WO2012039133A1 - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
WO2012039133A1
WO2012039133A1 PCT/JP2011/005310 JP2011005310W WO2012039133A1 WO 2012039133 A1 WO2012039133 A1 WO 2012039133A1 JP 2011005310 W JP2011005310 W JP 2011005310W WO 2012039133 A1 WO2012039133 A1 WO 2012039133A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
gbps
transmission
transmission rate
Prior art date
Application number
PCT/JP2011/005310
Other languages
French (fr)
Japanese (ja)
Inventor
和典 岡田
聡志 石飛
政利 片山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2012039133A1 publication Critical patent/WO2012039133A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/026Optical medium access at the optical channel layer using WDM channels of different transmission rates

Definitions

  • the present invention is a GE-PON (Gigabit Ethernet Passive Optical Network) equipped with a central office side optical signal transmission device (OLT: Optical Line Terminal) and a plurality of subscriber side optical signal transmission devices (ONU: Optical Network Unit).
  • OLT Central office side optical signal transmission device
  • ONU Subscriber side optical signal transmission devices
  • the present invention relates to an optical transmission system configured to be able to transmit and receive optical signals having different transmission rates between an OLT and each ONU.
  • an optical transmission system that can share optical signals with transmission speeds of 1 Gbps and 10 Gbps (see, for example, Patent Documents 1 to 3).
  • an optical switch corresponding to optical signals with transmission speeds of 1 Gbps and 10 Gbps and an expensive dual-rate optical signal processor are provided so that optical signals with different transmission speeds can be shared.
  • an expensive CDR Chip Data Recovery
  • optical signals with transmission speeds of 1 Gbps and 10 Gbps are transmitted by a time division multiplexing (TDM) method.
  • TDM time division multiplexing
  • the upstream optical signal are overlapped at a transmission rate of 1 Gbps and a transmission rate of 10 Gbps. Therefore, as in the optical transmission system disclosed in Patent Document 3, it is essential to apply the TDM method, and it is necessary to assign a time slot to the upstream optical line from the ONU. For this reason, there is a problem in that uplink communication with different transmission rates cannot be performed in the same time zone, and the utilization efficiency of the uplink optical line is low.
  • the present invention has been made to solve the above-described problems.
  • the existing OLT can be used without replacement, and the configuration is inexpensive. It is an object of the present invention to provide an optical transmission system that can be used.
  • An optical transmission system includes: a first optical signal transmission device on the subscriber side that performs communication at a first transmission rate between the optical signal transmission device on the side of the building and the optical signal transmission device on the side of the building; A second subscriber-side optical signal transmission device that communicates with the station-side optical signal transmission device at a second transmission rate, and the station-side optical signal transmission device transmits light at a first transmission rate.
  • the optical signal of a different transmission speed when sharing the optical signal of a different transmission speed, it can divert without replacing existing OLT, and it can comprise at low cost. Furthermore, it is possible to apply a wavelength division multiplexing (WDM) system to optical signals having different transmission rates in uplink communication. Therefore, uplink communication with different transmission rates can be performed in the same time zone, and the utilization efficiency of the uplink optical line can be improved. In addition, the number of allocated communication times can be reduced.
  • WDM wavelength division multiplexing
  • FIG. 1 is a diagram showing a configuration of an optical transmission system according to Embodiment 1 of the present invention.
  • the optical transmission system shown in FIG. 1 uses an existing optical signal transmission device (OLT) having an existing optical transceiver (TRx) 107 for a transmission rate of 1 Gbps as it is, and uses an optical signal having a transmission rate of 1 Gbps and a transmission rate of 10 Gbps.
  • OLT optical signal transmission device
  • TRx existing optical transceiver
  • the provided optical transmission system will be described.
  • a station 100 and a plurality of subscriber buildings 110a and 110b are connected to a plurality of optical signal main terminal lines 130 and a plurality of optical fibers 117a and 117b via an optical splitter 120. Connected by.
  • the office building 100 is arranged between an OLT 101 having an optical transceiver 102 for a transmission speed of 10 Gbps and an optical transceiver 107 for a transmission speed of 1 Gbps, an optical splitter 109, an optical splitter 109, and an optical transceiver 107.
  • a rejection filter 106b that totally reflects an optical signal having a wavelength of 1280 nm or less and transmits an optical signal having another wavelength is installed.
  • the optical transmitter / receiver 102 transmits / receives an optical signal to / from the optical transmitter / receiver 112a for the ONU 111a having a transmission rate of 10 Gbps.
  • the optical transceiver 102 includes an optical transmitter (Tx) 103a that transmits an optical signal at a transmission speed of 10 Gbps, an optical receiver (Rx) 104a that receives an optical signal at a transmission speed of 10 Gbps, and an optical signal having a wavelength of 1360 nm or less.
  • a wavelength division multiplexing (WDM) filter 105a that reflects to the rejection filter 106a and transmits an optical signal of another wavelength, and a rejection that totally reflects an optical signal having a wavelength greater than 1280 nm and transmits an optical signal of another wavelength And a filter 106a.
  • WDM wavelength division multiplexing
  • the optical transmitter / receiver 107 transmits / receives an optical signal to / from the optical transmitter / receiver 112b for a transmission rate of 1 Gbps of the ONU 111b.
  • the optical transceiver 107 includes an optical transmitter 103b that transmits an optical signal at a transmission speed of 1 Gbps, an optical receiver 104b that receives an optical signal at a transmission speed of 1 Gbps, and an optical signal having a wavelength of 1360 nm or less to the optical receiver 104b side.
  • the WDM filter 105b reflects and transmits optical signals of other wavelengths.
  • Each part in the station building 100 is connected by optical fibers 108a to 108h.
  • an ONU 111a having an optical transceiver 112a for a transmission rate of 10 Gbps and a rejection filter 116a that totally reflects an optical signal having a wavelength of 1480 to 1500 nm and transmits an optical signal having another wavelength are installed. ing.
  • the optical transceiver 112 a transmits and receives optical signals to and from the optical transceiver 102 for the transmission rate of 10 Gbps of the OLT 101.
  • the optical transceiver 112a includes an optical transmitter 113a that transmits an optical signal at a transmission speed of 10 Gbps, an optical receiver 114a that receives an optical signal at a transmission speed of 10 Gbps, and an optical signal having a wavelength of 1575 nm or more to the optical receiver 114a side.
  • the WDM filter 115a reflects and transmits optical signals of other wavelengths.
  • each part in the subscriber building 110a is connected by the optical fibers 117c and 117d.
  • the subscriber building 110b includes an ONU 111b having an optical transceiver 112b for a transmission rate of 1 Gbps, a rejection filter 116b that totally reflects an optical signal having a wavelength of 1575 to 1580 nm and transmits an optical signal having another wavelength. Is installed.
  • the optical transceiver 112b transmits and receives an optical signal to and from the optical transceiver 107 for the transmission rate of 1 Gbps of the OLT 101.
  • the optical transceiver 112b includes an optical transmitter 113b that transmits an optical signal at a transmission speed of 1 Gbps, an optical receiver 114b that receives an optical signal at a transmission speed of 1 Gbps, and an optical signal having a wavelength of 1480 nm or more on the optical receiver 114b side.
  • the WDM filter 115b reflects and transmits optical signals of other wavelengths.
  • each part in the subscriber building 110b is connected by optical fibers 117e and 117f.
  • FIG. 2 is a chart showing the wavelength band of an optical signal used in the optical transmission system according to Embodiment 1 of the present invention.
  • the optical transmitter 103a for a transmission rate of 10 Gbps has a wavelength band of 1575 to 1580 nm. Used to transmit an optical signal to the optical receiver 114a.
  • the optical transmitter 103b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 114b using a band with a wavelength of 1480 to 1500 nm.
  • the optical transmitter 113a for a transmission rate of 10 Gbps uses the band of wavelengths 1260 to 1280 nm to the optical receiver 104a. Transmit optical signals. Further, the optical transmitter 113b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 104b using a band of wavelengths from 1285 to 1360 nm as an actual value.
  • the wavelength band of the transmission rate of 1 Gbps in uplink communication is set to 1260 to 1360 nm in the standard value.
  • the wavelength of the transmission rate of 1 Gbps is set centering on the wavelength of 1310 nm having the smallest dispersion, and the actual value is the wavelength of 1285 to 1360 nm. Therefore, a guard band is secured between the 10 Gbps wavelength band (1260 to 1280 nm), and the 1 Gbps wavelength (effective value) and the 10 Gbps wavelength do not overlap.
  • FIG. 4 is a flowchart showing downlink communication of the optical transmission system according to Embodiment 1 of the present invention.
  • an optical signal with a transmission rate of 10 Gbps is output from the optical transmitter 103a and an optical signal with a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 103b and transmitted to the ONUs 111a and 111b.
  • the optical transmitter 103a In downlink communication of this optical transmission system, as shown in FIG. 4, first, the optical transmitter 103a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 103b outputs an optical signal at a transmission rate of 1 Gbps (step ST41). ).
  • the optical transmitter 103a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1575 to 1580 nm.
  • the optical signal output from the optical transmitter 103a is transmitted through the WDM filter 105a to the optical splitter 109.
  • the optical transmitter 103b outputs an optical signal at a transmission rate of 1 Gbps using a wavelength band of 1480 to 1500 nm.
  • the optical signal output by the optical transmitter 103b passes through the WDM filter 105b and the rejection filter 106b and is transmitted to the optical splitter 109.
  • the optical splitter 109 multiplexes the optical signal with the transmission rate of 10 Gbps and the optical signal with the transmission rate of 1 Gbps (step ST42).
  • the optical signal combined by the optical splitter 109 is branched into four optical signal main terminal lines 130 and transmitted to the optical splitter 120. Thereafter, the optical signal is branched into eight by the optical splitter 120 and transmitted to the ONUs 111a and 111b.
  • the optical receiver 114a receives an optical signal with a transmission rate of 10 Gbps
  • the optical receiver 114b receives an optical signal with a transmission rate of 1 Gbps (step ST43).
  • step ST43 the optical signal transmitted to the ONU 111a is totally reflected by the rejection filter 116a, and the optical signal with a transmission rate of 1 Gbps with a wavelength of 1480 to 1500 nm is transmitted, and the optical signal with a transmission rate of 10 Gbps with a wavelength of 1575 to 1580 nm is transmitted.
  • an optical signal having a transmission rate of 10 Gbps is reflected by the WDM filter 115a and transmitted to the optical receiver 114a.
  • the optical signal transmitted to the ONU 111b is totally reflected by the rejection filter 116b, and the optical signal with a transmission speed of 10 Gbps with a wavelength of 1575 to 1580 nm is transmitted, and the optical signal with a transmission speed of 1 Gbps with a wavelength of 1480 to 1500 nm is transmitted. Thereafter, an optical signal with a transmission rate of 1 Gbps is reflected by the WDM filter 115b and transmitted to the optical receiver 114b.
  • FIG. 5 is a flowchart showing uplink communication of the optical transmission system according to Embodiment 1 of the present invention.
  • an optical signal having a transmission rate of 10 Gbps is output from the optical transmitter 113a and an optical signal having a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 113b and transmitted to the OLT 101.
  • the optical transmitter 113a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 113b outputs an optical signal at a transmission rate of 1 Gbps (step ST51). ).
  • the optical transmitter 113a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1260 to 1280 nm.
  • the optical signal output by the optical transmitter 113a passes through the WDM filter 115a and the rejection filter 116a and is transmitted to the optical splitter 120.
  • the optical transmitter 113b outputs an optical signal at a transmission rate of 1 Gbps using a band of wavelengths 1285 to 1360 nm as an actual value.
  • the optical signal output by the optical transmitter 113b passes through the WDM filter 115b and the rejection filter 116b and is transmitted to the optical splitter 120.
  • the optical splitter 120 combines the optical signal with the transmission speed of 10 Gbps and the optical signal with the transmission speed of 1 Gbps (step ST52).
  • the optical signal combined by the optical splitter 120 is transmitted to the optical splitter 109 via the optical signal main terminal line 130. Thereafter, the optical signal is branched into two by the optical splitter 109 and transmitted to the optical transceiver 102 and the rejection filter 106b of the OLT 101.
  • the optical receiver 104a receives an optical signal with a transmission rate of 10 Gbps
  • the optical receiver 104b receives an optical signal with a transmission rate of 1 Gbps
  • step ST53 the optical signal transmitted to the optical transceiver 102 is reflected by the WDM filter 105a and transmitted to the rejection filter 106a. Thereafter, among the optical signals transmitted to the rejection filter 106a, an optical signal having a wavelength of 1285 nm to 1360 nm is totally reflected, and an optical signal having a wavelength of 1260 to 1280 nm is transmitted through an optical receiver. Up to 104a.
  • an optical signal with a transmission speed of 10 Gbps with a wavelength of 1260 to 1280 nm is totally reflected, and an optical signal with a transmission speed of 1 Gbps with a wavelength of 1285 to 1360 nm is transmitted. Thereafter, an optical signal with a transmission rate of 1 Gbps is reflected by the WDM filter 105b and transmitted to the optical receiver 104b.
  • wavelength bands of different transmission speeds in uplink communication overlap each other, so that transmission is performed by the TDM method as shown in FIG. For this reason, optical signals having different transmission rates cannot be transmitted in the same time zone, and the utilization efficiency of the upstream optical line is low.
  • FIG. As shown in FIG. 2, it is possible to apply the WDM filter method. Therefore, optical signals with different transmission rates can be transmitted in the same time zone, and the utilization efficiency of the upstream optical line can be improved.
  • 6 and 7 show a case where optical signals (data) are transmitted and received between the OLT 101 and the ONUs 1 to 4 for the transmission rate of 10 Gbps and the ONUs 5 to 8 for the transmission rate of 1 Gbps.
  • different wavelength bands are assigned to different transmission rates (1 Gbps and 10 Gbps), and transmission of wavelengths 1260 to 1280 nm is performed before the optical transceiver 107 for the transmission rate of 1 Gbps. Since the rejection filter 106a that totally reflects an optical signal having a speed of 10 Gbps is provided, when an optical signal having a different transmission speed is shared, the existing OLT for a transmission speed of 1 Gbps can be used as it is. Further, unlike the conventional optical transmission system, an expensive dual-rate optical signal processor and an expensive CDR corresponding to different transmission rates are unnecessary, and the optical transmission system can be configured at low cost.
  • the WDM filter method since it is possible to apply the WDM filter method to different transmission rates in uplink communication, it is possible to perform communication at different transmission rates in the same time zone, and improve the utilization efficiency of the uplink optical line. it can. In addition, the number of allocated communication times can be reduced.
  • FIG. 8 is a block diagram showing a configuration of an optical transmission system according to Embodiment 2 of the present invention.
  • the optical transmission system according to the second embodiment shown in FIG. 8 is obtained by changing the station building 100 in the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and the description thereof is omitted.
  • an OLT 201 having an optical transceiver 202 for transmission speeds of 10 Gbps and 1 Gbps, and an optical splitter 209 are installed.
  • the optical transceiver 202 transmits / receives an optical signal to / from the optical transceiver 112a for a transmission speed of 10 Gbps or the optical transceiver 112b for a transmission speed of 1 Gbps.
