WO2012036173A1 - Thermoplastic resin processing aid, and thermoplastic resin composition containing same - Google Patents

Thermoplastic resin processing aid, and thermoplastic resin composition containing same Download PDF

Info

Publication number
WO2012036173A1
WO2012036173A1 PCT/JP2011/070907 JP2011070907W WO2012036173A1 WO 2012036173 A1 WO2012036173 A1 WO 2012036173A1 JP 2011070907 W JP2011070907 W JP 2011070907W WO 2012036173 A1 WO2012036173 A1 WO 2012036173A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
weight
thermoplastic resin
processing aid
monomer
Prior art date
Application number
PCT/JP2011/070907
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 貴
伊藤 雅典
清二 玉井
Original Assignee
日本エイアンドエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エイアンドエル株式会社 filed Critical 日本エイアンドエル株式会社
Priority to CN201180043825.6A priority Critical patent/CN103228686B/en
Priority to JP2012534022A priority patent/JPWO2012036173A1/en
Publication of WO2012036173A1 publication Critical patent/WO2012036173A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention relates to a thermoplastic resin as a processing aid for thermoplastic resin that is suitable as a processing aid for improving the molding processability of a thermoplastic resin. Furthermore, the present invention relates to a thermoplastic resin composition containing the processing aid.
  • thermoplastic resins such as styrene-based resins and vinyl chloride resins are widely used as molding materials for, for example, vehicle products, household products, and electrical appliances because they are excellent in molding processability and rigidity.
  • molding methods such as extrusion molding, foam molding, vacuum molding, pressure molding, blow molding, and the like require molding materials that can maintain good viscoelasticity over a wide temperature range. More specifically, when the molding material (resin component) is melted, if a high melt elasticity can be exhibited, excellent molding processability can be obtained. As a result, a molded product having excellent quality and appearance can be obtained. It can be manufactured.
  • thermoplastic resin is an important factor in obtaining an excellent molded product.
  • a thermoplastic resin that is a molding material (raw material).
  • melt elasticity by increasing the molecular weight of the thermoplastic resin itself, but there is a drawback in that the fluidity of the molten resin significantly decreases as the molecular weight increases.
  • thermoplastic resin contains both a component having a high molecular weight and a component having a low molecular weight
  • a method for adjusting the molecular weight distribution of the thermoplastic resin, etc. have been proposed.
  • a molding material suitable for various molding methods such as extrusion molding, foam molding, vacuum molding, pressure molding, and blow molding.
  • thermoplastic resin even when the same thermoplastic resin is used as the molding material, the desired melt elasticity is required depending on the molding method to be applied, molding conditions, etc., so that the inherent properties of the thermoplastic resin are not impaired.
  • the development of a processing aid that can arbitrarily adjust the melt elasticity is eagerly desired.
  • Patent Documents 1 to 3 a method of using a styrene copolymer having a relatively high molecular weight as an aid for improving the processability of a thermoplastic resin has been proposed (Patent Documents 1 to 3).
  • Patent Documents 1 to 3 a method of using a styrene copolymer having a relatively high molecular weight as an aid for improving the processability of a thermoplastic resin.
  • these prior art processing aids still have room for further improvement from the viewpoint of moldability when blended with a thermoplastic resin or a composition containing the same.
  • the main object of the present invention is to provide a thermoplastic resin processing aid that can effectively improve the molding processability of a thermoplastic resin or a composition containing the thermoplastic resin without impairing the original properties of the thermoplastic resin. It is to provide.
  • a further object of the present invention is to provide a thermoplastic resin composition containing the processing aid.
  • the present invention relates to the following processing aid for thermoplastic resin and a thermoplastic resin composition containing the same.
  • a processing aid for blending with a thermoplastic resin (1)
  • the processing aid is a) an aromatic vinyl monomer of 50 to 95% by weight, b) a vinyl cyanide monomer of 5 to 50% by weight, and d) another vinyl copolymerizable therewith.
  • the copolymer comprises a) an aromatic vinyl monomer 50 to 70% by weight, b) a vinyl cyanide monomer 9 to 40% by weight, c) a (meth) acrylic acid ester monomer 21 to 35% by weight and d) a copolymer (A) obtained by copolymerizing 0 to 20% by weight of other vinyl monomers copolymerizable with these (monomers used in the copolymer (A)) The total amount of the polymer is 100% by weight.),
  • Item 3 The thermoplastic resin processing aid according to Item 1 or 2, wherein the copolymer (A) has a peak peak molecular weight (Mp) of 2 million or more. 4).
  • Item 2. The processing aid for a thermoplastic resin according to Item 1, wherein the copolymer (A) is recovered from latex that is a reaction product of emulsion polymerization of the monomer. 6).
  • Item 6. The processing aid for a thermoplastic resin according to Item 5, wherein the latex particles of the copolymer (A) have a weight average particle size of 160 nm or less. 7.
  • thermoplastic resin processing aid according to Item 5 wherein the total amount of unreacted components remaining in the latex is 2.0% by weight or less. 8).
  • a thermoplastic resin composition comprising 100 parts by weight of a thermoplastic resin and 0.1 to 15 parts by weight of the processing aid according to any one of Items 1 to 7.
  • the processing aid of the present invention contains a specific copolymer and is a powder having a specific particle size, by blending it with a thermoplastic resin, excellent molding processability is obtained during melt molding. be able to. As a result, it is possible to more reliably provide a molded product having quality, appearance and the like superior to those of the prior art.
  • the processing aid for thermoplastic resin of the present invention is a processing aid for blending into a thermoplastic resin, (1)
  • the processing aid is a) an aromatic vinyl monomer of 50 to 95% by weight, b) a vinyl cyanide monomer of 5 to 50% by weight, and d) another vinyl copolymerizable therewith.
  • the processing aid of the present invention is mainly composed of the copolymer (A).
  • the content of the copolymer (A) in the processing aid of the present invention is usually 90 to 100% by weight, preferably 95 to 100% by weight. Accordingly, for example, a processing aid having a copolymer (A) content of 100% by weight is also included in the present invention.
  • the third component (additive) contained when the content of the copolymer (A) is less than 100% by weight will be described in detail in (1-4) below.
  • the processing aid of the present invention essentially comprises a) an aromatic vinyl-based monomer and b) a vinyl cyanide-based monomer. Other vinyl monomers can also be used.
  • Aromatic vinyl monomer The aromatic vinyl monomer used in the present invention is not particularly limited, and examples thereof include styrene, t-butyl styrene, ⁇ -methyl styrene, p-methyl styrene, divinyl benzene.
  • 1,1-diphenylstyrene N, N-diethyl-p-aminoethylstyrene, N, N-diethyl-p-aminomethylstyrene, vinylpyridine, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, fluorostyrene , Ethyl styrene, vinyl naphthalene and the like.
  • aromatic vinyl monomers can be used alone or in combination of two or more.
  • at least one of styrene and ⁇ -methylstyrene is particularly preferable.
  • the content of the aromatic vinyl monomer used in the present invention needs to be 50 to 95% by weight in a total of 100% by weight of the monomers used in the copolymer (A).
  • the aromatic vinyl monomer is less than 50% by weight, the thermal stability of the thermoplastic resin composition after blending the processing aid is lowered, and yellowing tends to occur.
  • it exceeds 95% by weight the polymerization reaction rate is lowered during the polymerization of the copolymer (A), and the productivity is deteriorated. Therefore, from the viewpoint of productivity and colorability, it is preferably 50 to 70% by weight, and more preferably 55 to 65% by weight.
  • the vinyl cyanide monomer used in the present invention is not limited, and examples thereof include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile, and acrylonitrile is preferable. . These vinyl cyanide monomers can be used alone or in combination of two or more. The vinyl cyanide monomer used in the present invention excludes the monomer a) used as the aromatic vinyl monomer.
  • the content of the vinyl cyanide monomer used in the present invention needs to be 5 to 50% by weight in a total of 100% by weight of the monomers used in the copolymer (A). If the vinyl cyanide monomer is less than 5% by weight, the polymerization reaction rate is lowered during the polymerization of the copolymer (A), and the productivity is deteriorated. On the other hand, if it exceeds 50% by weight, it is not preferable because heat control during polymerization becomes difficult and the yellowness of the final product increases. Therefore, it is preferably 9 to 40% by weight, more preferably 10 to 30% by weight, particularly from the viewpoint of productivity and the color tone (appearance) of the final product.
  • Examples of the (meth) acrylic acid ester monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, ( (Meth) acrylic acid phenyl, (meth) acrylic acid 4-t-butylphenyl, (meth) acrylic acid bromophenyl, (meth) acrylic acid dibromophenyl, (meth) acrylic acid 2,4,6-tribromophenyl, ( Examples thereof include monochlorophenyl methacrylate, dichlorophenyl (meth) acrylate, and trichlorophenyl (meth) acrylate, and at least one of methyl methacrylate and butyl acrylate is preferred.
  • maleimide monomer examples include at least one of maleimide, N-methylmaleimide, N-butylmaleimide, N- (p-methylphenyl) maleimide, N-phenylmaleimide, N-cyclohexylmaleimide, and the like. Preferably, at least one of N-phenylmaleimide and N-cyclohexylmaleimide is used.
  • Examples of the unsaturated acid include at least one of acrylic acid and methacrylic acid.
  • Examples of the acid anhydride group-containing unsaturated monomer include at least one of maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. Preferred is maleic anhydride.
  • Examples of the epoxy group-containing unsaturated monomer include at least one kind such as glycidyl methacrylate and allyl glycidyl ether. Glycidyl methacrylate is preferred.
  • hydroxyl group-containing unsaturated monomer examples include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3- There may be mentioned at least one of hydroxy-2-methyl-1-propene, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, etc., and 2-hydroxyethyl methacrylate is preferred.
  • amide group-containing unsaturated monomer examples include at least one of acrylamide, methacrylamide and the like, and preferably acrylamide.
  • amino group-containing unsaturated monomer examples include at least one of acrylic amine, dimethylamino methacrylate, diethylamino methacrylate, dimethylamino acrylate, and the like.
  • Examples of the oxazoline group-containing unsaturated monomer include vinyl oxazoline.
  • the polymerization method of the copolymer (A) of the present invention is not particularly limited, and any known polymerization method can be applied, but production of a polymer having a particularly high degree of polymerization is possible. It is preferable to be produced by emulsion polymerization in terms of good properties.
  • the emulsion polymerization method itself may be in accordance with a known method, for example, a step of preparing a latex (suspension) as a reaction product by polymerizing a monomer in a liquid phase containing water and an emulsifier. It can manufacture suitably with a manufacturing method. Thereafter, if necessary, the copolymer particles may be recovered from the obtained latex according to a known solid-liquid separation method or the like.
  • examples of the emulsifier used include alkali metal salts of rosin acid, alkali metal salts of fatty acids, alkali metal salts of aliphatic alcohol sulfates, alkali metal salts of alkylallyl sulfonic acids, and dialkyl sulfosuccinic acid esters.
  • At least one of an alkali metal salt, a polyoxyethylene alkyl (phenyl) ether sulfate alkali metal salt, a polyoxyethylene alkyl (ether) phosphate alkali metal salt, and the like can be suitably used.
  • the amount of the emulsifier used is 1 to 5% by weight based on 100% by weight of the total amount of monomers used in the copolymer (A), the polymerization reaction rate and reaction stability, the appropriate latex viscosity, salt This is preferable from the standpoint of eutectability.
  • a polymerization initiator in the emulsion polymerization.
  • a polymerization initiator well-known things, such as a persulfate and organic hydroperoxide, can be used suitably, for example.
  • a persulfate from the viewpoint of the stability of the latex.
  • the amount of the polymerization initiator used is usually 0.01 to 0.00% with respect to 100% by weight of the total amount of monomers used in the copolymer (A) from the viewpoint of adjusting the polymerization reaction initiation behavior and the peak peak molecular weight. 5 wt%, preferably 0.03 to 0.3 wt%, more preferably 0.05 to 0.2 wt%.
  • the amount of water used in the emulsion polymerization is usually in the range of 100 to 200% by weight with respect to 100% by weight of the total amount of monomers used in the copolymer (A). From the viewpoint of productivity.
  • the polymerization temperature for polymerizing the copolymer (A) is not limited, but is preferably 50 to 75 ° C, and more preferably 55 to 70 ° C. During the polymerization, it is preferable to keep the internal temperature constant within this polymerization temperature range as long as the exotherm accompanying the reaction can be confirmed.
  • the polymerization temperature is less than 50 ° C., the polymerization initiator is not easily decomposed, so that the polymerization start tends to be unstable.
  • it exceeds 75 ° C. the molecular weight cannot be increased because the radical generation rate becomes too fast.
  • the method for adding the monomer during the production of the copolymer (A) is not limited.
  • generally known methods such as batch addition, continuous addition, and multistage addition in which the composition of each stage is changed. Can be adopted. Of these, methods such as batch addition and continuous addition are preferred.
  • continuous addition time shall be 3 hours or more.
  • the total polymerization time including the continuous addition time and the polymerization time after the continuous addition is preferably 7 to 11 hours.
  • the polymerization activity is reduced due to the influence of dissolved oxygen in the polymerization solution.
  • the oxygen concentration before polymerization is preferably 6.5 mg / L or less, and more preferably 5.0 mg / L or less. More preferably, the dissolved oxygen is substantially completely removed by an oxygen removing agent such as hydrosulfite.
  • the weight average particle size of the copolymer (A) latex is not particularly limited, but the weight average particle size of the copolymer (A) latex is preferably 160 nm or less.
  • the weight average particle diameter is 160 nm or less, not only the polymerization time can be reduced, but also the molding processability when used as a processing aid is improved.
  • the particle size of the latex of the copolymer (A) can be appropriately controlled by adjusting the type of emulsifier used in the polymerization, the amount of the emulsifier, the method of adding the monomer, and the like.
  • the weight average particle diameter of the copolymer (A) latex can be measured by observing the particles using a transmission electron microscope.
  • the amount of the unreacted monomer component remaining in the latex of the copolymer (A) of the present invention is not particularly limited, but is preferably 2.0% by weight or less based on the copolymer (A). .
  • the residual unreacted monomer component of the latex of the copolymer (A) is the monomer or monomer used for polymerizing the copolymer remaining in the latex of the copolymer (A). It is composed of oligomers having a weight average molecular weight of 200 to 1000 such as dimers, trimers and the like. Usually, since the unreacted monomer component is removed in the step of salting out the copolymer latex, there is almost no need to manage the residual unreacted monomer in the copolymer latex.
  • the amount of residual unreacted monomer component in the copolymer latex is not more than 2.0% by weight instead of the amount of residual unreacted monomer component contained in the copolymer powder.
  • the amount of the residual unreacted monomer component can be controlled by adjusting the polymerization temperature and the like.
  • the amount of the residual unreacted monomer component in the latex of the copolymer (A) can be measured by using a gas chromatography analyzer.
  • the copolymer (A) can be obtained by salting out and drying the latex.
  • the coagulant used in salting out is not limited, and for example, at least one of sulfuric acid, magnesium sulfate, calcium chloride, aluminum sulfate and the like can be suitably used.
  • the drying method is not particularly limited, and either natural drying or forced drying can be employed.
  • the obtained copolymer (A) can also perform classification etc. as needed.
  • the peak apex molecular weight (Mp) of the copolymer (A) of the present invention needs to be 1 million or more.
  • Mp peak apex molecular weight
  • the peak vertex molecular weight is less than 1,000,000, it is impossible to impart desired melt elasticity to the thermoplastic resin as a processing aid. From the viewpoint of moldability, it is preferably 2 million or more, more preferably 3.5 million or more.
  • the upper limit of the molecular weight (Mp) is not particularly limited, and can be set to 8 million or even 6 million, for example.
  • the peak apex molecular weight is a value measured by gel permeation chromatography (GPC), and indicates the value of the apex portion having the highest detection frequency on the detected molecular weight distribution.
  • molecular weight distribution of the copolymer (A) obtained by this invention Mw / Mn by a gel permeation chromatography (GPC) (Mw shows a weight average molecular weight, Mn shows a number average molecular weight.)
  • GPC gel permeation chromatography
  • Mw shows a weight average molecular weight
  • Mn shows a number average molecular weight.
  • it is preferably 5.0 or more.
  • the peak apex molecular weight of the copolymer (A) of the present invention can be adjusted by adding a chain transfer agent, for example.
  • a chain transfer agent for example, the reaction rate may be lowered. Therefore, for example, it is preferable to adjust by a use amount of a polymerization initiator, a monomer addition method, and the like.
  • the copolymer (A) of the processing aid of the present invention is usually in the form of particles (powder).
  • the particles having a size of 355 ⁇ m or more contained in the powder are contained in 1 to 50% by weight in 100% by weight of the copolymer (A).
  • particles with a particle diameter of 355 ⁇ m or more are less than 1% by weight, aggregation of salting out particles is insufficient, so that the biting into the screw is inferior at the time of kneading and the dispersibility is deteriorated. Inferior in workability.
  • the particle diameter exceeds 355 ⁇ m the proportion of coarse particles is too large, resulting in poor dispersibility and inferior moldability of the final product.
  • the proportion of the particles is preferably in the range of 2 to 45% by weight, more preferably in the range of 5 to 35% by weight. Further, among the particles having a particle size of 850 ⁇ m or more among the particles having a particle size of 355 ⁇ m or more, it is preferably less than 18% by weight, more preferably less than 10% by weight from the viewpoint of the size of the final product or moldability. Furthermore, it is most preferable that particles having a size of 850 ⁇ m or more are not present.
  • the crushing strength of the particles of 850 ⁇ m or more is not particularly limited, but is 250 to 900 g / mm 2. preferable. If the crushing strength is in the range of 250 to 900 g / mm 2 , the copolymer (A) powder becomes fine particles during transportation and storage, and the ease of handling as a powder is reduced, so that moderate ease of loosening is achieved. Therefore, the dispersibility when kneaded with other thermoplastic resins is improved, and the moldability is improved. From this point of view, 300 to 850 g / mm 2 is more preferable, and 350 to 800 g / mm 2 is most preferable.
  • the particle size of the powder in the copolymer (A) of the present invention can be adjusted, for example, by changing the salting-out temperature, the slurry concentration, the concentration of the salting-out agent, etc. during salting-out.
  • the salting out temperature is preferably a temperature that is 10 ° C. to 40 ° C. lower than the glass transition temperature (° C.) of the copolymer (A) from the viewpoint of preferable particle size and excessive fusion suppression.
  • the processing aid of the present invention includes the copolymer (A) and, if necessary, the following as long as the effects of the present invention are not impaired.
  • Additives may be included.
  • halogenated hydrocarbons such as hydrogen fluoride, methyl chloride, dichloromethane, trichloromonofluoromethane, and dichlorodifluoromethane
  • blowing agents such as carbon dioxide and nitrogen.
  • the processing aid of the present invention can be blended with a thermoplastic resin or a resin composition containing the same in order to improve or improve the molding processability and the like. More specifically, the processing aid of the present invention can be added to the thermoplastic resin in order to improve the physical properties (particularly melt elasticity) of the molten thermoplastic resin. In other words, the processing aid of the present invention can be suitably used for a method for improving the melt elasticity (and molding processability) of a thermoplastic resin. Then, by adding the processing aid of the present invention to the thermoplastic resin, a resin molded product excellent in quality, appearance and the like can be obtained.
  • thermoplastic resin (B) to which the processing aid of the present invention can be applied is not particularly limited.
  • (rubber reinforced) styrene such as ABS resin, AES resin, ASA resin, SAS resin, PS resin, HIPS resin, and AS resin.
  • Resin vinyl chloride resin, chlorinated polyethylene resin, ethylene-vinyl acetate resin, polypropylene, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polyamide elastomer, epoxy resin, polyvinylidene fluoride, polysulfone, polyisoprene, natural rubber
  • PPE resin, PPS resin, polyether ether ketone, styrene-maleic anhydride copolymer a mixture containing two or more of these resins, alloy resin, and the like can be given.
  • At least one of (rubber reinforced) styrene-based resin such as ABS resin, AES resin, ASA resin, SAS resin, PS resin, HIPS resin, AS resin, vinyl chloride resin, chlorinated polyethylene resin, ethylene-vinyl acetate resin, etc. Species are preferred.
  • the addition amount of the processing aid of the present invention can be appropriately set according to the type of thermoplastic resin to be applied, etc., but generally 0.1 to 15 parts by weight per 100 parts by weight of the thermoplastic resin In particular, it is more preferable to add 0.5 to 12 parts by weight.
  • Thermoplastic resin composition and molded article thereof includes a thermoplastic resin composition containing 100 parts by weight of a thermoplastic resin and 0.1 to 15 parts by weight of the processing aid of the present invention.
  • the present invention also includes a resin molded product obtained by molding the thermoplastic resin composition.
  • thermoplastic resin 2. Can be used. Further, as the processing aid of the present invention, the above-mentioned 1. Can be used.
  • thermoplastic resin composition of the present invention may contain other additives as necessary. That is, the same additives as those that can be used in the processing aid of the present invention can be used.
  • additives for example, 1) 2,6-di-t-butyl-4-methylphenol, 2- (1-methylcyclohexyl) -4,6-dimethylphenol, 2,2′-methylene-bis- (4-ethyl-6) -T-butylphenol), 4,4'-thiobis- (6-t-butyl-3-methylphenol), dilaurylthiodipropionate, tris (di-nonylphenyl) phosphite, etc .; 2) UV absorbers such as pt-butylphenyl succinate, 2,2'-dihydroxy-4-methoxybenzophenone, 2- (2'-hydroxy-4'-n-octoxyphenyl) benzotriazole; 3) For example, wax, paraffin wax, stearic acid, hydrogenated oil, steary
  • thermoplastic resin composition of the present invention or a molded product thereof can also be obtained according to a known method for producing a thermoplastic resin or a resin molded product.
  • the processing aid of the present invention copolymer (A)) and thermoplastic resin (B) (or a resin composition containing the same) are mixed in advance by a mixer or the like without being melted and heated in advance.
  • a resin molded product can be obtained by directly feeding into an extrusion molding machine, injection molding machine, sheet molding machine, vacuum molding machine, profile forming machine, foam molding machine, blow molding machine, and the like.
  • thermoplastic resin (B) (or a resin composition containing the same) are melt-heated and mixed, for example, an extruder
  • a resin molded product can be obtained by molding using an injection molding machine, a sheet molding machine, a vacuum molding machine, a profile forming machine, a foam molding machine, a blow molding machine, or the like. Preferably, it is a method in which each component is directly fed into a molding machine without being previously melted and mixed.
  • Various molded articles obtained by the molding method can be used for various parts such as home appliances and automobile parts by utilizing their excellent properties.
  • the measurement sample was prepared by placing 0.01 g of a measurement object and 25 ml of tetrahydrofuran in a 50 ml glass flask, sealing it, soaking it at 25 ° C. for 12 hours, and then filtering with a polytetrafluoroethylene membrane filter having a pore size of 3.0 ⁇ m. .
  • the peak vertex molecular weight (Mp) is a numerical value obtained by quantifying the value of the vertex portion having the highest detection frequency on the detected molecular weight distribution.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) were quantitatively calculated from the detected values according to the following formulas. The results are shown in Table 1. The definitions of symbols in the formula are as follows.
  • Copolymer latex is dyed with osmium tetroxide (OsO 4 ), dried, and photographed with a transmission electron microscope (JEOL Ltd., JEM-1400) Did. The area of 100 particles was measured using an image analysis processor (apparatus name: IP-1000PC manufactured by Asahi Kasei Co., Ltd.), the equivalent circle diameter (diameter) was obtained, and the weight average particle diameter of the copolymer latex was determined. Calculated. The results are shown in Table 1.
  • copolymer A-2 Using the monomer mixture in the proportions shown in Table 1, the aqueous emulsifier solution added initially is 1.0 part, and the amount of potassium persulfate used is 0.09 part.
  • the copolymer latex was polymerized under the same conditions as for the copolymer A-1, except that the emulsifier aqueous solution used in the above was changed to 8.0 parts and the continuous addition time of the monomer mixture and the emulsifier aqueous solution was changed to 4 hours.
  • A-2 was obtained. Salting-out and drying conditions were performed in the same manner as for copolymer A-1, and copolymer A-2 was obtained.
  • copolymer A-3 Using the monomer mixture in the proportions shown in Table 1, the amount of potassium persulfate was 0.04 parts, and the aging time after the reactor reached 60 ° C. was 40 minutes. Polymerization was carried out under the same conditions as for copolymer A-2 except that the continuous addition time of the monomer mixture and the aqueous emulsifier solution was changed to 3.5 hours to obtain copolymer latex A-3.
  • the salting-out and drying conditions were the same as those for copolymer A-1, except that the temperature of the salting-out tank was changed to 80 ° C., and copolymer A-3 was obtained.
  • copolymer A-4 The copolymer latex A-2 was used, and the salting-out and drying conditions were the same except that the temperature of the salting-out tank was changed to 83 ° C and the temperature raised after dropping was changed to 90 ° C. The same process as for polymer A-2 was carried out to obtain copolymer A-4.
  • a reactor purged with nitrogen was charged with 130 parts of pure water, 3 parts of a monomer mixture in the ratio shown in Table 1, and 1.5 parts of a 20% aqueous solution of potassium stearate, and the mixture was heated to 50 ° C. Heated. After heating, 0.08 part of potassium persulfate was added, the temperature was raised to 60 ° C. at a rate of 0.5 ° C./min, and the mixture was aged for 40 minutes after reaching 60 ° C. After aging, 97 parts of the monomer mixture and 8.5 parts of a 20% aqueous solution of potassium stearate were continuously added over 4.25 hours. After completion of the addition, polymerization was further performed at 60 ° C.
  • copolymer latex A-5 3 parts of magnesium sulfate and 3 parts of 10% sulfuric acid aqueous solution are salted with respect to water with a solid content of 15% in the salting-out tank after completion of dropping and 100 parts of solid content of copolymer latex A-5.
  • the salting-out tank was heated up to 80 degreeC in the precipitation tank. After the temperature elevation, the obtained copolymer latex A-5 was added dropwise. After completion of the dropwise addition, the salting-out tank was heated to 95 ° C, and the salting-out was terminated when the temperature reached 95 ° C. After salting out, the mixture was dehydrated and washed using a centrifugal dehydrator, and dried at 90 ° C. for 12 hours using a hot air drier to obtain a copolymer A-5.
  • copolymer latex A-6 3 parts of magnesium sulfate and 1.5 parts of 10% aqueous sulfuric acid solution for 100 parts of solid content of copolymer latex A-6 and water under conditions where the solid content concentration in the salting-out tank after dropping is 15% was put in a salting-out tank, and the salting-out tank was heated to 75 ° C. After the temperature elevation, the obtained copolymer latex A-6 was added dropwise. After completion of dropping, the salting-out tank was heated to 90 ° C., and salting-out was terminated when the temperature reached 90 ° C. After salting out, dehydration and washing were performed using a centrifugal dehydrator, and the mixture was dried at 85 ° C. for 12 hours using a hot air drier to obtain a copolymer A-6.
  • copolymer A-7 Polymerization was carried out under the same conditions as for copolymer A-6, except that the monomer mixture was used in the proportions shown in Table 1, to obtain copolymer latex A-7. Salting out and drying conditions were performed in the same manner as for copolymer A-6 to obtain copolymer A-7.
  • copolymer A-8 Using the monomer mixture in the proportions shown in Table 1, the potassium persulfate amount was changed to 0.04 parts, and the aging time after the reactor reached 60 ° C. was changed to 40 minutes. Except for the above, polymerization was performed under the same conditions as for copolymer A-7, to obtain copolymer latex A-8. Salting-out and drying conditions were performed in the same manner as for copolymer A-7 to obtain copolymer A-8.
  • copolymer A-9 Using copolymer latex A-7, the salting out and drying conditions were the same as those for copolymer A-6 except that the temperature raised after dropping was changed to 85 ° C. And copolymer A-9 was obtained.
  • copolymer A-10 The monomer mixture was used in the proportion described in Table 1, the monomer mixture initially added was used as 2 parts, and the monomer used during continuous addition was used as 98 parts initially.
  • a copolymer latex A-10 was obtained using the same conditions as for the copolymer A-7, except that the aqueous emulsifier solution was changed to 2.0 parts and the aqueous emulsifier solution used during continuous addition was changed to 8.0 parts. . Salting-out and drying conditions were performed in the same manner as for copolymer A-6 to obtain copolymer A-10.
  • copolymer A-11 Polymerization was carried out under the same conditions as for copolymer A-6, except that the monomer mixture was used at the ratio shown in Table 1 and the polymerization temperature after continuous addition was changed to 73 ° C. To obtain a copolymer latex A-11. Salting-out and drying conditions were performed in the same manner as for copolymer A-6 to obtain copolymer A-11.
  • copolymer A-12 The monomer mixture was used in the proportions shown in Table 1, the monomer mixture initially added was 3 parts, and the monomer used during continuous addition was 97 parts initially. Polymerization was carried out under the same conditions as for the copolymer A-11, except that the aqueous emulsifier solution was changed to 3.0 parts and the aqueous emulsifier solution used for continuous addition was changed to 7.0 parts, to obtain a copolymer latex A-12. It was. Salting-out and drying conditions were performed in the same manner as for copolymer A-6 to obtain copolymer A-12.
  • the magnesium sulfate was added to water in a condition that the solid content concentration in the salting-out tank becomes 7.5% and 100 parts of the solid content of the copolymer latex A-2. 0.5 part was put into a salting-out tank, and the salting-out tank was heated to 65 ° C. After the temperature elevation, the obtained copolymer latex A-2 was added dropwise. Salting out was terminated when the dropping was completed. After salting out, the mixture was dehydrated and washed using a centrifugal dehydrator, and dried at 90 ° C. for 12 hours using a hot air drier to obtain a copolymer a-2.
  • the water under the condition that the solid content in the salting-out tank is 20% and the solid content of 100 parts of the copolymer latex A-7 are 3 parts of magnesium sulfate and 3 parts of 10% sulfuric acid aqueous solution was put into a salting-out tank, and the salting-out tank was heated to 85 ° C. After the temperature elevation, the obtained copolymer latex A-7 was added dropwise. After completion of the dropwise addition, the salting-out tank was heated to 95 ° C, and the salting-out was terminated when the temperature reached 95 ° C. After salting-out, dehydration and washing were performed using a centrifugal dehydrator, and the mixture was dried for 12 hours at 85 ° C. using a hot air drier to obtain a copolymer A-5.
  • thermoplastic resin (B) a thermoplastic resin (B)
  • additives used in Table 2 are as shown below.
  • Thermoplastic resin (B) -Vinyl chloride resin Product name "TH-1000" (Tayo PVC Co., Ltd., degree of polymerization 1000)
  • ABS resin ABS resin obtained by known emulsion polymerization using 60% polybutadiene, 30% styrene and 10% acrylonitrile.
  • AS resin Obtained by known emulsion polymerization using 75% styrene and 25% acrylonitrile.
  • AS resin additive / stabilizer Alkyl tin mercapto compound Product name “TM-181FSJ” (manufactured by Katsuta Chemical Co., Ltd.)
  • Lubricant Stearic acid compound Product name “L-27” (manufactured by Katsuta Chemical Co., Ltd.)
  • the difference between the maximum width and the minimum width is a measure of the molding processability of the thermoplastic resin composition in which the copolymer (A) is blended with the thermoplastic resin (B). Indicates high. Evaluation in the table was performed as follows.
  • Examples 1 to 19 are thermoplastic resin compositions according to the present invention, and it can be seen that all are excellent in moldability.
  • the peak apex molecular weight is 3.5 million or more
  • the weight average particle diameter of the copolymer latex is 160 nm or less and / or when the amount of volatile matter remaining in the copolymer latex is 0.2 wt% or less
  • the results show that the moldability is excellent.
  • Comparative Example 1 in which the copolymer of the present invention was not used was inferior in the moldability of the vinyl chloride resin.
  • the processing aid of the present invention By blending the processing aid of the present invention, the molding processability of the thermoplastic resin composition can be improved, and as a result, a product with high commercial value can be produced. Therefore, the present invention has great industrial value.

