WO2012036742A2 - Assembly and method for loading a self-expanding collapsible heart valve - Google Patents

Assembly and method for loading a self-expanding collapsible heart valve Download PDF

Info

Publication number
WO2012036742A2
WO2012036742A2 PCT/US2011/001598 US2011001598W WO2012036742A2 WO 2012036742 A2 WO2012036742 A2 WO 2012036742A2 US 2011001598 W US2011001598 W US 2011001598W WO 2012036742 A2 WO2012036742 A2 WO 2012036742A2
Authority
WO
WIPO (PCT)
Prior art keywords
open end
heart valve
valve
pusher member
compression member
Prior art date
Application number
PCT/US2011/001598
Other languages
French (fr)
Other versions
WO2012036742A3 (en
Inventor
Michael A. Johnson
Valerie J. Glazier
Huisun Wang
Original Assignee
St. Jude Medical, Cardiology Division, Inc.
St. Jude Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St. Jude Medical, Cardiology Division, Inc., St. Jude Medical, Inc. filed Critical St. Jude Medical, Cardiology Division, Inc.
Priority to JP2013529126A priority Critical patent/JP5883452B2/en
Priority to EP11764366.8A priority patent/EP2616008B1/en
Priority to BR112013006295A priority patent/BR112013006295A2/en
Priority to AU2011302641A priority patent/AU2011302641B2/en
Publication of WO2012036742A2 publication Critical patent/WO2012036742A2/en
Publication of WO2012036742A3 publication Critical patent/WO2012036742A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/02Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits
    • B23P11/025Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits by using heat or cold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • A61F2/9525Means for mounting a stent or stent-graft onto or into a placement instrument using a funnel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0023Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at different temperatures whilst inside or touching the human body, heated or cooled by external energy source or cold supply
    • A61F2210/0028Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at different temperatures whilst inside or touching the human body, heated or cooled by external energy source or cold supply cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0402Cleaning, repairing, or assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49863Assembling or joining with prestressing of part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49863Assembling or joining with prestressing of part
    • Y10T29/49865Assembling or joining with prestressing of part by temperature differential [e.g., shrink fit]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49925Inward deformation of aperture or hollow body wall
    • Y10T29/49927Hollow body is axially joined cup or tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53909Means comprising hand manipulatable tool

