の化合物である。
(調製例5-3:比較電解液RE-3の調製)
 特開2005-154697号記載のシロキサン化合物(15)(下記構造、分子量:630.96)3gに、LiTFSI 0.96gを溶解し、比較電解液RE-3を調製した。下記シロキサン化合物(15)は、構造に明らかなようにモノマーであり、本発明に用いられるシロキサンオリゴマーには包含されない化合物である。
(Preparation Example 5-2: Preparation of comparative electrolytic solution RE-2)
JP, 2002-252030, A polysiloxane synthesized according to Example 1 and 0.6 g of propylene carbonate were mixed with 0.32 g of LiPF 6 to prepare an electrolytic solution RE-2. The polysiloxane used in the comparative electrolyte RE-2 is the same compound as that used in the comparative electrolyte RE-1, and is a compound whose styrene-equivalent number average molecular weight by GPC measurement is outside the scope of the present invention.
(Preparation Example 5-3: Preparation of comparative electrolyte RE-3)
0.96 g of LiTFSI was dissolved in 3 g of siloxane compound (15) described in JP-A-2005-154697 (the following structure, molecular weight: 630.96) to prepare a comparative electrolyte RE-3. The following siloxane compound (15) is a monomer as apparent from the structure, and is not included in the siloxane oligomer used in the present invention.
Figure JPOXMLDOC01-appb-C000029