  • the optical transceiver 202 includes an optical transmitter 203a that transmits an optical signal at a transmission rate of 10 Gbps, an optical transmitter 203b that transmits an optical signal at a transmission rate of 1 Gbps, and an optical receiver 204a that receives an optical signal at a transmission rate of 10 Gbps.
  • An optical receiver 204b that receives an optical signal with a transmission rate of 1 Gbps, a WDM filter 205a that reflects an optical signal with a wavelength of 1575 nm or more toward the WDM filter 205b, and transmits an optical signal with another wavelength, and a wavelength of 1360 nm or less.
  • a WDM filter 205b that reflects an optical signal to the WDM filter 205c side and transmits an optical signal of another wavelength
  • a WDM filter 205c that reflects a wavelength of 1280 nm or less to the optical receiver 204a and transmits an optical signal of another wavelength. It consists of and.
  • Each part in the office building 200 is connected by optical fibers 208a to 208g.
  • the optical transmitter 203a for a transmission rate of 10 Gbps uses a band of wavelengths 1575 to 1580 nm.
  • An optical signal is transmitted to the optical receiver 114a.
  • the optical transmitter 203b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 114b using a band with a wavelength of 1480 to 1500 nm.
  • the operation process of the optical transmission system according to the second embodiment is the same as the operation process of the optical transmission system according to the first embodiment shown in FIGS. 4 and 5, and will be described with reference to FIGS. Do.
  • the case of performing downlink communication will be described with reference to FIG.
  • a case will be described in which an optical signal having a transmission rate of 10 Gbps is output from the optical transmitter 203a, and an optical signal having a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 203b and transmitted to the ONUs 111a and 111b.
  • the operations of the ONUs 111a and 111b according to Embodiment 2 are the same as the operations of the ONUs 111a and 111b according to Embodiment 1 shown in FIG.
  • the optical transmitter 203a In downlink communication of this optical transmission system, as shown in FIG. 4, first, the optical transmitter 203a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 203b outputs an optical signal at a transmission rate of 1 Gbps (step ST41). ).
  • the optical transmitter 203a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1575 to 1580nm.
  • the optical signal output by the optical transmitter 203a is transmitted to the WDM filter 205a.
  • the optical transmitter 203b outputs an optical signal at a transmission rate of 1 Gbps using a wavelength band of 1480 to 1500 nm.
  • the optical signal output by the optical transmitter 203b is transmitted to the WDM filter 205a.
  • the WDM filter 205a combines an optical signal with a transmission rate of 10 Gbps and an optical signal with a transmission rate of 1 Gbps (step ST42).
  • the WDM filter 205a performs multiplexing by reflecting the optical signal from the optical transmitter 203a and transmitting the optical signal from the optical transmitter 203b.
  • the optical signal combined by the WDM filter 205a passes through the WDM filter 205b and is transmitted to the optical splitter 209. Thereafter, the optical signal transmitted to the optical splitter 209 is branched into four optical signal main terminal lines 130 and transmitted to the optical splitter 120. Thereafter, the optical signal is branched into eight by the optical splitter 120 and transmitted to the ONUs 111a and 111b.
  • step ST52 the optical signal combined by the optical splitter 120 is transmitted to the WDM filter 205b via the optical splitter 209.
  • the optical receiver 204a receives an optical signal with a transmission rate of 10 Gbps
  • the optical receiver 204b receives an optical signal with a transmission rate of 1 Gbps
  • step ST53 the optical signal transmitted to the WDM filter 205b is reflected and transmitted to the WDM filter 205c.
  • an optical signal having a wavelength of 1260 to 1280 nm and a transmission rate of 10 Gbps is reflected and transmitted to the optical receiver 204a.
  • an optical signal having a wavelength of 1285 to 1360 nm and a transmission rate of 1 Gbps is transmitted and transmitted to the optical receiver 204b.
  • the optical transceiver for the transmission rate of 10 Gbps (the optical transmitter 203a and the optical receiver 204a) and the optical transceiver for the transmission rate of 1 Gbps (the optical transmitter 203b and the optical receiver).
  • the size of the optical transmission system can be reduced.
  • FIG. 9 is a block diagram showing a configuration of an optical transmission system according to Embodiment 3 of the present invention.
  • the optical transmission system according to the third embodiment shown in FIG. 9 is obtained by changing the station building 100 in the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and the description thereof is omitted.
  • the office building 300 is provided with an OLT 301 having an optical transceiver 302 for transmission speeds of 10 Gbps and 1 Gbps, and an optical splitter 309.
  • the optical transceiver 302 transmits / receives an optical signal to / from the optical transceiver 112a for a transmission speed of 10 Gbps or the optical transceiver 112b for a transmission speed of 1 Gbps.
  • the optical transceiver 302 includes an optical transmitter 303a that transmits an optical signal at a transmission rate of 10 Gbps, an optical transmitter 303b that transmits an optical signal at a transmission rate of 1 Gbps, and an optical receiver 304a that receives an optical signal at a transmission rate of 10 Gbps.
  • An optical receiver 304b that receives an optical signal with a transmission rate of 1 Gbps, a WDM filter 305a that reflects an optical signal with a wavelength of less than 1575 nm toward the WDM filter 305b, and transmits an optical signal with another wavelength, and a wavelength of 1360 nm or less.
  • a WDM filter 305b that reflects an optical signal to the optical receiver 304b side and transmits an optical signal of another wavelength, an optical signal having a wavelength of 1280 nm or less is reflected to the optical receiver 304a, and an optical signal of another wavelength is transmitted.
  • a WDM filter 305c Each part in the station 300 is connected by optical fibers 308a to 308g.
  • the optical transmitter 303a for a transmission rate of 10 Gbps uses a band of wavelengths 1575 to 1580 nm.
  • An optical signal is transmitted to the optical receiver 114a.
  • the optical transmitter 303b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 114b using a band with a wavelength of 1480 to 1500 nm.
  • the operation process of the optical transmission system according to the third embodiment is the same as the operation process of the optical transmission system according to the first embodiment shown in FIGS. 4 and 5, and will be described with reference to FIGS. Do.
  • the case of performing downlink communication will be described with reference to FIG.
  • a case will be described in which an optical signal having a transmission rate of 10 Gbps is output from the optical transmitter 303a and an optical signal having a transmission rate of 1 Gbps is output from the optical transmitter 303b and transmitted to the ONUs 111a and 111b.
  • the operations of the ONUs 111a and 111b according to Embodiment 3 are the same as the operations of the ONUs 111a and 111b according to Embodiment 1 shown in FIG.
  • the optical transmitter 303a In downlink communication of this optical transmission system, as shown in FIG. 4, first, the optical transmitter 303a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 303b outputs an optical signal at a transmission rate of 1 Gbps (step ST41). ).
  • the optical transmitter 303a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1575 to 1580nm.
  • the optical signal output from the optical transmitter 303a is transmitted to the WDM filter 305a.
  • the optical transmitter 303b outputs an optical signal at a transmission rate of 1 Gbps using a wavelength band of 1480 to 1500 nm.
  • the optical signal output by the optical transmitter 303b is transmitted to the WDM filter 305a.
  • the WDM filter 305a combines an optical signal with a transmission rate of 10 Gbps and an optical signal with a transmission rate of 1 Gbps (step ST42).
  • the WDM filter 305a performs multiplexing by transmitting the optical signal from the optical transmitter 303a and reflecting the optical signal from the optical transmitter 303b.
  • the optical signal combined by the WDM filter 305 a passes through the WDM filters 305 b and 305 c and is transmitted to the optical splitter 309. Thereafter, the optical signal transmitted to the optical splitter 309 is branched into four optical signal main terminal lines 130 and transmitted to the optical splitter 120. Thereafter, the optical signal is branched into eight by the optical splitter 120 and transmitted to the ONUs 111a and 111b.
  • step ST52 the optical signal combined by the optical splitter 120 is transmitted to the WDM filter 305c via the optical splitter 309.
  • the optical receiver 304a receives an optical signal with a transmission rate of 10 Gbps
  • the optical receiver 304b receives an optical signal with a transmission rate of 1 Gbps (step ST53).
  • step ST53 among the optical signals transmitted to the WDM filter 305c, an optical signal having a wavelength of 1260 to 1280 nm and a transmission rate of 10 Gbps is reflected and transmitted to the optical receiver 304a.
  • an optical signal having a wavelength of 1285 to 1360 nm and a transmission rate of 1 Gbps is transmitted and transmitted to the WDM filter 305b.
  • an optical signal with a transmission rate of 1 Gbps is reflected by the WDM filter 305b and transmitted to the optical receiver 304b.
  • the WDM filters 305a to 305c are arranged on a straight line, in addition to the effects of the first embodiment, not only a simple combination of components, It is possible to apply already assembled modules, including triplexer modules that incorporate two WDM filters and enable three-wavelength division multiplex communication, and expand the range of component and module selection. Can do.
  • FIG. 10 is a block diagram showing a configuration of an optical transmission system according to Embodiment 4 of the present invention.
  • the optical transmission system according to the fourth embodiment shown in FIG. 10 is obtained by changing the station building 100 in the first embodiment shown in FIG. 1 to the station building 400 and changing the subscriber building 110b to the subscriber building 210b. .
  • Other configurations are the same, and the same reference numerals are given and the description thereof is omitted.
  • the office 400 is provided with an OLT 401 having an optical transceiver 402 for transmission speeds of 10 Gbps and 40 Gbps, and an optical splitter 409.
  • the optical transmitter / receiver 402 transmits / receives an optical signal to / from the optical transmitter / receiver 112a for a transmission rate of 10 Gbps or the optical transmitter / receiver 212b for a transmission rate of 40 Gbps.
  • the optical transceiver 402 includes an optical transmitter 403a that transmits an optical signal at a transmission rate of 10 Gbps, an optical transmitter 403b that transmits an optical signal at a transmission rate of 40 Gbps, and an optical receiver 404a that receives an optical signal at a transmission rate of 10 Gbps.
  • An optical receiver 404b that receives an optical signal with a transmission rate of 40 Gbps, a WDM filter 405a that reflects an optical signal with a wavelength of less than 1575 nm toward the WDM filter 405b, and transmits an optical signal with another wavelength, and a wavelength of 1360 nm or less.
  • a WDM filter 405b that reflects an optical signal to the optical receiver 404b side and transmits an optical signal of another wavelength, and an optical signal having a wavelength of 1280 nm or less is reflected to the optical receiver 404a and transmits an optical signal of another wavelength.
  • a WDM filter 405c Each part in the station 400 is connected by optical fibers 408a to 408g.
  • the subscriber building 210b is provided with an ONU 211b having an optical transceiver 212b for a transmission rate of 40 Gbps, and a rejection filter 216b that totally reflects an optical signal with a wavelength of 1575 to 1580 nm and transmits an optical signal with another wavelength. ing.
  • the optical transceiver 212b transmits and receives optical signals to and from the optical transceiver (optical transmitter 403b and optical receiver 404b) for the transmission rate of 40 Gbps of the OLT 401.
  • This optical transceiver 212b includes an optical transmitter 213b that transmits an optical signal at a transmission speed of 40 Gbps, an optical receiver 214b that receives an optical signal at a transmission speed of 40 Gbps, and an optical signal having a wavelength of 1480 nm or more to the optical receiver 214b side.
  • the WDM filter 215b reflects and transmits optical signals of other wavelengths.
  • Each part in the subscriber building 210b is connected by optical fibers 217e and 217f.
  • the optical transmitter 403a for a transmission rate of 10 Gbps uses a band of wavelengths 1575 to 1580 nm.
  • An optical signal is transmitted to the optical receiver 114a.
  • the optical transmitter 403b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 214b using a band with a wavelength of 1480 to 1500 nm.
  • the optical transmitter 113a for a transmission rate of 10 Gbps transmits an optical signal to the optical receiver 404a using a band of wavelengths 1260 to 1280 nm.
  • the optical transmitter 213b for the transmission rate of 40 Gbps transmits the optical signal to the optical receiver 404b using the wavelength band (1285-1360 nm) corresponding to the transmission rate of 1 Gbps in the first embodiment.
  • the operation of the optical transmission system configured as described above is the same as the operation of the optical transmission system according to the third embodiment, and a description thereof is omitted.
  • the existing OLT for the transmission rate of 10 Gbps is used as it is. can do. In this way, it is possible to realize optical transmission systems having different transmission speeds with a single OLT without depending on the transmission speed.
  • FIG. 11 is a block diagram showing a configuration of an optical transmission system according to Embodiment 5 of the present invention.
  • the optical transmission system according to the fifth embodiment shown in FIG. 11 is obtained by changing the station building 100 in the first embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and the description thereof is omitted.
  • an OLT 501 having an optical transceiver 502 for a transmission rate of 10 Gbps and an optical transceiver 507 for a transmission rate of 1 Gbps, an optical splitter 509, an optical splitter 509, and an optical transceiver 507 are arranged.
  • An FBG 506b that reflects an optical signal with a wavelength of 1260 to 1280 nm and transmits an optical signal with another wavelength is installed.
  • the optical transmitter / receiver 502 transmits / receives an optical signal to / from the optical transmitter / receiver 112a for the ONU 111a having a transmission rate of 10 Gbps.
  • This optical transceiver 502 reflects an optical signal having a wavelength of 1360 nm or less to the FBG 506a side, an optical transmitter 503a that transmits an optical signal at a transmission speed of 10 Gbps, an optical receiver 504a that receives an optical signal at a transmission speed of 10 Gbps, A WDM filter 505a that transmits an optical signal having another wavelength and an FBG 506a that reflects an optical signal having a wavelength larger than 1280 nm and transmits an optical signal having another wavelength are configured.
  • the optical transmitter / receiver 507 transmits / receives an optical signal to / from the optical transmitter / receiver 112b for the transmission speed of 1 Gbps of the ONU 111b.
  • the optical transmitter / receiver 507 includes an optical transmitter 503b that transmits an optical signal at a transmission rate of 1 Gbps, an optical receiver 504b that receives an optical signal at a transmission rate of 1 Gbps, and an optical signal having a wavelength of 1360 nm or less to the optical receiver 504b side.
  • the WDM filter 505b reflects and transmits optical signals of other wavelengths.
  • Each part in the station 500 is connected by optical fibers 508a to 508h.
  • the optical transmitter 503a for a transmission rate of 10 Gbps uses a band of wavelengths 1575 to 1580 nm.
  • An optical signal is transmitted to the optical receiver 114a.
  • the optical transmitter 503b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 114b using a band with a wavelength of 1480 to 1500 nm.
  • the operation process of the optical transmission system according to the fifth embodiment is the same as the operation process of the optical transmission system according to the first embodiment shown in FIGS. 4 and 5, and will be described with reference to FIGS. Do.
  • the case of performing downlink communication will be described with reference to FIG.
  • a case will be described in which an optical signal with a transmission rate of 10 Gbps is output from the optical transmitter 503a and an optical signal with a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 503b and transmitted to the ONUs 111a and 111b.
  • the operations of the ONUs 111a and 111b according to Embodiment 5 are the same as the operations of the ONUs 111a and 111b according to Embodiment 1 shown in FIG.
