WO2012035734A1 - 立体映像視聴用眼鏡及びその制御方法 - Google Patents

立体映像視聴用眼鏡及びその制御方法 Download PDF

Info

Publication number
WO2012035734A1
WO2012035734A1 PCT/JP2011/005086 JP2011005086W WO2012035734A1 WO 2012035734 A1 WO2012035734 A1 WO 2012035734A1 JP 2011005086 W JP2011005086 W JP 2011005086W WO 2012035734 A1 WO2012035734 A1 WO 2012035734A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
viewer
distance
shutter
glasses
Prior art date
Application number
PCT/JP2011/005086
Other languages
English (en)
French (fr)
Inventor
賀津雄 西郷
和雄 岡本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012533855A priority Critical patent/JP5511969B2/ja
Publication of WO2012035734A1 publication Critical patent/WO2012035734A1/ja
Priority to US13/799,065 priority patent/US9575327B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/008Aspects relating to glasses for viewing stereoscopic images

Definitions

  • the present invention relates to stereoscopic video viewing glasses worn by a viewer when viewing stereoscopic video.
  • stereoscopic image display devices that stereoscopically display still images and moving images are reduced in price due to advances in manufacturing technology, the liquid crystal display device itself is thinner and lighter, and the development of high image quality technology for display functions, etc. It is rapidly spreading due to factors.
  • Such stereoscopic video display devices have been widely applied to monitors of personal computers and digital TVs that receive and display digital broadcast waves.
  • a conventional 3D image display system includes a 3D image display device that alternately displays left and right images in time, and a 3D image that receives a synchronization signal emitted from the display device and opens and closes the left and right shutters in synchronization with the synchronization signal. It consists of glasses for viewing images.
  • Patent Document 1 discloses control in the case where the synchronization signal cannot be received by the stereoscopic video viewing glasses in such a stereoscopic video display system. Specifically, the control method of Patent Document 1 controls the left and right shutters to be opened or closed simultaneously when the synchronization signal cannot be received by the stereoscopic video viewing glasses.
  • the stereoscopic image viewing glasses disclosed in Patent Document 1 include a phase-locked loop that synchronizes a synchronization signal received by an infrared receiver, a mode control logic, a voltage controller that is controlled by the mode control logic and controls a voltage, and a mode control logic. It is controlled and comprises drivers that drive the right eye LCC and the left eye LCC.
  • the synchronization signal received by the receiver is synchronized in the phase-locked loop VCO, and the driver is driven based on the control instruction of the mode control logic.
  • the driver drives the right-eye LCC and the left-eye LCC.
  • the mode control logic changes the voltage by controlling the phase-locked loop VCO and switching power from the battery.
  • the stereoscopic video viewing glasses allow the wearer of the glasses to view the non-stereoscopic video by opening and closing the left and right shutters simultaneously.
  • the display range (the vertical range of the display screen) of the object that can be suitably viewed by the viewer in stereoscopic vision may change according to the distance between the stereoscopic video display device and the viewer. It is known (see Non-Patent Document 1).
  • FIG. 8 is a diagram for explaining the relationship between the distance between the stereoscopic video display device and the viewer and the display range of the object in which the viewer can preferably visually recognize the object in the stereoscopic view. As shown in FIG. 8, the display range of the object that can be suitably viewed by the viewer in the stereoscopic view becomes wider as the distance between the stereoscopic video display device and the viewer increases.
  • the display range of the object that can be suitably viewed by the viewer in stereoscopic vision becomes narrower as the distance between the stereoscopic video display device and the viewer becomes smaller. That is, if the viewer gets too close to the stereoscopic video display device, the stereoscopic video cannot be viewed appropriately.
  • the stereoscopic video display device and the viewer when the distance between the stereoscopic video display device and the viewer is within 0.5 m, the viewer can hardly perform a suitable stereoscopic view.
  • the stereoscopic video display device displays video so that it can be stereoscopically viewed, if the distance between the stereoscopic video display device and the viewer is too close, the display of objects that the viewer can stereoscopically view is displayed. Since the range is narrowed, it is difficult to view a stereoscopic image, and the convenience of the viewer in viewing the image is impaired.
  • Patent Document 1 can be applied when the viewer is too far from the stereoscopic video display device and cannot receive the synchronization signal.
  • the prior art disclosed in Patent Literature 1 cannot stop viewing the stereoscopic video, and the viewer's convenience in viewing the video is reduced. The problem cannot be solved.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide stereoscopic video viewing glasses that can improve the convenience of the viewer when viewing a stereoscopic video.
  • stereoscopic video viewing glasses that allow a viewer to view a stereoscopic video based on video displayed on a display device.