Abstract

[Problem] To provide a thermoplastic resin processing aid that can effectively increase molding/processing properties of a thermoplastic resin or a composition containing same without detracting from the intrinsic properties of the thermoplastic resin. [Solution] The processing aid for being combined with a thermoplastic resin is characterized by (1) the processing aid containing a copolymer (A) obtained by copolymerizing a) 50-95 wt% of an aromatic vinyl monomer, b) 5-50 wt% of a vinyl cyanide monomer, and d) 0-45 wt% of another vinyl monomer that can copolymerize with the aromatic vinyl monomer and the vinyl cyanide monomer (however, the total of the monomers used in the copolymer (A) is 100 wt%), (2) the peak molecular weight (Mp) of the copolymer (A) being at least one million, and (3) the copolymer being a particulate, wherein 1-50 wt% of particles with a particle size of at least 355 µm are contained in every 100 wt% of the copolymer (A).

Description

熱可塑性樹脂用加工助剤及びそれを含む熱可塑性樹脂組成物Processing aid for thermoplastic resin and thermoplastic resin composition containing the same
 本発明は、熱可塑性樹脂の成形加工性を向上させるための加工助剤として好適な熱可塑性樹脂用加工助剤熱可塑性樹脂に関する。さらには、前記加工助剤を含む熱可塑性樹脂組成物に関する。 The present invention relates to a thermoplastic resin as a processing aid for thermoplastic resin that is suitable as a processing aid for improving the molding processability of a thermoplastic resin. Furthermore, the present invention relates to a thermoplastic resin composition containing the processing aid.
 例えばスチレン系樹脂、塩化ビニル樹脂等の熱可塑性樹脂は、成形加工性に優れるとともに剛性に優れていることから、例えば車両用品、家庭用品、電化製品等の成形材料として幅広く使用されている。 For example, thermoplastic resins such as styrene-based resins and vinyl chloride resins are widely used as molding materials for, for example, vehicle products, household products, and electrical appliances because they are excellent in molding processability and rigidity.
 一般に、押出成形、発泡成形、真空成形、圧空成形、ブロー成形等の成形法では、広い温度領域にわたって良好な粘弾性を維持できる成形材料が要求される。より具体的には、成形材料(樹脂成分)が溶融した際において、高い溶融弾性を発揮できる場合には、優れた成形加工性を得ることができる結果、品質、外観等に優れた成形品を製造することが可能となる。 In general, molding methods such as extrusion molding, foam molding, vacuum molding, pressure molding, blow molding, and the like require molding materials that can maintain good viscoelasticity over a wide temperature range. More specifically, when the molding material (resin component) is melted, if a high melt elasticity can be exhibited, excellent molding processability can be obtained. As a result, a molded product having excellent quality and appearance can be obtained. It can be manufactured.
 このため、特に熱可塑性樹脂の溶融弾性を高めることが優れた成形品を得る上で重要なファクターとなる。例えば、発泡シート等の樹脂成形品を製造する場合においても、成形材料(原料)である熱可塑性樹脂の溶融弾性を適正に高めることが必要である。この場合、熱可塑性樹脂自体の分子量を大きくすることにより溶融弾性を高めることも考えられるが、分子量が大きくなればそれだけ溶融樹脂の流動性が著しく低下するという欠点がある。このため、流動性と衝撃強度のバランスを向上させるべく、熱可塑性樹脂に分子量の大きい成分と分子量の小さい成分の両成分を含有させる方法、熱可塑性樹脂の分子量分布を調整する方法等も提案されているが、押出成形、発泡成形、真空成形、圧空成形、ブロー成形等の各種の成形方法に適した成形材料とするためにはさらなる改善の余地がある。 Therefore, in particular, increasing the melt elasticity of the thermoplastic resin is an important factor in obtaining an excellent molded product. For example, even in the case of producing a resin molded product such as a foam sheet, it is necessary to appropriately increase the melt elasticity of a thermoplastic resin that is a molding material (raw material). In this case, it is conceivable to increase the melt elasticity by increasing the molecular weight of the thermoplastic resin itself, but there is a drawback in that the fluidity of the molten resin significantly decreases as the molecular weight increases. For this reason, in order to improve the balance between fluidity and impact strength, a method in which a thermoplastic resin contains both a component having a high molecular weight and a component having a low molecular weight, a method for adjusting the molecular weight distribution of the thermoplastic resin, etc. have been proposed. However, there is room for further improvement in order to obtain a molding material suitable for various molding methods such as extrusion molding, foam molding, vacuum molding, pressure molding, and blow molding.
 他方、成形材料として同じ熱可塑性樹脂を用いる場合であっても、適用する成形方法、成形条件等によって所望の溶融弾性が求められるため、熱可塑性樹脂本来の特性を損なうことなく、熱可塑性樹脂の溶融弾性を任意に調整できる加工助剤の開発が切望されている。 On the other hand, even when the same thermoplastic resin is used as the molding material, the desired melt elasticity is required depending on the molding method to be applied, molding conditions, etc., so that the inherent properties of the thermoplastic resin are not impaired. The development of a processing aid that can arbitrarily adjust the melt elasticity is eagerly desired.
 これに対し、分子量が比較的高いスチレン系共重合体を熱可塑性樹脂の加工性改良助剤として用いる方法等が提案されている(特許文献1~3)。しかしながら、これらの従来技術の加工助剤においても、それを熱可塑性樹脂又はそれを含む組成物に配合した場合の成形加工性という見地からみれば、さらなる改善の余地が残されている。 On the other hand, a method of using a styrene copolymer having a relatively high molecular weight as an aid for improving the processability of a thermoplastic resin has been proposed (Patent Documents 1 to 3). However, these prior art processing aids still have room for further improvement from the viewpoint of moldability when blended with a thermoplastic resin or a composition containing the same.
特開平10-168131JP-A-10-168131 特開平02-302412JP 02-302412 特開平11-92528JP-A-11-92528
 従って、本発明の主な目的は、熱可塑性樹脂本来の特性を損なうことなく、熱可塑性樹脂又はそれを含む組成物の成形加工性を効果的に高めることができる熱可塑性樹脂用加工助剤を提供することにある。さらなる本発明の目的は、前記加工助剤を含む熱可塑性樹脂組成物を提供することにある。 Therefore, the main object of the present invention is to provide a thermoplastic resin processing aid that can effectively improve the molding processability of a thermoplastic resin or a composition containing the thermoplastic resin without impairing the original properties of the thermoplastic resin. It is to provide. A further object of the present invention is to provide a thermoplastic resin composition containing the processing aid.
 本発明者らは、上記の従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の共重合体を熱可塑性樹脂用の加工助剤として使用することにより、上記目的を達成することを見出し、本発明に到達した。 As a result of intensive studies in view of the above-mentioned problems of the prior art, the present inventors have achieved the above object by using a specific copolymer as a processing aid for a thermoplastic resin. The headline, the present invention has been reached.
 すなわち、本発明は、下記の熱可塑性樹脂用加工助剤及びそれを含む熱可塑性樹脂組成物に係る。
1. 熱可塑性樹脂に配合するための加工用助剤であって、
(1)前記加工助剤が、a)芳香族ビニル系単量体50~95重量%、b)シアン化ビニル系単量体5~50重量%及びd)これらと共重合可能な他のビニル系単量体0~45重量%を共重合して得られる共重合体(A)(但し、共重合体(A)に用いられる単量体の合計は100重量%である。)を含み、
(2)前記共重合体(A)のピーク頂点分子量(Mp)が100万以上であって、
(3)前記共重合体は粒子状であり、かつ、前記共重合体(A)100重量%中に粒子径355μm以上の粒子を1~50重量%含有する、
ことを特徴とする熱可塑性樹脂用加工助剤。
2. 前記共重合体が、a)芳香族ビニル系単量体50~70重量%、b)シアン化ビニル系単量体9~40重量%、c)(メタ)アクリル酸エステル系単量体21~35重量%及びd)これらと共重合可能な他のビニル系単量体0~20重量%を共重合して得られる共重合体(A)である(共重合体(A)に用いられる単量体の合計は100重量%である。)、前記項1に記載の熱可塑性樹脂用加工助剤。
3. 共重合体(A)のピーク頂点分子量(Mp)が200万以上である、前記項1又は2に記載の熱可塑性樹脂用加工助剤。
4. 共重合体(A)に含まれる850μm以上の粒子の圧壊強度が250~900g/mmである、前記項1~3のいずれかに記載の熱可塑性樹脂用加工助剤。
5. 共重合体(A)が、前記単量体の乳化重合による反応生成物であるラテックス中から回収される、前記項1に記載の熱可塑性樹脂用加工助剤。
6. 共重合体(A)のラテックス粒子の重量平均粒子径が160nm以下である、前記項5に記載の熱可塑性樹脂用加工助剤。
7. ラテックス中に残留する未反応成分の合計量が2.0重量%以下である、前記項5に記載の熱可塑性樹脂用加工助剤。
8. 熱可塑性樹脂100重量部及び前記項1~7のいずれかに記載の加工助剤0.1~15重量部を含む熱可塑性樹脂組成物。
9. 前記項8に記載の熱可塑性樹脂組成物を成形して得られる樹脂成形品。
That is, the present invention relates to the following processing aid for thermoplastic resin and a thermoplastic resin composition containing the same.
1. A processing aid for blending with a thermoplastic resin,
(1) The processing aid is a) an aromatic vinyl monomer of 50 to 95% by weight, b) a vinyl cyanide monomer of 5 to 50% by weight, and d) another vinyl copolymerizable therewith. A copolymer (A) obtained by copolymerizing 0 to 45% by weight of a system monomer (provided that the total amount of monomers used in the copolymer (A) is 100% by weight);
(2) The peak apex molecular weight (Mp) of the copolymer (A) is 1 million or more,
(3) The copolymer is in the form of particles and contains 1 to 50% by weight of particles having a particle diameter of 355 μm or more in 100% by weight of the copolymer (A).
A processing aid for thermoplastic resins.
2. The copolymer comprises a) an aromatic vinyl monomer 50 to 70% by weight, b) a vinyl cyanide monomer 9 to 40% by weight, c) a (meth) acrylic acid ester monomer 21 to 35% by weight and d) a copolymer (A) obtained by copolymerizing 0 to 20% by weight of other vinyl monomers copolymerizable with these (monomers used in the copolymer (A)) The total amount of the polymer is 100% by weight.), The processing aid for thermoplastic resin according to Item 1.
3. Item 3. The thermoplastic resin processing aid according to Item 1 or 2, wherein the copolymer (A) has a peak peak molecular weight (Mp) of 2 million or more.
4). Item 4. The processing aid for a thermoplastic resin according to any one of Items 1 to 3, wherein the crushing strength of particles of 850 μm or more contained in the copolymer (A) is 250 to 900 g / mm 2 .
5. Item 2. The processing aid for a thermoplastic resin according to Item 1, wherein the copolymer (A) is recovered from latex that is a reaction product of emulsion polymerization of the monomer.
6). Item 6. The processing aid for a thermoplastic resin according to Item 5, wherein the latex particles of the copolymer (A) have a weight average particle size of 160 nm or less.
7. Item 6. The thermoplastic resin processing aid according to Item 5, wherein the total amount of unreacted components remaining in the latex is 2.0% by weight or less.
8). A thermoplastic resin composition comprising 100 parts by weight of a thermoplastic resin and 0.1 to 15 parts by weight of the processing aid according to any one of Items 1 to 7.
9. A resin molded product obtained by molding the thermoplastic resin composition according to Item 8.
 本発明の加工助剤は、特定の共重合体を含有する上、特定の粒度からなる粉末であることから、これを熱可塑性樹脂に配合することにより、溶融成形に際して優れた成形加工性を得ることができる。その結果、従来技術よりも優れた品質、外観等を有する成形品をより確実に提供することができる。 Since the processing aid of the present invention contains a specific copolymer and is a powder having a specific particle size, by blending it with a thermoplastic resin, excellent molding processability is obtained during melt molding. be able to. As a result, it is possible to more reliably provide a molded product having quality, appearance and the like superior to those of the prior art.
 以下、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.
1.本発明の熱可塑性樹脂用加工助剤
 本発明の熱可塑性樹脂用加工助剤(本発明加工助剤)は、熱可塑性樹脂に配合するための加工用助剤であって、
(1)前記加工助剤が、a)芳香族ビニル系単量体50~95重量%、b)シアン化ビニル系単量体5~50重量%及びd)これらと共重合可能な他のビニル系単量体0~45重量%を共重合して得られる共重合体(A)(但し、共重合体(A)に用いられる単量体の合計は100重量%である。)を含み、
(2)前記共重合体(A)のピーク頂点分子量(Mp)が100万以上であって、
(3)前記共重合体は粒子状であり、かつ、前記共重合体(A)100重量%中に粒子径355μm以上の粒子を1~50重量%含有する、
ことを特徴とする。
1. The processing aid for thermoplastic resin of the present invention The processing aid for thermoplastic resin of the present invention (the processing aid of the present invention) is a processing aid for blending into a thermoplastic resin,
(1) The processing aid is a) an aromatic vinyl monomer of 50 to 95% by weight, b) a vinyl cyanide monomer of 5 to 50% by weight, and d) another vinyl copolymerizable therewith. A copolymer (A) obtained by copolymerizing 0 to 45% by weight of a system monomer (provided that the total amount of monomers used in the copolymer (A) is 100% by weight);
(2) The peak apex molecular weight (Mp) of the copolymer (A) is 1 million or more,
(3) The copolymer is in the form of particles and contains 1 to 50% by weight of particles having a particle diameter of 355 μm or more in 100% by weight of the copolymer (A).
It is characterized by that.
(1)共重合体(A)
 本発明加工助剤は、共重合体(A)を主成分とするものである。本発明加工助剤中の共重合体(A)の含有量は、通常90~100重量%、好ましくは95~100重量%である。従って、例えば共重合体(A)の含有量が100重量%である加工助剤も本発明に包含される。共重合体(A)の含有量が100重量%未満である場合に含まれる第三成分(添加剤)については、後記(1-4)で詳細に説明する。
(1) Copolymer (A)
The processing aid of the present invention is mainly composed of the copolymer (A). The content of the copolymer (A) in the processing aid of the present invention is usually 90 to 100% by weight, preferably 95 to 100% by weight. Accordingly, for example, a processing aid having a copolymer (A) content of 100% by weight is also included in the present invention. The third component (additive) contained when the content of the copolymer (A) is less than 100% by weight will be described in detail in (1-4) below.
(1-1)共重合(A)を構成する単量体
 本発明加工助剤は、a)芳香族ビニル系単量体及びb)シアン化ビニル系単量体を必須とし、必要に応じて他のビニル系単量体を用いることもできる。
(1-1) Monomer constituting copolymer (A) The processing aid of the present invention essentially comprises a) an aromatic vinyl-based monomer and b) a vinyl cyanide-based monomer. Other vinyl monomers can also be used.
 a)芳香族ビニル系単量体
 本発明に使用される芳香族ビニル系単量体としては、特に限定されず、例えばスチレン、t-ブチルスチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノメチルスチレン、ビニルピリジン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、フルオロスチレン、エチルスチレン、ビニルナフタレン等が挙げられる。これらの芳香族ビニル系単量体は、1種単独又は2種以上を用いることができる。これらの中でも、本発明は、特にスチレン及びα-メチルスチレンの少なくとも1種が好ましい。
a) Aromatic vinyl monomer The aromatic vinyl monomer used in the present invention is not particularly limited, and examples thereof include styrene, t-butyl styrene, α-methyl styrene, p-methyl styrene, divinyl benzene. 1,1-diphenylstyrene, N, N-diethyl-p-aminoethylstyrene, N, N-diethyl-p-aminomethylstyrene, vinylpyridine, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, fluorostyrene , Ethyl styrene, vinyl naphthalene and the like. These aromatic vinyl monomers can be used alone or in combination of two or more. Among these, in the present invention, at least one of styrene and α-methylstyrene is particularly preferable.
 本発明に使用される芳香族ビニル系単量体の含有量は、共重合体(A)に用いられる単量体の合計100重量%中において50~95重量%であることが必要である。芳香族ビニル系単量体が50重量%未満では、加工助剤配合後の熱可塑性樹脂組成物の熱安定性が低下し、黄変が生じやすくなる。また、95重量%を超えると、共重合体(A)の重合時に重合反応速度が低下し、生産性が悪化する。従って、特に生産性と着色性の観点から、50~70重量%であることが好ましく、特に55~65重量%であることがより好ましい。 The content of the aromatic vinyl monomer used in the present invention needs to be 50 to 95% by weight in a total of 100% by weight of the monomers used in the copolymer (A). When the aromatic vinyl monomer is less than 50% by weight, the thermal stability of the thermoplastic resin composition after blending the processing aid is lowered, and yellowing tends to occur. On the other hand, when it exceeds 95% by weight, the polymerization reaction rate is lowered during the polymerization of the copolymer (A), and the productivity is deteriorated. Therefore, from the viewpoint of productivity and colorability, it is preferably 50 to 70% by weight, and more preferably 55 to 65% by weight.
 b)シアン化ビニル系単量体
 本発明に使用されるシアン化ビニル系単量体としては、限定的ではなく、例えばアクリロニトリル、メタクリロニトリル、エタアクリロニトリル、フマロニトリル等が挙げられるが、アクリロニトリルが好ましい。これらのシアン化ビニル系単量体は、1種単独又は2種以上を用いることもできる。なお、本発明で用いるシアン化ビニル系単量体は、前記a)芳香族ビニル系単量体として使用される単量体を除く。
