WO2012036135A1 - Information-processing method, information-processing device, output device, information-processing system, information-processing program and computer-readable recording medium on which same program is recorded - Google Patents

Information-processing method, information-processing device, output device, information-processing system, information-processing program and computer-readable recording medium on which same program is recorded Download PDF

Info

Publication number
WO2012036135A1
WO2012036135A1 PCT/JP2011/070763 JP2011070763W WO2012036135A1 WO 2012036135 A1 WO2012036135 A1 WO 2012036135A1 JP 2011070763 W JP2011070763 W JP 2011070763W WO 2012036135 A1 WO2012036135 A1 WO 2012036135A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
phase
signal
evaluation coefficient
predetermined
Prior art date
Application number
PCT/JP2011/070763
Other languages
French (fr)
Japanese (ja)
Inventor
満 米山
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2012534001A priority Critical patent/JPWO2012036135A1/en
Publication of WO2012036135A1 publication Critical patent/WO2012036135A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4082Diagnosing or monitoring movement diseases, e.g. Parkinson, Huntington or Tourette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition

Definitions

  • the present invention relates to an information processing method, an information processing device, an output device, an information processing system, an information processing program, and a computer-readable recording medium on which the program is recorded.
  • the synchrony is an index indicating whether or not the ratio of the time from the right foot landing to the left foot landing and the time from the left foot landing to the right foot landing maintains a constant value (for example, 1) during walking. . That is, if the ratio of the time from the right foot landing to the left foot landing and the time from the left foot landing to the right foot landing is maintained at a constant value (1), it is judged that the synchrony is high, and the time from the right foot landing to the left foot landing is If the ratio from the left foot landing to the right foot landing does not maintain a constant value (1), it is determined that the synchrony is low.
  • a constant value for example, 1
  • the synchronism of walking is determined by determining the ratio of the time required for the rhythm representing walking to change by one cycle to the time required for the rhythm representing walking to change for the next one cycle. Conventionally, this ratio has been obtained from the distance between the feature points of the heel-off or toe-off.
  • the synchrony is evaluated using the interval between the feature points. For this reason, when the peak of a waveform is used as a feature point, a large error occurs if the above ratio is calculated from a waveform that does not have a clear peak, such as a split of the peak. That is, the evaluation of synchrony using the interval between feature points is not suitable for a waveform having no clear peak. Further, when the feature point interval is used, the ratio can be calculated only for each time corresponding to the peak position of the waveform. That is, the evaluation of synchrony using the interval between feature points is not suitable for continuous processing or real-time processing.
  • the present invention has been made in view of such problems, and an object thereof is to continuously evaluate the synchrony of body movement rhythm.
  • the present invention is not limited to the above-described object, and other effects of the present invention can be achieved by the functions and effects derived from the respective configurations shown in the embodiments for carrying out the invention which will be described later. Can be positioned as one of
  • the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating process for calculating a time (hereinafter referred to as a second time) when the phase of the signal has changed twice the predetermined angle from the phase of the signal at the time, and the first time calculated by the time calculating process And an evaluation coefficient calculation step of calculating an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the second time.
  • the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating unit that calculates a time when the phase of the signal changes twice the predetermined angle from the phase of the signal at a time (hereinafter referred to as a second time), and the first time calculated by the time calculating unit. And an evaluation coefficient calculation unit that calculates an evaluation coefficient for evaluating the synchronization of the repetitive voluntary movement based on the second time.
  • the gist of the present invention is that the phase of the signal changes by a predetermined angle from the phase of the signal representing the repetitive voluntary movement of the living body at the predetermined time, and the phase of the signal from the phase of the signal at the predetermined time.
  • An output device including an output unit that outputs an evaluation coefficient for evaluating the synchronization of the repeated voluntary movement based on the time when the predetermined angle has been changed twice in a form in which the evaluation coefficient can be identified.
  • the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating unit that calculates a time when the phase of the signal changes twice the predetermined angle from the phase of the signal at a time (hereinafter referred to as a second time), and the first time calculated by the time calculating unit.
  • an evaluation coefficient calculating unit that calculates an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the second time, and the evaluation coefficient calculated by the evaluation coefficient calculating unit is identified as the evaluation coefficient
  • the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating process for calculating a time (hereinafter referred to as a second time) when the phase of the signal has changed twice the predetermined angle from the phase of the signal at the time, and the first time calculated by the time calculating process And an evaluation coefficient calculation process for calculating an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the second time.
  • the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating process for calculating a time (hereinafter referred to as a second time) when the phase of the signal has changed twice the predetermined angle from the phase of the signal at the time, and the first time calculated by the time calculating process
  • a computer-readable recording medium recording an information processing program for causing a computer to execute an evaluation coefficient calculation process for calculating an evaluation coefficient for evaluating the synchronization of the repetitive voluntary movement based on the second time Exist.
  • FIG. 1 is a diagram illustrating a configuration of a system as an example of an embodiment.
  • FIG. 2 is a diagram illustrating an exercise rhythm as an example of the embodiment.
  • FIG. 3 is a diagram for explaining the operation of the determination unit as an example of the embodiment.
  • FIG. 4 is a flowchart for explaining the operation of the system as an example of the embodiment.
  • 5 (A) and 5 (B) are diagrams showing body motion signals and exercise rhythms as an example of the embodiment, and FIG. 5 (A) shows a body motion signal detection device at the center of the abdomen of a healthy subject.
  • FIG. 5B shows an example of an exercise rhythm extracted from the body motion signal.
  • FIG. 5B shows a part of the 15-minute walking acceleration signal measured by the body motion signal detection device at 100 Hz sampling.
  • FIG. 6 is a flowchart for explaining the operation of the time constant determination unit as an example of the embodiment.
  • FIG. 7 is a diagram illustrating a change in dispersion with respect to a change in time constant as an example of an embodiment.
  • FIG. 8 is a flowchart for explaining the operation of the rhythm extraction unit as an example of the embodiment.
  • FIG. 9 is a flowchart for explaining the operation of the evaluation coefficient determination unit as an example of the embodiment.
  • FIGS. 10A to 10C are diagrams for explaining a pattern matching method as an example of the embodiment.
  • FIG. 10A shows a part of the waveform from the data of FIG. FIG.
  • FIG. 10 (B) shows the result of calculating the autocorrelation coefficient by selecting a reference wave with a width of 0.4 seconds around the time indicated by * in FIG. 10 (A).
  • FIG. 10C shows a result of calculating an autocorrelation coefficient by selecting a reference wave having a width of 0.4 seconds around the time indicated by a circle in FIG. 10A.
  • FIG. 11 is a diagram illustrating evaluation coefficients as an example of the embodiment.
  • FIG. 12 is a flowchart for explaining the operation of the determination unit as an example of the embodiment.
  • FIG. 13 is a flowchart for explaining the operation of the determination unit as an example of the embodiment.
  • FIG. 14 is a diagram illustrating evaluation coefficients as an example of the embodiment.
  • FIG. 15 is a diagram illustrating an exercise rhythm as an example of the embodiment.
  • FIGS. 16A to 16C are diagrams for explaining the evaluation coefficient obtained by the system as an example of the embodiment.
  • FIG. 16A is detected by the body motion signal detection device 10.
  • FIG. 16B is a diagram showing an acceleration signal after second order integration, that is, a motion trajectory
  • FIG. 16C is an evaluation obtained from the acceleration signal after second order integration. It is a figure which shows a coefficient.
  • FIG. 17A to FIG. 17C are diagrams for explaining evaluation coefficients obtained by the system as an example of the embodiment.
  • FIG. 17A is detected by the body motion signal detection device 10.
  • FIG. 17B is a diagram showing an acceleration signal after second-order integration, that is, a motion trajectory, and FIG.
  • FIG. 17C is an evaluation obtained from the acceleration signal after second-order integration. It is a figure which shows a coefficient.
  • 18A to 18C are diagrams for explaining the evaluation coefficient obtained by the system as an example of the embodiment.
  • FIG. 18A is detected by the body motion signal detection device 10.
  • 18 (B) is a diagram showing the acceleration signal and angular velocity signal after the second integration
  • FIG. 18 (C) is a graph showing the acceleration signal and angular velocity after the second integration. It is a figure which shows the evaluation coefficient each calculated
  • FIG. 19A is a diagram showing the time change of the walking index after the smoothing process is performed
  • FIG. 19B is a diagram showing the time change of the body motion index after the smoothing process is performed. It is.
  • FIG. 1 is a diagram illustrating a configuration of a system according to an example of an embodiment.
  • the system 1 includes a body motion signal detection device 10 and an information processing device 20.
  • the body motion signal detection device 10 is communicably connected to the information processing device 20 via, for example, wired such as the Internet or wireless such as a wireless LAN (Local Area Network) or Bluetooth (registered trademark).
  • wired such as the Internet
  • wireless such as a wireless LAN (Local Area Network) or Bluetooth (registered trademark).
  • the body motion signal detection device 10 detects (measures) a repetitive rhythmic motion accompanying a repetitive voluntary movement of a subject (living body) (hereinafter sometimes simply referred to as a voluntary movement) noninvasively and continuously, for example.
  • a repetitive rhythmic motion accompanying a repetitive voluntary movement of a subject (hereinafter sometimes simply referred to as a voluntary movement) noninvasively and continuously, for example.
  • the repeated rhythmic movement accompanying the voluntary movement may be simply referred to as rhythmic movement.
  • the voluntary exercise is, for example, walking, jogging, running, cycling, swimming, gymnastics, weight training, physical strength measurement (stepping up / down, repetitive side jumping), juggling (beading a beanbag, lifting a soccer ball) and the like.
  • the repetitive rhythmic movement accompanying the voluntary movement includes, for example, the rhythmic movement of the walking itself when the voluntary movement is walking.
  • the voluntary movement is a movement that is repeated regularly, the rhythm of the voluntary movement itself can be extracted more accurately.
  • movement repeated regularly includes not only that the completely same exercise
  • Non-invasive means, for example, that the body of the subject is not damaged or that the subject is not burdened.
  • the body motion signal detection device 10 is configured to be portable, for example. In addition, if the attachment position to the test subject of the body motion signal detection apparatus 10 is a site
  • the body motion signal detection device 10 includes, for example, a body motion signal detection unit 11, a storage unit 12, and an interface unit 13. The body motion signal detection unit 11, the storage unit 12, and the interface unit 13 are connected to be communicable with each other.
  • the body motion signal detection unit 11 detects (measures), for example, a repetitive rhythm motion associated with a voluntary motion as a body motion signal (a signal based on a repetitive rhythm motion associated with a voluntary motion of a living body). That is, the body motion signal detection unit 11 detects a signal based on a repetitive rhythm movement accompanying a voluntary movement of a living body as a body motion signal. From a different point of view, one body motion signal detection unit 11 detects, for example, a repetitive rhythm motion accompanying a voluntary motion of a living body as a body motion signal.
  • the subject's rhythmic movements for example, force changes, spatial body position changes, sounds emitted from the body, waves such as electromagnetic waves or fine energy changes, or field changes around the body, etc. Detect (measure) as a body motion signal. That is, the body motion signal detection unit 11 measures a signal based on repetitive rhythm movement accompanying voluntary movement.
  • the body motion signal detection unit 11 is realized by an inertial sensor such as an acceleration sensor, a speed sensor, or a gyro sensor, for example.
  • an inertial sensor such as an acceleration sensor, a speed sensor, or a gyro sensor, for example.
  • the inertial sensor which detects the said body motion signal it selects suitably according to the kind of signal to detect, for example.
  • an acceleration sensor that measures acceleration of body movement is preferably used, but is not limited to an acceleration sensor.
  • the acceleration sensor a single-axis to three-axis sensor can be arbitrarily used, but the three axes for detecting acceleration acting in three directions of the vertical direction, the horizontal front-rear direction, and the horizontal left-right direction during walking.
  • an acceleration sensor is preferably used, it is not limited to a triaxial acceleration sensor.
  • the body motion signal detection unit 11 measures the body motion signal at a predetermined sampling frequency (for example, 100 Hz), for example.
  • the storage unit 12 is a storage device capable of storing various information such as RAM (Random Access Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), flash memory, and the like. Specifically, the storage unit 12 stores the body motion signal obtained by the body motion signal detection unit 11, for example. Moreover, the memory
  • the interface unit 13 is an interface connected to the information processing apparatus 20 so as to be communicable, for example.
  • the interface unit 13 includes an antenna.
  • the interface unit 13 is a connection terminal that can be connected to a wire.
  • the storage unit 12 is detachably provided, for example, in a slot provided in the body motion signal detection device 10, and the storage unit 12 is detached from the body motion signal detection device 10 and connected to the information processing device 20. In this case, the interface unit 13 may not be provided in the body motion signal detection device 10.
  • the information processing apparatus 20 is, for example, a PC (Personal Computer), and calculates an evaluation coefficient to be described later from the body motion signal obtained by the body motion signal detection apparatus 10.
  • the information processing apparatus 20 includes, for example, a central processing unit 21, a storage unit 22, an output unit 23, and an interface unit 24.
  • the central processing unit 21, the storage unit 22, the output unit 23, and the interface unit 24 are connected to be communicable with each other.
  • the storage unit 22 is a storage device that can store application programs and data, such as RAM, HDD, and SSD, and stores various types of information.
  • the central processing unit 21 is a processing device that performs various calculations or controls by executing various application programs stored in the storage unit 22, thereby realizing various functions.
  • the central processing unit 21 executes an information processing program stored in the storage unit 22 to thereby execute a time constant determination unit 211, a rhythm extraction unit 212, an evaluation coefficient determination unit 213, a determination unit 214, and an output control unit 215.
  • the information processing program is a program that causes the central processing unit 21 to function as the time constant determination unit 211, the rhythm extraction unit 212, the evaluation coefficient determination unit 213, the determination unit 214, and the output control unit 215.
  • the time constant determination unit 211 acquires, for example, the body motion signal obtained by the body motion signal detection unit 11 from the storage unit 12, and based on the acquired body motion signal, a signal (hereinafter, referred to as a rhythm of voluntary exercise itself).
  • the time constant used to extract the motion rhythm is sometimes calculated.
  • the movement rhythm corresponds to a signal representing repeated voluntary movement of the living body.
  • the body motion signal including the motion rhythm is a signal detected by one body motion signal detection unit 11, a signal representing repeated voluntary movement of the living body is generated by one body motion signal detection unit 11 (detection unit). It is a detected signal.
  • the time constant determination unit 211 determines the time constant by performing the following processing.
  • the time constant determining unit 211 applies the body motion signal X to a high-pass filter or a band-pass filter characterized by a certain time constant A.
  • a high-pass filter when the process of smoothing the body motion signal X with a zero phase moving average filter having a time width (time constant) A is described as F (X, A), the output waveform (signal)
  • F (X, A) the process of smoothing the body motion signal X with a zero phase moving average filter having a time width (time constant) A
  • F (X, A) the output waveform
  • a / 2.5 is performed.
  • the zero phase moving average filter refers to a moving average filter whose phase shift is zero.
  • the zero phase moving average filter can be realized by using various known methods, and detailed description thereof is omitted.
  • An example of the time constant of the bandpass filter is A / 2.5, but the present invention is not limited to this.
  • the time constant determination unit 211 quantifies the regularity of the output waveform Y.
  • the time constant determination unit 211 obtains regularity of the output waveform Y when the time constant A is changed.
  • the time constant determination unit 211 graphs the regularity of the output waveform Y when the time constant T is changed, for example.
  • the time constant determination unit 211 calculates a change in the regularity of the output waveform Y with respect to the time constant A by, for example, calculating the CV at each time constant A when the time constant A is changed.
  • the example using the absolute value CV at the peak of the output waveform Y has been described as the quantification of the regularity of the output waveform Y in the time constant determination unit 211, it is not limited to this example.
  • the time constant determination unit 211 obtains a minimum point from the change in regularity (change in CV) of the output waveform Y with respect to the time constant A obtained in the process of (3) above. Then, the time constant determination unit 211 separates the motion rhythm from the body motion signal, for example, the time constant A corresponding to the minimum point with the smaller time constant A among the obtained minimum points (for example, two minimum points). Thus, it is determined as a time constant for extraction (hereinafter sometimes referred to as a first time constant). That is, the time constant determination unit 211 selects a time constant that enables separation and extraction of a waveform having regularity as much as possible.
  • the time constant determination unit 211 selects a plurality of minimum points (for example, two points) and determines the time constant corresponding to the minimum point with the smaller time constant A as the first time constant. That is, the time constant determination unit 211 determines the first time constant based on the output when the band pass filter is applied to the body motion signal.
  • N 1, 2, 3,
  • the order of the integration operation and the filtering process may be any order as long as the following conditions are satisfied, for example. ⁇ Do not perform the filter process more than once in succession. ⁇ At least once in the filter process, the integration process is completed. -When the filter process is performed twice or more, the filter is a high-pass filter except for the last one.
  • the rhythm extraction unit 212 acquires the body motion signal obtained by the body motion signal detection unit 11 from the storage unit 12, and performs filtering using the first time constant (A1) determined by the time constant determination unit 211. By processing, the movement rhythm is extracted from the body movement signal. Specifically, the rhythm extraction unit 212 extracts an exercise rhythm from the body motion signal by performing the following process (filtering process), for example. In addition, the following process is an illustration and is not limited to this example.
  • the rhythm extraction unit 212 performs integration on the signal after the high-pass filtering.
  • the rhythm extraction unit 212 performs second-order integration on the signal after the high-pass filtering.
  • the rhythm extraction unit 212 performs the same processing as (10) on the signal X2 after integration in the processing (11). That is, the rhythm extraction unit 212 performs processing represented by F (X2, A1) on the integrated body motion signal. In other words, the rhythm extraction unit 212 performs high-pass filtering on the integrated signal that is the signal after integration, using the first time constant. (8) Furthermore, the rhythm extraction unit 212 creates an envelope connecting the maximum values of the signal obtained by the processing of (12) and an envelope connecting the minimum values, and the two envelopes A process of subtracting the average signal from the signal obtained in the process (12) is performed. Since the amplitude of the signal obtained by this processing changes with the amplitude value 0 interposed therebetween, the phase can be accurately obtained when the Hilbert transform method described later is used. This process may be omitted.
  • the rhythm extraction unit 212 extracts an exercise rhythm from the body motion signal. That is, the rhythm extraction unit 212 functions as a rhythm extraction unit that extracts a rhythm (voluntary rhythm) of voluntary exercise from the body motion signal by performing filtering processing on the body motion signal. Therefore, for example, when evaluating the synchrony of the walking rhythm from the body motion signal, the walking area may be extracted in advance, or such preprocessing may not be performed.
  • the body motion signal is second-order integrated.
  • the process (filter process) of (5) [or (7)] N times or more it is preferable to perform the process (filter process) of (5) [or (7)] N times or more.
  • the order of the integration operation and the filtering process may be any order as long as the following conditions are satisfied, for example. ⁇ Do not perform the filter process more than once in succession. ⁇ At least once in the filter process, the integration process is completed. -When the filter process is performed twice or more, the filter is a high-pass filter except for the last one.
  • the evaluation coefficient determination unit 213 determines an evaluation coefficient for evaluating the synchronization of the motor rhythm based on, for example, the phase of the motor rhythm.
  • the phase is an index representing how many rotation angles each point on the rhythm waveform corresponds to, assuming that a rhythm that repeats in time is a movement rotating on the circumference. For example, there is a difference of 360 degrees between the phases of two adjacent peak points in a sine wave.
  • FIG. 2 is a diagram illustrating an example of an exercise rhythm, and the peak in the figure corresponds to, for example, the landing of the subject's right foot or the left foot.
  • an example of the evaluation coefficient is, for example, the peak corresponding to one foot and the peak corresponding to the other foot between the peaks corresponding to one foot (for example, the right foot) in the example of the exercise rhythm shown in FIG.
  • the evaluation coefficient for evaluating the synchrony of the exercise rhythm is not limited to this evaluation coefficient.
  • the value of the evaluation coefficient when the first time T1 and the second time T2 are equal is 0, but is not limited to 0.
  • an evaluation coefficient calculation formula may be used so that the value of the evaluation coefficient when the first time T1 and the second time T2 are equal is a value other than 0 such as 1 or the like. That is, the calculation formula for the evaluation coefficient is not limited to the following formula (1).
  • the following formula (1) indicates that the difference between the time from the landing of one foot to the landing of the other foot and the time from the landing of the other foot to the landing of one foot, and the landing of one foot Represents the ratio of the time from the landing of the other foot to the sum of the time from the landing of the other foot to the landing of the one foot.
  • the time intervals between the peak corresponding to one foot and the peak corresponding to the other foot between the peaks corresponding to one foot are respectively the first time T1 and the second time.
  • T2 it is not limited to the time interval between peaks.
  • the first time T1 may be a time until the phase changes by 360 degrees from a predetermined position that does not correspond to the peak of the movement rhythm.
  • the second time T2 may be a time from a position where the phase has changed 360 degrees from a predetermined position not corresponding to the peak of the movement rhythm to a further change in phase by 360 degrees.
  • the first time T1 is the time until the phase changes 360 degrees from the peak of the movement rhythm or a predetermined position not corresponding to the peak, and the second time T2 does not correspond to the peak or peak of the movement rhythm. Although it is the time from the position where the phase has changed 360 degrees from the predetermined position until the phase has changed 360 degrees, the present invention is not limited to this.
  • the first time T1 is a time until the phase changes by -360 degrees from a predetermined position that does not correspond to the peak of the movement rhythm or a peak (a time that goes back 360 degrees from the predetermined position)
  • the second time T2 Is the time from when the phase changes by -360 degrees from a predetermined position that does not correspond to the peak of the motor rhythm or when the phase changes by -360 degrees (time that goes back from the predetermined position by 720 degrees). May be.
  • the first time T1 is a time until the phase changes by 360 degrees from a predetermined position not corresponding to the peak of the movement rhythm or the peak
  • the second time T2 is a peak or peak of the movement rhythm. It may be a time until the phase changes by -360 degrees from a predetermined position that does not correspond (a time that is 360 degrees backward from the predetermined position).
  • the first time T1 when the first time T1 is set as a time that goes back 360 degrees from the predetermined position, or when the second time T2 is set as a time that goes back 360 degrees or 720 degrees from the predetermined position, the first time T1 and The value of the second time T2 may be negative. In such a case, it is necessary to pay attention to the first time T1 and the second time T2 that are substituted into Equation 1.
  • the evaluation coefficient determination unit 213 includes a time calculation unit 223 and an evaluation coefficient calculation unit 233.
  • the time calculation unit 223 calculates the movement rhythm phase, thereby changing the phase from the movement rhythm phase at a predetermined time (arbitrary time) by a predetermined angle (hereinafter sometimes referred to as a first angle). (First time) and a time (second time) at which the phase changes twice the first angle from the phase of the motion rhythm at a predetermined time.
  • the time calculation unit 223 can calculate, for example, a time from a predetermined time to the first time (first time: T1). In addition, the time calculation unit 223 can calculate, for example, a time from the first time to the second time (second time: T2).
  • the first angle is, for example, a positive value of 180 degrees or 360 degrees.
  • 360 degrees includes a case of strictly 360 degrees and a case of approximately 360 degrees.
  • 180 degrees includes a case of strictly 180 degrees and a case of approximately 180 degrees. Including.
  • the time calculation unit 223 calculates, for example, the phase of the movement rhythm, for example, the time that the phase goes back the first angle from the phase of the movement rhythm at a predetermined time (arbitrary time) And the time when the phase has changed twice the first angle from the phase of the movement rhythm at the predetermined time (the time that is double the first angle is also included in the second time) May be calculated. That is, the first angle may be a negative value of ⁇ 180 degrees or ⁇ 360 degrees, for example.
  • the time calculation unit 223 can calculate the time from the first time to the predetermined time (first time: T1).
  • the time calculation unit 223 can calculate the time from the second time to a predetermined time (second time: T2).
  • the time calculation unit 223 has a phase (first time) when the phase changes from the phase of the motion rhythm at a predetermined time (arbitrary time) and a phase from the phase of the motion rhythm at the predetermined time. You may make it calculate the time which changed -1 time of the angle. In this case, the time calculation unit 223 can calculate the time from the predetermined time to the first time (first time: T1). In addition, the time calculation unit 223 can calculate the time from the second time to a predetermined time (second time: T2).
  • the evaluation coefficient calculation unit 233 calculates the first time (the first time is larger than the predetermined time) and the second time (the second time is larger than the first time) will be described. .
  • the calculation method is the same in the case of calculating the (large) and second time (the second time is smaller than the predetermined time).
  • the time calculation unit 223 calculates the phase of the motion rhythm using, for example, the Hilbert transform method or the pattern matching method.
  • the method for calculating the phase is not limited to the Hilbert transform method or the pattern matching method.
  • the Hilbert transform method is a method for specifically calculating the phase at a predetermined position of the waveform
  • the pattern matching method is not a method for directly specifying the phase, but is a method for finding points where the phases are mutually shifted by 360 degrees. is there.
  • the pattern matching method is a method of finding a point whose phase is shifted by an integral multiple of 360 degrees from a predetermined position of the waveform.
  • the pattern matching method calculates a relative phase (for example, 360 degrees) with respect to a predetermined position of the waveform.
  • the evaluation coefficient calculation unit 233 calculates the evaluation coefficient based on the first time and the second time calculated by the time calculation unit 223, for example. For example, the evaluation coefficient calculation unit 233 calculates the first time and the second time based on the first time and the second time calculated by the time calculation unit 223, and sets the first time and the second time to the above (1). An evaluation coefficient is calculated by substituting it into the equation. That is, the evaluation coefficient calculation unit 233 calculates an evaluation coefficient for evaluating the synchrony of repeated voluntary movement based on the first time and the second time.
  • the Hilbert transform is a mathematical method for deriving a corresponding imaginary part Y (t) from an arbitrary real time series signal X (t).
  • the time calculation unit 223 can directly obtain the phase ⁇ (t) of X (t) from the following equation (2). That is, the phase calculation unit 224 can obtain the phase of the motion rhythm at a predetermined time (predetermined position) from the following equation (2).
  • evaluation coefficient calculation part 233 calculates an evaluation coefficient from the following (3) formula, for example using the time t1 and the time t2 which were calculated by the time calculation part 223, for example.
  • the pattern matching method is a method for quantifying the similarity between two signals. There are many methods for defining or calculating the degree of similarity. Specifically, for example, a method described in “Image processing engineering (Ryoichi Suematsu, Hirohisa Yamada, Corona)” or the like is used. The most representative is the autocorrelation coefficient. For example, the following calculation is performed for a three-dimensional body motion signal.
  • the autocorrelation coefficient is calculated by the following equation (5).
  • the same calculation is performed for a one-dimensional signal.
  • the pattern matching method it is possible to easily obtain the time t1 when the phase of the rhythm waveform at an arbitrary time t is shifted by 360 degrees, the time t2 when the phase is shifted by 720 degrees, or the like.
  • the time calculation unit 223 can obtain a time whose phase is shifted by an integer multiple of 360 degrees from the phase of the motion rhythm at the time t.
  • the evaluation coefficient calculation unit 233 calculates the evaluation coefficient from the above equation (3), for example, using the time t1 and the time t2 calculated by the time calculation unit 223, for example. Note that the evaluation coefficient calculation unit 233 may calculate the evaluation coefficient from the equation (1) using the first time T1 and the second time T2 calculated based on the time t1 and the time t2.
  • Determining unit 214 evaluates (determines) exercise rhythm synchrony based on the evaluation coefficient obtained by evaluation coefficient determining unit 213, for example. That is, the determination unit 214 evaluates the synchronization or balance of the exercise rhythm based on the evaluation coefficient. Specifically, for example, when the voluntary movement is walking or the like, the determination unit 214 evaluates the synchronization of left and right footsteps, that is, the synchronization or balance of left and right footsteps. Here, whether the left and right footing is synchronized or not is determined based on whether the evaluation coefficient maintains a constant value regardless of time or whether the evaluation coefficient changes periodically.
  • the determination unit 214 determines that the left and right footsteps are synchronized when the evaluation coefficient maintains a constant value regardless of time or when the evaluation coefficient changes periodically. Further, whether the right / left footing balance is good or bad is determined based on whether or not the evaluation coefficient is close to 0 when the evaluation coefficient is determined using the equation (1). For example, the determination unit 214 determines that the left and right footing balance is better as the evaluation coefficient is closer to zero.
  • the determination unit 214 calculates, for example, the following three indices R, S, and C from the change in the evaluation coefficient over a predetermined time.
  • the predetermined time is a time required for the subject to walk about 10 steps (for example, 5 seconds), but is not limited to this time.
  • the determination unit 214 evaluates synchrony based on these three indices R, S, and C.
  • FIG. 3 is a diagram for explaining an example of the operation of the determination unit 214.
  • the determination unit 214 has a very good balance between left and right footing (walking rhythm) and right and left footing (in FIG. 3). Judgment). That is, the determination unit 214 functions as a determination unit that determines whether the evaluation coefficient is within a predetermined range (for example, 0 ⁇ 0.02) over a predetermined time (for example, 5 seconds). Further, for example, when R is not less than 0.02 but S is not more than 0.01, the determination unit 214 has a good balance between right and left footsteps and a right and left footstep balance (FIG. 3). Judgment)
  • the determination unit 214 synchronizes left and right footsteps and right and left footsteps based on C. Assess balance. For example, when C is 0.5 or more, the determination unit 214 determines that the left and right footsteps are synchronized, but the left and right footsteps are not well balanced (see x in FIG. 3), and C is 0. If it is smaller than .5 and greater than 0.2, it is determined that the left and right footsteps are normally synchronized (see ⁇ in FIG. 3), but the left and right footsteps are not well balanced (see ⁇ in FIG. 3). Furthermore, for example, when C is less than 0.2, the determination unit 214 determines that the left and right footsteps are not synchronized (see “X” in FIG. 3), and the right and left footstep balance cannot be determined. .
  • the numerical values (0.02, 0.01, 0.5, and 0.2) in FIG. 3 are examples, and are not limited to these numerical values. Further, in FIG. 3, five patterns are determined using three indexes R, S, and C, but the determination method is not limited to this, and finer determination may be performed. A rough evaluation may be performed. For example, two patterns may be determined based only on the value of R.
  • the determination unit 214 can directly index the synchronization of left and right footsteps and the balance of left and right footsteps from the change in the evaluation coefficient over a predetermined time, for example, as follows. For example, when the voluntary movement is walking, the predetermined time is a time required for the subject to walk about 10 steps (for example, 5 seconds), but is not limited to this time.
  • H (t) the evaluation coefficient calculated from the phase of the movement rhythm is denoted as H (t) as a function of time t.
  • t2 be the time when the phase of the motion rhythm has changed by 720 degrees starting from an arbitrary time t1.
  • S1 The standard deviation of H (t) between time t1 ⁇ t ⁇ time t2 is obtained.
  • the time change of the standard deviation is calculated by sequentially changing the time t1 over a predetermined time. With respect to the time series data of the standard deviation thus obtained, an average value within a predetermined time is obtained and used as an index S1 for the balance of left and right foot travel.
  • the phase obtained by the time calculation unit 223 or the index obtained by the determination unit 214 can be used as the quantification of the regularity of the output waveform Y in the time constant determination unit 211 described above.
  • the CV of the phase period or the synchronization index S2 of the left and right footing is considered to reflect the regularity of the output waveform Y.
  • the time constant A of the filter is changed (for example, between 0 and 1 second in the case of walking rhythm)
  • the CV or index S2 of the phase period is obtained and the value takes the minimum value.
  • the constant A is determined as the optimal time constant.
  • the output control unit 215 controls the output unit 23.
  • the output control unit 215 controls the display state of the output unit 23 to display various information on the output unit 23.
  • the output control unit 215 causes the output unit 23 to display the evaluation coefficient obtained by the exercise rhythm extracted by the rhythm extraction unit 212 or the evaluation coefficient determination unit 213.
  • the evaluation coefficient may be displayed as a graph on the output unit 23 or may be displayed as a message such as “Evaluation coefficient is **”.
  • the output control unit 215 may cause the output unit 23 to display the determination result by the determination unit 214 in addition to the display of the evaluation coefficient or in place of the display of the evaluation coefficient.
  • the output control unit 23 warns, for example, by an alarm or vibration, the output control unit when the determination unit 214 determines that the evaluation coefficient is not a value within a predetermined range, for example. 215 controls the output unit 23 to cause the output unit 23 to issue a warning.
  • the output control unit 215 is, for example, an evaluation coefficient obtained by the exercise rhythm or evaluation coefficient determination unit 213 extracted by the rhythm extraction unit 212.
  • the display state of the output unit 23 is controlled by transmitting various information such as the above to the output unit 23 via wireless or wired communication.
  • the output unit 23 outputs various types of information under the control of the output control unit 215.
  • the output unit 23 is a display, and when the evaluation coefficient obtained by the evaluation coefficient determination unit 213 or the determination unit 214 determines that the evaluation coefficient is not a value within a predetermined range, for example. , Display a warning.
  • the output unit 23 may be a unit that notifies about a change in state or a sudden abnormality by, for example, an alarm or vibration, and the evaluation unit 214 does not have a value within a predetermined range, for example. If it is determined, a warning is given by an alarm or vibration.
  • the output unit 23 may not be provided in the information processing apparatus 20 but may be provided outside the information processing apparatus 20.
  • the case where the output unit 23 is provided outside the information processing device 20 is, for example, the case where the output unit 23 is included in the body motion signal detection device 10, or the body motion signal detection device 10 and the information processing. This is a case where the device 20 is not included in either.
  • the information processing apparatus 20 is connected to the output unit 23 via wireless or wired connection. That is, the output unit 23 functions as an output unit that outputs a result (for example, an evaluation coefficient) obtained by the information processing apparatus.
  • the output unit 23 functions as an output device including an output unit that outputs a result (for example, an evaluation coefficient) obtained by the information processing device.
  • the interface unit 24 is, for example, an interface that is communicably connected to the body motion signal detection device 10.
  • the interface unit 24 includes an antenna.
  • the interface unit 24 is a wired connection terminal.
  • the storage unit 12 is provided detachably with respect to the body motion signal detection device 10, and when the storage unit 12 is detached from the body motion signal detection device 10 and connected to the information processing device 20, The interface unit 24 also functions as a slot to which the storage unit 12 is connected, for example.
  • steps A1 to A6 The operation of the system 1 as an example of the embodiment configured as described above will be described with reference to the flowchart (steps A1 to A6) shown in FIG.
  • steps A1 to A6 an example of a specific method for evaluating the synchronization of movement rhythm based on the integral signal will be described in detail for the case of using an acceleration signal during walking. The same processing can be applied to the above signal.
  • the body motion signal detection unit 11 detects a repetitive rhythm motion accompanying a voluntary motion as a body motion signal (step A1).
  • FIG. 5A shows that the body motion signal detection device 10 (body motion signal detection unit 11) performs 100 Hz sampling with the body motion signal detection device 10 (triaxial acceleration sensor) attached to the center of the abdomen of a healthy subject. It is a part of the acceleration signal during walking for 15 minutes measured by. In FIG. 5A, only the acceleration change in the vertical direction among the three axes is shown.
  • the time constant determination unit 211 determines a time constant for extracting an exercise rhythm (step A2).
  • the rhythm extraction unit 212 extracts an exercise rhythm from the body motion signal (step A3).
  • FIG. 5B is a diagram illustrating an example of an exercise rhythm extracted from a body motion signal.
  • the evaluation coefficient determination unit 213 determines an evaluation coefficient from the extracted exercise rhythm (step A4). Based on this evaluation coefficient, the determination unit 214 determines, for example, the synchronization of the exercise rhythm (step A5: determination process). Next, based on the determination result of the determination unit 214, the output control unit 215 causes the output unit 23 to output the determination result (step A6). Next, details of the time constant determination unit 211, that is, detailed operations of step A2 in FIG. 2 will be described with reference to the flowchart (steps A21 to A24) shown in FIG.
  • the time constant determination unit 211 performs filtering on the body motion signal detected by the body motion signal detection unit 11 using a predetermined time constant A (step A21).
  • the time constant determination unit 211 obtains the absolute value CV of the values at the maximum and minimum peaks of the output waveform Y, for example (step A22). Then, the time constant determining unit 211 obtains a change in CV with respect to a change in the time constant A by changing the time constant A and performing the processes of steps A21 and A22, for example (step A23).
  • FIG. 7 is a diagram illustrating an example of a change in CV (dispersion) with respect to a change in time constant (filter time) A obtained in step A23.
  • FIG. 7 is a diagram illustrating an example of a change in CV (dispersion) with respect to a change in time constant (filter time) A when the body motion signal includes a respiratory rhythm.
  • the time constant determination unit 211 obtains a minimum point from the change in CV with respect to the change in the time constant T obtained in step A23. For example, as shown in FIG. 7, the time constant determination unit 211 obtains two local minimum points (marks ⁇ and ⁇ in FIG. 7) having a small CV value. Then, the time constant determination unit 211 calculates, for example, a time constant value (for example, 0.4) in the vicinity of the time constant A corresponding to the minimum point (marked with ⁇ in FIG. 7) having the smaller time constant A. It is determined as a time constant (step A24). As described above, the time constant determination unit 211 may determine the time constant in the vicinity of the minimum point as the first time constant instead of setting the time constant corresponding to the minimum point itself as the first time constant. Even in this case, there is no great difference in the results obtained.
  • a time constant value for example, 0.4
  • step A37 the rhythm extraction unit 212 performs high-pass filtering on the body motion signal detected by the body motion signal detection unit 11 using the first time constant (step A37).
  • the rhythm extraction unit 212 performs N (for example, 2) order integration (step A38).
  • step A39 high-pass filtering is again performed on the signal after integration using the first time constant (step A39).
  • FIG. 5B is a diagram illustrating an example of the signal obtained in step A39. This waveform corresponds to the voluntary movement of the subject who is walking, for example. More specifically, the waveform obtained in step 39 corresponds to the relative motion trajectory of each step by walking. That is, the waveform shown in FIG. 5B corresponds to a waveform indicating a movement rhythm.
  • the time calculation unit 223 selects an arbitrary point at an arbitrary time t of the exercise rhythm (step A41).
  • the time calculation unit 223 calculates the phase using, for example, Hilbert transform or pattern matching, so that the time t1 at which the phase is shifted 360 degrees from the arbitrary point and the phase is shifted 720 degrees from the arbitrary point
  • the point time t2 is calculated (step A42: time calculation process).
  • the evaluation coefficient calculation unit 233 calculates the evaluation coefficient from, for example, the above equation (1) using the times t1 and t2 (step A43: evaluation coefficient calculation process). That is, in step A42, from the signal representing the repetitive voluntary movement of the living body, a time (first time) when the phase of the signal changes by a predetermined angle (first angle) from the phase of the signal at a predetermined time, It is an example of the time calculation process which calculates the time (2nd time) when the phase of the signal changed twice the 1st angle from the phase of the signal in time.
  • Step A43 is an example of a second calculation process for calculating an evaluation coefficient for evaluating the synchrony of repeated voluntary movement based on the first time and the second time.
  • FIGS. 10A to 10C are diagrams for explaining an example of a signal obtained when the pattern matching method is used.
  • An example of detailed operation of the evaluation coefficient determination unit 213 when pattern matching is used will be described with reference to FIGS. 10 (A) to 10 (C).
  • FIG. 10A is a partial waveform extracted from the data of FIG.
  • FIG. 10B shows the result of the time calculation unit 223 selecting the reference wave having a width of 0.4 seconds around the time indicated by * and calculating the autocorrelation coefficient.
  • FIG. 10C shows an autocorrelation coefficient obtained from a reference wave having a width of 0.4 seconds around the circle mark in FIG.
  • the positions of three points whose phases are shifted by 360 degrees are indicated by dotted lines.
  • the evaluation coefficient calculation unit 233 calculates the first time T1 and the second time T2 from the waveforms shown in FIG. 10B or FIG. 10C, and sets the times T1 and T2 to the above formula (1).
  • the evaluation coefficient is calculated by substituting for.
  • the result of an example in which the evaluation coefficient is obtained every time the phase of the motion rhythm increases by 3.6 degrees using the Hilbert transform method is shown by the solid line in FIG. This is equivalent to obtaining an evaluation coefficient every 0.05 seconds on average when converted to a time interval. From FIG. 11, it can be seen that the evaluation coefficient fluctuates periodically around 0.
  • the evaluation coefficient determination unit 213 calculates an evaluation coefficient over a predetermined time (step A51), that is, the above steps A41 to A44 are repeated over a predetermined time.
  • the determination unit 214 calculates three indexes R, S, and C using the evaluation coefficient calculated over a predetermined time (step A52). Then, the determination unit 214 determines the synchronization of the exercise rhythm based on these three indicators (step A53).
  • step A531 determines whether or not R is 0.02 or less (step A531).
  • step A532 determines that the synchronization and balance of the exercise rhythm are very good, assuming that the evaluation coefficient is substantially zero over a predetermined time (step S531).
  • step A531 is an example of a determination process for determining whether the evaluation coefficient is within a predetermined range (for example, 0 ⁇ 0.02) over a predetermined time.
  • the determination unit 214 determines whether S is 0.01 or less (Step A533). When S is 0.01 or less (see the Yes route in step A533), the determination unit 214 determines that the synchronization and balance of the exercise rhythm are good, assuming that the evaluation coefficient is not substantially 0 but remains constant. (Step A534). On the other hand, when S is larger than 0.01 (see No route in step A533), the determination unit 214 determines whether C is 0.5 or more (step A535).
  • step A535 When C is equal to or greater than 0.5 (see the Yes route in step A535), it is determined that the evaluation coefficient fluctuates periodically, and the determination unit 214 determines that the exercise rhythm is synchronized but the balance is poor (step A536). ). On the other hand, when C is less than 0.5 (see No route in step A535), the determination unit 214 determines whether C is 0.2 or more (step A537). When C is 0.2 or more (see the Yes route in step A537), the determination unit 214 determines that the synchronization of the exercise rhythm is normal and the balance is bad (step A538). On the other hand, when C is less than 0.2 (see No route of step A537), the determination unit 214 determines that the synchronization of the exercise rhythm is poor and the balance cannot be determined (step A539).
  • the problem is the effect of data boundaries. That is, when signal processing such as spectrum analysis or Hilbert transform is performed, the error increases near the end points (measurement start point and end point) of the data. That is, the evaluation coefficient at the current time may include an error based on signal processing.
  • the result of calculating the evaluation coefficient from the phase change by the Hilbert transform method using only the data up to this time as the current time for the acceleration data of FIG. This is indicated by a broken line.
  • solid line in FIG. 14 Compared with the result of the accurate calculation method using the entire 15-minute data (solid line in FIG. 14), a value with almost no error is obtained in a time that goes back about 1.3 seconds from the current time. This is sufficient performance for practical real-time processing.
  • the evaluation coefficient for evaluating the synchrony of the movement rhythm is calculated based on the change of the phase by paying attention to the phase, a clear peak An evaluation coefficient can be calculated from data that does not have rhythm, and the synchronization of the motor rhythm can be evaluated. That is, according to the system 1 in the example of the present embodiment, since attention is paid to the phase, the evaluation coefficient can be obtained and the synchronization of the exercise rhythm can be evaluated without paying attention to the peak of the exercise rhythm.
  • the evaluation coefficient can be obtained almost continuously at an arbitrary time, and further, the evaluation coefficient can be obtained in real time. Can be requested. That is, according to the system 1 in the example of the present embodiment, the synchronization of the movement rhythm can be continuously evaluated, and further, the synchronization of the movement rhythm can be evaluated in real time.
  • the waveform after autocorrelation has less noise than the original body motion signal and thus has a clear peak. Since the peak position can be accurately specified, the evaluation coefficient can be obtained with high accuracy.
  • the signal is not limited to the signal from only the acceleration change in the vertical direction.
  • an evaluation coefficient may be calculated by extracting a motion rhythm from an acceleration signal in the front-rear direction or the left-right direction.
  • a point where the phase is shifted by 360 degrees from the predetermined position in the range where the phase changes from the predetermined position by 720 degrees is searched, and the evaluation coefficient is calculated.
  • it is not limited to 360 degrees.
  • the adjacent acceleration signal in the left and right direction corresponds to the landing of the same foot as shown in FIG.
  • the point where the phase is shifted from the predetermined position by 180 degrees is searched, and the evaluation coefficient is calculated with the time interval between them as the first time T1 and the second time T2, respectively.
  • the same processing as when calculating the evaluation coefficient from the lateral acceleration signal is performed.
  • the body motion signal detection device 10 does not include the central processing unit 21, but is not limited to this configuration, and the body motion signal detection device 10 includes the central processing unit 21. May be.
  • the central processing unit 21 executes an information processing program stored in a storage device (for example, the storage unit 12) in the body motion signal detection device 10 or a storage unit (not shown) outside the body motion signal detection device 10.
  • a storage device for example, the storage unit 12
  • a storage unit not shown
  • the body motion signal detection device 10 includes the body motion signal detection unit 11 and the storage unit 12, but is not limited to this configuration.
  • the body motion signal detection device 10 may include the body motion signal detection unit 11 but may not include the storage unit 12.
  • the body motion signal detection device 10 and the storage unit 12 are connected by wire or wirelessly, and the body motion signal detected by the body motion signal detection unit 11 is transferred to the storage unit 12 via wire or wirelessly.
  • the storage unit 12 and the information processing device 20 are connected by wire or wirelessly, and the information processing device 20 acquires a body motion signal from the storage unit 12.
  • the body motion signal detection device 10 detects the body detected by the body motion signal detection unit 11. It has a function of transmitting a moving signal to the information processing apparatus 20 (or the storage unit 12) via the interface unit 13 that is an antenna. This transmission function is realized by executing a program stored in a storage unit (not shown) by a processing unit (not shown) provided by the body motion signal detection device 10 such as a central processing unit.
  • the information processing apparatus 20 determines the first time constant from the body motion signal and extracts the exercise rhythm based on the first time constant, but is limited to this extraction method. It is not a thing.
  • the frequency characteristic of the body motion signal is obtained by spectrum analysis such as FFT (Fast Fourier Transform) or wavelet analysis, and the frequency range of the motion rhythm is specified from the result of the spectrum analysis. Then, for example, a movement rhythm may be extracted by applying a bandpass filter corresponding to the specified frequency range to the body motion signal.
  • the body motion signal is decomposed into each mode waveform (Intrinsic Mode Function) by EMD (Empirical Mode Decomposition) or EEMD (Ensemble Empirical Mode Decomposition), and from this result, the mode waveform corresponding to the exercise rhythm (for example, strong intensity) (Waveform) may be selected.
  • the rhythm extraction unit 212 extracts the body motion rhythm from the body motion signal by the filtering process, but this is not limitative. It is not a thing. For example, in the process (3), all output waveforms Y when the time constant T is changed are stored in the storage unit 22. The rhythm extraction unit 212 may select a waveform corresponding to the first time constant determined in the process (4) from all the output waveforms Y.
  • An example of this embodiment is applicable not only to people but also to animals such as pets, livestock, and horses.
  • an example of the present embodiment mainly describes the case where the voluntary movement is walking, the present invention is not limited to walking, and the example of the present embodiment can be applied to other voluntary movements. For example, if the voluntary exercise is juggling, it is only necessary to focus on the exercise rhythm of the hand, not the foot.
  • Various application programs for realizing each function of the central processing unit 21 provided in the information processing apparatus 20 are, for example, a flexible disk, a CD (CD-ROM, CD-R, CD-RW, etc.), DVD (DVD -Recorded in a computer-readable recording medium such as a ROM, DVD-RAM, DVD-R, DVD + R, DVD-RW, DVD + RW, HD DVD), Blu-ray disc, magnetic disc, optical disc, magneto-optical disc, etc.
  • the computer reads the program from the recording medium, transfers it to the internal storage device or the external storage device, and uses it.
  • the program may be recorded in a storage device (recording medium) such as a magnetic disk, an optical disk, or a magneto-optical disk, and provided from the storage device to the computer via a communication path.
  • Various application programs for realizing each function of a central processing unit (not shown) provided in the body motion signal detection apparatus 10 are, for example, a flexible disk, a CD (CD-ROM, CD-R, CD-RW, etc.), Recorded on computer-readable recording media such as DVD (DVD-ROM, DVD-RAM, DVD-R, DVD + R, DVD-RW, DVD + RW, HD DVD, etc.), Blu-ray disc, magnetic disc, optical disc, magneto-optical disc, etc. Provided in different forms. Then, the computer reads the program from the recording medium, transfers it to the internal storage device or the external storage device, and uses it. The program may be recorded in a storage device (recording medium) such as a magnetic disk, an optical disk, or a magneto-optical disk, and provided from the storage device to the computer via a communication path.
  • a storage device recording medium
  • FIG. 16A to FIG. 16C are diagrams showing walking results when on.
  • FIG. 16A is a diagram illustrating acceleration detected by the body motion signal detection device 10.
  • FIG. 16B is a diagram showing an acceleration signal after second-order integration, that is, a motion trajectory.
  • 16C is a diagram showing the evaluation coefficient obtained from the acceleration signal after second-order integration.
  • the evaluation coefficient since the evaluation coefficient has a regular fluctuation consistently, it can be said that there is a left-right difference in the walking step, but the left-right footing synchronization is high.
  • FIGS. 17 (A) to 17 (C) are diagrams showing walking results when the walking is relatively stable during the time of 3 to 17 seconds, but sudden progress is recognized before and after the walking. It is.
  • FIG. 17A is a diagram illustrating acceleration detected by the body motion signal detection device 10.
  • FIG. 17B is a diagram illustrating an acceleration signal after the second-order integration, that is, a motion trajectory.
  • FIG. 17C is a diagram showing the evaluation coefficient obtained from the acceleration signal after second-order integration.
  • the solid line indicates the evaluation coefficient calculated using the Hilbert transform method
  • the broken line indicates the evaluation coefficient calculated using the pattern matching method. Comparing FIG. 16 (A) to FIG. 16 (C) and FIG. 17 (A) to FIG. 17 (C), in FIG.
  • a small wireless hybrid sensor WAA-006 manufactured by Wireless Technology as a body motion signal detection device 10 in the center of the abdomen of a healthy subject, sampling a 3-axis acceleration signal and 3-axis angular velocity signal when walking in the city with a heavy bag on the shoulder Simultaneous measurement at a frequency of 200 Hz.
  • the acceleration signal in the vertical direction and the angular velocity signal around the vertical axis are: • High-pass filtering using time constant 1 • Second-order integration • Hilbert transform method after extracting motion rhythm by applying high-pass filtering using time constant 1 To obtain the phase. Evaluation coefficients were calculated from two points where the phase difference was 360 degrees for the acceleration signal and two points where the phase difference was 180 degrees for the angular velocity signal.
  • FIG. 18A is a diagram showing acceleration and angular velocity detected by the body motion signal detection device 10.
  • FIG. 18B is a diagram showing an acceleration signal and an angular velocity signal after second-order integration.
  • FIG. 18C is a diagram showing evaluation coefficients obtained from the acceleration signal and the angular velocity after the second-order integration.
  • the solid line indicates the acceleration signal
  • the broken line indicates the angular velocity signal.
  • the evaluation coefficient shows almost the same fluctuation in strength. It can also be seen that the balance between the left and right is getting worse, reflecting the heavy bag on his shoulder.
  • the synchrony of body movement rhythm can be evaluated regardless of the type of inertial sensor.
  • an acceleration recorder “Watching Gate” manufactured by Mitsubishi Chemical Corporation was put on a dedicated belt and wound around the abdomen of a Parkinson's disease patient, and body motion signals were continuously sampled at a sampling frequency of 100 Hz for 38 hours. At the same time, the subjects were asked to fill in a diary of the degree of ease of movement and the time when they fell.
  • FIG. 19A shows the time change of the walking index after the smoothing process is performed.
  • the subject's self-report is an intermediate evaluation of “not easy to move” or “easy to move” — “not easy to move” at times ta and tb. A fall is happening.
  • the walking index is also low. From 17:00 to 18:00 on the first day, from 10:00 to 11:00 on the second day, the subject's self-report is “easy to move”, but the gait index is lower than the time zone before and after, A fall occurred at times tc and td. Moreover, it can be seen that the walking index tends to decrease considerably before the fall time.
  • the synchrony of walking rhythm is an index for predicting the risk of falls.
  • FIG. 19B shows a time change of the body motion index after the smoothing process is performed.
  • the subject's self-reported five-step evaluation of ease of movement (movable, difficult to move, unable to move in three steps, easy to move-intermediate evaluation of difficult to move, and difficult to move-unmovable 5 grades that include 2 grades of the intermediate assessment)), and the actual fall times are indicated as ta, tb, tc, and td.
  • the transition of the body motion index is indicated by a dotted line
  • the transition of the subject's self-report is indicated by a solid line.
  • FIG. 19 (B) in the vicinity of the fallen area, the same behavior as in FIG. 19 (A) is shown. That is, between 9 am and 10 am on the first day, the subject's self-report is an intermediate evaluation of “not easy to move” or “easy to move” — “not easy to move”, and a fall occurred at times ta and tb. In accordance with this, the body motion index is also low. From 17:00 to 18:00 on the first day, from 10:00 to 11:00 on the second day, the subject's self-report is “easy to move”, but the body motion index is lower than before and after, A fall occurred at times tc and td. Moreover, it can be seen that the body motion index tends to decrease considerably before the fall time.
  • the synchrony of body movement rhythm is an index for predicting the risk of falls.
  • the synchronization of the movement rhythm is continuously evaluated in real time. There is an effect that can be done.

