WO2012036703A1 - Détergents de lavage du linge à teneur réduite en agents caustiques à base de tensioactifs à chaîne étendue - Google Patents

Détergents de lavage du linge à teneur réduite en agents caustiques à base de tensioactifs à chaîne étendue Download PDF

Info

Publication number
WO2012036703A1
WO2012036703A1 PCT/US2010/049338 US2010049338W WO2012036703A1 WO 2012036703 A1 WO2012036703 A1 WO 2012036703A1 US 2010049338 W US2010049338 W US 2010049338W WO 2012036703 A1 WO2012036703 A1 WO 2012036703A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
detergent
extended chain
nonionic
caustic
Prior art date
Application number
PCT/US2010/049338
Other languages
English (en)
Inventor
Victor Fuk-Pong Man
Michael Charles Denoma
Yvonne Marie Killeen
Steven Eugene Lentsch
Original Assignee
Ecolab Usa Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecolab Usa Inc. filed Critical Ecolab Usa Inc.
Priority to PCT/US2010/049338 priority Critical patent/WO2012036703A1/fr
Publication of WO2012036703A1 publication Critical patent/WO2012036703A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents

Definitions

  • the invention relates to detergent and cleaning compositions which employ synergistic combinations of detergent components and extended chain surfactants.
  • the detergent compositions are useful for removing a number of challenging stains including those from non-trans fats, fatty acids, triglycerides, oxybenzone, and avobenzone.
  • Additional cleaning compositions employ combinations of anionic and/or nonionic extended chain surfactants which have reduced dependence on caustics for soil removal.
  • surfactants are a primary component of most detergents. When dissolved in water, surfactants give a product the ability to remove dirt from surfaces. Each surfactant molecule has a hydrophilic head that is attracted to water molecules and a hydrophobic tail that repels water and simultaneously attaches itself to oil and grease in dirt. These opposing forces loosen the dirt and suspend it in the water.
  • Surfactants do the basic work of detergents and cleaning compositions by breaking up stains and keeping the dirt in the water solution to prevent re-deposition of the dirt onto the surface from which it has just been removed. Surfactants disperse dirt that normally does not dissolve in water.
  • NPEs Nonylphenol ethoxylates
  • NPEs are formed through the combination of ethylene oxide with nonylphenol (NP). Both NP and NPEs exhibit estrogen-like properties and may contaminate water, vegetation and marine life. NPE is also not readily biodegradable and remains in the environment or food chain for indefinite time periods.
  • caustics are strong alkalis, Lye (Sodium Hydroxide), Potassium Hypochlorite, or acids which are harmful if swallowed, particularly by small children. Some symptoms include severe pain, vomiting blood, heart collapse, breathing difficulty and burns or holes in the skin and underlying tissue. While the low phosphorous detergents are better for the environment, these detergents can be up to 100 times more caustic. Caustics also damage clothes through repeated use and can dull the fabric's color.
  • Sunscreen can prevent the squamous cell carcinoma and the basal cell carcinoma which may be caused by ultraviolet radiation from the sun.
  • Many of these sunscreens contain components such as triglycerides, avobenzones and oxybenzones. These chemicals, while not visible prior to wash, typically appear on fabrics as yellow patches after washing with detergent-builder combinations at high pH. Current methods to treat these types of stains have included bleach, and other traditional pretreatments, to no avail.
  • the invention meets the needs above by providing a surfactant system, mixture or blend that can be used alone or as a part of a laundry detergent, hard surface cleaner or a pre- spotting treatment.
  • the surfactant system is a synergistic combination of a new generation of surfactants termed extended chain surfactants. According to the invention these surfactants can be combined with other ingredients to remove very difficult stains such as those from sunscreens and can also be formulated in combinations that improve cleaning ability and thereby reduce the dependence on caustics for removal of soil.
  • the surfactant compositions of the invention are a synergistic combination of nonionic and anionic extended chain surfactants.
  • the invention has many uses and applications which include but are not limited to: laundry cleaning, reduction of laundry fire due to non-transfats, and hard surface cleaning such as manual pot-n-pan cleaning, machine warewashing, all purpose cleaning, floor cleaning, CIP cleaning, open facility cleaning, foam cleaning, vehicle cleaning, etc.
  • the invention is also relevant to non-cleaning related uses and applications such as dry lubes, tire dressings, polishes, etc. as well as triglyceride based lotions, suntan lotions, potentially pharmaceutical emulsions and microemulsions.
  • the surfactant system comprises anionic and/or nonionic extended chain surfactants.
  • soil removal is proportional to the degree of PO extension of the linker of the extended chain surfactant.
  • extended surfactants shifts the required optimal alkalinity to a significantly lower level. This can result in cost savings, use of a less aggressive composition for better user safety, less fabric damage, and less corrosion due to alkalinity.
  • This system can be used in formulations for laundry detergents, hard surface cleaners, whether alkali or acid based or even by itself as a pre- spotting agent.
  • a laundry booster which comprises a synergistic combination of an extended chain surfactant, a solvent and amine oxide.
  • the booster is particularly suited to removal of stains caused by sunscreen components such as triglycerides, oxybenzone and avobenzone.
  • a laundry detergent composition which includes the surfactant system within a laundry detergent, the laundry detergent product being adapted to readily dissolve and disperse non trans fats and sunscreen components in commercial, industrial and personal laundry washing processes or in a pre- spotting treatment, as well as detergents that are less caustic.
  • Figure 1 is a graph of Oppm and 1500 ppm caustic and average soils removal for several laundry detergents and a detergent of the invention.
  • Figure 2 is a graph of the extended surfactants vs NPE at 0 ppm caustic and 1500ppm caustic.
  • Figure 3 is a graph of the average soil removal and varying caustic dependence for several extended chain anionic surfactants and NPE.
  • Figure 4 is a graph of the percent soil removal of soybean oil with various builder levels.
  • Figure 5 is a graph of the average soils removal with varying nonionic extended chain surfactants and NPE.
  • Figure 6 is a graph of the average percent oil removal for varying nonionic surfactants with colatrope.
  • Figure 7 is a graph of the average percent soil removal of varying anionic surfactants with nonionic surfactants and tegin.
  • Figure 8 is a graph oaf the average soil removal with varying caustic levels of the nonionic surfactants and tegin.
  • Figures 9-13 are graphs of percent soil removal with different oils and different fabric types with various combinations of extended surfactants, AE and NPE.
  • the term "caustic-free” refers to a composition, mixture, or ingredient that does not contain strong alkalis, such as lye (Sodium Hydroxide), Potassium Hypochlorite or source of alkalinity typically present in a builder including but not limited to alkali metal citrates, succinates, malonates, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylate; or sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid; or citric acid and citrate salts, organic phosphonate type sequestering agents, alkanehydroxy phosphonates, polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic acid copolymers and their salts.
  • strong alkalis such as lye (Sodium Hydroxide), Potassium Hypochlorite or source of alkalinity typically present in a builder including but not limited
  • cleaning refers to at least one of the removal of soil, the removal of staining or the appearance of staining, and/or the reduction of a population of microbes.
  • a cleaning process can include all three of the removal of soil, the removal of staining or the appearance of staining, and the reduction of a population of microbes.
  • a cleaning process can include any one of the removal of soil, the removal of staining or the appearance of staining, or the reduction of a population of microbes.
  • a cleaning process can include any combination of the removal of soil, the removal of staining or the appearance of staining, and the reduction of a population of microbes.
  • Weight percent, percent by weight, % by weight, wt , and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
  • surfactant is a compound that contains a lipophilic segment and a hydrophilic segment, which when added to water or solvents, reduces the surface tension of the system.
  • An "extended chain surfactant” is a surfactant having an intermediate polarity linking chain, such as a block of poly-propylene oxide, or a block of poly-ethylene oxide, or a block of poly-butylene oxide or a mixture thereof inserted between the surfactant's conventional lipophilic segment and hydrophilic segment.
