WO2012036366A1 - Soft decision detection method and a decoding method using the same - Google Patents

Soft decision detection method and a decoding method using the same Download PDF

Info

Publication number
WO2012036366A1
WO2012036366A1 PCT/KR2011/003255 KR2011003255W WO2012036366A1 WO 2012036366 A1 WO2012036366 A1 WO 2012036366A1 KR 2011003255 W KR2011003255 W KR 2011003255W WO 2012036366 A1 WO2012036366 A1 WO 2012036366A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft decision
decoding
decision values
stbc
symbol
Prior art date
Application number
PCT/KR2011/003255
Other languages
French (fr)
Korean (ko)
Inventor
김수영
김영민
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2012036366A1 publication Critical patent/WO2012036366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes

Definitions

  • the present invention relates to a soft decision detection method and a decoding method using the same, and a soft decision detection method and a decoding method using the same in a system using a multi-antenna method using the STBC technology for obtaining the transmission diversity gain in a wireless communication system will be.
  • the state of a channel may vary with time due to fading and interference occurring in the channel.
  • the receiving end may combine the signals received from different channel environments to obtain diversity gain to improve the performance of the system.
  • STBC Space-Time Block Coding
  • This technique is designed to use two antennas at the transmitting end so that the coded form of the two symbols transmitted from each antenna is different during two symbol intervals, and the designed structure maintains orthogonality so that simple linear decoding is possible at the receiving end. It's a way to get a lot of diversity gain. Since then, various types of space-time block code techniques have been proposed.
  • the STBC technique is almost always used in combination with an error correction code in a wireless communication system.
  • a method such as a turbo code that repeatedly performs decoding using a soft input / output signal is used. This is mainstream.
  • the performance can be largely determined by how accurately the soft decision detection information is provided to the turbo code decoder.
  • MLD maximum likelihood detection
  • the present invention has been made to solve the above problems, an object of the present invention, the soft decision detection method that shows the same performance as the MLD while using a simple linear detection without using the MLD and the same, and using the same
  • the present invention provides a decoding method.
  • a decoding method comprises: estimating a transmission symbol by STBC decoding the received symbol; Calculating intermediate soft decision values for bits constituting the estimated transmission symbol, respectively; Calculating final soft decision values by multiplying the calculated soft decision values by a specific gain; And repeatedly decoding the estimated transmission symbol using the calculated final soft decision values.
  • the specific gain is preferably a gain reflecting a noise variance value changed by STBC decoding.
  • the specific gain is preferably expressed as a function of the channel coefficients.
  • the channel coefficient is H 1 may be a channel coefficient between the first transmit antenna and the receiver
  • h 2 may be a channel coefficient between the second transmit antenna and the receiver.
  • h i may be a channel coefficient between the i th transmit antenna and the receiver.
  • the intermediate soft decision values may be calculated by using hard decision boundary values of bits constituting the estimated transmission symbol.
  • the decoding method is preferably applied to a wireless communication system using both STBC and error correction code.
  • the soft decision detection method the step of calculating the respective intermediate soft decision values for the bits constituting the estimated transmission symbol; And calculating the final soft decision values by multiplying the calculated soft decision values by a specific gain.
  • the specific gain is preferably a gain reflecting a noise variance value changed by STBC decoding.
  • the specific gain is preferably expressed as a function of the channel coefficients.
  • a reception apparatus includes: an STBC decoding unit for STBC decoding a received symbol to estimate a transmission symbol; A soft decision detector for calculating intermediate soft decision values for bits constituting the estimated transmission symbol, and multiplying the calculated soft decision values by a specific gain to calculate final soft decision values, respectively; And an iterative decoding unit for iteratively decoding the estimated transmission symbol using the calculated final soft decision values.
  • FIG. 1 illustrates a wireless communication system to which the present invention is applicable
  • FIG. 2 is a flowchart provided to explain a decoding method according to an embodiment of the present invention
  • FIG. 3 is a diagram showing a table comparing the complexity of the scheme proposed in this embodiment and the MLD scheme.
  • a wireless communication system to which the present invention is applicable is a system using a space-time block coding (STBC) and an error correcting code together.
  • STBC space-time block coding
  • the transmitter 100 and the receiver 200 are connected to each other so as to communicate with each other.
  • the transmitter 100 constituting the wireless communication system includes an error correction coder 110, a modulator 120, and an STBC coder 130.
  • Error correction code unit 110 an error correction encoding the source of the binary signal converted to a binary vector b columns, and outputting the converted binary vector column b.
  • the modulator 120 performs baseband modulation on the binary vector string b . Specifically, the modulator 120 maps a plurality of bits as one symbol is converted into a symbol vector s heat, and outputs a transformed symbol column vector s.
  • the STBC coder 130 converts the symbol vector string s into s' by STBC encoding and transmits the result to the channel.
  • fading generated in a channel may be mathematically modeled by the channel matrix H according to the number of transmit antennas and the number of receive antennas.
  • Gaussian noise n is added to the channel.
  • the receiver 200 receives the symbol vector string r to which the Gaussian noise n is added to the symbol vector string s' multiplied by the channel matrix H.
  • the receiver 200 includes an STBC decoder 210, a soft decision detector 220, and an iterative decoder 230.
  • the STBC decoder 210 STBC decodes the received symbol vector string r to calculate an estimated value r ' for the transmitted symbol.
  • the soft decision detector 220 calculates the intermediate soft decision values b ' for the bits constituting the transmission symbol r' estimated by the STBC decoder 210 for each bit, and then multiplies a specific gain to obtain the final soft decision values b. Is calculated for each bit. Since the bit string b becomes a final soft decision vector sequence calculated based on r ' , that is, L ( b
  • the iterative decoder 230 iteratively decodes the vector string L ( b
  • FIG. 2 is a flowchart provided to explain a decoding method according to an embodiment of the present invention.
  • the STBC decoder 210 calculates an estimated value r ' for a symbol transmitted from the received symbol vector string r through linear algebra decoding using the coding matrix used by the STBC encoder 130 for STBC encoding ( S310).
  • the soft decision detector 220 calculates the intermediate soft decision values b ' for the bits constituting the transmission symbol r' estimated by the STBC decoder 210 for each bit (S320).
  • step S320 the intermediate soft decision values b ' are calculated using hard decision boundary values for bits constituting the estimated transmission symbol r' , and specific methods thereof are described by Sunheui Ryoo, Sooyoung Kim, and Sung Pal Lee. It is disclosed in "Efficient soft demapping method for high order modulation schemes (CIC 2003, Seoul, Korea)".
  • the soft decision detector 220 multiplies the calculated intermediate soft decision values b ' by a specific gain to calculate final soft decision values b for each bit (S330).
  • the bit string b eventually r 'the final soft decision vector column L calculated based on (b
  • the specific gain is a gain reflecting the noise variance value changed by STBC decoding, and is expressed as a function of channel coefficients that are elements of the channel matrix, and is expressed differently according to the number of transmitting antennas.
  • the iterative decoder 230 repeatedly decodes the vector string L ( b
  • step S230 a method of calculating a specific gain used in step S230 will be described in detail.
  • Equation 1 shows a signal received during two symbol periods when using the method proposed by Alamouti.
  • r i is a symbol received in the i th time slot and h j is a channel coefficient between the j th transmit antenna and the receiver.
  • the reception symbol r i may be a symbol obtained by multiplying the transmission symbol x i by a channel coefficient and adding a Gaussian noise n i .
  • the channel matrix is also an orthogonal matrix when Equation 1 is expressed using a channel matrix. Due to this characteristic, the transmission symbol estimation in the STBC decoder 210 of the receiver 200 may be performed by a simple linear operation as shown in Equation 2 below.
  • Coding matrix for a pseudo-orthogonal STBC scheme capable of linear decoding for a wireless communication system using STBC proposed in Korean Patent Registration No. 10-0967954 (Similar Orthogonal Space-Time Block Code System and Method) using 4 transmitting antennas and 1 receiving antenna X N4 and the corresponding channel matrix H N4 may be represented by Equations 4 and 5 below.
  • the transmission symbol estimated through STBC decoding Can be obtained using Equation 6.
  • H Hermian operation on the matrix
  • ⁇ 1 2 ( ⁇ - ⁇ )
  • ⁇ 2 2 ( ⁇ + ⁇ )
  • ⁇ and ⁇ are values representing the sum of channel gains and interference factors. It may be represented by Equation 7 below.
  • FIG. 3 is a table comparing the complexity of the scheme proposed in this embodiment and the MLD scheme. As can be seen from FIG. 3, since the proposed scheme is based on linear detection, a very large complexity improvement can be obtained compared to the MLD scheme.
  • FER frame error rate
  • the present invention relates to a soft decision detection method of a system using a multi-antenna method of a wireless communication system and a decoding method using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Error Detection And Correction (AREA)
  • Radio Transmission System (AREA)

