WO2012037768A1 - 一种具有电流转移支路的超、特高压串联电容补偿装置 - Google Patents

一种具有电流转移支路的超、特高压串联电容补偿装置 Download PDF

Info

Publication number
WO2012037768A1
WO2012037768A1 PCT/CN2011/000817 CN2011000817W WO2012037768A1 WO 2012037768 A1 WO2012037768 A1 WO 2012037768A1 CN 2011000817 W CN2011000817 W CN 2011000817W WO 2012037768 A1 WO2012037768 A1 WO 2012037768A1
Authority
WO
WIPO (PCT)
Prior art keywords
bypass
series
current transfer
current
compensation device
Prior art date
Application number
PCT/CN2011/000817
Other languages
English (en)
French (fr)
Inventor
武守远
赵波
刘慧文
石泽京
戴朝波
Original Assignee
中电普瑞科技有限公司
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中电普瑞科技有限公司, 中国电力科学研究院 filed Critical 中电普瑞科技有限公司
Publication of WO2012037768A1 publication Critical patent/WO2012037768A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1864Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein the stepless control of reactive power is obtained by at least one reactive element connected in series with a semiconductor switch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Definitions

  • the utility model belongs to the field of flexible AC transmission and power transmission of a power system, and particularly relates to an ultra-high voltage and ultra-high voltage series capacitance compensation device with a current transfer branch. Background technique
  • the series capacitor compensation technology of the AC transmission system (referred to as series compensation) is to connect the power capacitors in series with the AC transmission line to compensate part of the inductive impedance of the AC transmission line, thereby increasing the line transmission capacity, improving system stability, reducing network loss, and saving. Investment and other purposes.
  • series compensation is an important means to solve this problem and improve the transmission capacity of ultra-high-voltage transmission lines.
  • it has a very large economic value and is currently widely used in power systems around the world.
  • UHV transmission technology is the cutting-edge technology in the world's power technology field. UHV transmission can increase transmission capacity, increase economic transmission distance, and also has obvious advantages in reducing transmission loss, saving road corridors, and saving engineering investment. Form a strong grid structure with a UHV grid as the backbone.
  • the conventional series compensation device does not have a dedicated current transfer branch, and its input and exit operations are realized by the bypass circuit breaker I CB1 and the bypass isolation switch G1, which requires that the transfer current capability of the G1 is greater than the rated current of the series compensation device.
  • the allowable break voltage of G1 is greater than the voltage across the damper.
  • the rated current and the damping device inductance value of the series compensation device are both large, the damping device
  • the voltage across D is also very large.
  • the ability to transfer current and fracture voltage to G1 has exceeded the requirements of the national standard for normal isolation. Only the combination of CB1 and G1 will not be able to realize the series compensation device.
  • the series compensation main circuit scheme of the long-running damper device although the solution also solves the transfer current problem, due to the long-term operation of the damper device, the solution needs to increase the capacitor capacity to ensure the same series complement, and at the same time It brings a series of problems such as increased loss, heat generation, noise, operational economy and reliability of the reactor in the damper device for a long time.
  • the large-capacity 500kV series compensation device, 750kV series compensation device and UHV series compensation device have the characteristics of large rated current, high voltage level and large capacity.
  • the series compensation device has certain speciality in design. In the case of retreating and retracting, the transfer current capability of the conventional bypass isolating switch has not been able to meet the requirements, and it is necessary to take measures to solve this problem.
  • Utility model content In the case of retreating and retracting, the transfer current capability of the conventional bypass isolating switch has not been able to meet the requirements, and it is necessary to take measures to solve this problem.
  • the object of the present invention is to provide an ultra-high voltage and ultra-high voltage series capacitance compensation device with a current transfer branch, and the newly added current transfer branch realizes the current when the series compensation is retracted.
  • the transfer function greatly reduces the requirement for the transfer current capability of the bypass isolation switch, and has good anti-error characteristics, which solves the problem of excessive transfer current of the bypass isolation switch existing in the ultra-high voltage and ultra-high voltage series capacitance compensation device.
  • An ultra-high voltage series capacitor compensation device with a current transfer branch comprising a capacitor bank, a bypass isolation switch, a platform isolation switch, a voltage limiter, a spark gap, a bypass circuit breaker I and a damping device, the platform
  • the isolating switch is installed at two ends of the capacitor group, and the bypass isolating switch is connected in parallel with the capacitor group.
  • the spark gap is connected in parallel with the bypass circuit breaker I and then connected in series with the damping device.
  • the improvement is as follows: The current transfer branch, the current transfer branch, the voltage limiter, and the spark gap, the bypass breaker II and the damping device connected in accordance with the above structure are connected in parallel to both ends of the capacitor bank.