b) Vinyl cyanide monomer The vinyl cyanide monomer used in the present invention is not limited, and examples thereof include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile, and acrylonitrile is preferable. . These vinyl cyanide monomers can be used alone or in combination of two or more. The vinyl cyanide monomer used in the present invention excludes the monomer a) used as the aromatic vinyl monomer.
 本発明に使用されるシアン化ビニル系単量体の含有量は、共重合体(A)に用いられる単量体の合計100重量%中において5~50重量%であることが必要である。シアン化ビニル系単量体が5重量%未満では、共重合体(A)の重合時に重合反応速度が低下し、生産性が悪化する。また、50重量%を超えると、重合時の熱制御が難しくなる上、最終製品の黄色度が高くなるため好ましくない。従って、特に生産性と最終製品の色調(外観)の観点から、9~40重量%であることが好ましく、特に10~30重量%であることがより好ましい。 The content of the vinyl cyanide monomer used in the present invention needs to be 5 to 50% by weight in a total of 100% by weight of the monomers used in the copolymer (A). If the vinyl cyanide monomer is less than 5% by weight, the polymerization reaction rate is lowered during the polymerization of the copolymer (A), and the productivity is deteriorated. On the other hand, if it exceeds 50% by weight, it is not preferable because heat control during polymerization becomes difficult and the yellowness of the final product increases. Therefore, it is preferably 9 to 40% by weight, more preferably 10 to 30% by weight, particularly from the viewpoint of productivity and the color tone (appearance) of the final product.
 d)他の単量体
 本発明に使用される共重合体(A)の共重合の際に用いられる芳香族ビニル系単量体及びシアン化ビニル系単量体と共重合可能な他のビニル系単量体としては、例えば(メタ)アクリル酸エステル系単量体、マレイミド系単量体、不飽和酸、酸無水物含有不飽和単量体、エポキシ基含有不飽和単量体、ヒドロキシル基含有不飽和単量体、アミド基含有不飽和単量体、アミノ基含有不飽和単量体、オキサゾリン基含有不飽和単量体等が挙げられる。これらの単量体は、1種単独又は2種以上を用いることもできる。これらの単量体の中でも、配合性と熱安定性の観点から(メタ)アクリル酸エステル系単量体を用いることが好ましい。なお、本発明で用いる他の単量体は、前記a)及びb)で使用される単量体をいずれも除く。
d) Other monomer Other vinyl copolymerizable with the aromatic vinyl monomer and vinyl cyanide monomer used in the copolymerization of the copolymer (A) used in the present invention. Examples of the monomer include (meth) acrylic acid ester monomer, maleimide monomer, unsaturated acid, acid anhydride-containing unsaturated monomer, epoxy group-containing unsaturated monomer, hydroxyl group Examples thereof include an unsaturated monomer containing an amide group, an unsaturated monomer containing an amide group, an unsaturated monomer containing an amino group, and an unsaturated monomer containing an oxazoline group. These monomers can be used alone or in combination of two or more. Among these monomers, it is preferable to use a (meth) acrylic acid ester monomer from the viewpoints of compoundability and thermal stability. In addition, as for the other monomer used by this invention, all the monomers used by said a) and b) are remove | excluded.
 前記(メタ)アクリル酸エステル系単量体としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、アクリル酸2-エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸4-t-ブチルフェニル、(メタ)アクリル酸ブロモフェニル、(メタ)アクリル酸ジブロモフェニル、(メタ)アクリル酸2,4,6-トリブロモフェニル、(メタ)アクリル酸モノクロルフェニル、(メタ)アクリル酸ジクロルフェニル、(メタ)アクリル酸トリクロルフェニル等が挙げられるが、メタクリル酸メチル、アクリル酸ブチル等の少なくとも1種が好ましい。 Examples of the (meth) acrylic acid ester monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, ( (Meth) acrylic acid phenyl, (meth) acrylic acid 4-t-butylphenyl, (meth) acrylic acid bromophenyl, (meth) acrylic acid dibromophenyl, (meth) acrylic acid 2,4,6-tribromophenyl, ( Examples thereof include monochlorophenyl methacrylate, dichlorophenyl (meth) acrylate, and trichlorophenyl (meth) acrylate, and at least one of methyl methacrylate and butyl acrylate is preferred.
 前記マレイミド系単量体としては、例えばマレイミド、N-メチルマレイミド、N-ブチルマレイミド、N-(p-メチルフェニル)マレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等の少なくとも1種が挙げられ、好ましくはN-フェニルマレイミド及びN-シクロヘキシルマレイミドの少なくとも1種が挙げられる。 Examples of the maleimide monomer include at least one of maleimide, N-methylmaleimide, N-butylmaleimide, N- (p-methylphenyl) maleimide, N-phenylmaleimide, N-cyclohexylmaleimide, and the like. Preferably, at least one of N-phenylmaleimide and N-cyclohexylmaleimide is used.
 不飽和酸としては、例えばアクリル酸、メタクリル酸等の少なくとも1種が挙げられる。 Examples of the unsaturated acid include at least one of acrylic acid and methacrylic acid.
 酸無水物基含有不飽和単量体としては、例えば無水マレイン酸、無水イタコン酸、無水シトラコン酸等の少なくとも1種が挙げられる。好ましくは、無水マレイン酸である。 Examples of the acid anhydride group-containing unsaturated monomer include at least one of maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. Preferred is maleic anhydride.
 エポキシ基含有不飽和単量体としては、例えばグリシジルメタクリレート、アリルグリシジルエーテル等の少なくとも1種が挙げられる。好ましくはグリシジルメタクリレートである。 Examples of the epoxy group-containing unsaturated monomer include at least one kind such as glycidyl methacrylate and allyl glycidyl ether. Glycidyl methacrylate is preferred.
 ヒドロキシル基含有不飽和単量体としては、例えば3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等の少なくとも1種が挙げられ、好ましくは2-ヒドロキシルエチルメタクリレートである。 Examples of the hydroxyl group-containing unsaturated monomer include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3- There may be mentioned at least one of hydroxy-2-methyl-1-propene, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, etc., and 2-hydroxyethyl methacrylate is preferred.
 アミド基含有不飽和単量体としては、例えばアクリルアミド、メタクリルアミド等の少なくとも1種が挙げられ、好ましくはアクリルアミドである。 Examples of the amide group-containing unsaturated monomer include at least one of acrylamide, methacrylamide and the like, and preferably acrylamide.
 アミノ基含有不飽和単量体としては、例えばアクリルアミン、ジメチルアミノメタクリレート、ジエチルアミノメタクリレート、ジメチルアミノアクリレート等の少なくとも1種が挙げられる。 Examples of the amino group-containing unsaturated monomer include at least one of acrylic amine, dimethylamino methacrylate, diethylamino methacrylate, dimethylamino acrylate, and the like.
 オキサゾリン基含有不飽和単量体としては、例えばビニルオキサゾリン等が挙げられる。 Examples of the oxazoline group-containing unsaturated monomer include vinyl oxazoline.
 その他の単量体(特に(メタ)アクリル酸エステル系単量体を用いた場合)は、重合安定性の観点から、共重合体(A)に用いられる単量体の合計100重量%中において21~35重量%含有していることが好ましい。 Other monomers (especially when a (meth) acrylic acid ester monomer is used) are used in the total 100% by weight of the monomers used in the copolymer (A) from the viewpoint of polymerization stability. The content is preferably 21 to 35% by weight.
(1-2)共重合体(A)の合成
 本発明の共重合体(A)の重合方法について特に制限はなく、公知の重合方法をいずれも適用できるが、特に重合度の高いポリマーの生産性が良好であるという点で乳化重合により製造されることが好ましい。乳化重合の方法自体は公知の方法に従えば良く、例えば単量体を水及び乳化剤を含む液相中で重合反応させることによって反応生成物であるラテックス(懸濁液)を調製する工程を含む製造方法によって好適に製造することができる。その後、必要に応じて、得られたラテックスから共重合体粒子を公知の固液分離方法等に従って回収すれば良い。
(1-2) Synthesis of copolymer (A) The polymerization method of the copolymer (A) of the present invention is not particularly limited, and any known polymerization method can be applied, but production of a polymer having a particularly high degree of polymerization is possible. It is preferable to be produced by emulsion polymerization in terms of good properties. The emulsion polymerization method itself may be in accordance with a known method, for example, a step of preparing a latex (suspension) as a reaction product by polymerizing a monomer in a liquid phase containing water and an emulsifier. It can manufacture suitably with a manufacturing method. Thereafter, if necessary, the copolymer particles may be recovered from the obtained latex according to a known solid-liquid separation method or the like.
 乳化重合による場合、使用される乳化剤としては、例えばロジン酸のアルカリ金属塩、脂肪酸のアルカリ金属塩、脂肪族アルコール硫酸エステルのアルカリ金属塩、アルキルアリルスルホン酸のアルカリ金属塩、ジアルキルスルホコハク酸エステルのアルカリ金属塩、ポリオキシエチレンアルキル(フェニル)エーテルの硫酸エステルアルカリ金属塩、ポリオキシエチレンアルキル(エーテル)のリン酸エステルアルカリ金属塩等の少なくとも1種を好適に用いることができる。乳化剤の使用量は、共重合体(A)に用いられる単量体の合計量100重量%に対し、1~5重量%であることが重合反応速度及び反応安定性、適正なラテックス粘度、塩析性等の点から好ましい。 In the case of emulsion polymerization, examples of the emulsifier used include alkali metal salts of rosin acid, alkali metal salts of fatty acids, alkali metal salts of aliphatic alcohol sulfates, alkali metal salts of alkylallyl sulfonic acids, and dialkyl sulfosuccinic acid esters. At least one of an alkali metal salt, a polyoxyethylene alkyl (phenyl) ether sulfate alkali metal salt, a polyoxyethylene alkyl (ether) phosphate alkali metal salt, and the like can be suitably used. The amount of the emulsifier used is 1 to 5% by weight based on 100% by weight of the total amount of monomers used in the copolymer (A), the polymerization reaction rate and reaction stability, the appropriate latex viscosity, salt This is preferable from the standpoint of eutectability.
 また、乳化重合に際しては重合開始剤を用いることが好ましい。重合開始剤としては、例えば過硫酸塩、有機ハイドロパーオキサイド類等の公知のものが適宜使用できる。特にラテックスの安定性の点から、過硫酸塩を用いることが好ましい。重合開始剤の使用量は、重合反応開始挙動やピーク頂点分子量の調整の観点から、共重合体(A)に用いられる単量体の合計量100重量%に対し、通常0.01~0.5重量%とし、好ましくは0.03~0.3重量%とし、さらに好ましくは0.05~0.2重量%とする。 In addition, it is preferable to use a polymerization initiator in the emulsion polymerization. As a polymerization initiator, well-known things, such as a persulfate and organic hydroperoxide, can be used suitably, for example. In particular, it is preferable to use a persulfate from the viewpoint of the stability of the latex. The amount of the polymerization initiator used is usually 0.01 to 0.00% with respect to 100% by weight of the total amount of monomers used in the copolymer (A) from the viewpoint of adjusting the polymerization reaction initiation behavior and the peak peak molecular weight. 5 wt%, preferably 0.03 to 0.3 wt%, more preferably 0.05 to 0.2 wt%.
 乳化重合の際の水の使用量は、共重合体(A)に用いられる単量体の合計量100重量%に対し、通常100~200重量%の範囲であることが重合反応時の熱制御と生産性の観点から好ましい。 The amount of water used in the emulsion polymerization is usually in the range of 100 to 200% by weight with respect to 100% by weight of the total amount of monomers used in the copolymer (A). From the viewpoint of productivity.
 共重合体(A)を重合する際の重合温度は、限定的ではないが、50~75℃とすることが好ましく、特に55~70℃とすることがより好ましい。重合の際、反応に伴う発熱が確認できる間は、この重合温度範囲で内温を一定にすることが好ましい。重合温度が50℃未満では、重合開始剤の分解が起こりにくいため、重合開始が不安定になりやすい。一方、75℃を超えると、ラジカルの生成速度が速くなりすぎるために、分子量を大きくできないことがある。 The polymerization temperature for polymerizing the copolymer (A) is not limited, but is preferably 50 to 75 ° C, and more preferably 55 to 70 ° C. During the polymerization, it is preferable to keep the internal temperature constant within this polymerization temperature range as long as the exotherm accompanying the reaction can be confirmed. When the polymerization temperature is less than 50 ° C., the polymerization initiator is not easily decomposed, so that the polymerization start tends to be unstable. On the other hand, when it exceeds 75 ° C., the molecular weight cannot be increased because the radical generation rate becomes too fast.
 共重合体(A)の製造時における単量体の添加方法としては限定的でなく、例えば一括添加、連続的添加、各段の組成を変えた多段階添加等の一般に広く知られている方法を採用することができる。これらのうち、一括添加、連続添加等の方法が好ましい。また、連続的添加による重合を行う場合は、連続添加時間は3時間以上とすることが好ましい。3時間未満の重合時間では、重合熱による発熱が大きいため、重合温度の制御が困難になり、結果的に共重合体の分子量の低下を招く傾向にある。さらに、連続添加時間及び連続添加後の重合時間を含めた合計の重合時間は7~11時間とすることが好ましい。 The method for adding the monomer during the production of the copolymer (A) is not limited. For example, generally known methods such as batch addition, continuous addition, and multistage addition in which the composition of each stage is changed. Can be adopted. Of these, methods such as batch addition and continuous addition are preferred. Moreover, when performing superposition | polymerization by continuous addition, it is preferable that continuous addition time shall be 3 hours or more. When the polymerization time is less than 3 hours, the heat generated by the polymerization heat is large, so that it is difficult to control the polymerization temperature, and as a result, the molecular weight of the copolymer tends to decrease. Furthermore, the total polymerization time including the continuous addition time and the polymerization time after the continuous addition is preferably 7 to 11 hours.
 本発明の共重合体(A)を重合する際には、重合溶液中の溶存酸素の影響で、重合活性が低下するので、窒素置換を十分に行うことが望ましい。重合前の酸素濃度は、6.5mg/L以下であることが好ましく、5.0mg/L以下であることがより好ましい。さらに好ましくは、ハイドロサルファイト等の酸素除去剤によって溶存酸素を実質的に完全に除去することである。 When the copolymer (A) of the present invention is polymerized, the polymerization activity is reduced due to the influence of dissolved oxygen in the polymerization solution. The oxygen concentration before polymerization is preferably 6.5 mg / L or less, and more preferably 5.0 mg / L or less. More preferably, the dissolved oxygen is substantially completely removed by an oxygen removing agent such as hydrosulfite.
 乳化重合による場合等において、共重合体(A)のラテックスの重量平均粒子径に特に制限はないが、共重合体(A)のラテックスの重量平均粒子径は、160nm以下であることが好ましい。重量平均粒子径が160nm以下であれば、重合時間の低減が可能になるだけでなく、加工助剤として用いた場合の成形加工性がより向上する結果となる。共重合体(A)のラテックスの粒子径のコントロールは、重合に用いる乳化剤の種類、その使用量、単量体の添加方法等を調整することにより適宜行うことができる。なお、共重合体(A)のラテックスの重量平均粒子径は、透過型電子顕微鏡を用いて粒子の観察を行うことにより測定することができる。 In the case of emulsion polymerization or the like, the weight average particle size of the copolymer (A) latex is not particularly limited, but the weight average particle size of the copolymer (A) latex is preferably 160 nm or less. When the weight average particle diameter is 160 nm or less, not only the polymerization time can be reduced, but also the molding processability when used as a processing aid is improved. The particle size of the latex of the copolymer (A) can be appropriately controlled by adjusting the type of emulsifier used in the polymerization, the amount of the emulsifier, the method of adding the monomer, and the like. The weight average particle diameter of the copolymer (A) latex can be measured by observing the particles using a transmission electron microscope.
 本発明の共重合体(A)のラテックスに残留している未反応単量体成分量に特に制限はないが、共重合体(A)を基準として2.0重量%以下であることが好ましい。共重合体(A)のラテックスの残留未反応単量体成分は、共重合体(A)のラテックス中に残留している共重合体を重合するために用いた各単量体あるいは各単量体の二量体、三量体等のような重量平均分子量200~1000のオリゴマーから構成される。通常、共重合体ラテックスを塩析する工程で未反応単量体成分が除去されるため、共重合体ラテックス中の残留未反応単量体を管理する必要がほとんどない。しかし、共重合体の粉体に含まれる残留未反応単量体成分量ではなく、共重合体ラテックスの残留未反応単量体成分量が2.0重量%以下である場合、共重合体(A)のラテックスを塩析する際に、共重合体(A)の粒子の過度な融着を抑制することができるため、分散性に優れた共重合体(A)の粉体となり、最終製品の成形加工性がより向上する結果となる。残留未反応単量体成分量のコントロールは重合温度等を調節することにより行うことができる。共重合体(A)のラテックスの残留未反応単量体成分量は、ガスクロマトグラフィー分析装置を用いることにより測定することができる。 The amount of the unreacted monomer component remaining in the latex of the copolymer (A) of the present invention is not particularly limited, but is preferably 2.0% by weight or less based on the copolymer (A). . The residual unreacted monomer component of the latex of the copolymer (A) is the monomer or monomer used for polymerizing the copolymer remaining in the latex of the copolymer (A). It is composed of oligomers having a weight average molecular weight of 200 to 1000 such as dimers, trimers and the like. Usually, since the unreacted monomer component is removed in the step of salting out the copolymer latex, there is almost no need to manage the residual unreacted monomer in the copolymer latex. However, when the amount of residual unreacted monomer component in the copolymer latex is not more than 2.0% by weight instead of the amount of residual unreacted monomer component contained in the copolymer powder, When salting out the latex of A), excessive fusion of the particles of the copolymer (A) can be suppressed, so that the powder of the copolymer (A) having excellent dispersibility becomes a final product. As a result, the molding processability of the is improved. The amount of the residual unreacted monomer component can be controlled by adjusting the polymerization temperature and the like. The amount of the residual unreacted monomer component in the latex of the copolymer (A) can be measured by using a gas chromatography analyzer.