  • electrolyte refers to a substance that will provide ionic conductivity when dissolved in water or when in contact with it; such compounds may either be solid or liquid.
  • microemulsion refers to thermodynamically stable, isotropic dispersions consisting of nanometer size domains of water and/or oil stabilized by an interfacial film of surface active agent characterized by ultra low interfacial tension.
  • hard surface refers to a solid, substantially non-flexible surface such as a counter top, tile, floor, wall, panel, window, plumbing fixture, kitchen and bathroom furniture, appliance, engine, circuit board, and dish.
  • soft surface refers to a softer, highly flexible material such as fabric, carpet, hair, and skin.
  • Soil or “stain” refers to a non-polar oily substance which may or may not contain particulate matter such as mineral clays, sand, natural mineral matter, carbon black, graphite, kaolin, environmental dust, etc.
  • cleaning composition includes, unless otherwise indicated, detergent compositions, laundry cleaning compositions, hard surface cleaning compositions, and personal care cleaning compositions for use in the health and beauty area.
  • Cleaning compositions include granular, powder, liquid, gel, paste, bar form and/or flake type cleaning agents, laundry detergent cleaning agents, laundry soak or spray treatments, fabric treatment compositions, dish washing detergents and soaps, shampoos, body washes and soaps, and other similar cleaning compositions.
  • fabric treatment composition includes, unless otherwise indicated, fabric softening compositions, fabric enhancing compositions, fabric freshening compositions and combinations there of. Such compositions may be, but need not be rinse added compositions.
  • laundry refers to items or articles that are cleaned in a laundry washing machine.
  • laundry refers to any item or article made from or including textile materials, woven fabrics, non-woven fabrics, and knitted fabrics.
  • the textile materials can include natural or synthetic fibers such as silk fibers, linen fibers, cotton fibers, polyester fibers, polyamide fibers such as nylon, acrylic fibers, acetate fibers, and blends thereof including cotton and polyester blends.
  • the fibers can be treated or untreated. Exemplary treated fibers include those treated for flame retardancy.
  • linen is often used to describe certain types of laundry items including bed sheets, pillow cases, towels, table linen, table cloth, bar mops and uniforms.
  • the invention additionally provides a composition and method for treating non-laundry articles and surfaces including hard surfaces such as dishes, glasses, and other ware.
  • reduced caustic or “reduced alkalinity” in reference to a detergent shall mean a detergent with cleaning performance that is not dependant significantly on presence of caustic, i.e. the addition of caustic will not substantially improve cleaning performance.
  • the surfactant system or mixture of the invention employs one or more extended chain surfactants.
  • These are surfactants that have a linker, such as an intermediate polarity poly-propylene oxide chain, inserted between the lipophilic tail group and hydrophilic polar head, which may be anionic or nonionic.
  • lipophilic tail groups include hydrocarbons, alkyl ether, fluorocarbons or siloxanes.
  • anionic and nonionic hydrophilic polar heads of the extended surfactant include, but are not necessarily limited to, groups such as polyoxyethylene sulfate, ethoxysulfate, carboxylate, ethoxy-carboxylate, C6 sugar, xylitol, di-xylitol, ethoxy-xylitol, carboxylate and xytol, carboxylate and glucose.
  • Extended surfactants include a linker polypropylene glycol link.
  • the general formula for a nonionic extended surfactant is R-[L] x -[0— CH 2 — CH 2 ] y
  • R is the lipophilic moiety, a linear or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic hydrocarbon radical having from about 8 to 20 carbon atoms
  • L is a linking group, such as a block of poly-propylene oxide, a block of poly-ethylene oxide, a block of poly-butylene oxide or a mixture thereof; x is the chain length of the linking group ranging from 5-15; and y is the average degree of ethoxylation ranging from 1-5.
  • Anionic extended surfactants generally have the formula
  • M is any ionic species such as carboxylates, sulfonates, sulfates, and phosphates.
  • a cationic species will generally also be present for charge neutrality such as hydrogen, an alkali metal, alkaline earth metal, ammonium and ammonium ions which may be substituted with one or more organic groups
  • extended chain surfactants attain low tension and/or high solubilization in a single phase microemulsion with oils, such as nontrans fats with additional beneficial properties including, but not necessarily limited to, insensitivity to temperature and irreversibility.
  • the emulsions may function over a relatively wide temperature range of from about 20 to about 280°C, alternatively from about 20 to about 180°C (350°F.).
  • Table 1 is a representative, nonlimiting listing of several examples of the same.
  • Lutensol XL-89(nonionic) BASF 80 is 1.0 to 1.5, and b is 4 to 14.
  • Marlowet 4560 nonionic Sasol 90 Ci6-i8(PO) 4 (EO)2-carboxylic under acidic condition, acid
  • these extended chain surfactants can be formulated in detergents that rely less on caustics for their cleaning ability.
  • a linker surfactant may be used, particularly with nonionic extended chain surfactants.
  • the linker cosurfactant is an additive which "sticks to” or “associates with” the extended chain nonionic surfactant and links it with the molecules in the bulk phase, and hence increase the "reach” of the surfactant molecules which are adsorbed at interface, thus enhancing their performance.
  • Linker co- surfactants which may be used according to the invention include mono- and di- glycerides, and/or fatty acids and fatty diacids.
  • Suitable fatty acids are saturated and/or unsaturated and can be obtained from natural sources such a plant or animal esters (e.g., palm kernel oil, palm oil, coconut oil, babassu oil, safflower oil, tall oil, tallow and fish oils, grease, and mixtures thereof), or synthetically prepared (e.g., via the oxidation of petroleum or by hydrogenation of carbon monoxide via the Fisher Tropsch process).
  • Useful fatty acids are saturated C 12 fatty acid, saturated C 12 -i 4 fatty acids, saturated or unsaturated C 12 -is fatty acids, and a mixture thereof.
  • suitable saturated fatty acids include captic, lauric, myristic, palmitic, stearic, arachidic and behenic acid.
  • Suitable unsaturated fatty acids include: palmitoleic, oleic, linoleic, linolenic and ricinoleic acid.
  • nonionic and anionic extended surfactants may be used.
  • the invention includes an effective amount of a surfactant system employing one or more extended chain surfactants.
  • the amounts of the components are not critical and can be adjusted to maximize the planar surface of the surfactant system and the desired soils to be cleaned. While not wishing to be bound by any theory, applicants postulate that the beneficial use of surfactants with a balanced cross- sectional area, for example surfactants with a small hydrophilic head and/or surfactants with twin or bulky hydrophobic tail(s) help the overall packing at the water and oil interface towards a more planar interface.
  • Other possible linkers with balanced cross sectional areas include branched alcohol ethoxylates and Guerbet alcohol ethoxylates.
  • the multiple charge cations, especially Mg 2+ compress the effective sizes of the hydrophilic head, further helping the overall packing towards a planar interface.
  • alkalinity may be used for this purpose as explained herein. Alkalinity provides other benefits such as dissolving polymerized grease.
  • the surfactant system contains an effective amount of an extended chain surfactant.
  • the embodiment contains a synergistic combination that includes an extended chain nonionic surfactant and an extended chain anionic surfactant.
  • the combination includes a ratio of nonionic to anionic extended chain surfactant of greater than 1: 1 weight percent ration. In a more preferred embodiment the ration if 2: 1 nonionic to anionic, even more preferred is approximately 4: 1 weight percent ratio.
  • surfactant system of the invention may be used as a booster composition for removal of other difficult soils including those caused by the ingredients found in many sunscreens.
  • extended chain surfactants particularly nonionic extended chain surfactants, may be combined
  • the booster composition is more effective at removing stains caused by components of sunscreens such as avobenzone and oxybenzone. These stains are not visible until after drying and result in a yellow colored stain on resulting towels, sheets, and the like.
  • the booster compositions comprise from about 50-70% by weight of an extended chain nonionic surfactant, from about 1-20% of an extended chain anionic surfactant, from about 10-40% solvent and about 1-15% amine oxide.
  • Solvents useful for the present invention include polyethylene oxide ethers derived from lauryl alcohol, cetyl alcohol, oleyl alcohol, stearyl alcohol, isostearyl alcohol, myristyl alcohol, behenyl alcohol, and mixtures thereof.