Abstract

Synchronism of body motion rhythms is continuously evaluated. The method comprises: a first calculation process for calculating the time at which a phase has changed by a predetermined angle from the phase of a signal at a predetermined time, and calculating the time at which the phase has changed by twice the predetermined angle from the phase of the signal at the predetermined time; and a second calculation process for calculating an evaluation coefficient on the basis of those times.

Description

情報処理方法、情報処理装置、出力装置、情報処理システム、情報処理用プログラムおよび同プログラムを記録したコンピュータ読み取り可能な記録媒体INFORMATION PROCESSING METHOD, INFORMATION PROCESSING DEVICE, OUTPUT DEVICE, INFORMATION PROCESSING SYSTEM, INFORMATION PROCESSING PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM
 本発明は、情報処理方法、情報処理装置、出力装置、情報処理システム、情報処理用プログラムおよび同プログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to an information processing method, an information processing device, an output device, an information processing system, an information processing program, and a computer-readable recording medium on which the program is recorded.
 日常生活における体の動きを連続的にモニタすることは、健康管理の観点から極めて重要である。また、外傷または脳神経系の疾患により、患者の歩行または走行等の規則的な体動リズムがどのような影響を受けているかを知ることは、病態を正確に把握する上で非常に役立つ。例えば、パーキンソン病の患者には1日のうちで症状が軽減する時(以下、単にオン時という場合がある)と症状が悪化する時(以下、単にオフ時という場合がある)がある。オフ時には突進歩行またはすくみ足が多くみられる。 • Continuously monitoring body movements in daily life is extremely important from the viewpoint of health management. In addition, knowing how the regular body movement rhythm such as walking or running of a patient is affected by trauma or cranial nervous system disease is very useful for accurately grasping the pathological condition. For example, a patient with Parkinson's disease has a time when symptoms are alleviated (hereinafter sometimes simply referred to as “on”) and a time when symptoms are aggravated (hereinafter sometimes simply referred to as “off”). When off, there are many sudden progress or freezing legs.
 突進歩行またはすくみ足などの異常歩行時には左右の足運びのバランスが崩れることが経験的に知られている。このため、左右の足運び(歩行)の同調性をリアルタイムでモニタできれば、異常歩行の兆候をとらえて転倒防止等の適切な処置を講じることができる。また、片脚に障害を持つ患者の歩行では歩行のステップ間隔に大きな左右差がある。このためステップ間隔の左右差を定量化できれば、リハビリまたは治療の効果の適切な理解につながる。ここで、同調性とは、歩行中において、右足着地から左足着地までの時間と、左足着地から右足着地までの時間との比が一定値(例えば1)を保っているかどうかを指す指標である。すなわち、右足着地から左足着地までの時間と、左足着地から右足着地までの時間との比が一定値(1)を保っていれば同調性は高いと判断され、右足着地から左足着地までの時間と、左足着地から右足着地までの時間との比が一定値(1)を保っていなければ同調性は低いと判断される。 Empirically, it is empirically known that the balance of left and right foot movements is lost during abnormal walking such as sudden progress or freezing. For this reason, if the synchronization of the right and left footsteps (walking) can be monitored in real time, it is possible to take an appropriate measure such as preventing falls by detecting the sign of abnormal walking. In addition, there is a large left-right difference in the walking step interval when a patient with a disorder on one leg walks. Therefore, if the left-right difference in the step interval can be quantified, it will lead to an appropriate understanding of the effects of rehabilitation or treatment. Here, the synchrony is an index indicating whether or not the ratio of the time from the right foot landing to the left foot landing and the time from the left foot landing to the right foot landing maintains a constant value (for example, 1) during walking. . That is, if the ratio of the time from the right foot landing to the left foot landing and the time from the left foot landing to the right foot landing is maintained at a constant value (1), it is judged that the synchrony is high, and the time from the right foot landing to the left foot landing is If the ratio from the left foot landing to the right foot landing does not maintain a constant value (1), it is determined that the synchrony is low.
 パーキンソン病患者の左右の足運び(ステップ)の同調性の評価については、複数のフットスイッチ型センサを用いて、パーキンソン病患者の左右の足運びの同調性の評価することが知られている。
 例えば、歩行を表すリズムが1サイクル変化するのに要する時間と、歩行を表すリズムが次の1サイクル変化するのに要する時間との比を求めることで、歩行の同調性を判断する。従来、この比は、踵離地または爪先離地の特徴点の間隔から求められていた。
Regarding the evaluation of the synchrony of the left and right foot movements (steps) of Parkinson's disease patients, it is known to evaluate the synchrony of the left and right foot movements of Parkinson's disease patients using a plurality of foot switch type sensors.
For example, the synchronism of walking is determined by determining the ratio of the time required for the rhythm representing walking to change by one cycle to the time required for the rhythm representing walking to change for the next one cycle. Conventionally, this ratio has been obtained from the distance between the feature points of the heel-off or toe-off.
 しかしながら、従来におけるパーキンソン病患者の左右の足運びの同調性の評価では、蓄積されたデータについて統計的な計算処理を行っているため、連続的な処理またはリアルタイム処理には不適である。
 また、従来におけるパーキンソン病患者の左右の足運びの同調性の評価では、特徴点の間隔を用いて同調性の評価を行なっている。このため、特徴点として波形のピークを用いた場合において、ピークが分裂するなど明瞭なピークを持たない波形から上記比を算出すると大きな誤差が生じる。すなわち、特徴点の間隔を用いた同調性の評価は、明瞭なピークを持たない波形には不適である。また、特徴点の間隔を用いた場合、波形のピーク位置に対応する時間毎にしか比を計算できない。すなわち、特徴点の間隔を用いた同調性の評価は、連続的な処理またはリアルタイム処理には不適である。
However, in the conventional evaluation of the synchrony of the left and right foot movements of Parkinson's disease patients, since statistical calculation processing is performed on the accumulated data, it is not suitable for continuous processing or real-time processing.
Further, in the conventional evaluation of the synchrony of the left and right foot movements of Parkinson's disease patients, the synchrony is evaluated using the interval between the feature points. For this reason, when the peak of a waveform is used as a feature point, a large error occurs if the above ratio is calculated from a waveform that does not have a clear peak, such as a split of the peak. That is, the evaluation of synchrony using the interval between feature points is not suitable for a waveform having no clear peak. Further, when the feature point interval is used, the ratio can be calculated only for each time corresponding to the peak position of the waveform. That is, the evaluation of synchrony using the interval between feature points is not suitable for continuous processing or real-time processing.
 本発明は、このような課題に鑑み創案されたもので、体動リズムの同調性を連続的に評価することを目的とする。
 なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本発明の他の目的の1つとして位置付けることができる。
The present invention has been made in view of such problems, and an object thereof is to continuously evaluate the synchrony of body movement rhythm.
In addition, the present invention is not limited to the above-described object, and other effects of the present invention can be achieved by the functions and effects derived from the respective configurations shown in the embodiments for carrying out the invention which will be described later. Can be positioned as one of
 本発明者らの鋭意研究により、信号の位相に着目することで、信号の測定時間間隔を下限とする任意の時間間隔で、連続的に運動リズムの同調性を評価できることを見出した。
 すなわち、本発明の要旨は、生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出過程と、をそなえた情報処理方法に存する。
As a result of intensive research by the present inventors, it has been found that by focusing on the phase of the signal, it is possible to continuously evaluate the synchronization of the movement rhythm at an arbitrary time interval with the signal measurement time interval as the lower limit.
That is, the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating process for calculating a time (hereinafter referred to as a second time) when the phase of the signal has changed twice the predetermined angle from the phase of the signal at the time, and the first time calculated by the time calculating process And an evaluation coefficient calculation step of calculating an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the second time.
 また、本発明の要旨は、生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出部と、前記時刻算出部により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出部と、をそなえた情報処理装置に存する。 Further, the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating unit that calculates a time when the phase of the signal changes twice the predetermined angle from the phase of the signal at a time (hereinafter referred to as a second time), and the first time calculated by the time calculating unit. And an evaluation coefficient calculation unit that calculates an evaluation coefficient for evaluating the synchronization of the repetitive voluntary movement based on the second time.
 さらに、本発明の要旨は、所定の時刻における生体の繰り返し随意運動を表す信号の位相から前記信号の位相が所定角度変化した時刻、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻に基づく、前記繰り返し随意運動の同調性を評価するための評価係数を、前記評価係数を識別可能な形態にて出力する出力部をそなえた出力装置に存する。
 また、本発明の要旨は、生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出部と、前記時刻算出部により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出部と、前記評価係数算出部により算出された評価係数を、前記評価係数を識別可能な形態にて出力する出力部と、をそなえた情報処理システムに存する。
Furthermore, the gist of the present invention is that the phase of the signal changes by a predetermined angle from the phase of the signal representing the repetitive voluntary movement of the living body at the predetermined time, and the phase of the signal from the phase of the signal at the predetermined time. An output device including an output unit that outputs an evaluation coefficient for evaluating the synchronization of the repeated voluntary movement based on the time when the predetermined angle has been changed twice in a form in which the evaluation coefficient can be identified.
Further, the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating unit that calculates a time when the phase of the signal changes twice the predetermined angle from the phase of the signal at a time (hereinafter referred to as a second time), and the first time calculated by the time calculating unit. And an evaluation coefficient calculating unit that calculates an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the second time, and the evaluation coefficient calculated by the evaluation coefficient calculating unit is identified as the evaluation coefficient An information processing system having an output unit that outputs in a possible form.
 さらに、本発明の要旨は、生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出過程と、をコンピュータに実行させる情報処理用プログラムに存する。 Further, the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating process for calculating a time (hereinafter referred to as a second time) when the phase of the signal has changed twice the predetermined angle from the phase of the signal at the time, and the first time calculated by the time calculating process And an evaluation coefficient calculation process for calculating an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the second time.
 また、本発明の要旨は、生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出過程と、をコンピュータに実行させる情報処理用プログラムを記録したコンピュータ読取可能な記録媒体に存する。 Further, the gist of the present invention is that a signal representing a repetitive voluntary movement of a living body, a time when the phase of the signal changes by a predetermined angle from a phase of the signal at a predetermined time (hereinafter referred to as a first time), and a predetermined A time calculating process for calculating a time (hereinafter referred to as a second time) when the phase of the signal has changed twice the predetermined angle from the phase of the signal at the time, and the first time calculated by the time calculating process And a computer-readable recording medium recording an information processing program for causing a computer to execute an evaluation coefficient calculation process for calculating an evaluation coefficient for evaluating the synchronization of the repetitive voluntary movement based on the second time Exist.
 運動リズムの同調性を連続的かつリアルタイムで評価することが可能となる。 It becomes possible to evaluate the synchrony of exercise rhythm continuously and in real time.
図1は、実施形態の一例としてのシステムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a system as an example of an embodiment. 図2は、実施形態の一例としての運動リズムを示す図である。FIG. 2 is a diagram illustrating an exercise rhythm as an example of the embodiment. 図3は、実施形態の一例としての判定部の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of the determination unit as an example of the embodiment. 図4は、実施形態の一例としてのシステムの動作を説明するためのフローチャートである。FIG. 4 is a flowchart for explaining the operation of the system as an example of the embodiment. 図5(A)及び図5(B)は、実施形態の一例としての体動信号および運動リズムを示す図であり、図5(A)は、健常な被験者の腹部中央に体動信号検出装置を装着した状態で、体動信号検出装置が100Hzサンプリングにて測定した15分間のウォーキング中の加速度信号の一部であり、図5(B)は、体動信号から抽出された運動リズムの一例を示す図である。5 (A) and 5 (B) are diagrams showing body motion signals and exercise rhythms as an example of the embodiment, and FIG. 5 (A) shows a body motion signal detection device at the center of the abdomen of a healthy subject. FIG. 5B shows an example of an exercise rhythm extracted from the body motion signal. FIG. 5B shows a part of the 15-minute walking acceleration signal measured by the body motion signal detection device at 100 Hz sampling. FIG. 図6は、実施形態の一例としての時定数決定部の動作を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining the operation of the time constant determination unit as an example of the embodiment. 図7は、実施形態の一例としての時定数の変化に対する分散の変化を示す図である。FIG. 7 is a diagram illustrating a change in dispersion with respect to a change in time constant as an example of an embodiment. 図8は、実施形態の一例としてのリズム抽出部の動作を説明するためのフローチャートである。FIG. 8 is a flowchart for explaining the operation of the rhythm extraction unit as an example of the embodiment. 図9は、実施形態の一例としての評価係数決定部の動作を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining the operation of the evaluation coefficient determination unit as an example of the embodiment. 図10(A)~図10(C)は、実施形態の一例としてのパターンマッチング法を説明するための図であり、図10(A)は、図5(B)のデータから一部の波形を抜き出したものであり、図10(B)は、図10(A)中*印で示した時間を中心として、幅0.4秒の基準波を選び自己相関係数を計算した結果であり、図10(C)は、図10(A)中○印で示した時間を中心として、幅0.4秒の基準波を選び自己相関係数を計算した結果である。FIGS. 10A to 10C are diagrams for explaining a pattern matching method as an example of the embodiment. FIG. 10A shows a part of the waveform from the data of FIG. FIG. 10 (B) shows the result of calculating the autocorrelation coefficient by selecting a reference wave with a width of 0.4 seconds around the time indicated by * in FIG. 10 (A). FIG. 10C shows a result of calculating an autocorrelation coefficient by selecting a reference wave having a width of 0.4 seconds around the time indicated by a circle in FIG. 10A. 図11は、実施形態の一例としての評価係数を示す図である。FIG. 11 is a diagram illustrating evaluation coefficients as an example of the embodiment. 図12は、実施形態の一例としての判定部の動作を説明するためのフローチャートである。FIG. 12 is a flowchart for explaining the operation of the determination unit as an example of the embodiment. 図13は、実施形態の一例としての判定部の動作を説明するためのフローチャートである。FIG. 13 is a flowchart for explaining the operation of the determination unit as an example of the embodiment. 図14は、実施形態の一例としての評価係数を示す図である。FIG. 14 is a diagram illustrating evaluation coefficients as an example of the embodiment. 図15は、実施形態の一例としての運動リズムを示す図である。FIG. 15 is a diagram illustrating an exercise rhythm as an example of the embodiment. 図16(A)~図16(C)は、実施形態の一例としてのシステムにより得られる評価係数を説明するための図であり、図16(A)は、体動信号検出装置10によって検出された加速度を示す図であり、図16(B)は、2階積分後の加速度信号すなわち運動軌道を示す図であり、図16(C)は、2階積分後の加速度信号から求められた評価係数を示す図である。FIGS. 16A to 16C are diagrams for explaining the evaluation coefficient obtained by the system as an example of the embodiment. FIG. 16A is detected by the body motion signal detection device 10. FIG. 16B is a diagram showing an acceleration signal after second order integration, that is, a motion trajectory, and FIG. 16C is an evaluation obtained from the acceleration signal after second order integration. It is a figure which shows a coefficient. 図17(A)~図17(C)は、実施形態の一例としてのシステムにより得られる評価係数を説明するための図であり、図17(A)は、体動信号検出装置10によって検出された加速度を示す図であり、図17(B)は、2階積分後の加速度信号すなわち運動軌道を示す図であり、図17(C)は、2階積分後の加速度信号から求められた評価係数を示す図である。FIG. 17A to FIG. 17C are diagrams for explaining evaluation coefficients obtained by the system as an example of the embodiment. FIG. 17A is detected by the body motion signal detection device 10. FIG. 17B is a diagram showing an acceleration signal after second-order integration, that is, a motion trajectory, and FIG. 17C is an evaluation obtained from the acceleration signal after second-order integration. It is a figure which shows a coefficient. 図18(A)~図18(C)は、実施形態の一例としてのシステムにより得られる評価係数を説明するための図であり、図18(A)は、体動信号検出装置10によって検出された加速度および角速度を示す図であり、図18(B)は、2階積分後の加速度信号および角速度信号を示す図であり、図18(C)は、2階積分後の加速度信号および角速度からそれぞれ求められた評価係数を示す図である。18A to 18C are diagrams for explaining the evaluation coefficient obtained by the system as an example of the embodiment. FIG. 18A is detected by the body motion signal detection device 10. 18 (B) is a diagram showing the acceleration signal and angular velocity signal after the second integration, and FIG. 18 (C) is a graph showing the acceleration signal and angular velocity after the second integration. It is a figure which shows the evaluation coefficient each calculated | required. 図19(A)は、平滑化処理を施した後の歩行指数の時間変化を示す図であり、図19(B)は、平滑化処理を施した後の体動指数の時間変化を示す図である。FIG. 19A is a diagram showing the time change of the walking index after the smoothing process is performed, and FIG. 19B is a diagram showing the time change of the body motion index after the smoothing process is performed. It is.
 以下、図面を参照して本情報処理方法に係る実施の形態を説明する。
 〔A〕実施形態の説明
 図1は、実施形態の一例にかかるシステムの構成を示す図である。システム1は、体動信号検出装置10と情報処理装置20とをそなえる。体動信号検出装置10は、情報処理装置20と、例えば、インターネット等の有線または無線LAN(Local Area Network)またはBluetooth(登録商標)等の無線を介して通信可能に接続されている。
Hereinafter, embodiments of the information processing method will be described with reference to the drawings.
[A] Description of Embodiment FIG. 1 is a diagram illustrating a configuration of a system according to an example of an embodiment. The system 1 includes a body motion signal detection device 10 and an information processing device 20. The body motion signal detection device 10 is communicably connected to the information processing device 20 via, for example, wired such as the Internet or wireless such as a wireless LAN (Local Area Network) or Bluetooth (registered trademark).
 体動信号検出装置10は、例えば、被験者(生体)の繰り返し随意運動(以下、単に随意運動という場合がある)に伴う繰り返しリズム運動を非侵襲的かつ連続的に検出(測定)するものである。以下、随意運動に伴う繰り返しリズム運動を、単にリズム運動という場合がある。
 ここで、随意運動とは、例えば、歩行、ジョギング、ランニング、自転車、水泳、体操、ウェートトレーニング、体力測定(踏み台昇降、反復横とび)、ジャグリング(お手玉、サッカーボールのリフティング)等である。また、随意運動に伴う繰り返しリズム運動には、例えば、随意運動が歩行である場合には、歩行自体のリズム運動が含まれる。
The body motion signal detection device 10 detects (measures) a repetitive rhythmic motion accompanying a repetitive voluntary movement of a subject (living body) (hereinafter sometimes simply referred to as a voluntary movement) noninvasively and continuously, for example. . Hereinafter, the repeated rhythmic movement accompanying the voluntary movement may be simply referred to as rhythmic movement.
Here, the voluntary exercise is, for example, walking, jogging, running, cycling, swimming, gymnastics, weight training, physical strength measurement (stepping up / down, repetitive side jumping), juggling (beading a beanbag, lifting a soccer ball) and the like. In addition, the repetitive rhythmic movement accompanying the voluntary movement includes, for example, the rhythmic movement of the walking itself when the voluntary movement is walking.
 また、随意運動が規則的に繰り返される運動である場合に、より正確に随意運動自体のリズムを抽出することができる。なお、規則的に繰り返される随意運動とは、完全に同じ運動が繰り返されることのみではなく、略同じ運動が繰り返されることを含む。
 また、非侵襲的とは、例えば、被験者の体に傷をつけないこと、または、被験者に対して負担を与えないことを意味する。
In addition, when the voluntary movement is a movement that is repeated regularly, the rhythm of the voluntary movement itself can be extracted more accurately. In addition, the voluntary exercise | movement repeated regularly includes not only that the completely same exercise | movement is repeated, but repeating substantially the same exercise | movement.
Non-invasive means, for example, that the body of the subject is not damaged or that the subject is not burdened.
 体動信号検出装置10は、例えば、携帯可能に構成される。なお、体動信号検出装置10の被験者への取り付け位置は、体の動きを検知できる部位であれば、特に制限はない。
 体動信号検出装置10は、例えば、体動信号検出部11,記憶部12およびインターフェース部13をそなえる。体動信号検出部11,記憶部12およびインターフェース部13は、相互に通信可能に接続されている。
The body motion signal detection device 10 is configured to be portable, for example. In addition, if the attachment position to the test subject of the body motion signal detection apparatus 10 is a site | part which can detect a body movement, there will be no restriction | limiting in particular.
The body motion signal detection device 10 includes, for example, a body motion signal detection unit 11, a storage unit 12, and an interface unit 13. The body motion signal detection unit 11, the storage unit 12, and the interface unit 13 are connected to be communicable with each other.
 体動信号検出部11は、例えば、随意運動に伴う繰り返しリズム運動を体動信号(生体の随意運動に伴う繰り返しリズム運動に基づく信号)として検出(測定)する。すなわち、体動信号検出部11は、生体の随意運動に伴う繰り返しリズム運動に基づく信号を体動信号として検出する。異なる観点から見れば、一つの体動信号検出部11は、例えば、生体の随意運動に伴う繰り返しリズム運動を体動信号として検出する。具体的には、被験者のリズム運動による、例えば、力の変化、空間的な身体の位置の変化、身体から発する音、電磁波等の波または微細エネルギーの変化または身体の周りにおける場の変化等を体動信号として検出(測定)する。すなわち、体動信号検出部11は、随意運動に伴う繰り返しリズム運動に基づく信号を測定する。 The body motion signal detection unit 11 detects (measures), for example, a repetitive rhythm motion associated with a voluntary motion as a body motion signal (a signal based on a repetitive rhythm motion associated with a voluntary motion of a living body). That is, the body motion signal detection unit 11 detects a signal based on a repetitive rhythm movement accompanying a voluntary movement of a living body as a body motion signal. From a different point of view, one body motion signal detection unit 11 detects, for example, a repetitive rhythm motion accompanying a voluntary motion of a living body as a body motion signal. Specifically, the subject's rhythmic movements, for example, force changes, spatial body position changes, sounds emitted from the body, waves such as electromagnetic waves or fine energy changes, or field changes around the body, etc. Detect (measure) as a body motion signal. That is, the body motion signal detection unit 11 measures a signal based on repetitive rhythm movement accompanying voluntary movement.
 ここで、体動信号検出部11は、例えば、加速度センサ,速度センサ,ジャイロセンサ等の慣性センサにより実現される。上記体動信号を検出する慣性センサについては、例えば、検出する信号の種類に応じて適宜選択される。通常、歩行リズムを検出する場合には、体の動きの加速度を測定する加速度センサが好ましく用いられるが、加速度センサに限定されるものではない。 Here, the body motion signal detection unit 11 is realized by an inertial sensor such as an acceleration sensor, a speed sensor, or a gyro sensor, for example. About the inertial sensor which detects the said body motion signal, it selects suitably according to the kind of signal to detect, for example. Usually, when detecting a walking rhythm, an acceleration sensor that measures acceleration of body movement is preferably used, but is not limited to an acceleration sensor.
 また、加速度センサとしては、一軸~三軸のものを任意に用いることができるが、歩行時における鉛直方向、水平前後方向、及び水平左右方向の三方向へ作用する加速度を検出するための三軸加速度センサを用いることが好ましいが、三軸加速度センサに限定されるものではない。
 なお、体動信号検出部11は、例えば、所定のサンプリング周波数(例えば、100Hz)で体動信号を測定する。
As the acceleration sensor, a single-axis to three-axis sensor can be arbitrarily used, but the three axes for detecting acceleration acting in three directions of the vertical direction, the horizontal front-rear direction, and the horizontal left-right direction during walking. Although an acceleration sensor is preferably used, it is not limited to a triaxial acceleration sensor.
Note that the body motion signal detection unit 11 measures the body motion signal at a predetermined sampling frequency (for example, 100 Hz), for example.
 記憶部12は、例えば、RAM(Random Access Memory),HDD(Hard Disk Drive),SSD(Solid State Drive),フラッシュメモリ等の各種情報を記憶可能な記憶装置である。記憶部12は、具体的には、例えば、体動信号検出部11によって得られた体動信号を記憶する。また、記憶部12は、例えば、体動信号検出装置10に対して着脱自在に設けられてもよいし、体動信号検出装置10に固定されてもよい。 The storage unit 12 is a storage device capable of storing various information such as RAM (Random Access Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), flash memory, and the like. Specifically, the storage unit 12 stores the body motion signal obtained by the body motion signal detection unit 11, for example. Moreover, the memory | storage part 12 may be provided detachably with respect to the body motion signal detection apparatus 10, for example, and may be fixed to the body motion signal detection apparatus 10. FIG.