 乳化重合によって反応させた後、共重合体(A)は、そのラテックスを塩析・乾燥することにより得ることができる。塩析で使用される凝固剤としては限定的ではなく、例えば硫酸、硫酸マグネシウム、塩化カルシウム、硫酸アルミニウム等の少なくとも1種を好適に用いることができる。また、乾燥方法は特に制限されず、自然乾燥又は強制乾燥のいずれも採用することができる。また、得られた共重合体(A)は、必要に応じて分級等を行うこともできる。 After the reaction by emulsion polymerization, the copolymer (A) can be obtained by salting out and drying the latex. The coagulant used in salting out is not limited, and for example, at least one of sulfuric acid, magnesium sulfate, calcium chloride, aluminum sulfate and the like can be suitably used. The drying method is not particularly limited, and either natural drying or forced drying can be employed. Moreover, the obtained copolymer (A) can also perform classification etc. as needed.
(1-3)共重合体(A)の物性
 本発明の共重合体(A)のピーク頂点分子量(Mp)は100万以上である必要がある。ピーク頂点分子量が100万未満では、加工助剤として所望の溶融弾性を熱可塑性樹脂に付与させることが出来ない。成形加工性の観点から、好ましくは200万以上、さらに好ましくは350万以上である。上記分子量(Mp)の上限は特に制限されず、例えば800万、さらには600万に設定することもできる。ピーク頂点分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した値であり、検出した分子量分布上で最も検出頻度の高い頂点部の値を指す。なお、本発明により得られる共重合体(A)の分子量分布、ゲルパーミエーションクロマトグラフィー(GPC)によるMw/Mn(ここで、Mwは重量平均分子量、Mnは数平均分子量を示す。)は、熱安定性等の観点から、5.0以上とすることが好ましい。
(1-3) Physical properties of copolymer (A) The peak apex molecular weight (Mp) of the copolymer (A) of the present invention needs to be 1 million or more. When the peak vertex molecular weight is less than 1,000,000, it is impossible to impart desired melt elasticity to the thermoplastic resin as a processing aid. From the viewpoint of moldability, it is preferably 2 million or more, more preferably 3.5 million or more. The upper limit of the molecular weight (Mp) is not particularly limited, and can be set to 8 million or even 6 million, for example. The peak apex molecular weight is a value measured by gel permeation chromatography (GPC), and indicates the value of the apex portion having the highest detection frequency on the detected molecular weight distribution. In addition, molecular weight distribution of the copolymer (A) obtained by this invention, Mw / Mn by a gel permeation chromatography (GPC) (Mw shows a weight average molecular weight, Mn shows a number average molecular weight.) Here. From the viewpoint of thermal stability and the like, it is preferably 5.0 or more.
 本発明の共重合体(A)のピーク頂点分子量の調整は、例えば連鎖移動剤の添加等によっても行うことができる。ただし、連鎖移動剤を使用する場合、反応速度が低下することがあるため、例えば重合開始剤の使用量、モノマーの添加方法等により調整する方が好ましい。 The peak apex molecular weight of the copolymer (A) of the present invention can be adjusted by adding a chain transfer agent, for example. However, when a chain transfer agent is used, the reaction rate may be lowered. Therefore, for example, it is preferable to adjust by a use amount of a polymerization initiator, a monomer addition method, and the like.
 本発明加工助剤の共重合体(A)は、通常は粒子状(粉体)である。そして、その粉体に含まれる355μm以上の大きさの粒子は共重合体(A)100重量%中に1~50重量%含まれている。粒子径355μm以上の粒子が1重量%未満の場合は、塩析粒子の凝集が不十分であるため、混練時にスクリューへの噛みこみが劣り、分散性が悪化することになり、最終製品の成形加工性に劣る。また、粒子径355μm以上の粒子が50重量%を超える場合は、粗大粒子の割合が多すぎるため分散性が悪くなり、最終製品の成形加工性に劣る。上記粒子の割合は、好ましくは2~45重量%の範囲であり、より好ましくは5~35重量%の範囲である。さらに、355μm以上の粒子のうち850μm以上の粒子径をもつ粒子については、最終製品の寸法あるいは成形加工性の点から18重量%未満であることが好ましく、10重量%未満であることがより好ましく、さらには850μm以上の粒子が存在しないことが最も好ましい。 The copolymer (A) of the processing aid of the present invention is usually in the form of particles (powder). The particles having a size of 355 μm or more contained in the powder are contained in 1 to 50% by weight in 100% by weight of the copolymer (A). When particles with a particle diameter of 355 μm or more are less than 1% by weight, aggregation of salting out particles is insufficient, so that the biting into the screw is inferior at the time of kneading and the dispersibility is deteriorated. Inferior in workability. Moreover, when the particle diameter exceeds 355 μm, the proportion of coarse particles is too large, resulting in poor dispersibility and inferior moldability of the final product. The proportion of the particles is preferably in the range of 2 to 45% by weight, more preferably in the range of 5 to 35% by weight. Further, among the particles having a particle size of 850 μm or more among the particles having a particle size of 355 μm or more, it is preferably less than 18% by weight, more preferably less than 10% by weight from the viewpoint of the size of the final product or moldability. Furthermore, it is most preferable that particles having a size of 850 μm or more are not present.
 本発明の共重合体(A)の粉体として、850μm以上の粒子が存在している場合は、850μm以上の粒子の圧壊強度に特に制限はないが、250~900g/mmであることが好ましい。圧壊強度が250~900g/mmの範囲であれば、共重合体(A)の粉体が輸送や保管時に微粒子化し、粉体としての取扱性が悪くなることなく、適度なほぐれやすさを有しているため、他の熱可塑性樹脂と混練した場合の分散性が良好となり、成形加工性が向上する。かかる見地より、300~850g/mmであることがより好ましく、350~800g/mmであることが最も好ましい。 When particles of 850 μm or more are present as the powder of the copolymer (A) of the present invention, the crushing strength of the particles of 850 μm or more is not particularly limited, but is 250 to 900 g / mm 2. preferable. If the crushing strength is in the range of 250 to 900 g / mm 2 , the copolymer (A) powder becomes fine particles during transportation and storage, and the ease of handling as a powder is reduced, so that moderate ease of loosening is achieved. Therefore, the dispersibility when kneaded with other thermoplastic resins is improved, and the moldability is improved. From this point of view, 300 to 850 g / mm 2 is more preferable, and 350 to 800 g / mm 2 is most preferable.
 本発明の共重合体(A)における粉体の粒子径は、例えば塩析の際の塩析温度、スラリー濃度、塩析剤の濃度等を変更することによって調整が可能である。塩析温度は、好ましい粒子サイズや過度の融着抑止の観点から、共重合体(A)のガラス転移温度(℃)に対して10℃~40℃低い温度であることが好ましい。 The particle size of the powder in the copolymer (A) of the present invention can be adjusted, for example, by changing the salting-out temperature, the slurry concentration, the concentration of the salting-out agent, etc. during salting-out. The salting out temperature is preferably a temperature that is 10 ° C. to 40 ° C. lower than the glass transition temperature (° C.) of the copolymer (A) from the viewpoint of preferable particle size and excessive fusion suppression.
(1-4)本発明加工助剤の他の成分
 本発明加工助剤には、本発明の効果を妨げない範囲内で、共重合体(A)のほか、必要に応じて次のような添加剤が含まれていても良い。例えば、1)2,6-ジ-t-ブチル-4-メチルフェノール、2-(1-メチルシクロヘキシル)-4、6-ジメチルフェノール、2,2′-メチレン-ビス-(4-エチル-6-t-ブチルフェノール)、4,4′-チオビス-(6-t-ブチル-3-メチルフェノール)、ジラウリルチオジプロピオネート、トリス(ジ-ノニルフェニル)ホスファイト等の酸化防止剤;2)例えば、p-t-ブチルフェニルサクシレート、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-(2′-ヒドロキシ-4′-n-オクトキシフェニル)ベンゾトリアゾール等の紫外線吸収剤;3)例えばワックス、パラフィンワックス、ステアリン酸、硬化油、ステアリルアミド、メチレンビスステアリルアミド、エチレンビスステアリルアミド、n-ブチルステアレート、ケトンワックス、オクチルアルコール、ラウリルアルコール、ヒドロキシステアリン酸トリグリセリド等の滑剤;4)例えば三酸化アンチモン、水酸化アルミニウム、ホウ酸亜鉛、トリクレジルホスフェート、トリス(ジクロロプロピル)ホスフェート、塩素化パラフィン、テトラブロモビスフェノールA、テトラブロモビスフェノールAとエピクロルヒドリンの縮合物等の難燃剤;5)例えばステアリルアミドプロピルジメチル-β-ヒドロキシエチルアンモニウムナイトレート等の帯電防止剤;6)例えば酸化チタン、カーボンブラック等の着色剤;7)例えば炭酸カルシウム、クレー、シリカ、ガラス繊維、ガラス球、カーボン繊維等の充填剤;8)例えばプロパン、ブタン、ペンタン、へキサン等の低級炭化水素、塩化メチル、ジクロロメタン、トリクロロモノフルオロメタン、ジクロロジフルオロメタン等のハロゲン炭化水素、二酸化炭素、窒素等の発泡剤が挙げられる。
(1-4) Other components of the processing aid of the present invention The processing aid of the present invention includes the copolymer (A) and, if necessary, the following as long as the effects of the present invention are not impaired. Additives may be included. For example, 1) 2,6-di-t-butyl-4-methylphenol, 2- (1-methylcyclohexyl) -4,6-dimethylphenol, 2,2′-methylene-bis- (4-ethyl-6) -T-butylphenol), 4,4'-thiobis- (6-t-butyl-3-methylphenol), dilaurylthiodipropionate, tris (di-nonylphenyl) phosphite, etc .; 2) UV absorbers such as pt-butylphenyl succinate, 2,2'-dihydroxy-4-methoxybenzophenone, 2- (2'-hydroxy-4'-n-octoxyphenyl) benzotriazole; 3) For example, wax, paraffin wax, stearic acid, hydrogenated oil, stearylamide, methylenebisstearylamide, ethylenebisstearylamide lubricants such as n-butyl stearate, ketone wax, octyl alcohol, lauryl alcohol, hydroxystearic acid triglyceride; 4) for example antimony trioxide, aluminum hydroxide, zinc borate, tricresyl phosphate, tris (dichloropropyl) phosphate, Flame retardant such as chlorinated paraffin, tetrabromobisphenol A, condensate of tetrabromobisphenol A and epichlorohydrin; 5) antistatic agent such as stearylamidopropyldimethyl-β-hydroxyethylammonium nitrate; 6) such as titanium oxide, Coloring agents such as carbon black; 7) Fillers such as calcium carbonate, clay, silica, glass fiber, glass sphere and carbon fiber; 8) Lower carbon such as propane, butane, pentane and hexane. Examples thereof include halogenated hydrocarbons such as hydrogen fluoride, methyl chloride, dichloromethane, trichloromonofluoromethane, and dichlorodifluoromethane, and blowing agents such as carbon dioxide and nitrogen.
2.本発明加工助剤の使用
 本発明加工助剤は、成形加工性等を改善ないしは向上させるために、熱可塑性樹脂又はそれを含む樹脂組成物に配合することができる。より具体的には、溶融した熱可塑性樹脂の物性(特に溶融弾性)を改善するために、当該熱可塑性樹脂に本発明加工助剤を添加することができる。すなわち、本発明加工助剤は、熱可塑性樹脂の溶融弾性(さらには成形加工性)の改善方法に好適に用いることができる。そして、本発明加工助剤を熱可塑性樹脂に添加することによって、品質、外観等に優れた樹脂成形品を得ることができる。
2. Use of the processing aid of the present invention The processing aid of the present invention can be blended with a thermoplastic resin or a resin composition containing the same in order to improve or improve the molding processability and the like. More specifically, the processing aid of the present invention can be added to the thermoplastic resin in order to improve the physical properties (particularly melt elasticity) of the molten thermoplastic resin. In other words, the processing aid of the present invention can be suitably used for a method for improving the melt elasticity (and molding processability) of a thermoplastic resin. Then, by adding the processing aid of the present invention to the thermoplastic resin, a resin molded product excellent in quality, appearance and the like can be obtained.
 本発明加工助剤が適用できる熱可塑性樹脂(B)としては、特に制限されず、例えばABS樹脂、AES樹脂、ASA樹脂、SAS樹脂、PS樹脂、HIPS樹脂、AS樹脂等の(ゴム強化)スチレン系樹脂、塩化ビニル樹脂、塩素化ポリエチレン樹脂、エチレン-酢酸ビニル樹脂、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアセタール、ポリアミド、ポリアミドエラストマー、エポキシ樹脂、ポリフッ化ビニリデン、ポリスルホン、ポリイソプレン、天然ゴム、塩素化ブチルゴム、PPE樹脂、PPS樹脂、ポリエーテルエーテルケトン、スチレン-無水マレイン酸共重合体等のほか、これらの樹脂を2種以上含む混合物、アロイ樹脂等が挙げられる。特に、ABS樹脂、AES樹脂、ASA樹脂、SAS樹脂、PS樹脂、HIPS樹脂、AS樹脂等の(ゴム強化)スチレン系樹脂、塩化ビニル樹脂、塩素化ポリエチレン樹脂、エチレン-酢酸ビニル樹脂等の少なくとも1種が好ましい。 The thermoplastic resin (B) to which the processing aid of the present invention can be applied is not particularly limited. For example, (rubber reinforced) styrene such as ABS resin, AES resin, ASA resin, SAS resin, PS resin, HIPS resin, and AS resin. Resin, vinyl chloride resin, chlorinated polyethylene resin, ethylene-vinyl acetate resin, polypropylene, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polyamide elastomer, epoxy resin, polyvinylidene fluoride, polysulfone, polyisoprene, natural rubber In addition to chlorinated butyl rubber, PPE resin, PPS resin, polyether ether ketone, styrene-maleic anhydride copolymer, a mixture containing two or more of these resins, alloy resin, and the like can be given. In particular, at least one of (rubber reinforced) styrene-based resin such as ABS resin, AES resin, ASA resin, SAS resin, PS resin, HIPS resin, AS resin, vinyl chloride resin, chlorinated polyethylene resin, ethylene-vinyl acetate resin, etc. Species are preferred.
 本発明加工助剤の添加量は、適用する熱可塑性樹脂の種類等に応じて適宜設定することができるが、一般的には熱可塑性樹脂100重量部に対して0.1~15重量部配合することが好ましく、特に0.5~12重量部配合することがより好ましい。 The addition amount of the processing aid of the present invention can be appropriately set according to the type of thermoplastic resin to be applied, etc., but generally 0.1 to 15 parts by weight per 100 parts by weight of the thermoplastic resin In particular, it is more preferable to add 0.5 to 12 parts by weight.
3.熱可塑性樹脂組成物及びその成形品
 本発明は、熱可塑性樹脂100重量部及び本発明加工助剤0.1~15重量部を含む熱可塑性樹脂組成物を包含する。また、本発明は、前記の熱可塑性樹脂組成物を成形して得られる樹脂成形品も包含する。
3. Thermoplastic resin composition and molded article thereof The present invention includes a thermoplastic resin composition containing 100 parts by weight of a thermoplastic resin and 0.1 to 15 parts by weight of the processing aid of the present invention. The present invention also includes a resin molded product obtained by molding the thermoplastic resin composition.
 前記の熱可塑性樹脂としては、前記2.で挙げたものを使用することができる。また、本発明加工助剤としては、前記1.で挙げたものを使用することができる。 As the above-mentioned thermoplastic resin, 2. Can be used. Further, as the processing aid of the present invention, the above-mentioned 1. Can be used.
 また、本発明の熱可塑性樹脂組成物には、必要に応じて他の添加剤が含有されていても良い。すなわち、本発明加工助剤で使用できる添加剤と同様のものを使用することができる。例えば、1)2,6-ジ-t-ブチル-4-メチルフェノール、2-(1-メチルシクロヘキシル)-4、6-ジメチルフェノール、2,2′-メチレン-ビス-(4-エチル-6-t-ブチルフェノール)、4,4′-チオビス-(6-t-ブチル-3-メチルフェノール)、ジラウリルチオジプロピオネート、トリス(ジ-ノニルフェニル)ホスファイト等の酸化防止剤;2)例えば、p-t-ブチルフェニルサクシレート、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-(2′-ヒドロキシ-4′-n-オクトキシフェニル)ベンゾトリアゾール等の紫外線吸収剤;3)例えばワックス、パラフィンワックス、ステアリン酸、硬化油、ステアリルアミド、メチレンビスステアリルアミド、エチレンビスステアリルアミド、n-ブチルステアレート、ケトンワックス、オクチルアルコール、ラウリルアルコール、ヒドロキシステアリン酸トリグリセリド等の滑剤;4)例えば三酸化アンチモン、水酸化アルミニウム、ホウ酸亜鉛、トリクレジルホスフェート、トリス(ジクロロプロピル)ホスフェート、塩素化パラフィン、テトラブロモビスフェノールA、テトラブロモビスフェノールAとエピクロルヒドリンの縮合物等の難燃剤;5)例えばステアリルアミドプロピルジメチル-β-ヒドロキシエチルアンモニウムナイトレート等の帯電防止剤;6)例えば酸化チタン、カーボンブラック等の着色剤;7)例えば炭酸カルシウム、クレー、シリカ、ガラス繊維、ガラス球、カーボン繊維等の充填剤;8)例えばプロパン、ブタン、ペンタン、へキサン等の低級炭化水素、塩化メチル、ジクロロメタン、トリクロロモノフルオロメタン、ジクロロジフルオロメタン等のハロゲン炭化水素、二酸化炭素、窒素等の発泡剤が挙げられる。 In addition, the thermoplastic resin composition of the present invention may contain other additives as necessary. That is, the same additives as those that can be used in the processing aid of the present invention can be used. For example, 1) 2,6-di-t-butyl-4-methylphenol, 2- (1-methylcyclohexyl) -4,6-dimethylphenol, 2,2′-methylene-bis- (4-ethyl-6) -T-butylphenol), 4,4'-thiobis- (6-t-butyl-3-methylphenol), dilaurylthiodipropionate, tris (di-nonylphenyl) phosphite, etc .; 2) UV absorbers such as pt-butylphenyl succinate, 2,2'-dihydroxy-4-methoxybenzophenone, 2- (2'-hydroxy-4'-n-octoxyphenyl) benzotriazole; 3) For example, wax, paraffin wax, stearic acid, hydrogenated oil, stearylamide, methylenebisstearylamide, ethylenebisstearylamide lubricants such as n-butyl stearate, ketone wax, octyl alcohol, lauryl alcohol, hydroxystearic acid triglyceride; 4) for example antimony trioxide, aluminum hydroxide, zinc borate, tricresyl phosphate, tris (dichloropropyl) phosphate, Flame retardant such as chlorinated paraffin, tetrabromobisphenol A, condensate of tetrabromobisphenol A and epichlorohydrin; 5) antistatic agent such as stearylamidopropyldimethyl-β-hydroxyethylammonium nitrate; 6) titanium oxide, Coloring agents such as carbon black; 7) Fillers such as calcium carbonate, clay, silica, glass fiber, glass sphere and carbon fiber; 8) Lower carbons such as propane, butane, pentane and hexane Examples thereof include halogenated hydrocarbons such as hydrogen fluoride, methyl chloride, dichloromethane, trichloromonofluoromethane, and dichlorodifluoromethane, and blowing agents such as carbon dioxide and nitrogen.
