WO2012036742A2 - Assembly and method for loading a self-expanding collapsible heart valve - Google Patents
Assembly and method for loading a self-expanding collapsible heart valve Download PDFInfo
- Publication number
- WO2012036742A2 WO2012036742A2 PCT/US2011/001598 US2011001598W WO2012036742A2 WO 2012036742 A2 WO2012036742 A2 WO 2012036742A2 US 2011001598 W US2011001598 W US 2011001598W WO 2012036742 A2 WO2012036742 A2 WO 2012036742A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- open end
- heart valve
- valve
- pusher member
- compression member
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/2436—Deployment by retracting a sheath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2418—Scaffolds therefor, e.g. support stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P11/00—Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for
- B23P11/02—Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits
- B23P11/025—Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits by using heat or cold
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9522—Means for mounting a stent or stent-graft onto or into a placement instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9522—Means for mounting a stent or stent-graft onto or into a placement instrument
- A61F2/9525—Means for mounting a stent or stent-graft onto or into a placement instrument using a funnel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
- A61F2210/0023—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at different temperatures whilst inside or touching the human body, heated or cooled by external energy source or cold supply
- A61F2210/0028—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at different temperatures whilst inside or touching the human body, heated or cooled by external energy source or cold supply cooled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0039—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0402—Cleaning, repairing, or assembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
- Y10T29/49865—Assembling or joining with prestressing of part by temperature differential [e.g., shrink fit]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49925—Inward deformation of aperture or hollow body wall
- Y10T29/49927—Hollow body is axially joined cup or tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53909—Means comprising hand manipulatable tool
Definitions
- the present disclosure relates to prosthetic heart valve implantation and, more particularly, to assemblies and methods for loading a self-expanding collapsible heart valve into a delivery device.
- Prosthetic heart valves may be formed from biological materials such as harvested bovine valves or pericardium tissue. Such valves are typically fitted within a stent, which may be inserted into the heart at the annulus of the compromised native valve to replace the native valve. To perform such insertion procedure, it is often necessary to compress the stent to a reduced diameter for loading into the delivery device.
- the stented valve is preferably preserved in the open condition for storage as compression of the valve material for extended periods compromises the integrity of the biological valve. It is therefore necessary to crimp the valve, or reduce its diameter for loading in the delivery device, in the operating arena.
- the present disclosure relates to devices for collapsing a self-expanding prosthetic heart valve.
- the device includes a compression member and a pusher member.
- the compression member has a first open end with a first diameter, a second open end with a second diameter less than the first diameter, and a tapered wall extending between the first open end and the second open end.
- the tapered wall defines an open space adapted to receive the valve.
- the pusher member has a base adapted to engage an end of the valve, the pusher member and the compression member being movable relative to one another between an initial position in which the base of the pusher member is relatively far from the first open end of the compression member and an operative position in which the base of the pusher member is relatively close to the first open end of the compression member. Movement of the pusher member and the compression member from the initial position to the operative position pushes the valve through the open space such that the valve is radially compressed by the tapered wall of the compression member as the valve advances through the open space.
- the device may further include a first fastener on the pusher member and a second fastener on the compression member, engagement of the first fastener with the second fastener in the operative position securing the pusher member to the compression member.
- the first fastener may include a plurality of spaced arms extending in a longitudinal direction from the base of the pusher member to a free end. Each of the plurality of arms may extend substantially orthogonally from the base. The free end of each of the plurality of arms may include a first receiving channel oriented in a direction substantially orthogonal to the longitudinal direction.
- the second fastener may include a base projecting radially outward from the second open end of the compression member and adapted to be received in the first receiving channels in an assembled condition of the pusher member and the compression member.
- the compression member may include a rim projecting radially outward from the first open end and adapted to be received between the plurality of arms in an assembled condition of the pusher member and the compression member.
- Each of the plurality of arms may include a second receiving channel oriented in the longitudinal direction and extending from the free end of the arm toward the base of the pusher member.
- the first receiving channel may intersect with the second receiving channel on each of the plurality of arms.
- the compression member may include a plurality of ribs extending in the longitudinal direction between the first open end and the second open end, each rib being adapted to be received in one of the second receiving channels during movement of the pusher member and the compression member from the initial position toward the operative position.
- the rim of the compression member may include a plurality of recesses, each recess lying between one of the ribs and a remainder of the rim.
- the device may further include an annular wall projecting from the base of the pusher member, the annular wall defining a cavity sized and shaped to receive the end of the valve.
- the annular wall may have an axis of revolution and the pusher member may further include an aperture through the base, a center of the aperture being coincident with the axis of revolution of the annular wall.
- the present disclosure also relates to methods for loading a self-expanding prosthetic heart valve into a delivery device, the heart valve having a length, a stent portion formed from a material and at least one retaining member at one end thereof.
- One method may include inserting the heart valve into a funnel having a first open end with a first diameter and a second open end with a second diameter less than the first diameter; advancing the heart valve through the funnel until the at least one retaining member protrudes out from the second open end of the funnel; attaching the at least one retaining member to a retaining element of the delivery device; advancing a distal sheath of the delivery device over the heart valve to collapse a portion of the heart valve less than the length; cooling the heart valve to a temperature below a transition temperature of the material forming the stent portion of the heart valve; and further advancing the distal sheath of the delivery device over the heart valve until the entire heart valve is collapsed.
- the collapsed portion of the heart valve may be about one-half or
- FIG. 1 is a perspective view of a distal portion of a delivery device
- FIG. 2 is a perspective view of a proximal portion of the delivery device of FIG. 1;
- FIG. 3 is an enlarged side view of a retaining element of the delivery device shown in FIGS. 1 and 2 ;
- FIG. 4 is a perspective view of a self-expanding prosthetic heart valve
- FIG. 5 is a perspective view of a compression member of a loading assembly according to an embodiment of the present invention.
- FIG. 6 is a perspective view of a pusher member of a loading assembly according to an embodiment of the present invention.
- FIG. 7 is a perspective view of the pusher member of FIG. 6 with a stent positioned therein;
- FIGS. 8 and 9 illustrate an exemplary method of using the loading assembly shown in FIGS. 5 and 6;
- FIG. 10 is a perspective view of a loading assembly according to another embodiment of the present invention.
- FIGS. 11 and 12 illustrate the initial steps of a method for loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10;
- FIGS. 13A-13D illustrate further steps of the method for loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10;
- FIGS. 14A and 14B illustrate steps of an alternate method of loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10 and a tube;
- FIGS. 15A-15D illustrate additional steps of the alternate method of loading a prosthetic heart valve into a delivery device using the loading assembly and the tube shown in FIGS. 14A and 14B;
- FIG. 16 is a loading system according to an alternate embodiment of the present invention. DETAILED DESCRIPTION
- proximal refers to the end of the loading assembly, or portion thereof, which is closest to the operator in use
- distal refers to the end of the loading assembly, or portion thereof, which is farthest from the operator in use.
- the present disclosure relates to assemblies and methods for loading a self-expanding stent or a collapsible prosthetic heart valve into a minimally invasive delivery device.
- An exemplary minimally invasive delivery device 10 is illustrated in FIGS. 1 and 2.
- delivery device 10 may include an inner tube 16 having a lumen extending therethrough.
- a hub 14 is mounted on the proximal end of the inner tube 16 and is adapted for connection to another system or mechanism, such as a handle, a syringe or a mechanism for displacing the distal sheath 30. Mechanisms for displacing the distal sheath 30 are described in International Patent Application Publication No. WO/2009/091509, the entire contents of which are hereby incorporated herein by reference.
- a retention ring 12 may also be mounted on the proximal end of the inner tube 16. At least a portion of the inner tube 16 extends through a Y-connector 18 and an outer shaft 20.