  • polyoxyethylene 10 cetyl ether known by the CTFA designation as ceteth-10;
  • polyoxyethylene stearyl ether known by the CTFA designation steareth-21; coconut alkyl polyethoxylate; decyl polyethoxylate, ethoxylates of nonylphenol, dinonylphenol,
  • the surfactant booster system is preferably a mixture of both noninonic and anionic surfactants. Such composition may be used as a pre-spotter, or a booster in combination with a detergent or incorporated directly into the detergent compositions.
  • a booster surfactant composition according to the invention is listed below:
  • the booster or surfactant system of the invention may be used alone, as a pre-spot or pre-treatment composition in combination with a traditional detergent or cleaner, or may be incorporated within a cleaning composition.
  • the invention comprises both hard surface and soft surface cleaning compositions employing the disclosed surfactant and/or booster system.
  • the invention employs the surfactant system of the invention, an acid source, a solvent, a water conditioning agent, and water to make a hard surface cleaner which will be effective at removing greasy and oily soils from surfaces such as showers, sinks, toilets, bathtubs, countertops, windows, mirrors, transportation vehicles, floors, and the like.
  • surfaces can be those typified as "hard surfaces” (such as walls, floors, bed-pans).
  • a typical hard surface formulation at about 18% activity includes between about 40 wt.% and about 80 wt.% surfactant system of the invention, between about 3 wt.% and about 18 wt.% water conditioning agent, between about 0.1 wt.% and about 0.55 wt.% acid source, between about 0 wt.% and about 10 wt.% solvent and between about 10 wt.% and about 60 wt.% water.
  • the cleaning compositions include between about 45 wt.% and about 75 wt.% surfactant system of the invention, between about 0 wt.% and about 10 wt.% optional co-surfactant, between about 5 wt.% and about 15 wt.% water conditioning agent, between about 0.3 wt.% and about 0.5 wt.% acid source, between about 0 and about 6 wt.% solvent and between about 15 wt.% and about 50 wt.% water.
  • similar intermediate concentrations and use concentrations may also be present in the cleaning compositions of the invention.
  • compositions of the invention typically include the surfactant system of the invention, and a builder, optionally with an enzyme.
  • a builder optionally with an enzyme.
  • additional materials include, but are not limited to, surfactants, builders, chelating agents, dye transfer inhibiting agents, viscosity modifiers, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, threshold inhibitors for hard water precipitation pigments, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, fabric hueing agents, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, pigments antimicrobials, pH buffers, processing aids, active fluorescent whitening ingredient, additional surfactants and mixtures thereof.
  • adjunct ingredients are not essential to Applicants' compositions.
  • certain embodiments of Applicants' compositions do not contain additional materials.
  • the liquid detergent herein has a neat pH of from about 7 to about 13, or about 7 to about 9, or from about 7.2 to about 8.5, or from about 7.4 to about 8.2.
  • the detergent may contain a buffer and/or a pH-adjusting agent, including inorganic and/or organic alkalinity sources and acidifying agents such as water-soluble alkali metal, and/or alkali earth metal salts of hydroxides, oxides, carbonates, bicarbonates, borates, silicates, phosphates, and/or metasilicates; or sodium hydroxide, potassium hydroxide, pyrophosphate, orthophosphate, polyphosphate, and/or phosphonate.
  • a buffer and/or a pH-adjusting agent including inorganic and/or organic alkalinity sources and acidifying agents such as water-soluble alkali metal, and/or alkali earth metal salts of hydroxides, oxides, carbonates, bicarbonates, borates, silicates, phosphates, and/or metasilicate
  • the organic alkalinity source herein includes a primary, secondary, and/or tertiary amine.
  • the inorganic acidifying agent herein includes HF, HC1, HBr, HI, boric acid, sulfuric acid, phosphoric acid, and/or sulphonic acid; or boric acid.
  • the organic acidifying agent herein includes substituted and substituted, branched, linear and/or cyclic C 1-3 o carboxylic acid.
  • the cleaning compositions of the present invention may comprise one or more bleaching agents. Suitable bleaching agents other than bleaching catalysts include photobleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, pre-formed peracids and mixtures thereof. In general, when a bleaching agent is used, the compositions of the present invention may comprise from about 0.1% to about 50% or even from about 0.1% to about 25% bleaching agent by weight of the subject cleaning
  • bleaching agents include:
  • Suitable preformed peracids include, but are not limited to, compounds selected from the group consisting of percarboxylic acids and salts, percarbonic acids and salts, perimidic acids and salts, peroxymono sulfuric acids and salts, for example, Oxzone®, and mixtures thereof.
  • Suitable percarboxylic acids include hydrophobic and hydrophilic peracids having the formula R— (C-O)O— O-M wherein R is an alkyl group, optionally branched, having, when the peracid is hydrophobic, from 6 to 14 carbon atoms, or from 8 to 12 carbon atoms and, when the peracid is hydrophilic, less than 6 carbon atoms or even less than 4 carbon atoms; and M is a counterion, for example, sodium, potassium or hydrogen;
  • inorganic perhydrate salts including alkali metal salts such as sodium salts of perborate (usually mono- or tetra-hydrate), percarbonate, persulphate, perphosphate, persilicate salts and mixtures thereof.
  • the inorganic perhydrate salts are selected from the group consisting of sodium salts of perborate, percarbonate and mixtures thereof.
  • inorganic perhydrate salts are typically present in amounts of from 0.05 to 40 wt.%, or 1 to 30 wt.% of the overall composition and are typically incorporated into such compositions as a crystalline solid that may be coated. Suitable coatings include, inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as water- soluble or dispersible polymers, waxes, oils or fatty soaps; and
  • bleach activators having R— (C— 0)-L wherein R is an alkyl group, optionally branched, having, when the bleach activator is hydrophobic, from 6 to 14 carbon atoms, or from 8 to 12 carbon atoms and, when the bleach activator is hydrophilic, less than 6 carbon atoms or even less than 4 carbon atoms; and L is leaving group.
  • suitable leaving groups are benzoic acid and derivatives thereof— especially benzene sulphonate.
  • Suitable bleach activators include dodecanoyl oxybenzene sulphonate, decanoyl oxybenzene sulphonate, decanoyl oxybenzoic acid or salts thereof, 3,5,5-trimethyl hexanoyloxybenzene sulphonate, tetraacetyl ethylene diamine (TAED) and nonanoyloxybenzene sulphonate (NOBS).
  • TAED tetraacetyl ethylene diamine
  • NOBS nonanoyloxybenzene sulphonate
  • Suitable bleach activators are also disclosed in WO 98/17767. While any suitable bleach activator may be employed, in one aspect of the invention the subject cleaning composition may comprise NOBS, TAED or mixtures thereof.
  • the peracid and/or bleach activator is generally present in the composition in an amount of from about 0.1 to about 60 wt.%, from about 0.5 to about 40 wt.% or even from about 0.6 to about 10 wt.% based on the composition.
  • One or more hydrophobic peracids or precursors thereof may be used in combination with one or more hydrophilic peracid or precursor thereof.
  • the amounts of hydrogen peroxide source and peracid or bleach activator may be selected such that the molar ratio of available oxygen (from the peroxide source) to peracid is from 1: 1 to 35: 1, or even 2: 1 to 10: 1.
  • compositions of the invention include an additional surfactant.
  • Additional surfactants can be anionic, nonionic, cationic zwitterionic and can also include additional extended chain surfactant as discussed herein.
  • the cleaning composition can contain an additional anionic surfactant component that includes a detersive amount of an anionic surfactant or a mixture of anionic surfactants.
  • Anionic surfactants are desirable in cleaning compositions because of their wetting and detersive properties.
  • the anionic surfactants that can be used according to the invention include any anionic surfactant available in the cleaning industry. Suitable groups of anionic surfactants include sulfonates and sulfates. Suitable surfactants that can be provided in the anionic surfactant component include alkyl aryl sulfonates, secondary alkane sulfonates, alkyl methyl ester sulfonates, alpha olefin sulfonates, alkyl ether sulfates, alkyl sulfates, and alcohol sulfates.
  • Suitable alkyl aryl sulfonates that can be used in the cleaning composition can have an alkyl group that contains 6 to 24 carbon atoms and the aryl group can be at least one of benzene, toluene, and xylene.
  • a suitable alkyl aryl sulfonate includes linear alkyl benzene sulfonate.