 本発明の熱可塑性樹脂組成物又はその成形品は、公知の熱可塑性樹脂又は樹脂成形品の製造方法に従って得ることもできる。例えば、本発明加工助剤(共重合体(A))と熱可塑性樹脂(B)(又はそれを含む樹脂組成物)とを予め溶融加熱混合することなく、ミキサー等により十分混合した状態で例えば押出成形機、射出成形機、シート成形機、真空成形機、異形成形機、発泡成形機、ブロー成形機等に直接に投入して成形することによって樹脂成形品を得ることができる。また、例えば各種押し出し機、バンバリーミキサー、ニーダー、ロール等を用い、本発明加工助剤と熱可塑性樹脂(B)(又はそれを含む樹脂組成物)を溶融加熱混合した後に、例えば押出成形機、射出成形機、シート成形機、真空成形機、異形成形機、発泡成形機、ブロー成形機等を用いて成形することによって樹脂成形品を得ることが可能である。好ましくは、各成分を予め溶融加熱混合することなく、直接成形機に投入する方法である。上記成形方法によって得られる各種成形品は、その優れた性質を利用して、例えば家電製品、自動車部品等の各部品に用いることができる。 The thermoplastic resin composition of the present invention or a molded product thereof can also be obtained according to a known method for producing a thermoplastic resin or a resin molded product. For example, the processing aid of the present invention (copolymer (A)) and thermoplastic resin (B) (or a resin composition containing the same) are mixed in advance by a mixer or the like without being melted and heated in advance. A resin molded product can be obtained by directly feeding into an extrusion molding machine, injection molding machine, sheet molding machine, vacuum molding machine, profile forming machine, foam molding machine, blow molding machine, and the like. In addition, for example, using various extruders, Banbury mixers, kneaders, rolls, etc., the present processing aid and the thermoplastic resin (B) (or a resin composition containing the same) are melt-heated and mixed, for example, an extruder, A resin molded product can be obtained by molding using an injection molding machine, a sheet molding machine, a vacuum molding machine, a profile forming machine, a foam molding machine, a blow molding machine, or the like. Preferably, it is a method in which each component is directly fed into a molding machine without being previously melted and mixed. Various molded articles obtained by the molding method can be used for various parts such as home appliances and automobile parts by utilizing their excellent properties.
 以下に実施例を挙げ、本発明をより詳しく説明する。但し、本発明の範囲は、実施例に限定されない。なお、実施例中の部及び%は特に断りのない限り重量部及び重量%である。また、実施例における各種の測定項目は下記の測定方法に従った。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to the examples. In addition, unless otherwise indicated, the part and% in an Example are a weight part and weight%. In addition, various measurement items in the examples were according to the following measurement methods.
 ピーク頂点分子量(Mp)、数平均分子量(Mn)、重量平均分子量(Mw)の測定
 分析装置として島津製作所製 ゲル浸透クロマトグラフ(LC-10A vp)を用い、カラムは東ソー(株)製 GMH HR-H(30)を用いた。校正をポリスチレン基準で行い、溶媒はテトラヒドロフランを使用し、流速0.5ml/min、温度50℃で測定した。
 測定試料は、測定対象0.01gとテトラヒドロフラン25mlを50mlガラスフラスコに入れ密封し、25℃で12時間浸漬させた後、孔径3.0μmのポリテトラフルオロエチレン製メンブレンフィルターで濾過することにより調製した。
 ピーク頂点分子量(Mp)は、検出した分子量分布上で最も検出頻度の高い頂点部の値を定量した数値である。また、数平均分子量(Mn)と重量平均分子量(Mw)は、検出値から以下の式により定量計算を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-M000001
また、式中の記号の定義は、以下の通りである。
W=高分子の総重量
Wi=i番目の高分子の重量
Mi=i番目の溶出時間における分子量
Ni=分子量Miの個数
Hi=i番目の溶出時間における高さ
A gel permeation chromatograph (LC-10A vp) manufactured by Shimadzu Corporation was used as a measuring and analyzing apparatus for peak apex molecular weight (Mp), number average molecular weight (Mn), and weight average molecular weight (Mw) , and the column was manufactured by Tosoh Corporation GMH HR. -H (30) was used. Calibration was performed based on polystyrene standards, and tetrahydrofuran was used as the solvent, and measurement was performed at a flow rate of 0.5 ml / min and a temperature of 50 ° C.
The measurement sample was prepared by placing 0.01 g of a measurement object and 25 ml of tetrahydrofuran in a 50 ml glass flask, sealing it, soaking it at 25 ° C. for 12 hours, and then filtering with a polytetrafluoroethylene membrane filter having a pore size of 3.0 μm. .
The peak vertex molecular weight (Mp) is a numerical value obtained by quantifying the value of the vertex portion having the highest detection frequency on the detected molecular weight distribution. The number average molecular weight (Mn) and the weight average molecular weight (Mw) were quantitatively calculated from the detected values according to the following formulas. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-M000001
The definitions of symbols in the formula are as follows.
W = total weight of polymer Wi = weight of i-th polymer Mi = molecular weight at the i-th elution time Ni = number of molecular weights Mi = height at the i-th elution time
 粒度分布の測定
 共重合体(A)の粉体約50gを精秤した後、乾式音波篩い分け測定機ソニックシフターL-200P((株)セイシン企業製)を用い、20メッシュ(目開き850μm)の篩いと42メッシュ(目開き355μm)のそれぞれの篩いを用いた条件で粒度分布を測定した。850μm以上及び355μm以上850μm未満の粒子径の粒子含有量は、以下の式により計算を行った。その結果を表1に示す。
850μm以上の粒子径の粒子含有量
=20メッシュ篩い上に残った粒子の重量/測定前のパウダー重量×100(%)
355μm以上850μm未満の粒子径の粒子含有量
=42メッシュ篩い上に残った粒子の重量/測定前のパウダー重量×100(%)
Measurement of particle size distribution After weighing about 50 g of the copolymer (A) powder, 20 mesh (mesh size 850 μm) using a dry sonic sieving measuring machine Sonic Shifter L-200P (manufactured by Seishin Enterprise Co., Ltd.) The particle size distribution was measured under the condition of using each sieve and a 42 mesh (aperture 355 μm) sieve. The particle content with a particle size of 850 μm or more and 355 μm or more and less than 850 μm was calculated by the following formula. The results are shown in Table 1.
Content of particles having a particle diameter of 850 μm or more = weight of particles remaining on a 20 mesh sieve / weight of powder before measurement × 100 (%)
Content of particles having a particle size of 355 μm or more and less than 850 μm = weight of particles remaining on 42 mesh sieve / powder weight before measurement × 100 (%)
 共重合体(A)のラテックスの重量平均粒子径の測定
 共重合体ラテックスを四酸化オスミウム(OsO)で染色し、乾燥後に透過型電子顕微鏡(日本電子〔株〕JEM-1400)で写真撮影をした。画像解析処理装置(装置名:旭化成(株)製 IP-1000PC)を用いて100個の粒子の面積を計測し、その円相当径(直径)を求め、共重合体ラテックスの重量平均粒子径を算出した。その結果を表1に示す。
Measurement of weight average particle size of latex of copolymer (A) Copolymer latex is dyed with osmium tetroxide (OsO 4 ), dried, and photographed with a transmission electron microscope (JEOL Ltd., JEM-1400) Did. The area of 100 particles was measured using an image analysis processor (apparatus name: IP-1000PC manufactured by Asahi Kasei Co., Ltd.), the equivalent circle diameter (diameter) was obtained, and the weight average particle diameter of the copolymer latex was determined. Calculated. The results are shown in Table 1.
 共重合体(A)のラテックスの残留未反応単量体成分量の測定
 共重合体ラテックス約1.0gをジメチルホルムアミド約20mlで希釈し、その希釈溶液に内標としてジメチルホルムアミドで0.06%に希釈したヘキシルベンゼン溶液5.0mlを加え、測定試料を調製した。
 ガスクロマトグラフィー分析装置(GC装置:〔株〕島津製作所 GC2010 キャピラリーカラム:Agilent J&W社 DB-5)を用いて下記の条件で測定を行い、得られたチャートから、標準物質であるヘキシルベンゼンとの面積比を計算することにより、共重合体ラテックス中に残留する未反応単量体成分量を求めた。その結果を表1に示す。
 注入量:1.0μl
 (試料気化室)
 試料気化室温度230℃ キャリアガス:ヘリウム 制御モード:線速度 
 圧力:90.6kPa 全流量:44.2mL/min 
カラム流量:1.00mL/min 線速度:26.4cm/sec
(カラムオーブン)
 カラム温度70℃ 平衡時間:3.0min 
 (検出器 FID)
 検出器温度330℃ サンプリングレート:40msec
メイクアップガス:窒素・空気 メイクアップ流量:30.0mL/min
水素流量:40.0mL/min 空気流量:400.0mL/min
Measurement of Residual Unreacted Monomer Component Amount of Latex of Copolymer (A) About 1.0 g of copolymer latex was diluted with about 20 ml of dimethylformamide, and 0.06% with dimethylformamide as an internal standard in the diluted solution. A sample for measurement was prepared by adding 5.0 ml of a diluted hexylbenzene solution.
Using a gas chromatography analyzer (GC apparatus: [Shimadzu Corporation GC2010 Capillary column: Agilent J & W DB-5]), measurement was performed under the following conditions, and from the obtained chart, the area with hexylbenzene as a standard substance was measured. The amount of unreacted monomer components remaining in the copolymer latex was determined by calculating the ratio. The results are shown in Table 1.
Injection volume: 1.0 μl
(Sample vaporization chamber)
Sample vaporization chamber temperature 230 ° C Carrier gas: Helium Control mode: Linear velocity
Pressure: 90.6 kPa Total flow rate: 44.2 mL / min
Column flow rate: 1.00 mL / min Linear velocity: 26.4 cm / sec
(Column oven)
Column temperature 70 ° C Equilibrium time: 3.0min
(Detector FID)
Detector temperature 330 ° C Sampling rate: 40 msec
Makeup gas: Nitrogen / Air Makeup flow rate: 30.0 mL / min
Hydrogen flow rate: 40.0 mL / min Air flow rate: 400.0 mL / min
 圧壊強度の測定
 乾式音波篩い分け測定機ソニックシフター L-200P((株)セイシン企業製)を用い、20メッシュ(目開き850μm)を超える共重合体(A)の粉体を得た。この粉体について、粒子硬度測定装置(セイシン企業〔株〕製BHT-500)を用い、圧壊強度を測定した(ロードセル:500g 環境:23℃)。測定の際には、無作為に20点を選出・測定し、平均値を求めた。その結果を表1に示す。
圧壊強度が250~900g/mmの範囲内:○
圧壊強度が250~900g/mmの範囲外:×
Measurement of Crushing Strength Using a sonic sifter L-200P (Seishin Enterprise Co., Ltd.), a dry sonic sieving measuring machine, a powder of copolymer (A) exceeding 20 mesh (aperture 850 μm) was obtained. The crushing strength of this powder was measured using a particle hardness measuring device (BHT-500 manufactured by Seishin Enterprise Co., Ltd.) (load cell: 500 g environment: 23 ° C.). At the time of measurement, 20 points were randomly selected and measured, and an average value was obtained. The results are shown in Table 1.
Crushing strength within the range of 250 to 900 g / mm 2 : ○
Out of range of crushing strength of 250 to 900 g / mm 2 : ×
(1)共重合体(A)の合成
 本発明加工助剤の共重合(A)について、次のような方法にてそれぞれ合成した。
(1) Synthesis of copolymer (A) The copolymer (A) of the processing aid of the present invention was synthesized by the following methods.
 共重合体A-1の製造
 窒素置換した反応器に純水150部、表1に記載の割合の単量体混合物を4部、ドデシルベンゼンスルホン酸Na20%水溶液を1.5部入れ、50℃に加熱した。加熱後、過硫酸カリウム0.1部を添加し、0.5℃/minの速度で60℃に昇温し、60℃に到達後10分間熟成させた。熟成後、単量体混合物96部及びドデシルベンゼンスルホン酸Na20%水溶液8.5部をそれぞれ6時間にわたり連続的に添加した。添加終了後、さらに60℃で4時間重合を行うことにより、共重合体ラテックスA-1を得た。
 滴下終了後の塩析槽中の固形分濃度が15%になる条件の水と、共重合体ラテックスA-1の固形分100部に対し、硫酸マグネシウム4部を塩析槽に入れ、塩析槽を85℃に昇温した。昇温後、得られた共重合体ラテックスA-1を滴下した。滴下終了後、95℃まで塩析槽を昇温し、95℃になった時点で塩析を終了させた。塩析後、遠心脱水機を用いて脱水・洗浄を行い、熱風乾燥機を用いて90℃の温度で12時間乾燥することによって共重合体A-1を得た。
Production of copolymer A-1 In a reactor purged with nitrogen, 150 parts of pure water, 4 parts of a monomer mixture in the proportions shown in Table 1, 1.5 parts of a 20% aqueous solution of sodium dodecylbenzenesulfonate were placed at 50 ° C. Heated. After heating, 0.1 part of potassium persulfate was added, the temperature was raised to 60 ° C. at a rate of 0.5 ° C./min, and the mixture was aged for 10 minutes after reaching 60 ° C. After aging, 96 parts of the monomer mixture and 8.5 parts of 20% aqueous solution of sodium dodecylbenzenesulfonate were continuously added over 6 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 4 hours to obtain a copolymer latex A-1.
4 parts of magnesium sulfate is put into the salting-out tank with respect to 100 parts of the solid content of the copolymer latex A-1 and water under the condition that the solid content in the salting-out tank after dropping is 15%. The bath was heated to 85 ° C. After the temperature elevation, the obtained copolymer latex A-1 was added dropwise. After completion of the dropwise addition, the salting-out tank was heated to 95 ° C, and the salting-out was terminated when the temperature reached 95 ° C. After salting out, dehydration and washing were performed using a centrifugal dehydrator, and the mixture was dried at 90 ° C. for 12 hours using a hot air drier to obtain a copolymer A-1.
 共重合体A-2の製造
 表1に記載の割合で単量体混合物を用い、初期に添加する乳化剤水溶液を1.0部に、過硫酸カリウムの使用量を0.09部に、連続添加に用いる乳化剤水溶液を8.0部に、単量体混合物及び乳化剤水溶液の連続添加時間を4時間に変更した以外は、共重合体A-1と同様の条件で重合を行い、共重合体ラテックスA-2を得た。塩析・乾燥条件は共重合体A-1と同様の方法で行い、共重合体A-2を得た。
Production of copolymer A-2 Using the monomer mixture in the proportions shown in Table 1, the aqueous emulsifier solution added initially is 1.0 part, and the amount of potassium persulfate used is 0.09 part. The copolymer latex was polymerized under the same conditions as for the copolymer A-1, except that the emulsifier aqueous solution used in the above was changed to 8.0 parts and the continuous addition time of the monomer mixture and the emulsifier aqueous solution was changed to 4 hours. A-2 was obtained. Salting-out and drying conditions were performed in the same manner as for copolymer A-1, and copolymer A-2 was obtained.
 共重合体A-3の製造
 表1に記載の割合で単量体混合物を用い、過硫酸カリウム量を0.04部に、反応器が60℃に到達した後の熟成時間を40分に、単量体混合物及び、乳化剤水溶液の連続添加時間を3.5時間に変更した以外は、共重合体A-2と同様の条件で重合を行い、共重合体ラテックスA-3を得た。塩析・乾燥条件は塩析槽の温度を80℃に変更した以外は、共重合体A-1と同様の方法で行い、共重合体A-3を得た。
Production of copolymer A-3 Using the monomer mixture in the proportions shown in Table 1, the amount of potassium persulfate was 0.04 parts, and the aging time after the reactor reached 60 ° C. was 40 minutes. Polymerization was carried out under the same conditions as for copolymer A-2 except that the continuous addition time of the monomer mixture and the aqueous emulsifier solution was changed to 3.5 hours to obtain copolymer latex A-3. The salting-out and drying conditions were the same as those for copolymer A-1, except that the temperature of the salting-out tank was changed to 80 ° C., and copolymer A-3 was obtained.
 共重合体A-4の製造
 共重合体ラテックスA-2を用い、塩析・乾燥条件は塩析槽の温度を83℃に、滴下後に昇温させる温度を90℃に変更した以外は、共重合体A-2と同様の方法で行い、共重合体A-4を得た。
Production of copolymer A-4 The copolymer latex A-2 was used, and the salting-out and drying conditions were the same except that the temperature of the salting-out tank was changed to 83 ° C and the temperature raised after dropping was changed to 90 ° C. The same process as for polymer A-2 was carried out to obtain copolymer A-4.
 共重合体A-5の製造
 窒素置換した反応器に純水130部、表1に記載の割合の単量体混合物を3部、ステアリン酸カリウム20%水溶液を1.5部入れ、50℃に加熱した。加熱後、過硫酸カリウム0.08部を添加し、0.5℃/minの速度で60℃に昇温し、60℃に到達後40分間熟成させた。熟成後、単量体混合物97部及びステアリン酸カリウム20%水溶液8.5部をそれぞれ4.25時間に亘り連続的に添加した。添加終了後、さらに60℃で4時間重合を行うことにより、共重合体ラテックスA-5を得た。
 滴下終了後の塩析槽中の固形分濃度が15%になる条件の水と、共重合体ラテックスA-5の固形分100部に対し、硫酸マグネシウム3部及び10%硫酸水溶液3部を塩析槽に入れ、塩析槽を80℃に昇温した。昇温後、得られた共重合体ラテックスA-5を滴下した。滴下終了後、95℃まで塩析槽を昇温し、95℃になった時点で塩析を終了させた。塩析後、遠心脱水機を用いて脱水・洗浄を行い、熱風乾燥機を用いて90℃の温度で12時間乾燥することにより共重合体A-5を得た。
Production of copolymer A-5: A reactor purged with nitrogen was charged with 130 parts of pure water, 3 parts of a monomer mixture in the ratio shown in Table 1, and 1.5 parts of a 20% aqueous solution of potassium stearate, and the mixture was heated to 50 ° C. Heated. After heating, 0.08 part of potassium persulfate was added, the temperature was raised to 60 ° C. at a rate of 0.5 ° C./min, and the mixture was aged for 40 minutes after reaching 60 ° C. After aging, 97 parts of the monomer mixture and 8.5 parts of a 20% aqueous solution of potassium stearate were continuously added over 4.25 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 4 hours to obtain a copolymer latex A-5.