  • the optical transmitter 503a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 503b outputs an optical signal at a transmission rate of 1 Gbps (step ST41). ).
  • the optical transmitter 503a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1575 to 1580nm.
  • the optical signal output by the optical transmitter 503a passes through the WDM filter 505a and is transmitted to the optical splitter 509.
  • the optical transmitter 503b outputs an optical signal at a transmission rate of 1 Gbps using a band with a wavelength of 1480 to 1500 nm.
  • the optical signal output by the optical transmitter 503b passes through the WDM filter 505b and the FBG 506b and is transmitted to the optical splitter 509.
  • the optical splitter 509 multiplexes the optical signal with the transmission rate of 10 Gbps and the optical signal with the transmission rate of 1 Gbps (step ST42).
  • the optical signals combined by the optical splitter 509 are branched into four optical signal main terminal lines 130 and transmitted to the optical splitter 120. Thereafter, the optical signal is branched into eight by the optical splitter 120 and transmitted to the ONUs 111a and 111b.
  • step ST52 the optical signal combined by the optical splitter 120 is branched into two by the optical splitter 509 and transmitted to the optical transceiver 502 and the FBG 506b of the OLT 501. Is done.
  • the optical receiver 504a receives an optical signal with a transmission rate of 10 Gbps
  • the optical receiver 504b receives an optical signal with a transmission rate of 1 Gbps
  • the optical signal transmitted to the optical transceiver 502 is reflected by the WDM filter 505a and transmitted to the FBG 506a.
  • an optical signal with a transmission speed of 1 Gbps with a wavelength of 1285 nm to 1360 nm is reflected, and an optical signal with a transmission speed of 10 Gbps with a wavelength of 1260 to 1280 nm is transmitted and transmitted to the optical receiver 504a.
  • an optical signal with a wavelength of 1260 to 1280 nm and a transmission speed of 10 Gbps is reflected, and an optical signal with a wavelength of 1285 to 1360 nm and a transmission speed of 1 Gbps is transmitted. Thereafter, an optical signal with a transmission rate of 1 Gbps is reflected by the WDM filter 505b and transmitted to the optical receiver 504b.
  • the FBGs 506a and 506b are used instead of the rejection filters 106a and 106b, in addition to the effects of the first embodiment, a filter is not used. Since a fiber can be applied, an optical transmission system can be configured easily.
  • the present invention is not limited to this, and a general optical transmission system is used. It is applicable and can be used for multi-wavelength communication technology. Further, within the scope of the present invention, the embodiments can be appropriately combined, changed, or omitted.
  • the optical transmission system according to the present invention can be used without replacing the existing OLT when sharing optical signals having different transmission speeds and can be configured at low cost. Therefore, it is suitable for use in an optical transmission system configured to be able to transmit and receive optical signals having different transmission speeds between the OLT and each ONU.

Abstract

A station-side optical line terminal (101) is provided with a first optical receiver (104a) for receiving an optical signal having a first transmission speed, and a second optical receiver (104b) for receiving an optical signal having a second transmission speed. A first subscriber-side optical network unit (111a) is provided with an optical transmitter (113a) that transmits an optical signal with the first transmission speed, using a first wavelength band, and a second subscriber-side optical network unit (111b) is provided with an optical transmitter (113b) that transmits an optical signal with the second transmission speed, using a second wavelength band. Filters (106a, 106b) for transmitting the optical signal of the first wavelength band to the first optical receiver (104a), and transmitting the optical signal of the second wavelength band to the second optical receiver (104b), are provided at stages preceding the first optical receiver (104a) and the second optical receiver (104b).

Description

光伝送システムOptical transmission system
 この発明は、局舎側光信号伝送装置(OLT:Optical Line Terminal)と、複数の加入者側光信号伝送装置(ONU:Optical Network Unit)とを備えたGE-PON(Gigabit Ethernet Passive Optical Network)システムなどの光伝送システムにおいて、OLTと各ONUとの間で異なる伝送速度の光信号を送受信可能に構成した光伝送システムに関するものである。 The present invention is a GE-PON (Gigabit Ethernet Passive Optical Network) equipped with a central office side optical signal transmission device (OLT: Optical Line Terminal) and a plurality of subscriber side optical signal transmission devices (ONU: Optical Network Unit). In an optical transmission system such as a system, the present invention relates to an optical transmission system configured to be able to transmit and receive optical signals having different transmission rates between an OLT and each ONU.
 従来のGE-PONシステムなどの光伝送システムにおいて、既存の伝送速度1Gbps用の光伝送システムに、伝送速度10Gbps用の光伝送システムを追加導入する場合には、伝送速度1Gbpsおよび10Gbpsの光信号を共用可能なOLTが必要となる。 In a conventional optical transmission system such as a GE-PON system, when an optical transmission system for a transmission speed of 10 Gbps is additionally introduced into an existing optical transmission system for a transmission speed of 1 Gbps, optical signals with a transmission speed of 1 Gbps and 10 Gbps are transmitted. A shareable OLT is required.
 しかしながら、従来の光伝送システムでは、既存の伝送速度1Gbps用のOLTをそのまま流用して、伝送速度1Gbpsおよび10Gbpsの光信号を共用化させた光伝送システムを構成することはできない。
 その理由は、既存の伝送速度1Gbps用のOLTをそのまま流用すると、OLTに搭載されている、1Gbpsの光信号と電気信号を変換し送受信を行う光送受信器(TRx:Transceiver)に、伝送速度1Gbpsの光信号だけでなく伝送速度10Gbpsの光信号も入力されてしまうからである。
 そこで、既存の伝送速度1Gbps用のOLTに伝送速度10Gbpsの光信号を入力させないように、新たにOLTを適用させる必要がある。
However, in the conventional optical transmission system, it is not possible to configure an optical transmission system in which the existing OLT for the transmission rate of 1 Gbps is used as it is and the optical signals of the transmission rates of 1 Gbps and 10 Gbps are shared.
The reason for this is that if an existing OLT for a transmission rate of 1 Gbps is used as it is, the transmission rate of 1 Gbps is transmitted to an optical transceiver (TRx: Transceiver) mounted on the OLT for converting and transmitting 1 Gbps optical signals and electrical signals. This is because an optical signal having a transmission rate of 10 Gbps is input as well as the above optical signal.
Therefore, it is necessary to newly apply an OLT so that an optical signal having a transmission rate of 10 Gbps is not input to an existing OLT for a transmission rate of 1 Gbps.
 これに対して、伝送速度1Gbpsおよび10Gbpsの光信号を共用可能とした光伝送システムが存在している(例えば特許文献1~3参照)。
 特許文献1に開示される光伝送システムでは、伝送速度1Gbpsおよび10Gbpsの光信号に対応した光スイッチおよび高価なデュアルレート光信号処理器を設けて、異なる伝送速度の光信号を共用可能としている。
 また、特許文献2に開示される光伝送システムでは、伝送速度1Gbpsおよび10Gbpsに対応した高価なCDR(Clock Data Recovery)を設けて、異なる伝送速度の光信号を共用可能としている。
 また、特許文献3に開示される光伝送システムでは、伝送速度1Gbpsおよび10Gbpsの光信号を時分割多重(TDM:Time Division Multiplexing)方式で送信している。
On the other hand, there is an optical transmission system that can share optical signals with transmission speeds of 1 Gbps and 10 Gbps (see, for example, Patent Documents 1 to 3).
In the optical transmission system disclosed in Patent Document 1, an optical switch corresponding to optical signals with transmission speeds of 1 Gbps and 10 Gbps and an expensive dual-rate optical signal processor are provided so that optical signals with different transmission speeds can be shared.
In the optical transmission system disclosed in Patent Document 2, an expensive CDR (Clock Data Recovery) corresponding to transmission speeds of 1 Gbps and 10 Gbps is provided so that optical signals of different transmission speeds can be shared.
Further, in the optical transmission system disclosed in Patent Document 3, optical signals with transmission speeds of 1 Gbps and 10 Gbps are transmitted by a time division multiplexing (TDM) method.
特開2009-194821号公報JP 2009-194421A 特開2009-77323号公報JP 2009-77323 A 国際公開第2007/026749号公報International Publication No. 2007/026749
 上記のように、従来の光伝送システムでは、既存の伝送速度1Gbps用の光伝送システムに伝送速度10Gbps用の光伝送システムを加える場合、伝送速度1Gbps用のOLTの光送受信器に伝送速度1Gbpsの光信号だけでなく伝送速度10Gbpsの光信号も入力されてしまうため、既存の伝送速度1Gbps用のOLTをそのまま流用することができないという課題があった。 As described above, in the conventional optical transmission system, when an optical transmission system for a transmission speed of 10 Gbps is added to an existing optical transmission system for a transmission speed of 1 Gbps, a transmission speed of 1 Gbps is transmitted to an OLT optical transceiver for the transmission speed of 1 Gbps. Since not only an optical signal but also an optical signal with a transmission rate of 10 Gbps is input, there is a problem that the existing OLT for a transmission rate of 1 Gbps cannot be used as it is.
 また、特許文献1に開示される光伝送システムのように、既存のOLTを流用せずに伝送速度1Gbpsおよび10Gbps用のOLTを1台で構成した場合には、伝送速度1Gbpsおよび10Gbpsに対応した高価なデュアルレート光信号処理器が必要であり、高コストの要因になるという課題があった。
 また、特許文献2に開示される光伝送システムのように、デュアルレート光信号処理器を使用しない場合でも、伝送速度1Gbpsおよび10Gbpsに対応した高価なCDRが必要であり、高コストの要因になるという課題があった。
In addition, as in the optical transmission system disclosed in Patent Document 1, when an OLT for a transmission rate of 1 Gbps and 10 Gbps is configured without using an existing OLT, the transmission rate corresponds to 1 Gbps and 10 Gbps. An expensive dual-rate optical signal processor is required, which causes a problem of high cost.
Further, even when a dual-rate optical signal processor is not used as in the optical transmission system disclosed in Patent Document 2, an expensive CDR corresponding to transmission speeds of 1 Gbps and 10 Gbps is necessary, resulting in a high cost factor. There was a problem.
 さらに、既存のOLTを流用せずに特許文献1、2のような高コストで高度な部品を用いて、伝送速度1Gbpsおよび10Gbpsの光信号を共用化させた場合であっても、上り光信号の波長が伝送速度1Gbpsと伝送速度10Gbpsとでは重なる。そのため、特許文献3に開示される光伝送システムのように、TDM方式の適用が必須であり、ONUからの上り光回線にタイムスロットを割り当てる必要がある。そのため、同じ時間帯で異なる伝送速度の上り通信を行うことができずに、上り光回線の利用効率が低いという課題があった。 Further, even if the optical signals of 1 Gbps and 10 Gbps are shared by using high-cost and advanced components such as Patent Documents 1 and 2 without using the existing OLT, the upstream optical signal Are overlapped at a transmission rate of 1 Gbps and a transmission rate of 10 Gbps. Therefore, as in the optical transmission system disclosed in Patent Document 3, it is essential to apply the TDM method, and it is necessary to assign a time slot to the upstream optical line from the ONU. For this reason, there is a problem in that uplink communication with different transmission rates cannot be performed in the same time zone, and the utilization efficiency of the uplink optical line is low.
 この発明は、上記のような課題を解決するためになされたもので、異なる伝送速度の光信号を共用化する場合に、既存のOLTを置き換えることなく流用することができ、かつ、安価に構成することができる光伝送システムを提供することを目的としている。 The present invention has been made to solve the above-described problems. When optical signals having different transmission speeds are shared, the existing OLT can be used without replacement, and the configuration is inexpensive. It is an object of the present invention to provide an optical transmission system that can be used.
 この発明に係る光伝送システムは、局舎側光信号伝送装置と、局舎側光信号伝送装置との間で第1の伝送速度で通信を行う第1の加入者側光信号伝送装置と、局舎側光信号伝送装置との間で第2の伝送速度で通信を行う第2の加入者側光信号伝送装置とを備え、局舎側光信号伝送装置は、第1の伝送速度の光信号を受信する第1の光受信器と、第2の伝送速度の光信号を受信する第2の光受信器とを備え、第1の加入者側光信号伝送装置は、第1の波長帯を使用して、第1の伝送速度で光信号を送信する光送信器を備え、第2の加入者側光信号伝送装置は、第2の波長帯を使用して、第2の伝送速度で光信号を送信する光送信器を備え、第1の光受信器および第2の光受信器の前段に、第1の波長帯の光信号を第1の光受信器に送信し、第2の波長帯の光信号を第2の光受信器に送信するフィルタを設けたものである。 An optical transmission system according to the present invention includes: a first optical signal transmission device on the subscriber side that performs communication at a first transmission rate between the optical signal transmission device on the side of the building and the optical signal transmission device on the side of the building; A second subscriber-side optical signal transmission device that communicates with the station-side optical signal transmission device at a second transmission rate, and the station-side optical signal transmission device transmits light at a first transmission rate. A first optical receiver for receiving a signal and a second optical receiver for receiving an optical signal having a second transmission rate, wherein the first subscriber-side optical signal transmission apparatus has a first wavelength band; And an optical transmitter for transmitting an optical signal at a first transmission rate, and a second subscriber-side optical signal transmission device using a second wavelength band at a second transmission rate. An optical transmitter for transmitting an optical signal, transmitting an optical signal in the first wavelength band to the first optical receiver before the first optical receiver and the second optical receiver, The optical signal of the wavelength band is provided with a filter to be transmitted to the second optical receiver.
 この発明によれば、上記のように構成したので、異なる伝送速度の光信号を共用化する場合に、既存のOLTを置き換えることなく流用することができ、かつ、安価に構成することができる。
 さらに、上り通信における異なる伝送速度の光信号に対して、波長分割多重(WDM:Wavelength Division Multiplexing)方式を適用することが可能である。そのため、同じ時間帯で異なる伝送速度の上り通信を行うことができ、上り光回線の利用効率を向上させることができる。また、通信時間の割り当て数を削減することができる。
According to this invention, since it comprised as mentioned above, when sharing the optical signal of a different transmission speed, it can divert without replacing existing OLT, and it can comprise at low cost.
Furthermore, it is possible to apply a wavelength division multiplexing (WDM) system to optical signals having different transmission rates in uplink communication. Therefore, uplink communication with different transmission rates can be performed in the same time zone, and the utilization efficiency of the uplink optical line can be improved. In addition, the number of allocated communication times can be reduced.