Abstract

Disclosed are a soft decision detection method and a decoding method using the same. In the decoding method, a send symbol is estimated by subjecting a receive symbol to STBC decoding, intermediate soft decision values are respectively calculated for the bits comprised in the estimated send symbol, and then final soft decision values are respectively calculated by multiplying the calculated soft decision values by a specific gain, and the estimated send symbol is repeatedly decoded by using the calculated final soft decision values. In this way, as compared with existing MLD techniques, it is possible to achieve a reduction in complexity while it is nevertheless also possible to achieve the same performance results.

Description

연판정 검출방법 및 이를 이용한 복호 방법Soft Decision Detection Method and Decoding Method Using the Same
본 발명은 연판정 검출방법 및 이를 이용한 복호 방법에 관한 것으로, 무선통신시스템에서 전송 다이버시티 이득을 얻기 위한 STBC 기술 등을 이용한 다중안테나 방식을 사용한 시스템에서 연판정 검출 방법 및 이를 이용한 복호 방법에 관한 것이다.The present invention relates to a soft decision detection method and a decoding method using the same, and a soft decision detection method and a decoding method using the same in a system using a multi-antenna method using the STBC technology for obtaining the transmission diversity gain in a wireless communication system will be.
무선통신시스템에서는 채널에서 발생하는 페이딩 및 간섭 등으로 인하여 채널의 상태가 시간에 따라 매우 다양하게 변화할 수 있다. 이러한 환경에서 송신단의 다수개의 안테나로부터 동일한 신호를 전송함으로써 수신단에서는 각기 서로 다른 채널 환경에서부터 수신된 신호를 결합하여 다이버시티 이득을 취하여 시스템의 성능을 향상시킬 수 있다.In a wireless communication system, the state of a channel may vary with time due to fading and interference occurring in the channel. In such an environment, by transmitting the same signal from a plurality of antennas in the transmitting end, the receiving end may combine the signals received from different channel environments to obtain diversity gain to improve the performance of the system.
다수 개의 안테나에서 동시에 같은 정보를 다른 형태로 부호화하여 전송하여 다이버시티 이득을 얻을 수 있도록 하는 기술인 시공간 블럭 부호(Space-Time Block Coding; STBC) 기술은 알라무티(Alamouti)에 의해 처음 제안된 바 있다.Space-Time Block Coding (STBC) technology, which is a technology that obtains diversity gain by encoding and transmitting the same information in different forms at the same time in multiple antennas, was first proposed by Alamouti. .
이 기술은 송신단에서 두 개의 안테나를 사용하여 두 심볼 구간 동안에 각 안테나에서 전송하는 두 심볼의 부호화된 형태가 서로 다르도록 설계하고, 이 설계된 구조가 직교성을 유지하도록 하여 수신단에서는 단순한 선형적 복호가 가능하면서도 많은 다이버시티 이득을 얻을 수 있도록 하는 방식이다. 이후 여러 가지 형태의 시공간 블럭 부호 기술이 제안된 바 있다.This technique is designed to use two antennas at the transmitting end so that the coded form of the two symbols transmitted from each antenna is different during two symbol intervals, and the designed structure maintains orthogonality so that simple linear decoding is possible at the receiving end. It's a way to get a lot of diversity gain. Since then, various types of space-time block code techniques have been proposed.
상기의 STBC 기술은 무선통신시스템에서 거의 필수적으로 오류 정정부호와 결합하여 사용하게 되는데, 근래에 들어 사용되는 오류정정부호 방식의 경우 연판정입출력을 사용하여 반복적으로 복호를 수행하는 터보부호와 같은 방식이 주류를 이루고 있다.The STBC technique is almost always used in combination with an error correction code in a wireless communication system. In the case of the error correction code method used in recent years, a method such as a turbo code that repeatedly performs decoding using a soft input / output signal is used. This is mainstream.
이 경우 상기의 반복 복호를 수행하는 터보부호의 특성 때문에, 연판정 검출 정보를 얼마나 정확하게 터보 부호 복호기에 제공하느냐에 따라 그 성능이 크게 좌우될 수 있다.In this case, due to the characteristics of the turbo code for performing the above iterative decoding, the performance can be largely determined by how accurately the soft decision detection information is provided to the turbo code decoder.
상기 STBC와 오류정정부호가 결합된 시스템에서 최대 우호 검출(Maximum likelihood detection; MLD)이 가장 정확한 연판정 검출 정보를 제공하여 최대의 성능을 얻을 수 있지만, 송신 안테나의 개수 및 변조 심볼의 차수에 따라 지수적으로 증가하는 복잡도 때문에 실제 시스템에서의 적용은 거의 불가능하다.Although maximum likelihood detection (MLD) provides the most accurate soft decision detection information in the STBC and error correction code combined system, it is possible to obtain the maximum performance, depending on the number of transmit antennas and the order of modulation symbols. Due to the exponentially increasing complexity, application in practical systems is almost impossible.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, MLD를 사용하지 않고 간단한 선형 검출을 이용하여 복잡도를 최소화 시키면서도, MLD와 동일한 성능을 보이는 연판정 검출방법 및 이를 이용한 복호 방법을 제공함에 있다.The present invention has been made to solve the above problems, an object of the present invention, the soft decision detection method that shows the same performance as the MLD while using a simple linear detection without using the MLD and the same, and using the same The present invention provides a decoding method.
특히, 시공간 블럭 부호와 오류정정부호를 결합하여 사용하는 경우에 있어서, 매우 간단한 방법으로 오류정정부호에서 필요로 하는 연판정 값을 검출하여, 성능을 극대화 시킬 수 있도록 함에 있다.In particular, in the case of using a combination of a space-time block code and an error correction code, it is possible to maximize the performance by detecting the soft decision value required by the error correction code in a very simple manner.