  • a suitable linear alkyl benzene sulfonate includes linear dodecyl benzyl sulfonate that can be provided as an acid that is neutralized to form the sulfonate.
  • Additional suitable alkyl aryl sulfonates include xylene sulfonate and cumene sulfonate.
  • Suitable alkane sulfonates that can be used in the cleaning composition can have an alkane group having 6 to 24 carbon atoms.
  • Suitable alkane sulfonates that can be used include secondary alkane sulfonates.
  • a suitable secondary alkane sulfonate includes sodium C 14 -C 17 secondary alkyl sulfonate commercially available as Hostapur SAS from Clariant.
  • Suitable alkyl methyl ester sulfonates that can be used in the cleaning composition include those having an alkyl group containing 6 to 24 carbon atoms.
  • Suitable alpha olefin sulfonates that can be used in the cleaning composition include those having alpha olefin groups containing 6 to 24 carbon atoms.
  • Suitable alkyl ether sulfates that can be used in the cleaning composition include those having between about 1 and about 10 repeating alkoxy groups, between about 1 and about 5 repeating alkoxy groups. In general, the alkoxy group will contain between about 2 and about 4 carbon atoms. A suitable alkoxy group is ethoxy. A suitable alkyl ether sulfate is sodium lauryl ether sulfate and is available under the name Steol CS-460.
  • Suitable alkyl sulfates that can be used in the cleaning composition include those having an alkyl group containing 6 to 24 carbon atoms.
  • Suitable alkyl sulfates include, but are not limited to, sodium lauryl sulfate and sodium lauryl/myristyl sulfate.
  • Suitable alcohol sulfates that can be used in the cleaning composition include those having an alcohol group containing about 6 to about 24 carbon atoms.
  • the anionic surfactant can be neutralized with an alkaline metal salt, an amine, or a mixture thereof.
  • Suitable alkaline metal salts include sodium, potassium, and magnesium.
  • Suitable amines include monoethanolamine, triethanolamine, and monoisopropanolamine. If a mixture of salts is used, a suitable mixture of alkaline metal salt can be sodium and magnesium, and the molar ratio of sodium to magnesium can be between about 3: 1 and about 1: 1.
  • the cleaning composition when provided as a concentrate, can include the additional anionic surfactant component in an amount sufficient to provide a use composition having desired wetting and detersive properties after dilution with water.
  • the concentrate can contain about 0.1 wt.% to about 0.5 wt.%, about 0.1 wt.% to about 1.0 wt.%, about 1.0 wt.% to about 5 wt.%, about 5 wt.% to about 10 wt.%, about 10 wt.% to about 20 wt.%, 30 wt.%, about 0.5 wt.% to about 25 wt.%, and about 1 wt.% to about 15 wt.%, and similar
  • the cleaning composition can contain a nonionic surfactant component that includes a detersive amount of nonionic surfactant or a mixture of nonionic surfactants.
  • Nonionic surfactants can be included in the cleaning composition to enhance grease removal properties.
  • the surfactant component can include a nonionic surfactant component, it should be understood that the nonionic surfactant component can be excluded from the detergent composition.
  • Additional nonionic surfactants that can be used in the composition include polyalkylene oxide surfactants (also known as polyoxyalkylene surfactants or polyalkylene glycol surfactants).
  • Suitable polyalkylene oxide surfactants include polyoxypropylene surfactants and polyoxyethylene glycol surfactants.
  • Suitable surfactants of this type are synthetic organic polyoxypropylene (PO)-polyoxyethylene (EO) block copolymers. These surfactants include a di-block polymer comprising an EO block and a PO block, a center block of polyoxypropylene units (PO), and having blocks of polyoxyethylene grafted onto the polyoxypropylene unit or a center block of EO with attached PO blocks.
  • this surfactant can have further blocks of either polyoxyethylene or polyoxypropylene in the molecules.
  • a suitable average molecular weight range of useful surfactants can be about 1,000 to about 40,000 and the weight percent content of ethylene oxide can be about 10-80 wt.%.
  • nonionic surfactants include alcohol alkoxylates.
  • An suitable alcohol alkoxylate include linear alcohol ethoxylates such as Tomadol 1-5 which is a surfactant containing an alkyl group having 11 carbon atoms and 5 moles of ethylene oxide.
  • Additional alcohol alkoxylates include alkylphenol ethoxylates, branched alcohol ethoxylates, secondary alcohol ethoxylates (e.g., Tergitol 15-S-7 from Dow Chemical), castor oil ethoxylates, alkylamine ethoxylates, tallow amine ethoxylates, fatty acid ethoxylates, sorbital oleate ethoxylates, end-capped ethoxylates, or mixtures thereof.
  • alkylphenol ethoxylates branched alcohol ethoxylates
  • secondary alcohol ethoxylates e.g., Tergitol 15-S-7 from Dow Chemical
  • castor oil ethoxylates e.g., alkylamine ethoxylates, tallow amine ethoxylates, fatty acid ethoxylates, sorbital oleate ethoxylates, end-capped ethoxylates, or mixtures
  • Additional nonionic surfactants include amides such as fatty alkanolamides, alkyldiethanolamides, coconut diethanolamide, lauric diethanolamide, polyethylene glycol cocoamide (e.g., PEG-6 cocoamide), oleic diethanolamide, or mixtures thereof.
  • amides such as fatty alkanolamides, alkyldiethanolamides, coconut diethanolamide, lauric diethanolamide, polyethylene glycol cocoamide (e.g., PEG-6 cocoamide), oleic diethanolamide, or mixtures thereof.
  • nonionic surfactants include polyalkoxylated aliphatic base, polyalkoxylated amide, glycol esters, glycerol esters, amine oxides, phosphate esters, alcohol phosphate, fatty triglycerides, fatty triglyceride esters, alkyl ether phosphate, alkyl esters, alkyl phenol ethoxylate phosphate esters, alkyl polysaccharides, block copolymers, alkyl polyglucosides, or mixtures thereof.
  • nonionic surfactants When nonionic surfactants are included in the detergent composition concentrate, they can be included in an amount of at least about 0.1 wt.% and can be included in an amount of up to about 15 wt.%.
  • the concentrate can include about 0.1 to 1.0 wt.%, about 0.5 wt.% to about 12 wt.% or about 2 wt.% to about 10 wt.% of the nonionic surfactant.
  • Amphoteric surfactants can also be used to provide desired detersive properties.
  • Suitable amphoteric surfactants that can be used include, but are not limited to: betaines, imidazolines, and propionates.
  • Suitable amphoteric surfactants include, but are not limited to: sultaines, amphopropionates, amphodipropionates, aminopropionates,
  • the amphoteric surfactant can be included in an amount of about 0.1 wt.% to about 15 wt.%.
  • the concentrate can include about 0.1 wt.% to about 1.0 w.t%, 0.5 wt.% to about 12 wt.% or about 2 wt.% to about 10 wt.% of the amphoteric surfactant.
  • the cleaning composition can contain a cationic surfactant component that includes a detersive amount of cationic surfactant or a mixture of cationic surfactants.
  • Cationic co- surfactants that can be used in the cleaning composition include, but are not limited to:
  • amines such as primary, secondary and tertiary monoamines with Cn alkyl or alkenyl chains, ethoxylated alkylamines, alkoxylates of ethylenediamine, imidazoles such as a l-(2- hydroxyethyl)-2-imidazoline, a 2-alkyl-l-(2-hydroxyethyl)-2-imidazoline, and the like; and quaternary ammonium salts, as for example, alkylquaternary ammonium chloride surfactants such as n-alkyl(C 1 2-C 1 8)dimethylbenzyl ammonium chloride, n-tetradecyldimethylbenzylammonium chloride monohydrate, and a naphthylene- substituted quaternary ammonium chloride such as dimethyl- 1-naphthylmethylammonium chloride.
  • alkylquaternary ammonium chloride surfactants such as n-alkyl(
  • the cleaning compositions of the present invention may comprise one or more detergent builders or builder systems.
  • the subject composition will typically comprise at least about 1%, from about 5% to about 60% or even from about 10% to about 40% builder by weight of the subject composition.
  • the detergent may contain an inorganic or organic detergent builder which counteracts the effects of calcium, or other ion, water hardness. Examples include the alkali metal citrates, succinates, malonates, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylate; or sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene
  • Organic phosphonate type sequestering agents such as DEQUEST® by Monsanto and alkanehydroxy phosphonates are useful.
  • Other organic builders include higher molecular weight polymers and
  • the builder may be up to 30%, or from about 1% to about 20%, or from abut 3% to about 10%.
  • compositions may also contain from about 0.01% to about 10%, or from about 2% to about 7%, or from about 3% to about 5% of a Cg_ 2 o fatty acid as a builder.
  • the fatty acid can also contain from about 1 to about 10 EO units. Suitable fatty acids are saturated and/or unsaturated and can be obtained from natural sources such a plant or animal esters
  • Useful fatty acids are saturated C 12 fatty acid, saturated C 12 -i 4 fatty acids, saturated or unsaturated C 12 -i8 fatty acids, and a mixture thereof.
  • suitable saturated fatty acids include captic, lauric, myristic, palmitic, stearic, arachidic and behenic acid.
  • Suitable unsaturated fatty acids include: palmitoleic, oleic, linoleic, linolenic and ricinoleic acid.