この発明の実施の形態1に係る光伝送システムの構成を示す図である。It is a figure which shows the structure of the optical transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光伝送システムおいて使用する光信号の波長帯を示すチャート図である。It is a chart figure which shows the wavelength band of the optical signal used in the optical transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光伝送システムおいて使用する上り光信号の波長帯を示すチャート図である。It is a chart figure which shows the wavelength band of the upstream optical signal used in the optical transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光伝送システムの下り通信を示すフローチャートである。It is a flowchart which shows the downlink communication of the optical transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光伝送システムの上り通信を示すフローチャートである。It is a flowchart which shows the uplink communication of the optical transmission system which concerns on Embodiment 1 of this invention. 従来の光伝送システムの通信を示すチャート図である。It is a chart figure which shows communication of the conventional optical transmission system. この発明の実施の形態1に係る光伝送システムの通信を示すチャート図である。It is a chart figure which shows communication of the optical transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る光伝送システムの構成を示す図である。It is a figure which shows the structure of the optical transmission system which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る光伝送システムの構成を示す図である。It is a figure which shows the structure of the optical transmission system which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る光伝送システムの構成を示す図である。It is a figure which shows the structure of the optical transmission system which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る光伝送システムの構成を示す図である。It is a figure which shows the structure of the optical transmission system which concerns on Embodiment 5 of this invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る光伝送システムの構成を示す図である。
 図1に示す光伝送システムは、既存の伝送速度1Gbps用の光送受信器(TRx)107を有する局舎側光信号伝送装置(OLT)をそのまま流用して、伝送速度1Gbpsおよび伝送速度10Gbpsの光信号を共用化した光伝送システムを構築したものである。
 なお以下では、1台のOLT101と、OLT101との間で第1の伝送速度(10Gbps)で通信を行うONU111aと、OLT101との間で第2の伝送速度(1Gbps)で通信を行うONU111bとを備えた光伝送システムについて説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
1 is a diagram showing a configuration of an optical transmission system according to Embodiment 1 of the present invention.
The optical transmission system shown in FIG. 1 uses an existing optical signal transmission device (OLT) having an existing optical transceiver (TRx) 107 for a transmission rate of 1 Gbps as it is, and uses an optical signal having a transmission rate of 1 Gbps and a transmission rate of 10 Gbps. This is an optical transmission system that shares signals.
In the following, one OLT 101 and an ONU 111a that communicates with the OLT 101 at a first transmission rate (10 Gbps) and an ONU 111b that communicates with the OLT 101 at a second transmission rate (1 Gbps). The provided optical transmission system will be described.
 光伝送システムでは、図1に示すように、局舎100と複数の加入者建物110a,110bとが、光スプリッタ120を介して、複数の光信号主端末回線130と複数の光ファイバ117a,117bにより接続されている。 In the optical transmission system, as shown in FIG. 1, a station 100 and a plurality of subscriber buildings 110a and 110b are connected to a plurality of optical signal main terminal lines 130 and a plurality of optical fibers 117a and 117b via an optical splitter 120. Connected by.
 局舎100には、伝送速度10Gbps用の光送受信器102および伝送速度1Gbps用の光送受信器107を有するOLT101と、光スプリッタ109と、光スプリッタ109と光送受信器107との間に配置され、波長1280nm以下の光信号を全反射し、その他の波長の光信号を透過するリジェクションフィルタ106bとが設置されている。 The office building 100 is arranged between an OLT 101 having an optical transceiver 102 for a transmission speed of 10 Gbps and an optical transceiver 107 for a transmission speed of 1 Gbps, an optical splitter 109, an optical splitter 109, and an optical transceiver 107. A rejection filter 106b that totally reflects an optical signal having a wavelength of 1280 nm or less and transmits an optical signal having another wavelength is installed.
 光送受信器102は、ONU111aの伝送速度10Gbps用の光送受信器112aとの間で光信号の送受信を行うものである。この光送受信器102は、伝送速度10Gbpsで光信号を送信する光送信器(Tx)103aと、伝送速度10Gbpsの光信号を受信する光受信器(Rx)104aと、波長1360nm以下の光信号をリジェクションフィルタ106a側に反射し、その他の波長の光信号を透過する波長分割多重(WDM)フィルタ105aと、波長1280nmより大きい光信号を全反射し、その他の波長の光信号を透過するリジェクションフィルタ106aとから構成されている。 The optical transmitter / receiver 102 transmits / receives an optical signal to / from the optical transmitter / receiver 112a for the ONU 111a having a transmission rate of 10 Gbps. The optical transceiver 102 includes an optical transmitter (Tx) 103a that transmits an optical signal at a transmission speed of 10 Gbps, an optical receiver (Rx) 104a that receives an optical signal at a transmission speed of 10 Gbps, and an optical signal having a wavelength of 1360 nm or less. A wavelength division multiplexing (WDM) filter 105a that reflects to the rejection filter 106a and transmits an optical signal of another wavelength, and a rejection that totally reflects an optical signal having a wavelength greater than 1280 nm and transmits an optical signal of another wavelength And a filter 106a.
 光送受信器107は、ONU111bの伝送速度1Gbps用の光送受信器112bとの間で光信号の送受信を行うものである。この光送受信器107は、伝送速度1Gbpsで光信号を送信する光送信器103bと、伝送速度1Gbpsの光信号を受信する光受信器104bと、波長1360nm以下の光信号を光受信器104b側に反射し、その他の波長の光信号を透過するWDMフィルタ105bとから構成されている。
 なお、局舎100内の各部は、光ファイバ108a~108hにより接続されている。
The optical transmitter / receiver 107 transmits / receives an optical signal to / from the optical transmitter / receiver 112b for a transmission rate of 1 Gbps of the ONU 111b. The optical transceiver 107 includes an optical transmitter 103b that transmits an optical signal at a transmission speed of 1 Gbps, an optical receiver 104b that receives an optical signal at a transmission speed of 1 Gbps, and an optical signal having a wavelength of 1360 nm or less to the optical receiver 104b side. The WDM filter 105b reflects and transmits optical signals of other wavelengths.
Each part in the station building 100 is connected by optical fibers 108a to 108h.
 加入者建物110aには、伝送速度10Gbps用の光送受信器112aを有するONU111aと、波長1480~1500nmの光信号を全反射し、その他の波長の光信号を透過するリジェクションフィルタ116aとが設置されている。 In the subscriber building 110a, an ONU 111a having an optical transceiver 112a for a transmission rate of 10 Gbps and a rejection filter 116a that totally reflects an optical signal having a wavelength of 1480 to 1500 nm and transmits an optical signal having another wavelength are installed. ing.
 光送受信器112aは、OLT101の伝送速度10Gbps用の光送受信器102との間で光信号の送受信を行うものである。この光送受信器112aは、伝送速度10Gbpsで光信号を送信する光送信器113aと、伝送速度10Gbpsの光信号を受信する光受信器114aと、波長1575nm以上の光信号を光受信器114a側に反射し、その他の波長の光信号を透過するWDMフィルタ115aとから構成されている。
 なお、加入者建物110a内の各部は、光ファイバ117c,117dにより接続されている。
The optical transceiver 112 a transmits and receives optical signals to and from the optical transceiver 102 for the transmission rate of 10 Gbps of the OLT 101. The optical transceiver 112a includes an optical transmitter 113a that transmits an optical signal at a transmission speed of 10 Gbps, an optical receiver 114a that receives an optical signal at a transmission speed of 10 Gbps, and an optical signal having a wavelength of 1575 nm or more to the optical receiver 114a side. The WDM filter 115a reflects and transmits optical signals of other wavelengths.
In addition, each part in the subscriber building 110a is connected by the optical fibers 117c and 117d.
 同様に、加入者建物110bには、伝送速度1Gbps用の光送受信器112bを有するONU111bと、波長1575~1580nmの光信号を全反射し、その他の波長の光信号を透過するリジェクションフィルタ116bとが設置されている。 Similarly, the subscriber building 110b includes an ONU 111b having an optical transceiver 112b for a transmission rate of 1 Gbps, a rejection filter 116b that totally reflects an optical signal having a wavelength of 1575 to 1580 nm and transmits an optical signal having another wavelength. Is installed.
 光送受信器112bは、OLT101の伝送速度1Gbps用の光送受信器107との間で光信号の送受信を行うものである。この光送受信器112bは、伝送速度1Gbpsで光信号を送信する光送信器113bと、伝送速度1Gbpsの光信号を受信する光受信器114bと、波長1480nm以上の光信号を光受信器114b側に反射し、その他の波長の光信号を透過するWDMフィルタ115bとから構成されている。
 なお、加入者建物110b内の各部は、光ファイバ117e,117fにより接続されている。
The optical transceiver 112b transmits and receives an optical signal to and from the optical transceiver 107 for the transmission rate of 1 Gbps of the OLT 101. The optical transceiver 112b includes an optical transmitter 113b that transmits an optical signal at a transmission speed of 1 Gbps, an optical receiver 114b that receives an optical signal at a transmission speed of 1 Gbps, and an optical signal having a wavelength of 1480 nm or more on the optical receiver 114b side. The WDM filter 115b reflects and transmits optical signals of other wavelengths.
In addition, each part in the subscriber building 110b is connected by optical fibers 117e and 117f.
 次に、上記のように構成された光伝送システムで使用する光信号の波長帯について説明する。
 図2はこの発明の実施の形態1に係る光伝送システムで使用する光信号の波長帯を示すチャート図である。
 光伝送システムにおいて下り通信(OLT101からONU111a,111bへの光信号の伝送)を行う場合には、図2に示すように、伝送速度10Gbps用の光送信器103aは、波長1575~1580nmの帯域を使用して光受信器114aに光信号を伝送する。また、伝送速度1Gbps用の光送信器103bは、波長1480~1500nmの帯域を使用して光受信器114bに光信号を伝送する。
Next, the wavelength band of the optical signal used in the optical transmission system configured as described above will be described.
FIG. 2 is a chart showing the wavelength band of an optical signal used in the optical transmission system according to Embodiment 1 of the present invention.
When performing downlink communication (transmission of optical signals from the OLT 101 to the ONUs 111a and 111b) in the optical transmission system, as shown in FIG. 2, the optical transmitter 103a for a transmission rate of 10 Gbps has a wavelength band of 1575 to 1580 nm. Used to transmit an optical signal to the optical receiver 114a. In addition, the optical transmitter 103b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 114b using a band with a wavelength of 1480 to 1500 nm.
 同様に、上り通信(ONU111a,111bからOLT101への光信号の伝送)を行う場合には、伝送速度10Gbps用の光送信器113aは、波長1260~1280nmの帯域を使用して光受信器104aに光信号を伝送する。また、伝送速度1Gbps用の光送信器113bは、実力値として波長1285~1360nmの帯域を使用して光受信器104bに光信号を伝送する。 Similarly, when performing upstream communication (transmission of optical signals from the ONUs 111a and 111b to the OLT 101), the optical transmitter 113a for a transmission rate of 10 Gbps uses the band of wavelengths 1260 to 1280 nm to the optical receiver 104a. Transmit optical signals. Further, the optical transmitter 113b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 104b using a band of wavelengths from 1285 to 1360 nm as an actual value.
 ここで、図3に示すように、上り通信での伝送速度1Gbpsの波長帯は、規格値では1260~1360nmに設定されている。しかしながら、伝送速度1Gbpsの波長は、分散が最も小さい波長1310nmを中心に設定され、その実力値は波長1285~1360nmである。そのため、10Gbpsの波長帯(1260~1280nm)との間でガードバンドが確保され、1Gbpsの波長(実力値)と10Gbpsの波長とは重ならない。 Here, as shown in FIG. 3, the wavelength band of the transmission rate of 1 Gbps in uplink communication is set to 1260 to 1360 nm in the standard value. However, the wavelength of the transmission rate of 1 Gbps is set centering on the wavelength of 1310 nm having the smallest dispersion, and the actual value is the wavelength of 1285 to 1360 nm. Therefore, a guard band is secured between the 10 Gbps wavelength band (1260 to 1280 nm), and the 1 Gbps wavelength (effective value) and the 10 Gbps wavelength do not overlap.
 次に、上記のように構成された光伝送システムの動作について説明する。まず、下り通信を行う場合について説明する。
 図4はこの発明の実施の形態1に係る光伝送システムの下り通信を示すフローチャートである。なお以下では、光送信器103aから伝送速度10Gbpsの光信号を出力し、同時に光送信器103bから伝送速度1Gbpsの光信号を出力して、ONU111a,111bに伝送する場合について説明する。
Next, the operation of the optical transmission system configured as described above will be described. First, a case where downlink communication is performed will be described.
FIG. 4 is a flowchart showing downlink communication of the optical transmission system according to Embodiment 1 of the present invention. Hereinafter, a case will be described in which an optical signal with a transmission rate of 10 Gbps is output from the optical transmitter 103a and an optical signal with a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 103b and transmitted to the ONUs 111a and 111b.
 この光伝送システムの下り通信では、図4に示すように、まず、光送信器103aは伝送速度10Gbpsで光信号を出力し、光送信器103bは伝送速度1Gbpsで光信号を出力する(ステップST41)。
 このステップST41において、光送信器103aは、波長1575~1580nmの帯域を使用して、伝送速度10Gbpsで光信号を出力する。この光送信器103aにより出力された光信号は、WDMフィルタ105aを透過して、光スプリッタ109に伝送される。
 同様に、光送信器103bは、波長1480~1500nmの帯域を使用して、伝送速度1Gbpsで光信号を出力する。この光送信器103bにより出力された光信号は、WDMフィルタ105bおよびリジェクションフィルタ106bを透過して、光スプリッタ109に伝送される。
In downlink communication of this optical transmission system, as shown in FIG. 4, first, the optical transmitter 103a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 103b outputs an optical signal at a transmission rate of 1 Gbps (step ST41). ).
In step ST41, the optical transmitter 103a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1575 to 1580 nm. The optical signal output from the optical transmitter 103a is transmitted through the WDM filter 105a to the optical splitter 109.
Similarly, the optical transmitter 103b outputs an optical signal at a transmission rate of 1 Gbps using a wavelength band of 1480 to 1500 nm. The optical signal output by the optical transmitter 103b passes through the WDM filter 105b and the rejection filter 106b and is transmitted to the optical splitter 109.
 次いで、光スプリッタ109は、伝送速度10Gbpsの光信号および伝送速度1Gbpsの光信号を合波する(ステップST42)。この光スプリッタ109により合波された光信号は、各光信号主端末回線130に4分岐され、光スプリッタ120に伝送される。その後、光信号は、光スプリッタ120により8分岐され、ONU111a,111bに伝送される。 Next, the optical splitter 109 multiplexes the optical signal with the transmission rate of 10 Gbps and the optical signal with the transmission rate of 1 Gbps (step ST42). The optical signal combined by the optical splitter 109 is branched into four optical signal main terminal lines 130 and transmitted to the optical splitter 120. Thereafter, the optical signal is branched into eight by the optical splitter 120 and transmitted to the ONUs 111a and 111b.
 次いで、光受信器114aは伝送速度10Gbpsの光信号を受信し、光受信器114bは伝送速度1Gbpsの光信号を受信する(ステップST43)。
 このステップST43において、ONU111aに伝送された光信号は、リジェクションフィルタ116aにより、波長1480~1500nmの伝送速度1Gbpsの光信号は全反射され、波長1575~1580nmの伝送速度10Gbpsの光信号は透過する。その後、伝送速度10Gbpsの光信号は、WDMフィルタ115aにより反射され、光受信器114aまで伝送される。
 同様に、ONU111bに伝送された光信号は、リジェクションフィルタ116bにより、波長1575~1580nmの伝送速度10Gbpsの光信号は全反射され、波長1480~1500nmの伝送速度1Gbpsの光信号は透過する。その後、伝送速度1Gbpsの光信号は、WDMフィルタ115bにより反射され、光受信器114bまで伝送される。
Next, the optical receiver 114a receives an optical signal with a transmission rate of 10 Gbps, and the optical receiver 114b receives an optical signal with a transmission rate of 1 Gbps (step ST43).