상기 목적을 달성하기 위한 본 발명에 따른, 복호 방법은, 수신 심볼을 STBC 복호하여 송신 심볼을 추정하는 단계; 추정된 송신 심볼을 구성하는 비트들에 대한 중간 연판정 값들을 각각 산출하는 단계; 산출된 연판정 값들에 특정 이득을 곱하여 최종 연판정 값들을 각각 산출하는 단계; 및 산출된 최종 연판정 값들을 이용하여, 상기 추정된 송신 심볼을 반복 복호하는 단계;를 포함한다.According to the present invention for achieving the above object, a decoding method comprises: estimating a transmission symbol by STBC decoding the received symbol; Calculating intermediate soft decision values for bits constituting the estimated transmission symbol, respectively; Calculating final soft decision values by multiplying the calculated soft decision values by a specific gain; And repeatedly decoding the estimated transmission symbol using the calculated final soft decision values.
그리고, 상기 특정 이득은, STBC 복호에 의해 변화된 잡음 분산 값을 반영한 이득인 것이 바람직하다.The specific gain is preferably a gain reflecting a noise variance value changed by STBC decoding.
또한, 상기 특정 이득은, 상기 채널 계수들의 함수로 표현되는 것이 바람직하다.Further, the specific gain is preferably expressed as a function of the channel coefficients.
그리고, 송신 안테나의 개수가 2개이고 수신 안테나의 개수가 1개인 알라무티(Alamouti) STBC의 경우, 상기 채널계수는
Figure PCTKR2011003255-appb-I000001
이고, h1는 1번째 송신 안테나와 수신단 사이에서의 채널 계수이고, h2는 2번째 송신 안테나와 수신단 사이에서의 채널 계수일 수 있다.
In the case of Alamouti STBC, in which the number of transmitting antennas is two and the number of receiving antennas is one, the channel coefficient is
Figure PCTKR2011003255-appb-I000001
H 1 may be a channel coefficient between the first transmit antenna and the receiver, and h 2 may be a channel coefficient between the second transmit antenna and the receiver.
또한, 송신 안테나의 개수가 4개이고 수신 안테나의 개수가 1개인 한국등록특허 10-0967954(유사 직교 시공간 블록 부호 시스템 및 방법)에서 제안한 STBC의 경우, 최종 연판정 값
Figure PCTKR2011003255-appb-I000002
은 아래의 수학식으로 나타내며,
In addition, in the case of the STBC proposed by Korea Patent Registration No. 10-0967954 (similar orthogonal space-time block code system and method) having four transmitting antennas and one receiving antenna, the final soft decision value
Figure PCTKR2011003255-appb-I000002
Is represented by the following equation,
Figure PCTKR2011003255-appb-I000003
Figure PCTKR2011003255-appb-I000003
Figure PCTKR2011003255-appb-I000004
는 중간 연판정 값이고, ρ1 및 ρ2는 특정 이득으로 아래의 수학식으로 나타내어지고,
Figure PCTKR2011003255-appb-I000004
Is the intermediate soft decision value, ρ 1 and ρ 2 are given by
ρ1=2(α-β)ρ 1 = 2 (α-β)
ρ2=2(α+β)ρ 2 = 2 (α + β)
Figure PCTKR2011003255-appb-I000005
Figure PCTKR2011003255-appb-I000005
hi는 i번째 송신 안테나와 수신단 사이에서의 채널 계수일 수 있다.h i may be a channel coefficient between the i th transmit antenna and the receiver.
그리고, 상기 중간 연판정 값들을 각각 산출하는 단계는, 상기 추정된 송신 심볼을 구성하는 비트들에 대한 경판정 경계값들을 이용하여 상기 중간 연판정 값들을 각각 산출하는 것이 바람직하다.In the calculating of the intermediate soft decision values, the intermediate soft decision values may be calculated by using hard decision boundary values of bits constituting the estimated transmission symbol.
또한, 상기 복호 방법은, STBC와 오류정정부호를 함께 이용하는 무선통신 시스템에서 적용되는 것이 바람직하다.In addition, the decoding method is preferably applied to a wireless communication system using both STBC and error correction code.
한편, 본 발명에 따른, 연판정 검출 방법은, 추정된 송신 심볼을 구성하는 비트들에 대한 중간 연판정 값들을 각각 산출하는 단계; 및 산출된 연판정 값들에 특정 이득을 곱하여 최종 연판정 값들을 각각 산출하는 단계;를 포함한다.On the other hand, the soft decision detection method according to the present invention, the step of calculating the respective intermediate soft decision values for the bits constituting the estimated transmission symbol; And calculating the final soft decision values by multiplying the calculated soft decision values by a specific gain.
그리고, 상기 특정 이득은, STBC 복호에 의해 변화된 잡음 분산 값을 반영한 이득인 것이 바람직하다.The specific gain is preferably a gain reflecting a noise variance value changed by STBC decoding.
또한, 상기 특정 이득은, 상기 채널 계수들의 함수로 표현되는 것이 바람직하다.Further, the specific gain is preferably expressed as a function of the channel coefficients.
한편, 본 발명에 따른, 수신 장치는, 수신 심볼을 STBC 복호하여 송신 심볼을 추정하는 STBC 복호부; 추정된 송신 심볼을 구성하는 비트들에 대한 중간 연판정 값들을 각각 산출하고, 산출된 연판정 값들에 특정 이득을 곱하여 최종 연판정 값들을 각각 산출하는 연판정 검출부; 및 산출된 최종 연판정 값들을 이용하여, 상기 추정된 송신 심볼을 반복 복호하는 반복 복호부;를 포함한다.On the other hand, according to the present invention, a reception apparatus includes: an STBC decoding unit for STBC decoding a received symbol to estimate a transmission symbol; A soft decision detector for calculating intermediate soft decision values for bits constituting the estimated transmission symbol, and multiplying the calculated soft decision values by a specific gain to calculate final soft decision values, respectively; And an iterative decoding unit for iteratively decoding the estimated transmission symbol using the calculated final soft decision values.
이상 설명한 바와 같이, 본 발명에 따르면, 기존 MLD 방식과 비교하여 복잡도 감소를 얻을 수 있으면서도 동일한 성능 결과를 얻을 수 있는 장점이 있다. 도한, 다양한 STBC 방식을 포함하는 다중 안테나 시스템에 적용 가능하다는 장점이 있다.As described above, according to the present invention, there is an advantage that the same performance results can be obtained while reducing complexity compared with the conventional MLD scheme. In addition, there is an advantage that it is applicable to a multi-antenna system including various STBC schemes.