Definitions

  • the present disclosure relates to prosthetic heart valve implantation and, more particularly, to assemblies and methods for loading a self-expanding collapsible heart valve into a delivery device.
  • Prosthetic heart valves may be formed from biological materials such as harvested bovine valves or pericardium tissue. Such valves are typically fitted within a stent, which may be inserted into the heart at the annulus of the compromised native valve to replace the native valve. To perform such insertion procedure, it is often necessary to compress the stent to a reduced diameter for loading into the delivery device.
  • the stented valve is preferably preserved in the open condition for storage as compression of the valve material for extended periods compromises the integrity of the biological valve. It is therefore necessary to crimp the valve, or reduce its diameter for loading in the delivery device, in the operating arena.
  • the present disclosure relates to devices for collapsing a self-expanding prosthetic heart valve.
  • the device includes a compression member and a pusher member.
  • the compression member has a first open end with a first diameter, a second open end with a second diameter less than the first diameter, and a tapered wall extending between the first open end and the second open end.
  • the tapered wall defines an open space adapted to receive the valve.
  • the pusher member has a base adapted to engage an end of the valve, the pusher member and the compression member being movable relative to one another between an initial position in which the base of the pusher member is relatively far from the first open end of the compression member and an operative position in which the base of the pusher member is relatively close to the first open end of the compression member. Movement of the pusher member and the compression member from the initial position to the operative position pushes the valve through the open space such that the valve is radially compressed by the tapered wall of the compression member as the valve advances through the open space.
  • the device may further include a first fastener on the pusher member and a second fastener on the compression member, engagement of the first fastener with the second fastener in the operative position securing the pusher member to the compression member.
  • the first fastener may include a plurality of spaced arms extending in a longitudinal direction from the base of the pusher member to a free end. Each of the plurality of arms may extend substantially orthogonally from the base. The free end of each of the plurality of arms may include a first receiving channel oriented in a direction substantially orthogonal to the longitudinal direction.
  • the second fastener may include a base projecting radially outward from the second open end of the compression member and adapted to be received in the first receiving channels in an assembled condition of the pusher member and the compression member.
  • the compression member may include a rim projecting radially outward from the first open end and adapted to be received between the plurality of arms in an assembled condition of the pusher member and the compression member.
  • Each of the plurality of arms may include a second receiving channel oriented in the longitudinal direction and extending from the free end of the arm toward the base of the pusher member.
  • the first receiving channel may intersect with the second receiving channel on each of the plurality of arms.
  • the compression member may include a plurality of ribs extending in the longitudinal direction between the first open end and the second open end, each rib being adapted to be received in one of the second receiving channels during movement of the pusher member and the compression member from the initial position toward the operative position.
  • the rim of the compression member may include a plurality of recesses, each recess lying between one of the ribs and a remainder of the rim.
  • the device may further include an annular wall projecting from the base of the pusher member, the annular wall defining a cavity sized and shaped to receive the end of the valve.
  • the annular wall may have an axis of revolution and the pusher member may further include an aperture through the base, a center of the aperture being coincident with the axis of revolution of the annular wall.
  • the present disclosure also relates to methods for loading a self-expanding prosthetic heart valve into a delivery device, the heart valve having a length, a stent portion formed from a material and at least one retaining member at one end thereof.
  • One method may include inserting the heart valve into a funnel having a first open end with a first diameter and a second open end with a second diameter less than the first diameter; advancing the heart valve through the funnel until the at least one retaining member protrudes out from the second open end of the funnel; attaching the at least one retaining member to a retaining element of the delivery device; advancing a distal sheath of the delivery device over the heart valve to collapse a portion of the heart valve less than the length; cooling the heart valve to a temperature below a transition temperature of the material forming the stent portion of the heart valve; and further advancing the distal sheath of the delivery device over the heart valve until the entire heart valve is collapsed.
  • the collapsed portion of the heart valve may be about one-half or
  • FIG. 1 is a perspective view of a distal portion of a delivery device
  • FIG. 2 is a perspective view of a proximal portion of the delivery device of FIG. 1;
  • FIG. 3 is an enlarged side view of a retaining element of the delivery device shown in FIGS. 1 and 2 ;
  • FIG. 4 is a perspective view of a self-expanding prosthetic heart valve
  • FIG. 5 is a perspective view of a compression member of a loading assembly according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of a pusher member of a loading assembly according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of the pusher member of FIG. 6 with a stent positioned therein;
  • FIGS. 8 and 9 illustrate an exemplary method of using the loading assembly shown in FIGS. 5 and 6;
  • FIG. 10 is a perspective view of a loading assembly according to another embodiment of the present invention.
  • FIGS. 11 and 12 illustrate the initial steps of a method for loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10;
  • FIGS. 13A-13D illustrate further steps of the method for loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10;
  • FIGS. 14A and 14B illustrate steps of an alternate method of loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10 and a tube;
  • FIGS. 15A-15D illustrate additional steps of the alternate method of loading a prosthetic heart valve into a delivery device using the loading assembly and the tube shown in FIGS. 14A and 14B;
  • FIG. 16 is a loading system according to an alternate embodiment of the present invention. DETAILED DESCRIPTION
  • proximal refers to the end of the loading assembly, or portion thereof, which is closest to the operator in use
  • distal refers to the end of the loading assembly, or portion thereof, which is farthest from the operator in use.
  • the present disclosure relates to assemblies and methods for loading a self-expanding stent or a collapsible prosthetic heart valve into a minimally invasive delivery device.
  • An exemplary minimally invasive delivery device 10 is illustrated in FIGS. 1 and 2.
  • delivery device 10 may include an inner tube 16 having a lumen extending therethrough.
  • a hub 14 is mounted on the proximal end of the inner tube 16 and is adapted for connection to another system or mechanism, such as a handle, a syringe or a mechanism for displacing the distal sheath 30. Mechanisms for displacing the distal sheath 30 are described in International Patent Application Publication No. WO/2009/091509, the entire contents of which are hereby incorporated herein by reference.
  • a retention ring 12 may also be mounted on the proximal end of the inner tube 16. At least a portion of the inner tube 16 extends through a Y-connector 18 and an outer shaft 20.
  • the Y-connector 18 includes a hemostasis valve for preventing, or at least hindering, blood flow between the inner tube 16 and the outer shaft 20.
  • the Y-connector 18 may be fluidly coupled to a fluid source.
  • the outer shaft 20 extends to a transition member 24, which may have a tapered shape.
  • the W may have a tapered shape.
  • transition member 24 interconnects a distal end of the outer shaft 20 and the distal sheath 30.
  • the distal sheath 30 surrounds a retaining element 26 and a support shaft 28 and can maintain a prosthetic heart valve mounted around the support shaft in a collapsed condition.
  • the support shaft 28 is operatively connected to the inner tube 16 and has a lumen extending therethrough for receiving a guidewire (not shown) .
  • the retaining element 26 is mounted on the support shaft 28 and is configured for supporting an end of a prosthetic heart valve or any other suitable medical implant, as discussed in detail below.
  • the retaining element 26 may be longitudinally and rotatably fixed relative to the support shaft 28, thereby preventing the cells of the stent from entangling with one another during deployment.
  • the distal sheath 30 covers the retaining element 26 and at least a portion of the support shaft 28 and is movable relative to the support shaft between a distal position shown in FIG. 1 and a proximal position (not shown) .
  • a tip 32 may be connected to the distal end of the support shaft 28, and may have a tapered shape.
  • the retaining element 26 is mounted on the support shaft 28 and may be longitudinally and rotatably fixed to same.
  • the retaining element 26 may include a plurality of recesses 27 located around its periphery.
  • the recesses 27 are spaced apart from one another and are adapted and dimensioned to receive a plurality of retaining members or tabs on one end of a self-expanding stent to thereby securely engage such stent to the delivery device.
  • the stent When a self- expanding stent is attached to the retaining element 26, the stent may be longitudinally and rotatably fixed relative to the support shaft 28. As a result, the stent can be prevented from sliding out of the distal sheath 30. In addition, when the distal sheath 30 is placed over the stent to maintain it in the collapsed condition, the cells of the stent will not become tangled.
  • FIG. 4 shows a bioprosthetic valve 100 designed to replace a native aortic valve.
  • the valve 100 has a collapsed condition and an expanded condition and may be formed from a collapsible framework or stent 102, with a valve assembly 104 internally connected to the stent.
  • the stent 102 may be formed from any suitable biocompatible material, such as nitinol, and may include an annulus section 106, an aortic section 108, and an intermediate section 110.
  • the aortic section 108 may have a larger diameter than the annulus section 106.
  • the intermediate section 110 of the stent 102 is located between the annulus section 106 and the aortic section 108.
  • the valve assembly 104 may include a plurality of leaflets 112 and a cuff 114 attached to the stent 102.
  • the leaflets 112 and the cuff 114 may be formed from a biocompatible polymer, from bovine or porcine pericardial tissue, or from other appropriate biocompatible materials.
  • the valve assembly 104 is connected to the stent 102 generally within the annulus section 106, but may extend into the intermediate section 110.
  • the valve 100 may include tabs or retaining members 118 at spaced positions around one or both ends of the stent 102.
  • the retaining members 118 are typically designed for use in loading the valve 100 into a delivery device, in particular for grasping and alignment purposes. However, the retaining members 118 may also be utilized to collapse the valve 100, as will be discussed.
  • the valve 100 is preferably preserved in its expanded or open condition for storage as the bioprosthetic valve assembly 104 may be compromised by storage in a collapsed condition for extended periods of time. As such, it is necessary to crimp the valve 100 into a collapsed or reduced diameter condition for use in the surgical implantation procedure at the latest possible time before the procedure. In order to effectively limit the time period the valve 100 is collapsed, the crimping process is preferably conducted in the operating arena by the surgeon, interventional cardiologist or surgical assistant using a specialized assembly.
  • a loading assembly 200 includes a first section or compression member 202 and a second section or pusher member 204 adapted to be connected to one another.
  • the compression member 202 includes a funnel 206 for reducing the diameter of a valve.
  • the funnel 206 may have a substantially frusto-conical shape and includes a first open end 208 and a second open end 210. Regardless of the specific shape of the funnel 206, the diameter of the first open end 208 is larger than the diameter of the second open end 210. The diameter of the funnel 206 may decrease uniformly from the first open end 208 to the second open end 210 to compress the valve 100 as it is advanced through the compression member 202.
  • the compression member 202 may further include a base 214 attached to the outer periphery of the second open end 210 of the funnel 206 for providing stability to the compression member 202 when it is placed on a flat surface.
  • the base 214 may be substantially disk-shaped, with an inner flat surface 216, an outer flat surface 218, and a sidewall 220 extending between the inner surface and the outer surface.
  • the inner surface 216 and outer surface 218 may each have a substantially circular shape, and may be oriented substantially parallel to one another.
  • the compression member 202 may include a plurality of ribs 222 connected between the outer wall of funnel 206 and the base 214 for enhancing the structural integrity of the loading assembly 200 when the compression member 202 is connected to the pusher member 204. As discussed in detail below, the ribs 222 also facilitate attachment of the compression member 202 to the pusher member 204.
  • the compression member 202 may include three ribs 222 spaced apart from one another around the circumference of funnel 206, although any number of ribs less than or greater than three are contemplated herein.
  • the ribs 222 may be substantially evenly spaced from one another around the circumference of the funnel 206.