  • the stereoscopic video viewing glasses detect a left eye shutter that controls the visual field of the viewer's left eye, a right eye shutter that controls the visual field of the viewer's right eye, and a distance between the display device and the glasses,
  • a distance determination unit that determines whether or not the detected distance is smaller than a predetermined value, and if the detected distance is larger than the predetermined value based on a determination result by the distance determination unit, the viewer is allowed to view a stereoscopic video Control the opening and closing of the left-eye and right-eye shutters, and if the detected distance is smaller than a predetermined value, the left-eye and right-eye shutters are opened and closed so that the viewer can view non-stereoscopic images.
  • a method for controlling 3D image viewing glasses that allows a viewer to view a 3D image based on an image displayed on a display device.
  • the stereoscopic video viewing glasses include a left-eye shutter that controls the visual field of the viewer's left eye and a right-eye shutter that controls the visual field of the viewer's right eye.
  • the distance between the display device and the glasses is detected, and it is determined whether or not the detected distance is smaller than a predetermined value. Based on the determination result by the distance determination unit, when the detected distance is greater than a predetermined value, the opening and closing of the left-eye and right-eye shutters is controlled so that the viewer can view the stereoscopic video.
  • the opening and closing of the left-eye and right-eye shutters is controlled so that the viewer can view the non-stereoscopic video.
  • the display apparatus which displays the image
  • a stereoscopic video playback system including video viewing glasses is provided. Each stereoscopic video viewing glasses detects a left eye shutter that controls the viewer's left eye field of view, a right eye shutter that controls the viewer's right eye field of view, and the distance between the display device and the glasses.
  • a distance determination unit that determines whether or not the detected distance is smaller than a predetermined value, and a stereoscopic image to the viewer when the detected distance is larger than the predetermined value based on a determination result by the distance determination unit.
  • a shutter control unit that controls opening and closing of the shutter.
  • the plurality of stereoscopic video viewing glasses have different distances between the centers of the left eye glass and the right eye glass.
  • the predetermined value in each of the stereoscopic video viewing glasses is set to a larger value as the distance between the center of the left eye glass and the right eye glass is smaller.
  • a range in which a plurality of viewers with different interpupillary distances can view a stereoscopic video is set as the viewer's interpupillary distance. It becomes possible to set to the suitable range according to.
  • the stereoscopic video viewing is automatically stopped and the non-stereoscopic video is displayed. Make it visible.
  • the viewer since the viewer views the non-stereoscopic video at a viewing distance where the stereoscopic video cannot be viewed suitably, it is possible to prevent the viewer from viewing an unfavorable video and improve the convenience of the viewer when viewing the stereoscopic video. .
  • FIG. 3 shows a configuration of a stereoscopic video display system in the first embodiment.
  • the figure explaining the positional relationship between the stereoscopic video display device and the viewer A 3 shows a configuration of stereoscopic video viewing glasses (3D glasses) according to Embodiment 1.
  • FIG. 3 shows a configuration of a stereoscopic video viewing glasses (3D glasses) according to Embodiment 1.
  • the figure explaining the visual recognition position of the 3D object by three 3D glasses with different sizes The figure explaining the relationship between the distance between a stereoscopic video display apparatus and a viewer, and the range of the depth direction (direction perpendicular to a display screen) in which a viewer can view an object suitably in a stereoscopic view
  • FIG. 1 shows the configuration of the stereoscopic video display system of this embodiment.
  • the stereoscopic video display system 100 is a stereoscopic video display device 1 that displays a stereoscopic video, and for stereoscopic video viewing that controls the opening and closing of the left and right shutters so that the viewer can stereoscopically receive a synchronization signal from the stereoscopic video display device 1.
  • Eyeglasses hereinafter referred to as “3D glasses”). 2.
  • the stereoscopic video display device 1 can display video (hereinafter referred to as “3D video”) for enabling stereoscopic video viewing using the 3D glasses 2.
  • 3D video video
  • the stereoscopic video display device 1 alternately displays the left-eye video and the right-eye video on the screen.
  • the stereoscopic video display device 1 can also display non-stereoscopic video.
  • the 3D glasses 2 include a shutter 21 that can block the visual field of the viewer's left eye, and a shutter 22 that can block the visual field of the viewer's right eye.
  • the 3D glasses 2 block the right-eye field when the left-eye image is displayed on the stereoscopic image display device 1, while blocking the left-eye field when the right-eye image is displayed on the stereoscopic image display device 2.
  • the shutters 21 and 22 are controlled.
  • the screen showing the left eye video is displayed on the stereoscopic video display device 1
  • the viewer views the video with the left eye
  • the screen showing the right eye video is displayed on the stereoscopic video display device 1. If you are, you will see the video with your right eye. Thereby, the viewer can visually recognize the images sequentially displayed on the stereoscopic video display device 1 as a stereoscopic video.
  • FIG. 2 is a diagram illustrating the positional relationship between the stereoscopic video display device 1 and the viewer A.
  • the 3D glasses 2 of the present embodiment detect a distance L between viewers wearing the 3D display device 1 and the 3D glasses 2, and when the distance L is smaller than a predetermined value, the 3D image display device 1 displays the 3D image.