  • the cleaning compositions herein may contain a chelating agent. Suitable chelating agents include copper, iron and/or manganese chelating agents and mixtures thereof. When a chelating agent is used, the subject composition may comprise from about 0.005% to about 15% or even from about 3.0% to about 10% chelating agent by weight of the subject composition.
  • Dye Transfer Inhibiting Agents The cleaning compositions of the present invention may also include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole,
  • the dye transfer inhibiting agents may be present at levels from about 0.0001% to about 10%, from about 0.01% to about 5% or even from about 0.1% to about 3% by weight of the composition.
  • an optical brightener component may be present in the compositions of the present invention.
  • the optical brightener can include any brightener that is capable of eliminating graying and yellowing of fabrics. Typically, these substances attach to the fibers and bring about a brightening and simulated bleaching action by converting invisible ultraviolet radiation into visible longer- wave length light, the ultraviolet light absorbed from sunlight being irradiated as a pale bluish fluorescence and, together with the yellow shade of the grayed or yellowed laundry, producing pure white.
  • Fluorescent compounds belonging to the optical brightener family are typically aromatic or aromatic heterocyclic materials often containing condensed ring systems.
  • An important feature of these compounds is the presence of an uninterrupted chain of conjugated double bonds associated with an aromatic ring. The number of such conjugated double bonds is dependent on substituents as well as the planarity of the fluorescent part of the molecule.
  • Most brightener compounds are derivatives of stilbene or 4,4'-diamino stilbene, biphenyl, five membered heterocycles (triazoles, oxazoles, imidazoles, etc.) or six membered heterocycles (cumarins, naphthalamides, triazines, etc.).
  • Optical brighteners useful in the present invention are known and commercially available.
  • Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiophene-5,5- dioxide, azoles, 5- and 6-membered-ring heterocycles and other miscellaneous agents.
  • Stilbene derivatives which may be useful in the present invention include, but are not necessarily limited to, derivatives of bis(triazinyl)amino-stilbene; bisacylamino derivatives of stilbene; triazole derivatives of stilbene; oxadiazole derivatives of stilbene; oxazole derivatives of stilbene; and styryl derivatives of stilbene.
  • optical brighteners include stilbene derivatives.
  • the optical brightener includes Tinopal UNPA, which is commercially available through the Ciba Geigy Corporation located in Switzerland.
  • Suitable optical brightener levels include lower levels of from about 0.01, from about 0.05, from about 0.1 or even from about 0.2 wt.% to upper levels of 0.5 or even 0.75 wt.%.
  • compositions of the present invention can also contain dispersants.
  • Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • the cleaning compositions can comprise one or more enzymes which provide cleaning performance and/or fabric care benefits.
  • Enzymes can be included herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and/or for fabric restoration.
  • suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases,
  • phospholipases esterases, cutinases, pectinases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases,P- glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, amylases, or
  • a detersive enzyme mixture useful herein is a protease, lipase, cutinase and/or cellulase in conjunction with amylase. Sample detersive enzymes are described in U.S. Pat. No. 6,579,839. Enzymes are normally present at up to about 5 mg, more typically from about 0.01 mg to about 3 mg by weight of active enzyme per gram of the detergent.
  • the detergent herein will typically contain from about 0.001 to about 5%, or from about 0.01% to about 2%, or from about 0.05% to about 1% by weight of a commercial enzyme preparation.
  • Protease enzymes are present at from about 0.005 to about 0.1 AU of activity per gram of detergent.
  • Proteases useful herein include those like subtilisins from Bacillus [e.g. subtilis, lentus, licheniformis, amyloliquefaciens (BPN, BPN'), alcalophilus,] e.g.
  • Amylases are described in GB Pat. # 1 296 839, WO 94/02597 and WO 96/23873; and available as Purafect Ox Am® (Genencor), Termamyl®, Natalase®, Ban®, Fungamyl®, Duramyl® (all Novozymes), and RAPID ASE (International Bio-Synthetics, Inc).
  • the cellulase herein includes bacterial and/or fungal cellulases with a pH optimum between 5 and 9.5. Suitable cellulases are disclosed in U.S. Pat. No. 4,435,307 to
  • Cellulases useful herein include bacterial or fungal cellulases, e.g. produced by Humicola insolens, particularly DSM 1800, e.g. 50 kD and -43 kD (Carezyyme®). Additional suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum.
  • WO 02/099091 by Novozymes describes an enzyme exhibiting endo-beta- glucanase activity (EC 3.2.1.4) endogenous to Bacillus sp., DSM 12648; for use in detergent and textile applications; and an anti-redeposition endo-glucanase in WO 04/053039.
  • Kao's EP 265 832 describes alkaline cellulase K, CMCase I and CMCase II isolated from a culture product of Bacillus sp KSM-635.
  • Kao further describes in EP 1 350 843 (KSM S237; 1139; KSM 64; KSM N131), EP 265 832A (KSM 635, FERM BP 1485) and EP 0 271 044 A (KSM 534, FERM BP 1508; KSM 539, FERM BP 1509; KSM 577, FERM BP 1510; KSM 521, FERM BP 1507; KSM 580, FERM BP 1511; KSM 588, FERM BP 1513; KSM 597, FERM BP 1514; KSM 522, FERM BP 1512; KSM 3445, FERM BP 1506; KSM 425.
  • FERM BP 1505 readily-mass producible and high activity alkaline cellulases/endo-glucanases for an alkaline environment.
  • Such endo-glucanase may contain a polypeptide (or variant thereof) endogenous to one of the above Bacillus species.
  • Other suitable cellulases are Family 44 Glycosyl Hydrolase enzymes exhibiting endo-beta-l,4-glucanase activity from Paenibacilus polyxyma (wild-type) such as XYG1006 described in WO 01/062903 or variants thereof.
  • Carbohydrases useful herein include e.g. mannanase (see, e.g., U.S. Pat. No.
  • Bleaching enzymes useful herein with enhancers include e.g. peroxidases, laccases, oxygenases, lipoxygenase (see, e.g., WO 95/26393), and/or (non-heme) haloperoxidases.
  • Suitable endoglucanases include: 1) An enzyme exhibiting endo-beta-l,4-glucanase activity (E.C. 3.2.1.4), with a sequence at least 90%, or at least 94%, or at least 97% or at least 99%, or 100% identity to the amino acid sequence of positions 1-773 of SEQ ID NO:2 in WO 02/099091; or a fragment thereof that has endo-beta-l,4-glucanase activity.
  • GAP in the GCG program determines identity using a GAP creation penalty of 3.0 and GAP extension penalty of 0.1. See WO 02/099091 by Novozymes A/S on Dec. 12, 2002, e.g., CellucleanTM by Novozymes A/S.
  • GCG refers to sequence analysis software package (Accelrys, San Diego, Calif., USA). GCG includes a program called GAP which uses the Needleman and Wunsch algorithm to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps; and 2) Alkaline endoglucanase enzymes described in EP 1 350 843A published by Kao on Oct. 8, 2003 ([0011H0039] and examples 1-4).
  • Suitable lipases include those produced by Pseudomonas and Chromobacter, and LIPOLASE®, LIPOLASE ULTRA®, LIPOPRIME® and LIPEX® from Novozymes. See also Japanese Patent Application 53-20487, laid open on Feb. 24, 1978, available from Areario Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano".
  • Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, available from Toyo Jozo Co., Tagata, Japan; and Chromobacter viscosum lipases from U.S.
  • Enzymes useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. Pat. No. 4,261,868 to Hora, et al., issued Apr. 14, 1981.
  • the liquid composition herein is substantially free of (i.e. contains no measurable amount of) wild-type protease enzymes.
  • a typical combination is an enzyme cocktail that may comprise, for example, a protease and lipase in conjunction with amylase.
  • the aforementioned additional enzymes may be present at levels from about 0.00001% to about 2%, from about 0.0001% to about 1% or even from about 0.001% to about 0.5% enzyme protein by weight of the composition.
  • Enzyme Stabilizers Enzymes for use in detergents can be stabilized by various techniques.
  • the enzymes employed herein can be stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions that provide such ions to the enzymes.
  • a reversible protease inhibitor such as a boron compound, can be added to further improve stability.
  • a useful enzyme stabilizer system is a calcium and/or magnesium compound, boron compounds and substituted boric acids, aromatic borate esters, peptides and peptide derivatives, polyols, low molecular weight carboxylates, relatively hydrophobic organic compounds [e.g.
  • esters diakyl glycol ethers, alcohols or alcohol alkoxylates], alkyl ether carboxylate in addition to a calcium ion source, benzamidine hypochlorite, lower aliphatic alcohols and carboxylic acids, N,N-bis(carboxymethyl) serine salts; (meth)acrylic acid- (meth) acrylic acid ester copolymer and PEG; lignin compound, polyamide oligomer, glycolic acid or its salts; poly hexa methylene bi guanide or N,N-bis-3-amino-propyl-dodecyl amine or salt; and mixtures thereof.