  • the current transfer branch includes a bypass breaker II and an isolating switch, and the bypass breaker II and the isolation switch are connected in series and then connected in parallel to both ends of the capacitor bank.
  • the voltage limiter uses a metal oxide voltage limiter.
  • bypass isolation switch and/or the platform isolation switch have a grounding switch.
  • bypass breaker II can be used to transfer large current and the fracture voltage is very high. High characteristics, CB2 realizes the current transfer function when the series compensation device is retracted, and the G4 cooperates with CB2 to realize the anti-error function, which greatly reduces the requirement for the G1 transfer current capability. 2.
  • the circuit structure designed by this patent is clear. The selected equipment is conventional equipment. There is no special requirement for the bypass current switch's current transfer capability, which does not increase the equipment manufacturing difficulty and cost.
  • the series compensation device of this patent does not have problems such as increased running loss, noise and heat, and does not increase the daily patrol burden of the operating personnel.
  • FIG. 1 is a schematic diagram showing the circuit structure of a series compensation device having a current transfer branch in Embodiment 1;
  • Embodiment 2 is a schematic diagram of a series-compensation retraction sequence with a current transfer branch in Embodiment 1;
  • FIG. 3 is a schematic diagram showing the circuit structure of a series compensation device having a current transfer branch in Embodiment 2;
  • FIG. 4 is a schematic structural view of a main circuit of a series compensation circuit for long-term operation of a damping device in the prior art.
  • BEST MODE FOR CARRYING OUT THE INVENTION The temperature control device of the present invention will be further described in detail below with reference to the accompanying drawings.
  • FIG 1 shows the circuit structure of the series-compensation device with current-transfer branch.
  • the grounding switches of the isolating switches Gl, G2, G3, and G4 are not shown. among them,
  • Line the line where the series compensation device is located
  • G1 bypass isolation switch
  • G2, G3 platform isolation switch
  • MOV metal oxide voltage limiter for protection C
  • GAP spark gap, used to protect C and MOV
  • CB1 Bypass breaker I, for bypassing or re-inputting C when required;
  • the series compensation device includes a capacitor bank C, a metal oxide voltage limiter MOV, a spark gap GAP, a bypass circuit breaker CB1, a damping device D, a current transfer branch, a bypass isolation switch G1, and two The platform isolating switches G2 and G3, the current transfer branch routing bypass circuit breaker II GB2 and the isolating switch G4.
  • Capacitor bank C is connected in parallel with metal oxide voltage limiter MOV, spark gap GAP and bypass circuit breaker CB1 After the connection, the damper device D is connected in series, and the spark gap, bypass breaker and damping device connected according to the above structure are connected in parallel to both ends of the capacitor group C, and the bypass breaker II GB2 and the isolating switch G4 are connected in series and then connected in parallel. Both ends of the capacitor bank C.
  • the bypass isolation switch G1 is mounted on the line where the series compensation device is located, and the platform isolation switches G2 and G3 are installed at both ends of the capacitor group C.
  • Figure 2 shows a schematic diagram of the series-compensation retraction sequence with current-transfer branches. 11 ⁇ 14 represent the flow paths of line currents in different operation steps. Where II indicates that the line current flows through G1, 12 indicates that the line current flows through G2, C, and G3, and 13 indicates that the line current flows through G2, CB1, D, and G3, and 14 indicates that the line current flows through G2, CB2, G4, and G3c.
  • the series compensation is initially in the input state, that is, the G1 quantile, G2, G3, CB1, CB2, G4, and the line current flow path is 12;
  • the isolating switch G4 When the series compensation device is running, the isolating switch G4 is in the off state, and the current transfer branch has a clear breaking point. There is no danger of the capacitor bank directly discharging through CB2 and G4 due to the mismatch of CB2, and it has good anti-error characteristics.
  • the CB1 and current transfer branch designed by this patent have the function of preventing mis-locking, that is, only when CB1 is in the position, CB2 and G4 are allowed to operate, which enhances the operational reliability of the device.
  • the series compensation device includes a capacitor bank formed by connecting two capacitor banks C1 and C2 in series, a metal oxide voltage limiter MOV, a spark gap GAP, a bypass circuit breaker CB1, a damping device D, and a current transfer.
  • the specific connection structure is as follows: Each group of capacitor banks is connected in parallel with a set of metal oxide voltage limiters.
  • the spark gap GAP is connected in parallel with the bypass breaker CB1 and then connected in series with the damping device D, and the spark gap, the bypass breaker and the damping device connected according to the above structure are respectively connected in parallel to the two ends of each capacitor bank;
  • the branch circuit, the bypass isolating switch G1 and the platform isolating switches G2 and G3 are common equipment, G1 is installed on the line where the series compensation device is located, G2 and G3 are installed at both ends of the two-stage capacitor group Cl, C2, bypass circuit breaker II GB2 and the isolating switch G4 are connected in series and then connected in parallel to both ends of the entire capacitor bank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