  • the left and right shutters are controlled so that the viewer can view the non-stereoscopic video even when the display operation that enables the user to visually recognize is performed.
  • the configuration and operation of the 3D glasses 2 of the present embodiment will be described in detail.
  • FIG. 3 shows the configuration of the 3D glasses 2 of the present embodiment.
  • the 3D glasses 2 include an infrared synchronization signal light receiving unit 4, an infrared synchronization signal strength setting unit 3, an infrared synchronization signal strength comparison unit 6, a 3D image processing shutter control unit 7, a glasses shutter unit 9, and an infrared synchronization signal.
  • An infrared synchronization signal lock-on unit 5 that locks in synchronization and a 2D image processing shutter control unit 8 are provided.
  • the eyeglass shutter unit 9 includes a left-eye shutter 21 and a right-eye shutter 22 that control the respective visual fields of the viewer's left eye and right eye by opening and closing.
  • the infrared synchronization signal is output by the infrared synchronization signal light emitting unit 11 provided in an external device of the 3D glasses 2 or the like.
  • the infrared synchronization signal light emitting unit 11 is provided on the front surface of the stereoscopic video display device 1 as shown in FIGS. 1 and 2 as an example.
  • the infrared synchronization signal light emitting unit 11 outputs an infrared synchronization signal in synchronization with the left-eye video and the right-eye video that are alternately displayed in the 3D video display.
  • the infrared synchronization signal output from the infrared synchronization signal light emitting unit 11 of the stereoscopic video display device 1 propagates through the space and is received by the infrared synchronization signal light receiving unit 4 of the 3D glasses 2.
  • the infrared synchronization signal light receiving unit 4 converts the input infrared light into an electric signal, and calculates the intensity of the received infrared light, that is, the input signal intensity ⁇ based on the electric signal.
  • the infrared synchronizing signal light receiving unit 4 outputs the calculated input signal intensity ⁇ to the infrared synchronizing signal intensity comparing unit 6.
  • the infrared sync signal strength setting unit 3 has information on a set value ⁇ of a predetermined strength set in advance or set by a user or the like.
  • the value of the intensity setting value ⁇ is used to determine the magnitude of the input signal intensity ⁇ input in the infrared synchronization signal intensity comparison unit 6 described later.
  • the infrared synchronization signal lock-on unit 5 includes a synchronization pull-in circuit such as a PLL, and generates a synchronization signal (lock-on signal) for synchronizing the opening / closing of the shutter control with the synchronization signal transmitted by the received infrared light.
  • the frequency of the lock-on signal at this time is ⁇ .
  • the infrared synchronization signal strength comparison unit 6 compares the strength setting value ⁇ given from the infrared synchronization signal strength setting unit 3 with the input synchronization signal strength ⁇ given from the infrared synchronization signal light receiving unit 4 and outputs the comparison result. .
  • FIG. 4 is a diagram showing the relationship between the intensity ⁇ of the infrared synchronization signal received by the infrared synchronization signal light receiving unit 4 and the distance between the infrared synchronization signal light emitting unit 1 and the infrared synchronization signal light receiving unit 4.
  • the intensity of the infrared synchronization signal received by the infrared synchronization signal light receiving unit 4 decreases as the distance between the infrared synchronization signal light emitting unit 11 and the infrared synchronization signal light receiving unit 4 increases.
  • the distance between the infrared synchronization signal light emitting unit 1 and the infrared synchronization signal light receiving unit 4 can be determined from the intensity of the infrared synchronization signal received by the infrared synchronization signal light receiving unit 4.
  • the infrared synchronization signal light emitting unit 11 and the infrared synchronization are synchronized. It is determined whether or not the distance between the signal light receiving units 4 is greater than a predetermined distance.
  • the intensity setting value ⁇ given by the infrared synchronization signal intensity setting unit 3 is received by the infrared synchronization signal light receiving unit 4 when the distance between the infrared synchronization signal light emitting unit 11 and the infrared synchronization signal light receiving unit 4 is a predetermined distance m.
  • a predetermined distance m Set to a value equal to the strength of the sync signal. Accordingly, when the input synchronization signal intensity ⁇ is lower than the intensity setting value ⁇ , it can be determined that the distance between the infrared synchronization signal light emitting unit 1 and the infrared synchronization signal light receiving unit 2 is larger than the predetermined distance m.
  • the intensity setting value ⁇ is determined as follows, for example, from FIG. 4 according to a desired predetermined distance. When the predetermined distance is set to 0.2 m, the received light intensity of infrared rays corresponding to the distance of 0.2 m is about 60. Therefore, the intensity setting signal ⁇ may be set as 60.
  • the stereoscopic image processing shutter control unit 7 alternates the left and right shutters 21 and 22 of the eyeglass shutter unit 9 in synchronization with the left and right images displayed alternately in time on the stereoscopic image display device 1. Open and close. More specifically, the 3D image processing shutter control unit 7 transmits light that passes through the left-eye shutter 21 of the glasses shutter unit 9 when the stereoscopic image display device 1 displays a left-eye image.
  • the amount is increased and the amount of light transmitted through the right-eye shutter 22 is decreased.
  • the 3D image processing shutter control unit 7 reduces the amount of light transmitted through the left-eye shutter 21 of the eyeglass shutter unit 9.
  • the amount of light transmitted through the right-eye shutter 22 is increased. Thereby, the viewer wearing the 3D glasses 2 can perceive a stereoscopic image.
  • the 2D image processing shutter control unit 8 controls the left and right eyeglass shutters of the eyeglass shutter unit 9 to be opened or closed simultaneously. More specifically, the 2D image processing shutter control unit 8 is configured to transmit light transmitted through the left and right shutters 21 and 22 of the eyeglass shutter unit 9 when the stereoscopic image display device 1 displays a left-eye image. Increase the amount (open left and right shutters 21, 22).
  • the 2D image processing shutter control unit 8 reduces the amount of light transmitted through the left and right shutters 21 and 22 of the eyeglass shutter unit 9. (The left and right shutters 21 and 22 are closed). With such shutter opening / closing control, the viewer views only the left-eye video, and as a result, views the non-stereoscopic video.
  • the viewing glasses 2 automatically stop presenting the stereoscopic video to the viewer so that the viewer can view the non-stereoscopic video. Thereby, even if the viewer is too close to the stereoscopic video display device 1 beyond the stereoscopic viewable range, an image that can be suitably viewed can be provided.
  • the left and right eyeglass shutters of the eyeglass shutter unit 9 are simultaneously opened (the amount of transmitted light is increased).
  • the present invention is not limited to this.
  • the left and right eyeglass shutters of the eyeglass shutter unit 9 may be opened simultaneously when the stereoscopic image display device 1 displays the right eye image.
  • FIG. 5 and 6 are diagrams showing timing charts of various control signals in the 3D glasses 2 of the present embodiment.
  • FIG. 5 shows that when the input synchronization signal intensity ⁇ exceeds the intensity setting value ⁇ , the 2D image processing shutter control unit 8 simultaneously turns on (opens) the left and right shutters 21 and 22 in synchronization with the left eye image.
  • a timing chart in the case of (closed) control is shown.
  • FIG. 6 shows that when the input synchronization signal intensity ⁇ is smaller than the intensity setting value ⁇ , the 3D image processing shutter control unit 7 alternately turns on (opens) the left and right shutters 21 and 22 in synchronization with the left and right eye images. Shows a timing chart in the case of control.
  • S ⁇ b> 1 indicates an infrared synchronization signal received by the 3D glasses 2 from the stereoscopic video display device 1.
  • S2 indicates an image (an image for the left eye or an image for the right eye) displayed on the stereoscopic video display device 1.
  • S3 shows the time change of the control signal for controlling the open / closed state of the shutter 21 for the left eye of the eyeglass shutter unit 9.
  • S4 shows the change over time of the control signal for controlling the opening and closing of the right-eye shutter 22 of the eyeglass shutter unit 9.
  • S5 indicates the type of image visually recognized by the left eye of the viewer wearing 3D glasses 2 along the time axis.
  • S6 shows the type of image visually recognized by the right eye of the viewer wearing 3D glasses 2 along the time axis.
  • the 2D image processing charter control unit 8 displays a stereoscopic image.
  • the left eye image (video) among the images displayed by the apparatus 1 both the left eye shutter signal and the right eye shutter signal are simultaneously controlled to be in the ON state or the OFF state.
  • the left-eye image is visually recognized by the viewer's left and right eyes.
  • the viewer can visually recognize the (video) displayed on the stereoscopic video display device 1 as a non-stereoscopic video (2D image), not a stereoscopic video (3D image).
  • This control causes the 3D glasses 2 to automatically stop viewing the 3D image when the viewer gets too close to the 3D image display device 1 beyond an appropriate distance. Therefore, the viewer can view the stereoscopic video only when the viewer is within a distance range suitable for viewing the stereoscopic video.
  • the 3D image processing charter control unit 7 is displayed on the stereoscopic video display device 1 as shown in FIG.
  • the left eye shutter signal and the right eye shutter signal are alternately controlled to be in the ON state.
  • the (video) displayed on the stereoscopic video display device 1 is visually recognized as a 3D image by the viewer.
  • This control enables the 3D glasses 2 to view a stereoscopic image when the viewer is viewing the stereoscopic image display device 1 within an appropriate distance range. Therefore, the viewer can view the stereoscopic video when the viewer is within a distance range suitable for viewing the stereoscopic video.
  • the 3D glasses 2 are glasses that enable a viewer to view a 3D image based on an image displayed on the 3D image display device 1.
  • the 3D glasses 2 include a left eye shutter 21 that controls the visual field of the viewer's left eye, a right eye shutter 22 that controls the visual field of the viewer's right eye, and the 3D image display device 1 and the 3D glasses 2.
  • An infrared synchronization signal intensity comparison unit 6 that detects the distance and determines whether the detected distance (input signal intensity ⁇ ) is smaller than a predetermined value (intensity setting value ⁇ ), and a determination by the infrared synchronization signal intensity comparison unit 6 Based on the result, when the detected distance is larger than the set value, the 3D image processing shutter control unit 7 that controls opening and closing of the left-eye shutter and the right-eye shutter so that the viewer can view the stereoscopic video, and detection And a 2D image processing shutter control unit 8 that controls the opening and closing of the left-eye and right-eye shutters so that the viewer can view non-stereoscopic images when the distance is smaller than a predetermined value.
  • the distance between the stereoscopic video display device 1 and the 3D glasses 2 (that is, the viewer) is suitable for viewing stereoscopic video based on the synchronization signal output from the stereoscopic video display device 1.
  • the left and right shutters are controlled so as to allow the viewer to visually recognize a stereoscopic image only when it is determined whether or not the distance is appropriate.
  • the distance between the stereoscopic image display device 1 and the 3D glasses 2, that is, the viewer is detected based on the received light intensity of the infrared synchronization signal.
  • the method for detecting the distance between the stereoscopic image display device 1 and the 3D glasses 2 (that is, the viewer) is not limited to this method.
  • a radio signal may be used instead of the infrared signal.
  • the stereoscopic video display device 1 transmits a radio signal including predetermined information (for example, time and opening / closing information of the 3D glasses shutter).
  • the 3D glasses 2 initially transmit and receive a predetermined distance detection code to each other and set the time as a reference value when pairing with the stereoscopic image display device 1 is performed at a predetermined distance.
  • a predetermined distance detection code is transmitted / received to / from the glasses 2 at a predetermined time interval, and the time is obtained and compared with the reference value to detect the distance between the stereoscopic image display device 1 and the 3D glasses 2, that is, the viewer. can do.
  • other conventional ranging methods can be used.
  • any distance measuring method (means) can be used as long as the distance between the stereoscopic image display device 1 and the 3D glasses 2 can be detected.
  • the value of the intensity setting value ⁇ set by the infrared synchronization signal intensity setting unit 3 is the lower limit (minimum value) of the distance range in which the stereoscopic video viewer can preferably view the stereoscopic video displayed by the stereoscopic video display device 12. ) Is preferably set.
  • the strength setting value ⁇ is a fixed value, but the strength setting value ⁇ may be a variable value. That is, the intensity setting value ⁇ may be changed in the 3D glasses 2.
  • a plurality of 3D glasses 2 having different sizes may be prepared, and different intensity setting values ⁇ may be set for each 3D glasses.
  • the size of the 3D glasses means a distance between the centers of the left and right glasses corresponding to a distance between pupils of the user of the 3D glasses (a distance between the centers of the pupils of the left and right eyes).
  • three different size 3D glasses may be prepared.
  • three sizes of 3D glasses 2a, 2b, and 2c are provided.
  • the medium-sized 3D glasses 2b are manufactured so that the distance between the centers of the left and right glasses is a value corresponding to the average inter-pupil distance (6.5 cm) of a general adult.
  • the large size 3D glasses 2a are manufactured such that the distance between the centers of the left and right glasses is larger than the distance between the centers of the left and right glasses in the medium size 3D glasses 2b.
  • the small size 3D glasses 2c are manufactured such that the distance between the centers of the left and right glasses is smaller than the distance between the centers of the left and right glasses in the medium size 3D glasses 2b. Advantages of preparing a plurality of 3D glasses having different sizes will be described below.
  • the child's interpupillary distance is smaller than the adult's interpupillary distance (the distance between the pupil centers of the left and right eyes).
  • the position in the depth direction of the object that can be stereoscopically viewed is different even if the same parallax image is viewed at the same position.
  • FIG. 7B illustrates a case where three viewers X, Y, and Z having different interpupillary distances view the same parallax object at the same viewing position, and each viewer X, Y, and Z is stereoscopically viewed. It is a figure explaining the position of a possible object. Assume that the interpupillary distance increases in the order of viewer X, viewer Y, and viewer Z.
  • the position of the object 31 that can be viewed stereoscopically by each viewer is a position further away from the display screen in the order of the viewer Z, the viewer Y, and the viewer X. That is, as the interpupillary distance is smaller, the object is visually recognized at a position closer to the viewer.
  • the minimum value of the distance to the stereoscopic image display device 1 that can suitably view a stereoscopic image is longer than that of an adult. Therefore, by setting the intensity setting value ⁇ according to the viewer's interpupillary distance, that is, the size of the 3D glasses, appropriate control according to the viewer's interpupillary distance becomes possible. That is, the intensity setting signal ⁇ when viewing video with smaller 3D glasses is set larger than when viewing video with larger 3D glasses.
  • the stereoscopic image is viewed at a position farther from the stereoscopic image display device 1 than in the case of an adult.
  • a stereoscopic image can be viewed only within a range of distance.
  • the size of the 3D glasses is different, the viewer can easily distinguish whether the 3D glasses 2 are for adults or children by size.
  • the size types of the 3D glasses 2 are not limited to three types. It may be 2 or 4 or more.
  • the intensity setting value ⁇ is set so as to increase as the size of the 3D glasses decreases.
  • the stereoscopic video viewing can be automatically stopped.
  • the distance to the stereoscopic video display device 1 for stopping the stereoscopic video viewing can be changed according to the distance between the pupils of the viewer.
  • the stereoscopic video can be viewed only within a range in which the stereoscopic video corresponding to the distance between the pupils of each viewer can be suitably viewed.
  • the stereoscopic image viewing glasses have been described as an example, but the invention of the present application is not limited to this.
  • the invention of the present application can be similarly configured as a method of controlling the above-described stereoscopic video viewing glasses. In this case, these control methods can be realized as a program processed by a computer or the like.
  • the present invention can be applied to stereoscopic glasses used together with a stereoscopic image display device in order to enable a viewer to view stereoscopic images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

 立体映像視聴用眼鏡(2)は、表示装置に表示された映像に基づいて視聴者に立体映像の視認を可能とさせる眼鏡であって、視聴者の左眼の視野を制御する左眼用シャッターと、視聴者の右眼の視野を制御する右眼用シャッターと、表示装置と眼鏡間の距離(α)を検出し、検出した距離(α)が所定値(σ)よりも小さいか否かを判断する距離判断部(6)と、距離判断部による判断結果に基づき、検出した距離が所定値よりも大きい場合、視聴者に対して立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御し、検出した距離が前記所定値よりも小さい場合、視聴者に対して非立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御するシャッター制御部(7、8)と、を備える。

Description

立体映像視聴用眼鏡及びその制御方法
 本発明は、立体映像視聴時に視聴者が装着する立体映像視聴用眼鏡に関する。
 近年、静止画や動画映像を立体表示する立体映像表示装置が、その製造技術が進展したことによる価格の低下や、液晶表示装置自体の薄型軽量化及び、表示機能における高画質化技術の開発等の要因によって急速に普及している。そのような立体映像表示装置は、パーソナルコンピュータのモニター及び、デジタル放送波を受信し表示を行なうデジタルTV等に広く適用されてきている。
 立体映像表示装置の表示方式には様々な方式があるが、その多くは、人間の左右の目の視差を利用して、視聴者に表示される映像の立体感を知覚させるものである。従来の立体映像表示システムは、左右画像を時間的に交互に表示する立体映像表示装置と、この表示装置から発せられた同期信号を受光し、その同期信号に同期させて左右シャッターを開閉する立体映像視聴用眼鏡とからなる。
 特許文献1は、このような立体映像表示システムにおいて、同期信号を立体映像視聴用眼鏡が受信できない場合の制御を開示している。具体的には、特許文献1の制御方法は、同期信号を立体映像視聴用眼鏡が受信できない場合、左右のシャッターを同時に開または閉に制御している。
 特許文献1の立体映像視聴用眼鏡は、赤外線レシーバーにより受光した同期信号を同期するフェーズロックトループと、モードコントロールロジックと、モードコントロールロジックにより制御され、電圧を制御するボルテージコントローラと、モードコントロールロジックにより制御され、右目LCCと左目LCCをドライブするドライバーより構成される。この立体映像視聴用眼鏡の制御では、レシーバーで受光した同期信号は、フェーズロックトループVCOにおいて同期がかけられ、モードコントロールロジックの制御指示に基づいてドライバーを駆動する。ドライバーは右目用LCCと左目用LCCを駆動する。モードコントロールロジックはフェーズロックトループVCOの制御と電池からの電源をスイッチして電圧を変える。これにより立体映像視聴用眼鏡は、左右のシャッターを同時に開閉して非立体映像を当該眼鏡の着用者に視聴させることを可能としている。
 ところで、立体映像表示システムにおいて、視聴者が立体視において好適に視認できるオブジェクトの表示範囲(表示画面の垂直方向の範囲)は、立体映像表示装置と視聴者間の距離に応じて変化することが知られている(非特許文献1参照)。図8は、立体映像表示装置と視聴者間の距離と、視聴者が立体視においてオブジェクトを好適に視認できるオブジェクトの表示範囲との関係を説明した図である。図8に示すように、視聴者が立体視において好適に視認できるオブジェクトの表示範囲は、立体映像表示装置と視聴者間の距離が大きくなるほど、広くなる。
米国特許第5293227号明細書
"Stereoscopic displays and visual comfort: a review", Marc Lambooij, et al., 10.1117/2.1200703.0648, SPIE Newsroom
 換言すれば、視聴者が立体視において好適に視認できるオブジェクトの表示範囲は、立体映像表示装置と視聴者間の距離が小さくなるほど、狭くなる。つまり、視聴者は、立体映像表示装置に近づき過ぎると、立体映像を好適に視認できなくなる。例えば、図8では、立体映像表示装置と視聴者間の距離が0.5m以内になると、視聴者は好適な立体視がほぼ不可能となる。つまり、立体映像表示装置が立体視可能なように映像を表示している場合であっても、立体映像表示装置と視聴者間の距離が近すぎた場合、視聴者が立体視できるオブジェクトの表示範囲が狭まることから、立体映像が見難くなり、映像の視認における視聴者の利便性が損なわれる。
 特許文献1に示される従来技術は、視聴者が立体映像表示装置から離れすぎて、同期信号を受信できない場合には適用できる。しかし、視聴者が立体映像表示装置に近づきすぎた場合には、特許文献1に示される従来技術は立体映像の視聴を停止させることはできず、映像の視認における視聴者の利便性の低下の問題は解決できない。
 本発明は、上記課題を解決すべく成されたものであり、立体映像視認時の視聴者の利便性を向上できる立体映像視聴用眼鏡を提供することを目的とする。
 本発明の第1の態様において、表示装置に表示された映像に基づいて視聴者に立体映像の視認を可能とさせる立体映像視聴用眼鏡が提供される。立体映像視聴用眼鏡は、視聴者の左眼の視野を制御する左眼用シャッターと、視聴者の右眼の視野を制御する右眼用シャッターと、表示装置と眼鏡間の距離を検出し、検出した距離が所定値よりも小さいか否かを判断する距離判断部と、距離判断部による判断結果に基づき、検出した距離が所定値よりも大きい場合、視聴者に対して立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御し、検出した距離が所定値よりも小さい場合、視聴者に対して非立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御するシャッター制御部と、を備える。
 本発明の第2の態様において、表示装置に表示された映像に基づいて視聴者に立体映像の視認を可能とさせる立体映像視聴用眼鏡の制御方法が提供される。立体映像視聴用眼鏡は、視聴者の左眼の視野を制御する左眼用シャッターと、視聴者の右眼の視野を制御する右眼用シャッターとを備える。立体映像視聴用眼鏡の制御方法は、表示装置と眼鏡間の距離を検出し、検出した距離が所定値よりも小さいか否かを判断する。距離判断部による判断結果に基づき、検出した距離が所定値よりも大きい場合、視聴者に対して立体映像を視聴させるように前記左眼用および右眼用シャッターの開閉を制御する。一方、検出した距離が所定値よりも小さい場合、視聴者に対して非立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御する。
 本発明の第3の態様において、立体映像の視聴を可能とするための映像を表示する表示装置と、表示装置に表示された映像に基づき視聴者に立体映像の視聴を可能とさせる複数の立体映像視聴用眼鏡と、を含む立体映像再生システムが提供される。各立体映像視聴用眼鏡は、視聴者の左眼の視野を制御する左眼用シャッターと、視聴者の右眼の視野を制御する右眼用シャッターと、表示装置と眼鏡間の距離を検出し、検出した距離が所定値よりも小さいか否かを判断する距離判断部と、距離判断部による判断結果に基づき、検出した距離が所定値よりも大きい場合に、視聴者に対して立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御し、検出した距離が所定値よりも小さい場合に、視聴者に対して非立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御するシャッター制御部と、を備える。複数の立体映像視聴用眼鏡はそれぞれ、左眼用グラスと右眼用グラスの中心間の距離が異なる。各立体映像視聴用眼鏡における所定値は、左眼用グラスと右眼用グラスの中心間の距離が小さいほど、より大きい値に設定される。