- the Y-connector 18 includes a hemostasis valve for preventing, or at least hindering, blood flow between the inner tube 16 and the outer shaft 20.
- the Y-connector 18 may be fluidly coupled to a fluid source.
- the outer shaft 20 extends to a transition member 24, which may have a tapered shape.
- the W may have a tapered shape.
- transition member 24 interconnects a distal end of the outer shaft 20 and the distal sheath 30.
- the distal sheath 30 surrounds a retaining element 26 and a support shaft 28 and can maintain a prosthetic heart valve mounted around the support shaft in a collapsed condition.
- the support shaft 28 is operatively connected to the inner tube 16 and has a lumen extending therethrough for receiving a guidewire (not shown) .
- the retaining element 26 is mounted on the support shaft 28 and is configured for supporting an end of a prosthetic heart valve or any other suitable medical implant, as discussed in detail below.
- the retaining element 26 may be longitudinally and rotatably fixed relative to the support shaft 28, thereby preventing the cells of the stent from entangling with one another during deployment.
- the distal sheath 30 covers the retaining element 26 and at least a portion of the support shaft 28 and is movable relative to the support shaft between a distal position shown in FIG. 1 and a proximal position (not shown) .
- a tip 32 may be connected to the distal end of the support shaft 28, and may have a tapered shape.
- the retaining element 26 is mounted on the support shaft 28 and may be longitudinally and rotatably fixed to same.
- the retaining element 26 may include a plurality of recesses 27 located around its periphery.
- the recesses 27 are spaced apart from one another and are adapted and dimensioned to receive a plurality of retaining members or tabs on one end of a self-expanding stent to thereby securely engage such stent to the delivery device.
- the stent When a self- expanding stent is attached to the retaining element 26, the stent may be longitudinally and rotatably fixed relative to the support shaft 28. As a result, the stent can be prevented from sliding out of the distal sheath 30. In addition, when the distal sheath 30 is placed over the stent to maintain it in the collapsed condition, the cells of the stent will not become tangled.
- FIG. 4 shows a bioprosthetic valve 100 designed to replace a native aortic valve.
- the valve 100 has a collapsed condition and an expanded condition and may be formed from a collapsible framework or stent 102, with a valve assembly 104 internally connected to the stent.
- the stent 102 may be formed from any suitable biocompatible material, such as nitinol, and may include an annulus section 106, an aortic section 108, and an intermediate section 110.
- the aortic section 108 may have a larger diameter than the annulus section 106.
- the intermediate section 110 of the stent 102 is located between the annulus section 106 and the aortic section 108.
- the valve assembly 104 may include a plurality of leaflets 112 and a cuff 114 attached to the stent 102.
- the leaflets 112 and the cuff 114 may be formed from a biocompatible polymer, from bovine or porcine pericardial tissue, or from other appropriate biocompatible materials.
- the valve assembly 104 is connected to the stent 102 generally within the annulus section 106, but may extend into the intermediate section 110.
- the valve 100 may include tabs or retaining members 118 at spaced positions around one or both ends of the stent 102.
- the retaining members 118 are typically designed for use in loading the valve 100 into a delivery device, in particular for grasping and alignment purposes. However, the retaining members 118 may also be utilized to collapse the valve 100, as will be discussed.
- the valve 100 is preferably preserved in its expanded or open condition for storage as the bioprosthetic valve assembly 104 may be compromised by storage in a collapsed condition for extended periods of time. As such, it is necessary to crimp the valve 100 into a collapsed or reduced diameter condition for use in the surgical implantation procedure at the latest possible time before the procedure. In order to effectively limit the time period the valve 100 is collapsed, the crimping process is preferably conducted in the operating arena by the surgeon, interventional cardiologist or surgical assistant using a specialized assembly.
- a loading assembly 200 includes a first section or compression member 202 and a second section or pusher member 204 adapted to be connected to one another.
- the compression member 202 includes a funnel 206 for reducing the diameter of a valve.
- the funnel 206 may have a substantially frusto-conical shape and includes a first open end 208 and a second open end 210. Regardless of the specific shape of the funnel 206, the diameter of the first open end 208 is larger than the diameter of the second open end 210. The diameter of the funnel 206 may decrease uniformly from the first open end 208 to the second open end 210 to compress the valve 100 as it is advanced through the compression member 202.
- the compression member 202 may further include a base 214 attached to the outer periphery of the second open end 210 of the funnel 206 for providing stability to the compression member 202 when it is placed on a flat surface.
- the base 214 may be substantially disk-shaped, with an inner flat surface 216, an outer flat surface 218, and a sidewall 220 extending between the inner surface and the outer surface.
- the inner surface 216 and outer surface 218 may each have a substantially circular shape, and may be oriented substantially parallel to one another.
- the compression member 202 may include a plurality of ribs 222 connected between the outer wall of funnel 206 and the base 214 for enhancing the structural integrity of the loading assembly 200 when the compression member 202 is connected to the pusher member 204. As discussed in detail below, the ribs 222 also facilitate attachment of the compression member 202 to the pusher member 204.
- the compression member 202 may include three ribs 222 spaced apart from one another around the circumference of funnel 206, although any number of ribs less than or greater than three are contemplated herein.
- the ribs 222 may be substantially evenly spaced from one another around the circumference of the funnel 206.
- Each rib 222 may extend from a first end 228 connected to the inner surface 216 of the base 214 to a second end 226 spaced from the first open end 208 of the funnel 206 and may be shaped substantially as a right-angled triangle.
- the compression member 202 may further include a rim or lip 224 extending around the circumference of the first open end 208 of the funnel 206.
- the rim 224 may be discontinuous at recesses 230 to provide clearance for protrusions on pusher member 204, as will be appreciated from the discussion below.
- the pusher member 204 may include a substantially planar base 232 and a plurality of arms 234 projecting substantially orthogonally from the base.
- the pusher member 204 may include three arms 234 spaced apart from one another around the periphery of the base 232, although any number of arms less than or greater than three are contemplated herein.
- Each arm 234 may extend from a first end 236 attached to the base 232 to a free end 238.
- Each arm 234 may include any suitable locking feature, such as protrusions 240, 242 on its inner surface 244, for locking the pusher member 204 to the compression member 202.
- the protrusions 240, 242 may be located near the free end 238 of each arm 234.
- the protrusions 240, 242 collectively form a first channel 246 extending in the longitudinal direction of each arm 234 and a second channel 248 extending substantially orthogonally to the first channel 246 in the width direction of each arm 234.
- Each longitudinal channel 246 may extend between two protrusions 240 and two protrusions 242 in a central location along the inner surface 244 of each arm 234, and is adapted and dimensioned to receive at least a portion of a rib 222 of the compression member 202.
- the longitudinal channels 246 of the pusher member 204 and the ribs 222 of the compression member 202 cooperate with one another to facilitate sliding movement of the pusher member 204 longitudinally relative to the compression member 202.
- Each widthwise channel 248 on arms 234 may extend between two protrusions 240 and two protrusions 242 and is adapted and dimensioned to receive the base 214 of the compression member 202.
- the pusher member 204 is longitudinally fixed to the compression member 202.
- the base 232 of the pusher member 204 may include an aperture 254 disposed through the approximate center thereof with an annular wall or ring 250 attached to an inner surface 252 of the base around the aperture.
- the annular wall 250 is adapted and dimensioned to receive at least a portion of the annulus section 106 of the stent 102, as seen in FIG. 7.
- the loading assembly 200 may be used to load the collapsible prosthetic heart valve 100 into a delivery device.
- the pusher member 204 With the pusher member 204 on a flat surface, at least a portion of the annulus section 106 of the stent 102 may be placed within the confines of the annular wall 250. At this point, the annulus section 106 may contact the inner surface of the annular wall 250.