 
Figure JPOXMLDOC01-appb-C000029

 
(調製例5-4:比較電解液RE-4の調製)
 特開2005-154697号記載のシロキサン化合物(15)3g、プロピレンカーボネート0.6g、及びLiPF 0.32gを混合し、比較電解液RE-4を調製した。比較電解液RE-4に用いられたシロキサン化合物は、比較電解液RE-3で用いられたものと同じ化合物であり、本発明の範囲外の化合物である。
(Preparation Example 5-4: Preparation of Comparative Electrolyte RE-4)
A comparative electrolyte RE-4 was prepared by mixing 3 g of the siloxane compound (15) described in JP-A-2005-154697, 0.6 g of propylene carbonate, and 0.32 g of LiPF 6 . The siloxane compound used in the comparative electrolytic solution RE-4 is the same compound as that used in the comparative electrolytic solution RE-3 and is out of the scope of the present invention.
〔電解液の特性評価〕
 実施例1~21及び比較例1~4の電解液のイオン伝導度と輸率を測定した。
(イオン伝導度の測定)
 厚さ250μmのテフロン(登録商標)スペーサー(6mmφの穴空き)を2枚のステンレス板で挟んだセルを用い、30℃で交流インピーダンス法により求めた。
(輸率の測定)
 文献(James Evans, Colin A. Vincent, Peter G. Bruce,Polymer, Volume 28, Issue 13, December 1987, Pages 2324-2328 )記載の方法により求めた。
(難燃性試験)
 高分子難燃性試験規格であるUL(アンダーライティングラボラトリー)規格のUL94HB法を参考にした方法で、電解液の耐燃焼性に関する評価を行った。
 具体的には、不燃性のガラス繊維濾紙を13mm×125mmの大きさに切り出し、評価を行う電解液を1.5mL染み込ませて、試験サンプル(試験片)を調整し、端から25mm、100mmに標線を引き、25mm表線側の端から試験炎高さ20mmのガスバーナーで着火した。燃焼の状態を目視にて観察し、以下の基準で難燃性を評価した。
(評価基準)
 AA:25mm標線に到達せずに燃焼が停止した場合
 A:25mm~100mmで試験炎が停止した場合又は25mm~100mmの燃焼時間が50秒以上である場合
 B:25mm~100mmの燃焼時間が30秒以上50秒未満である場合
 C:25mm~100mmの燃焼時間が30秒未満である場合
 イオン伝導度、輸率の測定結果、Liイオン伝導性の指標である「輸率×イオン伝導度」、及び難燃性の評価結果を下記表1に示す。
[Characteristic evaluation of electrolyte]
The ionic conductivity and transport number of the electrolyte solutions of Examples 1 to 21 and Comparative Examples 1 to 4 were measured.
(Ion conductivity measurement)
Using a cell in which a Teflon (registered trademark) spacer (6 mmφ hole) with a thickness of 250 μm was sandwiched between two stainless steel plates, it was determined by an AC impedance method at 30 ° C.
(Transport rate measurement)
It was determined by the method described in the literature (James Evans, Colin A. Vincent, Peter G. Bruce, Polymer, Volume 28, Issue 13, 1987, Pages 2324-2328).
(Flame retardancy test)
The evaluation of the flame resistance of the electrolyte was performed by a method based on the UL94HB method of the UL (Underwriting Laboratory) standard, which is a polymer flame retardancy test standard.
Specifically, a nonflammable glass fiber filter paper is cut into a size of 13 mm × 125 mm, 1.5 mL of an electrolytic solution to be evaluated is soaked, a test sample (test piece) is adjusted, and 25 mm and 100 mm from the end. A marked line was drawn and ignited with a gas burner having a test flame height of 20 mm from the end on the 25 mm surface side. The state of combustion was observed visually, and flame retardancy was evaluated according to the following criteria.
(Evaluation criteria)
AA: When the combustion is stopped without reaching the 25 mm mark A: When the test flame is stopped at 25 mm to 100 mm or when the combustion time of 25 mm to 100 mm is 50 seconds or more B: The combustion time of 25 mm to 100 mm When it is 30 seconds or more and less than 50 seconds C: When the burning time of 25 mm to 100 mm is less than 30 seconds Ion conductivity, transport number measurement result, “Transport number × ion conductivity” which is an index of Li ion conductivity Table 1 below shows the results of evaluation of flame retardancy.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表1から明らかなように、実施例1~21の電解液E-1からE-21は、比較例1~4の電解液RE-1~RE-4に比較して、リチウムイオン伝導性(イオン伝導度×輸率)が高い。
 類似構造のシロキサンオリゴマー電解液RE-1と比較し、分子量が低く、分岐鎖が少ないシロキサンオリゴマーを含有する電解液E-1からE-7は、輸率が少し低下するものの、イオン伝導度の向上が大きいため、その積であるリチウムイオン伝導性が高い。PC溶媒を混合した、電解液RE-2(比較例)とE-11(本発明)との対比においても、同様に本発明の電解液E-11は、電解液RE-2(比較例)に対し輸率は少し低いが、リチウムイオン伝導性が高い傾向が見られる。エチレンオキシ基が主構成部であるシロキサン化合物を用いた電解液RE-3(比較例)は、イオン伝導度は良好であるものの、輸率が低いため、その積であるリチウムイオン伝導性が低いことがわかる。
 なお、電解液E-1と電解液E-18との対比において、特定シロキサンオリゴマーが分子内に環構造を有しないことで、より高いイオン伝導性を得られることが分かる。
 また、本発明の電解液E-1から電解液E-7及び電解液E-11(PC混合系)は、ポリエチレンオキシ基の連結したシロキサン化合物を含有する電解液RE-3及びRE-4(PC混合系)に比較するとイオン伝導度は同等以下であるが、リチウムイオン輸率が高いため、その積であるリチウムイオン伝導性が高いことがわかる。
 さらに、本発明の電解液E-10、E-12~E-21では、リン化合物を添加することで優れた難燃性が達成されており、リン化合物の含有量が多いと難燃性が向上するものの伝導度が若干低下する傾向があり、添加量が少ないと難燃性の効果も小さいため、全電解液に対する含有量が5質量%から40質量%の範囲において、難燃性と伝導度のバランスが特に良好であることが分かる。