3 parts of magnesium sulfate and 3 parts of 10% sulfuric acid aqueous solution are salted with respect to water with a solid content of 15% in the salting-out tank after completion of dropping and 100 parts of solid content of copolymer latex A-5. The salting-out tank was heated up to 80 degreeC in the precipitation tank. After the temperature elevation, the obtained copolymer latex A-5 was added dropwise. After completion of the dropwise addition, the salting-out tank was heated to 95 ° C, and the salting-out was terminated when the temperature reached 95 ° C. After salting out, the mixture was dehydrated and washed using a centrifugal dehydrator, and dried at 90 ° C. for 12 hours using a hot air drier to obtain a copolymer A-5.
 共重合体A-6の製造
 窒素置換した反応器に純水140部、表1に記載の割合の単量体混合物を4部、アルケニルコハク酸ジカリウム20%水溶液を1.5部入れ、50℃に加熱した。加熱後、過硫酸カリウム0.06部を添加し、0.5℃/minの速度で60℃に昇温し、60℃に到達後10分間熟成させた。熟成後、単量体混合物96部及びアルケニルコハク酸ジカリウム20%水溶液8.5部をそれぞれ3.5時間に亘り連続的に添加した。添加終了後、さらに60℃で4時間重合を行うことにより、共重合体ラテックスA-6を得た。
 滴下終了後の塩析槽中の固形分濃度が15%になる条件の水と、共重合体ラテックスA-6の固形分100部に対し、硫酸マグネシウム3部及び10%硫酸水溶液1.5部を塩析槽に入れ、塩析槽を75℃に昇温した。昇温後、得られた共重合体ラテックスA-6を滴下した。滴下終了後、90℃まで塩析槽を昇温し、90℃になった時点で塩析を終了させた。塩析後、遠心脱水機を用いて脱水・洗浄を行い、熱風乾燥機を用いて85℃の温度で12時間乾燥することにより共重合体A-6を得た。
Production of copolymer A-6 In a reactor purged with nitrogen, 140 parts of pure water, 4 parts of a monomer mixture in the proportions shown in Table 1, 1.5 parts of 20% aqueous solution of dipotassium alkenyl succinate were placed at 50 ° C. Heated. After heating, 0.06 part of potassium persulfate was added, the temperature was raised to 60 ° C. at a rate of 0.5 ° C./min, and the mixture was aged for 10 minutes after reaching 60 ° C. After aging, 96 parts of the monomer mixture and 8.5 parts of 20% aqueous solution of dipotassium alkenyl succinate were continuously added over 3.5 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 4 hours to obtain a copolymer latex A-6.
3 parts of magnesium sulfate and 1.5 parts of 10% aqueous sulfuric acid solution for 100 parts of solid content of copolymer latex A-6 and water under conditions where the solid content concentration in the salting-out tank after dropping is 15% Was put in a salting-out tank, and the salting-out tank was heated to 75 ° C. After the temperature elevation, the obtained copolymer latex A-6 was added dropwise. After completion of dropping, the salting-out tank was heated to 90 ° C., and salting-out was terminated when the temperature reached 90 ° C. After salting out, dehydration and washing were performed using a centrifugal dehydrator, and the mixture was dried at 85 ° C. for 12 hours using a hot air drier to obtain a copolymer A-6.
 共重合体A-7の製造
 表1に記載の割合で単量体混合物を用いる以外は、共重合体A-6と同様の条件で重合を行い、共重合体ラテックスA-7を得た。塩析・乾燥条件は共重合体A-6と同様の方法で行い、共重合体A-7を得た。
Production of copolymer A-7 Polymerization was carried out under the same conditions as for copolymer A-6, except that the monomer mixture was used in the proportions shown in Table 1, to obtain copolymer latex A-7. Salting out and drying conditions were performed in the same manner as for copolymer A-6 to obtain copolymer A-7.
 共重合体A-8の製造
 表1に記載の割合で単量体混合物を用い、過硫酸カリウム量を0.04部に、反応器が60℃に到達した後の熟成時間を40分に変更する以外は、共重合体A-7と同様の条件で重合を行い、共重合体ラテックスA-8を得た。塩析・乾燥条件は共重合体A-7と同様の方法で行い、共重合体A-8を得た。
Production of copolymer A-8 Using the monomer mixture in the proportions shown in Table 1, the potassium persulfate amount was changed to 0.04 parts, and the aging time after the reactor reached 60 ° C. was changed to 40 minutes. Except for the above, polymerization was performed under the same conditions as for copolymer A-7, to obtain copolymer latex A-8. Salting-out and drying conditions were performed in the same manner as for copolymer A-7 to obtain copolymer A-8.
 共重合体A-9の製造
 共重合体ラテックスA-7を用い、塩析・乾燥条件は滴下後に昇温させる温度を85℃に変更した以外は、共重合体A-6と同様の方法で行い、共重合体A-9を得た。
Production of copolymer A-9 Using copolymer latex A-7, the salting out and drying conditions were the same as those for copolymer A-6 except that the temperature raised after dropping was changed to 85 ° C. And copolymer A-9 was obtained.
 共重合体A-10の製造
 表1に記載の割合で単量体混合物を用い、初期に添加する単量体混合物を2部に、連続添加時に用いる単量体を98部に、初期に用いる乳化剤水溶液を2.0部に、連続添加時に用いる乳化剤水溶液を8.0部に変更する以外は、共重合体A-7と共通の条件を用いて、共重合体ラテックスA-10を得た。塩析・乾燥条件は共重合体A-6と同様の方法で行い、共重合体A-10を得た。
Production of copolymer A-10 The monomer mixture was used in the proportion described in Table 1, the monomer mixture initially added was used as 2 parts, and the monomer used during continuous addition was used as 98 parts initially. A copolymer latex A-10 was obtained using the same conditions as for the copolymer A-7, except that the aqueous emulsifier solution was changed to 2.0 parts and the aqueous emulsifier solution used during continuous addition was changed to 8.0 parts. . Salting-out and drying conditions were performed in the same manner as for copolymer A-6 to obtain copolymer A-10.
 共重合体A-11の製造
 表1に記載の割合で単量体混合物を用い、連続添加終了後の重合温度を73℃に変更する以外は、共重合体A-6と同様の条件で重合を行い、共重合体ラテックスA-11を得た。塩析・乾燥条件は共重合体A-6と同様の方法で行い、共重合体A-11を得た。
Production of copolymer A-11 Polymerization was carried out under the same conditions as for copolymer A-6, except that the monomer mixture was used at the ratio shown in Table 1 and the polymerization temperature after continuous addition was changed to 73 ° C. To obtain a copolymer latex A-11. Salting-out and drying conditions were performed in the same manner as for copolymer A-6 to obtain copolymer A-11.
 共重合体A-12の製造
 表1に記載の割合で単量体混合物を用い、初期に添加する単量体混合物を3部に、連続添加時に用いる単量体を97部に、初期に用いる乳化剤水溶液を3.0部に、連続添加時に用いる乳化剤水溶液を7.0部に変更する以外は、共重合体A-11と同様の条件で重合を行い、共重合体ラテックスA-12を得た。塩析・乾燥条件は共重合体A-6と同様の方法で行い、共重合体A-12を得た。
Preparation of copolymer A-12 The monomer mixture was used in the proportions shown in Table 1, the monomer mixture initially added was 3 parts, and the monomer used during continuous addition was 97 parts initially. Polymerization was carried out under the same conditions as for the copolymer A-11, except that the aqueous emulsifier solution was changed to 3.0 parts and the aqueous emulsifier solution used for continuous addition was changed to 7.0 parts, to obtain a copolymer latex A-12. It was. Salting-out and drying conditions were performed in the same manner as for copolymer A-6 to obtain copolymer A-12.
 共重合体a-1の製造
 窒素置換した反応器に純水150部、表1に記載の割合の単量体とターシャリードデシルメルカプタン0.05部からなる混合物を3部、ドデシルベンゼンスルホン酸Na20%水溶液を1.0部入れ、50℃に加熱した。加熱後、過硫酸カリウム0.1部を添加し、0.5℃/minの速度で60℃に昇温し、60℃に到達後10分間熟成させた。熟成後、単量体混合物97部及びドデシルベンゼンスルホン酸Na20%水溶液9.0部をそれぞれ6時間に亘り連続的に添加した。添加終了後、さらに60℃で4時間重合を行うことにより、共重合体ラテックスa-1を得た。塩析・乾燥条件は共重合体A-1と同様の方法で行い、共重合体a-1を得た。
Production of copolymer a-1 In a reactor purged with nitrogen, 150 parts of pure water, 3 parts of a mixture of the monomer shown in Table 1 and 0.05 part of tertiary decyl mercaptan, Na20 dodecylbenzenesulfonate A 1.0% aqueous solution was added and heated to 50 ° C. After heating, 0.1 part of potassium persulfate was added, the temperature was raised to 60 ° C. at a rate of 0.5 ° C./min, and the mixture was aged for 10 minutes after reaching 60 ° C. After aging, 97 parts of the monomer mixture and 9.0 parts of a 20% aqueous solution of sodium dodecylbenzenesulfonate were continuously added over 6 hours. After completion of the addition, polymerization was further carried out at 60 ° C. for 4 hours to obtain a copolymer latex a-1. Salting-out and drying conditions were performed in the same manner as for copolymer A-1, and copolymer a-1 was obtained.
 共重合体a-2の製造
 滴下終了後の塩析槽中の固形分濃度が7.5%になる条件の水と、共重合体ラテックスA-2の固形分100部に対し、硫酸マグネシウム2.5部を塩析槽に入れ、塩析槽を65℃に昇温した。昇温後、得られた共重合体ラテックスA-2を滴下した。滴下が終了した時点で、塩析を終了させた。塩析後、遠心脱水機を用いて脱水・洗浄を行い、熱風乾燥機を用いて90℃の温度で12時間乾燥することにより共重合体a-2を得た。
After the completion of the production of the copolymer a-2 , the magnesium sulfate was added to water in a condition that the solid content concentration in the salting-out tank becomes 7.5% and 100 parts of the solid content of the copolymer latex A-2. 0.5 part was put into a salting-out tank, and the salting-out tank was heated to 65 ° C. After the temperature elevation, the obtained copolymer latex A-2 was added dropwise. Salting out was terminated when the dropping was completed. After salting out, the mixture was dehydrated and washed using a centrifugal dehydrator, and dried at 90 ° C. for 12 hours using a hot air drier to obtain a copolymer a-2.
 共重合体a-3の製造
 滴下終了後の塩析槽中の固形分濃度が20%になる条件の水と、共重合体ラテックスA-7の固形分100部に対し、硫酸マグネシウム3部及び10%硫酸水溶液3部を塩析槽に入れ、塩析槽を85℃に昇温した。昇温後、得られた共重合体ラテックスA-7を滴下した。滴下終了後、95℃まで塩析槽を昇温し、95℃になった時点で塩析を終了させた。塩析後、遠心脱水機を用いて脱水・洗浄を行い、熱風乾燥機を用いて85℃の温度で12時間乾燥することにより共重合体A-5を得た。
After the completion of the production of the copolymer a-3, the water under the condition that the solid content in the salting-out tank is 20% and the solid content of 100 parts of the copolymer latex A-7 are 3 parts of magnesium sulfate and 3 parts of 10% sulfuric acid aqueous solution was put into a salting-out tank, and the salting-out tank was heated to 85 ° C. After the temperature elevation, the obtained copolymer latex A-7 was added dropwise. After completion of the dropwise addition, the salting-out tank was heated to 95 ° C, and the salting-out was terminated when the temperature reached 95 ° C. After salting-out, dehydration and washing were performed using a centrifugal dehydrator, and the mixture was dried for 12 hours at 85 ° C. using a hot air drier to obtain a copolymer A-5.
(2)共重合体又はラテックスの物性
 共重合体又はラテックスについて、ピーク頂点分子量、数平均分子量、重量平均分子量、分子量分布、ラテックスの重量平均粒子径、残留未反応単量体の含有量及び圧縮強度について調べた。その結果を表1に示す。
(2) Physical properties of the copolymer or latex About the copolymer or latex, peak peak molecular weight, number average molecular weight, weight average molecular weight, molecular weight distribution, weight average particle diameter of latex, content of residual unreacted monomer and compression The strength was examined. The results are shown in Table 1.
(3)熱可塑性樹脂組成物からなる樹脂成形品の製造
 表2に示す組成となるように、各共重合体、熱可塑性樹脂(B)及び添加剤をそれぞれ用い、これらを均一に混合した後、160℃に設定した40mmシート押出し機に投入し、厚さ2mm、幅200mmのダイスを用いてシートを成形した。表2で用いた熱可塑性樹脂(B)及び添加剤は、下記に示す通りである。
 熱可塑性樹脂(B)
 ・塩化ビニル樹脂:製品名「TH-1000」(太洋塩ビ(株)社製 重合度1000)
 ・ABS樹脂:ポリブタジエン60%、スチレン30%及びアクリロニトリル10%を用いて公知の乳化重合によって得られたABS樹脂
 ・AS樹脂:スチレン75%及びアクリロニトリル25%を用いて公知の乳化重合によって得られたAS樹脂
 添加剤
 ・安定剤:アルキル錫メルカプト化合物 製品名「TM-181FSJ」(勝田化工(株)社製)
 ・滑剤:ステアリン酸系化合物 製品名「L-27」(勝田化工(株)社製)
(3) Manufacture of the resin molded product which consists of a thermoplastic resin composition After using each copolymer, a thermoplastic resin (B), and an additive so that it may become a composition shown in Table 2, after mixing these uniformly Then, the sheet was put into a 40 mm sheet extruder set at 160 ° C., and a sheet was formed using a die having a thickness of 2 mm and a width of 200 mm. The thermoplastic resin (B) and additives used in Table 2 are as shown below.
Thermoplastic resin (B)
-Vinyl chloride resin: Product name "TH-1000" (Tayo PVC Co., Ltd., degree of polymerization 1000)
ABS resin: ABS resin obtained by known emulsion polymerization using 60% polybutadiene, 30% styrene and 10% acrylonitrile. AS resin: Obtained by known emulsion polymerization using 75% styrene and 25% acrylonitrile. AS resin additive / stabilizer: Alkyl tin mercapto compound Product name “TM-181FSJ” (manufactured by Katsuta Chemical Co., Ltd.)
・ Lubricant: Stearic acid compound Product name “L-27” (manufactured by Katsuta Chemical Co., Ltd.)
(4)樹脂成形品の成形加工性の評価
 前記(3)において、シート成形を開始してから30分後に長さ2mのサンプルを切り出し、このサンプルの幅を5cm間隔で測定してサンプルの最大幅と最少幅の差及び平均幅を算出した。その評価結果を表2に示す。平均幅の大きさは、共重合体(A)による熱可塑性樹脂(B)への改質効果の大きさを示し、数値が大きいほど改質効果が大きいことを示す。
(4) Evaluation of molding processability of resin molded product In the above (3), a sample having a length of 2 m was cut out 30 minutes after the start of sheet molding, and the width of this sample was measured at intervals of 5 cm to obtain the maximum of the sample. The difference between the large and minimum widths and the average width were calculated. The evaluation results are shown in Table 2. The magnitude | size of an average width | variety shows the magnitude | size of the modification effect to the thermoplastic resin (B) by a copolymer (A), and shows that the modification effect is so large that a numerical value is large.
 表2中における評価は、以下のように行った。
 平均幅が170mm未満=E
 平均幅が170mm以上174mm未満=D
 平均幅が174mm以上178mm未満=C
 平均幅が178mm以上182mm未満=B
 平均幅が182mm以上=A
Evaluation in Table 2 was performed as follows.
Average width is less than 170 mm = E
Average width is 170mm or more and less than 174mm
Average width is 174 mm or more and less than 178 mm = C
Average width is 178mm or more and less than 182mm = B
Average width is 182mm or more = A
 また、最大幅と最小幅の差は、共重合体(A)を熱可塑性樹脂(B)に配合した熱可塑性樹脂組成物の成形加工性の目安となり、この数値が小さいほど、成形加工性が高いことを示す。
表中での評価は以下のように行った。
 最大幅と最小幅の差が7mm以上=×
 最大幅と最小幅の差が5mm以上7mm未満=△
 最大幅と最小幅の差が3mm以上5mm未満=○
 最大幅と最小幅の差が3mm未満=◎
In addition, the difference between the maximum width and the minimum width is a measure of the molding processability of the thermoplastic resin composition in which the copolymer (A) is blended with the thermoplastic resin (B). Indicates high.
Evaluation in the table was performed as follows.
The difference between the maximum width and the minimum width is 7mm or more = ×
Difference between maximum width and minimum width is 5mm or more and less than 7mm = △
Difference between maximum width and minimum width is 3mm or more and less than 5mm = ○
Difference between maximum width and minimum width is less than 3mm = ◎
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、実施例1~19は本発明に係る熱可塑性樹脂組成物であり、いずれも成形加工性に優れていることがわかる。ピーク頂点分子量が350万以上の場合、共重合体ラテックスの重量平均粒子径が160nm以下の場合及び/又は共重合体ラテックス中に残留する揮発分の量が0.2重量%以下の場合は、特に成形加工性に優れる結果となることを示している。 As shown in Table 2, Examples 1 to 19 are thermoplastic resin compositions according to the present invention, and it can be seen that all are excellent in moldability. When the peak apex molecular weight is 3.5 million or more, when the weight average particle diameter of the copolymer latex is 160 nm or less and / or when the amount of volatile matter remaining in the copolymer latex is 0.2 wt% or less, In particular, the results show that the moldability is excellent.
 一方、本発明の共重合体を用いていない比較例1は、塩化ビニル樹脂の成形加工性に劣っていた。ピーク頂点分子量が100万未満である共重合体を用いた比較例2、及び355μm以上の大きさの粒子が1重量%未満、もしくは50重量%を超えている共重合体を用いた比較例3~5においても、塩化ビニル樹脂又はABS樹脂に対する成形加工性の改良効果が認められなかった。 On the other hand, Comparative Example 1 in which the copolymer of the present invention was not used was inferior in the moldability of the vinyl chloride resin. Comparative Example 2 using a copolymer having a peak peak molecular weight of less than 1 million, and Comparative Example 3 using a copolymer having a particle size of 355 μm or more of less than 1% by weight or more than 50% by weight In 5 to 5, no effect of improving the molding processability with respect to vinyl chloride resin or ABS resin was observed.
 本発明の加工助剤用を配合することにより、熱可塑性樹脂組成物の成形加工性を高めることが可能であり、その結果として商品価値の高い製品を生産することが可能となる。よって、本発明は、工業的価値は大きい。 By blending the processing aid of the present invention, the molding processability of the thermoplastic resin composition can be improved, and as a result, a product with high commercial value can be produced. Therefore, the present invention has great industrial value.