- the compression member 202 may then be inverted over the aortic section 108 of the stent 102 so that the aortic section of the stent is positioned within the funnel 206 and the ribs 222 of the compression member are axially aligned with the longitudinal channels 246 in arms 234.
- the pusher member 204 and compression member 202 may then be pushed together, with the tapered walls of the funnel 206 gradually compressing the valve 100, until a portion of the aortic section 108 of the stent 102 passes through the second open end 210 of the funnel, as shown in FIG. 8.
- the protrusions 240 242 on arms 234 may slide freely through the recesses 230 in rim 224 as the ribs 222 slide within the longitudinal channels 246.
- the retaining members 118 of the stent 102 will protrude through the open end 210 of the funnel and will be positioned closely adjacent to one another.
- the pusher member 204 and the compression member 202 may be pushed together until the base 214 of the compression member rides over the protrusions 240 of the pusher member, temporarily flaring out the arms 234, until the base snaps into place in the widthwise channel 248 in each arm.
- the lengths of compression member 202 and arms 234 are such that base 214 will become engaged in channels 248 before the rim 224 of the compression member contacts the inner surface 252 of the base of the pusher member.
- the engagement of base 214 in the channels 248 longitudinally fixes the pusher member 204 to the compression member 202.
- the tip 32 and the support shaft 28 of delivery device 10 may then be inserted into the end of the collapsed valve 100 protruding through the first open end 210 of the funnel 206, through the collapsed valve, and out through the aperture 254 in the pusher member 204, as shown in FIG. 9.
- the retaining members 118 of the stent 102 may be positioned over the retaining element 26 of the delivery device 10 and within the recesses 27 thereof, thereby attaching the stent 102 to the delivery device.
- the distal sheath 30 of the delivery device may then be moved over the valve 100 until the valve is completely covered.
- the stent 102 may be substantially cooled which, based on the materials forming the stent, enables the stent to more easily deform.
- the entire assembly including the distal end of the delivery device 10 and the loading assembly 200, may be immersed in a cold liquid, such as a saline solution. The assembly may then be removed from the liquid, and the distal sheath 30 moved further over the valve 100 until it completely covers same.
- the loading assembly may first be separated from the delivery device 10. To accomplish this, the user may pull the pusher member 204 and the compression member 202 apart until the arms 234 flare outwardly and enable the base 214 to slide past the protrusions 240. The pusher member 204 and the compression member 202 may then be separated, permitting removal of the delivery device 10.
- the stent 102 may be substantially cooled to make it easier to be completely covered with the distal sheath 30 of the delivery device 10.
- the stent 102 should be cooled to temperatures below the transition temperature of the material forming the stent 102.
- the "transition temperature” is the temperature at which a material changes from one crystal state to another.
- a saline solution at about 0°C may be used.
- the stent 102 becomes plastic, enabling it to deform much more readily under the forces exerted by the movement of the distal sheath thereover. Accordingly, after cooling the stent 102 below the transition temperature, the user may completely cover the stent with the distal sheath 30 of the delivery device 10.
- FIG. 10 depicts a loading assembly 300 in accordance with another embodiment of the present invention.
- the loading assembly 300 includes a funnel 302 with a first open end 308 and a second open end 306 disposed in communication with one another.
- the funnel 302 has a proximal portion 310, which may have a substantially cylindrical shape, and a distal portion 312 which has a tapered shape with multiple diameters along its length.
- the distal portion 312 of the funnel 302 may have a frusto-conical shape, so that its diameter at the second open end 306 of the funnel 302 is larger than the diameter adjacent to the proximal portion 310.
- the loading assembly 300 further includes a pusher member 304 having a cavity 316 adapted and dimensioned to receive at least the second open end 306 of the funnel 302.
- the cavity 316 of the pusher member 304 is defined by an inner flat surface 318 and an annular wall 320.
- the annular wall 320 may completely encircle the cavity 316.
- An open end 322 of the cavity 316 is also adapted and dimensioned to receive at least the second open end 306 of the funnel 302.
- An aperture 324 may extend through the pusher member 304 along the central longitudinal axis thereof.
- the loading assembly 300 may be used to load a valve 100 into a delivery device.
- a portion of the annulus section 106 of the stent 102 may be positioned within the cavity 316 of the pusher member 304.
- the annulus section 106 of the stent 102 should be in contact with the inner surface 318 of the pusher member 304.
- the funnel 302 may then be placed over the stent 102, as shown in FIG. 11, so that the tapered wall of the distal portion 312 gradually compresses the valve and at least a portion of the aortic section 108 of the stent passes through the first open end 308 of the funnel.
- the user may push the funnel 302 down toward the pusher member 304 to compress more of the stent 102 and push it through the open end 308 of the funnel 302.
- the retaining members 118 will separate from one another, as seen in FIG. 12.
- the support shaft 28 of the delivery device 10 may be inserted between the retaining members 118 of the stent 102 and through the first open end 308 of the funnel 302.
- the retaining members 118 of the stent 102 may then be positioned over the retaining element 26 of the delivery device 10 and within the recesses 27 thereof, thereby attaching the stent to the delivery device 10.
- the user may move the pusher member 304 away from the stent while maintaining the funnel 302 in place, as seen in FIG. 13B.
- the distal sheath 30 may then be advanced toward the stent 102 to cover the retaining element 26 and at least about one-half of the length of the stent, as depicted in FIG. 13C.
- the funnel 302 may be moved over the distal sheath 30 and away from the stent 102.
- the distal sheath 30 may be further advanced to cover almost the entire stent 102 (e.g., about three quarters of the length of the stent) .
- the stent 102 may then be substantially cooled as discussed above (e.g., to a temperature below the transition temperature of the material forming the stent) to convert the stent to a state exhibiting plastic properties.
- plastic properties enable the stent 102 to more readily deform as the distal sheath 30 is moved over same.
- FIGS. 14A-14B and 15A-15D show an alternate method of using the loading assembly 300 to load the stent 102 into a delivery device.
- this exemplary method employs a holding tube 400 having a lumen 402 extending therethrough.
- the diameter of the holding tube 400 preferably is slightly smaller than the inner diameter of the proximal portion 310 of the funnel 302, such that the holding tube fits within the proximal portion of the funnel.
- the stent 102 may be initially compressed with the loading assembly 300, as described above.
- the holding tube 400 is positioned over the portion of the stent 102 (e.g., at least a portion of the aortic section 108) protruding from the funnel 302 * .
- the holding tube 400 may be advanced toward the pusher member 304, such that the holding tube is positioned within the proximal portion 310 of the funnel 302, as seen in FIG. 14B. At this point, the holding tube 400 maintains at least a portion of the stent 102 in a collapsed condition.
- the funnel 302 and the pusher member 304 may then be separated from the stent 102, as shown in FIG. 15A. Thereafter, the tip 32 and support shaft 28 of the delivery device 10 may be is inserted through the stent 102, beginning from the collapsed end thereof, as seen in FIG 15B, until the retaining members 118 of the stent are positioned in the recesses 27 of the retaining element 26, as shown in FIG. 15C.
- the distal sheath 30 may then be advanced toward the tip 32 to cover at least a portion of the stent 102. For example, the distal sheath 30 may cover more than one-half of the length of the stent 102 or more than three quarters of the length of the stent at this point.
- the holding tube 400 may be moved over the distal sheath 30, as seen in FIG. 15D.
- the stent 102 has been largely covered by the distal sheath 30 (e.g., about three quarters of the length of the stent)
- the user may substantially cool the stent as described above, to render the stent 102 more plastic. This step will enable the user to more readily move the distal sheath 30 toward the tip 32 to cover the entire stent 102.