  • Each rib 222 may extend from a first end 228 connected to the inner surface 216 of the base 214 to a second end 226 spaced from the first open end 208 of the funnel 206 and may be shaped substantially as a right-angled triangle.
  • the compression member 202 may further include a rim or lip 224 extending around the circumference of the first open end 208 of the funnel 206.
  • the rim 224 may be discontinuous at recesses 230 to provide clearance for protrusions on pusher member 204, as will be appreciated from the discussion below.
  • the pusher member 204 may include a substantially planar base 232 and a plurality of arms 234 projecting substantially orthogonally from the base.
  • the pusher member 204 may include three arms 234 spaced apart from one another around the periphery of the base 232, although any number of arms less than or greater than three are contemplated herein.
  • Each arm 234 may extend from a first end 236 attached to the base 232 to a free end 238.
  • Each arm 234 may include any suitable locking feature, such as protrusions 240, 242 on its inner surface 244, for locking the pusher member 204 to the compression member 202.
  • the protrusions 240, 242 may be located near the free end 238 of each arm 234.
  • the protrusions 240, 242 collectively form a first channel 246 extending in the longitudinal direction of each arm 234 and a second channel 248 extending substantially orthogonally to the first channel 246 in the width direction of each arm 234.
  • Each longitudinal channel 246 may extend between two protrusions 240 and two protrusions 242 in a central location along the inner surface 244 of each arm 234, and is adapted and dimensioned to receive at least a portion of a rib 222 of the compression member 202.
  • the longitudinal channels 246 of the pusher member 204 and the ribs 222 of the compression member 202 cooperate with one another to facilitate sliding movement of the pusher member 204 longitudinally relative to the compression member 202.
  • Each widthwise channel 248 on arms 234 may extend between two protrusions 240 and two protrusions 242 and is adapted and dimensioned to receive the base 214 of the compression member 202.
  • the pusher member 204 is longitudinally fixed to the compression member 202.
  • the base 232 of the pusher member 204 may include an aperture 254 disposed through the approximate center thereof with an annular wall or ring 250 attached to an inner surface 252 of the base around the aperture.
  • the annular wall 250 is adapted and dimensioned to receive at least a portion of the annulus section 106 of the stent 102, as seen in FIG. 7.
  • the loading assembly 200 may be used to load the collapsible prosthetic heart valve 100 into a delivery device.
  • the pusher member 204 With the pusher member 204 on a flat surface, at least a portion of the annulus section 106 of the stent 102 may be placed within the confines of the annular wall 250. At this point, the annulus section 106 may contact the inner surface of the annular wall 250.
  • the compression member 202 may then be inverted over the aortic section 108 of the stent 102 so that the aortic section of the stent is positioned within the funnel 206 and the ribs 222 of the compression member are axially aligned with the longitudinal channels 246 in arms 234.
  • the pusher member 204 and compression member 202 may then be pushed together, with the tapered walls of the funnel 206 gradually compressing the valve 100, until a portion of the aortic section 108 of the stent 102 passes through the second open end 210 of the funnel, as shown in FIG. 8.
  • the protrusions 240 242 on arms 234 may slide freely through the recesses 230 in rim 224 as the ribs 222 slide within the longitudinal channels 246.
  • the retaining members 118 of the stent 102 will protrude through the open end 210 of the funnel and will be positioned closely adjacent to one another.
  • the pusher member 204 and the compression member 202 may be pushed together until the base 214 of the compression member rides over the protrusions 240 of the pusher member, temporarily flaring out the arms 234, until the base snaps into place in the widthwise channel 248 in each arm.
  • the lengths of compression member 202 and arms 234 are such that base 214 will become engaged in channels 248 before the rim 224 of the compression member contacts the inner surface 252 of the base of the pusher member.
  • the engagement of base 214 in the channels 248 longitudinally fixes the pusher member 204 to the compression member 202.
  • the tip 32 and the support shaft 28 of delivery device 10 may then be inserted into the end of the collapsed valve 100 protruding through the first open end 210 of the funnel 206, through the collapsed valve, and out through the aperture 254 in the pusher member 204, as shown in FIG. 9.
  • the retaining members 118 of the stent 102 may be positioned over the retaining element 26 of the delivery device 10 and within the recesses 27 thereof, thereby attaching the stent 102 to the delivery device.
  • the distal sheath 30 of the delivery device may then be moved over the valve 100 until the valve is completely covered.
  • the stent 102 may be substantially cooled which, based on the materials forming the stent, enables the stent to more easily deform.
  • the entire assembly including the distal end of the delivery device 10 and the loading assembly 200, may be immersed in a cold liquid, such as a saline solution. The assembly may then be removed from the liquid, and the distal sheath 30 moved further over the valve 100 until it completely covers same.
  • the loading assembly may first be separated from the delivery device 10. To accomplish this, the user may pull the pusher member 204 and the compression member 202 apart until the arms 234 flare outwardly and enable the base 214 to slide past the protrusions 240. The pusher member 204 and the compression member 202 may then be separated, permitting removal of the delivery device 10.
  • the stent 102 may be substantially cooled to make it easier to be completely covered with the distal sheath 30 of the delivery device 10.
  • the stent 102 should be cooled to temperatures below the transition temperature of the material forming the stent 102.
  • the "transition temperature” is the temperature at which a material changes from one crystal state to another.
  • a saline solution at about 0°C may be used.
  • the stent 102 becomes plastic, enabling it to deform much more readily under the forces exerted by the movement of the distal sheath thereover. Accordingly, after cooling the stent 102 below the transition temperature, the user may completely cover the stent with the distal sheath 30 of the delivery device 10.
  • FIG. 10 depicts a loading assembly 300 in accordance with another embodiment of the present invention.
  • the loading assembly 300 includes a funnel 302 with a first open end 308 and a second open end 306 disposed in communication with one another.
  • the funnel 302 has a proximal portion 310, which may have a substantially cylindrical shape, and a distal portion 312 which has a tapered shape with multiple diameters along its length.
  • the distal portion 312 of the funnel 302 may have a frusto-conical shape, so that its diameter at the second open end 306 of the funnel 302 is larger than the diameter adjacent to the proximal portion 310.
  • the loading assembly 300 further includes a pusher member 304 having a cavity 316 adapted and dimensioned to receive at least the second open end 306 of the funnel 302.
  • the cavity 316 of the pusher member 304 is defined by an inner flat surface 318 and an annular wall 320.
  • the annular wall 320 may completely encircle the cavity 316.
  • An open end 322 of the cavity 316 is also adapted and dimensioned to receive at least the second open end 306 of the funnel 302.
  • An aperture 324 may extend through the pusher member 304 along the central longitudinal axis thereof.
  • the loading assembly 300 may be used to load a valve 100 into a delivery device.
  • a portion of the annulus section 106 of the stent 102 may be positioned within the cavity 316 of the pusher member 304.
  • the annulus section 106 of the stent 102 should be in contact with the inner surface 318 of the pusher member 304.
  • the funnel 302 may then be placed over the stent 102, as shown in FIG. 11, so that the tapered wall of the distal portion 312 gradually compresses the valve and at least a portion of the aortic section 108 of the stent passes through the first open end 308 of the funnel.
  • the user may push the funnel 302 down toward the pusher member 304 to compress more of the stent 102 and push it through the open end 308 of the funnel 302.
  • the retaining members 118 will separate from one another, as seen in FIG. 12.
  • the support shaft 28 of the delivery device 10 may be inserted between the retaining members 118 of the stent 102 and through the first open end 308 of the funnel 302.
  • the retaining members 118 of the stent 102 may then be positioned over the retaining element 26 of the delivery device 10 and within the recesses 27 thereof, thereby attaching the stent to the delivery device 10.
  • the user may move the pusher member 304 away from the stent while maintaining the funnel 302 in place, as seen in FIG. 13B.
  • the distal sheath 30 may then be advanced toward the stent 102 to cover the retaining element 26 and at least about one-half of the length of the stent, as depicted in FIG. 13C.
  • the funnel 302 may be moved over the distal sheath 30 and away from the stent 102.
  • the distal sheath 30 may be further advanced to cover almost the entire stent 102 (e.g., about three quarters of the length of the stent) .
  • the stent 102 may then be substantially cooled as discussed above (e.g., to a temperature below the transition temperature of the material forming the stent) to convert the stent to a state exhibiting plastic properties.
  • plastic properties enable the stent 102 to more readily deform as the distal sheath 30 is moved over same.
  • FIGS. 14A-14B and 15A-15D show an alternate method of using the loading assembly 300 to load the stent 102 into a delivery device.
  • this exemplary method employs a holding tube 400 having a lumen 402 extending therethrough.
  • the diameter of the holding tube 400 preferably is slightly smaller than the inner diameter of the proximal portion 310 of the funnel 302, such that the holding tube fits within the proximal portion of the funnel.
  • the stent 102 may be initially compressed with the loading assembly 300, as described above.
  • the holding tube 400 is positioned over the portion of the stent 102 (e.g., at least a portion of the aortic section 108) protruding from the funnel 302 * .
  • the holding tube 400 may be advanced toward the pusher member 304, such that the holding tube is positioned within the proximal portion 310 of the funnel 302, as seen in FIG. 14B. At this point, the holding tube 400 maintains at least a portion of the stent 102 in a collapsed condition.
  • the funnel 302 and the pusher member 304 may then be separated from the stent 102, as shown in FIG. 15A. Thereafter, the tip 32 and support shaft 28 of the delivery device 10 may be is inserted through the stent 102, beginning from the collapsed end thereof, as seen in FIG 15B, until the retaining members 118 of the stent are positioned in the recesses 27 of the retaining element 26, as shown in FIG. 15C.
  • the distal sheath 30 may then be advanced toward the tip 32 to cover at least a portion of the stent 102. For example, the distal sheath 30 may cover more than one-half of the length of the stent 102 or more than three quarters of the length of the stent at this point.
  • the holding tube 400 may be moved over the distal sheath 30, as seen in FIG. 15D.
  • the stent 102 has been largely covered by the distal sheath 30 (e.g., about three quarters of the length of the stent)
  • the user may substantially cool the stent as described above, to render the stent 102 more plastic. This step will enable the user to more readily move the distal sheath 30 toward the tip 32 to cover the entire stent 102.
  • the holding tube 400 may be removed.
  • FIG. 16 shows a loading assembly 500 according to yet another embodiment of the present invention.
  • the loading assembly 500 includes a funnel 502 with a first open end 506 and a second open end 508 disposed in communication with one another.
  • the proximal portion 510 of the funnel 502 has a substantially cylindrical shape, while the distal portion 512 of the funnel 502 has a tapered shape with multiple diameters along its length.
  • the distal portion 512 of the funnel 502 may have a substantially frusto-conical shape, so that its diameter at the second open end 508 is larger than its diameter next to the proximal portion 510.
  • the tapered shape of the distal portion 512 compresses a valve 100 passing therethrough .
  • the loading assembly 500 further includes an adjustable member 516 movable relative to the funnel 502.
  • the adjustable member 516 includes a substantially cylindrical body 518 having an outer diameter which is slightly smaller than the inner diameter of the proximal portion 510 of the funnel 502. Accordingly, the body 518 of the adjustable member 516 can slide within the proximal portion 510 of the funnel.
  • a flange 520 provided at one end of the body 518 has a diameter substantially similar to or larger than the outer diameter of the proximal portion 510 of the funnel 502. The flange 520 serves as a mechanical stop, preventing the adjustable member 516 from being inserted completely within the proximal portion 510 of the funnel 502.
  • One such preferred biasing member is a spring 522 assembled around the body 518 of the adjustable member 516.
  • the spring 522 or other biasing member may be used to more precisely control the amount by which the aortic section 108 of the stent 102 protrudes from the adjustable member 516, and thus the separation between the retaining members 118 of the stent before inserting the tip 32 and support shaft 28 of the delivery device 10 through the valve 100.
  • the loading assembly 500 may be used to load a valve 100 into delivery device 10 in substantially the same way as loading assembly 300 described above, including the use of a pusher member similar to pusher member 304.
  • the user can more precisely control the separation between the retaining members 118. For example, the user may move the adjustable member 516 toward the funnel 502 to expose a greater length of the stent 102, thereby allowing the retaining members 118 to achieve more separation from one another. Conversely, the user may move the adjustable member 516 away from the funnel 502 to move the retaining members 118 closer to one another for assembly in the recesses 27 of the deployment device retainer 26.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)