Claims (9)

  1. 熱可塑性樹脂に配合するための加工用助剤であって、
    (1)前記加工助剤が、a)芳香族ビニル系単量体50~95重量%、b)シアン化ビニル系単量体5~50重量%及びd)これらと共重合可能な他のビニル系単量体0~45重量%を共重合して得られる共重合体(A)(但し、共重合体(A)に用いられる単量体の合計は100重量%である。)を含み、
    (2)前記共重合体(A)のピーク頂点分子量(Mp)が100万以上であって、
    (3)前記共重合体は粒子状であり、かつ、前記共重合体(A)100重量%中に粒子径355μm以上の粒子を1~50重量%含有する、
    ことを特徴とする熱可塑性樹脂用加工助剤。
    A processing aid for blending with a thermoplastic resin,
    (1) The processing aid is a) an aromatic vinyl monomer of 50 to 95% by weight, b) a vinyl cyanide monomer of 5 to 50% by weight, and d) another vinyl copolymerizable therewith. A copolymer (A) obtained by copolymerizing 0 to 45% by weight of a system monomer (provided that the total amount of monomers used in the copolymer (A) is 100% by weight);
    (2) The peak apex molecular weight (Mp) of the copolymer (A) is 1 million or more,
    (3) The copolymer is in the form of particles and contains 1 to 50% by weight of particles having a particle diameter of 355 μm or more in 100% by weight of the copolymer (A).
    A processing aid for thermoplastic resins.
  2. 前記共重合体が、a)芳香族ビニル系単量体50~70重量%、b)シアン化ビニル系単量体9~40重量%、c)(メタ)アクリル酸エステル系単量体21~35重量%及びd)これらと共重合可能な他のビニル系単量体0~20重量%を共重合して得られる共重合体(A)である(共重合体(A)に用いられる単量体の合計は100重量%である。)、請求項1に記載の熱可塑性樹脂用加工助剤。 The copolymer comprises a) an aromatic vinyl monomer 50 to 70% by weight, b) a vinyl cyanide monomer 9 to 40% by weight, c) a (meth) acrylic acid ester monomer 21 to 35% by weight and d) a copolymer (A) obtained by copolymerizing 0 to 20% by weight of other vinyl monomers copolymerizable with these (monomers used in the copolymer (A)) 2. The processing aid for thermoplastic resin according to claim 1, wherein the total amount of the polymer is 100% by weight.
  3. 共重合体(A)のピーク頂点分子量(Mp)が200万以上である、請求項1又は2に記載の熱可塑性樹脂用加工助剤。 The processing aid for a thermoplastic resin according to claim 1 or 2, wherein the peak apex molecular weight (Mp) of the copolymer (A) is 2 million or more.
  4. 共重合体(A)に含まれる850μm以上の粒子の圧壊強度が250~900g/mmである、請求項1~3のいずれかに記載の熱可塑性樹脂用加工助剤。 The processing aid for a thermoplastic resin according to any one of claims 1 to 3, wherein the crushing strength of the particles of 850 µm or more contained in the copolymer (A) is 250 to 900 g / mm 2 .
  5. 共重合体(A)が、前記単量体の乳化重合による反応生成物であるラテックス中から回収される、請求項1に記載の熱可塑性樹脂用加工助剤。 The processing aid for a thermoplastic resin according to claim 1, wherein the copolymer (A) is recovered from a latex which is a reaction product obtained by emulsion polymerization of the monomer.
  6. 共重合体(A)のラテックス粒子の重量平均粒子径が160nm以下である、請求項5に記載の熱可塑性樹脂用加工助剤。 The processing aid for a thermoplastic resin according to claim 5, wherein the latex particles of the copolymer (A) have a weight average particle diameter of 160 nm or less.
  7. ラテックス中に残留する未反応成分の合計量が2.0重量%以下である、請求項5に記載の熱可塑性樹脂用加工助剤。 The processing aid for a thermoplastic resin according to claim 5, wherein the total amount of unreacted components remaining in the latex is 2.0% by weight or less.
  8. 熱可塑性樹脂100重量部及び請求項1~7のいずれかに記載の加工助剤0.1~15重量部を含む熱可塑性樹脂組成物。 A thermoplastic resin composition comprising 100 parts by weight of a thermoplastic resin and 0.1 to 15 parts by weight of the processing aid according to any one of claims 1 to 7.
  9. 請求項8に記載の熱可塑性樹脂組成物を成形して得られる樹脂成形品。 A resin molded product obtained by molding the thermoplastic resin composition according to claim 8.
PCT/JP2011/070907 2010-09-15 2011-09-13 Thermoplastic resin processing aid, and thermoplastic resin composition containing same WO2012036173A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180043825.6A CN103228686B (en) 2010-09-15 2011-09-13 Thermoplastic resin processing aid, and thermoplastic resin composition containing same
JP2012534022A JPWO2012036173A1 (en) 2010-09-15 2011-09-13 Processing aid for thermoplastic resin and thermoplastic resin composition containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-207240 2010-09-15
JP2010207240 2010-09-15