- the holding tube 400 may be removed.
- FIG. 16 shows a loading assembly 500 according to yet another embodiment of the present invention.
- the loading assembly 500 includes a funnel 502 with a first open end 506 and a second open end 508 disposed in communication with one another.
- the proximal portion 510 of the funnel 502 has a substantially cylindrical shape, while the distal portion 512 of the funnel 502 has a tapered shape with multiple diameters along its length.
- the distal portion 512 of the funnel 502 may have a substantially frusto-conical shape, so that its diameter at the second open end 508 is larger than its diameter next to the proximal portion 510.
- the tapered shape of the distal portion 512 compresses a valve 100 passing therethrough .
- the loading assembly 500 further includes an adjustable member 516 movable relative to the funnel 502.
- the adjustable member 516 includes a substantially cylindrical body 518 having an outer diameter which is slightly smaller than the inner diameter of the proximal portion 510 of the funnel 502. Accordingly, the body 518 of the adjustable member 516 can slide within the proximal portion 510 of the funnel.
- a flange 520 provided at one end of the body 518 has a diameter substantially similar to or larger than the outer diameter of the proximal portion 510 of the funnel 502. The flange 520 serves as a mechanical stop, preventing the adjustable member 516 from being inserted completely within the proximal portion 510 of the funnel 502.
- One such preferred biasing member is a spring 522 assembled around the body 518 of the adjustable member 516.
- the spring 522 or other biasing member may be used to more precisely control the amount by which the aortic section 108 of the stent 102 protrudes from the adjustable member 516, and thus the separation between the retaining members 118 of the stent before inserting the tip 32 and support shaft 28 of the delivery device 10 through the valve 100.
- the loading assembly 500 may be used to load a valve 100 into delivery device 10 in substantially the same way as loading assembly 300 described above, including the use of a pusher member similar to pusher member 304.
- the user can more precisely control the separation between the retaining members 118. For example, the user may move the adjustable member 516 toward the funnel 502 to expose a greater length of the stent 102, thereby allowing the retaining members 118 to achieve more separation from one another. Conversely, the user may move the adjustable member 516 away from the funnel 502 to move the retaining members 118 closer to one another for assembly in the recesses 27 of the deployment device retainer 26.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013529126A JP5883452B2 (en) | 2010-09-17 | 2011-09-16 | Assembly and method for mounting a self-expanding foldable heart valve |
EP11764366.8A EP2616008B1 (en) | 2010-09-17 | 2011-09-16 | Assembly for loading a self-expanding collapsible heart valve |
BR112013006295A BR112013006295A2 (en) | 2010-09-17 | 2011-09-16 | device for flexing a self-expanding prosthetic heart valve, and method for loading a self-expanding prosthetic heart valve |
AU2011302641A AU2011302641B2 (en) | 2010-09-17 | 2011-09-16 | Assembly and method for loading a self-expanding collapsible heart valve |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38390810P | 2010-09-17 | 2010-09-17 | |
US61/383,908 | 2010-09-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012036742A2 true WO2012036742A2 (en) | 2012-03-22 |
WO2012036742A3 WO2012036742A3 (en) | 2012-08-23 |
Family
ID=44736026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/001598 WO2012036742A2 (en) | 2010-09-17 | 2011-09-16 | Assembly and method for loading a self-expanding collapsible heart valve |
Country Status (7)
Country | Link |
---|---|
US (3) | US8973234B2 (en) |
EP (1) | EP2616008B1 (en) |
JP (1) | JP5883452B2 (en) |
AU (1) | AU2011302641B2 (en) |
BR (1) | BR112013006295A2 (en) |
CR (1) | CR20130165A (en) |
WO (1) | WO2012036742A2 (en) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012106491A1 (en) * | 2011-02-02 | 2012-08-09 | St. Jude Medical, Inc. | System and method for loading a collapsile heart valve into a delivery device |
CN102805676A (en) * | 2012-08-14 | 2012-12-05 | 杭州启明医疗器械有限公司 | Compression device for artificial valve replacement device |
WO2013016513A1 (en) * | 2011-07-28 | 2013-01-31 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
WO2013045262A1 (en) * | 2011-09-30 | 2013-04-04 | Jenavalve Technology Inc. | System and method for loading a stent into a medical delivery system |
US8931159B2 (en) | 2011-07-28 | 2015-01-13 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
US8973234B2 (en) | 2010-09-17 | 2015-03-10 | St. Jude Medical, Cardiology Division, Inc. | Assembly and method for loading a self-expanding collapsible heart valve |
WO2016168609A1 (en) * | 2015-04-16 | 2016-10-20 | Tendyne Holdings, Inc. | Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves |
US9510947B2 (en) | 2011-10-21 | 2016-12-06 | Jenavalve Technology, Inc. | Catheter system for introducing an expandable heart valve stent into the body of a patient |
WO2017120413A1 (en) * | 2016-01-07 | 2017-07-13 | Medtronic Vascular Inc. | Prosthetic heart valve cooling |
US9833315B2 (en) | 2011-08-11 | 2017-12-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US9867694B2 (en) | 2013-08-30 | 2018-01-16 | Jenavalve Technology Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US9878127B2 (en) | 2012-05-16 | 2018-01-30 | Jenavalve Technology, Inc. | Catheter delivery system for heart valve prosthesis |
US9895221B2 (en) | 2012-07-28 | 2018-02-20 | Tendyne Holdings, Inc. | Multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US9986993B2 (en) | 2014-02-11 | 2018-06-05 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
US10201419B2 (en) | 2014-02-05 | 2019-02-12 | Tendyne Holdings, Inc. | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US10219900B2 (en) | 2012-07-30 | 2019-03-05 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
US10327894B2 (en) | 2015-09-18 | 2019-06-25 | Tendyne Holdings, Inc. | Methods for delivery of prosthetic mitral valves |
EP3474778A4 (en) * | 2016-06-24 | 2019-06-26 | Edwards Lifesciences Corporation | System and method for crimping a prosthetic valve |
US10363135B2 (en) | 2013-10-29 | 2019-07-30 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US10405976B2 (en) | 2013-05-30 | 2019-09-10 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
CN110251273A (en) * | 2019-05-23 | 2019-09-20 | 沛嘉医疗科技(苏州)有限公司 | It is a kind of to convey valve preloaded system and device through conduit |
US10456248B2 (en) | 2007-09-13 | 2019-10-29 | Georg Lutter | Truncated cone heart valve stent |
US10463494B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10463489B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10470877B2 (en) | 2016-05-03 | 2019-11-12 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
US10478293B2 (en) | 2013-04-04 | 2019-11-19 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
US10517728B2 (en) | 2014-03-10 | 2019-12-31 | Tendyne Holdings, Inc. | Devices and methods for positioning and monitoring tether load for prosthetic mitral valve |
US10555718B2 (en) | 2013-10-17 | 2020-02-11 | Tendyne Holdings, Inc. | Apparatus and methods for alignment and deployment of intracardiac devices |
US10595996B2 (en) | 2013-06-25 | 2020-03-24 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US10610354B2 (en) | 2013-08-01 | 2020-04-07 | Tendyne Holdings, Inc. | Epicardial anchor devices and methods |
US10610356B2 (en) | 2015-02-05 | 2020-04-07 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