一种具有电流转移支路的超、 特高压串联电容补偿装置 技术领域
本实用新型属于电力系统灵活交流输电领域, 具体涉及一种具有电流转移支路的 超、 特高压串联电容补偿装置。 背景技术
全球一次能源和电力负荷在地理位置上的分布存在很大差异,这一差异在我国表现, 的尤为突出。 随着经济发展, 能源供给与电力消费间的供需矛盾日趋严重, 远距离、 大 容量、 跨区域输电能够有效缓解电力供需矛盾, 成为现代电力系统最重要的特征之一, 但同时也对电网的输电能力提出了更高的要求。
交流输电系统的串联电容补偿技术(简称串补)是将电力电容器串联于交流输电线 路中, 补偿交流输电线路的部分感性阻抗, 从而达到增加线路输送容量、 提高系统稳定 性、 降低网损、节约投资等目的。在远距离、大容量输电系统中, 随着输电距离的增加, 其输送能力受到越来越多的限制, 而串补是解决这个问题、 提高超、 特高压输电线路送 电能力的重要手段之一, 具有非常巨大的经济价值, 目前在世界各国电力系统中获到了 广泛的应用。
我国巳经形成了以 500kV输电线路为主的超高压电网架构, 750kV超高压输电线路 即将成为西北电网的主干网架。 超高压输电线路承担着日益繁重的输电任务, 发挥着巨 大的经济效益, 但随着输电距离和输电容量的增加, 超高压电网的输送能力和稳定水平 亟待提高。 特高压输电技术是世界电力科技领域的前沿技术, 特高压输电能够提高输送 容量, 增加经济输电距离, 在减少输电损耗、 节约线路走廊占地、 节省工程投资等方面 也具有明显优势, 未来我国将形成以特高压电网为主干的坚强电网结构。 我国的超、 特 高压电网在输送距离上一般大于国外的超、 特高压系统, 输送容量也十分可观。 因此, 我国在建设超、 特高压输电系统时, 需要采用串联电容补偿装置, 以便提高输送能力, 充分发挥超、 特高压系统设备投资的经济效益。
常规串补装置不具有专用的电流转移支路, 其投入和退出操作由旁路断路器 I CB1 和旁路隔离幵关 G1配合实现, 这就要求 G1 的转移电流能力大于串补装置额定电流, G1 允许的断口电压大于阻尼装置两端的电压。 对于大容量的 500kV串补装置、 750kV 串补装置和特高压串补装置, 由于串补装置额定电流和阻尼装置电感值都很大, 阻尼装 置 D两端电压也很大, 对 G1转移电流和断口电压的能力要求己经超过国家标准对于常. 规隔离幵关的要求, 仅采用 CB1和 G1配合的方式将不能实现对串补装置的投退操作, 强行操作 G1将导致开关烧毁、 爆炸等严重设备事故。 又如图 4所示的阻尼装置长期运 行的串补主电路方案,虽然该方案也解决了转移电流问题,但是由于阻尼装置长期运行, 该方案需要增加电容器容量以保证相同的串补度, 同时带来了阻尼装置中电抗器长期运 行的损耗增大、 发热、 噪声、 运行经济性和可靠性等一系列问题。
大容量 500kV串补装置、 750kV串补装置和特高压串补装置, 具有额定电流大、 电 压等级高、 容量大等特点, 串补装置在设计上存在一定的特殊性。 在投退串补时, 常规 旁路隔离开关的转移电流能力己经不能满足要求, 有必要采取措施解决这一问题。 实用新型内容
为了克服现有技术中的上述缺陷, 本实用新型的目的在于提出一种具有电流转移支 路的超、 特高压串联电容补偿装置, 新增的电流转移支路实现了串补投退时的电流转移 功能, 大大降低了对旁路隔离开关转移电流能力的要求, 并具有良好的防误特性, 解决 了在超、 特高压串联电容补偿装置中存在的旁路隔离开关转移电流超标问题。