 インターフェース部13は、例えば、情報処理装置20と通信可能に接続されるインターフェースである。体動信号検出装置10が情報処理装置20と無線を介して接続されている場合には、例えば、インターフェース部13はアンテナを含むものである。また、体動信号検出装置10が情報処理装置20と有線を介して接続されている場合には、例えば、インターフェース部13は、有線に接続可能な接続端子である。なお、記憶部12が、例えば、体動信号検出装置10に設けられたスロットに対して着脱自在に設けられており、記憶部12を体動信号検出装置10から取り外して情報処理装置20に接続する場合には、インターフェース部13は、体動信号検出装置10に設けられなくてもよい。
 情報処理装置20は、例えば、PC(Personal Computer)であり、体動信号検出装置10により得られた体動信号から後述する評価係数を算出する。
The interface unit 13 is an interface connected to the information processing apparatus 20 so as to be communicable, for example. When the body motion signal detection device 10 is connected to the information processing device 20 via wireless, for example, the interface unit 13 includes an antenna. In addition, when the body motion signal detection device 10 is connected to the information processing device 20 via a wire, for example, the interface unit 13 is a connection terminal that can be connected to a wire. The storage unit 12 is detachably provided, for example, in a slot provided in the body motion signal detection device 10, and the storage unit 12 is detached from the body motion signal detection device 10 and connected to the information processing device 20. In this case, the interface unit 13 may not be provided in the body motion signal detection device 10.
The information processing apparatus 20 is, for example, a PC (Personal Computer), and calculates an evaluation coefficient to be described later from the body motion signal obtained by the body motion signal detection apparatus 10.
 情報処理装置20は、例えば、中央演算部21,記憶部22,出力部23およびインターフェース部24をそなえる。ここで、中央演算部21,記憶部22,出力部23およびインターフェース部24は、相互に通信可能に接続されている。
 記憶部22は、例えば、RAM,HDD,SSD等の、アプリケーションプログラム及びデータを格納可能な記憶装置であり、各種情報を記憶する。
The information processing apparatus 20 includes, for example, a central processing unit 21, a storage unit 22, an output unit 23, and an interface unit 24. Here, the central processing unit 21, the storage unit 22, the output unit 23, and the interface unit 24 are connected to be communicable with each other.
The storage unit 22 is a storage device that can store application programs and data, such as RAM, HDD, and SSD, and stores various types of information.
 中央演算部21は、例えば、記憶部22に記憶された各種アプリケーションプログラムを実行することにより種々の演算または制御を行ない、これにより、各種機能を実現する処理装置である。
 例えば、中央演算部21は、記憶部22に記憶された情報処理用プログラムを実行することにより、時定数決定部211,リズム抽出部212,評価係数決定部213,判定部214および出力制御部215として機能する。すなわち、情報処理用プログラムは、中央演算部21を、時定数決定部211,リズム抽出部212,評価係数決定部213,判定部214および出力制御部215として機能させるプログラムである。
The central processing unit 21 is a processing device that performs various calculations or controls by executing various application programs stored in the storage unit 22, thereby realizing various functions.
For example, the central processing unit 21 executes an information processing program stored in the storage unit 22 to thereby execute a time constant determination unit 211, a rhythm extraction unit 212, an evaluation coefficient determination unit 213, a determination unit 214, and an output control unit 215. Function as. That is, the information processing program is a program that causes the central processing unit 21 to function as the time constant determination unit 211, the rhythm extraction unit 212, the evaluation coefficient determination unit 213, the determination unit 214, and the output control unit 215.
 時定数決定部211は、例えば、体動信号検出部11により得られた体動信号を記憶部12から取得し、取得した体動信号に基づいて、随意運動自体のリズムを表す信号(以下、単に運動リズムという場合がある)を抽出するために用いる時定数を算出する。すなわち、運動リズムは、生体の繰り返し随意運動を表す信号に相当する。また、運動リズムが含まれる体動信号は一つの体動信号検出部11により検出された信号であるため、生体の繰り返し随意運動を表す信号は一つの体動信号検出部11(検出部)により検出された信号である。 The time constant determination unit 211 acquires, for example, the body motion signal obtained by the body motion signal detection unit 11 from the storage unit 12, and based on the acquired body motion signal, a signal (hereinafter, referred to as a rhythm of voluntary exercise itself). The time constant used to extract the motion rhythm is sometimes calculated. In other words, the movement rhythm corresponds to a signal representing repeated voluntary movement of the living body. In addition, since the body motion signal including the motion rhythm is a signal detected by one body motion signal detection unit 11, a signal representing repeated voluntary movement of the living body is generated by one body motion signal detection unit 11 (detection unit). It is a detected signal.
 具体的には、時定数決定部211は、以下の処理を行なうことで、時定数を決定する。
 (1)時定数決定部211は、体動信号Xを、ある時定数Aで特徴付けられるハイパスフィルタ、あるいはバンドパスフィルタにかける。ここで、例えば、ハイパスフィルタとしては、体動信号Xを時間幅(時定数)Aのゼロ位相移動平均フィルタで平滑化する処理をF(X,A)と記載するとき、出力波形(信号)Y=X-F(X,A)で表現される処理を行なう。また、例えば、バンドパスフィルタとしては、Y=F(X-F(X,A),A/2.5)で表現される処理を行なう。ここで、ゼロ位相移動平均フィルタとは、位相ずれが0である移動平均フィルタを指す。なお、ゼロ位相移動平均フィルタは既知の種々の手法を用いて実現可能であり、詳細な説明は省略する。なお、バンドパスフィルタの時定数の一例として、A/2.5としているが、これに限定されるものではない。
Specifically, the time constant determination unit 211 determines the time constant by performing the following processing.
(1) The time constant determining unit 211 applies the body motion signal X to a high-pass filter or a band-pass filter characterized by a certain time constant A. Here, for example, as a high-pass filter, when the process of smoothing the body motion signal X with a zero phase moving average filter having a time width (time constant) A is described as F (X, A), the output waveform (signal) The process expressed by Y = XF (X, A) is performed. Further, for example, as a bandpass filter, processing represented by Y = F (XF (X, A), A / 2.5) is performed. Here, the zero phase moving average filter refers to a moving average filter whose phase shift is zero. The zero phase moving average filter can be realized by using various known methods, and detailed description thereof is omitted. An example of the time constant of the bandpass filter is A / 2.5, but the present invention is not limited to this.
 (2)次に、時定数決定部211は、出力波形Yの規則性を数値化する。時定数決定部211は、例えば、出力波形Yの極大及び極小のピークにおける値の絶対値のCV(=標準偏差/平均値:Coefficient of Variation)を求める。より具体的には、時定数決定部211は、出力波形Yから、極大および極小のピークを抽出し、ピーク位置における波形の振幅の絶対値を求め、求められた波形の振幅から標準偏差および平均値を求める。そして、時定数決定部211は、標準偏差を平均値で除することで、分散すなわちCVを算出する。 (2) Next, the time constant determination unit 211 quantifies the regularity of the output waveform Y. The time constant determination unit 211 obtains, for example, CV (= standard deviation / average value: CoefficientCoofariVariation) of the absolute value of the value at the maximum and minimum peaks of the output waveform Y. More specifically, the time constant determination unit 211 extracts the maximum and minimum peaks from the output waveform Y, obtains the absolute value of the amplitude of the waveform at the peak position, and calculates the standard deviation and the average from the obtained waveform amplitude. Find the value. Then, the time constant determination unit 211 calculates the variance, that is, CV by dividing the standard deviation by the average value.
 (3)さらに、時定数決定部211は、時定数Aを変化させた場合の出力波形Yの規則性を求める。時定数決定部211は、例えば、時定数Tを変化させた場合の出力波形Yの規則性をグラフ化する。具体的には、時定数決定部211は、例えば、時定数Aを変化させた場合の、各時定数AにおけるCVを算出することで、時定数Aに対する出力波形Yの規則性の変化を求める。
 なお、時定数決定部211における出力波形Yの規則性の数値化として、出力波形Yのピークにおける絶対値のCVを利用する例を述べたが、この例に限定されるものではない。
 (4)時定数決定部211は、上記(3)の処理で求められた時定数Aに対する出力波形Yの規則性の変化(CVの変化)から、極小点を求める。そして、時定数決定部211は、例えば、求められた極小点(例えば2つの極小点)のうち時定数Aの小さい方の極小点に対応する時定数Aを、運動リズムを体動信号から分離して抽出するための時定数(以下、第1時定数という場合がある)として決定する。すなわち、時定数決定部211は、なるべく規則性のあるような波形を分離して抽出することが可能となる時定数を選択する。言い換えれば、時定数決定部211は、複数の極小点(例えば2点)を選択し時定数Aの小さい方の極小点に対応する時定数を第1時定数として決定する。すなわち、時定数決定部211は、体動信号に対してバンドパスフィルタを適用した場合の出力に基づいて第1時定数を決定する。
(3) Furthermore, the time constant determination unit 211 obtains regularity of the output waveform Y when the time constant A is changed. The time constant determination unit 211 graphs the regularity of the output waveform Y when the time constant T is changed, for example. Specifically, the time constant determination unit 211 calculates a change in the regularity of the output waveform Y with respect to the time constant A by, for example, calculating the CV at each time constant A when the time constant A is changed. .
In addition, although the example using the absolute value CV at the peak of the output waveform Y has been described as the quantification of the regularity of the output waveform Y in the time constant determination unit 211, it is not limited to this example.
(4) The time constant determination unit 211 obtains a minimum point from the change in regularity (change in CV) of the output waveform Y with respect to the time constant A obtained in the process of (3) above. Then, the time constant determination unit 211 separates the motion rhythm from the body motion signal, for example, the time constant A corresponding to the minimum point with the smaller time constant A among the obtained minimum points (for example, two minimum points). Thus, it is determined as a time constant for extraction (hereinafter sometimes referred to as a first time constant). That is, the time constant determination unit 211 selects a time constant that enables separation and extraction of a waveform having regularity as much as possible. In other words, the time constant determination unit 211 selects a plurality of minimum points (for example, two points) and determines the time constant corresponding to the minimum point with the smaller time constant A as the first time constant. That is, the time constant determination unit 211 determines the first time constant based on the output when the band pass filter is applied to the body motion signal.
 なお、上記(1)~(4)の過程で、体動信号をN階積分(N=1,2,3.…)する過程を含めた方がノイズ除去の観点から好ましい。N階積分する場合、上記(1)の処理(フィルタ処理)をN回以上施すことが好ましい。積分操作とフィルタ処理の順番は、例えば、以下の条件の下であればどのような順番でも良い。
・フィルタ処理は2回以上連続して行わない。
・フィルタ処理のうち1回は積分処理がすべて終了してから行う。
・フィルタ処理を2回以上行う場合、最後の1回を除いて、そのフィルタはハイパスフィルタとする。
In addition, it is preferable from the viewpoint of noise removal that the process of (1) to (4) includes the process of performing N-order integration (N = 1, 2, 3,...) Of the body motion signal. When performing N-order integration, it is preferable to perform the process (1) (filter process) N times or more. The order of the integration operation and the filtering process may be any order as long as the following conditions are satisfied, for example.
・ Do not perform the filter process more than once in succession.
・ At least once in the filter process, the integration process is completed.
-When the filter process is performed twice or more, the filter is a high-pass filter except for the last one.
 リズム抽出部212は、例えば、体動信号検出部11により得られた体動信号を記憶部12から取得し、時定数決定部211により決定された第1時定数(A1)を用いて、フィルタリング処理を行なうことで体動信号から運動リズムを抽出する。
 具体的には、リズム抽出部212は、例えば、以下の処理(フィルタリング処理)を行なうことで体動信号から運動リズムを抽出する。なお、下記の処理は、例示であり、この例に限定されるものではない。
For example, the rhythm extraction unit 212 acquires the body motion signal obtained by the body motion signal detection unit 11 from the storage unit 12, and performs filtering using the first time constant (A1) determined by the time constant determination unit 211. By processing, the movement rhythm is extracted from the body movement signal.
Specifically, the rhythm extraction unit 212 extracts an exercise rhythm from the body motion signal by performing the following process (filtering process), for example. In addition, the following process is an illustration and is not limited to this example.
 (5)例えば、リズム抽出部212は、体動信号に対して、第1時定数のゼロ位相移動平均フィルタを施すことで、体動信号の低周波成分を求める。すなわち、リズム抽出部212は、体動信号に対して、F(X,A1)で表される処理を行なう。次に、リズム抽出部212は、体動信号から、F(X,A1)で表される処理を行なうことで求められた低周波成分を引く。すなわち、リズム抽出部212は、Y=X-F(X,A1)を求める。言い換えれば、リズム抽出部212は、第1時定数を用いて、体動信号に対してハイパスフィルタリングを行なう。 (5) For example, the rhythm extraction unit 212 obtains a low-frequency component of the body motion signal by applying a zero phase moving average filter having a first time constant to the body motion signal. That is, the rhythm extraction unit 212 performs processing represented by F (X, A1) on the body motion signal. Next, the rhythm extraction unit 212 subtracts the low-frequency component obtained by performing the processing represented by F (X, A1) from the body motion signal. In other words, the rhythm extraction unit 212 calculates Y = X−F (X, A1). In other words, the rhythm extraction unit 212 performs high-pass filtering on the body motion signal using the first time constant.
 なお、このハイパスフィルタリングによって、例えば、後述する積分処理において発散防止が可能となる。
 (6)次に、リズム抽出部212は、ハイパスフィルタリング後の信号に対して積分を行なう。積分の階数は任意であり、例えば、リズム抽出部212は、ハイパスフィルタリング後の信号に対して2階積分を行なう。
Note that this high-pass filtering makes it possible to prevent divergence, for example, in an integration process described later.
(6) Next, the rhythm extraction unit 212 performs integration on the signal after the high-pass filtering. For example, the rhythm extraction unit 212 performs second-order integration on the signal after the high-pass filtering.
 (7)リズム抽出部212は、処理(11)における積分後の信号X2に対して、(10)と同様の処理を行なう。すなわち、リズム抽出部212は、積分後の体動信号に対して、F(X2,A1)で表される処理を行なう。言い換えれば、リズム抽出部212は、第1時定数を用いて、積分後の信号である積分信号に対してハイパスフィルタリングを行なう。
 (8)さらに、リズム抽出部212は、上記(12)の処理で得られた信号の極大値を結ぶ包絡線と、極小値を結ぶ包絡線とを作成し、これらの2本の包絡線の平均からなる信号を、上記(12)の処理で得られた信号から引く処理を行なう。この処理により得られた信号の振幅は、振幅の値0を挟んで変化することとなるため、後述するヒルベルト変換法を用いる場合において、位相を正確に求めることが可能となる。なお、この処理は省略してもよい。
(7) The rhythm extraction unit 212 performs the same processing as (10) on the signal X2 after integration in the processing (11). That is, the rhythm extraction unit 212 performs processing represented by F (X2, A1) on the integrated body motion signal. In other words, the rhythm extraction unit 212 performs high-pass filtering on the integrated signal that is the signal after integration, using the first time constant.
(8) Furthermore, the rhythm extraction unit 212 creates an envelope connecting the maximum values of the signal obtained by the processing of (12) and an envelope connecting the minimum values, and the two envelopes A process of subtracting the average signal from the signal obtained in the process (12) is performed. Since the amplitude of the signal obtained by this processing changes with the amplitude value 0 interposed therebetween, the phase can be accurately obtained when the Hilbert transform method described later is used. This process may be omitted.
 上記(5)~(8)の過程により、リズム抽出部212は、体動信号から運動リズムを抽出する。すなわち、リズム抽出部212は、体動信号にフィルタリング処理を施すことにより、体動信号から、随意運動のリズム(運動リズム)を抽出するリズム抽出部として機能する。従って、体動信号から、例えば歩行リズムの同調性を評価する場合には、あらかじめ歩行領域を抽出してもよいし、そのような前処理を施さなくてもよい。
 なお、上記(6)の過程で、体動信号を2階積分しているが、積分処理の実施に限定されるものではなく、積分処理を行なわなくてもよい。また、2階積分に限定されるものではなく、N階積分を行なってもよい(N=1,2,3,…)。なお、N階積分する場合、上記(5)[または(7)]の処理(フィルタ処理)をN回以上施すことが好ましい。積分操作とフィルタ処理の順番は、例えば、以下の条件の下であればどのような順番でも良い。
・フィルタ処理は2回以上連続して行わない。
・フィルタ処理のうち1回は積分処理がすべて終了してから行う。
・フィルタ処理を2回以上行う場合、最後の1回を除いて、そのフィルタはハイパスフィルタとする。
Through the processes (5) to (8), the rhythm extraction unit 212 extracts an exercise rhythm from the body motion signal. That is, the rhythm extraction unit 212 functions as a rhythm extraction unit that extracts a rhythm (voluntary rhythm) of voluntary exercise from the body motion signal by performing filtering processing on the body motion signal. Therefore, for example, when evaluating the synchrony of the walking rhythm from the body motion signal, the walking area may be extracted in advance, or such preprocessing may not be performed.
In the process of (6), the body motion signal is second-order integrated. However, the integration is not limited to the integration process, and the integration process may not be performed. Further, the present invention is not limited to the second order integration, and Nth order integration may be performed (N = 1, 2, 3,...). In addition, when performing N-order integration, it is preferable to perform the process (filter process) of (5) [or (7)] N times or more. The order of the integration operation and the filtering process may be any order as long as the following conditions are satisfied, for example.
・ Do not perform the filter process more than once in succession.
・ At least once in the filter process, the integration process is completed.
-When the filter process is performed twice or more, the filter is a high-pass filter except for the last one.
 評価係数決定部213は、例えば、運動リズムの位相に基づいて、運動リズムの同調性を評価するための評価係数を決定する。ここで、位相とは、時間的に繰り返されるリズムを、円周上を回転する運動と見立て、リズム波形上の各点が何度の回転角度に相当するかを表す指標である。例えば、正弦波において隣り合う二つのピーク点の位相には360度の差がある。図2は、運動リズムの一例を示す図であり、図中のピークは、例えば、被験者の右足の着地、または、左足の着地に対応する。ここで、評価係数の一例は、例えば、図2に示す運動リズムの一例において、一方の足(例えば、右足)に対応するピーク間における一方の足に対応するピークと他方の足に対応するピークとの時間間隔をそれぞれ第1時間T1,第2時間T2として、下記(1)式により求められる。なお、運動リズムの同調性を評価するための評価係数は、この評価係数に限定されるものではない。例えば、下記(1)式では、第1時間T1と第2時間T2とが等しいときの評価係数の値は0となるが、0に限定されるものではない。例えば、第1時間T1と第2時間T2とが等しいときの評価係数の値を1等0以外の値となるような評価係数の算出式を用いてもよい。すなわち、評価係数の算出式は下記(1)式に限定されるものではない。なお、下記(1)式は、一方の足の着地から他方の足の着地までの時間と他方の足の着地から一方の足の着地までの時間との差の半分と、一方の足の着地から他方の足の着地までの時間と他方の足の着地から一方の足の着地までの時間との和との比を表している。 The evaluation coefficient determination unit 213 determines an evaluation coefficient for evaluating the synchronization of the motor rhythm based on, for example, the phase of the motor rhythm. Here, the phase is an index representing how many rotation angles each point on the rhythm waveform corresponds to, assuming that a rhythm that repeats in time is a movement rotating on the circumference. For example, there is a difference of 360 degrees between the phases of two adjacent peak points in a sine wave. FIG. 2 is a diagram illustrating an example of an exercise rhythm, and the peak in the figure corresponds to, for example, the landing of the subject's right foot or the left foot. Here, an example of the evaluation coefficient is, for example, the peak corresponding to one foot and the peak corresponding to the other foot between the peaks corresponding to one foot (for example, the right foot) in the example of the exercise rhythm shown in FIG. Are obtained by the following equation (1), where the time intervals are as the first time T1 and the second time T2, respectively. Note that the evaluation coefficient for evaluating the synchrony of the exercise rhythm is not limited to this evaluation coefficient. For example, in the following formula (1), the value of the evaluation coefficient when the first time T1 and the second time T2 are equal is 0, but is not limited to 0. For example, an evaluation coefficient calculation formula may be used so that the value of the evaluation coefficient when the first time T1 and the second time T2 are equal is a value other than 0 such as 1 or the like. That is, the calculation formula for the evaluation coefficient is not limited to the following formula (1). In addition, the following formula (1) indicates that the difference between the time from the landing of one foot to the landing of the other foot and the time from the landing of the other foot to the landing of one foot, and the landing of one foot Represents the ratio of the time from the landing of the other foot to the sum of the time from the landing of the other foot to the landing of the one foot.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、図2においては、一方の足(例えば、右足)に対応するピーク間における一方の足に対応するピークと他方の足に対応するピークとの時間間隔をそれぞれ第1時間T1,第2時間T2としたが、ピーク間の時間間隔に限定されるものではない。例えば、第1時間T1は、運動リズムのピークに相当しない所定の位置から位相が360度変化するまでの時間であってもよい。さらに、例えば、第2時間T2は、運動リズムのピークに相当しない所定の位置から位相が360度変化した位置から、さらに位相が360度変化するまでの時間であってもよい。 In FIG. 2, the time intervals between the peak corresponding to one foot and the peak corresponding to the other foot between the peaks corresponding to one foot (for example, the right foot) are respectively the first time T1 and the second time. Although it was set as T2, it is not limited to the time interval between peaks. For example, the first time T1 may be a time until the phase changes by 360 degrees from a predetermined position that does not correspond to the peak of the movement rhythm. Further, for example, the second time T2 may be a time from a position where the phase has changed 360 degrees from a predetermined position not corresponding to the peak of the movement rhythm to a further change in phase by 360 degrees.
 なお、第1時間T1は、運動リズムのピーク、またはピークに相当しない所定の位置から位相が360度変化するまでの時間であり、第2時間T2は、運動リズムのピーク、またはピークに相当しない所定の位置から位相が360度変化した位置から、さらに位相が360度変化するまでの時間であるとしたが、これに限定されない。例えば、第1時間T1は、運動リズムのピーク、またはピークに相当しない所定の位置から位相が-360度変化するまでの時間(所定の位置から360度遡った時間)であり、第2時間T2は、運動リズムのピーク、またはピークに相当しない所定の位置から位相が-360度変化した位置から、さらに位相が-360度変化するまでの時間(所定の位置から720度遡った時間)であってもよい。また、例えば、第1時間T1は、運動リズムのピーク、またはピークに相当しない所定の位置から位相が360度変化するまでの時間であり、第2時間T2は、運動リズムのピーク、またはピークに相当しない所定の位置から位相が-360度変化するまでの時間(所定の位置から360度遡った時間)であってもよい。 The first time T1 is the time until the phase changes 360 degrees from the peak of the movement rhythm or a predetermined position not corresponding to the peak, and the second time T2 does not correspond to the peak or peak of the movement rhythm. Although it is the time from the position where the phase has changed 360 degrees from the predetermined position until the phase has changed 360 degrees, the present invention is not limited to this. For example, the first time T1 is a time until the phase changes by -360 degrees from a predetermined position that does not correspond to the peak of the movement rhythm or a peak (a time that goes back 360 degrees from the predetermined position), and the second time T2 Is the time from when the phase changes by -360 degrees from a predetermined position that does not correspond to the peak of the motor rhythm or when the phase changes by -360 degrees (time that goes back from the predetermined position by 720 degrees). May be. Further, for example, the first time T1 is a time until the phase changes by 360 degrees from a predetermined position not corresponding to the peak of the movement rhythm or the peak, and the second time T2 is a peak or peak of the movement rhythm. It may be a time until the phase changes by -360 degrees from a predetermined position that does not correspond (a time that is 360 degrees backward from the predetermined position).
 ところで、第1時間T1を所定の位置から360度遡った時間として設定する場合、または、第2時間T2を所定の位置から360度または720度遡った時間として設定する場合、第1時間T1及び第2時間T2の値が負となる場合がある。このような場合には、数1に代入する第1時間T1及び第2時間T2に留意する必要がある。 By the way, when the first time T1 is set as a time that goes back 360 degrees from the predetermined position, or when the second time T2 is set as a time that goes back 360 degrees or 720 degrees from the predetermined position, the first time T1 and The value of the second time T2 may be negative. In such a case, it is necessary to pay attention to the first time T1 and the second time T2 that are substituted into Equation 1.
 評価係数決定部213は、時刻算出部223および評価係数算出部233をそなえる。
 時刻算出部223は、例えば、運動リズムの位相を算出することで、所定の時刻(任意の時刻)における運動リズムの位相から位相が所定角度(以下、第1角度という場合がある)変化した時刻(第1時刻)および、所定の時刻における運動リズムの位相から位相が第1角度の2倍変化した時刻(第2時刻)を算出する。
The evaluation coefficient determination unit 213 includes a time calculation unit 223 and an evaluation coefficient calculation unit 233.
For example, the time calculation unit 223 calculates the movement rhythm phase, thereby changing the phase from the movement rhythm phase at a predetermined time (arbitrary time) by a predetermined angle (hereinafter sometimes referred to as a first angle). (First time) and a time (second time) at which the phase changes twice the first angle from the phase of the motion rhythm at a predetermined time.
 また、時刻算出部223は、例えば、所定の時刻から第1時刻までの時間(第1時間: T1)を算出することができる。また、時刻算出部223は、例えば、第1時刻から第2時刻までの時間(第2時間:T2)を算出することができる。
 ここで、第1角度とは、例えば、180度または360度の正の値である。なお、本願において、360度とは、厳密に360度である場合および略360度である場合を含み、同様に、180度とは、厳密に180度である場合および略180度である場合を含む。
The time calculation unit 223 can calculate, for example, a time from a predetermined time to the first time (first time: T1). In addition, the time calculation unit 223 can calculate, for example, a time from the first time to the second time (second time: T2).