US10610358B2 (en) | 2015-12-28 | 2020-04-07 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
US10709555B2 (en) | 2015-05-01 | 2020-07-14 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US10722357B2 (en) | 2017-07-18 | 2020-07-28 | St. Jude Medical, Cardiology Division, Inc. | Flushable loading base |
US10786351B2 (en) | 2015-01-07 | 2020-09-29 | Tendyne Holdings, Inc. | Prosthetic mitral valves and apparatus and methods for delivery of same |
US10952844B2 (en) | 2011-12-16 | 2021-03-23 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11039921B2 (en) | 2016-06-13 | 2021-06-22 | Tendyne Holdings, Inc. | Sequential delivery of two-part prosthetic mitral valve |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11065116B2 (en) | 2016-07-12 | 2021-07-20 | Tendyne Holdings, Inc. | Apparatus and methods for trans-septal retrieval of prosthetic heart valves |
US11090157B2 (en) | 2016-06-30 | 2021-08-17 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11096782B2 (en) | 2015-12-03 | 2021-08-24 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
US11154399B2 (en) | 2017-07-13 | 2021-10-26 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11179236B2 (en) | 2009-12-08 | 2021-11-23 | Colorado State University Research Foundation | Device and system for transcatheter mitral valve replacement |
US11191639B2 (en) | 2017-08-28 | 2021-12-07 | Tendyne Holdings, Inc. | Prosthetic heart valves with tether coupling features |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US11224510B2 (en) | 2013-04-02 | 2022-01-18 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
WO2022089745A1 (en) * | 2020-10-29 | 2022-05-05 | Clearstream Technologies Limited | Connector for transfer of an implant to a cathether |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US11648110B2 (en) | 2019-12-05 | 2023-05-16 | Tendyne Holdings, Inc. | Braided anchor for mitral valve |
US11648114B2 (en) | 2019-12-20 | 2023-05-16 | Tendyne Holdings, Inc. | Distally loaded sheath and loading funnel |
US11678980B2 (en) | 2020-08-19 | 2023-06-20 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
US11951002B2 (en) | 2020-03-30 | 2024-04-09 | Tendyne Holdings, Inc. | Apparatus and methods for valve and tether fixation |
US12121461B2 (en) | 2016-03-17 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
US8641757B2 (en) | 2010-09-10 | 2014-02-04 | Edwards Lifesciences Corporation | Systems for rapidly deploying surgical heart valves |
US9125741B2 (en) | 2010-09-10 | 2015-09-08 | Edwards Lifesciences Corporation | Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US10010412B2 (en) * | 2011-07-27 | 2018-07-03 | Edwards Lifesciences Corporation | Conical crimper |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
WO2014164832A1 (en) * | 2013-03-12 | 2014-10-09 | Edwards Lifesciences Corporation | Rapidly deployable surgical heart valves |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US10188515B2 (en) | 2013-05-13 | 2019-01-29 | Medtronic Vascular Inc. | Devices and methods for crimping a medical device |
CN106562840B (en) * | 2013-10-31 | 2018-06-22 | 上海微创心通医疗科技有限公司 | A kind of guiding lid and Load System being loaded into implant in transport system |
WO2015179468A1 (en) * | 2014-05-21 | 2015-11-26 | St. Jude Medical, Cardiology Division, Inc. | Self-expanding heart valves for coronary perfusion and sealing |
US9877855B2 (en) * | 2014-07-25 | 2018-01-30 | Cook Medical Technologies Llc | Method of loading and delivering a self-expanding stent |
CN108601645B (en) | 2015-12-15 | 2021-02-26 | 内奥瓦斯克迪亚拉公司 | Transseptal delivery system |
EP4183372A1 (en) | 2016-01-29 | 2023-05-24 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
US10357363B2 (en) * | 2016-06-09 | 2019-07-23 | Medtronic Vascular, Inc. | Transcatheter valve delivery system with crimped prosthetic heart valve |
EP3541462A4 (en) | 2016-11-21 | 2020-06-17 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
US10653523B2 (en) | 2017-01-19 | 2020-05-19 | 4C Medical Technologies, Inc. | Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves |
US10561495B2 (en) | 2017-01-24 | 2020-02-18 | 4C Medical Technologies, Inc. | Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve |
US12029647B2 (en) | 2017-03-07 | 2024-07-09 | 4C Medical Technologies, Inc. | Systems, methods and devices for prosthetic heart valve with single valve leaflet |
US12036113B2 (en) | 2017-06-14 | 2024-07-16 | 4C Medical Technologies, Inc. | Delivery of heart chamber prosthetic valve implant |
WO2019040357A1 (en) | 2017-08-21 | 2019-02-28 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and methods for improved loading of a transcatheter heart valve |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US10575949B2 (en) * | 2017-10-23 | 2020-03-03 | St. Jude Medical, Cardiology Division, Inc. | Folding patterns and loading funnel for improved transcatheter valve loading forces |
CN111818877B (en) | 2018-01-25 | 2023-12-22 | 爱德华兹生命科学公司 | Delivery system for assisting in recapture and repositioning of replacement valves after deployment |
CN112384173B (en) * | 2018-05-23 | 2024-06-11 | 恪心有限责任公司 | Loading system for implantable prosthesis and related loading method |
US11857441B2 (en) * | 2018-09-04 | 2024-01-02 | 4C Medical Technologies, Inc. | Stent loading device |
AU2019374743B2 (en) | 2018-11-08 | 2022-03-03 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
CN111467080A (en) * | 2019-01-24 | 2020-07-31 | 上海微创心通医疗科技有限公司 | Implant loading tool, compression device and loading system |
CA3132873A1 (en) | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
CN113811265A (en) | 2019-04-01 | 2021-12-17 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve deployable in a controlled manner |
AU2020271896B2 (en) | 2019-04-10 | 2022-10-13 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
WO2020236931A1 (en) | 2019-05-20 | 2020-11-26 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism |
WO2020257643A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
WO2021113395A1 (en) * | 2019-12-02 | 2021-06-10 | Venarum Medical, Llc | Process for catheter loading an implantable venous valve and apparatus |
US11931253B2 (en) | 2020-01-31 | 2024-03-19 | 4C Medical Technologies, Inc. | Prosthetic heart valve delivery system: ball-slide attachment |
US12053375B2 (en) | 2020-03-05 | 2024-08-06 | 4C Medical Technologies, Inc. | Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation |
US11992403B2 (en) | 2020-03-06 | 2024-05-28 | 4C Medical Technologies, Inc. | Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009091509A1 (en) | 2008-01-16 | 2009-07-23 | St. Jude Medical, Inc. | Delivery and retrieval systems for collapsible/expandable prosthetic heart valves |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4423730A (en) | 1982-03-01 | 1984-01-03 | Shelhigh Inc. | Atriotomy button and implantation device |
US5190546A (en) | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5843167A (en) | 1993-04-22 | 1998-12-01 | C. R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
EP0657147B1 (en) | 1993-11-04 | 1999-08-04 | C.R. Bard, Inc. | Non-migrating vascular prosthesis |
WO1995015192A1 (en) | 1993-12-03 | 1995-06-08 | Heartport, Inc. | Cardiopulmonary bypass system for closed-chest intervention |
US5968068A (en) | 1996-09-12 | 1999-10-19 | Baxter International Inc. | Endovascular delivery system |
EP0941713B1 (en) | 1998-03-04 | 2004-11-03 | Schneider (Europe) GmbH | Device to insert an endoprosthesis into a catheter shaft |
US6132458A (en) | 1998-05-15 | 2000-10-17 | American Medical Systems, Inc. | Method and device for loading a stent |