Abstract

An assembly for collapsing a prosthetic heart valve includes a compression member and a pusher member. The compression member has a first open end with a first diameter, a second open end with a second diameter less than the first diameter, and a tapered wall between the first open end and the second open end. The pusher member has a base adapted to engage an end of the valve. The pusher member and the compression member are movable relative to one another between an initial position in which the base of the pusher member is relatively far from the first open end of the compression member and an operative position in which the base of the pusher member is relatively close to the first open end of the compression member. Movement of the pusher and compression members from the initial position to the operative position radially compresses the valve.

Description

ASSEMBLY AND METHOD FOR LOADING
A SELF-EXPANDING COLLAPSIBLE HEART VALVE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of the filing date of United States Provisional Patent Application No. 61/383,908 filed September 17, 2010, the disclosure of which is hereby incorporated herein by reference.
BACKGROUND OF THE INVENTION
[0002] The present disclosure relates to prosthetic heart valve implantation and, more particularly, to assemblies and methods for loading a self-expanding collapsible heart valve into a delivery device.
[0003] Prosthetic heart valves may be formed from biological materials such as harvested bovine valves or pericardium tissue. Such valves are typically fitted within a stent, which may be inserted into the heart at the annulus of the compromised native valve to replace the native valve. To perform such insertion procedure, it is often necessary to compress the stent to a reduced diameter for loading into the delivery device.
[0004] In the case of valves formed from biological materials, the stented valve is preferably preserved in the open condition for storage as compression of the valve material for extended periods compromises the integrity of the biological valve. It is therefore necessary to crimp the valve, or reduce its diameter for loading in the delivery device, in the operating arena.
[0005] Present crimping devices and methods for collapsing a stented valve, including direct radial assemblies, have proven to be unsatisfactory as they include bulky assemblies, are difficult to master, are time consuming, impart undue stress on the stented valve, or exhibit other undesirable qualities. Moreover, it is sometimes difficult to securely engage the stent to a retaining element of a delivery device. It would therefore be beneficial to provide a device and method for collapsing a stented bioprosthetic heart valve using apparatus and techniques that overcome the deficiencies of conventional devices. In addition, such assembly and method would assist with loading of the collapsed stented valve into a minimally invasive delivery device.
SUMMARY OF THE INVENTION
[0006] The present disclosure relates to devices for collapsing a self-expanding prosthetic heart valve. In one embodiment, the device includes a compression member and a pusher member. The compression member has a first open end with a first diameter, a second open end with a second diameter less than the first diameter, and a tapered wall extending between the first open end and the second open end. The tapered wall defines an open space adapted to receive the valve. The pusher member has a base adapted to engage an end of the valve, the pusher member and the compression member being movable relative to one another between an initial position in which the base of the pusher member is relatively far from the first open end of the compression member and an operative position in which the base of the pusher member is relatively close to the first open end of the compression member. Movement of the pusher member and the compression member from the initial position to the operative position pushes the valve through the open space such that the valve is radially compressed by the tapered wall of the compression member as the valve advances through the open space.
[0007] The device may further include a first fastener on the pusher member and a second fastener on the compression member, engagement of the first fastener with the second fastener in the operative position securing the pusher member to the compression member. The first fastener may include a plurality of spaced arms extending in a longitudinal direction from the base of the pusher member to a free end. Each of the plurality of arms may extend substantially orthogonally from the base. The free end of each of the plurality of arms may include a first receiving channel oriented in a direction substantially orthogonal to the longitudinal direction. The second fastener may include a base projecting radially outward from the second open end of the compression member and adapted to be received in the first receiving channels in an assembled condition of the pusher member and the compression member.
[0008] The compression member may include a rim projecting radially outward from the first open end and adapted to be received between the plurality of arms in an assembled condition of the pusher member and the compression member. Each of the plurality of arms may include a second receiving channel oriented in the longitudinal direction and extending from the free end of the arm toward the base of the pusher member. The first receiving channel may intersect with the second receiving channel on each of the plurality of arms. The compression member may include a plurality of ribs extending in the longitudinal direction between the first open end and the second open end, each rib being adapted to be received in one of the second receiving channels during movement of the pusher member and the compression member from the initial position toward the operative position. The rim of the compression member may include a plurality of recesses, each recess lying between one of the ribs and a remainder of the rim.
[0009] The device may further include an annular wall projecting from the base of the pusher member, the annular wall defining a cavity sized and shaped to receive the end of the valve. The annular wall may have an axis of revolution and the pusher member may further include an aperture through the base, a center of the aperture being coincident with the axis of revolution of the annular wall.
[0010] The present disclosure also relates to methods for loading a self-expanding prosthetic heart valve into a delivery device, the heart valve having a length, a stent portion formed from a material and at least one retaining member at one end thereof. One method may include inserting the heart valve into a funnel having a first open end with a first diameter and a second open end with a second diameter less than the first diameter; advancing the heart valve through the funnel until the at least one retaining member protrudes out from the second open end of the funnel; attaching the at least one retaining member to a retaining element of the delivery device; advancing a distal sheath of the delivery device over the heart valve to collapse a portion of the heart valve less than the length; cooling the heart valve to a temperature below a transition temperature of the material forming the stent portion of the heart valve; and further advancing the distal sheath of the delivery device over the heart valve until the entire heart valve is collapsed. The collapsed portion of the heart valve may be about one-half or about three-quarters of the length of the heart valve. The heart valve may be cooled by subjecting it to a temperature of about 0° Celsius.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Various embodiments of the present loading assembly are disclosed herein with reference to the drawings, wherein:
[0012] FIG. 1 is a perspective view of a distal portion of a delivery device;
[0013] FIG. 2 is a perspective view of a proximal portion of the delivery device of FIG. 1; [0014] FIG. 3 is an enlarged side view of a retaining element of the delivery device shown in FIGS. 1 and 2 ;
[0015] FIG. 4 is a perspective view of a self-expanding prosthetic heart valve;
[0016], FIG. 5 is a perspective view of a compression member of a loading assembly according to an embodiment of the present invention;
[0017] FIG. 6 is a perspective view of a pusher member of a loading assembly according to an embodiment of the present invention;
[0018] FIG. 7 is a perspective view of the pusher member of FIG. 6 with a stent positioned therein;
[0019] FIGS. 8 and 9 illustrate an exemplary method of using the loading assembly shown in FIGS. 5 and 6;
[0020] FIG. 10 is a perspective view of a loading assembly according to another embodiment of the present invention;
[0021] FIGS. 11 and 12 illustrate the initial steps of a method for loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10;
[0022] FIGS. 13A-13D illustrate further steps of the method for loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10;
[0023] FIGS. 14A and 14B illustrate steps of an alternate method of loading a prosthetic heart valve into a delivery device using the loading assembly of FIG. 10 and a tube;
[0024] FIGS. 15A-15D illustrate additional steps of the alternate method of loading a prosthetic heart valve into a delivery device using the loading assembly and the tube shown in FIGS. 14A and 14B; and
[0025] FIG. 16 is a loading system according to an alternate embodiment of the present invention. DETAILED DESCRIPTION
[0026] Embodiments of the presently disclosed loading assemblies are described herein in detail with reference to the drawing figures, wherein like reference numerals identify similar or identical elements. In the drawings and in the description which follows, the term "proximal" refers to the end of the loading assembly, or portion thereof, which is closest to the operator in use, while the term "distal" refers to the end of the loading assembly, or portion thereof, which is farthest from the operator in use.
[0027 ] The present disclosure relates to assemblies and methods for loading a self-expanding stent or a collapsible prosthetic heart valve into a minimally invasive delivery device. An exemplary minimally invasive delivery device 10 is illustrated in FIGS. 1 and 2.
[0028] As seen in FIG. 2, delivery device 10 may include an inner tube 16 having a lumen extending therethrough. A hub 14 is mounted on the proximal end of the inner tube 16 and is adapted for connection to another system or mechanism, such as a handle, a syringe or a mechanism for displacing the distal sheath 30. Mechanisms for displacing the distal sheath 30 are described in International Patent Application Publication No. WO/2009/091509, the entire contents of which are hereby incorporated herein by reference. A retention ring 12 may also be mounted on the proximal end of the inner tube 16. At least a portion of the inner tube 16 extends through a Y-connector 18 and an outer shaft 20. The Y-connector 18 includes a hemostasis valve for preventing, or at least hindering, blood flow between the inner tube 16 and the outer shaft 20. In addition, the Y-connector 18 may be fluidly coupled to a fluid source.
[ 0029] As shown in FIG. 1, the outer shaft 20 extends to a transition member 24, which may have a tapered shape. The W
transition member 24 interconnects a distal end of the outer shaft 20 and the distal sheath 30. The distal sheath 30 surrounds a retaining element 26 and a support shaft 28 and can maintain a prosthetic heart valve mounted around the support shaft in a collapsed condition. The support shaft 28 is operatively connected to the inner tube 16 and has a lumen extending therethrough for receiving a guidewire (not shown) . The retaining element 26 is mounted on the support shaft 28 and is configured for supporting an end of a prosthetic heart valve or any other suitable medical implant, as discussed in detail below. The retaining element 26 may be longitudinally and rotatably fixed relative to the support shaft 28, thereby preventing the cells of the stent from entangling with one another during deployment. The distal sheath 30 covers the retaining element 26 and at least a portion of the support shaft 28 and is movable relative to the support shaft between a distal position shown in FIG. 1 and a proximal position (not shown) . A tip 32 may be connected to the distal end of the support shaft 28, and may have a tapered shape.
[0030] As shown in FIG. 3, the retaining element 26 is mounted on the support shaft 28 and may be longitudinally and rotatably fixed to same. The retaining element 26 may include a plurality of recesses 27 located around its periphery. The recesses 27 are spaced apart from one another and are adapted and dimensioned to receive a plurality of retaining members or tabs on one end of a self-expanding stent to thereby securely engage such stent to the delivery device. When a self- expanding stent is attached to the retaining element 26, the stent may be longitudinally and rotatably fixed relative to the support shaft 28. As a result, the stent can be prevented from sliding out of the distal sheath 30. In addition, when the distal sheath 30 is placed over the stent to maintain it in the collapsed condition, the cells of the stent will not become tangled.
[0031] FIG. 4 shows a bioprosthetic valve 100 designed to replace a native aortic valve. The valve 100 has a collapsed condition and an expanded condition and may be formed from a collapsible framework or stent 102, with a valve assembly 104 internally connected to the stent. The stent 102 may be formed from any suitable biocompatible material, such as nitinol, and may include an annulus section 106, an aortic section 108, and an intermediate section 110. The aortic section 108 may have a larger diameter than the annulus section 106. The intermediate section 110 of the stent 102 is located between the annulus section 106 and the aortic section 108. The valve assembly 104 may include a plurality of leaflets 112 and a cuff 114 attached to the stent 102. The leaflets 112 and the cuff 114 may be formed from a biocompatible polymer, from bovine or porcine pericardial tissue, or from other appropriate biocompatible materials. The valve assembly 104 is connected to the stent 102 generally within the annulus section 106, but may extend into the intermediate section 110. The valve 100 may include tabs or retaining members 118 at spaced positions around one or both ends of the stent 102. The retaining members 118 are typically designed for use in loading the valve 100 into a delivery device, in particular for grasping and alignment purposes. However, the retaining members 118 may also be utilized to collapse the valve 100, as will be discussed.
[0032] The valve 100 is preferably preserved in its expanded or open condition for storage as the bioprosthetic valve assembly 104 may be compromised by storage in a collapsed condition for extended periods of time. As such, it is necessary to crimp the valve 100 into a collapsed or reduced diameter condition for use in the surgical implantation procedure at the latest possible time before the procedure. In order to effectively limit the time period the valve 100 is collapsed, the crimping process is preferably conducted in the operating arena by the surgeon, interventional cardiologist or surgical assistant using a specialized assembly.
[0033] With reference to FIGS. 5-6, a loading assembly 200 according to an embodiment of the present invention includes a first section or compression member 202 and a second section or pusher member 204 adapted to be connected to one another. As seen in FIG. 5, the compression member 202 includes a funnel 206 for reducing the diameter of a valve. The funnel 206 may have a substantially frusto-conical shape and includes a first open end 208 and a second open end 210. Regardless of the specific shape of the funnel 206, the diameter of the first open end 208 is larger than the diameter of the second open end 210. The diameter of the funnel 206 may decrease uniformly from the first open end 208 to the second open end 210 to compress the valve 100 as it is advanced through the compression member 202.
[0034] The compression member 202 may further include a base 214 attached to the outer periphery of the second open end 210 of the funnel 206 for providing stability to the compression member 202 when it is placed on a flat surface. The base 214 may be substantially disk-shaped, with an inner flat surface 216, an outer flat surface 218, and a sidewall 220 extending between the inner surface and the outer surface. The inner surface 216 and outer surface 218 may each have a substantially circular shape, and may be oriented substantially parallel to one another.