도 1은 본 발명이 적용가능한 무선통신 시스템을 도시한 도면,1 illustrates a wireless communication system to which the present invention is applicable;
도 2는 본 발명의 일 실시예에 따른 복호화 방법의 설명에 제공되는 흐름도,2 is a flowchart provided to explain a decoding method according to an embodiment of the present invention;
도 3은 본 실시예에서 제안한 방식과 MLD 방식의 복잡도를 비교한 표를 나타낸 도면, 그리고,3 is a diagram showing a table comparing the complexity of the scheme proposed in this embodiment and the MLD scheme, and
도 4는 프레임 오류율 성능 비교도이다.4 is a frame error rate performance comparison.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, with reference to the drawings will be described the present invention in more detail.
도 1은 본 발명이 적용가능한 무선통신 시스템을 도시한 도면이다. 본 발명이 적용가능한 무선통신 시스템은 STBC(Space-Time Block Coding)와 오류정정부호를 함께 사용하는 시스템으로, 송신장치(100)와 수신장치(200)가 상호 통신가능하도록 연결되어 구축된다.1 is a diagram illustrating a wireless communication system to which the present invention is applicable. A wireless communication system to which the present invention is applicable is a system using a space-time block coding (STBC) and an error correcting code together. The transmitter 100 and the receiver 200 are connected to each other so as to communicate with each other.
무선통신 시스템을 구성하는 송신장치(100)는, 도 1에 도시된 바와 같이, 오류정정 부호부(110), 변조부(120) 및 STBC 부호부(130)를 포함한다.As shown in FIG. 1, the transmitter 100 constituting the wireless communication system includes an error correction coder 110, a modulator 120, and an STBC coder 130.
오류정정 부호부(110)는 소스인 이진 신호를 오류정정 부호화하여 이진 백터열 b로 변환하고, 변환된 이진 백터열 b를 출력한다.Error correction code unit 110, an error correction encoding the source of the binary signal converted to a binary vector b columns, and outputting the converted binary vector column b.
변조부(120)는 이진 백터열 b에 대해 기저대역 변조를 수행한다. 구체적으로, 변조부(120)는 다수의 비트들을 하나의 심볼로 매핑하여 심볼 백터열 s로 변환하고, 변환된 심볼 백터열 s을 출력한다.The modulator 120 performs baseband modulation on the binary vector string b . Specifically, the modulator 120 maps a plurality of bits as one symbol is converted into a symbol vector s heat, and outputs a transformed symbol column vector s.
STBC 부호부(130)는 심볼 백터열 s를 STBC 부호화함으로서 s'으로 변환하여 채널로 전송한다.The STBC coder 130 converts the symbol vector string s into s' by STBC encoding and transmits the result to the channel.
한편, 채널에서 발생되는 페이딩은 송신 안테나의 개수 및 수신 안테나의 개수에 따라 채널 행렬 H로 수학적으로 모델링 될 수 있다. 또한, 채널에서는 가우시안 잡음 n이 부가되는 것으로 상정할 수 있다.Meanwhile, fading generated in a channel may be mathematically modeled by the channel matrix H according to the number of transmit antennas and the number of receive antennas. In addition, it can be assumed that Gaussian noise n is added to the channel.
이에 따라, 수신장치(200)에서는 채널 행렬 H가 곱해진 심볼 벡터열 s'에 가우시안 잡음 n이 부가된 심볼 벡터열 r이 수신된다.Accordingly, the receiver 200 receives the symbol vector string r to which the Gaussian noise n is added to the symbol vector string s' multiplied by the channel matrix H.
수신장치(200)는, 도 1에 도시된 바와 같이, STBC 복호부(210), 연판정 검출부(220) 및 반복 복호부(230)를 포함한다.As shown in FIG. 1, the receiver 200 includes an STBC decoder 210, a soft decision detector 220, and an iterative decoder 230.
STBC 복호부(210)는 수신된 심볼 벡터열 r을 STBC 복호화하여 송신된 심볼에 대한 추정치 r'을 산출한다.The STBC decoder 210 STBC decodes the received symbol vector string r to calculate an estimated value r ' for the transmitted symbol.
연판정 검출부(220)는 STBC 복호부(210)에 의해 추정된 송신 심볼 r'을 구성하는 비트들에 대한 중간 연판정 값들 b'을 각 비트별로 산출한 후 특정 이득을 곱하여 최종 연판정 값들 b를 각 비트별로 산출한다. 상기 비트열 b는 결국 r'을 기반으로 계산된 최종 연판정 벡터열, 즉 L(b|r')가 되므로, 연판정 검출부(220)는 벡터열 L(b|r')로 그 결과를 출력한다.The soft decision detector 220 calculates the intermediate soft decision values b ' for the bits constituting the transmission symbol r' estimated by the STBC decoder 210 for each bit, and then multiplies a specific gain to obtain the final soft decision values b. Is calculated for each bit. Since the bit string b becomes a final soft decision vector sequence calculated based on r ' , that is, L ( b | r' ), the soft decision detector 220 converts the result into a vector sequence L ( b | r ' ). Output
반복 복호부(230)는 연판정 검출부(220)에서 출력되는 벡터열 L(b|r')을 이용하여 반복적으로 복호화를 수행하여, 소스 이진 신호를 복원한다.The iterative decoder 230 iteratively decodes the vector string L ( b | r ' ) output from the soft decision detector 220 to restore the source binary signal.
이하에서는, 도 1에 도시된 수신장치(200)에 의해 복호화가 수행되는 과정에 대해, 도 2를 참조하여 상세히 설명한다. 도 2는 본 발명의 일 실시예에 따른 복호화 방법의 설명에 제공되는 흐름도이다.Hereinafter, a process of decoding by the receiving apparatus 200 shown in FIG. 1 will be described in detail with reference to FIG. 2. 2 is a flowchart provided to explain a decoding method according to an embodiment of the present invention.
먼저, STBC 복호부(210)는 STBC 부호부(130)에서 STBC 부호화에 사용한 부호화 행렬을 이용한 선형 대수학적 복호를 통해, 수신된 심볼 벡터열 r로부터 송신된 심볼에 대한 추정치 r'을 산출한다(S310).First, the STBC decoder 210 calculates an estimated value r ' for a symbol transmitted from the received symbol vector string r through linear algebra decoding using the coding matrix used by the STBC encoder 130 for STBC encoding ( S310).