FR2800984B1 (en) | 1999-11-17 | 2001-12-14 | Jacques Seguin | DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY |
US20070043435A1 (en) | 1999-11-17 | 2007-02-22 | Jacques Seguin | Non-cylindrical prosthetic valve system for transluminal delivery |
US7018406B2 (en) | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
US8016877B2 (en) | 1999-11-17 | 2011-09-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
DE10026307A1 (en) | 2000-05-26 | 2001-11-29 | Variomed Ag Balzers | Stent, positioning element and insertion catheter |
US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
US20060142848A1 (en) | 2000-09-12 | 2006-06-29 | Shlomo Gabbay | Extra-anatomic aortic valve placement |
US20020096468A1 (en) * | 2000-12-04 | 2002-07-25 | Peter Zuk | Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples |
US6623518B2 (en) | 2001-02-26 | 2003-09-23 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
US7556646B2 (en) | 2001-09-13 | 2009-07-07 | Edwards Lifesciences Corporation | Methods and apparatuses for deploying minimally-invasive heart valves |
FR2828091B1 (en) | 2001-07-31 | 2003-11-21 | Seguin Jacques | ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT |
US20060106415A1 (en) | 2004-11-12 | 2006-05-18 | Shlomo Gabbay | Apparatus to facilitate implantation |
CA2458595C (en) * | 2001-10-11 | 2007-12-04 | Peter M. Wilson | Bronchial flow control devices and methods of use |
US6814746B2 (en) | 2002-11-01 | 2004-11-09 | Ev3 Peripheral, Inc. | Implant delivery system with marker interlock |
US7096554B2 (en) * | 2003-04-04 | 2006-08-29 | Boston Scientific Scimed, Inc. | Protective loading of stents |
US8182528B2 (en) | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US20050137686A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delaware Corporation | Externally expandable heart valve anchor and method |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US9005273B2 (en) | 2003-12-23 | 2015-04-14 | Sadra Medical, Inc. | Assessing the location and performance of replacement heart valves |
US20090054975A1 (en) | 2004-02-06 | 2009-02-26 | Children's Medical Center Corporation | Deployment device for cardiac surgery |
US7311730B2 (en) | 2004-02-13 | 2007-12-25 | Shlomo Gabbay | Support apparatus and heart valve prosthesis for sutureless implantation |
US20050194578A1 (en) | 2004-03-03 | 2005-09-08 | Morris David D. | Innerduct guide tube assembly for fiber optic cable |
US6935389B1 (en) * | 2004-05-12 | 2005-08-30 | Mark Rinaldi | Self-deploying funnel |
WO2006041505A1 (en) | 2004-10-02 | 2006-04-20 | Huber Christoph Hans | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
US20060167468A1 (en) | 2004-11-12 | 2006-07-27 | Shlomo Gabbay | Implantation system and method for loading an implanter with a prosthesis |
US20070162100A1 (en) | 2006-01-10 | 2007-07-12 | Shlomo Gabbay | System and method for loading implanter with prosthesis |
EP1819390B1 (en) * | 2004-12-07 | 2009-11-18 | Cook Incorporated | Introducer apparatus |
EP3266414B1 (en) | 2005-05-12 | 2024-07-17 | Covidien LP | Implant delivery system with interlocked rx port orientation |
US8790396B2 (en) | 2005-07-27 | 2014-07-29 | Medtronic 3F Therapeutics, Inc. | Methods and systems for cardiac valve delivery |
US8702777B2 (en) | 2005-08-22 | 2014-04-22 | Incept, Llc | Steep-taper flared stents and apparatus and methods for delivering them |
US7014074B1 (en) * | 2005-08-26 | 2006-03-21 | Mark Rinaldi | Caps for self-deploying funnel and pour spout |
US20070073391A1 (en) | 2005-09-28 | 2007-03-29 | Henry Bourang | System and method for delivering a mitral valve repair device |
US8167932B2 (en) | 2005-10-18 | 2012-05-01 | Edwards Lifesciences Corporation | Heart valve delivery system with valve catheter |
US8764820B2 (en) | 2005-11-16 | 2014-07-01 | Edwards Lifesciences Corporation | Transapical heart valve delivery system and method |
WO2007071436A2 (en) | 2005-12-22 | 2007-06-28 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US20070168013A1 (en) | 2006-01-19 | 2007-07-19 | Myles Douglas | Vascular graft and deployment system |
US8147541B2 (en) | 2006-02-27 | 2012-04-03 | Aortx, Inc. | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US20110224678A1 (en) | 2006-03-23 | 2011-09-15 | Shlomo Gabbay | Method and implantation system for implanting a cardiovascular prosthesis |
US20070239271A1 (en) * | 2006-04-10 | 2007-10-11 | Than Nguyen | Systems and methods for loading a prosthesis onto a minimally invasive delivery system |
US8834550B2 (en) | 2006-05-19 | 2014-09-16 | Boston Scientific Scimed, Inc. | Apparatus and method for loading and delivering a stent using a suture retaining mechanism |
US8535368B2 (en) | 2006-05-19 | 2013-09-17 | Boston Scientific Scimed, Inc. | Apparatus for loading and delivering a stent |
US8052750B2 (en) | 2006-09-19 | 2011-11-08 | Medtronic Ventor Technologies Ltd | Valve prosthesis fixation techniques using sandwiching |
US8747459B2 (en) | 2006-12-06 | 2014-06-10 | Medtronic Corevalve Llc | System and method for transapical delivery of an annulus anchored self-expanding valve |
US8070799B2 (en) | 2006-12-19 | 2011-12-06 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US8100959B2 (en) | 2007-03-09 | 2012-01-24 | Pulmonx Corporation | Loading device for a pulmonary implant |
US20090093876A1 (en) * | 2007-08-31 | 2009-04-09 | Edwards Lifesciences Corporation | Recoil inhibitor for prosthetic valve |
US8220121B2 (en) | 2007-09-14 | 2012-07-17 | Cook Medical Technologies Llc | Device for loading a self-expandable prosthesis into a sheath |
US8608795B2 (en) | 2007-12-04 | 2013-12-17 | Cook Medical Technologies Llc | Tapered loading system for implantable medical devices |
CA2732355A1 (en) | 2008-08-01 | 2010-02-04 | Intersect Ent, Inc. | Methods and devices for crimping self-expanding devices |
US8944411B2 (en) | 2008-08-29 | 2015-02-03 | Corning Cable Systems Llc | Pulling grip assembly for a fiber optic assembly |
US9119715B2 (en) | 2008-10-30 | 2015-09-01 | St. Jude Medical, Inc. | Collapsible/expandable prosthetic heart valve delivery system and methods |
US10278728B2 (en) | 2009-01-30 | 2019-05-07 | St. Jude Medical, Llc | Transapical mini-introducer hemostasis valve and punch |
EP2398421B1 (en) | 2009-02-20 | 2017-09-27 | St. Jude Medical, Inc. | Devices and methods for collapsing prosthetic heart valves |
JP2012523894A (en) | 2009-04-15 | 2012-10-11 | カルディアック バルブ テクノロジーズ,インコーポレーテッド | Vascular implant and its placement system |
US8585019B2 (en) | 2009-08-20 | 2013-11-19 | Cook Medical Technologies Llc | Loading apparatus and system for expandable intraluminal medical devices |
US9414914B2 (en) | 2010-02-24 | 2016-08-16 | Medtronic Ventor Technologies Ltd. | Catheter assembly with valve crimping accessories |
EP2605729A2 (en) | 2010-08-17 | 2013-06-26 | St. Jude Medical, Cardiology Division, Inc. | A device for collapsing and loading a heart valve into a minimally invasive delivery system |
US8814931B2 (en) | 2010-08-24 | 2014-08-26 | St. Jude Medical, Cardiology Division, Inc. | Staged deployment devices and methods for transcatheter heart valve delivery systems |
BR112013006295A2 (en) * | 2010-09-17 | 2016-06-07 | St Jude Medical Cardiology Div | device for flexing a self-expanding prosthetic heart valve, and method for loading a self-expanding prosthetic heart valve |
WO2012036744A2 (en) | 2010-09-17 | 2012-03-22 | St. Jude Medical, Cardiology Division, Inc. | Improved preparation methods for transcatheter heart valve delivery systems |
US8562663B2 (en) | 2010-10-26 | 2013-10-22 | Medtronic Ventor Technologies Ltd. | Devices and methods for loading a prosthesis onto a delivery system |
US9021674B2 (en) | 2011-02-02 | 2015-05-05 | St. Jude Medical, Inc. | System for loading a collapsible heart valve |