[0035] In addition to the base 214, the compression member 202 may include a plurality of ribs 222 connected between the outer wall of funnel 206 and the base 214 for enhancing the structural integrity of the loading assembly 200 when the compression member 202 is connected to the pusher member 204. As discussed in detail below, the ribs 222 also facilitate attachment of the compression member 202 to the pusher member 204. The compression member 202 may include three ribs 222 spaced apart from one another around the circumference of funnel 206, although any number of ribs less than or greater than three are contemplated herein. The ribs 222 may be substantially evenly spaced from one another around the circumference of the funnel 206. Each rib 222 may extend from a first end 228 connected to the inner surface 216 of the base 214 to a second end 226 spaced from the first open end 208 of the funnel 206 and may be shaped substantially as a right-angled triangle.
[0036] The compression member 202 may further include a rim or lip 224 extending around the circumference of the first open end 208 of the funnel 206. The rim 224 may be discontinuous at recesses 230 to provide clearance for protrusions on pusher member 204, as will be appreciated from the discussion below.
[0037] Referring to FIG. 6, the pusher member 204 may include a substantially planar base 232 and a plurality of arms 234 projecting substantially orthogonally from the base. The pusher member 204 may include three arms 234 spaced apart from one another around the periphery of the base 232, although any number of arms less than or greater than three are contemplated herein. Each arm 234 may extend from a first end 236 attached to the base 232 to a free end 238. Each arm 234 may include any suitable locking feature, such as protrusions 240, 242 on its inner surface 244, for locking the pusher member 204 to the compression member 202. The protrusions 240, 242 may be located near the free end 238 of each arm 234. The protrusions 240, 242 collectively form a first channel 246 extending in the longitudinal direction of each arm 234 and a second channel 248 extending substantially orthogonally to the first channel 246 in the width direction of each arm 234. Each longitudinal channel 246 may extend between two protrusions 240 and two protrusions 242 in a central location along the inner surface 244 of each arm 234, and is adapted and dimensioned to receive at least a portion of a rib 222 of the compression member 202. As discussed in detail below, the longitudinal channels 246 of the pusher member 204 and the ribs 222 of the compression member 202 cooperate with one another to facilitate sliding movement of the pusher member 204 longitudinally relative to the compression member 202. Each widthwise channel 248 on arms 234 may extend between two protrusions 240 and two protrusions 242 and is adapted and dimensioned to receive the base 214 of the compression member 202. When the base 214 of the compression member 202 is positioned within the widthwise channels 248 in the arms 234 of the pusher member 204, the pusher member 204 is longitudinally fixed to the compression member 202.
[0038] The base 232 of the pusher member 204 may include an aperture 254 disposed through the approximate center thereof with an annular wall or ring 250 attached to an inner surface 252 of the base around the aperture. The annular wall 250 is adapted and dimensioned to receive at least a portion of the annulus section 106 of the stent 102, as seen in FIG. 7.
[0039] As seen in FIGS. 7-9, the loading assembly 200 may be used to load the collapsible prosthetic heart valve 100 into a delivery device. With the pusher member 204 on a flat surface, at least a portion of the annulus section 106 of the stent 102 may be placed within the confines of the annular wall 250. At this point, the annulus section 106 may contact the inner surface of the annular wall 250. The compression member 202 may then be inverted over the aortic section 108 of the stent 102 so that the aortic section of the stent is positioned within the funnel 206 and the ribs 222 of the compression member are axially aligned with the longitudinal channels 246 in arms 234. The pusher member 204 and compression member 202 may then be pushed together, with the tapered walls of the funnel 206 gradually compressing the valve 100, until a portion of the aortic section 108 of the stent 102 passes through the second open end 210 of the funnel, as shown in FIG. 8. As the pusher member 204 and the compression member 202 are pushed together, the protrusions 240 242 on arms 234 may slide freely through the recesses 230 in rim 224 as the ribs 222 slide within the longitudinal channels 246. When a portion of the aortic section 108 passes through the second open end 210 of the funnel 206, the retaining members 118 of the stent 102 will protrude through the open end 210 of the funnel and will be positioned closely adjacent to one another. Continued movement of the pusher member 204 and the compression member 202 toward one another further compresses the valve 100 and exposes more portions of the stent 102 out through open end 210, causing the retaining members 118 to separate from one another. The pusher member 204 and the compression member 202 may be pushed together until the base 214 of the compression member rides over the protrusions 240 of the pusher member, temporarily flaring out the arms 234, until the base snaps into place in the widthwise channel 248 in each arm. The lengths of compression member 202 and arms 234 are such that base 214 will become engaged in channels 248 before the rim 224 of the compression member contacts the inner surface 252 of the base of the pusher member. The engagement of base 214 in the channels 248 longitudinally fixes the pusher member 204 to the compression member 202. The tip 32 and the support shaft 28 of delivery device 10 may then be inserted into the end of the collapsed valve 100 protruding through the first open end 210 of the funnel 206, through the collapsed valve, and out through the aperture 254 in the pusher member 204, as shown in FIG. 9. The retaining members 118 of the stent 102 may be positioned over the retaining element 26 of the delivery device 10 and within the recesses 27 thereof, thereby attaching the stent 102 to the delivery device. The distal sheath 30 of the delivery device may then be moved over the valve 100 until the valve is completely covered.
[0040] In view of the tight fit between the collapsed valve 100 and the distal sheath 30, significant frictional forces must be overcome in order to move the distal sheath completely over the valve. In order to facilitate this procedure, the stent 102 may be substantially cooled which, based on the materials forming the stent, enables the stent to more easily deform. Thus, once more than about one-half of the length of stent 102 has been covered by the distal sheath 30, the entire assembly, including the distal end of the delivery device 10 and the loading assembly 200, may be immersed in a cold liquid, such as a saline solution. The assembly may then be removed from the liquid, and the distal sheath 30 moved further over the valve 100 until it completely covers same.
[0041] Rather than immersing the entire assembly, including the loading assembly 200, in the cold liquid, the loading assembly may first be separated from the delivery device 10. To accomplish this, the user may pull the pusher member 204 and the compression member 202 apart until the arms 234 flare outwardly and enable the base 214 to slide past the protrusions 240. The pusher member 204 and the compression member 202 may then be separated, permitting removal of the delivery device 10.
[0042] As discussed above, the stent 102 may be substantially cooled to make it easier to be completely covered with the distal sheath 30 of the delivery device 10. In this regard, the stent 102 should be cooled to temperatures below the transition temperature of the material forming the stent 102. The "transition temperature" is the temperature at which a material changes from one crystal state to another. For the nitinol stents that may be employed in the present invention, a saline solution at about 0°C may be used. When cooled below its transition temperature, the stent 102 becomes plastic, enabling it to deform much more readily under the forces exerted by the movement of the distal sheath thereover. Accordingly, after cooling the stent 102 below the transition temperature, the user may completely cover the stent with the distal sheath 30 of the delivery device 10.
[0043] FIG. 10 depicts a loading assembly 300 in accordance with another embodiment of the present invention. The loading assembly 300 includes a funnel 302 with a first open end 308 and a second open end 306 disposed in communication with one another. The funnel 302 has a proximal portion 310, which may have a substantially cylindrical shape, and a distal portion 312 which has a tapered shape with multiple diameters along its length. The distal portion 312 of the funnel 302 may have a frusto-conical shape, so that its diameter at the second open end 306 of the funnel 302 is larger than the diameter adjacent to the proximal portion 310.
[0044] The loading assembly 300 further includes a pusher member 304 having a cavity 316 adapted and dimensioned to receive at least the second open end 306 of the funnel 302. The cavity 316 of the pusher member 304 is defined by an inner flat surface 318 and an annular wall 320. The annular wall 320 may completely encircle the cavity 316. An open end 322 of the cavity 316 is also adapted and dimensioned to receive at least the second open end 306 of the funnel 302. An aperture 324 may extend through the pusher member 304 along the central longitudinal axis thereof.
[0045] With reference to FIGS. 11, 12, and 13A-13D, the loading assembly 300 may be used to load a valve 100 into a delivery device. To load the valve 100 in the delivery device, at least a portion of the annulus section 106 of the stent 102 may be positioned within the cavity 316 of the pusher member 304. The annulus section 106 of the stent 102 should be in contact with the inner surface 318 of the pusher member 304. The funnel 302 may then be placed over the stent 102, as shown in FIG. 11, so that the tapered wall of the distal portion 312 gradually compresses the valve and at least a portion of the aortic section 108 of the stent passes through the first open end 308 of the funnel. The user may push the funnel 302 down toward the pusher member 304 to compress more of the stent 102 and push it through the open end 308 of the funnel 302. As a greater length of the compressed stent 102 is exposed through the open end 308 of the funnel 302, the retaining members 118 will separate from one another, as seen in FIG. 12.
[0046] As illustrated in FIG. 13A, the support shaft 28 of the delivery device 10 may be inserted between the retaining members 118 of the stent 102 and through the first open end 308 of the funnel 302. The retaining members 118 of the stent 102 may then be positioned over the retaining element 26 of the delivery device 10 and within the recesses 27 thereof, thereby attaching the stent to the delivery device 10.
[0047] After the stent 102 has been attached to the delivery device 10, the user may move the pusher member 304 away from the stent while maintaining the funnel 302 in place, as seen in FIG. 13B. The distal sheath 30 may then be advanced toward the stent 102 to cover the retaining element 26 and at least about one-half of the length of the stent, as depicted in FIG. 13C. At this point, the funnel 302 may be moved over the distal sheath 30 and away from the stent 102. The distal sheath 30 may be further advanced to cover almost the entire stent 102 (e.g., about three quarters of the length of the stent) . The stent 102 may then be substantially cooled as discussed above (e.g., to a temperature below the transition temperature of the material forming the stent) to convert the stent to a state exhibiting plastic properties. Such plastic properties enable the stent 102 to more readily deform as the distal sheath 30 is moved over same. Once the entire stent 102 has been covered by the distal sheath 30, the funnel 302 may be removed from the delivery device 10.
[0048] FIGS. 14A-14B and 15A-15D show an alternate method of using the loading assembly 300 to load the stent 102 into a delivery device. Aside from the loading assembly 300, this exemplary method employs a holding tube 400 having a lumen 402 extending therethrough. The diameter of the holding tube 400 preferably is slightly smaller than the inner diameter of the proximal portion 310 of the funnel 302, such that the holding tube fits within the proximal portion of the funnel.
[0049] As seen in FIG. 14A, the stent 102 may be initially compressed with the loading assembly 300, as described above. In this method, however, the holding tube 400 is positioned over the portion of the stent 102 (e.g., at least a portion of the aortic section 108) protruding from the funnel 302*. The holding tube 400 may be advanced toward the pusher member 304, such that the holding tube is positioned within the proximal portion 310 of the funnel 302, as seen in FIG. 14B. At this point, the holding tube 400 maintains at least a portion of the stent 102 in a collapsed condition. [0050] The funnel 302 and the pusher member 304 may then be separated from the stent 102, as shown in FIG. 15A. Thereafter, the tip 32 and support shaft 28 of the delivery device 10 may be is inserted through the stent 102, beginning from the collapsed end thereof, as seen in FIG 15B, until the retaining members 118 of the stent are positioned in the recesses 27 of the retaining element 26, as shown in FIG. 15C. The distal sheath 30 may then be advanced toward the tip 32 to cover at least a portion of the stent 102. For example, the distal sheath 30 may cover more than one-half of the length of the stent 102 or more than three quarters of the length of the stent at this point. As the distal sheath 30 is advanced, the holding tube 400 may be moved over the distal sheath 30, as seen in FIG. 15D. Once the stent 102 has been largely covered by the distal sheath 30 (e.g., about three quarters of the length of the stent) , the user may substantially cool the stent as described above, to render the stent 102 more plastic. This step will enable the user to more readily move the distal sheath 30 toward the tip 32 to cover the entire stent 102. Once the stent 102 has been largely or entirely covered by the distal sheath 30, the holding tube 400 may be removed.
[0051] FIG. 16 shows a loading assembly 500 according to yet another embodiment of the present invention. The loading assembly 500 includes a funnel 502 with a first open end 506 and a second open end 508 disposed in communication with one another. The proximal portion 510 of the funnel 502 has a substantially cylindrical shape, while the distal portion 512 of the funnel 502 has a tapered shape with multiple diameters along its length. The distal portion 512 of the funnel 502 may have a substantially frusto-conical shape, so that its diameter at the second open end 508 is larger than its diameter next to the proximal portion 510. The tapered shape of the distal portion 512 compresses a valve 100 passing therethrough .
[0052] The loading assembly 500 further includes an adjustable member 516 movable relative to the funnel 502. The adjustable member 516 includes a substantially cylindrical body 518 having an outer diameter which is slightly smaller than the inner diameter of the proximal portion 510 of the funnel 502. Accordingly, the body 518 of the adjustable member 516 can slide within the proximal portion 510 of the funnel. A flange 520 provided at one end of the body 518 has a diameter substantially similar to or larger than the outer diameter of the proximal portion 510 of the funnel 502. The flange 520 serves as a mechanical stop, preventing the adjustable member 516 from being inserted completely within the proximal portion 510 of the funnel 502. A biasing member interposed between the flange 520 and the free end of the proximal portion 510 of the funnel 502 biases the adjustable member 516 away from the funnel. One such preferred biasing member is a spring 522 assembled around the body 518 of the adjustable member 516. The spring 522 or other biasing member may be used to more precisely control the amount by which the aortic section 108 of the stent 102 protrudes from the adjustable member 516, and thus the separation between the retaining members 118 of the stent before inserting the tip 32 and support shaft 28 of the delivery device 10 through the valve 100.
[0053] The loading assembly 500 may be used to load a valve 100 into delivery device 10 in substantially the same way as loading assembly 300 described above, including the use of a pusher member similar to pusher member 304. When using loading assembly 500, however, the user can more precisely control the separation between the retaining members 118. For example, the user may move the adjustable member 516 toward the funnel 502 to expose a greater length of the stent 102, thereby allowing the retaining members 118 to achieve more separation from one another. Conversely, the user may move the adjustable member 516 away from the funnel 502 to move the retaining members 118 closer to one another for assembly in the recesses 27 of the deployment device retainer 26.
[0054] Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
[0055] It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments.