As is apparent from Table 1, the electrolytes E-1 to E-21 of Examples 1 to 21 are more lithium ion conductive (compared to the electrolytes RE-1 to RE-4 of Comparative Examples 1 to 4). (Ion conductivity x transport number) is high.
Compared with the siloxane oligomer electrolyte solution RE-1 having a similar structure, electrolyte solutions E-1 to E-7 containing a siloxane oligomer having a lower molecular weight and fewer branched chains have a slightly lower transport number, but have a lower ion conductivity. Since the improvement is great, the lithium ion conductivity that is the product is high. Also in the comparison between the electrolytic solution RE-2 (comparative example) and E-11 (the present invention) mixed with the PC solvent, the electrolytic solution E-11 of the present invention is the same as the electrolytic solution RE-2 (comparative example). On the other hand, although the transport number is a little low, the lithium ion conductivity tends to be high. Electrolyte solution RE-3 (Comparative Example) using a siloxane compound whose main component is an ethyleneoxy group has good ionic conductivity, but has a low transport number, and therefore its product lithium ion conductivity is low. I understand that.
In comparison between the electrolytic solution E-1 and the electrolytic solution E-18, it can be seen that higher ionic conductivity can be obtained when the specific siloxane oligomer does not have a ring structure in the molecule.
In addition, the electrolytic solutions E-1 to E-7 and the electrolytic solution E-11 (PC mixed system) of the present invention include electrolytic solutions RE-3 and RE-4 (polyethylene oxide-containing siloxane compounds linked with polyethyleneoxy groups). Compared with the PC mixed system), the ionic conductivity is equal to or less than that, but since the lithium ion transport number is high, it is understood that the lithium ion conductivity which is the product is high.
Furthermore, in the electrolytic solutions E-10 and E-12 to E-21 of the present invention, excellent flame retardancy is achieved by adding a phosphorus compound, and when the content of the phosphorus compound is large, flame retardancy is achieved. Although improved, the conductivity tends to decrease slightly, and if the amount added is small, the effect of flame retardancy is also small. Therefore, when the content of the total electrolyte is 5% to 40% by mass, the flame retardancy and conductivity It can be seen that the degree balance is particularly good.
〔実施例22~30、比較例5、6〕
[リチウム二次電池]
 正極にコバルト酸リチウム合剤シート(電極容量1.5mAh/cm:アルミ箔ベース、16mmΦ)、負極に天然球状グラファイト電極シート(電極容量1.6mAh/cm2:Cu箔ベース、16mmΦ)、セパレータにポリプロピレン製多孔質フィルム(厚さ25μm、24mmΦ)を用い、下記表2に示す電解液を用いた評価用のリチウム二次電池を作製した。
 3.02mAで、電池電圧が4.2Vになるまで定電流充電した後、4.2Vの定電圧で、電流値が0.1mAになるまで充電を行った。
 リチウム二次電池セルを60℃の恒温槽に入れ、0.2Cに相当する0.6mAで、電池電圧が2.5Vに低下するまで放電を行った。
 上記の充放電を2回繰返し、2回目の放電効率(放電電気量/充電電気量×100%)を評価した。結果を表2に示す。
[Examples 22 to 30, Comparative Examples 5 and 6]
[Lithium secondary battery]
Lithium cobaltate mixture sheet (electrode capacity 1.5 mAh / cm 2 : aluminum foil base, 16 mmΦ) on the positive electrode, natural spherical graphite electrode sheet (electrode capacity 1.6 mAh / cm2: Cu foil base, 16 mmΦ) on the negative electrode, and separator Using a polypropylene porous film (thickness 25 μm, 24 mmΦ), a lithium secondary battery for evaluation using an electrolytic solution shown in Table 2 below was produced.
The battery was charged at a constant current of 3.02 mA until the battery voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V until the current value reached 0.1 mA.
The lithium secondary battery cell was placed in a constant temperature bath at 60 ° C., and discharged at 0.6 mA corresponding to 0.2 C until the battery voltage dropped to 2.5V.
The above charge / discharge was repeated twice, and the second discharge efficiency (discharged electricity / charged electricity × 100%) was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000031