本实用新型是通过下述技术方案实现的:
一种具有电流转移支路的超、 特高压串联电容补偿装置, 包括电容器组、 旁路隔离 丌关、 平台隔离开关、 限压器、 火花间隙、 旁路断路器 I和阻尼装置, 所述平台隔离开 关安装在电容器组的两端, 所述旁路隔离开关与电容器组并联, 所述火花间隙与旁路断 路器 I并联后再与阻尼装置串联, 其改进之处在于: 该补偿装置还包括电流转移支路, 所述电流转移支路、 限压器以及按照上述结构连接好的火花间隙、旁路断路器 II和阻尼 装置一起并联于电容器组的两端。
其中, 所述电流转移支路包括旁路断路器 II和隔离开关, 所述旁路断路器 II和隔 离开关串联后再并联于电容器组的两端。
其中, 所述限压器采用金属氧化物限压器。
其中, 所述旁路隔离开关和 /或平台隔离开关带有接地开关。
本实用新型的有益效果是:
1 . 由于本专利提出的超、 特高压串联电容补偿装置中新增了由旁路断路器 II CB2 和 G4组成的电流转移支路,利用了旁路断路器 II能转移大电流、断口电压很高的特性, 由 CB2实现串补装置投退时的电流转移功能, 由 G4配合 CB2实现防误功能, 大大降 低了对 G1转移电流能力的要求。 2. 本专利所设计的电路结构明晰, 所选设备均为常规设备, 对旁路隔离开关转移 电流能力没有特殊要求, 不增加设备制造难度和成本。
3. 本专利所提出的串补装置投退顺序简单清晰, 符合常规运行操作习惯。
4. 本专利的串补装置不存在运行损耗增加、 噪音和发热等问题, 不增加运行人员 的日常巡视负担。
5. 本专利的串补装置运行安全可靠性高, 防误特性良好。 附图说明:
图 1为实施例 1中具有电流转移支路的串补装置的电路结构示意图;
图 2为实施例 1中具有电流转移支路的串补投退顺序示意图;
图 3为实施例 2中具有电流转移支路的串补装置的电路结构示意图;
图 4为现有技术中阻尼装置长期运行的串补主电路结构示意图。 具体实施方式- 下面结合附图对本实用新型的温度控制装置做进一步详细的说明。
实施例 1
图 1 所示为具有电流转移支路的串补装置的电路结构示意图, 为了便于说明, 图中 隔离开关 Gl、 G2、 G3、 G4所带的接地开关没有画出。 其中,
Line: 串补装置所在线路;
G1 : 旁路隔离开关;
G2、 G3: 平台隔离开关;
C: 串联电容器组;
MOV: 金属氧化物限压器, 用于保护 C;
; GAP: 火花间隙, 用于保护 C和 MOV;
CB1 : 旁路断路器 I, 用于需要时将 C旁路或重新投入;
D: 阻尼装置;
CB2和 G4: 旁路断路器 II和隔离开关, 共同组成电流转移支路。
如图 1所示,该串补装置包括电容器组 C、金属氧化物限压器 MOV、火花间隙 GAP、 旁路断路器 CB1、 阻尼装置 D、 电流转移支路、 旁路隔离开关 G1以及两个平台隔离开 关 G2和 G3, 电流转移支路由旁路断路器 II GB2和隔离开关 G4组成。其具体连接结构 为: 电容器组 C与金属氧化物限压器 MOV并联, 火花间隙 GAP与旁路断路器 CB1并 联后再与阻尼装置 D串联,将按照上述结构连接好的火花间隙、旁路断路器和阻尼装置 并联于电容器组 C的两端,旁路断路器 II GB2和隔离开关 G4串联后再并联于电容器组 C的两端。 旁路隔离开关 G1安装在该串补装置所在线路上, 平台隔离开关 G2、 G3安 装在电容器组 C的两端。