Claims

1. A device for collapsing a self-expanding prosthetic heart valve, comprising:
a compression member having a first open end with a first diameter, a second open end with a second diameter less than the first diameter, and a tapered wall between the first open end and the second open end, the tapered wall defining an open space adapted to receive the valve; and
a pusher member having a base adapted to engage an end of the valve, the pusher member and the compression member being movable relative to one another between an initial position in which the base of the pusher member is relatively far from the first open end of the compression member and an operative position in which the base of the pusher member is relatively close to the first open end of the compression member, wherein movement of the pusher member and the compression member from the initial position to the operative position pushes the valve through the open space such that the valve is radially compressed by the tapered wall of the compression member as the valve advances through the open space.
2. The device of claim 1, further comprising a first fastener on the pusher member and a second fastener on the compression member, engagement of the first fastener with the second fastener in the operative position securing the pusher member to the compression member.
3. The device of claim 2, wherein the first fastener includes a plurality of spaced arms each extending in a longitudinal direction from the base of the pusher member to a free end.
4. The device of claim 3, wherein each of the plurality of arms extends substantially orthogonally from the base.
5. The device of claim 4, wherein the free end of each of the plurality of arms includes a receiving channel oriented in a direction substantially orthogonal to the longitudinal direction .
6. The device of claim 5, wherein the second fastener includes a base projecting radially outward from the second open end of the compression member and adapted to be received in the receiving channels in an assembled condition of the pusher member and the compression member.
7. The device of claim 3, wherein the compression member includes a rim projecting radially outward from the first open end and adapted to be received between the plurality of arms in an assembled condition of the pusher member and the compression member.
8. The device of claim 7, wherein each of the plurality of arms includes a receiving channel oriented in the longitudinal direction and extending from the free end of the arm toward the base of the pusher member.
9. The device of claim 8, wherein the compression member includes a plurality of ribs extending in the longitudinal direction between the first open end and the second open end, each rib being adapted to be received in one of the receiving channels during movement of the pusher member and the compression member from the initial position toward the operative position.
10. The device of claim 9, wherein the rim includes a plurality of recesses, each recess lying between one of the ribs and a remainder of the rim.
11. The device of claim 3, wherein each of the plurality of arms includes a first receiving channel adjacent the free end and oriented in a direction substantially orthogonal to the longitudinal direction, and a second receiving channel oriented in the longitudinal direction and extending from the free end of the arm toward the base of the pusher member.
12. The device of claim 11, wherein the first receiving channel intersects with the second receiving channel on each of the plurality of arms.
13. The device of claim 1, wherein the pusher member includes an annular wall projecting from the base, the annular wall defining a cavity sized and shaped to receive the end of the valve.
14. The device of claim 13, wherein the annular wall has an axis of revolution and the pusher member further includes an aperture through the base, a center of the aperture being coincident with the axis of revolution of the annular wall.
15. A method for loading a self-expanding prosthetic heart valve into a delivery device, the heart valve having a length, a stent portion formed from a material and at least one retaining member at one end thereof, the method comprising :
inserting the heart valve into a funnel having a first open end with a first diameter and a second open end with a second diameter less than the first diameter;
advancing the heart valve through the funnel until the at least one retaining member protrudes out from the second open end of the funnel;
attaching the at least one retaining member to a retaining element of the delivery device;
advancing a distal sheath of the delivery device over the heart valve to collapse a portion of the heart valve less than the length;
cooling the heart valve to a temperature below a transition temperature of the material forming the stent portion of the heart valve; and
further advancing the distal sheath of the delivery device over the heart valve until the entire heart valve is collapsed.
16. The method of claim 15, wherein the collapsed portion of the heart valve is about one-half of the length of the heart valve.
17. The method of claim 15, wherein the collapsed portion of the heart valve is about three-quarters of the length of the heart valve.
18. The method of claim 15, wherein the cooling step includes subjecting the heart valve to a temperature of about 0° Celsius.
PCT/US2011/001598 2010-09-17 2011-09-16 Assembly and method for loading a self-expanding collapsible heart valve WO2012036742A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013529126A JP5883452B2 (en) 2010-09-17 2011-09-16 Assembly and method for mounting a self-expanding foldable heart valve
EP11764366.8A EP2616008B1 (en) 2010-09-17 2011-09-16 Assembly for loading a self-expanding collapsible heart valve
BR112013006295A BR112013006295A2 (en) 2010-09-17 2011-09-16 device for flexing a self-expanding prosthetic heart valve, and method for loading a self-expanding prosthetic heart valve
AU2011302641A AU2011302641B2 (en) 2010-09-17 2011-09-16 Assembly and method for loading a self-expanding collapsible heart valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38390810P 2010-09-17 2010-09-17
US61/383,908 2010-09-17

Publications (2)

Publication Number Publication Date
WO2012036742A2 true WO2012036742A2 (en) 2012-03-22
WO2012036742A3 WO2012036742A3 (en) 2012-08-23

Family

ID=44736026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/001598 WO2012036742A2 (en) 2010-09-17 2011-09-16 Assembly and method for loading a self-expanding collapsible heart valve

Country Status (7)