 
Figure JPOXMLDOC01-appb-T000031

 
 表2から明らかなように、リチウムイオン伝導性の高い本発明の電解液を用いたCell-1からCell-9は、比較例の電解液を用いたCell-10及びCell-11に比較して、電池の充放電効率が高い。
 また、前記結果より明らかなように、本発明に係る特定シロキサンオリゴマーを用いた電解液は、引火性の高い有機溶媒電解液を多量に用いなくても、良好な電池特性を示すため、高出力であっても、難燃性であり、例えば、電池暴走時の電解液への引火が抑制されるという利点をも有するものである。
As is apparent from Table 2, Cell-1 to Cell-9 using the electrolytic solution of the present invention having high lithium ion conductivity are compared with Cell-10 and Cell-11 using the electrolytic solution of the comparative example. The charge / discharge efficiency of the battery is high.
Further, as is clear from the above results, the electrolyte solution using the specific siloxane oligomer according to the present invention exhibits good battery characteristics without using a large amount of highly flammable organic solvent electrolyte solution. Even so, it is flame retardant and has an advantage that, for example, ignition to the electrolyte during battery runaway is suppressed.
 日本出願2010-212519及び日本出願2011-086244の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese application 2010-212519 and Japanese application 2011-086244 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (17)

  1.  周期律表第一族又は第二族に属する金属イオンの塩と、下記一般式(1)で表される部分構造を含み、スチレン換算数平均分子量500以上1500以下であるシロキサンオリゴマーと、を含有する非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000001

     
     (前記一般式(1)中、Rは炭化水素基又は-ORを表し、-ORはアルコキシ基、ハロゲン化アルコキシ基、又は下記一般式(2)で表される置換基を表し、-ORがアルコキシ基を表す場合、Rはアルキル基を表し、-ORがハロゲン化アルコキシ基を表す場合、Rはハロゲン化アルキル基を表す。但し、前記シロキサンオリゴマーに含まれる一般式(1)で表される全部分構造におけるRと-ORの総モル量に対する、下記一般式(2)で表される置換基のモル分率は5モル%以上100モル%以下である。)
    Figure JPOXMLDOC01-appb-C000002

     
     (前記一般式(2)中、Qはアルキレン基を表し、Rはアルキル基を表す。)
    Contains a salt of a metal ion belonging to Group 1 or Group 2 of the Periodic Table, and a siloxane oligomer having a partial structure represented by the following general formula (1) and having a number average molecular weight of 500 to 1500 in terms of styrene. Electrolyte for non-aqueous secondary battery.
    Figure JPOXMLDOC01-appb-C000001


    (In the general formula (1), R 1 represents a hydrocarbon group or —OR 2 , —OR 2 represents an alkoxy group, a halogenated alkoxy group, or a substituent represented by the following general formula (2); When -OR 2 represents an alkoxy group, R 2 represents an alkyl group, and when -OR 2 represents a halogenated alkoxy group, R 2 represents a halogenated alkyl group, provided that the general formula contained in the siloxane oligomer is The molar fraction of the substituent represented by the following general formula (2) with respect to the total molar amount of R 1 and —OR 2 in the entire partial structure represented by (1) is 5 mol% or more and 100 mol% or less. .)
    Figure JPOXMLDOC01-appb-C000002


    (In the general formula (2), Q 1 represents an alkylene group, and R 3 represents an alkyl group.)
  2.  前記シロキサンオリゴマーが、下記一般式(1-a)、一般式(1-b)、一般式(1-c)、一般式(1-d)、及び一般式(1-e)からなる群より選択される部分構造を含み、且つ、下記一般式(1-a)、一般式(1-b)、一般式(1-c)、一般式(1-d)、及び一般式(1-e)で表される部分構造のモル分率を、それぞれxa、xb、xc、xd及びxeとした時に、前記シロキサンオリゴマーに含まれる全部分構造の合計量に対し、xa+xbの合計量が70モル%以上100モル%以下であるシロキサンオリゴマーである請求項1に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000003