  • the detergent may contain a reversible protease inhibitor e.g., peptide or protein type, or a modified subtilisin inhibitor of family VI and the plasminostrepin; leupeptin, peptide trifluoromethyl ketone, or a peptide aldehyde.
  • Enzyme stabilizers are present from about 1 to about 30, or from about 2 to about 20, or from about 5 to about 15, or from about 8 to about 12, millimoles of stabilizer ions per liter.
  • Applicants' cleaning compositions may include catalytic metal complexes.
  • One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • Such catalysts are disclosed in U.S. Pat. No. 4,430,243.
  • compositions herein can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds and levels of use are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. No. 5,576,282.
  • Cobalt bleach catalysts useful herein are known, and are described, for example, in
  • compositions herein may also suitably include a transition metal complex of ligands such as bispidones (WO 05/042532 Al) and/or macropolycyclic rigid ligands— abbreviated as "MRLs”.
  • ligands such as bispidones (WO 05/042532 Al) and/or macropolycyclic rigid ligands— abbreviated as "MRLs”.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per hundred million of the active MRL species in the aqueous washing medium, and will typically provide from about 0.005 ppm to about 25 ppm, from about 0.05 ppm to about 10 ppm, or even from about 0.1 ppm to about 5 ppm, of the MRL in the wash liquor.
  • Suitable transition-metals in the instant transition-metal bleach catalyst include, for example, manganese, iron and chromium.
  • Suitable MRLs include 5,12-diethyl-l,5,8,12- tetraazabicyclo [6.6.2] hexadecane .
  • Suitable transition metal MRLs are readily prepared by known procedures, such as taught for example in WO 00/32601, and U.S. Pat. No. 6,225,464.
  • Suitable solvents include water and other solvents such as lipophilic fluids.
  • suitable lipophilic fluids include siloxanes, other silicones, hydrocarbons, glycol ethers, glycerine derivatives such as glycerine ethers, perfluorinated amines, perfluorinated and hydrofluoroether solvents, low-volatility nonfluorinated organic solvents, diol solvents, other environmentally-friendly solvents and mixtures thereof.
  • the solvent includes water.
  • the water can include water from any source including deionized water, tap water, softened water, and combinations thereof. Solvents are typically present at from about 0.1% to about 50%, or from about 0.5% to about 35%, or from about 1% to about 15% by weight.
  • the detergent compositions of the present invention may be of any suitable form, including paste, liquid, solid (such as tablets, powder/granules), foam or gel, with powders and tablets being preferred.
  • the composition may be in the form of a unit dose product, i.e. a form which is designed to be used as a single portion of detergent composition in a washing operation. Of course, one or more of such single portions may be used in a cleaning operation.
  • Solid forms include, for example, in the form of a tablet, rod, ball or lozenge.
  • the composition may be a particulate form, loose or pressed to shape or may be formed by injection moulding or by casting or by extrusion.
  • the composition may be encased in a water soluble wrapping, for, example of PVOH or a cellulosic material.
  • the solid product may be provided as a portioned product as desired.
  • composition may also be in paste, gel or liquid form, including unit dose
  • portions include a paste, gel or liquid product at least partially surrounded by, and preferably substantially enclosed in a water-soluble coating, such as a polyvinyl alcohol package.
  • This package may for instance take the form of a capsule, a pouch or a moulded casing (such as an injection moulded casing) etc.
  • the composition is substantially surrounded by such a package, most preferably totally surrounded by such a package.
  • Any such package may contain one or more product formats as referred to herein and the package may contain one or more compartments as desired, for example two, three or four compartments.
  • composition is a foam, a liquid or a gel it is preferably an aqueous composition although any suitable solvent may be used.
  • the composition is in the form of a tablet, most especially a tablet made from compressed particulate material.
  • compositions are in the form of a viscous liquid or gel they preferably have a viscosity of at least 50 mPas when measured with a Brookfield RV Viscometer at 25°C with Spindle 1 at 30 rpm.
  • compositions of the invention will typically be used by placing them in a detergent dispenser e.g. in a dishwasher machine draw or free standing dispensing device in an automatic dishwashing machine.
  • a detergent dispenser e.g. in a dishwasher machine draw or free standing dispensing device in an automatic dishwashing machine.
  • the composition is in the form of a foam, liquid or gel then it may be applied to by any additional suitable means into the dishwashing machine, for example by a trigger spray, squeeze bottle or an aerosol.
  • compositions of the invention may be made by any suitable method depending upon their format. Suitable manufacturing methods for detergent compositions are well known in the art, non-limiting examples of which are described in U.S. Pat. Nos. 5,879,584;
  • detergent tablets may be made by compacting granular/particular material and may be used herein.
  • the liquid detergent compositions disclosed herein may be prepared by combining the components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form a phase stable liquid detergent composition.
  • a liquid matrix is formed containing at least a major proportion, or even substantially all, of the liquid components, with the liquid components being thoroughly admixed by imparting shear agitation to this liquid combination.
  • shear agitation For example, rapid stirring with a mechanical stirrer may usefully be employed. While shear agitation is maintained, substantially all of any anionic surfactant and the solid ingredients can be added. Agitation of the mixture is continued, and if necessary, can be increased at this point to form a solution or a uniform dispersion of insoluble solid phase particulates within the liquid phase.
  • particles of any enzyme material to be included e.g., enzyme prills are incorporated.
  • one or more of the solid components may be added to the agitated mixture as a solution or slurry of particles premixed with a minor portion of one or more of the liquid components. After addition of all of the composition components, agitation of the mixture is continued for a period of time sufficient to form compositions having the requisite viscosity and phase stability characteristics.
  • Nonlimiting examples of reduced caustic detergent compositions according to the invention are listed below:
  • a tergitometer test was performed to determine the efficacy of an extended surfactant formula against commercial detergent formulas, listed below. The following conditions were used in the testing; DI water, 140°F, 10 minute wash, 1500ppm active surfactant, lOOrpm, 2 half swatches of each of the following soils EMPA 101, EMPA 104, Soy/Soot Blend, Soy/Soot Cotton swatches. Each formula was tested with 0 ppm caustic and 1500 ppm caustic (from 50% NaOH) to determine the dependence on caustic for soil removal.
  • a tergitometer test was performed to determine the efficacy of various anionic extended surfactants.
  • the performance of the formulas containing the various extended surfactants was compared to Commercial Detergent A.
  • the formulas used are listed below. The following conditions were used in the testing; DI water, 140°F, 10 minute wash, 1500ppm active surfactant, 70rpm, 3 swatches of each of the following soils EMPA 101, EMPA 104, Soy/Soot Blend, Soy/Curry Cotton swatches.
  • Each formula was tested with 0 ppm caustic and 1500 ppm caustic (from 50% NaOH) to determine the dependence on caustic for soil removal.
  • a tergitometer test was performed with an extended surfactant formula and varying caustic levels to determine if there is a point at which the formula shows a dependence on caustic. The following conditions were used in the testing; DI water, 150°F, 10 minute wash, lOOrpm, and 9.39g/L extended formula (listed below) added to the wash pot.
  • a Builder with a high recommended alkalinity use level at and 0, 1, 3, 5, 7, 9 and 11 grams of Builder per 1L wash solution added into wash pot.
  • Terry swatches were soiled with 0.30g of Soybean oil and allowed to set overnight. Three soiled swatches were used in each wash solution.
  • the extended anionic surfactant used in this formula is the X-AES with 16 PO.
  • the results of this testing show there is no point at which caustic alkalinity improves soil removal. This is consistent with the previous examples, wherein the extended anionics with higher levels of PO had less caustic dependence. The results are shown in Figure 4.
  • the Builder formula is a builder system with 31.5% active sodium hydroxide.