Country Link
US (3) US8973234B2 (en)
EP (1) EP2616008B1 (en)
JP (1) JP5883452B2 (en)
AU (1) AU2011302641B2 (en)
BR (1) BR112013006295A2 (en)
CR (1) CR20130165A (en)
WO (1) WO2012036742A2 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106491A1 (en) * 2011-02-02 2012-08-09 St. Jude Medical, Inc. System and method for loading a collapsile heart valve into a delivery device
CN102805676A (en) * 2012-08-14 2012-12-05 杭州启明医疗器械有限公司 Compression device for artificial valve replacement device
WO2013016513A1 (en) * 2011-07-28 2013-01-31 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
WO2013045262A1 (en) * 2011-09-30 2013-04-04 Jenavalve Technology Inc. System and method for loading a stent into a medical delivery system
US8931159B2 (en) 2011-07-28 2015-01-13 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
US8973234B2 (en) 2010-09-17 2015-03-10 St. Jude Medical, Cardiology Division, Inc. Assembly and method for loading a self-expanding collapsible heart valve
WO2016168609A1 (en) * 2015-04-16 2016-10-20 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
WO2017120413A1 (en) * 2016-01-07 2017-07-13 Medtronic Vascular Inc. Prosthetic heart valve cooling
US9833315B2 (en) 2011-08-11 2017-12-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9878127B2 (en) 2012-05-16 2018-01-30 Jenavalve Technology, Inc. Catheter delivery system for heart valve prosthesis
US9895221B2 (en) 2012-07-28 2018-02-20 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US10201419B2 (en) 2014-02-05 2019-02-12 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US10219900B2 (en) 2012-07-30 2019-03-05 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
EP3474778A4 (en) * 2016-06-24 2019-06-26 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
US10363135B2 (en) 2013-10-29 2019-07-30 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10405976B2 (en) 2013-05-30 2019-09-10 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
CN110251273A (en) * 2019-05-23 2019-09-20 沛嘉医疗科技(苏州)有限公司 It is a kind of to convey valve preloaded system and device through conduit
US10456248B2 (en) 2007-09-13 2019-10-29 Georg Lutter Truncated cone heart valve stent
US10463494B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US10517728B2 (en) 2014-03-10 2019-12-31 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US10555718B2 (en) 2013-10-17 2020-02-11 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US10595996B2 (en) 2013-06-25 2020-03-24 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US10610354B2 (en) 2013-08-01 2020-04-07 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US10610356B2 (en) 2015-02-05 2020-04-07 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US10610358B2 (en) 2015-12-28 2020-04-07 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10722357B2 (en) 2017-07-18 2020-07-28 St. Jude Medical, Cardiology Division, Inc. Flushable loading base
US10786351B2 (en) 2015-01-07 2020-09-29 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US10952844B2 (en) 2011-12-16 2021-03-23 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US11090157B2 (en) 2016-06-30 2021-08-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11096782B2 (en) 2015-12-03 2021-08-24 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US11154399B2 (en) 2017-07-13 2021-10-26 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11179236B2 (en) 2009-12-08 2021-11-23 Colorado State University Research Foundation Device and system for transcatheter mitral valve replacement
US11191639B2 (en) 2017-08-28 2021-12-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
WO2022089745A1 (en) * 2020-10-29 2022-05-05 Clearstream Technologies Limited Connector for transfer of an implant to a cathether
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
US12121461B2 (en) 2016-03-17 2024-10-22 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US10010412B2 (en) * 2011-07-27 2018-07-03 Edwards Lifesciences Corporation Conical crimper
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
WO2014164832A1 (en) * 2013-03-12 2014-10-09 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10188515B2 (en) 2013-05-13 2019-01-29 Medtronic Vascular Inc. Devices and methods for crimping a medical device
CN106562840B (en) * 2013-10-31 2018-06-22 上海微创心通医疗科技有限公司 A kind of guiding lid and Load System being loaded into implant in transport system
WO2015179468A1 (en) * 2014-05-21 2015-11-26 St. Jude Medical, Cardiology Division, Inc. Self-expanding heart valves for coronary perfusion and sealing
US9877855B2 (en) * 2014-07-25 2018-01-30 Cook Medical Technologies Llc Method of loading and delivering a self-expanding stent
CN108601645B (en) 2015-12-15 2021-02-26 内奥瓦斯克迪亚拉公司 Transseptal delivery system
EP4183372A1 (en) 2016-01-29 2023-05-24 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10357363B2 (en) * 2016-06-09 2019-07-23 Medtronic Vascular, Inc. Transcatheter valve delivery system with crimped prosthetic heart valve
EP3541462A4 (en) 2016-11-21 2020-06-17 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10653523B2 (en) 2017-01-19 2020-05-19 4C Medical Technologies, Inc. Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
US12029647B2 (en) 2017-03-07 2024-07-09 4C Medical Technologies, Inc. Systems, methods and devices for prosthetic heart valve with single valve leaflet
US12036113B2 (en) 2017-06-14 2024-07-16 4C Medical Technologies, Inc. Delivery of heart chamber prosthetic valve implant
WO2019040357A1 (en) 2017-08-21 2019-02-28 St. Jude Medical, Cardiology Division, Inc. Apparatus and methods for improved loading of a transcatheter heart valve
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US10575949B2 (en) * 2017-10-23 2020-03-03 St. Jude Medical, Cardiology Division, Inc. Folding patterns and loading funnel for improved transcatheter valve loading forces
CN111818877B (en) 2018-01-25 2023-12-22 爱德华兹生命科学公司 Delivery system for assisting in recapture and repositioning of replacement valves after deployment
CN112384173B (en) * 2018-05-23 2024-06-11 恪心有限责任公司 Loading system for implantable prosthesis and related loading method
US11857441B2 (en) * 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
AU2019374743B2 (en) 2018-11-08 2022-03-03 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
CN111467080A (en) * 2019-01-24 2020-07-31 上海微创心通医疗科技有限公司 Implant loading tool, compression device and loading system
CA3132873A1 (en) 2019-03-08 2020-09-17 Neovasc Tiara Inc. Retrievable prosthesis delivery system
CN113811265A (en) 2019-04-01 2021-12-17 内奥瓦斯克迪亚拉公司 Prosthetic valve deployable in a controlled manner
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
WO2020236931A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
WO2020257643A1 (en) 2019-06-20 2020-12-24 Neovasc Tiara Inc. Low profile prosthetic mitral valve
WO2021113395A1 (en) * 2019-12-02 2021-06-10 Venarum Medical, Llc Process for catheter loading an implantable venous valve and apparatus
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
US12053375B2 (en) 2020-03-05 2024-08-06 4C Medical Technologies, Inc. Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation
US11992403B2 (en) 2020-03-06 2024-05-28 4C Medical Technologies, Inc. Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091509A1 (en) 2008-01-16 2009-07-23 St. Jude Medical, Inc. Delivery and retrieval systems for collapsible/expandable prosthetic heart valves

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4423730A (en) 1982-03-01 1984-01-03 Shelhigh Inc. Atriotomy button and implantation device
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
EP0657147B1 (en) 1993-11-04 1999-08-04 C.R. Bard, Inc. Non-migrating vascular prosthesis
WO1995015192A1 (en) 1993-12-03 1995-06-08 Heartport, Inc. Cardiopulmonary bypass system for closed-chest intervention
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
EP0941713B1 (en) 1998-03-04 2004-11-03 Schneider (Europe) GmbH Device to insert an endoprosthesis into a catheter shaft
US6132458A (en) 1998-05-15 2000-10-17 American Medical Systems, Inc. Method and device for loading a stent
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
DE10026307A1 (en) 2000-05-26 2001-11-29 Variomed Ag Balzers Stent, positioning element and insertion catheter
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US20060142848A1 (en) 2000-09-12 2006-06-29 Shlomo Gabbay Extra-anatomic aortic valve placement
US20020096468A1 (en) * 2000-12-04 2002-07-25 Peter Zuk Disposable vacuum filtration apparatus capable of detecting microorganisms and particulates in liquid samples
US6623518B2 (en) 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US20060106415A1 (en) 2004-11-12 2006-05-18 Shlomo Gabbay Apparatus to facilitate implantation
CA2458595C (en) * 2001-10-11 2007-12-04 Peter M. Wilson Bronchial flow control devices and methods of use
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US7096554B2 (en) * 2003-04-04 2006-08-29 Boston Scientific Scimed, Inc. Protective loading of stents
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US20090054975A1 (en) 2004-02-06 2009-02-26 Children's Medical Center Corporation Deployment device for cardiac surgery
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US20050194578A1 (en) 2004-03-03 2005-09-08 Morris David D. Innerduct guide tube assembly for fiber optic cable
US6935389B1 (en) * 2004-05-12 2005-08-30 Mark Rinaldi Self-deploying funnel
WO2006041505A1 (en) 2004-10-02 2006-04-20 Huber Christoph Hans Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US20060167468A1 (en) 2004-11-12 2006-07-27 Shlomo Gabbay Implantation system and method for loading an implanter with a prosthesis
US20070162100A1 (en) 2006-01-10 2007-07-12 Shlomo Gabbay System and method for loading implanter with prosthesis
EP1819390B1 (en) * 2004-12-07 2009-11-18 Cook Incorporated Introducer apparatus
EP3266414B1 (en) 2005-05-12 2024-07-17 Covidien LP Implant delivery system with interlocked rx port orientation
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
US8702777B2 (en) 2005-08-22 2014-04-22 Incept, Llc Steep-taper flared stents and apparatus and methods for delivering them
US7014074B1 (en) * 2005-08-26 2006-03-21 Mark Rinaldi Caps for self-deploying funnel and pour spout
US20070073391A1 (en) 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
WO2007071436A2 (en) 2005-12-22 2007-06-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070168013A1 (en) 2006-01-19 2007-07-19 Myles Douglas Vascular graft and deployment system
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US20110224678A1 (en) 2006-03-23 2011-09-15 Shlomo Gabbay Method and implantation system for implanting a cardiovascular prosthesis
US20070239271A1 (en) * 2006-04-10 2007-10-11 Than Nguyen Systems and methods for loading a prosthesis onto a minimally invasive delivery system
US8834550B2 (en) 2006-05-19 2014-09-16 Boston Scientific Scimed, Inc. Apparatus and method for loading and delivering a stent using a suture retaining mechanism
US8535368B2 (en) 2006-05-19 2013-09-17 Boston Scientific Scimed, Inc. Apparatus for loading and delivering a stent
US8052750B2 (en) 2006-09-19 2011-11-08 Medtronic Ventor Technologies Ltd Valve prosthesis fixation techniques using sandwiching
US8747459B2 (en) 2006-12-06 2014-06-10 Medtronic Corevalve Llc System and method for transapical delivery of an annulus anchored self-expanding valve
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
US8100959B2 (en) 2007-03-09 2012-01-24 Pulmonx Corporation Loading device for a pulmonary implant
US20090093876A1 (en) * 2007-08-31 2009-04-09 Edwards Lifesciences Corporation Recoil inhibitor for prosthetic valve
US8220121B2 (en) 2007-09-14 2012-07-17 Cook Medical Technologies Llc Device for loading a self-expandable prosthesis into a sheath
US8608795B2 (en) 2007-12-04 2013-12-17 Cook Medical Technologies Llc Tapered loading system for implantable medical devices
CA2732355A1 (en) 2008-08-01 2010-02-04 Intersect Ent, Inc. Methods and devices for crimping self-expanding devices
US8944411B2 (en) 2008-08-29 2015-02-03 Corning Cable Systems Llc Pulling grip assembly for a fiber optic assembly
US9119715B2 (en) 2008-10-30 2015-09-01 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valve delivery system and methods
US10278728B2 (en) 2009-01-30 2019-05-07 St. Jude Medical, Llc Transapical mini-introducer hemostasis valve and punch
EP2398421B1 (en) 2009-02-20 2017-09-27 St. Jude Medical, Inc. Devices and methods for collapsing prosthetic heart valves
JP2012523894A (en) 2009-04-15 2012-10-11 カルディアック バルブ テクノロジーズ,インコーポレーテッド Vascular implant and its placement system
US8585019B2 (en) 2009-08-20 2013-11-19 Cook Medical Technologies Llc Loading apparatus and system for expandable intraluminal medical devices
US9414914B2 (en) 2010-02-24 2016-08-16 Medtronic Ventor Technologies Ltd. Catheter assembly with valve crimping accessories
EP2605729A2 (en) 2010-08-17 2013-06-26 St. Jude Medical, Cardiology Division, Inc. A device for collapsing and loading a heart valve into a minimally invasive delivery system
US8814931B2 (en) 2010-08-24 2014-08-26 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery systems
BR112013006295A2 (en) * 2010-09-17 2016-06-07 St Jude Medical Cardiology Div device for flexing a self-expanding prosthetic heart valve, and method for loading a self-expanding prosthetic heart valve
WO2012036744A2 (en) 2010-09-17 2012-03-22 St. Jude Medical, Cardiology Division, Inc. Improved preparation methods for transcatheter heart valve delivery systems
US8562663B2 (en) 2010-10-26 2013-10-22 Medtronic Ventor Technologies Ltd. Devices and methods for loading a prosthesis onto a delivery system
US9021674B2 (en) 2011-02-02 2015-05-05 St. Jude Medical, Inc. System for loading a collapsible heart valve
US8931159B2 (en) 2011-07-28 2015-01-13 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
US9675456B2 (en) * 2012-11-02 2017-06-13 Medtronic, Inc. Transcatheter valve prosthesis delivery system with recapturing feature and method
US10188515B2 (en) 2013-05-13 2019-01-29 Medtronic Vascular Inc. Devices and methods for crimping a medical device
US9414917B2 (en) 2013-09-17 2016-08-16 Medtronic, Inc. Systems and methods for loading a valve prosthesis onto a catheter
CN106562840B (en) 2013-10-31 2018-06-22 上海微创心通医疗科技有限公司 A kind of guiding lid and Load System being loaded into implant in transport system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091509A1 (en) 2008-01-16 2009-07-23 St. Jude Medical, Inc. Delivery and retrieval systems for collapsible/expandable prosthetic heart valves