     
     (前記一般式(1-a)~一般式(1-e)中、*及び**は、他の部分構造との連結部位であり、一般式(1-a)~一般式(1-e)で表される部分構造が連結する場合、**と*との部位で連結する。R及びRは、それぞれ前記一般式(1)におけるR及びRと同義である。)
    The siloxane oligomer is selected from the group consisting of the following general formula (1-a), general formula (1-b), general formula (1-c), general formula (1-d), and general formula (1-e). Including a selected partial structure, and the following general formula (1-a), general formula (1-b), general formula (1-c), general formula (1-d), and general formula (1-e) ), The total amount of xa + xb is 70 mol% with respect to the total amount of all the partial structures contained in the siloxane oligomer, where xa, xb, xc, xd and xe are the mole fractions of the partial structures represented by The electrolyte solution for a non-aqueous secondary battery according to claim 1, which is a siloxane oligomer having a content of 100 mol% or less.
    Figure JPOXMLDOC01-appb-C000003


    (In the general formula (1-a) to the general formula (1-e), * and ** are linking sites with other partial structures, and the general formula (1-a) to the general formula (1-e When the partial structures represented by) are linked, they are linked at the position of ** and * .R 1 and R 2 are respectively synonymous with R 1 and R 2 in the general formula (1).
  3.  前記一般式(1)で表される部分構造におけるRがメチル基又は-ORであり、且つ、-ORがエトキシ基又は下記一般式(3)で表される基である請求項1又は請求項2に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000004

     
     (前記一般式(3)中、Rはアルキル基を表し、R及びRは、それぞれ独立にアルキル基又は水素原子を表し、RとRとは互いに連結して環を形成してもよい。)
    2. The R 1 in the partial structure represented by the general formula (1) is a methyl group or —OR 2 , and —OR 2 is an ethoxy group or a group represented by the following general formula (3). Or the electrolyte solution for non-aqueous secondary batteries of Claim 2.
    Figure JPOXMLDOC01-appb-C000004