  • a tergitometer test was performed to determine if non-extended nonionics perform as well as the extended nonionic system.
  • the anionic used was the Marlowet 4539 (2 PO).
  • the non-extended nonionics were compared with Ecosurf EH-6 and an optimized Ecosurf EH-6 with a linker (Tegin ISO). The following conditions were used in the testing; DI water, 140°F, 10 minute wash, 1500ppm active surfactant, 70rpm, 2 half swatches of each of the following soils EMPA 101, EMPA 104, Soy/Soot Blend, Soy/Soot Cotton swatches (from Test Fabrics). Each formula was tested with 0 ppm caustic and 1500 ppm caustic (from 50% NaOH) to determine the dependence on caustic for soil removal.
  • the NPE 9.5/4.5 is Commercial Detergent A formula.
  • a tergitometer test was performed to determine if colatrope works as well as the nonionics used in the previous test. The following conditions were used in the testing; DI water, 140°F, 10 minute wash, 1500ppm active surfactant, 70rpm, 2 half swatches of each of the following soils EMPA 101, EMPA 104, Soy/Soot Blend, Soy/Soot Cotton swatches (from Test Fabrics). Each formula was tested with 0 ppm caustic and 1500 ppm caustic (from 50% NaOH) to determine the dependence on caustic for soil removal.
  • the NPE 9.5/4.5 is Commercial Detergent A.
  • a tergitometer test was performed to evaluate several anionic surfactants (both extended and non-extended) with the optimized EH-6/Tegin nonionic system. The following conditions were used in the testing; DI water, 140°F, 10 minute wash, 1500ppm active surfactant, lOOrpm, 2 half swatches of each of the following soils EMPA 101, EMPA 104, Soy/Soot Blend, Soy/Soot Cotton swatches. Each formula was tested with 0 ppm caustic and 1500 ppm caustic (from 50% NaOH) to determine the dependence on caustic for soil removal.
  • the NPE 9.5/4.5 is Commercial Detergent A
  • a tergitometer test was run with formulas containing 4PO and 2PO extended anionic surfactants with the optimized extended nonionic system. The following conditions were used in the testing; DI water, 140°F, 10 minute wash, 1500ppm active surfactant, lOOrpm, 2 half swatches of each of the following soils EMPA 101, EMPA 104, Soy/Soot Blend, Soy/Soot Cotton swatches. The caustic level with these formulas was tested at 0, 215, 430, 650, 860, 1175, 1285, and 1500ppm caustic (from 50% NaOH).
  • a tergitometer test was performed to determine the efficacy of extended surfactant formulas against Commercial Detergent formulas, listed below. The following conditions were used in the testing; DI water, 140°F, 10 minute wash, 1500ppm active surfactant, lOOrpm, 2 half swatches of each of the following soils, and 1 half unsoiled blend swatch and 1 half unsoiled cotton swatch. Each formula was tested with 0 ppm caustic, either 200ppm caustic or 800ppm caustic, and 1500 ppm caustic (from 50% NaOH).
  • the swatches were prepared as follows:
  • STC EMPA 211 (cotton percale, bleached without optical brightener)
  • STC EMPA 213 (polyester/cotton 65/35, bleached without optical brightener e.
  • the swatches were saturated with the oil, placed between blotter sheets, and run through the padder with 45 pounds of weight.
  • Commercial Detergent A is an NPE based detergent with 73.80% active surfactants
  • Commercial Detergent B is an AE based detergent with 72.14% active surfactants
  • Commercial Detergent C is an AE based detergent with 75.07% active surfactants
  • Commercial Detergent D is an NPE based detergent with 80.00% active surfactants
  • Commercial Detergent E is an AE based detergent with 52.8% active surfactants.
  • Tables A-F illustrated below, illustrate certain microemulsion forming formulas that can be used.
  • Table A illustrates formulas including 15%, 20% and 25% EDTA.
  • Table B illustrates formulas including 10%, 15% and 20% MGDA.
  • Table C illustrates formulas including 10% and 20% GLDA.
  • Table D illustrates formulas containing monoethanolamine which acts as a weak base to add alkalinity to the formula for enhanced performance and cleaning and also a linker to boost the efficacy of the surfactants.
  • Tables E and F illustrate maximum concentration microemulsion forming formulas incorporating an anionic surfactant to work in synergy with the non-ionic surfactant.
  • alkalinity is not effective and necessary on greasy soil unless the greasy soil is somewhat polymerized (triglycerides, especially non-transfats, are capable of polymerization).
  • Alkalinity is very effective in breaking down the polymerized triglyceride network.
  • Real world soils are quite often complex soils comprising both greasy and particulate soils.
  • the use of extended surfactants shifts the required optimal alkalinity to significantly lower level. In other words, the use of extended surfactants reduces the dependence on alkalinity or caustics for detergency. This has important benefits including, but not limited to, cost saving, use of less aggressive composition for better worker safety, less fabric damage (laundry), and less corrosion issues due to the alkalinity (caustics).
  • the invention has many applications and uses which include but are not limited to: laundry cleaning, and reduction of laundry fire due to non-transfats, hard surface cleaning such as manual pot-n-pan cleaning, machine warewashing, all purpose cleaning, floor cleaning, CIP cleaning, open facility cleaning, foam cleaning, vehicle cleaning, etc.
  • sunscreen formulations contain a variety of active ingredients, but the ones of most concern are the polyphenyl aromatics Oxybenzone and Avobenzone.
  • Sunscreen formulations with higher Sun Protective Factors (SPFs) contain more of these actives, and form more severe yellow stains. Formulations that lack these actives to do not tend to form yellow stains.
  • Both of these structures have active (acidic) hydrogen which helps to explain the effect of the alkali, which is believed to react with the actives to form salts that are highly colored. It can also explain the effect of the final sour, in that the acid protonates the colored salts to regenerate the less colored acid forms.
  • this detergency booster composition is shown in Table 1. This is a blend of extended surfactants (Ecosurf SA9 and SA4 by Dow Chemical, Marlowet 4560 by Sasol), solvents (butyl carbitol and Dowanol PPH by Dow Chemical), and amine oxide (Barlox 12 by Lonza), that was superior to other blends of surfactants tested.
  • extended surfactants Escosurf SA9 and SA4 by Dow Chemical, Marlowet 4560 by Sasol
  • solvents butyl carbitol and Dowanol PPH by Dow Chemical
  • amine oxide Barlox 12 by Lonza
  • This b* value is a measure of the yellowness of the sample, with higher positive b* values denoting a sample that is more highly yellow - or more highly stained.
  • Table 2 below shows a comparison using fresh stains in which detergency booster is added to the flush step of the laundry process, which is essentially a short pre- wash step prior to the normal suds step.
  • First is shown a control with no flush step, followed by a run in which additional standard detergent is added during the flush step to demonstrate that the improvements are not all due to just an extended wash time.
  • Run #3 shows the performance of a commercially available detergency booster from CHT called Beiclean FDO#2
  • Run #4 shows the performance of a commercially available detergency booster from Ecolab called Dermasil.
  • Run #5 shows the performance of the STL-7 detergency booster of this invention. Since the Ab* of the STL-7 run had the lowest value, this composition produced swatches with the least amount of yellow color, and therefore did the best in this series at removing fresh sunscreen stains.
  • Commercial Detergent F is an NPE based detergent with 90.29% active surfactant and Commercial Detergent G is an NPE based detergent with 20% active surfactant and 39.63% active sodium hydroxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention concerne des combinaisons synergiques associant des mélanges de tensioactifs et une composition nettoyante. L'invention concerne, selon certains modes de réalisation, un système tensioactif comportant des tensioactifs anioniques à chaîne étendue, des tensioactifs de liaison et un composant cationique à charges multiples. Ledit système forme des émulsions avec les taches de graisse et d'huile, même celles constituées de graisses non trans, pour les éliminer. Dans un autre mode de réalisation, les tensioactifs anioniques sont combinés à un solvant et à un oxyde d'amine pour éliminer les taches de crème solaire. Lesdites compositions peuvent être utilisées seules, en tant que détachant avant lavage ou autre agent de pré-traitement, ou dans une composition nettoyante des surfaces dures ou souples.
PCT/US2010/049338 2010-09-17 2010-09-17 Détergents de lavage du linge à teneur réduite en agents caustiques à base de tensioactifs à chaîne étendue WO2012036703A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2010/049338 WO2012036703A1 (fr) 2010-09-17 2010-09-17 Détergents de lavage du linge à teneur réduite en agents caustiques à base de tensioactifs à chaîne étendue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/049338 WO2012036703A1 (fr) 2010-09-17 2010-09-17 Détergents de lavage du linge à teneur réduite en agents caustiques à base de tensioactifs à chaîne étendue