Here, the first angle is, for example, a positive value of 180 degrees or 360 degrees. In the present application, 360 degrees includes a case of strictly 360 degrees and a case of approximately 360 degrees. Similarly, 180 degrees includes a case of strictly 180 degrees and a case of approximately 180 degrees. Including.
 なお、時刻算出部223は、例えば、運動リズムの位相を算出することで、所定の時刻(任意の時刻)における運動リズムの位相から位相が第1角度遡った時刻(所定角度遡った時刻も、第1時刻に含めることとする。)および、所定の時刻における運動リズムの位相から位相が第1角度の2倍変化した時刻(第1角度の倍遡った時刻も、第2時刻に含めることとする。)を算出するようにしてもよい。つまり第1角度は、例えば、-180度または-360度の負の値であっても構わない。この場合、時刻算出部223は、第1時刻から所定の時刻までの時間(第1時間: T1)を算出することができる。また、時刻算出部223は、第2時刻から所定の時刻までの時間(第2時間:T2)を算出することができる。 The time calculation unit 223 calculates, for example, the phase of the movement rhythm, for example, the time that the phase goes back the first angle from the phase of the movement rhythm at a predetermined time (arbitrary time) And the time when the phase has changed twice the first angle from the phase of the movement rhythm at the predetermined time (the time that is double the first angle is also included in the second time) May be calculated. That is, the first angle may be a negative value of −180 degrees or −360 degrees, for example. In this case, the time calculation unit 223 can calculate the time from the first time to the predetermined time (first time: T1). In addition, the time calculation unit 223 can calculate the time from the second time to a predetermined time (second time: T2).
 さらに、時刻算出部223は、所定の時刻(任意の時刻)における運動リズムの位相から位相が第1角度変化した時刻(第1時刻)および、所定の時刻における運動リズムの位相から位相が第1角度の-1倍変化した時刻を算出するようにしてもよい。この場合、時刻算出部223は、所定の時刻から第1時刻までの時間(第1時間: T1)を算出することができる。また、時刻算出部223は、第2時刻から所定の時刻までの時間(第2時間:T2)を算出することができる。
 以下では、評価係数算出部233が第1時刻(第1時刻は所定の時刻よりも大きい)及び第2時刻(第2時刻は第1時刻よりも大きい)を算出する場合について説明することとする。第1時刻(第1時刻は所定の時刻よりも小さい)及び第2時刻(第2時刻は第1時刻よりも小さい)を算出する場合、及び第1時刻(第1時刻は所定の時刻よりも大きい)及び第2時刻(第2時刻は所定の時刻よりも小さい)を算出する場合についても、その演算手法は同様である。
Further, the time calculation unit 223 has a phase (first time) when the phase changes from the phase of the motion rhythm at a predetermined time (arbitrary time) and a phase from the phase of the motion rhythm at the predetermined time. You may make it calculate the time which changed -1 time of the angle. In this case, the time calculation unit 223 can calculate the time from the predetermined time to the first time (first time: T1). In addition, the time calculation unit 223 can calculate the time from the second time to a predetermined time (second time: T2).
Hereinafter, a case where the evaluation coefficient calculation unit 233 calculates the first time (the first time is larger than the predetermined time) and the second time (the second time is larger than the first time) will be described. . When calculating the first time (the first time is smaller than the predetermined time) and the second time (the second time is smaller than the first time), and the first time (the first time is smaller than the predetermined time) The calculation method is the same in the case of calculating the (large) and second time (the second time is smaller than the predetermined time).
 時刻算出部223は、例えば、ヒルベルト変換法またはパターンマッチング法を用いて、運動リズムの位相を算出する。なお、位相を算出する方法は、ヒルベルト変換法またはパターンマッチング法に限定されるものではない。
 ここで、ヒルベルト変換法は、波形の所定の位置における位相を具体的に算出する手法であり、パターンマッチング法は直接的に位相を特定しないが、互いに位相が360度ずれた点を見つける手法である。すなわち、パターンマッチング法は、波形の所定の位置から位相が360度の整数倍ずれた点を見つける手法である。言い換えれば、パターンマッチング法は、波形の所定の位置に対する相対的な位相(例えば360度)を算出する。
The time calculation unit 223 calculates the phase of the motion rhythm using, for example, the Hilbert transform method or the pattern matching method. Note that the method for calculating the phase is not limited to the Hilbert transform method or the pattern matching method.
Here, the Hilbert transform method is a method for specifically calculating the phase at a predetermined position of the waveform, and the pattern matching method is not a method for directly specifying the phase, but is a method for finding points where the phases are mutually shifted by 360 degrees. is there. That is, the pattern matching method is a method of finding a point whose phase is shifted by an integral multiple of 360 degrees from a predetermined position of the waveform. In other words, the pattern matching method calculates a relative phase (for example, 360 degrees) with respect to a predetermined position of the waveform.
 評価係数算出部233は、例えば、時刻算出部223によって算出された、第1時刻および第2時刻に基づいて、評価係数を算出する。例えば、評価係数算出部233は、時刻算出部223によって算出された第1時刻および第2時刻に基づいて第1時間および第2時間を算出し、第1時間および第2時間を上記(1)式に代入することで、評価係数を算出する。すなわち、評価係数算出部233は、第1時刻および第2時刻に基づいて、繰り返し随意運動の同調性を評価するための評価係数を算出する。 The evaluation coefficient calculation unit 233 calculates the evaluation coefficient based on the first time and the second time calculated by the time calculation unit 223, for example. For example, the evaluation coefficient calculation unit 233 calculates the first time and the second time based on the first time and the second time calculated by the time calculation unit 223, and sets the first time and the second time to the above (1). An evaluation coefficient is calculated by substituting it into the equation. That is, the evaluation coefficient calculation unit 233 calculates an evaluation coefficient for evaluating the synchrony of repeated voluntary movement based on the first time and the second time.
 まず、時刻算出部223が、ヒルベルト変換法を用いて位相変化量の比を算出する場合について説明する。
(A)ヒルベルト変換法を用いる場合
 ヒルベルト変換は、任意の実数時系列信号X(t)から対応する虚数部分Y(t)を導く数学的手法である。これにより、時刻算出部223は、下記(2)式からX(t)の位相θ(t)を直接的に求めることができる。すなわち、位相算出部224は、下記(2)式から所定時刻(所定位置)における運動リズムの位相を求めることができる。
First, a case where the time calculation unit 223 calculates the phase change amount ratio using the Hilbert transform method will be described.
(A) When using the Hilbert transform method The Hilbert transform is a mathematical method for deriving a corresponding imaginary part Y (t) from an arbitrary real time series signal X (t). Thereby, the time calculation unit 223 can directly obtain the phase θ (t) of X (t) from the following equation (2). That is, the phase calculation unit 224 can obtain the phase of the motion rhythm at a predetermined time (predetermined position) from the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、任意の時刻tにおける運動リズムの位相をθG(t)度とすると、時刻算出部223は、上記(2)式から、運動リズムの位相を求めることで、例えば、θG (t1)=θG (t)+360となるような時刻t1を求める。さらに、時刻算出部223は、例えば、θG (t2)=θG (t)+720となるような時刻t2を求める。 If the phase of the motion rhythm at an arbitrary time t is θG (t) degrees, the time calculation unit 223 obtains the phase of the motion rhythm from the above equation (2), for example, θG (t1) = θG (t) Find a time t1 such that +360. Further, the time calculation unit 223 obtains a time t2 such that, for example, θG) (t2) = θG (t) +720.
 そして、評価係数算出部233は、例えば、時刻算出部223によって算出された時刻t1および時刻t2を用いて、例えば、下記(3)式から評価係数を算出する。 And the evaluation coefficient calculation part 233 calculates an evaluation coefficient from the following (3) formula, for example using the time t1 and the time t2 which were calculated by the time calculation part 223, for example.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、(3)式は、(1)式と等価な式である。なお、評価係数算出部233は、時刻t1および時刻t2に基づいて算出された第1時間T1および第2時間T2を用いて、上記(1)式から評価係数を算出してもよい。
 次に、時刻算出部223が、パターンマッチング法を用いて位相変化量の比を算出する場合について説明する。
(B)パターンマッチング法を用いる場合
 パターンマッチング法は二つの信号の類似性を定量化する手法である。類似度の定義または計算法は多数あるが、具体的には例えば、「画像処理工学(末松良一・山田宏尚著、コロナ社)」等に記載の方法が用いられる。最も代表的なのが自己相関係数である。例えば3次元の体動信号については以下のような計算を行う。
Note that equation (3) is equivalent to equation (1). Note that the evaluation coefficient calculation unit 233 may calculate the evaluation coefficient from the equation (1) using the first time T1 and the second time T2 calculated based on the time t1 and the time t2.
Next, a case where the time calculation unit 223 calculates the phase change amount ratio using the pattern matching method will be described.
(B) When using the pattern matching method The pattern matching method is a method for quantifying the similarity between two signals. There are many methods for defining or calculating the degree of similarity. Specifically, for example, a method described in “Image processing engineering (Ryoichi Suematsu, Hirohisa Yamada, Corona)” or the like is used. The most representative is the autocorrelation coefficient. For example, the following calculation is performed for a three-dimensional body motion signal.
 まず体動データから適当な基準波を選び出す。基準波の座標を下記(4)式とする。 First, select an appropriate reference wave from body motion data. The coordinate of the reference wave is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここでp個のx、y、zはそれぞれの平均値がゼロになっているとする。下記(5)式で自己相関係数が計算される。 Suppose that the average value of each of p pieces of x, y, and z is zero. The autocorrelation coefficient is calculated by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 これはいわゆるスカラー量であり、座標系のとり方に依存しない。すなわち、体動測定中に体動信号検出装置10が装着部位で回転のずれを起こしても同じ値となる。なお、1次元の信号についても同様にして計算する。
 上記パターンマッチング法を用いると、任意の時刻tにおけるリズム波形の位相か360度だけ位相がずれた時刻t1または720度だけ位相がずれた時刻t2等を容易に求めることができる。言い換えれば、時刻算出部223は、パターンマッチングを用いることで、時刻tにおける運動リズムの位相から、それぞれ360度の整数倍だけ位相がずれた時刻を求めることができる。
This is a so-called scalar quantity and does not depend on the coordinate system. That is, the same value is obtained even when the body motion signal detection device 10 causes a rotational shift at the wearing site during body motion measurement. The same calculation is performed for a one-dimensional signal.
By using the pattern matching method, it is possible to easily obtain the time t1 when the phase of the rhythm waveform at an arbitrary time t is shifted by 360 degrees, the time t2 when the phase is shifted by 720 degrees, or the like. In other words, by using pattern matching, the time calculation unit 223 can obtain a time whose phase is shifted by an integer multiple of 360 degrees from the phase of the motion rhythm at the time t.
 そして、評価係数算出部233は、例えば、時刻算出部223によって算出された時刻t1および時刻t2を用いて、例えば、上記(3)式から評価係数を算出する。なお、評価係数算出部233は、時刻t1および時刻t2に基づいて算出された第1時間T1および第2時間T2を用いて上記(1)式から評価係数を算出してもよい。 Then, the evaluation coefficient calculation unit 233 calculates the evaluation coefficient from the above equation (3), for example, using the time t1 and the time t2 calculated by the time calculation unit 223, for example. Note that the evaluation coefficient calculation unit 233 may calculate the evaluation coefficient from the equation (1) using the first time T1 and the second time T2 calculated based on the time t1 and the time t2.
 判定部214は、例えば、評価係数決定部213により求められた評価係数に基づいて、運動リズムの同調性の評価(判定)を行なう。すなわち、判定部214は、評価係数に基づいて、運動リズムの同期またはバランスを評価する。具体的には、例えば、随意運動が歩行等である場合には、判定部214は、左右の足運びの同調性、すなわち左右の足運びの同期またはバランスの評価を行なう。ここで、左右の足運びの同期の良否は、評価係数が時間によらず一定値を保っているか、または、評価係数が周期的に変化しているか否かにより判断する。例えば、判定部214は、評価係数が時間によらず一定値を保っている場合または評価係数が周期的に変化している場合、には、左右の足運びの同期は良いと判定する。また、左右の足運びのバランス良否は、上記(1)式を用いて評価係数を決定する場合、評価係数が0に近いか否かにより判断する。例えば、判定部214は、評価係数が0に近いほど左右の足運びのバランスが良いと判定する。 判定 Determining unit 214 evaluates (determines) exercise rhythm synchrony based on the evaluation coefficient obtained by evaluation coefficient determining unit 213, for example. That is, the determination unit 214 evaluates the synchronization or balance of the exercise rhythm based on the evaluation coefficient. Specifically, for example, when the voluntary movement is walking or the like, the determination unit 214 evaluates the synchronization of left and right footsteps, that is, the synchronization or balance of left and right footsteps. Here, whether the left and right footing is synchronized or not is determined based on whether the evaluation coefficient maintains a constant value regardless of time or whether the evaluation coefficient changes periodically. For example, the determination unit 214 determines that the left and right footsteps are synchronized when the evaluation coefficient maintains a constant value regardless of time or when the evaluation coefficient changes periodically. Further, whether the right / left footing balance is good or bad is determined based on whether or not the evaluation coefficient is close to 0 when the evaluation coefficient is determined using the equation (1). For example, the determination unit 214 determines that the left and right footing balance is better as the evaluation coefficient is closer to zero.
 具体的には、判定部214は、所定時間にわたる評価係数の変化から、例えば、以下のR,SおよびCの3つの指標を算出する。所定時間とは、例えば、随意運動が歩行である場合には、被験者が10歩程度の歩行に要する時間(例えば5秒)であるが、この時間に限定されるものではない。
(i)評価係数の範囲(0から最も離れた値):0±R
(ii)評価係数の標準偏差(ゆらぎの大きさ):S
(iii)平均歩行周期(図2または後述する図15におけるT1+T2)だけ時間をずらしたときの評価係数の自己相関係数(評価係数の周期性):C
 判定部214は、これらのR,SおよびCの3つの指標に基づいて、同調性の評価を行なう。図3は、判定部214の動作の一例を説明するための図である。
Specifically, the determination unit 214 calculates, for example, the following three indices R, S, and C from the change in the evaluation coefficient over a predetermined time. For example, when the voluntary movement is walking, the predetermined time is a time required for the subject to walk about 10 steps (for example, 5 seconds), but is not limited to this time.
(I) Evaluation coefficient range (value farthest from 0): 0 ± R
(Ii) Standard deviation (size of fluctuation) of evaluation coefficient: S
(Iii) Autocorrelation coefficient (periodicity of evaluation coefficient) when the time is shifted by the average walking period (T1 + T2 in FIG. 2 or FIG. 15 described later): C
The determination unit 214 evaluates synchrony based on these three indices R, S, and C. FIG. 3 is a diagram for explaining an example of the operation of the determination unit 214.
 図3に示すように、判定部214は、例えば、Rが0.02以下であれば、左右の足運び(歩行リズム)の同期および左右の足運びのバランスは非常に良い(図3中◎参照)と判断する。すなわち、判定部214は、評価係数が、所定時間(例えば5秒)にわたって、所定範囲(例えば0±0.02)内であるかを判定する判定部として機能する。
 また、判定部214は、例えば、Rが0.02以下ではないが、Sが、0.01以下である場合には、左右の足運びの同期および左右の足運びのバランスは良い(図3中○参照)と判断する。
As shown in FIG. 3, for example, if R is 0.02 or less, the determination unit 214 has a very good balance between left and right footing (walking rhythm) and right and left footing (in FIG. 3). Judgment). That is, the determination unit 214 functions as a determination unit that determines whether the evaluation coefficient is within a predetermined range (for example, 0 ± 0.02) over a predetermined time (for example, 5 seconds).
Further, for example, when R is not less than 0.02 but S is not more than 0.01, the determination unit 214 has a good balance between right and left footsteps and a right and left footstep balance (FIG. 3). Judgment)
 さらに、判定部214は、例えば、Rが0.02以下ではなく、かつ、Sが0.01以下ではない、場合には、Cに基づいて、左右の足運びの同期および左右の足運びのバランスを評価する。
 判定部214は、例えば、Cが0.5以上の場合には、左右の足運びの同期は良いが、左右の足運びのバランスは悪い(図3中×参照)と判断し、Cが0.5より小さく0.2以上の場合には、左右の足運びの同期は普通(図3中△参照)だが、左右の足運びのバランスは悪い(図3中×参照)と判断する。さらに、判定部214は、例えば、Cが0.2未満の場合には、左右の足運びの同期は悪く(図3中×参照)、左右の足運びのバランスは判定不能であると判定する。
Further, for example, in the case where R is not 0.02 or less and S is not 0.01 or less, the determination unit 214 synchronizes left and right footsteps and right and left footsteps based on C. Assess balance.
For example, when C is 0.5 or more, the determination unit 214 determines that the left and right footsteps are synchronized, but the left and right footsteps are not well balanced (see x in FIG. 3), and C is 0. If it is smaller than .5 and greater than 0.2, it is determined that the left and right footsteps are normally synchronized (see Δ in FIG. 3), but the left and right footsteps are not well balanced (see × in FIG. 3). Furthermore, for example, when C is less than 0.2, the determination unit 214 determines that the left and right footsteps are not synchronized (see “X” in FIG. 3), and the right and left footstep balance cannot be determined. .
 図3における数値(0.02,0.01,0.5および0.2)は例示であり、これらの数値に限定されるものではない。また、図3では、R,SおよびCの3つの指標を用いて5パターンの判定を行なっているが、この判定手法に限定されるものではなく、より細かい判定を行なってもよいし、より大まかな評価を行なうこととしてもよい。例えば、Rの値のみに基づいて2パターンの判定を行なうこととしてもよい。
 以上の他にも、判定部214では、所定時間にわたる評価係数の変化から、左右の足運びの同期および左右の足運びのバランスを、例えば以下のように直接指標化することもできる。所定時間とは、例えば、随意運動が歩行である場合には、被験者が10歩程度の歩行に要する時間(例えば5秒)であるが、この時間に限定されるものではない。
The numerical values (0.02, 0.01, 0.5, and 0.2) in FIG. 3 are examples, and are not limited to these numerical values. Further, in FIG. 3, five patterns are determined using three indexes R, S, and C, but the determination method is not limited to this, and finer determination may be performed. A rough evaluation may be performed. For example, two patterns may be determined based only on the value of R.
In addition to the above, the determination unit 214 can directly index the synchronization of left and right footsteps and the balance of left and right footsteps from the change in the evaluation coefficient over a predetermined time, for example, as follows. For example, when the voluntary movement is walking, the predetermined time is a time required for the subject to walk about 10 steps (for example, 5 seconds), but is not limited to this time.
 ここで、運動リズムの位相から算出された評価係数を時刻tの関数として、H(t)と記す。任意の時刻t1を起点として運動リズムの位相が720度変化したときの時刻をt2とする。
(i)左右の足運びのバランス:S1
 時刻t1≦t≦時刻t2の間におけるH(t)の標準偏差を求める。所定時間にわたり時刻t1を逐次変化させて標準偏差の時間変化を算出する。こうして得られた標準偏差の時系列データについて、所定時間内における平均値を求め、左右の足運びのバランスの指標S1とする。評価係数が(3)式で計算される場合、左右の足運びのバランスが完璧であればこの指標は0となり、バランスが崩れてくると0.5に近づく。歩行に問題のない成人であれば、この値は通常0.02以下となる。
(ii)左右の足運びの同期:S2
 H(t2)‐H(t1)の絶対値を求める。所定時間にわたり時刻t1を逐次変化させて絶対値の時間変化を算出する。次にこうして得られた絶対値の時系列データの包絡線を求める。具体的には例えば、ヒルベルト変換の式を用いる。すなわち、(2)式において絶対値をX(t)とした場合のA(t)が包絡線に相当する。所定時間内における包絡線の平均値を求め、左右の足運びの同期の指標S2とする。評価係数が(3)式で計算される場合、左右の足運びの同期が完璧であればこの指標は0となり、同期が崩れてくると1に近づく。歩行に問題のない成人であれば、この値は通常0.02以下となる。
Here, the evaluation coefficient calculated from the phase of the movement rhythm is denoted as H (t) as a function of time t. Let t2 be the time when the phase of the motion rhythm has changed by 720 degrees starting from an arbitrary time t1.
(I) Balance of left and right foot travel: S1
The standard deviation of H (t) between time t1 ≦ t ≦ time t2 is obtained. The time change of the standard deviation is calculated by sequentially changing the time t1 over a predetermined time. With respect to the time series data of the standard deviation thus obtained, an average value within a predetermined time is obtained and used as an index S1 for the balance of left and right foot travel. When the evaluation coefficient is calculated by the expression (3), this index becomes 0 if the balance of the left and right foot travel is perfect, and approaches 0.5 if the balance is lost. For adults who have no problems walking, this value is usually less than 0.02.
(Ii) Left and right footing synchronization: S2
Find the absolute value of H (t2) -H (t1). The time change of the absolute value is calculated by sequentially changing the time t1 over a predetermined time. Next, an envelope of time series data of absolute values obtained in this way is obtained. Specifically, for example, a Hilbert transform equation is used. That is, A (t) where the absolute value is X (t) in equation (2) corresponds to the envelope. An average value of envelopes within a predetermined time is obtained and used as an index S2 for synchronization of left and right foot travel. When the evaluation coefficient is calculated by equation (3), this index is 0 if the left and right footsteps are perfectly synchronized, and approaches 1 if the synchronization is lost. For adults who have no problems walking, this value is usually less than 0.02.
 また、前述した時定数決定部211における出力波形Yの規則性の数値化としては、時刻算出部223で得られる位相や、判定部214で得られる指標を利用することもできる。例えば、位相の周期のCVあるいは左右の足運びの同期の指標S2を出力波形Yの規則性を反映しているとみなす。そして、フィルタの時定数Aを変化させて(例えば、歩行リズムの場合は、0から1秒の間で)、位相の周期のCVあるいは指標S2を求め、その値が最小値をとるような時定数Aを最適な時定数として決定する。 In addition, as the quantification of the regularity of the output waveform Y in the time constant determination unit 211 described above, the phase obtained by the time calculation unit 223 or the index obtained by the determination unit 214 can be used. For example, the CV of the phase period or the synchronization index S2 of the left and right footing is considered to reflect the regularity of the output waveform Y. When the time constant A of the filter is changed (for example, between 0 and 1 second in the case of walking rhythm), the CV or index S2 of the phase period is obtained and the value takes the minimum value. The constant A is determined as the optimal time constant.
 出力制御部215は、出力部23を制御する。例えば、出力部23がディスプレイの表示部をそなえる場合には、出力制御部215は、出力部23の表示状態を制御することで、各種の情報を出力部23に表示させる。例えば、出力制御部215は、リズム抽出部212によって抽出された運動リズムまたは評価係数決定部213によって求められ評価係数を出力部23に表示させる。評価係数の表示は、グラフとして出力部23に表示させてもよいし、「評価係数は**です」のようにメッセージとして表示させてもよい。また、出力制御部215は、例えば、判定部214による判定結果を、評価係数の表示に加え、または、評価係数の表示に替えて、出力部23に表示させてもよい。 The output control unit 215 controls the output unit 23. For example, when the output unit 23 includes a display unit of the display, the output control unit 215 controls the display state of the output unit 23 to display various information on the output unit 23. For example, the output control unit 215 causes the output unit 23 to display the evaluation coefficient obtained by the exercise rhythm extracted by the rhythm extraction unit 212 or the evaluation coefficient determination unit 213. The evaluation coefficient may be displayed as a graph on the output unit 23 or may be displayed as a message such as “Evaluation coefficient is **”. Further, for example, the output control unit 215 may cause the output unit 23 to display the determination result by the determination unit 214 in addition to the display of the evaluation coefficient or in place of the display of the evaluation coefficient.
 また、出力部23が、例えば、アラームまたは振動等により警告を行なうものであれば、判定部214により、例えば、評価係数が所定の範囲内の値ではないと判断された場合に、出力制御部215は、出力部23を制御することで出力部23に警告を行なわせる。
 また、出力部23が、情報処理装置20外にそなえられている場合には、出力制御部215は、例えば、リズム抽出部212によって抽出された運動リズムまたは評価係数決定部213によって求められ評価係数等の各種情報を、無線または有線を介して出力部23に送信することで、出力部23の表示状態を制御する。
Further, if the output unit 23 warns, for example, by an alarm or vibration, the output control unit when the determination unit 214 determines that the evaluation coefficient is not a value within a predetermined range, for example. 215 controls the output unit 23 to cause the output unit 23 to issue a warning.
When the output unit 23 is provided outside the information processing apparatus 20, the output control unit 215 is, for example, an evaluation coefficient obtained by the exercise rhythm or evaluation coefficient determination unit 213 extracted by the rhythm extraction unit 212. The display state of the output unit 23 is controlled by transmitting various information such as the above to the output unit 23 via wireless or wired communication.
 出力部23は、出力制御部215の制御の下、各種の情報を出力する。例えば、出力部23は、ディスプレイであり、評価係数決定部213によって求められた評価係数、または、判定部214により、例えば、評価係数が所定の範囲内の値ではないと判断された場合には、警告を表示する。
 また、出力部23は、例えばアラームまたは振動等によって、状態の変化または突然の異常について報知するもの等であってもよく、判定部214により、例えば、評価係数が所定の範囲内の値ではないと判断された場合には、アラームまたは振動等により警告を行なう。
The output unit 23 outputs various types of information under the control of the output control unit 215. For example, the output unit 23 is a display, and when the evaluation coefficient obtained by the evaluation coefficient determination unit 213 or the determination unit 214 determines that the evaluation coefficient is not a value within a predetermined range, for example. , Display a warning.
Further, the output unit 23 may be a unit that notifies about a change in state or a sudden abnormality by, for example, an alarm or vibration, and the evaluation unit 214 does not have a value within a predetermined range, for example. If it is determined, a warning is given by an alarm or vibration.