In step ST43, the optical signal transmitted to the ONU 111a is totally reflected by the rejection filter 116a, and the optical signal with a transmission rate of 1 Gbps with a wavelength of 1480 to 1500 nm is transmitted, and the optical signal with a transmission rate of 10 Gbps with a wavelength of 1575 to 1580 nm is transmitted. . Thereafter, an optical signal having a transmission rate of 10 Gbps is reflected by the WDM filter 115a and transmitted to the optical receiver 114a.
Similarly, the optical signal transmitted to the ONU 111b is totally reflected by the rejection filter 116b, and the optical signal with a transmission speed of 10 Gbps with a wavelength of 1575 to 1580 nm is transmitted, and the optical signal with a transmission speed of 1 Gbps with a wavelength of 1480 to 1500 nm is transmitted. Thereafter, an optical signal with a transmission rate of 1 Gbps is reflected by the WDM filter 115b and transmitted to the optical receiver 114b.
 次に、上り通信を行う場合について説明する。
 図5はこの発明の実施の形態1に係る光伝送システムの上り通信を示すフローチャートである。なお以下では、光送信器113aから伝送速度10Gbpsの光信号を出力し、同時に光送信器113bから伝送速度1Gbpsの光信号を出力して、OLT101に伝送する場合について説明する。
Next, a case where uplink communication is performed will be described.
FIG. 5 is a flowchart showing uplink communication of the optical transmission system according to Embodiment 1 of the present invention. In the following, a case will be described in which an optical signal having a transmission rate of 10 Gbps is output from the optical transmitter 113a and an optical signal having a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 113b and transmitted to the OLT 101.
 この光伝送システムの上り通信では、図5に示すように、まず、光送信器113aは伝送速度10Gbpsで光信号を出力し、光送信器113bは伝送速度1Gbpsで光信号を出力する(ステップST51)。
 このステップST51において、光送信器113aは、波長1260~1280nmの帯域を使用して、伝送速度10Gbpsで光信号を出力する。この光送信器113aにより出力された光信号は、WDMフィルタ115aおよびリジェクションフィルタ116aを透過して、光スプリッタ120に伝送される。
 同様に、光送信器113bは、実力値として波長1285~1360nmの帯域を使用して、伝送速度1Gbpsで光信号を出力する。この光送信器113bにより出力された光信号は、WDMフィルタ115bおよびリジェクションフィルタ116bを透過して、光スプリッタ120に伝送される。
In uplink communication of this optical transmission system, as shown in FIG. 5, first, the optical transmitter 113a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 113b outputs an optical signal at a transmission rate of 1 Gbps (step ST51). ).
In step ST51, the optical transmitter 113a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1260 to 1280 nm. The optical signal output by the optical transmitter 113a passes through the WDM filter 115a and the rejection filter 116a and is transmitted to the optical splitter 120.
Similarly, the optical transmitter 113b outputs an optical signal at a transmission rate of 1 Gbps using a band of wavelengths 1285 to 1360 nm as an actual value. The optical signal output by the optical transmitter 113b passes through the WDM filter 115b and the rejection filter 116b and is transmitted to the optical splitter 120.
 次いで、光スプリッタ120は、伝送速度10Gbpsの光信号および伝送速度1Gbpsの光信号を合波する(ステップST52)。この光スプリッタ120により合波された光信号は、光信号主端末回線130を介して光スプリッタ109に伝送される。その後、光信号は、光スプリッタ109により2分岐され、OLT101の光送受信器102およびリジェクションフィルタ106bに伝送される。 Next, the optical splitter 120 combines the optical signal with the transmission speed of 10 Gbps and the optical signal with the transmission speed of 1 Gbps (step ST52). The optical signal combined by the optical splitter 120 is transmitted to the optical splitter 109 via the optical signal main terminal line 130. Thereafter, the optical signal is branched into two by the optical splitter 109 and transmitted to the optical transceiver 102 and the rejection filter 106b of the OLT 101.
 次いで、光受信器104aは伝送速度10Gbpsの光信号を受信し、光受信器104bは伝送速度1Gbpsの光信号を受信する(ステップST53)。
 このステップST53において、光送受信器102に伝送された光信号は、WDMフィルタ105aにより反射され、リジェクションフィルタ106aに伝送される。その後、リジェクションフィルタ106aに伝送された光信号のうち、波長1285nm~1360nmの伝送速度1Gbpsの光信号は全反射され、波長1260~1280nmの伝送速度10Gbpsの光信号は透過して、光受信器104aまで伝送される。
 同様に、リジェクションフィルタ106bに伝送された光信号のうち、波長1260~1280nmの伝送速度10Gbpsの光信号は全反射され、波長1285~1360nmの伝送速度1Gbpsの光信号は透過する。その後、伝送速度1Gbpsの光信号は、WDMフィルタ105bにより反射され、光受信器104bまで伝送される。
Next, the optical receiver 104a receives an optical signal with a transmission rate of 10 Gbps, and the optical receiver 104b receives an optical signal with a transmission rate of 1 Gbps (step ST53).
In step ST53, the optical signal transmitted to the optical transceiver 102 is reflected by the WDM filter 105a and transmitted to the rejection filter 106a. Thereafter, among the optical signals transmitted to the rejection filter 106a, an optical signal having a wavelength of 1285 nm to 1360 nm is totally reflected, and an optical signal having a wavelength of 1260 to 1280 nm is transmitted through an optical receiver. Up to 104a.
Similarly, among the optical signals transmitted to the rejection filter 106b, an optical signal with a transmission speed of 10 Gbps with a wavelength of 1260 to 1280 nm is totally reflected, and an optical signal with a transmission speed of 1 Gbps with a wavelength of 1285 to 1360 nm is transmitted. Thereafter, an optical signal with a transmission rate of 1 Gbps is reflected by the WDM filter 105b and transmitted to the optical receiver 104b.
 ここで、従来の光伝送システムでは、上り通信における異なる伝送速度の波長帯域が重なるため、図6に示すように、TDM方式で伝送を行っていた。そのため、同じ時間帯で異なる伝送速度の光信号を伝送することができず、上り光回線の利用効率が低かった。
 しかしながら、この異なる伝送速度の波長帯域は、実力値では重ならないため、実施の形態1に係る光伝送システムのように、所定波長の光信号を全反射するリジェクションフィルタを設けることで、図7に示すように、WDMフィルタ方式を適用することが可能である。そのため、同じ時間帯で異なる伝送速度の光信号を伝送することができ、上り光回線の利用効率を向上させることができる。
 なお図6,7では、OLT101と、伝送速度10Gbps用のONU1~4および伝送速度1Gbps用のONU5~8との間で、光信号(データ)の送受信を行った場合について示している。
Here, in the conventional optical transmission system, wavelength bands of different transmission speeds in uplink communication overlap each other, so that transmission is performed by the TDM method as shown in FIG. For this reason, optical signals having different transmission rates cannot be transmitted in the same time zone, and the utilization efficiency of the upstream optical line is low.
However, since the wavelength bands of the different transmission speeds do not overlap with each other in terms of actual values, by providing a rejection filter that totally reflects an optical signal having a predetermined wavelength as in the optical transmission system according to the first embodiment, FIG. As shown in FIG. 2, it is possible to apply the WDM filter method. Therefore, optical signals with different transmission rates can be transmitted in the same time zone, and the utilization efficiency of the upstream optical line can be improved.
6 and 7 show a case where optical signals (data) are transmitted and received between the OLT 101 and the ONUs 1 to 4 for the transmission rate of 10 Gbps and the ONUs 5 to 8 for the transmission rate of 1 Gbps.
 以上のように、この実施の形態1によれば、異なる伝送速度(1Gbps,10Gbps)に対して異なる波長帯域を割り当て、伝送速度1Gbps用の光送受信器107の前段に、波長1260~1280nmの伝送速度10Gbpsの光信号を全反射するリジェクションフィルタ106aを設けるように構成したので、異なる伝送速度の光信号を共用化する場合に、既存の伝送速度1Gbps用のOLTをそのまま流用することができる。
 また、従来の光伝送システムのように、異なる伝送速度に対応する高価なデュアルレート光信号処理器や高価なCDRは不要であり、光伝送システムを安価に構成することができる。
As described above, according to the first embodiment, different wavelength bands are assigned to different transmission rates (1 Gbps and 10 Gbps), and transmission of wavelengths 1260 to 1280 nm is performed before the optical transceiver 107 for the transmission rate of 1 Gbps. Since the rejection filter 106a that totally reflects an optical signal having a speed of 10 Gbps is provided, when an optical signal having a different transmission speed is shared, the existing OLT for a transmission speed of 1 Gbps can be used as it is.
Further, unlike the conventional optical transmission system, an expensive dual-rate optical signal processor and an expensive CDR corresponding to different transmission rates are unnecessary, and the optical transmission system can be configured at low cost.
 さらに、上り通信における異なる伝送速度に対してWDMフィルタ方式を適用することが可能であるため、同じ時間帯で異なる伝送速度の通信を行うことができ、上り光回線の利用効率を向上させることができる。また、通信時間の割り当て数を削減することができる。 Further, since it is possible to apply the WDM filter method to different transmission rates in uplink communication, it is possible to perform communication at different transmission rates in the same time zone, and improve the utilization efficiency of the uplink optical line. it can. In addition, the number of allocated communication times can be reduced.
実施の形態2.
 実施の形態1では、伝送速度10Gbps用の光送受信器102と伝送速度1Gbps用の光送受信器107とを別に設けた場合について示したが、実施の形態2では、伝送速度10Gbps用の光送受信器と伝送速度1Gbps用の光送受信器とを1台の光送受信器にまとめたものについて示す。
 図8はこの発明の実施の形態2に係る光伝送システムの構成を示すブロック図である。
 図8に示す実施の形態2に係る光伝送システムは、図1に示す実施の形態1における局舎100を局舎200に変更したものである。その他の構成は同様であり、同一の符号を付しその説明を省略する。
Embodiment 2. FIG.
In the first embodiment, the case where the optical transceiver 102 for the transmission speed 10 Gbps and the optical transceiver 107 for the transmission speed 1 Gbps are separately provided, but in the second embodiment, the optical transceiver for the transmission speed 10 Gbps is provided. And an optical transmitter / receiver for a transmission rate of 1 Gbps are shown as a single optical transmitter / receiver.
FIG. 8 is a block diagram showing a configuration of an optical transmission system according to Embodiment 2 of the present invention.
The optical transmission system according to the second embodiment shown in FIG. 8 is obtained by changing the station building 100 in the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and the description thereof is omitted.
 局舎200には、伝送速度10Gbpsおよび1Gbps用の光送受信器202を有するOLT201と、光スプリッタ209とが設置されている。 In the office building 200, an OLT 201 having an optical transceiver 202 for transmission speeds of 10 Gbps and 1 Gbps, and an optical splitter 209 are installed.
 光送受信器202は、伝送速度10Gbps用の光送受信器112aまたは伝送速度1Gbps用の光送受信器112bとの間で光信号の送受信を行うものである。この光送受信器202は、伝送速度10Gbpsで光信号を送信する光送信器203aと、伝送速度1Gbpsで光信号を送信する光送信器203bと、伝送速度10Gbpsの光信号を受信する光受信器204aと、伝送速度1Gbpsの光信号を受信する光受信器204bと、波長1575nm以上の光信号をWDMフィルタ205b側に反射し、その他の波長の光信号を透過するWDMフィルタ205aと、波長1360nm以下の光信号をWDMフィルタ205c側に反射し、その他の波長の光信号を透過するWDMフィルタ205bと、波長1280nm以下を光受信器204a側に反射し、その他の波長の光信号を透過するWDMフィルタ205cとから構成されている。
 なお、局舎200内の各部は、光ファイバ208a~208gにより接続されている。
The optical transceiver 202 transmits / receives an optical signal to / from the optical transceiver 112a for a transmission speed of 10 Gbps or the optical transceiver 112b for a transmission speed of 1 Gbps. The optical transceiver 202 includes an optical transmitter 203a that transmits an optical signal at a transmission rate of 10 Gbps, an optical transmitter 203b that transmits an optical signal at a transmission rate of 1 Gbps, and an optical receiver 204a that receives an optical signal at a transmission rate of 10 Gbps. An optical receiver 204b that receives an optical signal with a transmission rate of 1 Gbps, a WDM filter 205a that reflects an optical signal with a wavelength of 1575 nm or more toward the WDM filter 205b, and transmits an optical signal with another wavelength, and a wavelength of 1360 nm or less. A WDM filter 205b that reflects an optical signal to the WDM filter 205c side and transmits an optical signal of another wavelength, and a WDM filter 205c that reflects a wavelength of 1280 nm or less to the optical receiver 204a and transmits an optical signal of another wavelength. It consists of and.
Each part in the office building 200 is connected by optical fibers 208a to 208g.
 また、実施の形態1と同様に、光伝送システムにおいて下り通信を行う場合には、図2に示すように、伝送速度10Gbps用の光送信器203aは、波長1575~1580nmの帯域を使用して光受信器114aに光信号を伝送する。また、伝送速度1Gbps用の光送信器203bは、波長1480~1500nmの帯域を使用して光受信器114bに光信号を伝送する。 Similarly to the first embodiment, when performing downlink communication in an optical transmission system, as shown in FIG. 2, the optical transmitter 203a for a transmission rate of 10 Gbps uses a band of wavelengths 1575 to 1580 nm. An optical signal is transmitted to the optical receiver 114a. The optical transmitter 203b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 114b using a band with a wavelength of 1480 to 1500 nm.
 次に、上記のように構成された光伝送システムの動作について説明する。
 ここで、実施の形態2に係る光伝送システムの動作工程は、図4,5に示す実施の形態1に係る光伝送システムの動作工程と同様であり、図4,5を参照しながら説明を行う。
 まず、下り通信を行う場合について図4を参照しながら説明する。
 なお、以下では、光送信器203aから伝送速度10Gbpsの光信号を出力し、同時に光送信器203bから伝送速度1Gbpsの光信号を出力して、ONU111a,111bに伝送する場合について説明する。また、実施の形態2に係るONU111a,111bの動作は、図4に示す実施の形態1に係るONU111a,111bの動作と同様であるため、その説明を省略する。
Next, the operation of the optical transmission system configured as described above will be described.
Here, the operation process of the optical transmission system according to the second embodiment is the same as the operation process of the optical transmission system according to the first embodiment shown in FIGS. 4 and 5, and will be described with reference to FIGS. Do.
First, the case of performing downlink communication will be described with reference to FIG.
In the following, a case will be described in which an optical signal having a transmission rate of 10 Gbps is output from the optical transmitter 203a, and an optical signal having a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 203b and transmitted to the ONUs 111a and 111b. Further, the operations of the ONUs 111a and 111b according to Embodiment 2 are the same as the operations of the ONUs 111a and 111b according to Embodiment 1 shown in FIG.