    (In the general formula (3), R 3 represents an alkyl group, R 4 and R 5 each independently represents an alkyl group or a hydrogen atom, and R 4 and R 5 are linked to each other to form a ring. May be.)
  4.  前記シロキサンオリゴマーに含まれる一般式(1)で表される部分構造中、-ORが前記一般式(2)で表される置換基であり、前記シロキサンオリゴマーに含まれる一般式(1)で表される全部分構造におけるRと-ORの総モル量に対する前記一般式(2)で表される置換基のモル分率が30モル%以上75モル%以下である請求項1から請求項3のいずれか1項に記載の非水二次電池用電解液。 In the partial structure represented by the general formula (1) contained in the siloxane oligomer, —OR 2 is a substituent represented by the general formula (2), and in the general formula (1) contained in the siloxane oligomer, The mole fraction of the substituent represented by the general formula (2) with respect to the total molar amount of R 1 and —OR 2 in the entire partial structure represented is from 30 mol% to 75 mol%. Item 4. The electrolyte solution for a non-aqueous secondary battery according to any one of Items 3.
  5.  前記一般式(1)におけるRが直鎖又は分岐の炭化水素基であり、且つ、-ORが、直鎖又は分岐のアルコキシ基、直鎖又は分岐のハロゲン化アルコキシ基、又は前記一般式(2)で表される置換基であって、一般式(2)におけるQが直鎖又は分岐のアルキレン基を表し、Rは直鎖又は分岐のアルキル基を表す請求項1から請求項4のいずれか1項に記載の非水二次電池用電解液。 In the general formula (1), R 1 is a linear or branched hydrocarbon group, and —OR 2 is a linear or branched alkoxy group, a linear or branched halogenated alkoxy group, or the general formula The substituent represented by (2), wherein Q 1 in the general formula (2) represents a linear or branched alkylene group, and R 3 represents a linear or branched alkyl group. 5. The electrolyte solution for a non-aqueous secondary battery according to any one of 4.
  6.  前記シロキサンオリゴマーの、全電解液に対する含有量が20質量%以上80質量%以下である請求項1~請求項5のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 5, wherein a content of the siloxane oligomer with respect to the total electrolyte solution is 20% by mass or more and 80% by mass or less.
  7.  周期律表第一族又は第二族に属する金属イオンの塩がリチウム塩である請求項1から請求項6のいずれか1項に記載の非水二次電池用電解液。 The electrolyte for a non-aqueous secondary battery according to any one of claims 1 to 6, wherein the salt of a metal ion belonging to Group 1 or Group 2 of the periodic table is a lithium salt.
  8.  さらに、非水系有機溶媒を含有する請求項1から請求項7のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 7, further comprising a non-aqueous organic solvent.
  9.  前記周期律表第一族又は第二族に属する金属イオンの塩の存在下で、アルコシキシラン化合物とヒドロキシカルボン酸とを用いて前記シロキサンオリゴマーを合成することにより得られる請求項1から請求項8のいずれか1項に記載の非水二次電池用電解液。 The siloxane oligomer is obtained by synthesizing the siloxane oligomer using an alkoxysilane compound and a hydroxycarboxylic acid in the presence of a salt of a metal ion belonging to Group 1 or Group 2 of the Periodic Table. The electrolyte solution for nonaqueous secondary batteries of any one of 8.
  10.  さらに、リン化合物を含有する請求項1から請求項9のいずれか1項に記載の非水二次電池用電解液。 Furthermore, the electrolyte solution for non-aqueous secondary batteries of any one of Claim 1 to 9 containing a phosphorus compound.
  11.  前記リン化合物が、リン酸エステル化合物、ホスファゼン化合物、ホスホン酸エステル化合物、及び、ホスファイト化合物からなる群より選択される少なくとも1種である請求項10に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to claim 10, wherein the phosphorus compound is at least one selected from the group consisting of a phosphate ester compound, a phosphazene compound, a phosphonate ester compound, and a phosphite compound.
  12.  前記リン酸エステル化合物が、下記一般式(p1)で表される化合物である請求項11に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000005

     前記一般式(p1)中、Rp11、Rp12、及びRp13は、それぞれ独立にアルキル基又はアリール基を表す。
     
    The electrolyte solution for a non-aqueous secondary battery according to claim 11, wherein the phosphate ester compound is a compound represented by the following general formula (p1).
    Figure JPOXMLDOC01-appb-C000005

    In the general formula (p1), Rp 11 , Rp 12 , and Rp 13 each independently represents an alkyl group or an aryl group.
  13.  前記ホスファゼン化合物が、下記一般式(p2)で表される部分構造を有する化合物である請求項11に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000006

     前記一般式(p2)中、Rp21、及びRp22は、それぞれ独立にハロゲン原子、アルコキシ基、又はアリールオキシ基を表す。n は1以上の整数を表す。
    The electrolyte solution for a non-aqueous secondary battery according to claim 11, wherein the phosphazene compound is a compound having a partial structure represented by the following general formula (p2).
    Figure JPOXMLDOC01-appb-C000006

    In the general formula (p2), Rp 21 and Rp 22 each independently represent a halogen atom, an alkoxy group, or an aryloxy group. n p 2 represents an integer of 1 or more.
  14.  前記ホスホン酸エステル化合物が、下記一般式(p3)で表される化合物である請求項11に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000007

     前記一般式(p3)において、Rp31、Rp32、及び、Rp33は、それぞれ独立にアルキル基、又はアリール基を表す。
    The electrolyte solution for a non-aqueous secondary battery according to claim 11, wherein the phosphonic acid ester compound is a compound represented by the following general formula (p3).
    Figure JPOXMLDOC01-appb-C000007