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US10456248B2 (en) 2007-09-13 2019-10-29 Georg Lutter Truncated cone heart valve stent
US11213387B2 (en) 2007-09-13 2022-01-04 Georg Lutter Truncated cone heart valve stent
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11179236B2 (en) 2009-12-08 2021-11-23 Colorado State University Research Foundation Device and system for transcatheter mitral valve replacement
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9492274B2 (en) 2010-09-17 2016-11-15 St. Jude Medical, Cardiology Division, Inc. Method for loading a self-expanding collapsible heart valve
US8973234B2 (en) 2010-09-17 2015-03-10 St. Jude Medical, Cardiology Division, Inc. Assembly and method for loading a self-expanding collapsible heart valve
US10149760B2 (en) 2010-09-17 2018-12-11 St. Jude Medical, Cardiology Division, Inc. Assembly and method for loading a self-expanding collapsible heart valve
US9021674B2 (en) 2011-02-02 2015-05-05 St. Jude Medical, Inc. System for loading a collapsible heart valve
WO2012106491A1 (en) * 2011-02-02 2012-08-09 St. Jude Medical, Inc. System and method for loading a collapsile heart valve into a delivery device
US10039642B2 (en) 2011-07-28 2018-08-07 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
US8893370B2 (en) 2011-07-28 2014-11-25 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
US9642703B2 (en) 2011-07-28 2017-05-09 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
AU2012286876B2 (en) * 2011-07-28 2014-11-06 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
US8931159B2 (en) 2011-07-28 2015-01-13 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
WO2013016513A1 (en) * 2011-07-28 2013-01-31 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
US10617519B2 (en) 2011-08-11 2020-04-14 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11382737B2 (en) 2011-08-11 2022-07-12 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11123181B2 (en) 2011-08-11 2021-09-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US12059343B2 (en) 2011-08-11 2024-08-13 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11135055B2 (en) 2011-08-11 2021-10-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US10639145B2 (en) 2011-08-11 2020-05-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11484404B2 (en) 2011-08-11 2022-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11311374B2 (en) 2011-08-11 2022-04-26 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11364116B2 (en) 2011-08-11 2022-06-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11123180B2 (en) 2011-08-11 2021-09-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US9833315B2 (en) 2011-08-11 2017-12-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
WO2013045262A1 (en) * 2011-09-30 2013-04-04 Jenavalve Technology Inc. System and method for loading a stent into a medical delivery system
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US10952844B2 (en) 2011-12-16 2021-03-23 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9878127B2 (en) 2012-05-16 2018-01-30 Jenavalve Technology, Inc. Catheter delivery system for heart valve prosthesis
US9895221B2 (en) 2012-07-28 2018-02-20 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US11759318B2 (en) 2012-07-28 2023-09-19 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US11090155B2 (en) 2012-07-30 2021-08-17 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US10219900B2 (en) 2012-07-30 2019-03-05 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
CN102805676B (en) * 2012-08-14 2015-06-17 杭州启明医疗器械有限公司 Compression device for artificial valve replacement device
CN102805676A (en) * 2012-08-14 2012-12-05 杭州启明医疗器械有限公司 Compression device for artificial valve replacement device
US11311379B2 (en) 2013-04-02 2022-04-26 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463494B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11364119B2 (en) 2013-04-04 2022-06-21 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US10405976B2 (en) 2013-05-30 2019-09-10 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US11617645B2 (en) 2013-05-30 2023-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US11471281B2 (en) 2013-06-25 2022-10-18 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US10595996B2 (en) 2013-06-25 2020-03-24 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US10610354B2 (en) 2013-08-01 2020-04-07 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US11612480B2 (en) 2013-08-01 2023-03-28 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10433954B2 (en) 2013-08-30 2019-10-08 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10555718B2 (en) 2013-10-17 2020-02-11 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US11246562B2 (en) 2013-10-17 2022-02-15 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US10363135B2 (en) 2013-10-29 2019-07-30 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US11096783B2 (en) 2013-10-29 2021-08-24 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US11464628B2 (en) 2014-02-05 2022-10-11 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US10201419B2 (en) 2014-02-05 2019-02-12 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US11589985B2 (en) 2014-02-05 2023-02-28 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US11045183B2 (en) 2014-02-11 2021-06-29 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US11382753B2 (en) 2014-03-10 2022-07-12 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US10517728B2 (en) 2014-03-10 2019-12-31 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US10786351B2 (en) 2015-01-07 2020-09-29 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US10610356B2 (en) 2015-02-05 2020-04-07 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
CN107750150B (en) * 2015-04-16 2021-03-05 坦迪尼控股股份有限公司 Devices and methods for delivering, repositioning and retrieving transcatheter prosthetic valves
US10667905B2 (en) 2015-04-16 2020-06-02 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
CN107750150A (en) * 2015-04-16 2018-03-02 坦迪尼控股股份有限公司 For delivering, repositioning and withdrawing the apparatus and method through conduit prosthetic valve
US11523902B2 (en) 2015-04-16 2022-12-13 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
WO2016168609A1 (en) * 2015-04-16 2016-10-20 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US11318012B2 (en) 2015-09-18 2022-05-03 Tendyne Holdings, Inc. Apparatus and methods for delivery of prosthetic mitral valve
US11096782B2 (en) 2015-12-03 2021-08-24 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US10610358B2 (en) 2015-12-28 2020-04-07 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US11464629B2 (en) 2015-12-28 2022-10-11 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US11766325B2 (en) 2016-01-07 2023-09-26 Medtronic Vascular, Inc. Prosthetic heart valve cooling
WO2017120413A1 (en) * 2016-01-07 2017-07-13 Medtronic Vascular Inc. Prosthetic heart valve cooling
US11364115B2 (en) 2016-01-07 2022-06-21 Medtronic Vascular, Inc. Prosthetic heart valve cooling
US10660746B2 (en) 2016-01-07 2020-05-26 Medtronic Vascular, Inc. Prosthetic heart valve cooling
US10092398B2 (en) 2016-01-07 2018-10-09 Medtronic Vascular, Inc. Prosthetic heart valve cooling
US12121461B2 (en) 2016-03-17 2024-10-22 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US11253354B2 (en) 2016-05-03 2022-02-22 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
EP3474778A4 (en) * 2016-06-24 2019-06-26 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
EP3949903A1 (en) * 2016-06-24 2022-02-09 Edwards Lifesciences Corporation Em for crimping a prosthetic valve
US11090157B2 (en) 2016-06-30 2021-08-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11701226B2 (en) 2016-06-30 2023-07-18 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11154399B2 (en) 2017-07-13 2021-10-26 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US10722357B2 (en) 2017-07-18 2020-07-28 St. Jude Medical, Cardiology Division, Inc. Flushable loading base
US11191639B2 (en) 2017-08-28 2021-12-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
CN110251273A (en) * 2019-05-23 2019-09-20 沛嘉医疗科技(苏州)有限公司 It is a kind of to convey valve preloaded system and device through conduit
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
CN114760962B (en) * 2020-10-29 2023-06-06 清流科技有限公司 Connector for transferring an implant to a catheter
AU2020474539B2 (en) * 2020-10-29 2022-12-01 Clearstream Technologies Limited Connector for transfer of an implant to a cathether
CN114760962A (en) * 2020-10-29 2022-07-15 清流科技有限公司 Connector for transferring an implant to a catheter
US11826270B2 (en) 2020-10-29 2023-11-28 Clearstream Technologies Limited Connector for transfer of an implant to a catheter
WO2022089745A1 (en) * 2020-10-29 2022-05-05 Clearstream Technologies Limited Connector for transfer of an implant to a cathether
US12121434B2 (en) 2022-09-08 2024-10-22 Tendyne Holdings, Inc. Prosthetic valves and related inventions

Also Published As

Publication number Publication date
JP5883452B2 (en) 2016-03-15
CR20130165A (en) 2013-05-09
AU2011302641B2 (en) 2014-10-02
AU2011302641A1 (en) 2013-05-02
WO2012036742A3 (en) 2012-08-23
US20120083875A1 (en) 2012-04-05
US20170035570A1 (en) 2017-02-09
EP2616008A2 (en) 2013-07-24
EP2616008B1 (en) 2018-10-24
US10149760B2 (en) 2018-12-11
US9492274B2 (en) 2016-11-15
JP2013540482A (en) 2013-11-07
BR112013006295A2 (en) 2016-06-07
US20150101171A1 (en) 2015-04-16
US8973234B2 (en) 2015-03-10

Similar Documents

Publication Publication Date Title
US10149760B2 (en) Assembly and method for loading a self-expanding collapsible heart valve
US10123892B2 (en) System for loading a collapsible heart valve having a leaflet restraining member
EP2736454B1 (en) System for loading a collapsible heart valve
US9642703B2 (en) System for loading a collapsible heart valve
EP2670357B1 (en) System for loading a collapsible heart valve into a delivery device
US11369470B2 (en) Mitral valve loading tool
US20240197505A1 (en) Active and Passive Cuff Management Devices for Loading of Transcatheter Valves
CN118593192A (en) Loading body for receiving a valve prosthesis, loading device and delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11764366

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013529126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011764366

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: CR2013-000165

Country of ref document: CR

ENP Entry into the national phase

Ref document number: 2011302641

Country of ref document: AU

Date of ref document: 20110916

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006295

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006295

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130315