 この光伝送システムの下り通信では、図4に示すように、まず、光送信器203aは伝送速度10Gbpsで光信号を出力し、光送信器203bは伝送速度1Gbpsで光信号を出力する(ステップST41)。
 このステップST41において、光送信器203aは、波長1575~1580nmの帯域を使用して、伝送速度10Gbpsで光信号を出力する。この光送信器203aにより出力された光信号は、WDMフィルタ205aに伝送される。
 同様に、光送信器203bは、波長1480~1500nmの帯域を使用して、伝送速度1Gbpsで光信号を出力する。この光送信器203bにより出力された光信号は、WDMフィルタ205aに伝送される。
In downlink communication of this optical transmission system, as shown in FIG. 4, first, the optical transmitter 203a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 203b outputs an optical signal at a transmission rate of 1 Gbps (step ST41). ).
In step ST41, the optical transmitter 203a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1575 to 1580nm. The optical signal output by the optical transmitter 203a is transmitted to the WDM filter 205a.
Similarly, the optical transmitter 203b outputs an optical signal at a transmission rate of 1 Gbps using a wavelength band of 1480 to 1500 nm. The optical signal output by the optical transmitter 203b is transmitted to the WDM filter 205a.
 次いで、WDMフィルタ205aは、伝送速度10Gbpsの光信号および伝送速度1Gbpsの光信号を合波する(ステップST42)。ここで、WDMフィルタ205aは、光送信器203aからの光信号を反射し、光送信器203bからの光信号を透過することにより合波を行う。このWDMフィルタ205aにより合波された光信号は、WDMフィルタ205bを透過して、光スプリッタ209に伝送される。
 その後、光スプリッタ209に伝送された光信号は、各光信号主端末回線130に4分岐され、光スプリッタ120に伝送される。その後、光信号は、光スプリッタ120により8分岐され、ONU111a,111bに伝送される。
Next, the WDM filter 205a combines an optical signal with a transmission rate of 10 Gbps and an optical signal with a transmission rate of 1 Gbps (step ST42). Here, the WDM filter 205a performs multiplexing by reflecting the optical signal from the optical transmitter 203a and transmitting the optical signal from the optical transmitter 203b. The optical signal combined by the WDM filter 205a passes through the WDM filter 205b and is transmitted to the optical splitter 209.
Thereafter, the optical signal transmitted to the optical splitter 209 is branched into four optical signal main terminal lines 130 and transmitted to the optical splitter 120. Thereafter, the optical signal is branched into eight by the optical splitter 120 and transmitted to the ONUs 111a and 111b.
 次に、上り通信を行う場合について図5を参照しながら説明する。
 なお以下では、光送信器113aから伝送速度10Gbpsの光信号を出力し、同時に光送信器113bから伝送速度1Gbpsの光信号を出力して、OLT201に伝送する場合について説明する。また、実施の形態2に係るONU111a,111bの動作は、図5に示す実施の形態1に係るONU111a,111bの動作と同様であるため、その説明を省略する。
Next, a case where uplink communication is performed will be described with reference to FIG.
Hereinafter, a case will be described in which an optical signal having a transmission rate of 10 Gbps is output from the optical transmitter 113a and an optical signal having a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 113b and transmitted to the OLT 201. The operations of the ONUs 111a and 111b according to the second embodiment are the same as the operations of the ONUs 111a and 111b according to the first embodiment shown in FIG.
 この光伝送システムの上り通信では、図5に示すように、ステップST52において、光スプリッタ120により合波された光信号は、光スプリッタ209を介してWDMフィルタ205bに伝送される。 In the upstream communication of this optical transmission system, as shown in FIG. 5, in step ST52, the optical signal combined by the optical splitter 120 is transmitted to the WDM filter 205b via the optical splitter 209.
 次いで、光受信器204aは伝送速度10Gbpsの光信号を受信し、光受信器204bは伝送速度1Gbpsの光信号を受信する(ステップST53)。
 このステップST53において、WDMフィルタ205bに伝送された光信号は反射され、WDMフィルタ205cに伝送される。その後、WDMフィルタ205cに伝送された光信号のうち、波長1260~1280nmの伝送速度10Gbpsの光信号は反射され、光受信器204aまで伝送される。
 一方、WDMフィルタ205cに伝送された光信号のうち、波長1285~1360nmの伝送速度1Gbpsの光信号は透過して、光受信器204bまで伝送される。
Next, the optical receiver 204a receives an optical signal with a transmission rate of 10 Gbps, and the optical receiver 204b receives an optical signal with a transmission rate of 1 Gbps (step ST53).
In step ST53, the optical signal transmitted to the WDM filter 205b is reflected and transmitted to the WDM filter 205c. Thereafter, among the optical signals transmitted to the WDM filter 205c, an optical signal having a wavelength of 1260 to 1280 nm and a transmission rate of 10 Gbps is reflected and transmitted to the optical receiver 204a.
On the other hand, among the optical signals transmitted to the WDM filter 205c, an optical signal having a wavelength of 1285 to 1360 nm and a transmission rate of 1 Gbps is transmitted and transmitted to the optical receiver 204b.
 以上のように、この実施の形態2によれば、伝送速度10Gbps用の光送受信器(光送信器203aおよび光受信器204a)と伝送速度1Gbps用の光送受信器(光送信器203bおよび光受信器204b)とを1台にまとめるように構成したので、実施の形態1における効果に加えて、光伝送システムのサイズを縮小化させることができる。 As described above, according to the second embodiment, the optical transceiver for the transmission rate of 10 Gbps (the optical transmitter 203a and the optical receiver 204a) and the optical transceiver for the transmission rate of 1 Gbps (the optical transmitter 203b and the optical receiver). In addition to the effects of the first embodiment, the size of the optical transmission system can be reduced.
実施の形態3.
 実施の形態3では、WDMフィルタを直線上に配置したものについて示す。
 図9はこの発明の実施の形態3に係る光伝送システムの構成を示すブロック図である。
 図9に示す実施の形態3に係る光伝送システムは、図1に示す実施の形態1における局舎100を局舎300に変更したものである。その他の構成は同様であり、同一の符号を付しその説明を省略する。
Embodiment 3 FIG.
In the third embodiment, the WDM filter is arranged on a straight line.
FIG. 9 is a block diagram showing a configuration of an optical transmission system according to Embodiment 3 of the present invention.
The optical transmission system according to the third embodiment shown in FIG. 9 is obtained by changing the station building 100 in the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and the description thereof is omitted.
 局舎300には、伝送速度10Gbpsおよび1Gbps用の光送受信器302を有するOLT301と、光スプリッタ309とが設置されている。 The office building 300 is provided with an OLT 301 having an optical transceiver 302 for transmission speeds of 10 Gbps and 1 Gbps, and an optical splitter 309.
 光送受信器302は、伝送速度10Gbps用の光送受信器112aまたは伝送速度1Gbps用の光送受信器112bとの間で光信号の送受信を行うものである。この光送受信器302は、伝送速度10Gbpsで光信号を送信する光送信器303aと、伝送速度1Gbpsで光信号を送信する光送信器303bと、伝送速度10Gbpsの光信号を受信する光受信器304aと、伝送速度1Gbpsの光信号を受信する光受信器304bと、波長1575nm未満の光信号をWDMフィルタ305b側に反射し、その他の波長の光信号を透過するWDMフィルタ305aと、波長1360nm以下の光信号を光受信器304b側に反射し、その他の波長の光信号を透過するWDMフィルタ305bと、波長1280nm以下の光信号を光受信器304aに反射し、その他の波長の光信号を透過するWDMフィルタ305cとから構成されている。
 なお、局舎300内の各部は、光ファイバ308a~308gにより接続されている。
The optical transceiver 302 transmits / receives an optical signal to / from the optical transceiver 112a for a transmission speed of 10 Gbps or the optical transceiver 112b for a transmission speed of 1 Gbps. The optical transceiver 302 includes an optical transmitter 303a that transmits an optical signal at a transmission rate of 10 Gbps, an optical transmitter 303b that transmits an optical signal at a transmission rate of 1 Gbps, and an optical receiver 304a that receives an optical signal at a transmission rate of 10 Gbps. An optical receiver 304b that receives an optical signal with a transmission rate of 1 Gbps, a WDM filter 305a that reflects an optical signal with a wavelength of less than 1575 nm toward the WDM filter 305b, and transmits an optical signal with another wavelength, and a wavelength of 1360 nm or less. A WDM filter 305b that reflects an optical signal to the optical receiver 304b side and transmits an optical signal of another wavelength, an optical signal having a wavelength of 1280 nm or less is reflected to the optical receiver 304a, and an optical signal of another wavelength is transmitted. And a WDM filter 305c.
Each part in the station 300 is connected by optical fibers 308a to 308g.
 また、実施の形態1と同様に、光伝送システムにおいて下り通信を行う場合には、図2に示すように、伝送速度10Gbps用の光送信器303aは、波長1575~1580nmの帯域を使用して光受信器114aに光信号を伝送する。また、伝送速度1Gbps用の光送信器303bは、波長1480~1500nmの帯域を使用して光受信器114bに光信号を伝送する。 Similarly to the first embodiment, when performing downlink communication in the optical transmission system, as shown in FIG. 2, the optical transmitter 303a for a transmission rate of 10 Gbps uses a band of wavelengths 1575 to 1580 nm. An optical signal is transmitted to the optical receiver 114a. The optical transmitter 303b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 114b using a band with a wavelength of 1480 to 1500 nm.
 次に、上記のように構成された光伝送システムの動作について説明する。
 ここで、実施の形態3に係る光伝送システムの動作工程は、図4,5に示す実施の形態1に係る光伝送システムの動作工程と同様であり、図4,5を参照しながら説明を行う。
 まず、下り通信を行う場合について図4を参照しながら説明する。
 なお以下では、光送信器303aから伝送速度10Gbpsの光信号を出力し、同時に光送信器303bから伝送速度1Gbpsの光信号を出力して、ONU111a,111bに伝送する場合について説明する。また、実施の形態3に係るONU111a,111bの動作は、図4に示す実施の形態1に係るONU111a,111bの動作と同様であるため、その説明を省略する。
Next, the operation of the optical transmission system configured as described above will be described.
Here, the operation process of the optical transmission system according to the third embodiment is the same as the operation process of the optical transmission system according to the first embodiment shown in FIGS. 4 and 5, and will be described with reference to FIGS. Do.
First, the case of performing downlink communication will be described with reference to FIG.
In the following, a case will be described in which an optical signal having a transmission rate of 10 Gbps is output from the optical transmitter 303a and an optical signal having a transmission rate of 1 Gbps is output from the optical transmitter 303b and transmitted to the ONUs 111a and 111b. Further, the operations of the ONUs 111a and 111b according to Embodiment 3 are the same as the operations of the ONUs 111a and 111b according to Embodiment 1 shown in FIG.
 この光伝送システムの下り通信では、図4に示すように、まず、光送信器303aは伝送速度10Gbpsで光信号を出力し、光送信器303bは伝送速度1Gbpsで光信号を出力する(ステップST41)。
 このステップST41において、光送信器303aでは、波長1575~1580nmの帯域を使用して、伝送速度10Gbpsで光信号を出力する。この光送信器303aにより出力された光信号は、WDMフィルタ305aに伝送される。
 同様に、光送信器303bでは、波長1480~1500nmの帯域を使用して、伝送速度1Gbpsで光信号を出力する。この光送信器303bにより出力された光信号は、WDMフィルタ305aに伝送される。
In downlink communication of this optical transmission system, as shown in FIG. 4, first, the optical transmitter 303a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 303b outputs an optical signal at a transmission rate of 1 Gbps (step ST41). ).
In step ST41, the optical transmitter 303a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1575 to 1580nm. The optical signal output from the optical transmitter 303a is transmitted to the WDM filter 305a.
Similarly, the optical transmitter 303b outputs an optical signal at a transmission rate of 1 Gbps using a wavelength band of 1480 to 1500 nm. The optical signal output by the optical transmitter 303b is transmitted to the WDM filter 305a.
 次いで、WDMフィルタ305aは、伝送速度10Gbpsの光信号および伝送速度1Gbpsの光信号を合波する(ステップST42)。ここで、WDMフィルタ305aは、光送信器303aからの光信号を透過し、光送信器303bからの光信号を反射することにより合波を行う。このWDMフィルタ305aにより合波された光信号は、WDMフィルタ305b,305cを透過して、光スプリッタ309に伝送される。
 その後、光スプリッタ309に伝送された光信号は、各光信号主端末回線130に4分岐され、光スプリッタ120に伝送される。その後、光信号は、光スプリッタ120により8分岐され、ONU111a,111bに伝送される。
Next, the WDM filter 305a combines an optical signal with a transmission rate of 10 Gbps and an optical signal with a transmission rate of 1 Gbps (step ST42). Here, the WDM filter 305a performs multiplexing by transmitting the optical signal from the optical transmitter 303a and reflecting the optical signal from the optical transmitter 303b. The optical signal combined by the WDM filter 305 a passes through the WDM filters 305 b and 305 c and is transmitted to the optical splitter 309.
Thereafter, the optical signal transmitted to the optical splitter 309 is branched into four optical signal main terminal lines 130 and transmitted to the optical splitter 120. Thereafter, the optical signal is branched into eight by the optical splitter 120 and transmitted to the ONUs 111a and 111b.
 次に、上り通信を行う場合について図5を参照しながら説明する。
 なお以下では、光送信器113aから伝送速度10Gbpsの光信号を出力し、同時に光送信器113bから伝送速度1Gbpsの光信号を出力して、OLT301に伝送する場合について説明する。また、実施の形態3に係るONU111a,111bの動作は、図5に示す実施の形態1に係るONU111a,111bの動作と同様であるため、その説明を省略する。
Next, a case where uplink communication is performed will be described with reference to FIG.
In the following, a case will be described in which an optical signal having a transmission rate of 10 Gbps is output from the optical transmitter 113a and an optical signal having a transmission rate of 1 Gbps is output from the optical transmitter 113b and transmitted to the OLT 301 at the same time. Further, the operations of the ONUs 111a and 111b according to Embodiment 3 are the same as the operations of the ONUs 111a and 111b according to Embodiment 1 shown in FIG.
 この光伝送システムの上り通信では、図5に示すように、ステップST52において、光スプリッタ120により合波された光信号は、光スプリッタ309を介してWDMフィルタ305cに伝送される。 In the upstream communication of this optical transmission system, as shown in FIG. 5, in step ST52, the optical signal combined by the optical splitter 120 is transmitted to the WDM filter 305c via the optical splitter 309.
 次いで、光受信器304aは伝送速度10Gbpsの光信号を受信し、光受信器304bは伝送速度1Gbpsの光信号を受信する(ステップST53)。
 このステップST53において、WDMフィルタ305cに伝送された光信号のうち、波長1260~1280nmの伝送速度10Gbpsの光信号は反射され、光受信器304aまで伝送される。
 一方、WDMフィルタ305cに伝送された光信号のうち、波長1285~1360nmの伝送速度1Gbpsの光信号は透過し、WDMフィルタ305bに伝送される。その後、伝送速度1Gbpsの光信号は、WDMフィルタ305bにより反射され、光受信器304bまで伝送される。
Next, the optical receiver 304a receives an optical signal with a transmission rate of 10 Gbps, and the optical receiver 304b receives an optical signal with a transmission rate of 1 Gbps (step ST53).