    In the general formula (p3), Rp 31 , Rp 32 , and Rp 33 each independently represents an alkyl group or an aryl group.
  15.  前記ホスファイト化合物が、下記一般式(p4)で表される化合物である請求項11に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000008

     前記一般式(p4)中、Rp41、Rp42、及びRp43は、それぞれ独立にアルキル基、又はアリール基を表す。
    The electrolyte solution for a non-aqueous secondary battery according to claim 11, wherein the phosphite compound is a compound represented by the following general formula (p4).
    Figure JPOXMLDOC01-appb-C000008

    In the general formula (p4), Rp 41 , Rp 42 , and Rp 43 each independently represents an alkyl group or an aryl group.
  16.  前記リン化合物の、全電解液に対する含有量が5質量%以上40質量%以下である請求項10から請求項15のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 10 to 15, wherein a content of the phosphorus compound with respect to the total electrolyte solution is 5 mass% or more and 40 mass% or less.
  17.  請求項1から請求項16のいずれか1項に記載の非水二次電池用電解液と、リチウムイオンの挿入放出が可能な正極と、リチウムイオンの挿入放出又は溶解析出が可能な負極とを備えるリチウム二次電池。 The electrolyte for a non-aqueous secondary battery according to any one of claims 1 to 16, a positive electrode capable of inserting and releasing lithium ions, and a negative electrode capable of inserting and releasing lithium ions and dissolution and precipitation. A lithium secondary battery provided.
PCT/JP2011/069828 2010-09-22 2011-08-31 Nonaqueous electrolyte for secondary battery and lithium secondary battery WO2012039250A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-212519 2010-09-22
JP2010212519 2010-09-22
JP2011086244A JP5680468B2 (en) 2010-09-22 2011-04-08 Non-aqueous secondary battery electrolyte and lithium secondary battery
JP2011-086244 2011-04-08

Publications (1)

Publication Number Publication Date
WO2012039250A1 true WO2012039250A1 (en) 2012-03-29

Family

ID=45873740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069828 WO2012039250A1 (en) 2010-09-22 2011-08-31 Nonaqueous electrolyte for secondary battery and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP5680468B2 (en)
WO (1) WO2012039250A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134463A2 (en) 2016-02-05 2017-08-10 Catexel Limited Method of preparing an oxidatively curable coating formulation
CN110546805A (en) * 2017-02-24 2019-12-06 野猫技术开发公司 Electrolyte additive
CN110808411A (en) * 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 Electrolyte and lithium ion battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255722B2 (en) * 2012-06-13 2018-01-10 セントラル硝子株式会社 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP6221365B2 (en) * 2012-06-13 2017-11-01 セントラル硝子株式会社 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP2015026589A (en) * 2013-07-29 2015-02-05 富士フイルム株式会社 Electrolytic solution for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6047458B2 (en) * 2013-07-29 2016-12-21 富士フイルム株式会社 Non-aqueous secondary battery
WO2016199723A1 (en) * 2015-06-09 2016-12-15 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
CA3156653C (en) * 2021-04-29 2023-11-21 Advanced Lithium Electrochemistry Co., Ltd. Electrolyte-solution composition and secondary battery using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298913A (en) * 2001-03-29 2002-10-11 Fuji Photo Film Co Ltd Polysiloxane salt, electrolyte composition, electrochemical battery, nonaqueous secondary battery and photoelectrochemical battery
JP2003064259A (en) * 2001-08-27 2003-03-05 Fuji Photo Film Co Ltd Electrolyte composition, electrochemical cell, photoelectrochemical cell, and nonaqueous secondary battery
JP2007077075A (en) * 2005-09-14 2007-03-29 Shin Etsu Chem Co Ltd Cyclic carbonate-modified siloxane and method for producing the same, non-aqueous electrolyte solution, secondary cell and capacitor
JP2007077052A (en) * 2005-09-13 2007-03-29 Shin Etsu Chem Co Ltd Cyclic carbonate-modified organic silicon compound and non-aqueous electrolyte solution including the same, secondary cell and capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298913A (en) * 2001-03-29 2002-10-11 Fuji Photo Film Co Ltd Polysiloxane salt, electrolyte composition, electrochemical battery, nonaqueous secondary battery and photoelectrochemical battery
JP2003064259A (en) * 2001-08-27 2003-03-05 Fuji Photo Film Co Ltd Electrolyte composition, electrochemical cell, photoelectrochemical cell, and nonaqueous secondary battery
JP2007077052A (en) * 2005-09-13 2007-03-29 Shin Etsu Chem Co Ltd Cyclic carbonate-modified organic silicon compound and non-aqueous electrolyte solution including the same, secondary cell and capacitor
JP2007077075A (en) * 2005-09-14 2007-03-29 Shin Etsu Chem Co Ltd Cyclic carbonate-modified siloxane and method for producing the same, non-aqueous electrolyte solution, secondary cell and capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134463A2 (en) 2016-02-05 2017-08-10 Catexel Limited Method of preparing an oxidatively curable coating formulation
CN110546805A (en) * 2017-02-24 2019-12-06 野猫技术开发公司 Electrolyte additive
CN110546805B (en) * 2017-02-24 2023-03-28 野猫技术开发公司 Electrolyte additive
CN110808411A (en) * 2018-08-06 2020-02-18 宁德时代新能源科技股份有限公司 Electrolyte and lithium ion battery