그러면, 연판정 검출부(220)는 STBC 복호부(210)에 의해 추정된 송신 심볼 r'을 구성하는 비트들에 대한 중간 연판정 값들 b'을 각 비트별로 산출한다(S320).Then, the soft decision detector 220 calculates the intermediate soft decision values b ' for the bits constituting the transmission symbol r' estimated by the STBC decoder 210 for each bit (S320).
S320단계에서, 중간 연판정 값들 b'은 추정된 송신 심볼 r'을 구성하는 비트들에 대한 경판정 경계값들을 이용하여 산출하며, 이에 대한 구체적인 방법은, Sunheui Ryoo, Sooyoung Kim, 및 Sung Pal Lee에 의해 작성된 "Efficient soft demapping method for high order modulation schemes(CIC 2003, Seoul, Korea)"에 개시되어 있다.In step S320, the intermediate soft decision values b ' are calculated using hard decision boundary values for bits constituting the estimated transmission symbol r' , and specific methods thereof are described by Sunheui Ryoo, Sooyoung Kim, and Sung Pal Lee. It is disclosed in "Efficient soft demapping method for high order modulation schemes (CIC 2003, Seoul, Korea)".
이후, 연판정 검출부(220)는 산출된 중간 연판정 값들 b'에 특정 이득을 곱하여 최종 연판정 값들 b를 각 비트별로 산출한다(S330). 상기 비트열 b는 결국 r'을 기반으로 계산된 최종 연판정 벡터열 L(b|r')가 되므로, 연판정 검출부(220)는 벡터열 L(b|r')로 그 결과를 출력한다.Thereafter, the soft decision detector 220 multiplies the calculated intermediate soft decision values b ' by a specific gain to calculate final soft decision values b for each bit (S330). The bit string b eventually r 'the final soft decision vector column L calculated based on (b | r' |, and outputs the result to the (r 'b)) is, the soft decision detection unit 220 is a vector column L so .
S330단계에서, 특정 이득은, STBC 복호에 의해 변화된 잡음 분산 값을 반영한 이득으로, 채널 행렬의 원소인 채널 계수들의 함수로 표현되며, 송신 안테나의 개수에 따라 각기 다르게 표현된다.In step S330, the specific gain is a gain reflecting the noise variance value changed by STBC decoding, and is expressed as a function of channel coefficients that are elements of the channel matrix, and is expressed differently according to the number of transmitting antennas.
반복 복호부(230)는 연판정 검출부(220)에서 출력되는 벡터열 L(b|r')을 이용하여 반복적으로 복호화를 수행하여, 소스 이진 신호를 복원한다(S340).The iterative decoder 230 repeatedly decodes the vector string L ( b | r ' ) output from the soft decision detector 220 to restore the source binary signal (S340).
이하에서는, S230단계에서 이용되는 특정 이득을 산출하는 방법에 대해 상세리 설명한다.Hereinafter, a method of calculating a specific gain used in step S230 will be described in detail.
먼저, 알라무티가 제안한 2개의 송신 안테나를 이용한 STBC 방식을 사용한 경우의 특정 이득을 산출하는 과정에 대해 설명한다.First, a process of calculating a specific gain in the case of using the STBC method using two transmitting antennas proposed by Alamouti will be described.
아래 수학식 1은 알라무티가 제안한 방식을 이용할 경우, 2개의 심볼 구간 동안 수신된 신호를 나타낸 식이다. Equation 1 below shows a signal received during two symbol periods when using the method proposed by Alamouti.
수학식 1
Figure PCTKR2011003255-appb-M000001
Equation 1
Figure PCTKR2011003255-appb-M000001
여기서 *는 복소 공액 연산을 의미하며, ri는 i번째 타임 슬롯에 수신된 심볼이고 hj는 j번째 송신 안테나와 수신단 사이에서의 채널 계수이다. 수학식 1에 나타난 바와 같이, 수신 심볼 ri는 전송 심볼 xi에 채널 계수가 곱해지고 가우시안 잡음 ni가 더해진 심볼이라 할 수 있다.Where * denotes a complex conjugate operation, r i is a symbol received in the i th time slot and h j is a channel coefficient between the j th transmit antenna and the receiver. As shown in Equation 1, the reception symbol r i may be a symbol obtained by multiplying the transmission symbol x i by a channel coefficient and adding a Gaussian noise n i .
한편, STBC 부호화 행렬은 직교 행렬이 되기 때문에, 위 수학식 1를 채널 행렬을 이용하여 표현하였을 경우 그 채널 행렬 역시 직교행렬이 된다. 이러한 특성으로 인하여 수신장치(200)의 STBC 복호부(210)에서의 송신 심볼 추정은 아래의 수학식 2와 같은 간단한 선형 연산으로 수행될 수 있다.On the other hand, since the STBC coding matrix is an orthogonal matrix, the channel matrix is also an orthogonal matrix when Equation 1 is expressed using a channel matrix. Due to this characteristic, the transmission symbol estimation in the STBC decoder 210 of the receiver 200 may be performed by a simple linear operation as shown in Equation 2 below.
수학식 2
Figure PCTKR2011003255-appb-M000002
Equation 2
Figure PCTKR2011003255-appb-M000002
위 수학식 2를 이용하여 추정된 송신 심볼
Figure PCTKR2011003255-appb-I000006
는 여러 개의 비트로 구성되어 있으므로, 심볼을 구성하고 있는 각 비트에 대한 연판정 값을 개별적으로 구해주어야 한다.
Transmission Symbol Estimated Using Equation 2
Figure PCTKR2011003255-appb-I000006
Since is composed of several bits, the soft decision value for each bit constituting the symbol must be obtained separately.
추정된 송신 심볼
Figure PCTKR2011003255-appb-I000007
을 구성하고 있는 j번째 비트에 대한 중간 연판정 값
Figure PCTKR2011003255-appb-I000008
은 경판정 경계값을 이용하여 간단하게 구할 수 있음은 전술한 바 있다.
Estimated transmission symbol
Figure PCTKR2011003255-appb-I000007
Intermediate soft decision value for the j th bit constituting the
Figure PCTKR2011003255-appb-I000008
Has been described above that can be simply obtained using the hard decision boundary value.
이후, 아래의 수학식 3과 같이 중간 연판정 값
Figure PCTKR2011003255-appb-I000009
에 특정 이득
Figure PCTKR2011003255-appb-I000010
을 곱하여 최종 연판정 값
Figure PCTKR2011003255-appb-I000011
을 산출할 수 있다.
Then, the intermediate soft decision value as shown in Equation 3 below
Figure PCTKR2011003255-appb-I000009
Certain benefits to