图 2给出了具有电流转移支路的串补投退顺序示意图, 11~14分别代表了不同操作步 骤时线路电流的流通路径。 其中, II表示线路电流流经 Gl, 12表示线路电流流经 G2、 C、 G3, 13表示线路电流流经 G2、 CB1、 D、 G3, 14表示线路电流流经 G2、 CB2、 G4、 G3 c
串补装置投入运行的操作步骤如下:
1 ) 串补初始处于退出状态, 即 G1合位, G2、 G3分位, CB1合位, CB2合位, G4 合位, 线路电流流动途径为 II;
2) 先合 G2、 G3, 再分 Gl, 线路电流从流通路径 II转移到 14;
3 ) 先分 CB2, 再分 G4, 线路电流从流通路径 14转移到 D;
4) 分 CB1, 线路电流从流通路径 13转移到 12, 串补装置完成投入操作。
串补装置退出运行的操作步骤如下:
1 ) 串补初始处于投入状态, 即 G1分位, G2、 G3合位, CB1分位, CB2分位, G4 分位, 线路电流流动途径为 12;
2) 合 CB1, 线路电流从流通路径 12转移到 13 ;
3 ) 经延时后先合 G4, 再合 CB2, 线路电流从流通路径 13转移到 14;
4) 先合 Gl, 再分 G2、 G3, 线路电流从流通路径 14转移到 II, 串补装置完成退出 操作。
串补装置运行时隔离开关 G4处于断开状态, 电流转移支路具备明显的断开点,不存 在由于 CB2发生误合导致电容器组通过 CB2和 G4直接放电的危险, 具有良好的防误 特性。 同时本专利所设计的 CB1和电流转移支路具备防误闭锁功能, 即仅当 CB1处于 合位时, 才允许操作 CB2和 G4, 增强了装置运行可靠性。
实施例 2
该串补装置的结构、 连接关系基本同于实施例 1, 唯有不同的是:
如图 3所示, 该串补装置包括由两段电容器组 Cl、 C2串联而成的电容器组、 金属 氧化物限压器 MOV、 火花间隙 GAP、 旁路断路器 CB1、 阻尼装置 D、 电流转移支路、 旁路隔离开关 G1以及两个平台隔离开关 G2和 G3, 电流转移支路由旁路断路器 II GB2 和隔离开关 G4组成。 其具体连接结构为: 每段电容器组均并联一组金属氧化物限压器 MOV, 火花间隙 GAP与旁路断路器 CB1并联后再与阻尼装置 D串联, 将按照上述结 构连接好的火花间隙、 旁路断路器和阻尼装置分别并联于每段电容器组的两端; 电流转 移支路、 旁路隔离开关 G1以及平台隔离开关 G2和 G3为公用设备, G1安装在该串补 装置所在线路上, G2和 G3安装在两段电容器组 Cl、 C2的两端, 旁路断路器 II GB2 和隔离开关 G4串联后再并联于整个电容器组的两端。
该串补装置的投退顺序同于实施例 1, 在投退过程中两段电容器组 Cl、 C2及其附属 设备均视为同一设备进行同步操作。 最后应当说明的是: 以上实施例仅用以说明本实用新型的技术方案而非对其限制, 尽管参照上述实施例对本实用新型进行了详细的说明,所属领域的普通技术人员应当理 解: 依然可以对本实用新型的具体实施方式进行修改或者等同替换, 而未脱离本实用新 型精神和范围的任何修改或者等同替换, 其均应涵盖在本实用新型的权利要求范围当 中。