Publications (1)

Publication Number Publication Date
WO2012036703A1 true WO2012036703A1 (fr) 2012-03-22

Family

ID=45831891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/049338 WO2012036703A1 (fr) 2010-09-17 2010-09-17 Détergents de lavage du linge à teneur réduite en agents caustiques à base de tensioactifs à chaîne étendue

Country Status (1)

Country Link
WO (1) WO2012036703A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915872A1 (fr) * 2014-03-06 2015-09-09 The Procter and Gamble Company Composition pour laver la vaisselle
CN107418779A (zh) * 2017-07-26 2017-12-01 广州立白企业集团有限公司 一种洗涤剂组合物及增强洗涤剂乳化分散油污能力的方法
RU2638554C2 (ru) * 2012-08-15 2017-12-14 Рекитт Бенкизер Финиш Б.В. Моющая композиция для автоматического мытья посуды
JP2018506624A (ja) * 2015-01-29 2018-03-08 エコラボ ユーエスエー インコーポレイティド 布地の染み処理のための組成物及び方法
US10881106B2 (en) 2016-10-28 2021-01-05 Syngenta Participations Ag Herbicidal pyridazinone compounds
US11603508B2 (en) 2018-10-26 2023-03-14 Ecolab Usa Inc. Synergistic surfactant package for cleaning of food and oily soils
WO2024133868A1 (fr) * 2022-12-22 2024-06-27 Innospec Performance Chemicals Italia Srl Compositions détergentes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068348A1 (fr) * 1999-05-07 2000-11-16 Ecolab Inc. Composition detergente et procede d'elimination des salissures
US6228829B1 (en) * 1997-10-14 2001-05-08 The Procter & Gamble Company Granular detergent compositions comprising mid-chain branched surfactants
WO2007064525A1 (fr) * 2005-11-30 2007-06-07 Ecolab Inc. Préparation détergente contenant un alkoxylate d'alcool ramifié et un tensioactif facilitant la compatibilité, et méthodes d'utilisation
WO2007101470A1 (fr) * 2006-03-06 2007-09-13 Ecolab Inc. Composition detergente compatible avec les membranes liquides
WO2010086821A2 (fr) * 2009-01-30 2010-08-05 Ecolab Inc. Composition détergente hautement alcaline à effet antitartre amélioré

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228829B1 (en) * 1997-10-14 2001-05-08 The Procter & Gamble Company Granular detergent compositions comprising mid-chain branched surfactants
WO2000068348A1 (fr) * 1999-05-07 2000-11-16 Ecolab Inc. Composition detergente et procede d'elimination des salissures
WO2007064525A1 (fr) * 2005-11-30 2007-06-07 Ecolab Inc. Préparation détergente contenant un alkoxylate d'alcool ramifié et un tensioactif facilitant la compatibilité, et méthodes d'utilisation
WO2007101470A1 (fr) * 2006-03-06 2007-09-13 Ecolab Inc. Composition detergente compatible avec les membranes liquides
WO2010086821A2 (fr) * 2009-01-30 2010-08-05 Ecolab Inc. Composition détergente hautement alcaline à effet antitartre amélioré

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638554C2 (ru) * 2012-08-15 2017-12-14 Рекитт Бенкизер Финиш Б.В. Моющая композиция для автоматического мытья посуды
US10392586B2 (en) 2012-08-15 2019-08-27 Reckitt Benckiser Finish B.V. Automatic dishwashing compositions having a detergent granule
EP2915872A1 (fr) * 2014-03-06 2015-09-09 The Procter and Gamble Company Composition pour laver la vaisselle
WO2015134168A1 (fr) * 2014-03-06 2015-09-11 The Procter & Gamble Company Composition de lavage de vaisselle
JP2018506624A (ja) * 2015-01-29 2018-03-08 エコラボ ユーエスエー インコーポレイティド 布地の染み処理のための組成物及び方法
US10881106B2 (en) 2016-10-28 2021-01-05 Syngenta Participations Ag Herbicidal pyridazinone compounds
CN107418779A (zh) * 2017-07-26 2017-12-01 广州立白企业集团有限公司 一种洗涤剂组合物及增强洗涤剂乳化分散油污能力的方法
US11603508B2 (en) 2018-10-26 2023-03-14 Ecolab Usa Inc. Synergistic surfactant package for cleaning of food and oily soils
WO2024133868A1 (fr) * 2022-12-22 2024-06-27 Innospec Performance Chemicals Italia Srl Compositions détergentes

Similar Documents

Publication Publication Date Title
US8785363B2 (en) Reduced caustic laundry detergents based on extended chain surfactants
US9528077B2 (en) Cleaning compositions employing extended chain anionic surfactants
US8314057B2 (en) Laundry composition for treatment of sunscreen stains based on extended chain nonionic surfactants
US9303240B2 (en) Cleaning compositions and emulsions or microemulsions employing extended chain nonionic surfactants
US11674111B2 (en) High performance low viscoelasticity foaming detergent compositions employing extended chain anionic surfactants
US11814604B2 (en) Cleaning compositions employing extended chain anionic surfactants
US20230183605A1 (en) Cleaning compositions employing extended chain anionic surfactants
EP3571277A1 (fr) Compositions d'aide au nettoyage et au rinçage et émulsions ou microémulsions utilisant des tensioactifs non ioniques à chaîne étendue optimisés
WO2012036703A1 (fr) Détergents de lavage du linge à teneur réduite en agents caustiques à base de tensioactifs à chaîne étendue
WO2012036700A1 (fr) Composition lessivielle de traitement de taches d'écran solaire à base d'agents tensioactifs à chaîne étendue
US20240101927A1 (en) Methods of cleaning and soil release of highly oil absorbing substrates employing optimized extended chain nonionic surfactants
WO2012036702A1 (fr) Compositions nettoyantes utilisant des tensioactifs anioniques à chaîne étendue
US20240026248A1 (en) Novel nonionic extended surfactants, compositions and methods of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857400

Country of ref document: EP

Kind code of ref document: A1