Figure PCTKR2011003255-appb-I000010
Multiply by the final soft decision value
Figure PCTKR2011003255-appb-I000011
Can be calculated.
수학식 3
Figure PCTKR2011003255-appb-M000003
Equation 3
Figure PCTKR2011003255-appb-M000003
특정 이득
Figure PCTKR2011003255-appb-I000012
은 STBC 복호 과정에서 변화된 잡음 분산 값을 반영한 것으로, 채널 계수들의 함수로 표현되었음을 확인할 수 있다.
Specific gain
Figure PCTKR2011003255-appb-I000012
Reflects the noise variance value changed during the STBC decoding process, and it can be seen that it is expressed as a function of channel coefficients.
다음으로, 선형 복호가 가능한 유사직교 STBC 방식을 사용한 경우의 특정 이득을 산출하는 과정에 대해 설명한다.Next, the process of calculating the specific gain in the case of using the quasi-orthogonal STBC method which can perform linear decoding is demonstrated.
4개의 송신 안테나와 1개의 수신 안테나를 사용하는 한국등록특허 10-0967954(유사 직교 시공간 블록 부호 시스템 및 방법)에서 제안한 STBC를 이용하는 무선통신 시스템에 대하여 선형 복호가 가능한 유사직교 STBC 방식에 대한 부호화 행렬 XN4와 그에 해당하는 채널 행렬 HN4는 아래의 수학식 4와 수학식 5로 나타낼 수 있다. Coding matrix for a pseudo-orthogonal STBC scheme capable of linear decoding for a wireless communication system using STBC proposed in Korean Patent Registration No. 10-0967954 (Similar Orthogonal Space-Time Block Code System and Method) using 4 transmitting antennas and 1 receiving antenna X N4 and the corresponding channel matrix H N4 may be represented by Equations 4 and 5 below.
수학식 4
Figure PCTKR2011003255-appb-M000004
Equation 4
Figure PCTKR2011003255-appb-M000004
수학식 5
Figure PCTKR2011003255-appb-M000005
Equation 5
Figure PCTKR2011003255-appb-M000005
여기서, STBC 복호를 통해 추정되는 송신 심볼
Figure PCTKR2011003255-appb-I000013
는 수학식 6을 이용하여 구할 수있다.
Here, the transmission symbol estimated through STBC decoding
Figure PCTKR2011003255-appb-I000013
Can be obtained using Equation 6.
수학식 6
Figure PCTKR2011003255-appb-M000006
Equation 6
Figure PCTKR2011003255-appb-M000006
여기서, H는 행렬에 대한 헤르미안 연산을 의미하고, ρ1=2(α-β), ρ2=2(α+β)로써, α와 β는 채널이득의 합 및 간섭 인자를 나타내는 값으로써 아래의 수학식 7로 나타낼 수 있다.Here, H means Hermian operation on the matrix, ρ 1 = 2 (α-β), ρ 2 = 2 (α + β), and α and β are values representing the sum of channel gains and interference factors. It may be represented by Equation 7 below.
수학식 7
Figure PCTKR2011003255-appb-M000007
Equation 7
Figure PCTKR2011003255-appb-M000007
추정된 송신 심볼
Figure PCTKR2011003255-appb-I000014
을 구성하고 있는 j번째 비트에 대한 중간 연판정 값
Figure PCTKR2011003255-appb-I000015
은 경판정 경계값을 이용하여 간단하게 구할 수 있음은 전술한 바 있다.
Estimated transmission symbol
Figure PCTKR2011003255-appb-I000014
Intermediate soft decision value for the j th bit constituting the
Figure PCTKR2011003255-appb-I000015
Has been described above that can be simply obtained using the hard decision boundary value.
이후, 아래의 수학식 8과 같이 중간 연판정 값
Figure PCTKR2011003255-appb-I000016
에 특정 이득 ρ1(i = 1,2) 또는 ρ2(i = 3,4) 를 곱하여 최종 연판정 값 을 산출할 수 있다.
Then, the intermediate soft decision value as shown in Equation 8 below.
Figure PCTKR2011003255-appb-I000016
Multiplying the specific gain ρ 1 (i = 1,2) or ρ 2 (i = 3,4) by the final soft decision value Can be calculated.
수학식 8
Figure PCTKR2011003255-appb-M000008
Equation 8
Figure PCTKR2011003255-appb-M000008
특정 이득 ρ1(i = 1,2) 또는 ρ2(i = 3,4)은 STBC 복호 과정에서 변화된 잡음 분산 값을 반영한 것으로, 채널 계수들의 함수로 표현되었음을 확인할 수 있다.The specific gain ρ 1 (i = 1,2) or ρ 2 (i = 3,4) reflects the noise variance value changed during the STBC decoding process, and it can be seen that it is expressed as a function of channel coefficients.
도 3은 본 실시예에서 제안한 방식과 MLD 방식의 복잡도를 비교한 표이다. 도 3을 통해 확인 할 수 있듯이 제안된 방식은 선형 검출을 기본으로 하기 때문에 MLD 방식과 비교하여 매우 큰 복잡도 개선을 얻을 수 있다.3 is a table comparing the complexity of the scheme proposed in this embodiment and the MLD scheme. As can be seen from FIG. 3, since the proposed scheme is based on linear detection, a very large complexity improvement can be obtained compared to the MLD scheme.
도 4는 여러 변조 차수에서, 프레임 크기가 384비트인 터보 부호와 알라무티 방식이 결합된 경우에 대한 레일레이 페이딩 채널에서의 프레임 오류율 (frame error rate; FER) 성능 비교도이다. 도 4의 성능 비교도를 통해, 본 실시예에서 제안된 방식은 기존 MLD 방식과 동일한 결과를 얻을 수 있음을 확인할 수 있는데, 이는 제안된 방식이 간단한 연산으로 복잡한 연산과 동일한 성능을 보이고 있음을 나타내는 것이라 할 수 있다.4 is a comparison diagram of frame error rate (FER) performance in a Rayleigh fading channel in a case where a turbo code having a frame size of 384 bits and an Alamouti scheme are combined in various modulation orders. 4, it can be seen that the proposed method in this embodiment can obtain the same result as the existing MLD method, which indicates that the proposed method shows the same performance as a complex operation with a simple operation. It can be said.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although the preferred embodiment of the present invention has been shown and described above, the present invention is not limited to the specific embodiments described above, but the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
본 발명은 무선통신시스템의 다중안테나 방식을 사용한 시스템의 연판정 검출 방법 및 이를 이용한 복호 방법에 관한 것으로 산업상 이용가능하다. The present invention relates to a soft decision detection method of a system using a multi-antenna method of a wireless communication system and a decoding method using the same.