 なお、出力部23は、情報処理装置20にそなえられなくともよく、情報処理装置20外にそなえられてもよい。ここで、出力部23が、情報処理装置20外にそなえられている場合とは、例えば、出力部23が体動信号検出装置10に含まれる場合、または、体動信号検出装置10および情報処理装置20にどちらにも含まれない場合である。情報処理装置20外にそなえられている場合において、例えば、情報処理装置20は、無線または有線を介して出力部23と接続されている。すなわち、出力部23は、情報処理装置により求められた結果(例えば、評価係数)を出力する出力部として機能する。また、出力部23は、情報処理装置により求められた結果(例えば、評価係数)を出力する出力部をそなえた出力装置として機能する。 Note that the output unit 23 may not be provided in the information processing apparatus 20 but may be provided outside the information processing apparatus 20. Here, the case where the output unit 23 is provided outside the information processing device 20 is, for example, the case where the output unit 23 is included in the body motion signal detection device 10, or the body motion signal detection device 10 and the information processing. This is a case where the device 20 is not included in either. When provided outside the information processing apparatus 20, for example, the information processing apparatus 20 is connected to the output unit 23 via wireless or wired connection. That is, the output unit 23 functions as an output unit that outputs a result (for example, an evaluation coefficient) obtained by the information processing apparatus. The output unit 23 functions as an output device including an output unit that outputs a result (for example, an evaluation coefficient) obtained by the information processing device.
 インターフェース部24は、例えば、体動信号検出装置10と通信可能に接続されるインターフェースである。情報処理装置20が体動信号検出装置10と無線を介して接続されている場合には、例えば、インターフェース部24はアンテナを含むものである。また、情報処理装置20が体動信号検出装置10と有線を介して接続されている場合には、例えば、インターフェース部24は、有線の接続端子である。なお、記憶部12が、例えば、体動信号検出装置10に対して着脱自在に設けられており、記憶部12を体動信号検出装置10から取り外して情報処理装置20に接続する場合には、インターフェース部24は、例えば、記憶部12が接続されるスロットとしても機能する。 The interface unit 24 is, for example, an interface that is communicably connected to the body motion signal detection device 10. When the information processing apparatus 20 is connected to the body motion signal detection apparatus 10 via wireless, for example, the interface unit 24 includes an antenna. Further, when the information processing apparatus 20 is connected to the body motion signal detection apparatus 10 via a wired line, for example, the interface unit 24 is a wired connection terminal. For example, the storage unit 12 is provided detachably with respect to the body motion signal detection device 10, and when the storage unit 12 is detached from the body motion signal detection device 10 and connected to the information processing device 20, The interface unit 24 also functions as a slot to which the storage unit 12 is connected, for example.
 上述の如く構成された、実施形態の一例としてのシステム1の動作を、図4に示すフローチャート(ステップA1~A6)を参照しながら説明する。以下、積分信号をもとに運動リズムの同調性の評価を行う具体的な方法の一例を、歩行中の加速度信号を用いた場合について詳細に説明するが、他の慣性センサまたは他の運動中の信号の場合でも同様の処理が適用できる。 The operation of the system 1 as an example of the embodiment configured as described above will be described with reference to the flowchart (steps A1 to A6) shown in FIG. Hereinafter, an example of a specific method for evaluating the synchronization of movement rhythm based on the integral signal will be described in detail for the case of using an acceleration signal during walking. The same processing can be applied to the above signal.
 まず、体動信号検出部11が、随意運動に伴う繰り返しリズム運動を体動信号として検出する(ステップA1)。図5(A)は、健常な被験者の腹部中央に体動信号検出装置10(3軸の加速度センサ)を装着した状態で、体動信号検出装置10(体動信号検出部11)が100Hzサンプリングにて測定した15分間のウォーキング中の加速度信号の一部である。なお、図5(A)においては、3軸のうち、上下方向の加速度変化のみを示している。次に、体動信号検出部11により検出された体動信号に基づいて、時定数決定部211は、運動リズムを抽出するための時定数を決定する(ステップA2)。そして、ステップA2にて決定された時定数を用いて、リズム抽出部212は、体動信号から運動リズムを抽出する(ステップA3)。図5(B)は、体動信号から抽出された運動リズムの一例を示す図である。 First, the body motion signal detection unit 11 detects a repetitive rhythm motion accompanying a voluntary motion as a body motion signal (step A1). FIG. 5A shows that the body motion signal detection device 10 (body motion signal detection unit 11) performs 100 Hz sampling with the body motion signal detection device 10 (triaxial acceleration sensor) attached to the center of the abdomen of a healthy subject. It is a part of the acceleration signal during walking for 15 minutes measured by. In FIG. 5A, only the acceleration change in the vertical direction among the three axes is shown. Next, based on the body motion signal detected by the body motion signal detection unit 11, the time constant determination unit 211 determines a time constant for extracting an exercise rhythm (step A2). Then, using the time constant determined in step A2, the rhythm extraction unit 212 extracts an exercise rhythm from the body motion signal (step A3). FIG. 5B is a diagram illustrating an example of an exercise rhythm extracted from a body motion signal.
 そして、評価係数決定部213は、抽出された運動リズムから評価係数を決定する(ステップA4)。判定部214は、この評価係数に基づいて、例えば、運動リズムの同調性の判定を行なう(ステップA5:判定過程)。次に、判定部214の判定結果に基づいて、出力制御部215は出力部23に判定結果を出力させる(ステップA6)。
 次に、時定数決定部211の詳細、すなわち図2におけるステップA2の詳細な動作を、図6示すフローチャート(ステップA21~A24)を参照しながら説明する。
Then, the evaluation coefficient determination unit 213 determines an evaluation coefficient from the extracted exercise rhythm (step A4). Based on this evaluation coefficient, the determination unit 214 determines, for example, the synchronization of the exercise rhythm (step A5: determination process). Next, based on the determination result of the determination unit 214, the output control unit 215 causes the output unit 23 to output the determination result (step A6).
Next, details of the time constant determination unit 211, that is, detailed operations of step A2 in FIG. 2 will be described with reference to the flowchart (steps A21 to A24) shown in FIG.
 まず、時定数決定部211は、所定の時定数Aを用いて、体動信号検出部11により検出された体動信号に対してフィルタリングを行なう(ステップA21)。例えば、時定数決定部211は、体動信号に対してY=X-F(X,A)で表現されるハイパスフィルタリングを行なった後に、2階積分を行ない、積分後の信号に再度Y=X-F(X,A)で表現されるハイパスフィルタリングを行なう。さらに、時定数決定部211は、例えば、ハイパスフィルタリング後に、Y=F(X,A/2.5)で表現されるローパスフィルタリングを行なう。すなわち、時定数決定部211は、体動信号に対して、バンドバスフィルタリングを行なう。 First, the time constant determination unit 211 performs filtering on the body motion signal detected by the body motion signal detection unit 11 using a predetermined time constant A (step A21). For example, the time constant determining unit 211 performs high-pass filtering represented by Y = XF (X, A) on the body motion signal, performs second-order integration, and again generates Y = XF ( Perform high-pass filtering represented by X, A). Furthermore, the time constant determination unit 211 performs low-pass filtering represented by Y = F (X, A / 2.5) after high-pass filtering, for example. That is, the time constant determination unit 211 performs bandbus filtering on the body motion signal.
 次に、時定数決定部211は、例えば、出力波形Yの極大及び極小のピークにおける値の絶対値のCVを求める(ステップA22)。そして、時定数決定部211は、例えば、時定数Aを変化させ、上記ステップA21,A22の処理を行なうことで、時定数Aの変化に対するCVの変化を求める(ステップA23)。図7は、ステップA23により求められた時定数(フィルタ時間)Aの変化に対するCV(分散)の変化の一例を示す図である。なお、この図7は、体動信号に呼吸リズムが含まれている場合の、時定数(フィルタ時間)Aの変化に対するCV(分散)の変化の一例を示す図である。体動信号に呼吸リズムが含まれていない場合には、図7における◆印で示される極小点は現れず、極小点は●印で示される極小点のみになる。次に、時定数決定部211は、ステップA23により求められた時定数Tの変化に対するCVの変化から、極小点を求める。時定数決定部211は、例えば、図7に示すように、CVの値が小さい2つの極小点(図7中、●印および◆印)を求める。そして、時定数決定部211は、例えば、時定数Aの小さい方の極小点(図7中、●印)に対応する時定数A近傍の時定数の値(例えば0.4)を、第1時定数として決定する(ステップA24)。このように、時定数決定部211は、極小点そのものに対応する時定数を第1時定数とするのではなく、極小点の近傍の時定数を第1時定数として決定してもよく、いずれの場合においても得られる結果に大差は生じない。 Next, the time constant determination unit 211 obtains the absolute value CV of the values at the maximum and minimum peaks of the output waveform Y, for example (step A22). Then, the time constant determining unit 211 obtains a change in CV with respect to a change in the time constant A by changing the time constant A and performing the processes of steps A21 and A22, for example (step A23). FIG. 7 is a diagram illustrating an example of a change in CV (dispersion) with respect to a change in time constant (filter time) A obtained in step A23. FIG. 7 is a diagram illustrating an example of a change in CV (dispersion) with respect to a change in time constant (filter time) A when the body motion signal includes a respiratory rhythm. When the respiratory signal is not included in the body motion signal, the minimum point indicated by ♦ in FIG. 7 does not appear, and the minimum point is only the minimum point indicated by ●. Next, the time constant determination unit 211 obtains a minimum point from the change in CV with respect to the change in the time constant T obtained in step A23. For example, as shown in FIG. 7, the time constant determination unit 211 obtains two local minimum points (marks ● and ♦ in FIG. 7) having a small CV value. Then, the time constant determination unit 211 calculates, for example, a time constant value (for example, 0.4) in the vicinity of the time constant A corresponding to the minimum point (marked with ● in FIG. 7) having the smaller time constant A. It is determined as a time constant (step A24). As described above, the time constant determination unit 211 may determine the time constant in the vicinity of the minimum point as the first time constant instead of setting the time constant corresponding to the minimum point itself as the first time constant. Even in this case, there is no great difference in the results obtained.
 次に、リズム抽出部212の詳細、すなわち図4におけるステップA3の詳細な動作を、図8示すフローチャート(ステップA37~39)を参照しながら説明する。
 まず、リズム抽出部212は、体動信号検出部11によって検出された体動信号に対して、第1時定数を用いてハイパスフィルタリングを行なう(ステップA37)。リズム抽出部212は、N(例えば2)階積分を行なう(ステップA38)。そして、積分後の信号に対して、再び、第1時定数を用いてハイパスフィルタリングを行なう(ステップA39)。図5(B)は、ステップA39にて得られる信号の一例を示す図である。この波形は、例えば、歩行である被験者の随意運動に相当する。より具体的には、ステップ39にて得られた波形は、歩行による一歩一歩の相対運動軌道に相当する。すなわち、図5(B)に示された波形は、運動リズムを示す波形に相当する。
Next, the details of the rhythm extraction unit 212, that is, the detailed operation of step A3 in FIG. 4 will be described with reference to the flowchart (steps A37 to A39) shown in FIG.
First, the rhythm extraction unit 212 performs high-pass filtering on the body motion signal detected by the body motion signal detection unit 11 using the first time constant (step A37). The rhythm extraction unit 212 performs N (for example, 2) order integration (step A38). Then, high-pass filtering is again performed on the signal after integration using the first time constant (step A39). FIG. 5B is a diagram illustrating an example of the signal obtained in step A39. This waveform corresponds to the voluntary movement of the subject who is walking, for example. More specifically, the waveform obtained in step 39 corresponds to the relative motion trajectory of each step by walking. That is, the waveform shown in FIG. 5B corresponds to a waveform indicating a movement rhythm.
 次に、評価係数決定部213の詳細、すなわち図4におけるステップA4の詳細な動作を、図9に示すフローチャート(ステップA41~A43)を参照しながら説明する。
 まず時刻算出部223は、運動リズムの任意の時刻tにおける任意の点を選択する(ステップA41)。時刻算出部223は、例えば、ヒルベルト変換またはパターンマッチング等を用いて位相を算出することで、任意の点から位相が360度ずれた点の時刻t1および、任意の点から位相が720度ずれた点の時刻t2を算出する(ステップA42:時刻算出過程)。次に、評価係数算出部233は、時刻t1,t2を用いて、例えば上記(1)式から評価係数を算出する(ステップA43:評価係数算出過程)。すなわち、ステップA42は、生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度(第1角度)変化した時刻(第1時刻)、および、所定の時刻における信号の位相から信号の位相が第1角度の2倍変化した時刻(第2時刻)を算出する時刻算出過程の一例である。また、ステップA43は、第1時刻および第2時刻に基づいて、繰り返し随意運動の同調性を評価するための評価係数を算出する第2算出過程の一例である。
Next, the details of the evaluation coefficient determination unit 213, that is, the detailed operation of step A4 in FIG. 4 will be described with reference to the flowchart (steps A41 to A43) shown in FIG.
First, the time calculation unit 223 selects an arbitrary point at an arbitrary time t of the exercise rhythm (step A41). The time calculation unit 223 calculates the phase using, for example, Hilbert transform or pattern matching, so that the time t1 at which the phase is shifted 360 degrees from the arbitrary point and the phase is shifted 720 degrees from the arbitrary point The point time t2 is calculated (step A42: time calculation process). Next, the evaluation coefficient calculation unit 233 calculates the evaluation coefficient from, for example, the above equation (1) using the times t1 and t2 (step A43: evaluation coefficient calculation process). That is, in step A42, from the signal representing the repetitive voluntary movement of the living body, a time (first time) when the phase of the signal changes by a predetermined angle (first angle) from the phase of the signal at a predetermined time, It is an example of the time calculation process which calculates the time (2nd time) when the phase of the signal changed twice the 1st angle from the phase of the signal in time. Step A43 is an example of a second calculation process for calculating an evaluation coefficient for evaluating the synchrony of repeated voluntary movement based on the first time and the second time.
 ここで、図10(A)~図10(C)は、パターンマッチング法を用いた場合に得られる信号の一例を説明するための図である。図10(A)~図10(C)を用いてパターンマッチングを用いた場合の評価係数決定部213の詳細な動作の一例を説明する。
 図10(A)は、図5(B)のデータから一部の波形を抜き出したものである。ここで時刻算出部223が、*印で示した時間を中心として、幅0.4秒の基準波を選び自己相関係数を計算した結果が図10(B)である。同様に、図10(A)の○印を中心として、幅0.4秒の基準波から得られた自己相関係数が図10(C)である。図10(B)および図10(C)において、位相が360度ずつずれた3点の位置を点線で示している。
Here, FIGS. 10A to 10C are diagrams for explaining an example of a signal obtained when the pattern matching method is used. An example of detailed operation of the evaluation coefficient determination unit 213 when pattern matching is used will be described with reference to FIGS. 10 (A) to 10 (C).
FIG. 10A is a partial waveform extracted from the data of FIG. Here, FIG. 10B shows the result of the time calculation unit 223 selecting the reference wave having a width of 0.4 seconds around the time indicated by * and calculating the autocorrelation coefficient. Similarly, FIG. 10C shows an autocorrelation coefficient obtained from a reference wave having a width of 0.4 seconds around the circle mark in FIG. In FIG. 10B and FIG. 10C, the positions of three points whose phases are shifted by 360 degrees are indicated by dotted lines.
 評価係数算出部233が、例えば、図10(B)または図10(C)に示された波形から、第1時間T1および第2時間T2を算出し、時間T1,T2を上記(1)式に代入することで評価係数を算出する。
 次に、図5(B)で例示した積分信号について、ヒルベルト変換法を用いて運動リズムの位相が3.6度増加するごとに評価係数を求めた例の結果を図11の実線で示す。これは時間間隔に換算すると平均0.05秒ごとに評価係数を求めていることに相当する。図11から、評価係数が0近傍で周期的にゆらいでいることがわかる。これは、どのような生体でも体が完全に左右対称であることは稀であり、特に疾病または障害を持たなくても左右のステップ間隔に差が生じ、跛行気味に歩くからである。すなわち図2においてT1/T2≠1となっているからである。ただし、評価係数のゆらぎ自体は極めて規則的に変化しているので、左右の足運びの同期は高いといえる。
For example, the evaluation coefficient calculation unit 233 calculates the first time T1 and the second time T2 from the waveforms shown in FIG. 10B or FIG. 10C, and sets the times T1 and T2 to the above formula (1). The evaluation coefficient is calculated by substituting for.
Next, for the integrated signal illustrated in FIG. 5B, the result of an example in which the evaluation coefficient is obtained every time the phase of the motion rhythm increases by 3.6 degrees using the Hilbert transform method is shown by the solid line in FIG. This is equivalent to obtaining an evaluation coefficient every 0.05 seconds on average when converted to a time interval. From FIG. 11, it can be seen that the evaluation coefficient fluctuates periodically around 0. This is because, in any living body, it is rare that the body is completely left-right symmetric, and even if there is no disease or disorder, there is a difference in the step interval between the left and right, and the body walks lamely. That is, T1 / T2 ≠ 1 in FIG. However, since the fluctuation of the evaluation coefficient itself changes very regularly, it can be said that the synchronization of the left and right footing is high.
 また、図5(B)で例示した積分信号について、パターンマッチング法を用いて時間間隔0.05秒ごとに評価係数を求めた結果を図11の破線で示す。図11からヒルベルト変換法で求めた結果とほぼ同じ傾向の結果が得られているのがわかる。
 次に、判定部214の詳細、すなわち図4におけるステップA5の詳細な動作を、図12に示すフローチャート(ステップA51~A53)を参照しながら説明する。
In addition, with respect to the integral signal illustrated in FIG. 5B, the result of obtaining the evaluation coefficient at a time interval of 0.05 seconds using the pattern matching method is indicated by a broken line in FIG. From FIG. 11, it can be seen that results having the same tendency as the results obtained by the Hilbert transform method are obtained.
Next, details of the determination unit 214, that is, detailed operations of step A5 in FIG. 4 will be described with reference to the flowchart (steps A51 to A53) shown in FIG.
 まず、評価係数決定部213が、所定時間にわたって評価係数を算出する(ステップA51)すなわち、所定時間にわたって上記ステップA41~A44が繰り返される。次に、判定部214は、所定時間にわたって算出された評価係数を用いて、R,SおよびCの3つの指標を算出する(ステップA52)。そして、判定部214は、この3つの指標に基づいて運動リズムの同調性の判定を行なう(ステップA53)。 First, the evaluation coefficient determination unit 213 calculates an evaluation coefficient over a predetermined time (step A51), that is, the above steps A41 to A44 are repeated over a predetermined time. Next, the determination unit 214 calculates three indexes R, S, and C using the evaluation coefficient calculated over a predetermined time (step A52). Then, the determination unit 214 determines the synchronization of the exercise rhythm based on these three indicators (step A53).
 さらに、判定部214による同調性の判定の詳細な処理、すなわち図12におけるステップA53の詳細な動作を、図13に示すフローチャート(ステップA531~A539)を参照しながら説明する。
 まず、判定部214は、Rが0.02以下か否か判定する(ステップA531)。Rが0.02以下の場合(ステップA531のYesルート参照)、所定時間にわたり、評価係数は略0であるとして、判定部214は、運動リズムの同期およびバランスは非常に良いと判定する(ステップA532)。すなわち、ステップA531は、評価係数が、所定時間にわたって、所定範囲(例えば、0±0.02)内であるかを判定する判定過程の一例である。一方、Rが0.02より大きい場合(ステップA531のNoルート参照)、判定部214は、Sが0.01以下か否か判定する(ステップA533)。Sが0.01以下の場合(ステップA533のYesルート参照)、評価係数は略0ではないが一定値を保っているものとして、判定部214は、運動リズムの同期およびバランスは良いと判定する(ステップA534)。一方、Sが0.01より大きい場合(ステップA533のNoルート参照)、判定部214は、Cが0.5以上か否か判定する(ステップA535)。Cが0.5以上の場合(ステップA535のYesルート参照)、評価係数は周期的にゆらいでいるものとして、判定部214は、運動リズムの同期は良いがバランスは悪いと判定する(ステップA536)。一方、Cが0.5未満の場合(ステップA535のNoルート参照)、判定部214は、Cが0.2以上か否か判定する(ステップA537)。Cが0.2以上の場合(ステップA537のYesルート参照)、判定部214は、運動リズムの同期は普通でありバランスは悪いと判定する(ステップA538)。一方、Cが0.2未満の場合(ステップA537のNoルート参照)、判定部214は、運動リズムの同期は悪くバランスは判定不能であると判定する(ステップA539)。
Further, the detailed processing for determining the synchronism by the determination unit 214, that is, the detailed operation of step A53 in FIG. 12, will be described with reference to the flowchart (steps A531 to A539) shown in FIG.
First, the determination unit 214 determines whether or not R is 0.02 or less (step A531). When R is 0.02 or less (see the Yes route in step A531), the determination unit 214 determines that the synchronization and balance of the exercise rhythm are very good, assuming that the evaluation coefficient is substantially zero over a predetermined time (step S531). A532). That is, step A531 is an example of a determination process for determining whether the evaluation coefficient is within a predetermined range (for example, 0 ± 0.02) over a predetermined time. On the other hand, when R is larger than 0.02 (see No route in Step A531), the determination unit 214 determines whether S is 0.01 or less (Step A533). When S is 0.01 or less (see the Yes route in step A533), the determination unit 214 determines that the synchronization and balance of the exercise rhythm are good, assuming that the evaluation coefficient is not substantially 0 but remains constant. (Step A534). On the other hand, when S is larger than 0.01 (see No route in step A533), the determination unit 214 determines whether C is 0.5 or more (step A535). When C is equal to or greater than 0.5 (see the Yes route in step A535), it is determined that the evaluation coefficient fluctuates periodically, and the determination unit 214 determines that the exercise rhythm is synchronized but the balance is poor (step A536). ). On the other hand, when C is less than 0.5 (see No route in step A535), the determination unit 214 determines whether C is 0.2 or more (step A537). When C is 0.2 or more (see the Yes route in step A537), the determination unit 214 determines that the synchronization of the exercise rhythm is normal and the balance is bad (step A538). On the other hand, when C is less than 0.2 (see No route of step A537), the determination unit 214 determines that the synchronization of the exercise rhythm is poor and the balance cannot be determined (step A539).
 〔B〕リアルタイム処理の説明
 位相ずれの算出には体動リズムがちょうど2サイクル分変化するだけのデータが必要である。図5(A)及び図5(B)で例示した歩行データの場合、これは1秒程度なので、データの計測から結果の出力までには少なくとも1秒の時間遅れが生じるが、実用的なリアルタイム処理には十分な許容範囲である。
[B] Explanation of real-time processing Data for changing the body movement rhythm by exactly two cycles is necessary for calculating the phase shift. In the case of the walking data illustrated in FIGS. 5A and 5B, this is about 1 second, so there is a time delay of at least 1 second from the measurement of the data to the output of the result. The tolerance is sufficient for processing.
 また、リアルタイム処理のためには、現在の時刻までに測定および蓄積されたデータを用いて解析を行う必要がある。その際問題となるのは、データの境界の効果である。すなわち、スペクトル解析またはヒルベルト変換等の信号処理を施すと、データの端点(測定開始点および終了点)近傍で誤差が大きくなる現象である。つまり、現在の時刻における評価係数は、信号処理に基づく誤差を含んでいる可能性がある。これを見積もるために、図5(A)の加速度データについて時間12.1秒を現在時刻とし、この時間までのデータのみを用いてヒルベルト変換法による位相変化から評価係数を算出した結果を図14の破線で示す。15分間のデータ全体を使用した正確な計算法による結果(図14中の実線)と比較すると、現在時刻から1.3秒程度さかのぼった時間でほとんど誤差の無い値が得られている。これは実用的なリアルタイム処理としては充分な性能といえる。 Also, for real-time processing, it is necessary to perform analysis using data measured and accumulated up to the current time. The problem is the effect of data boundaries. That is, when signal processing such as spectrum analysis or Hilbert transform is performed, the error increases near the end points (measurement start point and end point) of the data. That is, the evaluation coefficient at the current time may include an error based on signal processing. In order to estimate this, the result of calculating the evaluation coefficient from the phase change by the Hilbert transform method using only the data up to this time as the current time for the acceleration data of FIG. This is indicated by a broken line. Compared with the result of the accurate calculation method using the entire 15-minute data (solid line in FIG. 14), a value with almost no error is obtained in a time that goes back about 1.3 seconds from the current time. This is sufficient performance for practical real-time processing.
 このように、本実施形態の一例におけるシステム1によれば、位相に着目し、位相の変化に基づいて、運動リズムの同調性を評価するための評価係数を算出しているので、明瞭なピークを持たないデータからも、評価係数を算出し、運動リズムの同調性を評価することができる。すなわち、本実施形態の一例におけるシステム1によれば、位相に着目しているため、運動リズムのピークに着目しなくても、評価係数を求め、運動リズムの同調性を評価することができる。 As described above, according to the system 1 in the example of the present embodiment, since the evaluation coefficient for evaluating the synchrony of the movement rhythm is calculated based on the change of the phase by paying attention to the phase, a clear peak An evaluation coefficient can be calculated from data that does not have rhythm, and the synchronization of the motor rhythm can be evaluated. That is, according to the system 1 in the example of the present embodiment, since attention is paid to the phase, the evaluation coefficient can be obtained and the synchronization of the exercise rhythm can be evaluated without paying attention to the peak of the exercise rhythm.
 また、本実施形態の一例におけるシステム1によれば、運動リズムのピークに着目しなくてもよいため、任意の時間においてほぼ連続的に評価係数を求めることができ、さらには、リアルタイムに評価係数を求めることができる。すなわち、本実施形態の一例におけるシステム1によれば、連続的に運動リズムの同調性を評価することができ、さらには、リアルタイムに運動リズムの同調性を評価することができる。 Further, according to the system 1 in the example of the present embodiment, since it is not necessary to pay attention to the peak of the movement rhythm, the evaluation coefficient can be obtained almost continuously at an arbitrary time, and further, the evaluation coefficient can be obtained in real time. Can be requested. That is, according to the system 1 in the example of the present embodiment, the synchronization of the movement rhythm can be continuously evaluated, and further, the synchronization of the movement rhythm can be evaluated in real time.
 また、本実施形態の一例におけるシステム1によれば、パターンマッチングを用いることで、自己相関をとった後の波形は元の体動信号に比べてノイズが少なくなっているのでピークが明瞭であり、ピーク位置を正確に特定できるため、評価係数が精度よく求まる。
 〔C〕その他
 なお、開示の技術は上述した実施形態に限定されるものではなく、本実施形態の趣旨を逸脱しない範囲で種々変形して実施することができる。
In addition, according to the system 1 in the example of the present embodiment, by using pattern matching, the waveform after autocorrelation has less noise than the original body motion signal and thus has a clear peak. Since the peak position can be accurately specified, the evaluation coefficient can be obtained with high accuracy.
[C] Others The disclosed technique is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present embodiment.
 例えば、本実施形態の一例においては、図5(A)において、3軸のうち、上下方向の加速度変化のみを示し、この信号に基づいて、運動リズムを抽出し、評価係数を算出しているが上下方向の加速度変化のみからの信号に限定されるものではない。例えば、前後方向または左右方向の加速度信号から運動リズムを抽出し、評価係数を算出してもよい。
 また、本実施形態の一例においては、図2に示したように、所定位置から位相が720度変化する範囲において、所定位置から位相が360度ずつずれた点を探し、評価係数を算出しているが、360度に限定されるものではない。例えば、左右方向の加速度信号から評価係数を算出する場合、左右方向の加速度信号は、図15に示すように隣り合うピークが同一足の着地に相当するので、所定位置(ピークの位置でなくてもよい)から位相が360度変化する範囲において、所定位置から位相が180度ずつずれた点を探して、それらの間の時間間隔をそれぞれ第1時間T1,第2時間T2として評価係数を算出する。同様に、体動信号検出部11としてジャイロセンサにより測定された上下軸周りの角速度信号を用いた場合も、左右方向の加速度信号から評価係数を算出する場合と同様の処理を行なう。
For example, in the example of the present embodiment, in FIG. 5A, only the acceleration change in the vertical direction is shown among the three axes, and the movement rhythm is extracted based on this signal, and the evaluation coefficient is calculated. However, the signal is not limited to the signal from only the acceleration change in the vertical direction. For example, an evaluation coefficient may be calculated by extracting a motion rhythm from an acceleration signal in the front-rear direction or the left-right direction.
In the example of the present embodiment, as shown in FIG. 2, a point where the phase is shifted by 360 degrees from the predetermined position in the range where the phase changes from the predetermined position by 720 degrees is searched, and the evaluation coefficient is calculated. However, it is not limited to 360 degrees. For example, when the evaluation coefficient is calculated from the acceleration signal in the left and right direction, the adjacent acceleration signal in the left and right direction corresponds to the landing of the same foot as shown in FIG. In the range where the phase changes 360 degrees, the point where the phase is shifted from the predetermined position by 180 degrees is searched, and the evaluation coefficient is calculated with the time interval between them as the first time T1 and the second time T2, respectively. To do. Similarly, when an angular velocity signal around the vertical axis measured by the gyro sensor is used as the body motion signal detection unit 11, the same processing as when calculating the evaluation coefficient from the lateral acceleration signal is performed.
 なお、パターンマッチングを用いる場合には、相関値が極小となる点を、所定位置から位相が180度ずれた点とする。
 さらに、本実施形態の一例では、体動信号検出装置10は、中央演算部21をそなえていないが、この構成に限定されるものではなく、体動信号検出装置10が中央演算部21をそなえてもよい。この場合、中央演算部21は、体動信号検出装置10内の記憶装置(例えば、記憶部12)または体動信号検出装置10外の図示しない記憶部に格納された情報処理用プログラムを実行することで、上述の機能を発揮する。すなわち、この場合、体動信号検出装置10は、情報処理装置としても機能する。
When pattern matching is used, a point where the correlation value is minimized is a point whose phase is shifted by 180 degrees from a predetermined position.
Furthermore, in the example of the present embodiment, the body motion signal detection device 10 does not include the central processing unit 21, but is not limited to this configuration, and the body motion signal detection device 10 includes the central processing unit 21. May be. In this case, the central processing unit 21 executes an information processing program stored in a storage device (for example, the storage unit 12) in the body motion signal detection device 10 or a storage unit (not shown) outside the body motion signal detection device 10. Thus, the above-described function is exhibited. That is, in this case, the body motion signal detection device 10 also functions as an information processing device.
 また、本実施形態の一例では、体動信号検出装置10は、体動信号検出部11と記憶部12とをそなえて構成されているが、この構成に限定されるものではない。例えば、体動信号検出装置10は体動信号検出部11をそなえるが、記憶部12をそなえない構成としてもよい。この場合、例えば、体動信号検出装置10と記憶部12とは、有線または無線により接続され、体動信号検出部11により検出された体動信号は、有線または無線を介して記憶部12に格納される。また、この場合、記憶部12と情報処理装置20とは有線または無線により接続され、情報処理装置20は、記憶部12から体動信号を取得する。 Further, in the example of the present embodiment, the body motion signal detection device 10 includes the body motion signal detection unit 11 and the storage unit 12, but is not limited to this configuration. For example, the body motion signal detection device 10 may include the body motion signal detection unit 11 but may not include the storage unit 12. In this case, for example, the body motion signal detection device 10 and the storage unit 12 are connected by wire or wirelessly, and the body motion signal detected by the body motion signal detection unit 11 is transferred to the storage unit 12 via wire or wirelessly. Stored. In this case, the storage unit 12 and the information processing device 20 are connected by wire or wirelessly, and the information processing device 20 acquires a body motion signal from the storage unit 12.
 さらに、体動信号検出装置10と、情報処理装置20(もしくは、記憶部12)とが無線を介して接続される場合、体動信号検出装置10は、体動信号検出部11が検出した体動信号をアンテナであるインターフェース部13を介して情報処理装置20(もしくは、記憶部12)に送信する機能を有する。この送信機能は、体動信号検出装置10がそなえる図示しないたとえば中央演算部である処理部が、図示しない記憶部に格納されたプログラムを実行することで実現される。 Further, when the body motion signal detection device 10 and the information processing device 20 (or the storage unit 12) are connected via wireless, the body motion signal detection device 10 detects the body detected by the body motion signal detection unit 11. It has a function of transmitting a moving signal to the information processing apparatus 20 (or the storage unit 12) via the interface unit 13 that is an antenna. This transmission function is realized by executing a program stored in a storage unit (not shown) by a processing unit (not shown) provided by the body motion signal detection device 10 such as a central processing unit.
 また、本実施形態の一例では、情報処理装置20は、体動信号から第1時定数を決定し、第1時定数に基づいて運動リズムを抽出しているが、この抽出手法に限定されるものではない。例えば、FFT(Fast Fourier Transform)またはウェイブレット解析等のスペクトル解析により体動信号の周波数特性を求め、スペクトル解析の結果から運動リズムの周波数域を特定する。そして、例えば、特定された周波数域に対応するバンドパスフィルタを体動信号にかけて運動リズムを抽出することとしてもよい。 In the example of the present embodiment, the information processing apparatus 20 determines the first time constant from the body motion signal and extracts the exercise rhythm based on the first time constant, but is limited to this extraction method. It is not a thing. For example, the frequency characteristic of the body motion signal is obtained by spectrum analysis such as FFT (Fast Fourier Transform) or wavelet analysis, and the frequency range of the motion rhythm is specified from the result of the spectrum analysis. Then, for example, a movement rhythm may be extracted by applying a bandpass filter corresponding to the specified frequency range to the body motion signal.
 また、体動信号をEMD(Empirical Mode Decomposition)またはEEMD(Ensemble Empirical Mode Decomposition)により各モード波形(Intrinsic Mode Function)に分解し、この結果から、運動リズムに対応するモード波形(例えば、強度の強い波形)を選択することとしてもよい。
 さらに、本実施形態の一例では、時定数決定部211が時定数を決定した後に、リズム抽出部212が、体動信号から体動リズムをフィルタリング処理により抽出しているが、これに限定されるものではない。例えば、上記(3)の処理において、時定数Tを変化させた場合の出力波形Yを全て記憶部22に記憶しておく。そして、リズム抽出部212は、全ての出力波形Yの中から、上記(4)の処理において決定された第1時定数に対応する波形を選択することとしてもよい。
In addition, the body motion signal is decomposed into each mode waveform (Intrinsic Mode Function) by EMD (Empirical Mode Decomposition) or EEMD (Ensemble Empirical Mode Decomposition), and from this result, the mode waveform corresponding to the exercise rhythm (for example, strong intensity) (Waveform) may be selected.
Furthermore, in the example of the present embodiment, after the time constant determination unit 211 determines the time constant, the rhythm extraction unit 212 extracts the body motion rhythm from the body motion signal by the filtering process, but this is not limitative. It is not a thing. For example, in the process (3), all output waveforms Y when the time constant T is changed are stored in the storage unit 22. The rhythm extraction unit 212 may select a waveform corresponding to the first time constant determined in the process (4) from all the output waveforms Y.
 また、本実施形態の一例は、人に限らず、ペット、家畜、馬等の動物に適応可能である。
 さらに、本実施形態の一例では、主に随意運動が歩行である場合について述べているが、歩行に限定されるものではなく、本実施形態の一例は他の随意運動にも適用可能である。例えば、随意運動が、ジャグリング(お手玉)であれば、足ではなく、手の運動リズムに着目すればよい。
An example of this embodiment is applicable not only to people but also to animals such as pets, livestock, and horses.
Furthermore, although an example of the present embodiment mainly describes the case where the voluntary movement is walking, the present invention is not limited to walking, and the example of the present embodiment can be applied to other voluntary movements. For example, if the voluntary exercise is juggling, it is only necessary to focus on the exercise rhythm of the hand, not the foot.
 なお、情報処理装置20にそなえられる中央演算部21の各機能を実現するための種々のアプリケーションプログラムは、例えばフレキシブルディスク,CD(CD-ROM,CD-R,CD-RW等),DVD(DVD-ROM,DVD-RAM,DVD-R,DVD+R,DVD-RW,DVD+RW,HD DVD等),ブルーレイディスク,磁気ディスク,光ディスク,光磁気ディスク等の、コンピュータ読取可能な記録媒体に記録された形態で提供される。そして、コンピュータはその記録媒体からプログラムを読み取って内部記憶装置または外部記憶装置に転送し格納して用いる。又、そのプログラムを、例えば磁気ディスク,光ディスク,光磁気ディスク等の記憶装置(記録媒体)に記録しておき、その記憶装置から通信経路を介してコンピュータに提供するようにしてもよい。 Various application programs for realizing each function of the central processing unit 21 provided in the information processing apparatus 20 are, for example, a flexible disk, a CD (CD-ROM, CD-R, CD-RW, etc.), DVD (DVD -Recorded in a computer-readable recording medium such as a ROM, DVD-RAM, DVD-R, DVD + R, DVD-RW, DVD + RW, HD DVD), Blu-ray disc, magnetic disc, optical disc, magneto-optical disc, etc. Provided. Then, the computer reads the program from the recording medium, transfers it to the internal storage device or the external storage device, and uses it. The program may be recorded in a storage device (recording medium) such as a magnetic disk, an optical disk, or a magneto-optical disk, and provided from the storage device to the computer via a communication path.
 また、体動信号検出装置10にそなえられる図示しない中央演算部の各機能を実現するための種々のアプリケーションプログラムは、例えばフレキシブルディスク,CD(CD-ROM,CD-R,CD-RW等),DVD(DVD-ROM,DVD-RAM,DVD-R,DVD+R,DVD-RW,DVD+RW,HD DVD等),ブルーレイディスク,磁気ディスク,光ディスク,光磁気ディスク等の、コンピュータ読取可能な記録媒体に記録された形態で提供される。そして、コンピュータはその記録媒体からプログラムを読み取って内部記憶装置または外部記憶装置に転送し格納して用いる。又、そのプログラムを、例えば磁気ディスク,光ディスク,光磁気ディスク等の記憶装置(記録媒体)に記録しておき、その記憶装置から通信経路を介してコンピュータに提供するようにしてもよい。 Various application programs for realizing each function of a central processing unit (not shown) provided in the body motion signal detection apparatus 10 are, for example, a flexible disk, a CD (CD-ROM, CD-R, CD-RW, etc.), Recorded on computer-readable recording media such as DVD (DVD-ROM, DVD-RAM, DVD-R, DVD + R, DVD-RW, DVD + RW, HD DVD, etc.), Blu-ray disc, magnetic disc, optical disc, magneto-optical disc, etc. Provided in different forms. Then, the computer reads the program from the recording medium, transfers it to the internal storage device or the external storage device, and uses it. The program may be recorded in a storage device (recording medium) such as a magnetic disk, an optical disk, or a magneto-optical disk, and provided from the storage device to the computer via a communication path.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples without departing from the gist thereof.
 体動信号検出装置10として三菱化学社製加速度レコーダー「見守りゲイト」を専用ベルトに入れてパーキンソン病患者の腹部に巻き、1日の体動信号をサンプリング周波数100Hzでサンプリングした。レコーダーは腹部中央に位置するようにした。データからオン時とオフ時の歩行時の上下方向加速度信号を取り出し、ヒルベルト変換法とパターンマッチング法により評価係数を求めた。図16(A)~図16(C)はオン時の歩行結果を示す図である。図16(A)は、体動信号検出装置10によって検出された加速度を示す図である。また、図16(B)は、2階積分後の加速度信号すなわち運動軌道を示す図である。図16(C)は、2階積分後の加速度信号から求められた評価係数を示す図である。図16(C)において、評価係数は一貫して規則的なゆらぎを持つので、歩行ステップに左右差はあるが左右の足運びの同期は高いといえる。 As the body motion signal detection device 10, an acceleration recorder “Mitami Gate” manufactured by Mitsubishi Chemical Corporation was put on a dedicated belt and wound around the abdomen of a Parkinson's disease patient, and the body motion signal of one day was sampled at a sampling frequency of 100 Hz. The recorder was positioned at the center of the abdomen. The vertical acceleration signal during walking on and off was extracted from the data, and the evaluation coefficient was obtained by the Hilbert transform method and the pattern matching method. FIG. 16A to FIG. 16C are diagrams showing walking results when on. FIG. 16A is a diagram illustrating acceleration detected by the body motion signal detection device 10. FIG. 16B is a diagram showing an acceleration signal after second-order integration, that is, a motion trajectory. FIG. 16C is a diagram showing the evaluation coefficient obtained from the acceleration signal after second-order integration. In FIG. 16C, since the evaluation coefficient has a regular fluctuation consistently, it can be said that there is a left-right difference in the walking step, but the left-right footing synchronization is high.
 一方、図17(A)~図17(C)は、時間が3~17秒の間は比較的安定な歩行であるが、その前後で突進歩行が認められたオフ時の歩行結果を示す図である。図17(A)は、体動信号検出装置10によって検出された加速度を示す図である。図17(B)は、2階積分後の加速度信号すなわち運動軌道を示す図である。図17(C)は、2階積分後の加速度信号から求められた評価係数を示す図である。図17(C)において、実線がヒルベルト変換法を用いて算出された評価係数を示し、破線がパターンマッチング法を用いて算出された評価係数を示す。図16(A)~図16(C)と図17(A)~図17(C)とを比較すると、図17(C)においては、安定歩行時での評価係数のゆらぎが不規則になっており、左右のステップ間の同期が崩れていることがわかる。また、図17(C)においては、突進歩行時では位相ずれのゆらぎが非常に大きくなっており、左右のステップのバランスが悪化していることがわかる。 On the other hand, FIGS. 17 (A) to 17 (C) are diagrams showing walking results when the walking is relatively stable during the time of 3 to 17 seconds, but sudden progress is recognized before and after the walking. It is. FIG. 17A is a diagram illustrating acceleration detected by the body motion signal detection device 10. FIG. 17B is a diagram illustrating an acceleration signal after the second-order integration, that is, a motion trajectory. FIG. 17C is a diagram showing the evaluation coefficient obtained from the acceleration signal after second-order integration. In FIG. 17C, the solid line indicates the evaluation coefficient calculated using the Hilbert transform method, and the broken line indicates the evaluation coefficient calculated using the pattern matching method. Comparing FIG. 16 (A) to FIG. 16 (C) and FIG. 17 (A) to FIG. 17 (C), in FIG. 17 (C), the fluctuation of the evaluation coefficient during stable walking becomes irregular. It can be seen that the synchronization between the left and right steps is broken. Further, in FIG. 17C, it can be seen that the phase shift fluctuation is very large at the time of sudden progress, and the balance between the left and right steps is deteriorated.
 体動信号検出装置10としてワイヤレステクノロジー社製小型無線ハイブリッドセンサWAA-006を健常被験者の腹部中央に装着し、重いカバンを肩にかけて街中を歩いた際の3軸加速度信号と3軸角速度信号をサンプリング周波数200Hzで同時計測した。上下方向の加速度信号および上下軸回りの角速度信号についてそれぞれ
 ・ 時定数1を用いてハイパスフィルタリング
 ・ 2階積分
 ・ 時定数1を用いてハイパスフィルタリング
を施すことで運動リズムを抽出した後、ヒルベルト変換法により位相を求めた。加速度信号については位相差が360度となる2点から、角速度信号については位相差が180度となる2点から、評価係数を算出した。図18(A)は、体動信号検出装置10によって検出された加速度および角速度を示す図である。図18(B)は、2階積分後の加速度信号および角速度信号を示す図である。図18(C)は、2階積分後の加速度信号および角速度からそれぞれ求められた評価係数を示す図である。図18(A)~図18(C)において、実線が加速度信号を示し、破線が角速度信号を示す。評価係数は両者でほぼ同じ強度のゆらぎを示している。また、重いカバンを肩にかけていることを反映して、左右のバランスが悪くなっていることがわかる。
Wearing a small wireless hybrid sensor WAA-006 manufactured by Wireless Technology as a body motion signal detection device 10 in the center of the abdomen of a healthy subject, sampling a 3-axis acceleration signal and 3-axis angular velocity signal when walking in the city with a heavy bag on the shoulder Simultaneous measurement at a frequency of 200 Hz. The acceleration signal in the vertical direction and the angular velocity signal around the vertical axis are: • High-pass filtering using time constant 1 • Second-order integration • Hilbert transform method after extracting motion rhythm by applying high-pass filtering using time constant 1 To obtain the phase. Evaluation coefficients were calculated from two points where the phase difference was 360 degrees for the acceleration signal and two points where the phase difference was 180 degrees for the angular velocity signal. FIG. 18A is a diagram showing acceleration and angular velocity detected by the body motion signal detection device 10. FIG. 18B is a diagram showing an acceleration signal and an angular velocity signal after second-order integration. FIG. 18C is a diagram showing evaluation coefficients obtained from the acceleration signal and the angular velocity after the second-order integration. In FIGS. 18A to 18C, the solid line indicates the acceleration signal, and the broken line indicates the angular velocity signal. The evaluation coefficient shows almost the same fluctuation in strength. It can also be seen that the balance between the left and right is getting worse, reflecting the heavy bag on his shoulder.
 このように慣性センサの種類を問わずに体動リズムの同調性を評価することができる。 Thus, the synchrony of body movement rhythm can be evaluated regardless of the type of inertial sensor.
 体動信号検出装置10として三菱化学社製加速度レコーダー「見守りゲイト」を専用ベルトに入れてパーキンソン病患者の腹部に巻き、体動信号をサンプリング周波数100Hzで38時間連続サンプリングした。被験者には同時に、体の動きやすさの程度と転倒した場合はその時刻を日誌に記入してもらった。 As the body motion signal detection device 10, an acceleration recorder “Watching Gate” manufactured by Mitsubishi Chemical Corporation was put on a dedicated belt and wound around the abdomen of a Parkinson's disease patient, and body motion signals were continuously sampled at a sampling frequency of 100 Hz for 38 hours. At the same time, the subjects were asked to fill in a diary of the degree of ease of movement and the time when they fell.
 まず、体動信号の時系列データから10秒以上連続して歩いている領域を抽出した。この領域を10秒間隔で時分割し、部分時系列を作成した。それぞれの部分時系列についてフィルタ時定数を最適化し、左右の足運びの同期S2を求めた。時定数の最適化はS2を最小にする方法で行った。得られたS2からexp(-10×S2)を計算し、これを歩行指数とした。歩行指数は左右の足運びの同期が優れているほど大きな値をとり、同期が完璧な場合は1となるような指標である。図19(A)に平滑化処理を施した後の歩行指数の時間変化を示す。図19(A)中には、被験者の自己申告による動きやすさの5段階評価(動きやすい、動きにくい、動けないの3段階に、動きやすい-動きにくいの中間評価、及び動きにくい-動けないの中間評価の2段階を加えた5段階評価。)と、実際に転倒した時刻ta,tb,tc,tdが記されている。図19(A)は、歩行指数の推移を点線で記し、被験者の自己申告の推移を実線で記している。 First, we extracted an area that was continuously walking for more than 10 seconds from the time-series data of body motion signals. This area was time-divided at 10-second intervals to create a partial time series. The filter time constant was optimized for each partial time series, and the left and right footing synchronization S2 was obtained. The optimization of the time constant was performed by the method of minimizing S2. From the obtained S2, exp (-10 × S2) was calculated and used as a walking index. The walking index is an index that takes a larger value as the left and right footsteps are more synchronized, and is 1 when the synchronization is perfect. FIG. 19A shows the time change of the walking index after the smoothing process is performed. In FIG. 19 (A), there is a five-step evaluation of ease of movement by the subject's self-report (movable, difficult to move, unable to move in three stages, easy to move-intermediate evaluation of difficult to move, and difficult to move-not to move 5 grades that include 2 grades of intermediate assessment), and the actual times t, tb, tc, and td of the fall. In FIG. 19A, the change of the walking index is indicated by a dotted line, and the change of the self-report of the subject is indicated by a solid line.
 図19(A)を参照すると、1日目の9時~10時の間は被験者の自己申告は「動きにくい」または「動きやすい」-「動きにくい」の中間評価であり、時刻ta,tbにて転倒が起こっている。これに符合して歩行指数も低い値となっている。1日目の17時~18時、2日目の10時~11時の間は、被験者の自己申告は「動きやすい」であるが、歩行指数は前後の時間帯に比べ低下しており、実際に転倒が時刻tc,tdにて起こっている。しかも転倒時刻よりかなり前から歩行指数が低下傾向にあることがわかる。 Referring to FIG. 19 (A), between 9 am and 10 am on the first day, the subject's self-report is an intermediate evaluation of “not easy to move” or “easy to move” — “not easy to move” at times ta and tb. A fall is happening. In accordance with this, the walking index is also low. From 17:00 to 18:00 on the first day, from 10:00 to 11:00 on the second day, the subject's self-report is “easy to move”, but the gait index is lower than the time zone before and after, A fall occurred at times tc and td. Moreover, it can be seen that the walking index tends to decrease considerably before the fall time.
 このように、歩行リズムの同調性は、転倒危険性を予測する指標となる。 Thus, the synchrony of walking rhythm is an index for predicting the risk of falls.
 次に、同じ時系列データを10秒間隔で時分割し、部分時系列を作成した。ここでは歩行領域を取り出すことをしない。それぞれの部分時系列についてフィルタ時定数を最適化し、左右の足運びの同期S2および位相の周期のCVを求めた。時定数の最適化はS2を最小にする方法で行った。得られたS2からexp(-10×S2)を計算し、これを体動指数とした。このうち、位相の周期のCVが0.12以上になるものを除去した。これは周期性の悪い部分時系列を除外し、規則的なリズム(特に歩行リズム)の性質に着目することを意味する。図19(B)に平滑化処理を施した後の体動指数の時間変化を示す。図19(B)中には、被験者の自己申告による動きやすさの5段階評価(動きやすい、動きにくい、動けないの3段階に、動きやすい-動きにくいの中間評価、及び動きにくい-動けないの中間評価の2段階を加えた5段階評価。)と、実際に転倒した時刻がta,tb,tc,tdとが記されている。図19(B)は、体動指数の推移を点線で記し、被験者の自己申告の推移を実線で記している。 Next, the same time series data was time-divided at 10 second intervals to create a partial time series. Here, the walking area is not taken out. The filter time constant was optimized for each partial time series, and the left and right footing synchronization S2 and the phase period CV were obtained. The optimization of the time constant was performed by the method of minimizing S2. From the obtained S2, exp (-10 × S2) was calculated and used as a body motion index. Of these, those with a phase period CV of 0.12 or more were removed. This means that partial time series with poor periodicity are excluded, and attention is paid to the nature of regular rhythms (especially walking rhythms). FIG. 19B shows a time change of the body motion index after the smoothing process is performed. In FIG. 19 (B), the subject's self-reported five-step evaluation of ease of movement (movable, difficult to move, unable to move in three steps, easy to move-intermediate evaluation of difficult to move, and difficult to move-unmovable 5 grades that include 2 grades of the intermediate assessment)), and the actual fall times are indicated as ta, tb, tc, and td. In FIG. 19B, the transition of the body motion index is indicated by a dotted line, and the transition of the subject's self-report is indicated by a solid line.
 図19(B)を参照すると、転倒のあった領域近辺では、図19(A)と同じような振る舞いを示している。すなわち、1日目の9時~10時の間は被験者の自己申告は「動きにくい」または「動きやすい」-「動きにくい」の中間評価であり、時刻ta,tbにて転倒が起こっている。これに符合して体動指数も低い値となっている。1日目の17時~18時、2日目の10時~11時の間は、被験者の自己申告は「動きやすい」であるが、体動指数は前後の時間帯に比べ低下しており、実際に転倒が時刻tc,tdにて起こっている。しかも転倒時刻よりかなり前から体動指数が低下傾向にあることがわかる。 Referring to FIG. 19 (B), in the vicinity of the fallen area, the same behavior as in FIG. 19 (A) is shown. That is, between 9 am and 10 am on the first day, the subject's self-report is an intermediate evaluation of “not easy to move” or “easy to move” — “not easy to move”, and a fall occurred at times ta and tb. In accordance with this, the body motion index is also low. From 17:00 to 18:00 on the first day, from 10:00 to 11:00 on the second day, the subject's self-report is “easy to move”, but the body motion index is lower than before and after, A fall occurred at times tc and td. Moreover, it can be seen that the body motion index tends to decrease considerably before the fall time.
 このように、体動リズムの同調性は転倒危険性を予測する指標となる。 Thus, the synchrony of body movement rhythm is an index for predicting the risk of falls.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更または修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2010年9月17日出願の日本特許出願(特願2010-209112)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on September 17, 2010 (Japanese Patent Application No. 2010-209112), the contents of which are incorporated herein by reference.
 本発明の情報処理方法、情報処理装置、出力装置、情報処理システム、情報処理用プログラムおよび同プログラムを記録したコンピュータ読み取り可能な記録媒体によれば、運動リズムの同調性を連続的かつリアルタイムで評価することができる、という効果を奏する。 According to the information processing method, information processing apparatus, output device, information processing system, information processing program, and computer-readable recording medium storing the program according to the present invention, the synchronization of the movement rhythm is continuously evaluated in real time. There is an effect that can be done.
 1 システム
 10 体動信号検出装置
 11 体動信号検出部
 12 記憶部
 13 インターフェース部
 20 情報処理装置
 21 中央演算部
 22 記憶部
 23 出力部
 24 インターフェース部
 211 時定数決定部
 212 リズム抽出部
 213 評価係数決定部
 214 判定部
 215 出力制御部
 223 時刻算出部
 233 評価係数算出部
DESCRIPTION OF SYMBOLS 1 System 10 Body motion signal detection apparatus 11 Body motion signal detection part 12 Memory | storage part 13 Interface part 20 Information processing apparatus 21 Central processing part 22 Memory | storage part 23 Output part 24 Interface part 211 Time constant determination part 212 Rhythm extraction part 213 Evaluation coefficient determination Unit 214 determination unit 215 output control unit 223 time calculation unit 233 evaluation coefficient calculation unit

Claims (28)

  1.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、
     前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出過程と、をそなえたことを特徴とする、情報処理方法。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation process for calculating a time (hereinafter referred to as a second time) when the phase of the signal changes twice the predetermined angle;
    An evaluation coefficient calculation process for calculating an evaluation coefficient for evaluating the synchronization of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation process. Characteristic information processing method.
  2.  前記評価係数算出過程は、前記所定の時刻から前記第1時刻までの時間(以下、第1時間という)、および、前記第1時刻から前記第2時刻までの時間(以下、第2時間という)に基づいて、前記評価係数を算出する過程であることを特徴とする請求項1記載の情報処理方法。 The evaluation coefficient calculation process includes a time from the predetermined time to the first time (hereinafter referred to as a first time) and a time from the first time to the second time (hereinafter referred to as a second time). The information processing method according to claim 1, wherein the evaluation coefficient is a process based on the information.
  3.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の-1倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、
     前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出過程と、をそなえたことを特徴とする、情報処理方法。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation process for calculating a time when the phase of the signal has changed by −1 times the predetermined angle (hereinafter referred to as a second time);
    An evaluation coefficient calculation process for calculating an evaluation coefficient for evaluating the synchronization of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation process. Characteristic information processing method.
  4.  前記評価係数算出過程は、前記所定の時刻から前記第1時刻までの時間(以下、第1時間という)、および、前記第2時刻から前記所定の時刻までの時間(以下、第2時間という)に基づいて、前記評価係数を算出する過程であることを特徴とする請求項3記載の情報処理方法。 The evaluation coefficient calculation process includes a time from the predetermined time to the first time (hereinafter referred to as a first time) and a time from the second time to the predetermined time (hereinafter referred to as a second time). The information processing method according to claim 3, wherein the evaluation coefficient is a process based on the method.
  5.  前記時刻算出過程は、ヒルベルト変換法またはパターンマッチング法を用いることで、前記第1時刻および前記第2時刻を算出する過程であることを特徴とする、請求項1~4のいずれか1項に記載の情報処理方法。 5. The time calculation process according to claim 1, wherein the time calculation process is a process of calculating the first time and the second time using a Hilbert transform method or a pattern matching method. The information processing method described.
  6.  前記時刻算出過程は、前記所定の時刻における前記信号の位相から前記信号の位相が360度変化した前記第1時刻、および、前記所定の時刻における前記信号の位相から前記信号の位相が720度変化した前記第2時刻を算出する
    ことを特徴とする請求項1~5のいずれか1項に記載の情報処理方法。
    The time calculation process includes the first time when the phase of the signal has changed 360 degrees from the phase of the signal at the predetermined time, and the phase of the signal has changed 720 degrees from the phase of the signal at the predetermined time. 6. The information processing method according to claim 1, wherein the second time is calculated.
  7.  前記時刻算出過程は、前記所定の時刻における前記信号の位相から前記信号の位相が180度変化した前記第1時刻、および、前記所定の時刻における前記信号の位相から前記信号の位相が360度変化した前記第2時刻を算出する
    ことを特徴とする請求項1~5のいずれか1項に記載の情報処理方法。
    In the time calculation process, the phase of the signal changes by 180 degrees from the phase of the signal at the predetermined time, and the phase of the signal changes by 360 degrees from the phase of the signal at the predetermined time. 6. The information processing method according to claim 1, wherein the second time is calculated.
  8.  前記時刻算出過程は、一つの検出部により検出された、生体の繰り返し随意運動を表す信号から、前記第1時刻、および、前記第2時刻を算出する
    ことを特徴とする請求項1~7のいずれか1項に記載の情報処理方法。
    8. The time calculation process according to claim 1, wherein the first time and the second time are calculated from a signal representing a repetitive voluntary movement of a living body detected by one detection unit. The information processing method according to any one of claims.
  9.  前記評価係数算出過程により算出された前記評価係数が、所定時間にわたって所定範囲内であるかを判定する判定過程をさらにそなえたことを特徴とする、請求項1~8のいずれか1項に情報処理方法。 9. The information according to claim 1, further comprising a determination step of determining whether the evaluation coefficient calculated by the evaluation coefficient calculation step is within a predetermined range over a predetermined time. Processing method.
  10.  前記繰り返し随意運動が、歩行、ジョギング、ランニング、自転車走行、水泳、又は体操のいずれかであることを特徴とする、請求項1~9のいずれか1項に記載の情報処理方法。 10. The information processing method according to claim 1, wherein the repeated voluntary exercise is any one of walking, jogging, running, cycling, swimming, and gymnastics.
  11.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出部と、
     前記時刻算出部により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出部と、をそなえたことを特徴とする、情報処理装置。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation unit for calculating a time at which the phase of the signal has changed twice the predetermined angle (hereinafter referred to as a second time);
    An evaluation coefficient calculation unit that calculates an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation unit. An information processing apparatus is characterized.
  12.  前記評価係数算出部は、前記所定の時刻から前記第1時刻までの時間(以下、第1時間という)、および、前記第1時刻から前記第2時刻までの時間(以下、第2時間という)に基づいて、前記評価係数を算出することを特徴とする請求項11記載の情報処理装置。 The evaluation coefficient calculation unit includes a time from the predetermined time to the first time (hereinafter referred to as a first time) and a time from the first time to the second time (hereinafter referred to as a second time). The information processing apparatus according to claim 11, wherein the evaluation coefficient is calculated based on the information.
  13.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の-1倍変化した時刻(以下、第2時刻という)を算出する時刻算出部と、
     前記時刻算出部により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出部と、をそなえたことを特徴とする、情報処理装置。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation unit for calculating a time when the phase of the signal has changed by −1 times the predetermined angle (hereinafter referred to as a second time);
    An evaluation coefficient calculation unit that calculates an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation unit. An information processing apparatus is characterized.
  14.  前記評価係数算出部は、前記所定の時刻から前記第1時刻までの時間(以下、第1時間という)、および、前記第2時刻から前記所定の時刻までの時間(以下、第2時間という)に基づいて、前記評価係数を算出することを特徴とする請求項13記載の情報処理装置。 The evaluation coefficient calculation unit includes a time from the predetermined time to the first time (hereinafter referred to as a first time) and a time from the second time to the predetermined time (hereinafter referred to as a second time). The information processing apparatus according to claim 13, wherein the evaluation coefficient is calculated based on the information.
  15.  前記時刻算出部は、ヒルベルト変換法またはパターンマッチング法を用いることで、前記第1時刻および前記第2時刻を算出する過程であることを特徴とする、請求項11~14のいずれか1項に記載の情報処理装置。 The time calculation unit according to any one of claims 11 to 14, wherein the time calculation unit is a process of calculating the first time and the second time by using a Hilbert transform method or a pattern matching method. The information processing apparatus described.
  16.  前記第1角度は、360度である
    ことを特徴とする請求項11~15のいずれか1項に記載の情報処理装置。
    The information processing apparatus according to any one of claims 11 to 15, wherein the first angle is 360 degrees.
  17.  前記第1角度は、180度である
    ことを特徴とする請求項11~15のいずれか1項に記載の情報処理装置。
    The information processing apparatus according to any one of claims 11 to 15, wherein the first angle is 180 degrees.
  18.  前記繰り返し随意運動を表す信号は、一つの検出部により検出された信号である
    ことを特徴とする請求項11~17のいずれか1項に記載の情報処理装置。
    The information processing apparatus according to any one of claims 11 to 17, wherein the signal representing the repetitive voluntary movement is a signal detected by one detection unit.
  19.  前記評価係数算出部により算出された前記評価係数が、所定時間にわたって所定範囲内であるかを判定する判定部をさらにそなえたことを特徴とする、請求項11~18のいずれか1項に情報処理装置。 The information according to any one of claims 11 to 18, further comprising a determination unit that determines whether or not the evaluation coefficient calculated by the evaluation coefficient calculation unit is within a predetermined range over a predetermined time. Processing equipment.
  20.  前記繰り返しリズム運動が、歩行、ジョギング、ランニング、自転車走行、水泳、又は体操のいずれかであることを特徴とする、請求項11~19のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 11 to 19, wherein the repetitive rhythmic exercise is any one of walking, jogging, running, cycling, swimming, and gymnastics.
  21.  所定の時刻における生体の繰り返し随意運動を表す信号の位相から前記信号の位相が所定角度変化した時刻、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻に基づく、前記繰り返し随意運動の同調性を評価するための評価係数を、前記評価係数を識別可能な形態にて出力する出力部をそなえたことを特徴とする出力装置。 The time when the phase of the signal changes by a predetermined angle from the phase of the signal representing the repetitive voluntary movement of the living body at a predetermined time, and the phase of the signal changes by twice the predetermined angle from the phase of the signal at the predetermined time An output device comprising: an output unit that outputs an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on time in a form in which the evaluation coefficient can be identified.
  22.  所定の時刻における生体の繰り返し随意運動を表す信号の位相から前記信号の位相が所定角度変化した時刻、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の-1倍変化した時刻に基づく、前記繰り返し随意運動の同調性を評価するための評価係数を、前記評価係数を識別可能な形態にて出力する出力部をそなえたことを特徴とする出力装置。 The time when the phase of the signal changes by a predetermined angle from the phase of the signal representing the repeated voluntary movement of the living body at the predetermined time, and the phase of the signal changes by −1 times the predetermined angle from the phase of the signal at the predetermined time An output device comprising: an output unit that outputs an evaluation coefficient for evaluating the synchronization of the repetitive voluntary movement based on the determined time in a form in which the evaluation coefficient can be identified.
  23.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出部と、
     前記時刻算出部により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出部と、
     前記評価係数算出部により算出された評価係数を、前記評価係数を識別可能な形態にて出力する出力部と、をそなえた
    ことを特徴とする、情報処理システム。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation unit for calculating a time at which the phase of the signal has changed twice the predetermined angle (hereinafter referred to as a second time);
    An evaluation coefficient calculation unit that calculates an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation unit;
    An information processing system comprising: an output unit that outputs the evaluation coefficient calculated by the evaluation coefficient calculation unit in a form in which the evaluation coefficient can be identified.
  24.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の-1倍変化した時刻(以下、第2時刻という)を算出する時刻算出部と、
     前記時刻算出部により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出部と、
     前記評価係数算出部により算出された評価係数を、前記評価係数を識別可能な形態にて出力する出力部と、をそなえた
    ことを特徴とする、情報処理システム。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation unit for calculating a time when the phase of the signal has changed by −1 times the predetermined angle (hereinafter referred to as a second time);
    An evaluation coefficient calculation unit that calculates an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation unit;
    An information processing system comprising: an output unit that outputs the evaluation coefficient calculated by the evaluation coefficient calculation unit in a form in which the evaluation coefficient can be identified.
  25.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、
     前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出過程と、をコンピュータに実行させることを特徴とする、情報処理用プログラム。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation process for calculating a time (hereinafter referred to as a second time) when the phase of the signal changes twice the predetermined angle;
    Causing the computer to execute an evaluation coefficient calculation step of calculating an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation step An information processing program characterized by the above.
  26.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記所定角度の-1倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、
     前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する評価係数算出過程と、をコンピュータに実行させることを特徴とする、情報処理用プログラム。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation process for calculating a time when the phase of the signal has changed by −1 times the predetermined angle (hereinafter referred to as a second time);
    Causing the computer to execute an evaluation coefficient calculation step of calculating an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation step An information processing program characterized by the above.
  27.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記第1角度の2倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、
     前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する第2算出過程と、をコンピュータに実行させることを特徴とする、情報処理用プログラムを記録したコンピュータ読取可能な記録媒体。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation process for calculating a time when the phase of the signal has changed twice the first angle (hereinafter referred to as a second time);
    Causing the computer to execute a second calculation step of calculating an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation step. A computer-readable recording medium on which an information processing program is recorded.
  28.  生体の繰り返し随意運動を表す信号から、所定の時刻における前記信号の位相から前記信号の位相が所定角度変化した時刻(以下、第1時刻という)、および、所定の時刻における前記信号の位相から前記信号の位相が前記第1角度の-1倍変化した時刻(以下、第2時刻という)を算出する時刻算出過程と、
     前記時刻算出過程により算出された、前記第1時刻および前記第2時刻に基づいて、前記繰り返し随意運動の同調性を評価するための評価係数を算出する第2算出過程と、をコンピュータに実行させることを特徴とする、情報処理用プログラムを記録したコンピュータ読取可能な記録媒体。
    From the signal representing the repetitive voluntary movement of the living body, the time when the phase of the signal changes by a predetermined angle from the phase of the signal at a predetermined time (hereinafter referred to as the first time), and the phase of the signal at the predetermined time A time calculation process for calculating a time when the phase of the signal has changed by -1 times the first angle (hereinafter referred to as a second time);
    Causing the computer to execute a second calculation step of calculating an evaluation coefficient for evaluating the synchrony of the repetitive voluntary movement based on the first time and the second time calculated by the time calculation step. A computer-readable recording medium on which an information processing program is recorded.
PCT/JP2011/070763 2010-09-17 2011-09-12 Information-processing method, information-processing device, output device, information-processing system, information-processing program and computer-readable recording medium on which same program is recorded WO2012036135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534001A JPWO2012036135A1 (en) 2010-09-17 2011-09-12 INFORMATION PROCESSING METHOD, INFORMATION PROCESSING DEVICE, OUTPUT DEVICE, INFORMATION PROCESSING SYSTEM, INFORMATION PROCESSING PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010209112 2010-09-17
JP2010-209112 2010-09-17