US8931159B2 (en) | 2011-07-28 | 2015-01-13 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
US9675456B2 (en) * | 2012-11-02 | 2017-06-13 | Medtronic, Inc. | Transcatheter valve prosthesis delivery system with recapturing feature and method |
US10188515B2 (en) | 2013-05-13 | 2019-01-29 | Medtronic Vascular Inc. | Devices and methods for crimping a medical device |
US9414917B2 (en) | 2013-09-17 | 2016-08-16 | Medtronic, Inc. | Systems and methods for loading a valve prosthesis onto a catheter |
CN106562840B (en) | 2013-10-31 | 2018-06-22 | 上海微创心通医疗科技有限公司 | A kind of guiding lid and Load System being loaded into implant in transport system |
-
2011
- 2011-09-16 BR BR112013006295A patent/BR112013006295A2/en not_active Application Discontinuation
- 2011-09-16 AU AU2011302641A patent/AU2011302641B2/en not_active Ceased
- 2011-09-16 US US13/234,688 patent/US8973234B2/en active Active
- 2011-09-16 EP EP11764366.8A patent/EP2616008B1/en active Active
- 2011-09-16 JP JP2013529126A patent/JP5883452B2/en not_active Expired - Fee Related
- 2011-09-16 WO PCT/US2011/001598 patent/WO2012036742A2/en active Application Filing
-
2013
- 2013-04-10 CR CR20130165A patent/CR20130165A/en unknown
-
2014
- 2014-12-18 US US14/575,175 patent/US9492274B2/en active Active
-
2016
- 2016-10-18 US US15/296,799 patent/US10149760B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009091509A1 (en) | 2008-01-16 | 2009-07-23 | St. Jude Medical, Inc. | Delivery and retrieval systems for collapsible/expandable prosthetic heart valves |
Cited By (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US10456248B2 (en) | 2007-09-13 | 2019-10-29 | Georg Lutter | Truncated cone heart valve stent |
US11213387B2 (en) | 2007-09-13 | 2022-01-04 | Georg Lutter | Truncated cone heart valve stent |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11154398B2 (en) | 2008-02-26 | 2021-10-26 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11179236B2 (en) | 2009-12-08 | 2021-11-23 | Colorado State University Research Foundation | Device and system for transcatheter mitral valve replacement |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US9492274B2 (en) | 2010-09-17 | 2016-11-15 | St. Jude Medical, Cardiology Division, Inc. | Method for loading a self-expanding collapsible heart valve |
US8973234B2 (en) | 2010-09-17 | 2015-03-10 | St. Jude Medical, Cardiology Division, Inc. | Assembly and method for loading a self-expanding collapsible heart valve |
US10149760B2 (en) | 2010-09-17 | 2018-12-11 | St. Jude Medical, Cardiology Division, Inc. | Assembly and method for loading a self-expanding collapsible heart valve |
US9021674B2 (en) | 2011-02-02 | 2015-05-05 | St. Jude Medical, Inc. | System for loading a collapsible heart valve |
WO2012106491A1 (en) * | 2011-02-02 | 2012-08-09 | St. Jude Medical, Inc. | System and method for loading a collapsile heart valve into a delivery device |
US10039642B2 (en) | 2011-07-28 | 2018-08-07 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
US8893370B2 (en) | 2011-07-28 | 2014-11-25 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
US9642703B2 (en) | 2011-07-28 | 2017-05-09 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
AU2012286876B2 (en) * | 2011-07-28 | 2014-11-06 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
US8931159B2 (en) | 2011-07-28 | 2015-01-13 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
WO2013016513A1 (en) * | 2011-07-28 | 2013-01-31 | St. Jude Medical, Cardiology Division, Inc. | System for loading a collapsible heart valve |
US10617519B2 (en) | 2011-08-11 | 2020-04-14 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11382737B2 (en) | 2011-08-11 | 2022-07-12 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11123181B2 (en) | 2011-08-11 | 2021-09-21 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US12059343B2 (en) | 2011-08-11 | 2024-08-13 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11135055B2 (en) | 2011-08-11 | 2021-10-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US10639145B2 (en) | 2011-08-11 | 2020-05-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11484404B2 (en) | 2011-08-11 | 2022-11-01 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11311374B2 (en) | 2011-08-11 | 2022-04-26 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11364116B2 (en) | 2011-08-11 | 2022-06-21 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US11123180B2 (en) | 2011-08-11 | 2021-09-21 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US9833315B2 (en) | 2011-08-11 | 2017-12-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
WO2013045262A1 (en) * | 2011-09-30 | 2013-04-04 | Jenavalve Technology Inc. | System and method for loading a stent into a medical delivery system |
US9510947B2 (en) | 2011-10-21 | 2016-12-06 | Jenavalve Technology, Inc. | Catheter system for introducing an expandable heart valve stent into the body of a patient |
US10952844B2 (en) | 2011-12-16 | 2021-03-23 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US9878127B2 (en) | 2012-05-16 | 2018-01-30 | Jenavalve Technology, Inc. | Catheter delivery system for heart valve prosthesis |
US9895221B2 (en) | 2012-07-28 | 2018-02-20 | Tendyne Holdings, Inc. | Multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US11759318B2 (en) | 2012-07-28 | 2023-09-19 | Tendyne Holdings, Inc. | Multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US11090155B2 (en) | 2012-07-30 | 2021-08-17 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
US10219900B2 (en) | 2012-07-30 | 2019-03-05 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
CN102805676B (en) * | 2012-08-14 | 2015-06-17 | 杭州启明医疗器械有限公司 | Compression device for artificial valve replacement device |
CN102805676A (en) * | 2012-08-14 | 2012-12-05 | 杭州启明医疗器械有限公司 | Compression device for artificial valve replacement device |
US11311379B2 (en) | 2013-04-02 | 2022-04-26 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US11224510B2 (en) | 2013-04-02 | 2022-01-18 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10463489B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10463494B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US11364119B2 (en) | 2013-04-04 | 2022-06-21 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
US10478293B2 (en) | 2013-04-04 | 2019-11-19 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
US10405976B2 (en) | 2013-05-30 | 2019-09-10 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
US11617645B2 (en) | 2013-05-30 | 2023-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
US11471281B2 (en) | 2013-06-25 | 2022-10-18 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US10595996B2 (en) | 2013-06-25 | 2020-03-24 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US10610354B2 (en) | 2013-08-01 | 2020-04-07 | Tendyne Holdings, Inc. | Epicardial anchor devices and methods |
US11612480B2 (en) | 2013-08-01 | 2023-03-28 | Tendyne Holdings, Inc. | Epicardial anchor devices and methods |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US10433954B2 (en) | 2013-08-30 | 2019-10-08 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US9867694B2 (en) | 2013-08-30 | 2018-01-16 | Jenavalve Technology Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US10555718B2 (en) | 2013-10-17 | 2020-02-11 | Tendyne Holdings, Inc. | Apparatus and methods for alignment and deployment of intracardiac devices |
US11246562B2 (en) | 2013-10-17 | 2022-02-15 | Tendyne Holdings, Inc. | Apparatus and methods for alignment and deployment of intracardiac devices |