Claims (11)

  1. 수신 심볼을 STBC 복호하여 송신 심볼을 추정하는 단계;STBC decoding the received symbol to estimate the transmitted symbol;
    추정된 송신 심볼을 구성하는 비트들에 대한 중간 연판정 값들을 각각 산출하는 단계;Calculating intermediate soft decision values for bits constituting the estimated transmission symbol, respectively;
    산출된 연판정 값들에 특정 이득을 곱하여 최종 연판정 값들을 각각 산출하는 단계; 및Calculating final soft decision values by multiplying the calculated soft decision values by a specific gain; And
    산출된 최종 연판정 값들을 이용하여, 상기 추정된 송신 심볼을 반복 복호하는 단계;를 포함하는 것을 특징으로 하는 복호 방법.And repeatedly decoding the estimated transmission symbol by using the calculated final soft decision values.
  2. 제 1항에 있어서,The method of claim 1,
    상기 특정 이득은,The specific gain,
    STBC 복호에 의해 변화된 잡음 분산 값을 반영한 이득인 것을 특징으로 하는 복호 방법.A decoding method characterized by gain reflecting a noise variance value changed by STBC decoding.
  3. 제 2항에 있어서,The method of claim 2,
    상기 특정 이득은,The specific gain,
    상기 채널 계수들의 함수로 표현되는 것을 특징으로 하는 복호 방법.And the channel coefficients are represented as a function of the channel coefficients.
  4. 제 3항에 있어서,The method of claim 3, wherein
    송신 안테나의 개수가 2개이고 수신 안테나의 개수가 1개인 알라무티(Alamouti) STBC의 경우, 상기 채널계수는
    Figure PCTKR2011003255-appb-I000018
    이고,
    In the case of Alamouti STBC, which has two transmit antennas and one receive antenna, the channel coefficient is
    Figure PCTKR2011003255-appb-I000018
    ego,
    h1는 1번째 송신 안테나와 수신단 사이에서의 채널 계수이고,h 1 is the channel coefficient between the first transmit antenna and the receiver,
    h2는 2번째 송신 안테나와 수신단 사이에서의 채널 계수인 것을 특징으로 하는 복호 방법.h 2 is a channel coefficient between the second transmit antenna and the receiver.
  5. 제 1항에 있어서,The method of claim 1,
    송신 안테나의 개수가 4개이고 수신 안테나의 개수가 1개인 경우, 최종 연판정 값
    Figure PCTKR2011003255-appb-I000019
    은 아래의 수학식으로 나타내며,
    If the number of transmitting antennas is four and the number of receiving antennas is one, the final soft decision value
    Figure PCTKR2011003255-appb-I000019
    Is represented by the following equation,
    Figure PCTKR2011003255-appb-I000020
    Figure PCTKR2011003255-appb-I000020
    Figure PCTKR2011003255-appb-I000021
    는 중간 연판정 값이고, ρ1 및 ρ2는 특정 이득으로 아래의 수학식으로 나타내어지고,
    Figure PCTKR2011003255-appb-I000021
    Is the intermediate soft decision value, ρ 1 and ρ 2 are given by
    ρ1=2(α-β)ρ 1 = 2 (α-β)
    ρ2=2(α+β)ρ 2 = 2 (α + β)
    Figure PCTKR2011003255-appb-I000022
    Figure PCTKR2011003255-appb-I000022
    hi는 i번째 송신 안테나와 수신단 사이에서의 채널 계수인 것을 특징으로 하는 복호 방법.h i is a channel coefficient between the i th transmit antenna and the receiving end.
  6. 제 1항에 있어서,The method of claim 1,
    상기 중간 연판정 값들을 각각 산출하는 단계는,Computing the intermediate soft decision values, respectively,
    상기 추정된 송신 심볼을 구성하는 비트들에 대한 경판정 경계값들을 이용하여 상기 중간 연판정 값들을 각각 산출하는 것을 특징으로 하는 복호 방법.And calculating the intermediate soft decision values using hard decision boundary values for the bits constituting the estimated transmission symbol.
  7. 제 1항에 있어서,The method of claim 1,
    상기 복호 방법은,The decoding method,
    STBC와 오류정정부호를 함께 이용하는 무선통신 시스템에서 적용되는 것을 특징으로 하는 복호 방법.A decoding method characterized by being applied in a wireless communication system using both STBC and error correction code.
  8. 추정된 송신 심볼을 구성하는 비트들에 대한 중간 연판정 값들을 각각 산출하는 단계; 및Calculating intermediate soft decision values for bits constituting the estimated transmission symbol, respectively; And
    산출된 연판정 값들에 특정 이득을 곱하여 최종 연판정 값들을 각각 산출하는 단계;를 포함하는 것을 특징으로 하는 연판정 검출 방법.And multiplying the calculated soft decision values by a specific gain to calculate final soft decision values, respectively.
  9. 제 8항에 있어서,The method of claim 8,
    상기 특정 이득은,The specific gain,
    STBC 복호에 의해 변화된 잡음 분산 값을 반영한 이득인 것을 특징으로 하는 연판정 검출 방법.A soft decision detection method, characterized in that the gain reflects the noise variance value changed by STBC decoding.
  10. 제 9항에 있어서,The method of claim 9,
    상기 특정 이득은,The specific gain,
    상기 채널 계수들의 함수로 표현되는 것을 특징으로 하는 연판정 검출 방법.Soft decision detection method characterized in that it is expressed as a function of said channel coefficients.
  11. 수신 심볼을 STBC 복호하여 송신 심볼을 추정하는 STBC 복호부;An STBC decoder which estimates a transmission symbol by STBC decoding the received symbol;
    추정된 송신 심볼을 구성하는 비트들에 대한 중간 연판정 값들을 각각 산출하고, 산출된 연판정 값들에 특정 이득을 곱하여 최종 연판정 값들을 각각 산출하는 연판정 검출부; 및A soft decision detector for calculating intermediate soft decision values for bits constituting the estimated transmission symbol, and multiplying the calculated soft decision values by a specific gain to calculate final soft decision values, respectively; And
    산출된 최종 연판정 값들을 이용하여, 상기 추정된 송신 심볼을 반복 복호하는 반복 복호부;를 포함하는 것을 특징으로 하는 수신 장치.And an iterative decoding unit for iteratively decoding the estimated transmission symbol by using the calculated final soft decision values.
PCT/KR2011/003255 2010-09-15 2011-05-02 Soft decision detection method and a decoding method using the same WO2012036366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100090629A KR101060530B1 (en) 2010-09-15 2010-09-15 Soft decision detection method and decoding method using the same
KR10-2010-0090629 2010-09-15