Claims

权 利 要 求
1. 一种具有电流转移支路的超、 特高压串联电容补偿装置, 包括电容器组、 旁路 隔离开关、 平台隔离开关、 限压器、 火花间隙、 旁路断路器 I和阻尼装置, 所述平台隔 离开关安装在电容器组的两端, 所述旁路隔离开关与电容器组并联, 所述火花间隙与旁 路断路器 I并联后再与阻尼装置串联, 其特征在于: 该串补装置还包括电流转移支路, 所述电流转移支路、 限压器以及按照上述结构连接好的火花间隙、 旁路断路器 II和阻 尼装置一起并联于电容器组的两端。
2. 如权利要求 1所述的电容补偿装置, 其特征在于: 所述电流转移支路包括旁路 断路器 II和隔离开关,所述旁路断路器 II和隔离开关串联后再并联于电容器组的两端。
3. 如权利要求 2所述的电容补偿装置, 其特征在于: 所述限压器采用金属氧化物 限压器。
4. 如权利要求 3所述的电容补偿装置, 其特征在于: 所述旁路隔离开关和 /或平台 隔离开关带有接地开关。
PCT/CN2011/000817 2010-09-20 2011-05-10 一种具有电流转移支路的超、特高压串联电容补偿装置 WO2012037768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201020536452.9 2010-09-20
CN2010205364529U CN201805235U (zh) 2010-09-20 2010-09-20 一种具有电流转移支路的超/特高压串联电容补偿装置

Publications (1)

Publication Number Publication Date
WO2012037768A1 true WO2012037768A1 (zh) 2012-03-29

Family

ID=43874736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000817 WO2012037768A1 (zh) 2010-09-20 2011-05-10 一种具有电流转移支路的超、特高压串联电容补偿装置

Country Status (2)