US10363135B2 (en) | 2013-10-29 | 2019-07-30 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US11096783B2 (en) | 2013-10-29 | 2021-08-24 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US11464628B2 (en) | 2014-02-05 | 2022-10-11 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
US10201419B2 (en) | 2014-02-05 | 2019-02-12 | Tendyne Holdings, Inc. | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US11589985B2 (en) | 2014-02-05 | 2023-02-28 | Tendyne Holdings, Inc. | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US11045183B2 (en) | 2014-02-11 | 2021-06-29 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
US9986993B2 (en) | 2014-02-11 | 2018-06-05 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
US11382753B2 (en) | 2014-03-10 | 2022-07-12 | Tendyne Holdings, Inc. | Devices and methods for positioning and monitoring tether load for prosthetic mitral valve |
US10517728B2 (en) | 2014-03-10 | 2019-12-31 | Tendyne Holdings, Inc. | Devices and methods for positioning and monitoring tether load for prosthetic mitral valve |
US10786351B2 (en) | 2015-01-07 | 2020-09-29 | Tendyne Holdings, Inc. | Prosthetic mitral valves and apparatus and methods for delivery of same |
US10610356B2 (en) | 2015-02-05 | 2020-04-07 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
CN107750150B (en) * | 2015-04-16 | 2021-03-05 | 坦迪尼控股股份有限公司 | Devices and methods for delivering, repositioning and retrieving transcatheter prosthetic valves |
US10667905B2 (en) | 2015-04-16 | 2020-06-02 | Tendyne Holdings, Inc. | Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves |
CN107750150A (en) * | 2015-04-16 | 2018-03-02 | 坦迪尼控股股份有限公司 | For delivering, repositioning and withdrawing the apparatus and method through conduit prosthetic valve |
US11523902B2 (en) | 2015-04-16 | 2022-12-13 | Tendyne Holdings, Inc. | Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves |
WO2016168609A1 (en) * | 2015-04-16 | 2016-10-20 | Tendyne Holdings, Inc. | Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves |
US10709555B2 (en) | 2015-05-01 | 2020-07-14 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US10327894B2 (en) | 2015-09-18 | 2019-06-25 | Tendyne Holdings, Inc. | Methods for delivery of prosthetic mitral valves |
US11318012B2 (en) | 2015-09-18 | 2022-05-03 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of prosthetic mitral valve |
US11096782B2 (en) | 2015-12-03 | 2021-08-24 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
US10610358B2 (en) | 2015-12-28 | 2020-04-07 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
US11464629B2 (en) | 2015-12-28 | 2022-10-11 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
US11766325B2 (en) | 2016-01-07 | 2023-09-26 | Medtronic Vascular, Inc. | Prosthetic heart valve cooling |
WO2017120413A1 (en) * | 2016-01-07 | 2017-07-13 | Medtronic Vascular Inc. | Prosthetic heart valve cooling |
US11364115B2 (en) | 2016-01-07 | 2022-06-21 | Medtronic Vascular, Inc. | Prosthetic heart valve cooling |
US10660746B2 (en) | 2016-01-07 | 2020-05-26 | Medtronic Vascular, Inc. | Prosthetic heart valve cooling |
US10092398B2 (en) | 2016-01-07 | 2018-10-09 | Medtronic Vascular, Inc. | Prosthetic heart valve cooling |
US12121461B2 (en) | 2016-03-17 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
US10470877B2 (en) | 2016-05-03 | 2019-11-12 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
US11253354B2 (en) | 2016-05-03 | 2022-02-22 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11039921B2 (en) | 2016-06-13 | 2021-06-22 | Tendyne Holdings, Inc. | Sequential delivery of two-part prosthetic mitral valve |
EP3474778A4 (en) * | 2016-06-24 | 2019-06-26 | Edwards Lifesciences Corporation | System and method for crimping a prosthetic valve |
EP3949903A1 (en) * | 2016-06-24 | 2022-02-09 | Edwards Lifesciences Corporation | Em for crimping a prosthetic valve |
US11090157B2 (en) | 2016-06-30 | 2021-08-17 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11701226B2 (en) | 2016-06-30 | 2023-07-18 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US11065116B2 (en) | 2016-07-12 | 2021-07-20 | Tendyne Holdings, Inc. | Apparatus and methods for trans-septal retrieval of prosthetic heart valves |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US11154399B2 (en) | 2017-07-13 | 2021-10-26 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US10722357B2 (en) | 2017-07-18 | 2020-07-28 | St. Jude Medical, Cardiology Division, Inc. | Flushable loading base |
US11191639B2 (en) | 2017-08-28 | 2021-12-07 | Tendyne Holdings, Inc. | Prosthetic heart valves with tether coupling features |
CN110251273A (en) * | 2019-05-23 | 2019-09-20 | 沛嘉医疗科技(苏州)有限公司 | It is a kind of to convey valve preloaded system and device through conduit |
US11648110B2 (en) | 2019-12-05 | 2023-05-16 | Tendyne Holdings, Inc. | Braided anchor for mitral valve |
US11648114B2 (en) | 2019-12-20 | 2023-05-16 | Tendyne Holdings, Inc. | Distally loaded sheath and loading funnel |
US11951002B2 (en) | 2020-03-30 | 2024-04-09 | Tendyne Holdings, Inc. | Apparatus and methods for valve and tether fixation |
US11678980B2 (en) | 2020-08-19 | 2023-06-20 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
CN114760962B (en) * | 2020-10-29 | 2023-06-06 | 清流科技有限公司 | Connector for transferring an implant to a catheter |
AU2020474539B2 (en) * | 2020-10-29 | 2022-12-01 | Clearstream Technologies Limited | Connector for transfer of an implant to a cathether |
CN114760962A (en) * | 2020-10-29 | 2022-07-15 | 清流科技有限公司 | Connector for transferring an implant to a catheter |
US11826270B2 (en) | 2020-10-29 | 2023-11-28 | Clearstream Technologies Limited | Connector for transfer of an implant to a catheter |
WO2022089745A1 (en) * | 2020-10-29 | 2022-05-05 | Clearstream Technologies Limited | Connector for transfer of an implant to a cathether |
US12121434B2 (en) | 2022-09-08 | 2024-10-22 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
Also Published As
Publication number | Publication date |
---|---|
JP5883452B2 (en) | 2016-03-15 |
CR20130165A (en) | 2013-05-09 |
AU2011302641B2 (en) | 2014-10-02 |
AU2011302641A1 (en) | 2013-05-02 |
WO2012036742A3 (en) | 2012-08-23 |
US20120083875A1 (en) | 2012-04-05 |
US20170035570A1 (en) | 2017-02-09 |
EP2616008A2 (en) | 2013-07-24 |
EP2616008B1 (en) | 2018-10-24 |
US10149760B2 (en) | 2018-12-11 |
US9492274B2 (en) | 2016-11-15 |
JP2013540482A (en) | 2013-11-07 |
BR112013006295A2 (en) | 2016-06-07 |
US20150101171A1 (en) | 2015-04-16 |
US8973234B2 (en) | 2015-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10149760B2 (en) | Assembly and method for loading a self-expanding collapsible heart valve | |
US10123892B2 (en) | System for loading a collapsible heart valve having a leaflet restraining member | |
EP2736454B1 (en) | System for loading a collapsible heart valve | |
US9642703B2 (en) | System for loading a collapsible heart valve | |
EP2670357B1 (en) | System for loading a collapsible heart valve into a delivery device | |
US11369470B2 (en) | Mitral valve loading tool | |
US20240197505A1 (en) | Active and Passive Cuff Management Devices for Loading of Transcatheter Valves | |
CN118593192A (en) | Loading body for receiving a valve prosthesis, loading device and delivery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11764366 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2013529126 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011764366 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: CR2013-000165 Country of ref document: CR |
|
ENP | Entry into the national phase |
Ref document number: 2011302641 Country of ref document: AU Date of ref document: 20110916 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013006295 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013006295 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130315 |