Publications (1)

Publication Number Publication Date
WO2012036366A1 true WO2012036366A1 (en) 2012-03-22

Family

ID=44933950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003255 WO2012036366A1 (en) 2010-09-15 2011-05-02 Soft decision detection method and a decoding method using the same

Country Status (2)

Country Link
KR (1) KR101060530B1 (en)
WO (1) WO2012036366A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101799849B1 (en) 2016-08-11 2017-11-22 부산대학교 산학협력단 Method for calculating soft decision value for qam signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050281348A1 (en) * 2004-06-16 2005-12-22 Broadcom Corporation STBC with multiple streams in OFDM for WLAN and error metrics for soft decision with channel information
US20060256888A1 (en) * 2005-02-07 2006-11-16 Nissani Nissensohn Daniel N Multi input multi output wireless communication reception method and apparatus
US20070116140A1 (en) * 2005-11-18 2007-05-24 Denso Corporation Method for correcting soft decision value, computer program product for the same, and reception apparatus for the same
US20080285687A1 (en) * 2007-05-17 2008-11-20 Research In Motion Limited Apparatus, and associated method, for detecting values of a space-time block code using selective decision-feedback detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1521375A3 (en) 2003-10-03 2005-04-13 Kabushiki Kaisha Toshiba Signal decoding methods and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050281348A1 (en) * 2004-06-16 2005-12-22 Broadcom Corporation STBC with multiple streams in OFDM for WLAN and error metrics for soft decision with channel information
US20060256888A1 (en) * 2005-02-07 2006-11-16 Nissani Nissensohn Daniel N Multi input multi output wireless communication reception method and apparatus
US20070116140A1 (en) * 2005-11-18 2007-05-24 Denso Corporation Method for correcting soft decision value, computer program product for the same, and reception apparatus for the same
US20080285687A1 (en) * 2007-05-17 2008-11-20 Research In Motion Limited Apparatus, and associated method, for detecting values of a space-time block code using selective decision-feedback detection

Also Published As

Publication number Publication date
KR101060530B1 (en) 2011-08-30

Similar Documents

Publication Publication Date Title
JP5037634B2 (en) Multi-antenna spatial multiplexing system using enhanced signal detection
WO2010024556A2 (en) System for transmitting and receiving channel state information
US20060056538A1 (en) Apparatus and method for transmitting data using full-diversity, full-rate STBC
KR20090065818A (en) Multi dimensional detection for mimo system and mimo receiver
US8982976B2 (en) Systems and methods for trellis coded quantization based channel feedback
CN107959519B (en) Difference space modulation transmission method, transmitter and receiver
WO2010021501A2 (en) Mimo communication system and control method thereof
Perels et al. ASIC implementation of a MIMO-OFDM transceiver for 192 Mbps WLANs
WO2011049380A9 (en) Signal detection apparatus and method in spatial multiplexing system
CN110730059B (en) Diversity copy receiving performance optimization method
WO2011049367A1 (en) Communication device
WO2015119009A1 (en) Base station device, wireless communication system, and communication method
US20070206697A1 (en) Signal receiving method and signal receiving equipment for multiple input multiple output wireless communication system
KR101527114B1 (en) Apparatus and method for detecting signal based on lattice reduction capable to support different encoding scheme by stream in a multiple input multiple output wireless communication system
KR100751601B1 (en) Combination of space-time coding and spatial multiplexing, and the use of orthogonal transformation in space-time coding
JP2004222282A (en) Receiver in radio communication system using at least three transmitting antennas
KR20090053148A (en) Log likelihood ratio detection method, transmit signal detection method
WO2012036366A1 (en) Soft decision detection method and a decoding method using the same
CN101317356A (en) Space-time encoding and decoding method and device
CN106856462B (en) Detection method under spatial modulation multidiameter fading channel
US20080080642A1 (en) Apparatus and method for encoding/decoding data in multiple antenna communication system
WO2005008931A1 (en) Transmitter apparatus, receiver apparatus, and radio communication system
KR100926566B1 (en) Method for calculating soft value and detecting transmit signal
KR20110083142A (en) Apparatus and method for predicting estimating sinr in spatially multiplexed multiple input multiple output system
CN103929384B (en) Blind frequency offset estimation method based on maximum likelihood two-dimension search

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825326

Country of ref document: EP

Kind code of ref document: A1