Also Published As

Publication number Publication date
JP5680468B2 (en) 2015-03-04
JP2012089468A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5694833B2 (en) Non-aqueous secondary battery electrolyte and lithium secondary battery
JP5680468B2 (en) Non-aqueous secondary battery electrolyte and lithium secondary battery
JP5798954B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP5992345B2 (en) Non-aqueous secondary battery and electrolyte for non-aqueous secondary battery
JP5921982B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
WO2014057887A1 (en) Non-aqueous electrolytic solution secondary battery
JP6047458B2 (en) Non-aqueous secondary battery
JP6071600B2 (en) Nonaqueous secondary battery electrolyte, nonaqueous secondary battery, electrolyte additive
JP2014078433A (en) Electrolytic solution for nonaqueous secondary battery use, and nonaqueous electrolyte secondary battery
WO2013191023A1 (en) Electrolytic solution for non-aqueous secondary cell, and non-aqueous electrolyte secondary cell
WO2015016189A1 (en) Nonaqueous-secondary-battery electrolyte solution and nonaqueous secondary battery
JP2015018667A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery and additive for nonaqueous electrolyte
JP6088934B2 (en) Nonaqueous electrolyte and nonaqueous secondary battery
WO2012161184A1 (en) Electrolyte solution for nonaqueous secondary battery, and secondary battery
JP2016162523A (en) Electrolytic solution for nonaqueous secondary battery and nonaqueous secondary battery
JP2014013719A (en) Electrolytic solution for nonaqueous secondary battery, and secondary battery
JP5670813B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP2014063668A (en) Electrolyte for nonaqueous secondary battery and secondary battery
JP6150987B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP6391028B2 (en) Electrolyte, lithium ion battery and lithium ion capacitor
JP5599357B2 (en) Non-aqueous secondary battery electrolyte and secondary battery using the same
JP2014192153A (en) Electrolytic solution for nonaqueous secondary battery use, nonaqueous secondary battery, and additive agent for nonaqueous electrolytic solution use
JP2015026587A (en) Electrolyte for nonaqueous secondary battery, additive for nonaqueous secondary battery electrolyte, and nonaqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826696

Country of ref document: EP

Kind code of ref document: A1