In step ST53, among the optical signals transmitted to the WDM filter 305c, an optical signal having a wavelength of 1260 to 1280 nm and a transmission rate of 10 Gbps is reflected and transmitted to the optical receiver 304a.
On the other hand, among the optical signals transmitted to the WDM filter 305c, an optical signal having a wavelength of 1285 to 1360 nm and a transmission rate of 1 Gbps is transmitted and transmitted to the WDM filter 305b. Thereafter, an optical signal with a transmission rate of 1 Gbps is reflected by the WDM filter 305b and transmitted to the optical receiver 304b.
 以上のように、この実施の形態3によれば、WDMフィルタ305a~305cを直線上に配置するように構成したので、実施の形態1における効果に加えて、単純な部品の組合せだけでなく、2台のWDMフィルタを内蔵し3波長の分割多重通信を可能にする部品であるトリプレクサ(Triplexer)モジュールをはじめ、すでに組立てられたモジュールの適用が可能となり、部品およびモジュールの選択の幅を広げることができる。 As described above, according to the third embodiment, since the WDM filters 305a to 305c are arranged on a straight line, in addition to the effects of the first embodiment, not only a simple combination of components, It is possible to apply already assembled modules, including triplexer modules that incorporate two WDM filters and enable three-wavelength division multiplex communication, and expand the range of component and module selection. Can do.
実施の形態4.
 実施の形態1~3では、伝送速度1Gbpsおよび10Gbpsの光信号を共用化する場合について示したが、実施の形態4では、伝送速度10Gbpsおよび、さらに高速な伝送速度(例えば40Gbps)の光信号を共用化する場合について示す。
 図10はこの発明の実施の形態4に係る光伝送システムの構成を示すブロック図である。
 図10に示す実施の形態4に係る光伝送システムは、図1に示す実施の形態1における局舎100を局舎400に変更し、加入者建物110bを加入者建物210bに変更したものである。その他の構成は同様であり、同一の符号を付しその説明を省略する。
Embodiment 4 FIG.
In the first to third embodiments, the case where an optical signal having a transmission rate of 1 Gbps and 10 Gbps is shared has been described. In the fourth embodiment, an optical signal having a transmission rate of 10 Gbps and a higher transmission rate (for example, 40 Gbps) is used. The case of sharing is shown.
FIG. 10 is a block diagram showing a configuration of an optical transmission system according to Embodiment 4 of the present invention.
The optical transmission system according to the fourth embodiment shown in FIG. 10 is obtained by changing the station building 100 in the first embodiment shown in FIG. 1 to the station building 400 and changing the subscriber building 110b to the subscriber building 210b. . Other configurations are the same, and the same reference numerals are given and the description thereof is omitted.
 局舎400には、伝送速度10Gbpsおよび40Gbps用の光送受信器402を有するOLT401と、光スプリッタ409とが設置されている。 The office 400 is provided with an OLT 401 having an optical transceiver 402 for transmission speeds of 10 Gbps and 40 Gbps, and an optical splitter 409.
 光送受信器402は、伝送速度10Gbps用の光送受信器112aまたは伝送速度40Gbps用の光送受信器212bとの間で光信号の送受信を行うものである。この光送受信器402は、伝送速度10Gbpsで光信号を送信する光送信器403aと、伝送速度40Gbpsで光信号を送信する光送信器403bと、伝送速度10Gbpsの光信号を受信する光受信器404aと、伝送速度40Gbpsの光信号を受信する光受信器404bと、波長1575nm未満の光信号をWDMフィルタ405b側に反射し、その他の波長の光信号を透過するWDMフィルタ405aと、波長1360nm以下の光信号を光受信器404b側に反射し、その他の波長の光信号を透過するWDMフィルタ405bと、波長1280nm以下の光信号を光受信器404aに反射し、その他の波長の光信号を透過するWDMフィルタ405cとから構成されている。
 なお、局舎400内の各部は、光ファイバ408a~408gにより接続されている。
The optical transmitter / receiver 402 transmits / receives an optical signal to / from the optical transmitter / receiver 112a for a transmission rate of 10 Gbps or the optical transmitter / receiver 212b for a transmission rate of 40 Gbps. The optical transceiver 402 includes an optical transmitter 403a that transmits an optical signal at a transmission rate of 10 Gbps, an optical transmitter 403b that transmits an optical signal at a transmission rate of 40 Gbps, and an optical receiver 404a that receives an optical signal at a transmission rate of 10 Gbps. An optical receiver 404b that receives an optical signal with a transmission rate of 40 Gbps, a WDM filter 405a that reflects an optical signal with a wavelength of less than 1575 nm toward the WDM filter 405b, and transmits an optical signal with another wavelength, and a wavelength of 1360 nm or less. A WDM filter 405b that reflects an optical signal to the optical receiver 404b side and transmits an optical signal of another wavelength, and an optical signal having a wavelength of 1280 nm or less is reflected to the optical receiver 404a and transmits an optical signal of another wavelength. And a WDM filter 405c.
Each part in the station 400 is connected by optical fibers 408a to 408g.
 加入者建物210bには、伝送速度40Gbps用の光送受信器212bを有するONU211bと、波長1575~1580nmの光信号を全反射し、その他の波長の光信号を透過するリジェクションフィルタ216bとが設置されている。 The subscriber building 210b is provided with an ONU 211b having an optical transceiver 212b for a transmission rate of 40 Gbps, and a rejection filter 216b that totally reflects an optical signal with a wavelength of 1575 to 1580 nm and transmits an optical signal with another wavelength. ing.
 光送受信器212bは、OLT401の伝送速度40Gbps用の光送受信器(光送信器403bおよび光受信器404b)との間で光信号の送受信を行うものである。この光送受信器212bは、伝送速度40Gbpsで光信号を送信する光送信器213bと、伝送速度40Gbpsの光信号を受信する光受信器214bと、波長1480nm以上の光信号を光受信器214b側に反射し、その他の波長の光信号を透過するWDMフィルタ215bとから構成されている。
 なお、加入者建物210b内の各部は、光ファイバ217e,217fにより接続されている。
The optical transceiver 212b transmits and receives optical signals to and from the optical transceiver (optical transmitter 403b and optical receiver 404b) for the transmission rate of 40 Gbps of the OLT 401. This optical transceiver 212b includes an optical transmitter 213b that transmits an optical signal at a transmission speed of 40 Gbps, an optical receiver 214b that receives an optical signal at a transmission speed of 40 Gbps, and an optical signal having a wavelength of 1480 nm or more to the optical receiver 214b side. The WDM filter 215b reflects and transmits optical signals of other wavelengths.
Each part in the subscriber building 210b is connected by optical fibers 217e and 217f.
 また、実施の形態1と同様に、光伝送システムにおいて下り通信を行う場合には、図2に示すように、伝送速度10Gbps用の光送信器403aは、波長1575~1580nmの帯域を使用して光受信器114aに光信号を伝送する。また、伝送速度1Gbps用の光送信器403bは、波長1480~1500nmの帯域を使用して光受信器214bに光信号を伝送する。 Similarly to the first embodiment, when performing downlink communication in an optical transmission system, as shown in FIG. 2, the optical transmitter 403a for a transmission rate of 10 Gbps uses a band of wavelengths 1575 to 1580 nm. An optical signal is transmitted to the optical receiver 114a. The optical transmitter 403b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 214b using a band with a wavelength of 1480 to 1500 nm.
 同様に、上り通信を行う場合には、伝送速度10Gbps用の光送信器113aは、波長1260~1280nmの帯域を使用して光受信器404aに光信号を伝送する。また、伝送速度40Gbps用の光送信器213bは、実施の形態1での伝送速度1Gbpsに対する波長帯(1285~1360nm)を使用して光受信器404bに光信号を伝送する。 Similarly, when performing uplink communication, the optical transmitter 113a for a transmission rate of 10 Gbps transmits an optical signal to the optical receiver 404a using a band of wavelengths 1260 to 1280 nm. Further, the optical transmitter 213b for the transmission rate of 40 Gbps transmits the optical signal to the optical receiver 404b using the wavelength band (1285-1360 nm) corresponding to the transmission rate of 1 Gbps in the first embodiment.
 なお、上記のように構成された光伝送システムの動作は、実施の形態3に係る光伝送システムの動作と同様であり、その説明を省略する。 The operation of the optical transmission system configured as described above is the same as the operation of the optical transmission system according to the third embodiment, and a description thereof is omitted.
 以上のように、この実施の形態4によれば、伝送速度10Gbpsおよび、さらに高速な伝送速度(例えば40Gbps)の光信号を共用化する場合にも、既存の伝送速度10Gbps用のOLTをそのまま流用することができる。このように、伝送速度に依存することなく、異なる伝送速度の光伝送システムを1台のOLTで実現することが可能である。 As described above, according to the fourth embodiment, when an optical signal having a transmission rate of 10 Gbps and a higher transmission rate (for example, 40 Gbps) is shared, the existing OLT for the transmission rate of 10 Gbps is used as it is. can do. In this way, it is possible to realize optical transmission systems having different transmission speeds with a single OLT without depending on the transmission speed.
実施の形態5.
 実施の形態1では、リジェクションフィルタ106a,106bを用いて伝送速度10Gbpsおよび1Gbpsの光信号を共用化する構成について示したが、実施の形態5では、リジェクションフィルタ106a,106bの代わりに、ある特定の波長を反射するファイバブラッググレーティング(FBG)506a,506bを用いた場合について示す。
 図11はこの発明の実施の形態5に係る光伝送システムの構成を示すブロック図である。
 図11に示す実施の形態5に係る光伝送システムは、図1に示す実施の形態1における局舎100を局舎500に変更したものである。その他の構成は同様であり、同一の符号を付しその説明を省略する。
Embodiment 5 FIG.
In the first embodiment, the configuration in which the optical signals of the transmission speeds of 10 Gbps and 1 Gbps are shared using the rejection filters 106a and 106b has been described. However, in the fifth embodiment, instead of the rejection filters 106a and 106b, there is A case where fiber Bragg gratings (FBG) 506a and 506b that reflect a specific wavelength are used will be described.
FIG. 11 is a block diagram showing a configuration of an optical transmission system according to Embodiment 5 of the present invention.
The optical transmission system according to the fifth embodiment shown in FIG. 11 is obtained by changing the station building 100 in the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and the description thereof is omitted.
 局舎500には、伝送速度10Gbps用の光送受信器502および伝送速度1Gbps用の光送受信器507を有するOLT501と、光スプリッタ509と、光スプリッタ509と光送受信器507との間に配置され、波長1260~1280nmの光信号を反射し、その他の波長の光信号を透過するFBG506bとが設置されている。 In the office building 500, an OLT 501 having an optical transceiver 502 for a transmission rate of 10 Gbps and an optical transceiver 507 for a transmission rate of 1 Gbps, an optical splitter 509, an optical splitter 509, and an optical transceiver 507 are arranged. An FBG 506b that reflects an optical signal with a wavelength of 1260 to 1280 nm and transmits an optical signal with another wavelength is installed.
 光送受信器502は、ONU111aの伝送速度10Gbps用の光送受信器112aとの間で光信号の送受信を行うものである。この光送受信器502は、伝送速度10Gbpsで光信号を送信する光送信器503aと、伝送速度10Gbpsの光信号を受信する光受信器504aと、波長1360nm以下の光信号をFBG506a側に反射し、その他の波長の光信号を透過するWDMフィルタ505aと、波長1280nmより大きい光信号を反射し、その他の波長の光信号を透過するFBG506aとから構成されている。 The optical transmitter / receiver 502 transmits / receives an optical signal to / from the optical transmitter / receiver 112a for the ONU 111a having a transmission rate of 10 Gbps. This optical transceiver 502 reflects an optical signal having a wavelength of 1360 nm or less to the FBG 506a side, an optical transmitter 503a that transmits an optical signal at a transmission speed of 10 Gbps, an optical receiver 504a that receives an optical signal at a transmission speed of 10 Gbps, A WDM filter 505a that transmits an optical signal having another wavelength and an FBG 506a that reflects an optical signal having a wavelength larger than 1280 nm and transmits an optical signal having another wavelength are configured.
 光送受信器507は、ONU111bの伝送速度1Gbps用の光送受信器112bとの間で光信号の送受信を行うものである。この光送受信器507は、伝送速度1Gbpsで光信号を送信する光送信器503bと、伝送速度1Gbpsの光信号を受信する光受信器504bと、波長1360nm以下の光信号を光受信器504b側に反射し、その他の波長の光信号を透過するWDMフィルタ505bとから構成されている。
 なお、局舎500内の各部は、光ファイバ508a~508hにより接続されている。
The optical transmitter / receiver 507 transmits / receives an optical signal to / from the optical transmitter / receiver 112b for the transmission speed of 1 Gbps of the ONU 111b. The optical transmitter / receiver 507 includes an optical transmitter 503b that transmits an optical signal at a transmission rate of 1 Gbps, an optical receiver 504b that receives an optical signal at a transmission rate of 1 Gbps, and an optical signal having a wavelength of 1360 nm or less to the optical receiver 504b side. The WDM filter 505b reflects and transmits optical signals of other wavelengths.
Each part in the station 500 is connected by optical fibers 508a to 508h.
 また、実施の形態1と同様に、光伝送システムにおいて下り通信を行う場合には、図2に示すように、伝送速度10Gbps用の光送信器503aは、波長1575~1580nmの帯域を使用して光受信器114aに光信号を伝送する。また、伝送速度1Gbps用の光送信器503bは、波長1480~1500nmの帯域を使用して光受信器114bに光信号を伝送する。 Similarly to the first embodiment, when performing downlink communication in the optical transmission system, as shown in FIG. 2, the optical transmitter 503a for a transmission rate of 10 Gbps uses a band of wavelengths 1575 to 1580 nm. An optical signal is transmitted to the optical receiver 114a. The optical transmitter 503b for a transmission rate of 1 Gbps transmits an optical signal to the optical receiver 114b using a band with a wavelength of 1480 to 1500 nm.
 次に、上記のように構成された光伝送システムの動作について説明する。
 ここで、実施の形態5に係る光伝送システムの動作工程は、図4,5に示す実施の形態1に係る光伝送システムの動作工程と同様であり、図4,5を参照しながら説明を行う。
 まず、下り通信を行う場合について図4を参照しながら説明する。
 なお以下では、光送信器503aから伝送速度10Gbpsの光信号を出力し、同時に光送信器503bから伝送速度1Gbpsの光信号を出力して、ONU111a,111bに伝送する場合について説明する。また、実施の形態5に係るONU111a,111bの動作は、図4に示す実施の形態1に係るONU111a,111bの動作と同様であるため、その説明を省略する。
Next, the operation of the optical transmission system configured as described above will be described.
Here, the operation process of the optical transmission system according to the fifth embodiment is the same as the operation process of the optical transmission system according to the first embodiment shown in FIGS. 4 and 5, and will be described with reference to FIGS. Do.