Country Link
CN (1) CN201805235U (zh)
WO (1) WO2012037768A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201805235U (zh) * 2010-09-20 2011-04-20 中电普瑞科技有限公司 一种具有电流转移支路的超/特高压串联电容补偿装置
CN102244379B (zh) * 2011-07-11 2013-12-25 中电普瑞科技有限公司 串联电容器装置的控制保护方法、装置与系统
CN102790387B (zh) * 2012-07-31 2015-07-22 许继电气股份有限公司 串联补偿中金属氧化物限压器的保护装置及串联补偿系统
CN104659769A (zh) * 2013-11-21 2015-05-27 中国电力科学研究院 一种特高压串联补偿装置
CN104218593B (zh) * 2014-09-26 2018-08-14 国家电网公司 一种用于配电网的串联电容器补偿装置
CN105652685B (zh) * 2014-11-14 2018-11-27 国家电网公司 一种动态模拟实验用功能模拟装置
CN106099881A (zh) * 2016-06-12 2016-11-09 国网上海市电力公司 用于配电网串联电容器补偿装置无损耗阻尼回路
CN106229994A (zh) * 2016-07-28 2016-12-14 中电普瑞科技有限公司 一种新型串联补偿装置
CN108767862A (zh) * 2018-07-19 2018-11-06 南方电网科学研究院有限责任公司 一种低频电压阻波和串联补偿混合装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067864A1 (en) * 1998-06-17 1999-12-29 Abb Ab A protection device
JP2003111278A (ja) * 2001-10-01 2003-04-11 Hitachi Ltd 可制御直列補償装置及びそのエネルギー吸収方法
CN101640422A (zh) * 2009-08-17 2010-02-03 暨南大学珠海学院 串联电容补偿器
CN201528201U (zh) * 2009-10-28 2010-07-14 中国电力工程顾问集团东北电力设计院 潜式串联电容补偿装置
CN201805235U (zh) * 2010-09-20 2011-04-20 中电普瑞科技有限公司 一种具有电流转移支路的超/特高压串联电容补偿装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067864A1 (en) * 1998-06-17 1999-12-29 Abb Ab A protection device
JP2003111278A (ja) * 2001-10-01 2003-04-11 Hitachi Ltd 可制御直列補償装置及びそのエネルギー吸収方法
CN101640422A (zh) * 2009-08-17 2010-02-03 暨南大学珠海学院 串联电容补偿器
CN201528201U (zh) * 2009-10-28 2010-07-14 中国电力工程顾问集团东北电力设计院 潜式串联电容补偿装置
CN201805235U (zh) * 2010-09-20 2011-04-20 中电普瑞科技有限公司 一种具有电流转移支路的超/特高压串联电容补偿装置

Also Published As

Publication number Publication date
CN201805235U (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
WO2012037768A1 (zh) 一种具有电流转移支路的超、特高压串联电容补偿装置
US10756535B2 (en) Combined direct current circuit breaker and application method thereof
CN106908693A (zh) 一种高准确率的消弧线圈接地系统单相接地选线方法
WO2013163853A1 (zh) 一种电抗器型短路故障限流器
CN103311924A (zh) 一种单相组合式同相供变电构造
CN103855713A (zh) 配电网架接线结构
CN104767194B (zh) 一种高压输电换流站过压保护装置
CN104009537A (zh) 一种切换主备电源的箱式变电站
CN203014389U (zh) 一种高压无功自动补偿装置
CN101969203B (zh) 三台旁路断路器串联的超/特高压分段串联电容补偿装置
CN103618330A (zh) 一种使用隔离开关带电接入多端柔性直流输电系统的方法
CN103441501A (zh) 用高压级联式svg实现消弧线圈功能的方法
CN106300330A (zh) 一种统一潮流控制器故障态穿越方法
CN201332275Y (zh) 500kV及特高压线路变压电抗器
CN103259259B (zh) 一种抑制750kV多FACTS线路电磁暂态问题的高抗配置系统及方法
CN107370130B (zh) 一种基于改进型半桥子模块的混合式高压直流断路器及其控制策略
CN203352187U (zh) 一种单相组合式同相供变电装置
CN202058591U (zh) 一种内熔丝电容器花式接线结构
CN109842204B (zh) 基于光纤通道的热备用线路电源侧控制备用电源投入方法
WO2013097521A1 (zh) 一种串补装置的电容器平台
CN207853185U (zh) 变电站母兼旁系统结构
CN207625293U (zh) 一种串并联混合型补偿器
CN202002981U (zh) 一种灵活交流输电facts装置通用试验模型
CN109638944A (zh) 一种基于能量弱存储的低压船舶直流电网结构及控制方法
CN102074961A (zh) 采用串联公共电抗器配置的分级式可控并联电抗器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.08.13)

122 Ep: pct application non-entry in european phase

Ref document number: 11826295

Country of ref document: EP

Kind code of ref document: A1