Publications (1)

Publication Number Publication Date
WO2012036173A1 true WO2012036173A1 (en) 2012-03-22

Family

ID=45831631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070907 WO2012036173A1 (en) 2010-09-15 2011-09-13 Thermoplastic resin processing aid, and thermoplastic resin composition containing same

Country Status (3)

Country Link
JP (1) JPWO2012036173A1 (en)
CN (1) CN103228686B (en)
WO (1) WO2012036173A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532360A (en) * 2012-10-26 2015-11-09 ハンワ ケミカル コーポレイション Vinyl chloride paste resin and method for producing the same
CN110546200A (en) * 2017-04-28 2019-12-06 韩华化学株式会社 Vinyl chloride-based resin latex composition and method for preparing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168131A (en) * 1996-12-10 1998-06-23 Techno Polymer Kk Production of copolymer good in thermal stability
JPH10330425A (en) * 1997-05-30 1998-12-15 Mitsubishi Rayon Co Ltd Processing auxiliary for styrene-based resin and styrene-based resin composition using the same
JPH1171433A (en) * 1997-08-28 1999-03-16 Techno Polymer Kk Thermoplastic resin
JP2000026543A (en) * 1998-07-13 2000-01-25 Techno Polymer Kk Production of copolymer
JP2001031826A (en) * 1999-05-19 2001-02-06 Mitsubishi Rayon Co Ltd Processing aid, vinyl, chloride-based resin composition using the same and production of molded article using the same composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168131A (en) * 1996-12-10 1998-06-23 Techno Polymer Kk Production of copolymer good in thermal stability
JPH10330425A (en) * 1997-05-30 1998-12-15 Mitsubishi Rayon Co Ltd Processing auxiliary for styrene-based resin and styrene-based resin composition using the same
JPH1171433A (en) * 1997-08-28 1999-03-16 Techno Polymer Kk Thermoplastic resin
JP2000026543A (en) * 1998-07-13 2000-01-25 Techno Polymer Kk Production of copolymer
JP2001031826A (en) * 1999-05-19 2001-02-06 Mitsubishi Rayon Co Ltd Processing aid, vinyl, chloride-based resin composition using the same and production of molded article using the same composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532360A (en) * 2012-10-26 2015-11-09 ハンワ ケミカル コーポレイション Vinyl chloride paste resin and method for producing the same
CN110546200A (en) * 2017-04-28 2019-12-06 韩华化学株式会社 Vinyl chloride-based resin latex composition and method for preparing the same

Also Published As

Publication number Publication date
JPWO2012036173A1 (en) 2014-02-03
CN103228686A (en) 2013-07-31
CN103228686B (en) 2014-11-05

Similar Documents

Publication Publication Date Title
RU2334764C2 (en) Method of production of aqueous dispersions
KR100781068B1 (en) A core-shell particle for modifying impact resistance of a mouldable polymathacrylate material, a process for preparing the particle, a moulding composition comprising the particle, and a moulding obtainable from the composition
JP7123471B2 (en) Thermoplastic resin composition
JP7383805B2 (en) Thermoplastic resin and its manufacturing method
TWI815944B (en) Method of preparing graft copolymer, graft copolymer, and thermoplastic resin molded article including graft copolymer
JP7195444B2 (en) ACRYLIC GRAFT COPOLYMER, METHOD FOR PRODUCING SAME, AND THERMOPLASTIC RESIN COMPOSITION CONTAINING THE SAME
BR112017003999B1 (en) MOLDING COMPOSITION AND MOLDED ARTICLE
JP2022551615A (en) Thermoplastic resin and its manufacturing method
EP2439232B1 (en) Processability improver for foam molding and vinyl chloride resin composition containing same
EP2882806B1 (en) Polymer mixtures with optimized toughness/stiffness ratio and optical properties
WO2012036173A1 (en) Thermoplastic resin processing aid, and thermoplastic resin composition containing same
JP4469859B2 (en) Thermoplastic molding material with improved chemical resistance
JP7391200B2 (en) Transparent thermoplastic resin and its manufacturing method
JP5436599B2 (en) Method for producing copolymer
JP2000204220A (en) Modifier for methacrylic resin
JP2007297536A (en) Acrylic rubber latex, its manufacturing method, composite rubber graft copolymer, and thermoplastic resin composition
JP2011246655A (en) Thermoplastic resin composition, molding thereof, and method for molding the same
JP2002114822A (en) Copolymer resin composition and method of manufacturing the same
JP7455961B2 (en) Transparent thermoplastic resin and its manufacturing method
JP2017031362A (en) Thermoplastic resin composition and method for producing the same
JP2020117563A (en) Production method of resin composition
JPS6397652A (en) Chlorinated vinyl chloride resin composition
JPH03255148A (en) Modifier and vinyl chloride resin composition containing the same
KR20180065097A (en) Transparent thermoplastic resin composition and method for preparing the same
JP2019026718A (en) Composite rubbery polymer, graft copolymer, and thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012534022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825173

Country of ref document: EP

Kind code of ref document: A1