First, the case of performing downlink communication will be described with reference to FIG.
In the following, a case will be described in which an optical signal with a transmission rate of 10 Gbps is output from the optical transmitter 503a and an optical signal with a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 503b and transmitted to the ONUs 111a and 111b. Further, the operations of the ONUs 111a and 111b according to Embodiment 5 are the same as the operations of the ONUs 111a and 111b according to Embodiment 1 shown in FIG.
 この光伝送システムの下り通信では、図4に示すように、まず、光送信器503aは伝送速度10Gbpsで光信号を出力し、光送信器503bは伝送速度1Gbpsで光信号を出力する(ステップST41)。
 このステップST41において、光送信器503aは、波長1575~1580nmの帯域を使用して、伝送速度10Gbpsで光信号を出力する。この光送信器503aにより出力された光信号は、WDMフィルタ505aを透過して、光スプリッタ509に伝送される。
 同様に、光送信器503bは、波長1480~1500nmの帯域を使用して、伝送速度1Gbpsで光信号を出力する。この光送信器503bにより出力された光信号は、WDMフィルタ505bおよびFBG506bを透過して、光スプリッタ509に伝送される。
In downlink communication of this optical transmission system, as shown in FIG. 4, first, the optical transmitter 503a outputs an optical signal at a transmission rate of 10 Gbps, and the optical transmitter 503b outputs an optical signal at a transmission rate of 1 Gbps (step ST41). ).
In step ST41, the optical transmitter 503a outputs an optical signal at a transmission rate of 10 Gbps using a band of wavelengths 1575 to 1580nm. The optical signal output by the optical transmitter 503a passes through the WDM filter 505a and is transmitted to the optical splitter 509.
Similarly, the optical transmitter 503b outputs an optical signal at a transmission rate of 1 Gbps using a band with a wavelength of 1480 to 1500 nm. The optical signal output by the optical transmitter 503b passes through the WDM filter 505b and the FBG 506b and is transmitted to the optical splitter 509.
 次いで、光スプリッタ509は、伝送速度10Gbpsの光信号および伝送速度1Gbpsの光信号を合波する(ステップST42)。この光スプリッタ509により合波された光信号は、各光信号主端末回線130に4分岐され、光スプリッタ120に伝送される。その後、光信号は、光スプリッタ120により8分岐され、ONU111a,111bに伝送される。 Next, the optical splitter 509 multiplexes the optical signal with the transmission rate of 10 Gbps and the optical signal with the transmission rate of 1 Gbps (step ST42). The optical signals combined by the optical splitter 509 are branched into four optical signal main terminal lines 130 and transmitted to the optical splitter 120. Thereafter, the optical signal is branched into eight by the optical splitter 120 and transmitted to the ONUs 111a and 111b.
 次に、上り通信を行う場合について図5を参照しながら説明する。
 なお以下では、光送信器113aから伝送速度10Gbpsの光信号を出力し、同時に光送信器113bから伝送速度1Gbpsの光信号を出力して、OLT501に伝送する場合について説明する。また、実施の形態5に係るONU111a,111bの動作は、図5に示す実施の形態1に係るONU111a,111bの動作と同様であるため、その説明を省略する。
Next, a case where uplink communication is performed will be described with reference to FIG.
In the following, a case where an optical signal with a transmission rate of 10 Gbps is output from the optical transmitter 113a and an optical signal with a transmission rate of 1 Gbps is simultaneously output from the optical transmitter 113b and transmitted to the OLT 501 will be described. Further, the operations of the ONUs 111a and 111b according to Embodiment 5 are the same as the operations of the ONUs 111a and 111b according to Embodiment 1 shown in FIG.
 この光伝送システムの上り通信では、図5に示すように、ステップST52において、光スプリッタ120により合波された光信号は、光スプリッタ509により2分岐され、OLT501の光送受信器502およびFBG506bに伝送される。 In the upstream communication of this optical transmission system, as shown in FIG. 5, in step ST52, the optical signal combined by the optical splitter 120 is branched into two by the optical splitter 509 and transmitted to the optical transceiver 502 and the FBG 506b of the OLT 501. Is done.
 次いで、光受信器504aは伝送速度10Gbpsの光信号を受信し、光受信器504bは伝送速度1Gbpsの光信号を受信する(ステップST53)。
 このステップST53において、光送受信器502に伝送された光信号は、WDMフィルタ505aにより反射され、FBG506aに伝送される。その後、FBG506aに伝送された光信号のうち、波長1285nm~1360nmの伝送速度1Gbpsの光信号は反射され、波長1260~1280nmの伝送速度10Gbpsの光信号は透過し、光受信器504aまで伝送される。
 同様に、FBG506bに伝送された光信号のうち、波長1260~1280nmの伝送速度10Gbpsの光信号は反射され、波長1285~1360nmの伝送速度1Gbpsの光信号は透過する。その後、伝送速度1Gbpsの光信号は、WDMフィルタ505bにより反射され、光受信器504bまで伝送される。
Next, the optical receiver 504a receives an optical signal with a transmission rate of 10 Gbps, and the optical receiver 504b receives an optical signal with a transmission rate of 1 Gbps (step ST53).
In step ST53, the optical signal transmitted to the optical transceiver 502 is reflected by the WDM filter 505a and transmitted to the FBG 506a. After that, among the optical signals transmitted to the FBG 506a, an optical signal with a transmission speed of 1 Gbps with a wavelength of 1285 nm to 1360 nm is reflected, and an optical signal with a transmission speed of 10 Gbps with a wavelength of 1260 to 1280 nm is transmitted and transmitted to the optical receiver 504a. .
Similarly, among the optical signals transmitted to the FBG 506b, an optical signal with a wavelength of 1260 to 1280 nm and a transmission speed of 10 Gbps is reflected, and an optical signal with a wavelength of 1285 to 1360 nm and a transmission speed of 1 Gbps is transmitted. Thereafter, an optical signal with a transmission rate of 1 Gbps is reflected by the WDM filter 505b and transmitted to the optical receiver 504b.
 以上のように、この実施の形態5によれば、リジェクションフィルタ106a,106bの代わりにFBG506a,506bを用いるように構成したので、実施の形態1における効果に加えて、フィルタを使用せずにファイバを適用できるため、簡易に光伝送システムを構成することができる。 As described above, according to the fifth embodiment, since the FBGs 506a and 506b are used instead of the rejection filters 106a and 106b, in addition to the effects of the first embodiment, a filter is not used. Since a fiber can be applied, an optical transmission system can be configured easily.
 なお、実施の形態1~5では、光伝送システムとして、OLTおよび複数のONUを備えたPONシステムを用いて説明を行ったが、これに限るものではなく、一般的な光伝送システムに対して適用可能であり、多重波長通信技術に利用可能である。
 また、本願発明の範囲内において、実施の形態を適宜組合せ、変更、省略などすることが可能である。
In the first to fifth embodiments, the description has been given using the PON system including the OLT and the plurality of ONUs as the optical transmission system. However, the present invention is not limited to this, and a general optical transmission system is used. It is applicable and can be used for multi-wavelength communication technology.
Further, within the scope of the present invention, the embodiments can be appropriately combined, changed, or omitted.
 以上のように、この発明に係る光伝送システムは、異なる伝送速度の光信号を共用化する場合に、既存のOLTを置き換えることなく流用することができ、かつ、安価に構成することができるようにしたため、OLTと各ONUとの間で異なる伝送速度の光信号を送受信可能に構成した光伝送システム等に用いるのに適している。 As described above, the optical transmission system according to the present invention can be used without replacing the existing OLT when sharing optical signals having different transmission speeds and can be configured at low cost. Therefore, it is suitable for use in an optical transmission system configured to be able to transmit and receive optical signals having different transmission speeds between the OLT and each ONU.
 100~500 局舎、101~501 局舎側光信号伝送装置(OLT)、102~502,107,507 光送受信器、103a~503a,103b~503b 光送信器、104a~504a,104b~504b 光受信器、105a~505a,105b~505b,205c~405c 波長分割多重(WDM)フィルタ、106a,106b リジェクションフィルタ、108~508 光ファイバ、109~509 光スプリッタ、506a,506b ファイバブラッググレーティング(FBG)、110a,110b,210b 加入者建物、111a,111b,211b 加入者側光信号伝送装置(ONU)、112a,112b,212b 光送受信器、113a,113b,213b 光送信器、114a,114b,214b 光受信器、115a,115b,215b 波長分割多重(WDM)フィルタ、116a,116b,216b リジェクションフィルタ、117a~117f,217b,217e,217f 光ファイバ、120 光スプリッタ、130 光信号主端末回線。 100 to 500 office buildings, 101 to 501 office side optical signal transmission devices (OLT), 102 to 502, 107, 507, optical transceivers, 103a to 503a, 103b to 503b, optical transmitters, 104a to 504a, 104b to 504b, light Receiver, 105a to 505a, 105b to 505b, 205c to 405c, wavelength division multiplexing (WDM) filter, 106a, 106b rejection filter, 108 to 508 optical fiber, 109 to 509 optical splitter, 506a, 506b fiber Bragg grating (FBG) 110a, 110b, 210b, subscriber building, 111a, 111b, 211b, subscriber side optical signal transmission unit (ONU), 112a, 112b, 212b, optical transceiver, 113a, 113b, 213b, optical transmitter, 114 , 114b, 214b optical receiver, 115a, 115b, 215b wavelength division multiplexing (WDM) filter, 116a, 116b, 216b rejection filter, 117a-117f, 217b, 217e, 217f optical fiber, 120 optical splitter, 130 optical signal main Terminal line.

Claims (4)

  1.  局舎側光信号伝送装置と、前記局舎側光信号伝送装置との間で第1の伝送速度で通信を行う第1の加入者側光信号伝送装置と、前記局舎側光信号伝送装置との間で第2の伝送速度で通信を行う第2の加入者側光信号伝送装置とを備えた光伝送システムにおいて、
     前記局舎側光信号伝送装置は、
     前記第1の伝送速度の光信号を受信する第1の光受信器と、
     前記第2の伝送速度の光信号を受信する第2の光受信器とを備え、
     前記第1の加入者側光信号伝送装置は、
     第1の波長帯を使用して、前記第1の伝送速度で光信号を送信する光送信器を備え、
     前記第2の加入者側光信号伝送装置は、
     第2の波長帯を使用して、前記第2の伝送速度で光信号を送信する光送信器を備え、
     前記第1の光受信器および前記第2の光受信器の前段に、第1の波長帯の光信号を前記第1の光受信器に送信し、第2の波長帯の光信号を前記第2の光受信器に送信するフィルタを設けた
    ことを特徴とする光伝送システム。
    A first subscriber-side optical signal transmission device that performs communication at a first transmission rate between the station-side optical signal transmission device and the station-side optical signal transmission device, and the station-side optical signal transmission device An optical transmission system including a second subscriber-side optical signal transmission device that performs communication at a second transmission rate with
    The station side optical signal transmission device is:
    A first optical receiver for receiving an optical signal of the first transmission rate;
    A second optical receiver for receiving an optical signal of the second transmission rate,
    The first subscriber side optical signal transmission device is:
    An optical transmitter for transmitting an optical signal at the first transmission rate using a first wavelength band;
    The second subscriber side optical signal transmission device is:
    An optical transmitter that transmits an optical signal at the second transmission rate using a second wavelength band;
    Before the first optical receiver and the second optical receiver, an optical signal in the first wavelength band is transmitted to the first optical receiver, and an optical signal in the second wavelength band is transmitted to the first optical receiver. An optical transmission system comprising a filter for transmitting to the optical receiver of No. 2.
  2.  前記局舎側光信号伝送装置は、既存の前記第1の光受信器を流用し、前記第2の光受信器を付け加えて構成される
    ことを特徴とする請求項1記載の光伝送システム。
    2. The optical transmission system according to claim 1, wherein the station-side optical signal transmission device is configured by diverting the existing first optical receiver and adding the second optical receiver. 3.
  3.  前記フィルタは、リジェクションフィルタ、波長分割多重フィルタまたはファイバブラッググレーティングを組み合わせて構成される
    ことを特徴とする請求項1記載の光伝送システム。
    The optical transmission system according to claim 1, wherein the filter is configured by combining a rejection filter, a wavelength division multiplexing filter, or a fiber Bragg grating.
  4.  前記フィルタは、トリプレクサモジュールにより構成される
    ことを特徴とする請求項1記載の光伝送システム。
    The optical transmission system according to claim 1, wherein the filter includes a triplexer module.
PCT/JP2011/005310 2010-09-24 2011-09-21 Optical transmission system WO2012039133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010213650A JP2013251586A (en) 2010-09-24 2010-09-24 Optical transmission system
JP2010-213650 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039133A1 true WO2012039133A1 (en) 2012-03-29

Family

ID=45873632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005310 WO2012039133A1 (en) 2010-09-24 2011-09-21 Optical transmission system

Country Status (2)

Country Link
JP (1) JP2013251586A (en)
WO (1) WO2012039133A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091123A1 (en) * 2003-04-02 2004-10-21 Sumitomo Electric Industries, Ltd. Optical communication system having optical amplification function
JP2009218920A (en) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp Communication system and communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091123A1 (en) * 2003-04-02 2004-10-21 Sumitomo Electric Industries, Ltd. Optical communication system having optical amplification function
JP2009218920A (en) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp Communication system and communication method

Also Published As

Publication number Publication date
JP2013251586A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5883507B2 (en) Shiftable wavelength division multiplexed passive optical network
US7389048B2 (en) Optical wavelength-division multiple access system and optical network unit
US20060153565A1 (en) Hybrid passive optical network
CN111355554B (en) Route combiner, route combining method, wave branching method and network system
CN101904116A (en) Wavelength division multiplexing-passive optical network using external seed light source
JP5853822B2 (en) Subscriber side device registration method
US20100129077A1 (en) Techniques for implementing a dual array waveguide filter for a wavelength division multiplexed passive optical network
TWI513207B (en) A remote node device, an optical network unit, a system and a communication method thereof
US8139939B2 (en) Upgradeable passive optical network
US20090304388A1 (en) Optical Branching Apparatus and Passive Optical Network System
US20050259988A1 (en) Bi-directional optical access network
WO2019140999A1 (en) Wavelength division multiplexing optical transmission apparatus and system, and implementation method
JP5846007B2 (en) Subscriber side apparatus registration method and optical network system
WO2012039133A1 (en) Optical transmission system
CN104486028B (en) The system and method for wavelength-division multiplex soft exchange net low cost LAN service transmission
JP4699413B2 (en) Wavelength multiplexer
US20100124420A1 (en) Communication device and communication method
US20220173813A1 (en) Optical communication system and optical communication method
WO2017147844A1 (en) Multiplexer/demultiplexer and passive optical network system
KR100584419B1 (en) Wavelength-division-multiplexing/time-division-multiplexing passive optical network
JP3615476B2 (en) Optical access system, access node device, and user node device
JP4984288B2 (en) COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND COMMUNICATION DEVICE
JP4541053B2 (en) Optical transmission system
WO2009122577A1 (en) Optical communication system, master station, and slave station
JP3304077B2 (en) Optical wavelength division multiplexing transceiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP