WO2012036009A1 - Relay device, communication system, communication method, communication program, and data frame structure - Google Patents

Relay device, communication system, communication method, communication program, and data frame structure Download PDF

Info

Publication number
WO2012036009A1
WO2012036009A1 PCT/JP2011/070138 JP2011070138W WO2012036009A1 WO 2012036009 A1 WO2012036009 A1 WO 2012036009A1 JP 2011070138 W JP2011070138 W JP 2011070138W WO 2012036009 A1 WO2012036009 A1 WO 2012036009A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
data
data area
area
stm
Prior art date
Application number
PCT/JP2011/070138
Other languages
French (fr)
Japanese (ja)
Inventor
誠二 福永
大地 坂本
裕幸 地下
Original Assignee
日本電気株式会社
Necネッツエスアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necネッツエスアイ株式会社 filed Critical 日本電気株式会社
Priority to JP2012533944A priority Critical patent/JP5354703B2/en
Publication of WO2012036009A1 publication Critical patent/WO2012036009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET

Definitions

  • the present invention relates to a relay device that relays a data frame, a communication system, a communication method, a communication program, and a data frame structure.
  • the E12 signal defined by Non-Patent Document 1 and having a bit rate of 2.048 Mbps (bit per second) is mainly used.
  • the demand for lines is increasing rapidly due to the spread of mobile phones and the increase in the amount of communication using mobile phones.
  • the mobile phone carrier since it is necessary to increase the bandwidth of the backbone line of the mobile phone carrier, it has been desired for the mobile phone carrier to increase only the capacity of the accommodation line without increasing the bandwidth of the backbone line. . In order to increase the capacity of the accommodated line, for example, it is conceivable to multiplex communications within the accommodated line.
  • SDH Synchronous Digital Hierarchy
  • the communication system in FIG. 9 includes a line termination device 300, a line termination device 303, a relay transmission device 301, and a relay transmission device 302.
  • the line termination device may be referred to as LTE (Line-Terminating Equipment) or a terminal station, and the relay transmission device may be referred to as REG (Regenerator).
  • LTE Line-Terminating Equipment
  • REG Registered Radio Network
  • the section between the line terminator and the line terminator is called a multiplexing section.
  • a section between the line termination device and the relay transmission device or a section between the relay transmission device and the relay transmission device is called a relay section.
  • FIG. 10 shows an STM-1 (Synchronous Transport Module) frame format, which is a basic data frame handled by SDH.
  • STM-1 is a basic multiplexing unit of SDH, and its speed is 155.52 Mbps.
  • STM-1 is a basic multiplexing unit of SDH, and its speed is 155.52 Mbps.
  • the format of the STM-1 frame will be described.
  • the STM-1 frame 310 is a 9 ⁇ 3 byte RSOH (Regenerator Section Overhead) 311, a 9 ⁇ 1 byte AU (Administrative Unit) pointer 312, and a 9 ⁇ 5 byte MSOH (Multiple Section Overhead). 313 and 261 ⁇ 9 bytes payload 314.
  • RSOH Registered Section Overhead
  • AU Administrative Unit
  • MSOH Multiple Section Overhead
  • a plurality of signals are multiplexed and stored.
  • a plurality of E12 signals are multiplexed on the payload 314.
  • the AU pointer 312 is a field indicating the position where the multiplexed signal is stored.
  • the RSOH 311 is a field that is terminated and replaced by a line termination device or a relay transmission device during communication between relay sections.
  • the MSOH 313 is a field that is terminated and replaced by a line termination device during communication between multiplexed sections.
  • ITU-T G. 703 Physical / electrical charactaristics of hierarchical digital interfaces.
  • ITU-T G. 707 / Y. 1322 Network node interface for the synchronous digital hierarchy (SDH).
  • Non-Patent Document 1 when the E12 signal described in Non-Patent Document 1 is multiplexed using the STM-1 frame disclosed in Patent Document 1, Patent Document 2, and Non-Patent Document 2 described above, there is a problem that communication efficiency is low. there were.
  • the payload 314 is used for multiplexing the E12 signal. Therefore, when the E12 signal is multiplexed on the payload 314, the maximum number of E12 signals that can be multiplexed is 63 (channels), and the communication efficiency is about 83%. Since the communication bandwidth of the STM-1 frame is 155.52 Mbps as described above, it can be said that a bandwidth of about 26 Mbps has been wasted.
  • An object of the present invention is to provide a relay device, a communication system, a communication method, a communication program, and a data frame structure that can solve the above-described problems.
  • the relay device includes a receiving unit that receives a plurality of signals, a first data area that stores data, and a second data area that is an area other than the first data area.
  • a generation unit that stores a plurality of received signals and generates a data frame; and a transmission unit that transmits the generated data frame.
  • a communication system includes a transmission-side relay device that transmits a data frame and a reception-side relay device that receives the data frame, wherein the transmission-side relay device receives a plurality of signals. Generating a data frame by storing a plurality of received signals in both a first data area for storing data and a second data area that is an area other than the first data area And a transmission unit that transmits the generated data frame.
  • the communication method includes a reception step of receiving a plurality of signals, a first data area for storing data, and a second data area that is an area other than the first data area.
  • a communication method comprising: a generation step of generating a data frame by storing a plurality of received signals; and a transmission step of transmitting the generated data frame.
  • the communication program according to the present invention includes both a reception process for receiving a plurality of signals, a first data area for storing data, and a second data area that is an area other than the first data area.
  • a communication program that causes a computer to execute a generation process for generating a data frame by storing a plurality of received signals and a transmission process for transmitting the generated data frame.
  • the structure of the data frame according to the present invention includes a first data area for storing data, and a second data area that is an area other than the relay control area and the first data area.
  • the data frame structure is characterized in that a plurality of signals received by the relay apparatus are stored in both a data area and the second data area.
  • FIG. 1 is a block diagram illustrating a configuration of a relay device according to the first embodiment.
  • the relay device 100 includes a reception unit 101, a generation unit 102, and a transmission unit 103.
  • FIG. 2 is a flowchart showing the operation of the relay device 100.
  • the configuration and operation of the relay device 100 will be described with reference to FIGS. 1 and 2.
  • the receiving unit 101 receives a plurality of signals (FIG. 2: step S01).
  • the generation unit 102 stores a plurality of signals received by the reception unit 101 in both a first data area for storing data and a second data area that is an area other than the first data area, and stores data frames. (FIG. 2: Step S02).
  • the transmission unit 103 transmits the data frame generated by the generation unit 102 (FIG. 2: step S03).
  • the generation unit 102 stores a plurality of signals received by the reception unit 101 in the first data area for storing data and the second data area that is an area other than the first data area. Generated data frame. With the above operation, it is possible to improve communication efficiency when a signal is stored in a data frame and transmitted.
  • FIG. 3 is a block diagram illustrating a configuration example of a system according to the second embodiment.
  • the system according to the second embodiment includes a relay device 200, a relay device 210, an exchange 220, a base station 231, a base station 232, and a base station 233.
  • each base station and the exchange 220 correspond to a line terminating device (terminal station).
  • the relay device 200 and the relay device 210 correspond to a relay transmission device.
  • the relay apparatus 210 may have the function of the relay apparatus 200 described below, and the relay apparatus 200 may have the function of the relay apparatus 210. Furthermore, when performing bidirectional communication, both the relay device 200 and the relay device 210 may have the functions of both the relay device 200 and the relay device 210 described below.
  • the E12 signal is multiplexed into the STM-1 frame for communication.
  • the present invention is not limited to this. Any communication system can be applied as long as a certain signal is multiplexed and transmitted in some frame.
  • this embodiment is applied to STM-4 frames and STM-16 frames, which are adopted in the SDH system and SONET (Synchronous Optical Network) system similar to SDH, as well as STM-1 frames. can do.
  • the base station 231, the base station 232, and the base station 233 are connected to a backbone network (not shown in the figure) such as a communication carrier.
  • a backbone network such as a communication carrier.
  • each base station receives communication using the E12 signal from the backbone network, each base station transmits the E12 signal toward the relay apparatus 200. Since these base stations are assumed to be generally well-known base stations or the like, detailed description thereof is omitted.
  • the relay device 200 is connected to the base station 231, the base station 232, and the base station 233.
  • the relay device 200 is connected to the relay device 210 via an optical fiber line.
  • the relay device 200 receives signals from each base station, generates a frame storing each signal, and transmits the frame to the relay device 210.
  • the configuration and operation of the relay device 200 will be described in detail later.
  • the line connecting the relay device 200 and the relay device 210 is an optical fiber, but the present invention is not limited to this.
  • a microwave radio device, a media converter, or the like can be interposed.
  • the relay device 210 is connected to the relay device 200 and the exchange 220.
  • the relay device 210 receives a frame from the relay device 200, reproduces a signal, and transmits the signal to the exchange 220.
  • the configuration and operation of the relay device 210 will be described in detail later.
  • the exchange 220 receives a signal from the relay device 210.
  • the exchange 220 switches the connection between the communication paths from the transmission source and destination of the received signal and configures a communication line. Since the exchange 220 is assumed to be an exchange that is generally well known, a detailed description thereof will be omitted.
  • FIG. 4 is a block diagram showing the configuration of the relay apparatus 200.
  • relay device 200 includes an E12 signal receiving unit 201, an STM-1 frame generation unit 202, and an STM-1 frame transmission unit 203.
  • FIG. 5 is a flowchart showing the operation of the relay device 200.
  • the configuration and operation of the relay apparatus 200 will be described with reference to FIGS. 4 and 5.
  • the E12 signal receiving unit 201 receives the E12 signal transmitted by each base station (FIG. 5: step S11). Thereafter, the E12 signal receiving unit 201 converts the received E12 signal into a bit string to be handled in the relay device 200.
  • the 1st-E12 signal receiving unit 201-1 to the N-E12 signal receiving unit 201-N receive N signals, respectively.
  • the first-E12 signal receiving unit 201-1 receives the E12 signal transmitted from the base station 231.
  • the STM-1 frame generation unit 202 generates an STM-1 frame in which a bit string corresponding to the E12 signal received by the E12 signal reception unit 201 is multiplexed (FIG. 5: Step S12). Thereafter, the STM-1 frame generation unit 202 transfers the generated frame to the STM-1 frame transmission unit 203.
  • the STM-1 frame generated by the STM-1 frame generation unit 202 will be described later.
  • the STM-1 frame transmission unit 203 receives the STM-1 frame generated by the STM-1 frame generation unit 202. Thereafter, the STM-1 frame transmission unit 203 transmits the STM-1 frame to the relay apparatus 210 (FIG. 5: Step S13).
  • FIG. 6 shows a frame format of the STM-1 frame 240 generated by the STM-1 frame generation unit 202.
  • the STM-1 frame 240 includes an RSOH 241, a frame order control byte 242, and a payload 243.
  • the STM-1 frame 240 has the RSOH 241 equivalent to the RSOH 311, but does not have the AU pointer 312 and the MSOH 313.
  • the control performed using the information of the AU pointer 312 and the MSOH 313 in the STM-1 frame 310 of FIG. 10 is realized in the STM-1 frame 240 using the frame order control byte 242 and the like. With such a configuration, the overhead area can be reduced, and more data areas can be allocated to the payload.
  • RSOH 241 is the same as RSOH 311 in FIG. 10 as described above. In the second embodiment, the RSOH 241 is used for communication control in each section of each base station, each relay device, and the exchange 220, which is treated as a relay section in this embodiment.
  • the frame order control byte 242 is information for controlling the order of bit strings corresponding to the E12 signal multiplexed by the STM-1 frame generation unit 202. By storing this frame order control byte 242 in the STM-1 frame 240, the relay apparatus 201 can reproduce the bit string corresponding to the E12 signal.
  • the frame order control byte 242 stores a part of the information stored in the AU pointer 312 and the MSOH 313 in the STM-1 frame 310 of FIG. Any information may be stored in the relay device 201 as long as the bit string corresponding to the E12 signal can be reproduced. That is, the size of the frame order control byte 242 is not uniquely determined. Therefore, FIG. 6 does not describe the field size of the frame order control byte 242.
  • FIG. 6 does not describe the field size of the frame order control byte 242.
  • an example of information included in the frame order control byte 242 will be described.
  • information on the head position of data stored in the AU pointer 312 in FIG. This information is used for detecting the frame order when the relay apparatus 201 reproduces the bit string corresponding to the E12 signal.
  • the frame order control byte 242 can include information related to the synchronization control between the terminal stations (in FIG. 3, each base station and the exchange 220), which has been performed by the MSOH 313 in FIG. This information corresponds to what is called S1 in the STM-1 frame format disclosed in Non-Patent Document 2.
  • a bit string corresponding to the E12 signal is multiplexed and stored.
  • the frequency difference absorption information of the AU pointer 312 of the STM-1 frame 310 and the error detection information of the MSOH 313 are stored between the bit strings corresponding to the respective channels of the E12 signal. More specifically, the frequency difference absorption information of the AU pointer 312 corresponds to what is called a stuff control bit, a stuff / destuff bit, or a positive / negative stuff control bit.
  • the stuff control bit is provided to absorb the frequency difference between signals when transmitting multiplexed signals.
  • the error detection information of the MSOH 313 corresponds to information for error detection called B2 and information for displaying a game error called M1 in the STM-1 frame format disclosed in Non-Patent Document 2. To do.
  • FIG. 7 is a block diagram showing the configuration of the relay device 210.
  • the relay device 210 includes an STM-1 frame termination unit 211, an E12 signal decomposition unit 212, and an E12 signal transmission unit 213.
  • FIG. 8 is a flowchart showing the operation of the relay device 210.
  • the configuration and operation of the relay apparatus 210 will be described with reference to FIGS. 7 and 8.
  • the STM-1 frame termination unit 211 receives the STM-1 frame 240 transmitted by the relay apparatus 200 and terminates the STM-1 frame 240 (FIG. 8: step S21).
  • the STM-1 frame terminating unit 211 is based on the frame order control byte 242 of the STM-1 frame 240 and the stuff control bits and error detection bits stored between the bit strings corresponding to the E12 signals of the payload 243.
  • the bit string corresponding to the E12 signal is reproduced (FIG. 8: step S22).
  • the reproduced bit string is one long bit string in which a plurality of bit strings corresponding to the multiplexed E12 signal are arranged.
  • the STM-1 frame terminating unit 211 transmits the reproduced bit string to the E12 signal decomposing unit 212.
  • the E12 signal decomposition unit 212 receives the reproduced bit string and decomposes the reproduced bit string into N E12 signals for each channel (FIG. 8: step S23). Next, the E12 signal decomposing unit 212 transmits the N decomposed E12 signals to the E12 signal transmitting unit 213.
  • the E12 signal transmission unit 213 includes a first 1-E12 signal transmission unit 213-1 to an N-E12 signal transmission unit 213-N. Each of the 1-E12 signal transmission unit 213-1 to the N-E12 signal transmission unit 213-N transmits the received E12 signal to the exchange 220 (FIG. 8: step S24).
  • the STM-1 frame termination unit 211 is common to the E12 signal reception unit 201 (FIG. 4) of the relay device 200 in that it receives a signal or data from outside the device. Therefore, when the relay device has the functions of both the relay device 200 and the relay device 210, it can be implemented as the same functional block. The same applies to the E12 signal transmission unit 213 and the STM-1 frame transmission unit 203 (FIG. 4), which are functions for transmitting signals or data.
  • the present invention is not limited to this as long as the frame format is set such that the data frame is transmitted from each base station to each exchange 220 via each relay device. More specifically, if the communication control function performed by the RSOH 241 and the frame order control byte 242 in this embodiment is set in another area, a frame format other than that shown in FIG. 6 may be used.
  • the relay device 200 multiplexes and transmits the E12 signal on the AU pointer, the MSOH area, and the payload of the STM-1 frame.
  • the repeater is A receiver for receiving a plurality of signals; A generator for storing a plurality of received signals and generating a data frame in both a first data area for storing data and a second data area that is an area other than the first data area; A transmitter for transmitting the generated data frame; It has.
  • the relay device The relay device according to attachment 1 or 2, wherein the second data area includes a pointer area used as a pointer of the stored signal.
  • the relay device is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame;
  • the second data area may be the relay apparatus according to any one of appendices 1 to 3, including MS (Multiple Section) overhead in an STM-1 frame.
  • the relay device is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame;
  • the second data area may be the relay device according to any one of appendices 1 to 4, including an AU (Administrative Unit) pointer in the STM-1 frame.
  • AU Administrative Unit
  • the relay device The relay according to any one of appendices 1 to 7, wherein the generation unit further stores an error detection bit, a stuff bit, and a destuff bit between the plurality of stored signals. It may be a device.
  • a transmission side relay device for transmitting a data frame; A receiving side relay device for receiving the data frame; With The transmission side relay device is: A first receiver for receiving a plurality of signals; A generator for storing a plurality of received signals and generating a data frame in both a first data area for storing data and a second data area that is an area other than the first data area; A transmitter for transmitting the generated data frame; It is a communication system provided with.
  • Appendix 11 The communication system The communication system according to appendix 9 or 10, wherein the second data area includes a pointer area used as a pointer of the stored signal.
  • the data frame is a frame conforming to an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame;
  • the communication system according to any one of appendices 9 to 11, wherein the second data area includes an MS (Multiple Section) overhead in an STM-1 frame.
  • the communication system is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame;
  • the area other than the second data area may be the communication system according to any one of appendices 9 to 12, including an AU (Administrative Unit) pointer in the STM-1 frame.
  • AU Administrative Unit
  • Appendix 14 The communication system The communication system according to any one of appendices 9 to 13, wherein the generation unit further stores sequence control information for controlling the sequence of the data frames in the data frame.
  • the communication system The receiving side relay device is The communication system according to attachment 14, further comprising: a second reception unit that reproduces the plurality of stored signals according to the order control information when the data frame is received.
  • Appendix 16 The communication system The communication according to any one of appendices 9 to 15, wherein the generation unit further stores an error detection bit, a stuff bit, and a destuff bit between the plurality of stored signals. It may be a system.
  • the communication method is The communication method according to attachment 17, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
  • the communication method is The communication method according to appendix 17 or 18, wherein the second data area includes a pointer area used as a pointer of the stored signal.
  • the communication method is The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame;
  • the communication method according to any one of appendices 17 to 19, wherein the second data area includes MS (Multiple Section) overhead in an STM-1 frame.
  • the communication method is The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame;
  • the communication method according to any one of supplementary notes 17 to 20, wherein the second data area includes an AU (Administrative Unit) pointer in an STM-1 frame.
  • AU Administrative Unit
  • the communication method is The communication method according to any one of appendices 17 to 21, wherein the generation step further stores order control information for controlling the order of the data frames in the data frame.
  • the communication method is The communication method according to attachment 22, wherein the reception step reproduces the plurality of stored signals in accordance with the order control information when the data frame is received.
  • the communication method is The communication according to any one of appendices 17 to 23, wherein the generating step further stores an error detection bit, a stuff bit, and a destuff bit between the plurality of stored signals. It may be a method.
  • the communication program is A reception process for receiving a plurality of signals; A generation process for generating a data frame by storing a plurality of received signals in both a first data area for storing data and a second data area that is an area other than the first data area; A transmission process for transmitting the generated data frame; Is executed on the computer.
  • the communication program is The communication program according to attachment 25, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
  • the communication program is The communication program according to attachment 25 or 26, wherein the second data area includes a pointer area used as a pointer of the stored signal.
  • the communication program is The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame;
  • the second data area may be the communication program according to any one of appendices 25 to 27, including MS (Multiple Section) overhead in the STM-1 frame.
  • the communication program is The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame; 29.
  • the communication program according to any one of appendices 25 to 28, wherein the second data area area includes an AU (Administrative Unit) pointer in an STM-1 frame.
  • AU Administrative Unit
  • the communication program is The communication program according to any one of appendices 25 to 29, wherein the generation process further stores order control information for controlling the order of the data frames in the data frame.
  • the communication program is The communication program according to attachment 30, wherein the reception process reproduces the plurality of stored signals according to the sequence control information when the data frame is received.
  • the communication program is 32.
  • the structure of the data frame is A first data area for storing data; A second data area that is an area other than the first data area; Including A plurality of signals received by the relay device are stored in both the first data area and the second data area.
  • the structure of the data frame is The data frame structure according to attachment 33, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
  • the structure of the data frame is The data frame structure according to attachment 33 or 34, wherein the second data area is stored in a pointer area used as a pointer of the stored signal.
  • the data frame is a data frame conforming to an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame;
  • the data frame structure according to any one of appendices 33 to 35, wherein the second data area includes MS (Multiple Section) overhead in an STM-1 frame.
  • the data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
  • the first data area is a payload in an STM-1 frame; 37.
  • the data frame structure according to any one of appendices 33 to 36, wherein the second data area includes an AU (Administrative Unit) pointer in an STM-1 frame.
  • AU Administrative Unit
  • the data frame may have a data frame structure according to any one of attachments 33 to 37, in which order control information for controlling the order of the data frames is stored.
  • REFERENCE SIGNS LIST 100 relay device 101 receiving unit 102 generating unit 103 transmitting unit 200 relay device 201 E12 signal receiving unit 201-1 first 1-E12 signal receiving unit 201-N N-E12 signal receiving unit 202 STM-1 frame generating unit 203 STM- 1 frame transmission unit 210 relay device 211 STM-1 frame termination unit 212 E12 signal decomposition unit 213 E12 signal transmission unit 213-1 first 1-E12 signal transmission unit 213-N N-E12 signal transmission unit 220 switch 231 base station 232 Base station 233 Base station 240 STM-1 frame 241 RSOH 242 Frame order control byte 243 Payload 300 Line termination device 301 Relay transmission device 302 Relay transmission device 303 Line termination device 311 RSOH 312 AU pointer 313 MSOH 314 Payload

Abstract

This relay device comprises: a receiver for receiving a plurality of signals; a generator for storing the received signals in a plural number and generating a data frame both in a first data region for storing data and in a second data region, which is a region other than the first data region; and a transmitter for transmitting the data frame thus generated.

Description

中継装置、通信システム、通信方法、通信プログラム、およびデータフレームの構造Relay device, communication system, communication method, communication program, and data frame structure
 本発明は、データフレームを中継する中継装置、通信システム、通信方法、通信プログラム、およびデータフレームの構造に関する。 The present invention relates to a relay device that relays a data frame, a communication system, a communication method, a communication program, and a data frame structure.
 近年、携帯電話キャリアのバックボーンネットワークにおいては、非特許文献1により規定されている、ビットレートが2.048Mbps(bit per second)の信号であるE12信号が主に使用されている。このE12信号が使用される携帯電話キャリアのバックボーンネットワークにおいては、携帯電話の普及や、携帯電話を利用した通信量の増加により、回線需要が急増している。 In recent years, in the backbone network of mobile phone carriers, the E12 signal defined by Non-Patent Document 1 and having a bit rate of 2.048 Mbps (bit per second) is mainly used. In the backbone network of mobile phone carriers using this E12 signal, the demand for lines is increasing rapidly due to the spread of mobile phones and the increase in the amount of communication using mobile phones.
 しかし、携帯電話キャリアのバックボーン回線の帯域を増強するためにはコストが必要であるため、携帯電話キャリアにおいては、バックボーン回線の帯域を増やすことなく、収容回線容量だけを増やすことが望まれていた。収容回線容量を増加させるためには、例えば、収容回線内の通信を多重化することが考えられる。 However, since it is necessary to increase the bandwidth of the backbone line of the mobile phone carrier, it has been desired for the mobile phone carrier to increase only the capacity of the accommodation line without increasing the bandwidth of the backbone line. . In order to increase the capacity of the accommodated line, for example, it is conceivable to multiplex communications within the accommodated line.
 光伝送における多重化技術の代表的なものに、特許文献1、特許文献2、非特許文献2に開示されている、SDH(Synchronous Digital Hierarchy)という技術がある。SDHは、複数の信号を多重化して送信する技術である。 As a representative multiplexing technique in optical transmission, there is a technique called SDH (Synchronous Digital Hierarchy) disclosed in Patent Document 1, Patent Document 2, and Non-Patent Document 2. SDH is a technique for multiplexing and transmitting a plurality of signals.
 SDHは、図9に示されるような通信システム内でのデータフレームの伝送を目的としている。図9の通信システムは、回線終端装置300、回線終端装置303、中継伝送装置301、中継伝送装置302から構成される。回線終端装置をLTE(Line-Terminating Equipment)あるいは端局、中継伝送装置をREG(Regenerator)と呼称する場合もある。 SDH is intended for data frame transmission within a communication system as shown in FIG. The communication system in FIG. 9 includes a line termination device 300, a line termination device 303, a relay transmission device 301, and a relay transmission device 302. The line termination device may be referred to as LTE (Line-Terminating Equipment) or a terminal station, and the relay transmission device may be referred to as REG (Regenerator).
 また、回線終端装置と回線終端装置との区間を多重化セクションと呼ぶ。また、回線終端装置と中継伝送装置との区間、もしくは中継伝送装置と中継伝送装置との区間を中継セクションと呼ぶ。 Also, the section between the line terminator and the line terminator is called a multiplexing section. A section between the line termination device and the relay transmission device or a section between the relay transmission device and the relay transmission device is called a relay section.
 図10は、SDHで扱われる基本的なデータフレームであるSTM-1(Synchronous Transport Module)フレームフォーマットを示している。STM-1は、SDHの基本多重単位であり、その速度は155.52Mbpsである。以下、STM-1フレームのフォーマットについて説明する。 FIG. 10 shows an STM-1 (Synchronous Transport Module) frame format, which is a basic data frame handled by SDH. STM-1 is a basic multiplexing unit of SDH, and its speed is 155.52 Mbps. Hereinafter, the format of the STM-1 frame will be described.
 図10に示す通り、STM-1フレーム310は、9×3バイトのRSOH(Regenerator Section Overhead)311、9×1バイトのAU(Administrative Unit)ポインタ312、9×5バイトのMSOH(Multiple Section Overhead)313、261×9バイトのペイロード314から構成される。 As shown in FIG. 10, the STM-1 frame 310 is a 9 × 3 byte RSOH (Regenerator Section Overhead) 311, a 9 × 1 byte AU (Administrative Unit) pointer 312, and a 9 × 5 byte MSOH (Multiple Section Overhead). 313 and 261 × 9 bytes payload 314.
 ペイロード314には、複数の信号(チャンネル)を多重化して格納する。上述のE12信号の多重化を行う場合には、このペイロード314に複数のE12信号を多重化する。AUポインタ312は、多重化した信号が格納されている位置を示すフィールドである。RSOH311は、中継セクション間での通信の際に、回線終端装置もしくは中継伝送装置において終端され、付け替えが行われるフィールドである。MSOH313は、多重化セクション間での通信の際に、回線終端装置において終端され、付け替えが行われるフィールドである。 In the payload 314, a plurality of signals (channels) are multiplexed and stored. When multiplexing the E12 signal described above, a plurality of E12 signals are multiplexed on the payload 314. The AU pointer 312 is a field indicating the position where the multiplexed signal is stored. The RSOH 311 is a field that is terminated and replaced by a line termination device or a relay transmission device during communication between relay sections. The MSOH 313 is a field that is terminated and replaced by a line termination device during communication between multiplexed sections.
特開平11-215085号公報Japanese Patent Laid-Open No. 11-215085 特開平11-234345号公報Japanese Patent Laid-Open No. 11-234345
 しかしながら、上述の特許文献1、特許文献2、非特許文献2に開示のSTM-1フレームを用いて非特許文献1に記載のE12信号を多重化する場合には、通信効率が低いという課題があった。 However, when the E12 signal described in Non-Patent Document 1 is multiplexed using the STM-1 frame disclosed in Patent Document 1, Patent Document 2, and Non-Patent Document 2 described above, there is a problem that communication efficiency is low. there were.
 上述の通り、STM-1フレームでは、RSOH311、AUポインタ312、MSOH313というように、オーバーヘッド用にデータ領域を使用する必要があった。よって、E12信号の多重化のためには、ペイロード314を利用していた。このため、ペイロード314にE12信号を多重化する場合、E12信号を多重化できる個数は、最大でも63個(チャンネル)となっており、その通信効率は約83%であった。STM-1フレームの通信帯域は、上述の通り155.52Mbpsであるので、約26Mbpsもの帯域を無駄にしてしまっているといえる。 As described above, in the STM-1 frame, it is necessary to use a data area for overhead, such as RSOH 311, AU pointer 312, and MSOH 313. Therefore, the payload 314 is used for multiplexing the E12 signal. Therefore, when the E12 signal is multiplexed on the payload 314, the maximum number of E12 signals that can be multiplexed is 63 (channels), and the communication efficiency is about 83%. Since the communication bandwidth of the STM-1 frame is 155.52 Mbps as described above, it can be said that a bandwidth of about 26 Mbps has been wasted.
 本発明の目的は、上述した課題を解決することが可能な、中継装置、通信システム、通信方法、通信プログラム、およびデータフレームの構造を提供することにある。 An object of the present invention is to provide a relay device, a communication system, a communication method, a communication program, and a data frame structure that can solve the above-described problems.
 本発明による中継装置は、複数の信号を受信する受信部と、データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成部と、前記生成したデータフレームを送信する送信部と、を備えることを特徴とする。 The relay device according to the present invention includes a receiving unit that receives a plurality of signals, a first data area that stores data, and a second data area that is an area other than the first data area. A generation unit that stores a plurality of received signals and generates a data frame; and a transmission unit that transmits the generated data frame.
 本発明による通信システムは、データフレームを送信する送信側中継装置と、前記データフレームを受信する受信側中継装置と、を備え、前記送信側中継装置は、複数の信号を受信する第1の受信部と、データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成部と、前記生成したデータフレームを送信する送信部と、を備えることを特徴とする通信システムである。 A communication system according to the present invention includes a transmission-side relay device that transmits a data frame and a reception-side relay device that receives the data frame, wherein the transmission-side relay device receives a plurality of signals. Generating a data frame by storing a plurality of received signals in both a first data area for storing data and a second data area that is an area other than the first data area And a transmission unit that transmits the generated data frame.
 本発明による通信方法は、複数の信号を受信する受信ステップと、データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成ステップと、前記生成したデータフレームを送信する送信ステップと、を含むことを特徴とする通信方法である。 The communication method according to the present invention includes a reception step of receiving a plurality of signals, a first data area for storing data, and a second data area that is an area other than the first data area. A communication method comprising: a generation step of generating a data frame by storing a plurality of received signals; and a transmission step of transmitting the generated data frame.
 本発明による通信プログラムは、複数の信号を受信する受信処理と、データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成処理と、前記生成したデータフレームを送信する送信処理と、をコンピュータに実行させることを特徴とする通信プログラムである。 The communication program according to the present invention includes both a reception process for receiving a plurality of signals, a first data area for storing data, and a second data area that is an area other than the first data area. A communication program that causes a computer to execute a generation process for generating a data frame by storing a plurality of received signals and a transmission process for transmitting the generated data frame.
 本発明によるデータフレームの構造は、データを格納する第1のデータ領域と、前記中継制御領域および前記第1のデータ領域以外の領域である第2のデータ領域と、を含み、前記第1のデータ領域と、前記第2のデータ領域との双方に、前記中継装置が受信した複数の信号を格納することを特徴とするデータフレームの構造である。 The structure of the data frame according to the present invention includes a first data area for storing data, and a second data area that is an area other than the relay control area and the first data area. The data frame structure is characterized in that a plurality of signals received by the relay apparatus are stored in both a data area and the second data area.
 本発明によれば、信号をデータフレームに格納して送信する場合の通信効率を向上させることが可能となる。 According to the present invention, it is possible to improve communication efficiency when a signal is stored in a data frame and transmitted.
第1の実施形態による中継装置100の構成を示すブロック図である。It is a block diagram which shows the structure of the relay apparatus 100 by 1st Embodiment. 第1の実施形態による中継装置100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the relay apparatus 100 by 1st Embodiment. 第2の実施形態によるシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the system by 2nd Embodiment. 第2の実施形態による中継装置200の構成を示すブロック図である。It is a block diagram which shows the structure of the relay apparatus 200 by 2nd Embodiment. 第2の実施形態による中継装置200の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the relay apparatus 200 by 2nd Embodiment. 第2の実施形態によるSTM-1フレーム240を示す図である。It is a figure which shows the STM-1 frame 240 by 2nd Embodiment. 第2の実施形態による中継装置210の構成を示すブロック図である。It is a block diagram which shows the structure of the relay apparatus 210 by 2nd Embodiment. 第2の実施形態による中継装置210の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the relay apparatus 210 by 2nd Embodiment. 背景技術のシステム構成を示す図である。It is a figure which shows the system configuration | structure of background art. 背景技術のSTM-1フレーム310を示す図である。It is a figure which shows STM-1 frame 310 of background art.
 以下、本発明の実施形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 <実施形態1>
 まず、本発明の第1の実施形態について説明する。
<Embodiment 1>
First, a first embodiment of the present invention will be described.
 (構成・動作)
 図1は、第1の実施形態による中継装置の構成を示したブロック図である。図1によれば、中継装置100は、受信部101、生成部102、送信部103を含む。また、図2は、中継装置100の動作を示したフローチャートである。以下、図1および図2を用いて、中継装置100の構成および動作について説明する。
(Configuration / Operation)
FIG. 1 is a block diagram illustrating a configuration of a relay device according to the first embodiment. According to FIG. 1, the relay device 100 includes a reception unit 101, a generation unit 102, and a transmission unit 103. FIG. 2 is a flowchart showing the operation of the relay device 100. Hereinafter, the configuration and operation of the relay device 100 will be described with reference to FIGS. 1 and 2.
 受信部101は、複数の信号を受信する(図2:ステップS01)。 The receiving unit 101 receives a plurality of signals (FIG. 2: step S01).
 生成部102は、データを格納する第1のデータ領域と、第1のデータ領域以外の領域である第2のデータ領域との双方に、受信部101で受信した信号を複数格納してデータフレームを生成する(図2:ステップS02)。 The generation unit 102 stores a plurality of signals received by the reception unit 101 in both a first data area for storing data and a second data area that is an area other than the first data area, and stores data frames. (FIG. 2: Step S02).
 送信部103は、生成部102が生成したデータフレームを送信する(図2:ステップS03)。 The transmission unit 103 transmits the data frame generated by the generation unit 102 (FIG. 2: step S03).
 (効果)
 以上の構成によれば、生成部102が、データを格納する第1のデータ領域と、第1のデータ領域以外の領域である第2のデータ領域に、受信部101で受信した信号を複数格納したデータフレームを生成する。以上の動作により、信号をデータフレームに格納して送信する場合の通信効率を向上させることが可能となる。
(effect)
According to the above configuration, the generation unit 102 stores a plurality of signals received by the reception unit 101 in the first data area for storing data and the second data area that is an area other than the first data area. Generated data frame. With the above operation, it is possible to improve communication efficiency when a signal is stored in a data frame and transmitted.
 <実施形態2>
 次に、本発明の第2の実施形態について説明する。
<Embodiment 2>
Next, a second embodiment of the present invention will be described.
 (システムの構成)
 図3は、第2の実施形態によるシステムの構成例を示したブロック図である。図3によれば、第2の実施形態によるシステムは、中継装置200、中継装置210、交換機220、基地局231、基地局232および基地局233を含む。
(System configuration)
FIG. 3 is a block diagram illustrating a configuration example of a system according to the second embodiment. According to FIG. 3, the system according to the second embodiment includes a relay device 200, a relay device 210, an exchange 220, a base station 231, a base station 232, and a base station 233.
 ここで、図3のシステム構成を、図9に示したシステムに当てはめると、各基地局および交換機220が、回線終端装置(端局)に相当する。同様に、中継装置200と中継装置210は、中継伝送装置に相当する。 Here, when the system configuration shown in FIG. 3 is applied to the system shown in FIG. 9, each base station and the exchange 220 correspond to a line terminating device (terminal station). Similarly, the relay device 200 and the relay device 210 correspond to a relay transmission device.
 以降、基地局231、基地局232、基地局233から中継装置200、中継装置210を介して、交換機220に対して、E12信号をSTM-1フレームに多重化して通信を行う場合の構成および動作について説明する。 Thereafter, the configuration and operation in the case where communication is performed by multiplexing the E12 signal into the STM-1 frame from the base station 231, the base station 232, and the base station 233 to the exchange 220 via the relay device 200 and the relay device 210. Will be described.
 なお、逆方向の通信が行われる場合であっても、本実施形態の構成および動作に大きな変更はない。その場合には、以下で説明する中継装置200の機能を中継装置210が、中継装置210の機能を中継装置200が、それぞれ備えていれば良い。さらに、双方向の通信を行う場合には、以下で説明する中継装置200および中継装置210の双方の機能を、中継装置200と中継装置210の双方が備えていれば良い。 Note that there is no significant change in the configuration and operation of the present embodiment even when communication in the reverse direction is performed. In that case, the relay apparatus 210 may have the function of the relay apparatus 200 described below, and the relay apparatus 200 may have the function of the relay apparatus 210. Furthermore, when performing bidirectional communication, both the relay device 200 and the relay device 210 may have the functions of both the relay device 200 and the relay device 210 described below.
 また、第1の実施形態ではE12信号をSTM-1フレームに多重化して通信を行う場合について説明するが、本発明はこれに限定されるものではない。ある信号を、何らかのフレームに多重化して送信するような通信方式であれば、どのようなものでも適用することが可能である。例えば、SDH方式およびSDHに類似のSONET(Synchronous Optical Network)方式で採用されている、STM-4フレームやSTM-16フレームのSTM-Nフレームでも、STM-1フレームと同様に本実施形態を適用することができる。 In the first embodiment, the case where the E12 signal is multiplexed into the STM-1 frame for communication will be described. However, the present invention is not limited to this. Any communication system can be applied as long as a certain signal is multiplexed and transmitted in some frame. For example, this embodiment is applied to STM-4 frames and STM-16 frames, which are adopted in the SDH system and SONET (Synchronous Optical Network) system similar to SDH, as well as STM-1 frames. can do.
 基地局231、基地局232、基地局233は、通信キャリア等のバックボーンネットワーク(図では非表示)に接続されている。各基地局は、バックボーンネットワークからE12信号による通信を受信すると、中継装置200に向けてE12信号を送信する。これらの基地局は、一般的に良く知られている基地局等を想定しているため、詳細な説明は省略する。 The base station 231, the base station 232, and the base station 233 are connected to a backbone network (not shown in the figure) such as a communication carrier. When each base station receives communication using the E12 signal from the backbone network, each base station transmits the E12 signal toward the relay apparatus 200. Since these base stations are assumed to be generally well-known base stations or the like, detailed description thereof is omitted.
 中継装置200は、基地局231、基地局232、基地局233に接続されている。また、中継装置200は、光ファイバ回線を介して中継装置210に接続されている。 The relay device 200 is connected to the base station 231, the base station 232, and the base station 233. The relay device 200 is connected to the relay device 210 via an optical fiber line.
 中継装置200は、各基地局からの信号を受信し、各信号を格納したフレームを生成し、中継装置210に向けて送信する。この中継装置200の構成および動作については、後に詳しく説明する。 The relay device 200 receives signals from each base station, generates a frame storing each signal, and transmits the frame to the relay device 210. The configuration and operation of the relay device 200 will be described in detail later.
 なお、図3の例では、中継装置200と中継装置210を接続する回線を光ファイバとしたが、本発明はこれに限定されるものではない。例えば、マイクロ波無線機やメディアコンバータ等を介在させることも可能である。 In the example of FIG. 3, the line connecting the relay device 200 and the relay device 210 is an optical fiber, but the present invention is not limited to this. For example, a microwave radio device, a media converter, or the like can be interposed.
 中継装置210は、中継装置200と、交換機220に接続されている。中継装置210は、中継装置200からフレームを受信し、信号を再生し、交換機220に向けて送信する。この中継装置210の構成および動作については、後に詳しく説明する。 The relay device 210 is connected to the relay device 200 and the exchange 220. The relay device 210 receives a frame from the relay device 200, reproduces a signal, and transmits the signal to the exchange 220. The configuration and operation of the relay device 210 will be described in detail later.
 交換機220は、中継装置210から信号を受信する。交換機220は、受信した信号の送信元や宛先等から、通信経路間の接続を切り替え、通信回線を構成する。この交換機220は、一般的に良く知られている交換機等を想定しているため、詳細な説明は省略する。 The exchange 220 receives a signal from the relay device 210. The exchange 220 switches the connection between the communication paths from the transmission source and destination of the received signal and configures a communication line. Since the exchange 220 is assumed to be an exchange that is generally well known, a detailed description thereof will be omitted.
 (中継装置200の構成および動作)
 次に、中継装置200の構成および動作について説明する。
(Configuration and operation of relay apparatus 200)
Next, the configuration and operation of relay apparatus 200 will be described.
 図4は、中継装置200の構成を示したブロック図である。図4によれば、中継装置200は、E12信号受信部201と、STM-1フレーム生成部202と、STM-1フレーム送信部203とを含む。また、図5は、中継装置200の動作を示したフローチャートである。以下、図4および図5を用いて、中継装置200の構成および動作について説明する。 FIG. 4 is a block diagram showing the configuration of the relay apparatus 200. According to FIG. 4, relay device 200 includes an E12 signal receiving unit 201, an STM-1 frame generation unit 202, and an STM-1 frame transmission unit 203. FIG. 5 is a flowchart showing the operation of the relay device 200. Hereinafter, the configuration and operation of the relay apparatus 200 will be described with reference to FIGS. 4 and 5.
 E12信号受信部201は、各基地局が送信したE12信号を受信する(図5:ステップS11)。その後、E12信号受信部201は、受信したE12信号を、中継装置200内で扱うためのビット列に変換する。図4の例では、第1-E12信号受信部201-1~第N-E12信号受信部201-Nが、N個の信号をそれぞれ受信している。図3のシステムに中継装置200を適用する場合には、例えば、第1-E12信号受信部201-1が、基地局231が送信したE12信号を受信する構成となる。 The E12 signal receiving unit 201 receives the E12 signal transmitted by each base station (FIG. 5: step S11). Thereafter, the E12 signal receiving unit 201 converts the received E12 signal into a bit string to be handled in the relay device 200. In the example of FIG. 4, the 1st-E12 signal receiving unit 201-1 to the N-E12 signal receiving unit 201-N receive N signals, respectively. When the relay apparatus 200 is applied to the system of FIG. 3, for example, the first-E12 signal receiving unit 201-1 receives the E12 signal transmitted from the base station 231.
 STM-1フレーム生成部202は、E12信号受信部201が受信したE12信号に対応するビット列を多重化したSTM-1フレームを生成する(図5:ステップS12)。その後、STM-1フレーム生成部202は、生成したフレームをSTM-1フレーム送信部203に転送する。STM-1フレーム生成部202が生成するSTM-1フレームについては、後に説明する。 The STM-1 frame generation unit 202 generates an STM-1 frame in which a bit string corresponding to the E12 signal received by the E12 signal reception unit 201 is multiplexed (FIG. 5: Step S12). Thereafter, the STM-1 frame generation unit 202 transfers the generated frame to the STM-1 frame transmission unit 203. The STM-1 frame generated by the STM-1 frame generation unit 202 will be described later.
 STM-1フレーム送信部203は、STM-1フレーム生成部202が生成したSTM-1フレームを受信する。その後、STM-1フレーム送信部203は、中継装置210に向けてSTM-1フレームを送信する(図5:ステップS13)。 The STM-1 frame transmission unit 203 receives the STM-1 frame generated by the STM-1 frame generation unit 202. Thereafter, the STM-1 frame transmission unit 203 transmits the STM-1 frame to the relay apparatus 210 (FIG. 5: Step S13).
 (フレームの説明)
 ここで、STM-1フレーム生成部202が生成するSTM-1フレームについて、詳細に説明する。
(Description of frame)
Here, the STM-1 frame generated by the STM-1 frame generation unit 202 will be described in detail.
 図6は、STM-1フレーム生成部202が生成するSTM-1フレーム240のフレームフォーマットを示している。図6によれば、STM-1フレーム240は、RSOH241、フレーム順序制御バイト242、ペイロード243を含む。 FIG. 6 shows a frame format of the STM-1 frame 240 generated by the STM-1 frame generation unit 202. According to FIG. 6, the STM-1 frame 240 includes an RSOH 241, a frame order control byte 242, and a payload 243.
 図10のSTM-1フレーム310と比較すると、STM-1フレーム240は、RSOH311と同等のRSOH241を有するが、AUポインタ312およびMSOH313は有していない。図10のSTM-1フレーム310において、AUポインタ312およびMSOH313の情報を用いて行っていた制御を、STM-1フレーム240では、フレーム順序制御バイト242等を用いて実現する。このような構成にすることで、オーバーヘッド領域を削減し、ペイロードにより多くのデータ領域を割くことができる。 Compared with the STM-1 frame 310 of FIG. 10, the STM-1 frame 240 has the RSOH 241 equivalent to the RSOH 311, but does not have the AU pointer 312 and the MSOH 313. The control performed using the information of the AU pointer 312 and the MSOH 313 in the STM-1 frame 310 of FIG. 10 is realized in the STM-1 frame 240 using the frame order control byte 242 and the like. With such a configuration, the overhead area can be reduced, and more data areas can be allocated to the payload.
 RSOH241は、上述の通り、図10のRSOH311と同様のものである。第2の実施形態において、RSOH241は、本実施形態で中継セクションとして扱われる、各基地局、各中継装置、および交換機220のそれぞれの区間における通信の制御用に使われる。 RSOH 241 is the same as RSOH 311 in FIG. 10 as described above. In the second embodiment, the RSOH 241 is used for communication control in each section of each base station, each relay device, and the exchange 220, which is treated as a relay section in this embodiment.
 フレーム順序制御バイト242は、STM-1フレーム生成部202が多重化したE12信号に対応するビット列の順序を制御するための情報である。STM-1フレーム240に、このフレーム順序制御バイト242を格納することにより、中継装置201においてE12信号に対応するビット列の再生が可能となる。 The frame order control byte 242 is information for controlling the order of bit strings corresponding to the E12 signal multiplexed by the STM-1 frame generation unit 202. By storing this frame order control byte 242 in the STM-1 frame 240, the relay apparatus 201 can reproduce the bit string corresponding to the E12 signal.
 フレーム順序制御バイト242には、図10のSTM-1フレーム310において、AUポインタ312およびMSOH313に格納された情報の一部を格納する。中継装置201において、E12信号に対応するビット列の再生が可能になる構成であれば、どのような情報を格納しても構わない。つまり、フレーム順序制御バイト242のサイズは、一意に定められるものではない。そのため、図6には、フレーム順序制御用バイト242のフィールドの大きさについては記載していない。以下では、フレーム順序制御バイト242に含める情報の例について説明する。 The frame order control byte 242 stores a part of the information stored in the AU pointer 312 and the MSOH 313 in the STM-1 frame 310 of FIG. Any information may be stored in the relay device 201 as long as the bit string corresponding to the E12 signal can be reproduced. That is, the size of the frame order control byte 242 is not uniquely determined. Therefore, FIG. 6 does not describe the field size of the frame order control byte 242. Hereinafter, an example of information included in the frame order control byte 242 will be described.
 フレーム順序制御バイト242に含める情報の例としては、まず、図10のAUポインタ312に格納されていた、データの先頭位置に関する情報が挙げられる。この情報は、中継装置201において、E12信号に対応するビット列を再生する際に、フレームの順序を検出するために使用されるものである。 As an example of information to be included in the frame order control byte 242, first, information on the head position of data stored in the AU pointer 312 in FIG. This information is used for detecting the frame order when the relay apparatus 201 reproduces the bit string corresponding to the E12 signal.
 また、フレーム順序制御バイト242には、図10のMSOH313で行っていた、端局間(図3でいえば、各基地局と交換機220)の同期制御に関わる情報を含めることも可能である。この情報は、非特許文献2に開示されているSTM-1フレームフォーマットでいえば、S1と呼ばれるものに相当する。 Also, the frame order control byte 242 can include information related to the synchronization control between the terminal stations (in FIG. 3, each base station and the exchange 220), which has been performed by the MSOH 313 in FIG. This information corresponds to what is called S1 in the STM-1 frame format disclosed in Non-Patent Document 2.
 ペイロード243には、E12信号に対応するビット列を多重化して格納する。さらに、E12信号の各チャンネルに対応するビット列の間に、図10のSTM-1フレーム310のAUポインタ312の周波数差吸収用の情報と、MSOH313の誤り検出用の情報を格納する。より具体的には、AUポインタ312の周波数差吸収用の情報は、スタッフ制御ビット、スタッフ・デスタッフビット、もしくは正負スタッフ制御ビット等と呼ばれるものに相当する。スタッフ制御ビットとは、多重化した信号を送信する際に、各信号の周波数差を吸収するために設けられているものである。また、MSOH313の誤り検出用の情報は、非特許文献2に開示されているSTM-1フレームフォーマットでいえば、B2と呼ばれる誤り検出用の情報と、M1と呼ばれる対局誤りを表示する情報に相当する。 In the payload 243, a bit string corresponding to the E12 signal is multiplexed and stored. Further, the frequency difference absorption information of the AU pointer 312 of the STM-1 frame 310 and the error detection information of the MSOH 313 are stored between the bit strings corresponding to the respective channels of the E12 signal. More specifically, the frequency difference absorption information of the AU pointer 312 corresponds to what is called a stuff control bit, a stuff / destuff bit, or a positive / negative stuff control bit. The stuff control bit is provided to absorb the frequency difference between signals when transmitting multiplexed signals. Further, the error detection information of the MSOH 313 corresponds to information for error detection called B2 and information for displaying a game error called M1 in the STM-1 frame format disclosed in Non-Patent Document 2. To do.
 (中継装置210の構成および動作)
 続いて、中継装置210の構成および動作について説明する。
(Configuration and operation of relay device 210)
Next, the configuration and operation of the relay device 210 will be described.
 図7は、中継装置210の構成を示したブロック図である。図7によれば、中継装置210は、STM-1フレーム終端部211、E12信号分解部212、E12信号送信部213を含む。また、図8は、中継装置210の動作を示したフローチャートである。以下、図7および図8を用いて、中継装置210の構成および動作について説明する。 FIG. 7 is a block diagram showing the configuration of the relay device 210. According to FIG. 7, the relay device 210 includes an STM-1 frame termination unit 211, an E12 signal decomposition unit 212, and an E12 signal transmission unit 213. FIG. 8 is a flowchart showing the operation of the relay device 210. Hereinafter, the configuration and operation of the relay apparatus 210 will be described with reference to FIGS. 7 and 8.
 STM-1フレーム終端部211は、中継装置200が送信したSTM-1フレーム240を受信し、STM-1フレーム240を終端する(図8:ステップS21)。 The STM-1 frame termination unit 211 receives the STM-1 frame 240 transmitted by the relay apparatus 200 and terminates the STM-1 frame 240 (FIG. 8: step S21).
 次に、STM-1フレーム終端部211は、STM-1フレーム240のフレーム順序制御バイト242や、ペイロード243の各E12信号に対応するビット列間に格納されたスタッフ制御ビット、誤り検出ビットに基づいて、E12信号に対応するビット列の再生を行う(図8:ステップS22)。再生したビット列は、多重化されたE12信号に対応するビット列が複数並べられた、1つの長いビット列となっている。次に、STM-1フレーム終端部211は、再生したビット列をE12信号分解部212に送信する。 Next, the STM-1 frame terminating unit 211 is based on the frame order control byte 242 of the STM-1 frame 240 and the stuff control bits and error detection bits stored between the bit strings corresponding to the E12 signals of the payload 243. The bit string corresponding to the E12 signal is reproduced (FIG. 8: step S22). The reproduced bit string is one long bit string in which a plurality of bit strings corresponding to the multiplexed E12 signal are arranged. Next, the STM-1 frame terminating unit 211 transmits the reproduced bit string to the E12 signal decomposing unit 212.
 E12信号分解部212は、再生したビット列を受信し、再生したビット列を各チャンネル、N個分のE12信号に分解する(図8:ステップS23)。次に、E12信号分解部212は、分解したN個のE12信号を、E12信号送信部213に送信する。 The E12 signal decomposition unit 212 receives the reproduced bit string and decomposes the reproduced bit string into N E12 signals for each channel (FIG. 8: step S23). Next, the E12 signal decomposing unit 212 transmits the N decomposed E12 signals to the E12 signal transmitting unit 213.
 E12信号送信部213は、第1-E12信号送信部213-1~第N-E12信号送信部213-Nを含んで構成される。第1-E12信号送信部213-1~第N-E12信号送信部213-Nのそれぞれが、受信したE12信号を交換機220に向けて送信する(図8:ステップS24)。 The E12 signal transmission unit 213 includes a first 1-E12 signal transmission unit 213-1 to an N-E12 signal transmission unit 213-N. Each of the 1-E12 signal transmission unit 213-1 to the N-E12 signal transmission unit 213-N transmits the received E12 signal to the exchange 220 (FIG. 8: step S24).
 なお、STM-1フレーム終端部211は、装置の外部から信号またはデータを受信するという点において、中継装置200のE12信号受信部201(図4)と共通している。そのため、中継装置が中継装置200および中継装置210の双方の機能を備える場合には、同一の機能ブロックとして実装することも可能である。このことは、信号またはデータを送信する機能であるE12信号送信部213とSTM-1フレーム送信部203(図4)についても同様である。 Note that the STM-1 frame termination unit 211 is common to the E12 signal reception unit 201 (FIG. 4) of the relay device 200 in that it receives a signal or data from outside the device. Therefore, when the relay device has the functions of both the relay device 200 and the relay device 210, it can be implemented as the same functional block. The same applies to the E12 signal transmission unit 213 and the STM-1 frame transmission unit 203 (FIG. 4), which are functions for transmitting signals or data.
 また、本実施形態においては、E12信号を格納するデータ領域として、非特許文献2等に記載のSTM-1フレーム310(図10)におけるペイロード314に加えて、AUポインタ312とMSOH313を含めた例について説明した。しかしながら、各基地局から各中継装置を介して交換機220までデータフレームが伝送されるようなフレームフォーマットの設定を行えば、本発明はこれに限定されるものではない。より具体的には、本実施形態におけるRSOH241、フレーム順序制御バイト242で行う通信制御の機能が他の領域で設定されていれば、図6以外のフレームフォーマットであっても良い。 In this embodiment, an example in which the AU pointer 312 and the MSOH 313 are included in addition to the payload 314 in the STM-1 frame 310 (FIG. 10) described in Non-Patent Document 2 or the like as the data area for storing the E12 signal. Explained. However, the present invention is not limited to this as long as the frame format is set such that the data frame is transmitted from each base station to each exchange 220 via each relay device. More specifically, if the communication control function performed by the RSOH 241 and the frame order control byte 242 in this embodiment is set in another area, a frame format other than that shown in FIG. 6 may be used.
 (効果)
 以上説明した通り、第2の実施形態において、中継装置200は、STM-1フレームのAUポインタとMSOHの領域とペイロードに、E12信号を多重化して送信している。
(effect)
As described above, in the second embodiment, the relay device 200 multiplexes and transmits the E12 signal on the AU pointer, the MSOH area, and the payload of the STM-1 frame.
 以上の動作により、特許文献1、特許文献2、非特許文献2等に記載のSTM-1フレームを用いた場合よりも多くのE12信号を多重化することが可能となる。より具体的には、本実施形態のSTM-1フレーム240を用いた場合、最大で75チャンネル分のE12信号を多重化することが可能である。特許文献1、特許文献2、非特許文献2等に記載のSTM-1フレームを用いた場合の通信効率は約83%であったのに対して、本実施形態の通信効率は、98.75%まで向上する。 By the above operation, it becomes possible to multiplex more E12 signals than when the STM-1 frame described in Patent Document 1, Patent Document 2, Non-Patent Document 2, etc. is used. More specifically, when the STM-1 frame 240 of this embodiment is used, it is possible to multiplex up to 75 channels of E12 signals. The communication efficiency when using the STM-1 frame described in Patent Document 1, Patent Document 2, Non-Patent Document 2, and the like was about 83%, whereas the communication efficiency of this embodiment is 98.75. % Improved.
 上記の実施形態の一部または全部は、以下の付記のようにも記載され得るが、以下には限られない。 Some or all of the above embodiments may be described as in the following supplementary notes, but are not limited to the following.
 (付記1)
 中継器は、
 複数の信号を受信する受信部と、
 データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成部と、
 前記生成したデータフレームを送信する送信部と、
 を備えている。
(Appendix 1)
The repeater is
A receiver for receiving a plurality of signals;
A generator for storing a plurality of received signals and generating a data frame in both a first data area for storing data and a second data area that is an area other than the first data area;
A transmitter for transmitting the generated data frame;
It has.
 (付記2)
 中継装置は、
 前記第2のデータ領域が、端局間通信に用いられる端局間通信制御領域を含む、付記1に記載の中継装置であってもよい。
(Appendix 2)
The relay device
The relay device according to attachment 1, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
 (付記3)
 中継装置は、
 前記第2のデータ領域が、前記格納した信号のポインタに用いられるポインタ領域を含む付記1または2に記載の中継装置であってもよい。
(Appendix 3)
The relay device
The relay device according to attachment 1 or 2, wherein the second data area includes a pointer area used as a pointer of the stored signal.
 (付記4)
 中継装置は、
 前記データフレームが、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域は、STM-1フレームにおけるMS(Multiple Section)オーバーヘッドを含む、付記1から3のいずれか1つに記載の中継装置であってもよい。
(Appendix 4)
The relay device
The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
The second data area may be the relay apparatus according to any one of appendices 1 to 3, including MS (Multiple Section) overhead in an STM-1 frame.
 (付記5)
 中継装置は、
 前記データフレームが、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域は、STM-1フレームにおけるAU(Administrative Unit)ポインタを含む、付記1から4のいずれか1つに記載の中継装置であってもよい。
(Appendix 5)
The relay device
The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
The second data area may be the relay device according to any one of appendices 1 to 4, including an AU (Administrative Unit) pointer in the STM-1 frame.
 (付記6)
 中継装置は、
 前記生成部が、さらに、前記データフレームの順序を制御するための順序制御情報を前記データフレームに格納する、付記1から5のいずれか1つに記載の中継装置であってもよい。
(Appendix 6)
The relay device
The relay unit according to any one of appendices 1 to 5, wherein the generation unit further stores order control information for controlling the order of the data frames in the data frame.
 (付記7)
 中継装置は、
 前記受信部が、前記データフレームを受信した場合に、前記順序制御情報に従って、前記格納された複数の信号を再生する、付記6に記載の中継装置であってもよい。
(Appendix 7)
The relay device
The relay apparatus according to appendix 6, wherein the reception unit reproduces the plurality of stored signals in accordance with the order control information when the data frame is received.
 (付記8)
 中継装置は、
 前記生成部が、さらに、誤り検出ビットと、スタッフビットと、デスタッフビットとを前記格納された複数の信号と信号との間に格納する、付記1から7のいずれか1つに記載の中継装置であってもよい。
(Appendix 8)
The relay device
The relay according to any one of appendices 1 to 7, wherein the generation unit further stores an error detection bit, a stuff bit, and a destuff bit between the plurality of stored signals. It may be a device.
 (付記9)
 データフレームを送信する送信側中継装置と、
 前記データフレームを受信する受信側中継装置と、
 を備え、
 前記送信側中継装置は、
 複数の信号を受信する第1の受信部と、
 データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成部と、
 前記生成したデータフレームを送信する送信部と、
 を備える、通信システムである。
(Appendix 9)
A transmission side relay device for transmitting a data frame;
A receiving side relay device for receiving the data frame;
With
The transmission side relay device is:
A first receiver for receiving a plurality of signals;
A generator for storing a plurality of received signals and generating a data frame in both a first data area for storing data and a second data area that is an area other than the first data area;
A transmitter for transmitting the generated data frame;
It is a communication system provided with.
 (付記10)
 通信システムは、
 前記第2のデータ領域が、端局間通信に用いられる端局間通信制御領域を含む、付記9に記載の通信システムでもよい。
(Appendix 10)
The communication system
The communication system according to attachment 9, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
 (付記11)
 通信システムは、
 前記第2のデータ領域が、前記格納した信号のポインタに用いられるポインタ領域を含む、付記9または10に記載の通信システムでもよい。
(Appendix 11)
The communication system
The communication system according to appendix 9 or 10, wherein the second data area includes a pointer area used as a pointer of the stored signal.
 (付記12)
 通信システムは
 前記データフレームが、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域は、STM-1フレームにおけるMS(Multiple Section)オーバーヘッドを含む、付記9から11のいずれか1つに記載の通信システムでもよい。
(Appendix 12)
In the communication system, the data frame is a frame conforming to an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
The communication system according to any one of appendices 9 to 11, wherein the second data area includes an MS (Multiple Section) overhead in an STM-1 frame.
 (付記13)
 通信システムは、
 前記データフレームが、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域以外の領域は、STM-1フレームにおけるAU(Administrative Unit)ポインタを含む、付記9から12のいずれか1つに記載の通信システムでもよい。
(Appendix 13)
The communication system
The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
The area other than the second data area may be the communication system according to any one of appendices 9 to 12, including an AU (Administrative Unit) pointer in the STM-1 frame.
 (付記14)
 通信システムは、
 前記生成部が、さらに、前記データフレームの順序を制御するための順序制御情報を前記データフレームに格納する、付記9から13のいずれか1つに記載の通信システムでもよい。
(Appendix 14)
The communication system
The communication system according to any one of appendices 9 to 13, wherein the generation unit further stores sequence control information for controlling the sequence of the data frames in the data frame.
 (付記15)
 通信システムは、
 前記受信側中継装置が、
 前記データフレームを受信した場合に、前記順序制御情報に従って、前記格納された複数の信号を再生する第2の受信部を備える、付記14に記載の通信システムでもよい。
(Appendix 15)
The communication system
The receiving side relay device is
The communication system according to attachment 14, further comprising: a second reception unit that reproduces the plurality of stored signals according to the order control information when the data frame is received.
 (付記16)
 通信システムは、
 前記生成部が、さらに、誤り検出ビットと、スタッフビットと、デスタッフビットとを前記格納された複数の信号と信号との間に格納する、付記9から15のいずれか1つに記載の通信システムでもよい。
(Appendix 16)
The communication system
The communication according to any one of appendices 9 to 15, wherein the generation unit further stores an error detection bit, a stuff bit, and a destuff bit between the plurality of stored signals. It may be a system.
 (付記17)
 複数の信号を受信する受信ステップと、
 データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成ステップと、
 前記生成したデータフレームを送信する送信ステップと、
 を含む通信方法である。
(Appendix 17)
A receiving step for receiving a plurality of signals;
A generating step of generating a data frame by storing a plurality of the received signals in both a first data area for storing data and a second data area that is an area other than the first data area;
Transmitting the generated data frame; and
A communication method including
 (付記18)
 通信方法は、
 前記第2のデータ領域が、端局間通信に用いられる端局間通信制御領域を含む、付記17に記載の通信方法でもよい。
(Appendix 18)
The communication method is
The communication method according to attachment 17, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
 (付記19)
 通信方法は、
 前記第2のデータ領域が、前記格納した信号のポインタに用いられるポインタ領域を含む、付記17または18に記載の通信方法でもよい。
(Appendix 19)
The communication method is
The communication method according to appendix 17 or 18, wherein the second data area includes a pointer area used as a pointer of the stored signal.
 (付記20)
 通信方法は、
 前記データフレームが、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域は、STM-1フレームにおけるMS(Multiple Section)オーバーヘッドを含む、付記17から19のいずれか1つに記載の通信方法でもよい。
(Appendix 20)
The communication method is
The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
The communication method according to any one of appendices 17 to 19, wherein the second data area includes MS (Multiple Section) overhead in an STM-1 frame.
 (付記21)
 通信方法は、
 前記データフレームが、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域は、STM-1フレームにおけるAU(Administrative Unit)ポインタを含む、付記17から20のいずれか1つに記載の通信方法でもよい。
(Appendix 21)
The communication method is
The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
The communication method according to any one of supplementary notes 17 to 20, wherein the second data area includes an AU (Administrative Unit) pointer in an STM-1 frame.
 (付記22)
 通信方法は、
 前記生成ステップが、さらに、前記データフレームの順序を制御するための順序制御情報を前記データフレームに格納する、付記17から21のいずれか1つに記載の通信方法でもよい。
(Appendix 22)
The communication method is
The communication method according to any one of appendices 17 to 21, wherein the generation step further stores order control information for controlling the order of the data frames in the data frame.
 (付記23)
 通信方法は、
 前記受信ステップが、前記データフレームを受信した場合に、前記順序制御情報に従って、前記格納された複数の信号を再生する、付記22に記載の通信方法でもよい。
(Appendix 23)
The communication method is
The communication method according to attachment 22, wherein the reception step reproduces the plurality of stored signals in accordance with the order control information when the data frame is received.
 (付記24)
 通信方法は、
 前記生成ステップが、さらに、誤り検出ビットと、スタッフビットと、デスタッフビットとを前記格納された複数の信号と信号との間に格納する、付記17から23のいずれか1つに記載の通信方法であってもよい。
(Appendix 24)
The communication method is
The communication according to any one of appendices 17 to 23, wherein the generating step further stores an error detection bit, a stuff bit, and a destuff bit between the plurality of stored signals. It may be a method.
 (付記25)
 通信プログラムは、
 複数の信号を受信する受信処理と、
 データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成処理と、
 前記生成したデータフレームを送信する送信処理と、
 をコンピュータに実行させる。
(Appendix 25)
The communication program is
A reception process for receiving a plurality of signals;
A generation process for generating a data frame by storing a plurality of received signals in both a first data area for storing data and a second data area that is an area other than the first data area;
A transmission process for transmitting the generated data frame;
Is executed on the computer.
 (付記26)
 通信プログラムは、
 前記第2のデータ領域が、端局間通信に用いられる端局間通信制御領域を含む、付記25に記載の通信プログラムであってもよい。
(Appendix 26)
The communication program is
The communication program according to attachment 25, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
 (付記27)
 通信プログラムは、
 前記第2のデータ領域が、前記格納した信号のポインタに用いられるポインタ領域を含む、付記25または26に記載の通信プログラムであってもよい。
(Appendix 27)
The communication program is
The communication program according to attachment 25 or 26, wherein the second data area includes a pointer area used as a pointer of the stored signal.
 (付記28)
 通信プログラムは、
 前記データフレームが、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域は、STM-1フレームにおけるMS(Multiple Section)オーバーヘッドを含む、付記25から27のいずれか1つに記載の通信プログラムであってもよい。
(Appendix 28)
The communication program is
The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
The second data area may be the communication program according to any one of appendices 25 to 27, including MS (Multiple Section) overhead in the STM-1 frame.
 (付記29)
 通信プログラムは、
 前記データフレームが、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域領域は、STM-1フレームにおけるAU(Administrative Unit)ポインタを含む、付記25から28のいずれか1つに記載の通信プログラムであってもよい。
(Appendix 29)
The communication program is
The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
29. The communication program according to any one of appendices 25 to 28, wherein the second data area area includes an AU (Administrative Unit) pointer in an STM-1 frame.
 (付記30)
 通信プログラムは、
 前記生成処理が、さらに、前記データフレームの順序を制御するための順序制御情報を前記データフレームに格納する、付記25から29のいずれか1つに記載の通信プログラムであってもよい。
(Appendix 30)
The communication program is
The communication program according to any one of appendices 25 to 29, wherein the generation process further stores order control information for controlling the order of the data frames in the data frame.
 (付記31)
 通信プログラムは、
 前記受信処理が、前記データフレームを受信した場合に、前記順序制御情報に従って、前記格納された複数の信号を再生する、付記30に記載の通信プログラムであってもよい。
(Appendix 31)
The communication program is
The communication program according to attachment 30, wherein the reception process reproduces the plurality of stored signals according to the sequence control information when the data frame is received.
 (付記32)
 通信プログラムは、
 前記生成処理が、さらに、誤り検出ビットと、スタッフビットと、デスタッフビットとを前記格納された複数の信号と信号との間に格納する、付記25から31のいずれか1つに記載の通信プログラムであってもよい。
(Appendix 32)
The communication program is
32. The communication according to any one of appendices 25 to 31, wherein the generation processing further stores an error detection bit, a stuff bit, and a destuff bit between the plurality of stored signals. It may be a program.
 (付記33)
 データフレームの構造は、
 データを格納する第1のデータ領域と、
 前記第1のデータ領域以外の領域である第2のデータ領域と、
 を含み、
 前記第1のデータ領域と、前記第2のデータ領域との双方に、前記中継装置が受信した複数の信号を格納する。
(Appendix 33)
The structure of the data frame is
A first data area for storing data;
A second data area that is an area other than the first data area;
Including
A plurality of signals received by the relay device are stored in both the first data area and the second data area.
 (付記34)
 データフレームの構造は、
 前記第2のデータ領域が、端局間通信に用いられる端局間通信制御領域を含む、付記33に記載のデータフレームの構造であってもよい。
(Appendix 34)
The structure of the data frame is
The data frame structure according to attachment 33, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
 (付記35)
 データフレームの構造は、
 前記第2のデータ領域が、前記格納した信号のポインタに用いられるポインタ領域に格納される、付記33または34に記載のデータフレームの構造であってもよい。
(Appendix 35)
The structure of the data frame is
The data frame structure according to attachment 33 or 34, wherein the second data area is stored in a pointer area used as a pointer of the stored signal.
 (付記36)
 前記データフレームは、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したデータフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域は、STM-1フレームにおけるMS(Multiple Section)オーバーヘッドを含む、付記33から35のいずれか1つに記載のデータフレームの構造であってもよい。
(Appendix 36)
The data frame is a data frame conforming to an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
The data frame structure according to any one of appendices 33 to 35, wherein the second data area includes MS (Multiple Section) overhead in an STM-1 frame.
 (付記37)
 前記データフレームは、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
 前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
 前記第2のデータ領域は、STM-1フレームにおけるAU(Administrative Unit)ポインタを含む、付記33から36のいずれか1つに記載のデータフレームの構造であってもよい。
(Appendix 37)
The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
The first data area is a payload in an STM-1 frame;
37. The data frame structure according to any one of appendices 33 to 36, wherein the second data area includes an AU (Administrative Unit) pointer in an STM-1 frame.
 (付記38)
 前記データフレームは、前記データフレームの順序を制御するための順序制御情報を格納する、付記33から37のいずれか1つに記載のデータフレームの構造であってもよい。
(Appendix 38)
The data frame may have a data frame structure according to any one of attachments 33 to 37, in which order control information for controlling the order of the data frames is stored.
 (付記39)
 前記データフレームは、誤り検出ビットと、スタッフビットと、デスタッフビットとを前記格納された複数の信号と信号との間に格納する、付記33から付記38のいずれか1つに記載のデータフレームの構造であってもよい。
 本願は、2010年9月14日に、日本に出願された特願2010-205842号に基づき優先権を主張し、その内容をここに援用する。
(Appendix 39)
39. The data frame according to any one of appendix 33 to appendix 38, wherein the data frame stores an error detection bit, a stuff bit, and a destuff bit between the plurality of stored signals. It may be the structure.
This application claims priority based on Japanese Patent Application No. 2010-205842 filed in Japan on September 14, 2010, the contents of which are incorporated herein by reference.
 信号をデータフレームに格納して送信する場合の通信効率を向上させることが可能となる。 It is possible to improve communication efficiency when signals are stored in data frames and transmitted.
 100  中継装置
 101  受信部
 102  生成部
 103  送信部
 200  中継装置
 201  E12信号受信部
 201-1  第1-E12信号受信部
 201-N  第N-E12信号受信部
 202  STM-1フレーム生成部
 203  STM-1フレーム送信部
 210  中継装置
 211  STM-1フレーム終端部
 212  E12信号分解部
 213  E12信号送信部
 213-1  第1-E12信号送信部
 213-N  第N-E12信号送信部
 220  交換機
 231  基地局
 232  基地局
 233  基地局
 240  STM-1フレーム
 241  RSOH
 242  フレーム順序制御バイト
 243  ペイロード
 300  回線終端装置
 301  中継伝送装置
 302  中継伝送装置
 303  回線終端装置
 311  RSOH
 312  AUポインタ
 313  MSOH
 314  ペイロード
REFERENCE SIGNS LIST 100 relay device 101 receiving unit 102 generating unit 103 transmitting unit 200 relay device 201 E12 signal receiving unit 201-1 first 1-E12 signal receiving unit 201-N N-E12 signal receiving unit 202 STM-1 frame generating unit 203 STM- 1 frame transmission unit 210 relay device 211 STM-1 frame termination unit 212 E12 signal decomposition unit 213 E12 signal transmission unit 213-1 first 1-E12 signal transmission unit 213-N N-E12 signal transmission unit 220 switch 231 base station 232 Base station 233 Base station 240 STM-1 frame 241 RSOH
242 Frame order control byte 243 Payload 300 Line termination device 301 Relay transmission device 302 Relay transmission device 303 Line termination device 311 RSOH
312 AU pointer 313 MSOH
314 Payload

Claims (10)

  1.  複数の信号を受信する受信部と、
     データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成部と、
     前記生成したデータフレームを送信する送信部と、
     を備える中継装置。
    A receiver for receiving a plurality of signals;
    A generator for storing a plurality of received signals and generating a data frame in both a first data area for storing data and a second data area that is an area other than the first data area;
    A transmitter for transmitting the generated data frame;
    A relay device comprising:
  2.  前記第2のデータ領域は、端局間通信に用いられる端局間通信制御領域を含む、請求項1に記載の中継装置。 The relay apparatus according to claim 1, wherein the second data area includes an inter-terminal communication control area used for inter-terminal communication.
  3.  前記第2のデータ領域は、前記格納した信号のポインタに用いられるポインタ領域を含む、請求項1または2に記載の中継装置。 The relay device according to claim 1 or 2, wherein the second data area includes a pointer area used as a pointer of the stored signal.
  4.  前記データフレームは、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
     前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
     前記第2のデータ領域は、STM-1フレームにおけるMS(Multiple Section)オーバーヘッドを含む請求項1から3のいずれか1つに記載の中継装置。
    The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
    The first data area is a payload in an STM-1 frame;
    The relay apparatus according to any one of claims 1 to 3, wherein the second data area includes MS (Multiple Section) overhead in an STM-1 frame.
  5.  前記データフレームは、SDH(Synchronous Digital Hierarchy)におけるSTM-1フレームに準拠したフレームであり、
     前記第1のデータ領域は、STM-1フレームにおけるペイロードであり、
     前記第2のデータ領域は、STM-1フレームにおけるAU(Administrative Unit)ポインタを含む、請求項1から4のいずれか1つに記載の中継装置。
    The data frame is a frame based on an STM-1 frame in SDH (Synchronous Digital Hierarchy),
    The first data area is a payload in an STM-1 frame;
    5. The relay device according to claim 1, wherein the second data area includes an AU (Administrative Unit) pointer in an STM-1 frame.
  6.  前記生成部は、さらに、前記データフレームの順序を制御するための順序制御情報を前記データフレームに格納する、請求項1から5のいずれか1つに記載の中継装置。 The relay apparatus according to any one of claims 1 to 5, wherein the generation unit further stores in the data frame order control information for controlling the order of the data frames.
  7.  データフレームを送信する送信側中継装置と、
     前記データフレームを受信する受信側中継装置と、
     を備え、
     前記送信側中継装置は、
     複数の信号を受信する第1の受信部と、
     データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成部と、
     前記生成したデータフレームを送信する送信部と、
     を備える、通信システム。
    A transmission side relay device for transmitting a data frame;
    A receiving side relay device for receiving the data frame;
    With
    The transmission side relay device is:
    A first receiver for receiving a plurality of signals;
    A generator for storing a plurality of received signals and generating a data frame in both a first data area for storing data and a second data area that is an area other than the first data area;
    A transmitter for transmitting the generated data frame;
    A communication system comprising:
  8.  複数の信号を受信する受信ステップと、
     データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成ステップと、
     前記生成したデータフレームを送信する送信ステップと、
     を含む、通信方法。
    A receiving step for receiving a plurality of signals;
    A generating step of generating a data frame by storing a plurality of the received signals in both a first data area for storing data and a second data area that is an area other than the first data area;
    Transmitting the generated data frame; and
    Including a communication method.
  9.  複数の信号を受信する受信処理と、
     データを格納する第1のデータ領域と、前記第1のデータ領域以外の領域である第2のデータ領域との双方に、前記受信した信号を複数格納してデータフレームを生成する生成処理と、
     前記生成したデータフレームを送信する送信処理と、
     をコンピュータに実行させる、通信プログラム。
    A reception process for receiving a plurality of signals;
    A generation process for generating a data frame by storing a plurality of received signals in both a first data area for storing data and a second data area that is an area other than the first data area;
    A transmission process for transmitting the generated data frame;
    A communication program that causes a computer to execute.
  10.  データを格納する第1のデータ領域と、
     前記第1のデータ領域以外の領域である第2のデータ領域と、
     を含み、
     前記第1のデータ領域と、前記第2のデータ領域との双方に、前記中継装置が受信した複数の信号を格納する、データフレームの構造。
    A first data area for storing data;
    A second data area that is an area other than the first data area;
    Including
    A data frame structure in which a plurality of signals received by the relay apparatus are stored in both the first data area and the second data area.
PCT/JP2011/070138 2010-09-14 2011-09-05 Relay device, communication system, communication method, communication program, and data frame structure WO2012036009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533944A JP5354703B2 (en) 2010-09-14 2011-09-05 Relay device, communication system, communication method, communication program, and data frame structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010205842 2010-09-14
JP2010-205842 2010-09-14

Publications (1)

Publication Number Publication Date
WO2012036009A1 true WO2012036009A1 (en) 2012-03-22

Family

ID=45831476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070138 WO2012036009A1 (en) 2010-09-14 2011-09-05 Relay device, communication system, communication method, communication program, and data frame structure

Country Status (2)

Country Link
JP (1) JP5354703B2 (en)
WO (1) WO2012036009A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112537A (en) * 1997-09-30 1999-04-23 Mitsubishi Electric Corp Loop-type data transmission device
JP2008131063A (en) * 2006-11-16 2008-06-05 Oki Electric Ind Co Ltd Transparent transmission apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112537A (en) * 1997-09-30 1999-04-23 Mitsubishi Electric Corp Loop-type data transmission device
JP2008131063A (en) * 2006-11-16 2008-06-05 Oki Electric Ind Co Ltd Transparent transmission apparatus

Also Published As

Publication number Publication date
JP5354703B2 (en) 2013-11-27
JPWO2012036009A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
US10462028B2 (en) Efficient ethernet signal transport and scheduling
US9564973B2 (en) Method and apparatus for transmitting and receiving interface signals of distributed base station
US7822075B2 (en) Method and system of signal transmission in base transceiver station based on remote radio head
US6731875B1 (en) Wavelength bus architecture for ultra-high speed dense wavelength division multiplexed systems
Carroll et al. The operator's view of OTN evolution
US20070031148A1 (en) Method, apparatus and system for optical communications
US7711007B2 (en) Method and apparatus for synchronous switching of optical transport network signals
CN111201728A (en) Data transmission method in optical network and optical network equipment
CN108419259B (en) Method and system for realizing flexible Ethernet protection switching based on reserved overhead field
US20090245292A1 (en) Clock recovery apparatus and method
EP2472803B1 (en) Method, apparatus, system for hybrid-transmitting and bridging of circuit service and packet service
US20120087237A1 (en) System and method for protecting payload information in radio transmission
US8792465B2 (en) Method and apparatus for transmitting a gigabit-ethernet signal by a high capacity point-to-point radio system
CN101631387A (en) Service dispatching method, service dispatching device and service dispatching system of microwave link
US8514775B2 (en) System and method for improving the use of radio spectrum in transmission of data
JP5354703B2 (en) Relay device, communication system, communication method, communication program, and data frame structure
JP2008236691A (en) Eos (ether-over sonet) communication equipment
KR101106697B1 (en) Apparatus and method for controlling flow in ethernet
JP3766397B2 (en) RADIO BASE STATION SYSTEM, RADIO BASE STATION DEVICE USED FOR THE SAME, RADIO TRANSMITTER / RECEIVER, AND REMOTE ANTENNA SIGNAL TRANSMISSION CONTROL METHOD
CN114679221B (en) Communication device and equipment capable of configuring optical interface working mode
CN113824660B (en) Transparent transmission method of code stream and router
WO2023160279A1 (en) Optical device, optical switching full mesh system and communication system
EP1990939B1 (en) A method for transmitting multi standard data traffic over a communication network
JPH06318924A (en) Radio communication system
Frigerio et al. Overview of Standardization for D-RoF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533944

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825015

Country of ref document: EP

Kind code of ref document: A1