Publications (1)

Publication Number Publication Date
WO2012036135A1 true WO2012036135A1 (en) 2012-03-22

Family

ID=45831594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070763 WO2012036135A1 (en) 2010-09-17 2011-09-12 Information-processing method, information-processing device, output device, information-processing system, information-processing program and computer-readable recording medium on which same program is recorded

Country Status (2)

Country Link
JP (1) JPWO2012036135A1 (en)
WO (1) WO2012036135A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193349A (en) * 2013-03-19 2014-10-09 Avita Corp Device and method for monitoring physiological condition
WO2014181604A1 (en) * 2013-05-10 2014-11-13 オムロンヘルスケア株式会社 Walking posture meter and program
JP2016059729A (en) * 2014-09-22 2016-04-25 カシオ計算機株式会社 Measurement device, measurement method and measurement program
JP2016112053A (en) * 2014-12-11 2016-06-23 国立研究開発法人産業技術総合研究所 Walking state determination method, program and device
US11607138B2 (en) * 2012-06-01 2023-03-21 Vital Connect, Inc. Respiratory rate detection using decomposition of ECG

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244495A (en) * 2006-03-14 2007-09-27 Sony Corp Body motion detector, body motion detecting method, and body motion detecting program
WO2008035611A1 (en) * 2006-09-19 2008-03-27 Mitsubishi Chemical Corporation Data processing device, data processing method, and data processing program
WO2010058535A1 (en) * 2008-11-18 2010-05-27 オムロンヘルスケア株式会社 Body-movement balance detecting device, body-movement balance detecting program, body-movement balance detecting method, and method for diagnosing body-movement balance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244495A (en) * 2006-03-14 2007-09-27 Sony Corp Body motion detector, body motion detecting method, and body motion detecting program
WO2008035611A1 (en) * 2006-09-19 2008-03-27 Mitsubishi Chemical Corporation Data processing device, data processing method, and data processing program
WO2010058535A1 (en) * 2008-11-18 2010-05-27 オムロンヘルスケア株式会社 Body-movement balance detecting device, body-movement balance detecting program, body-movement balance detecting method, and method for diagnosing body-movement balance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEYA TAKANASHI: "Co-emergence Robot Walk- Mate and Its Support for Elderly People", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 39, no. 1, January 2003 (2003-01-01), pages 74 - 81 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11607138B2 (en) * 2012-06-01 2023-03-21 Vital Connect, Inc. Respiratory rate detection using decomposition of ECG
JP2014193349A (en) * 2013-03-19 2014-10-09 Avita Corp Device and method for monitoring physiological condition
WO2014181604A1 (en) * 2013-05-10 2014-11-13 オムロンヘルスケア株式会社 Walking posture meter and program
JP2014217694A (en) * 2013-05-10 2014-11-20 オムロンヘルスケア株式会社 Walking posture meter and program
CN105208932A (en) * 2013-05-10 2015-12-30 欧姆龙健康医疗事业株式会社 Walking posture meter and program
US10898112B2 (en) 2013-05-10 2021-01-26 Omron Healthcare Co., Ltd. Gait posture meter and program
JP2016059729A (en) * 2014-09-22 2016-04-25 カシオ計算機株式会社 Measurement device, measurement method and measurement program
JP2016112053A (en) * 2014-12-11 2016-06-23 国立研究開発法人産業技術総合研究所 Walking state determination method, program and device

Also Published As

Publication number Publication date
JPWO2012036135A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
US10856813B2 (en) Method and apparatus for generating assessments using physical activity and biometric parameters
CN102548474B (en) Body movement signal information processing method, information processing system and information processing device
JP6403696B2 (en) Physical activity monitoring device and method
EP2255209B1 (en) Method and apparatus for determining the attachment position of a motion sensing apparatus
WO2012036135A1 (en) Information-processing method, information-processing device, output device, information-processing system, information-processing program and computer-readable recording medium on which same program is recorded
Hemmatpour et al. A review on fall prediction and prevention system for personal devices: evaluation and experimental results
WO2018066422A1 (en) Cognitive function evaluation device, cognitive function evaluation method, and program
US10264997B1 (en) Systems and methods for selecting accelerometer data to store on computer-readable media
US20230085511A1 (en) Method and system for heterogeneous event detection
JP4504071B2 (en) Body motion analysis device
KR101125672B1 (en) Method for measuring exercise pattern and apparatus for measuring exercise quantity using the method
JP2013244055A (en) Information processor
JP5659644B2 (en) Information processing method, information processing system, information processing apparatus, information processing program, and computer-readable recording medium storing the program
JP5742146B2 (en) INFORMATION PROCESSING METHOD, INFORMATION PROCESSING SYSTEM, INFORMATION PROCESSING DEVICE, DISPLAY DEVICE, INFORMATION PROCESSING PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM
CN103759738A (en) Step counter
KR102395937B1 (en) Health state prediction method and system based on gait time-frequency analysis
CN114341947A (en) System and method for exercise type recognition using wearable devices
JP6638860B2 (en) Information processing system, information processing apparatus, and information processing method
Christ et al. An approach for determining linear velocities of athletes from acceleration measurements using a neural network
JP6629485B2 (en) Processing apparatus and method for determining walking motion of subject
Sher Automating gait analysis using a smartphone
Ye et al. Inertial sensor based post fall analysis for false alarming reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534001

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825137

Country of ref document: EP

Kind code of ref document: A1