 第3の態様の構成により、瞳孔間距離が異なる複数の視聴者に対して、立体映像を視聴させる範囲(換言すれば、立体映像の視聴を停止させる範囲)を、視聴者の瞳孔間距離に応じた好適な範囲に設定することが可能となる。
 本発明によれば、立体映像視聴眼鏡を着用した視聴者が、立体映像表示装置に近づきすぎて立体映像を視認したような場合に、自動的に立体映像の視認を停止し、非立体映像を視認させるようにする。これにより、立体映像を好適に視認できない視聴距離においては、視聴者は非立体映像を視認するため、好適でない映像を視認することを防止でき、立体映像視聴時の視聴者の利便性を向上できる。
実施の形態1における立体映像表示システムの構成を示す図 立体映像表示装置と視聴者Aとの位置関係を説明した図 実施の形態1における立体映像視聴用眼鏡(3D眼鏡)の構成を示す図 立体映像表示装置と3D眼鏡間の距離と、同期信号の受光強度の関係を示した図 3D眼鏡における各種の制御信号のタイミングチャート(立体映像の視聴制限時) 3D眼鏡における各種の制御信号のタイミングチャート(立体映像視聴可) サイズの異なる3つの3D眼鏡による、3Dオブジェクトの視認位置を説明した図 立体映像表示装置と視聴者間の距離と、視聴者が立体視においてオブジェクトを好適に視認できる深さ方向(表示画面に垂直な方向)の範囲との関係を説明した図
 以下、添付の図面を参照して本発明の実施形態を説明する。
実施の形態1
1.立体映像表示システムの構成
 図1に、本実施形態の立体映像表示システムの構成を示す。立体映像表示システム100は、立体映像を表示する立体映像表示装置1と、立体映像表示装置1から同期信号を受けて視聴者が立体視できるように左右のシャッターの開閉を制御する立体映像視聴用眼鏡(以下「3D眼鏡」という)2とを含む。
 立体映像表示装置1は、3D眼鏡2を用いて立体映像を視聴可能にするための映像(以下「3D映像」という)を表示可能である。立体映像表示装置1は、3D映像を表示する場合、左眼用映像及び右眼用映像を交互に画面上に表示する。立体映像表示装置1は、非立体映像も表示可能である。
 3D眼鏡2は、視聴者の左眼の視野を遮ることが可能なシャッター21と、視聴者の右眼の視野を遮ることが可能なシャッター22とを備えている。3D眼鏡2は、立体映像表示装置1に左眼映像が表示されると、右眼の視野を遮る一方、立体映像表示装置2に右眼映像が表示されると、左眼の視野を遮るようにシャッター21、22を制御する。視聴者は、立体映像表示装置1に左眼映像を示す画面が表示されている場合は、左眼で映像を見ることになり、立体映像表示装置1に右眼映像を示す画面が表示されている場合は、右眼で映像を見ることになる。これによって、視聴者は、立体映像表示装置1に順次表示された画像を立体映像として視認することができる。
 図2は、立体映像表示装置1と視聴者Aとの位置関係を説明した図である。本実施形態の3D眼鏡2は、立体表示装置1と3D眼鏡2を着用した視聴者間の距離Lを検出し、その距離Lが所定値よりも小さいときは、立体映像表示装置1が立体映像の視認を可能とする表示動作を行っているときであっても、視聴者に非立体映像を視認させるように左右のシャッターを制御する。以下、本実施形態の3D眼鏡2の構成、動作を詳述する。
2.立体映像表示用眼鏡(3D眼鏡)の構成、動作
 図3に本実施形態の3D眼鏡2の構成を示す。3D眼鏡2は、赤外線同期信号受光部4と、赤外線同期信号強度設定部3と、赤外線同期信号強度比較部6と、3D画像処理シャッター制御部7と、眼鏡シャッター部9と、赤外線同期信号に同期してロックする赤外線同期信号ロックオン部5と、2D画像処理シャッター制御部8とを備える。眼鏡シャッター部9は、開閉することで視聴者の左眼および右眼のそれぞれの視野を制御する左眼用のシャッター21および右眼用のシャッター22を含む。
 赤外線同期信号は、3D眼鏡2の外部の装置等に設けられた赤外線同期信号発光部11により出力される。本実施形態では、赤外線同期信号発光部11は、一例として図1や図2に示すように、立体映像表示装置1の前面に設けられる。赤外線同期信号発光部11は、3D映像表示において交互に表示される左眼用映像及び右眼用映像に同期して、赤外線同期信号を出力する。
 3D眼鏡2の動作を説明する。立体映像表示装置1の赤外線同期信号発光部11より出力された赤外線同期信号は空間中を伝搬し、3D眼鏡2の赤外線同期信号受光部4にて受信される。赤外線同期信号受光部4は、入力した赤外線を電気信号に変換し、その電気信号に基づき、受信した赤外線の強度すなわち入力信号強度αを算出する。赤外線同期信号受光部4は、算出した入力信号強度αを赤外線同期信号強度比較部6へ出力する。
 赤外線同期信号強度設定部3は、予め設定された又は利用者等の設定により、所定の強度の設定値σの情報を有する。この強度設定値σの値は、後述する赤外線同期信号強度比較部6において、入力された入力信号強度αの大小を判断するために用いられる。
 赤外線同期信号ロックオン部5は、PLLなどの同期引き込み回路を備え、受光した赤外線により伝達される同期信号にシャッター制御の開閉を同期させるための同期信号(ロックオン信号)を生成する。このときのロックオン信号の周波数をθとする。
 赤外線同期信号強度比較部6は、赤外線同期信号強度設定部3から与えられる強度設定値σと、赤外線同期信号受光部4から与えられる入力同期信号強度αとを比較し、その比較結果を出力する。
 図4は、赤外線同期信号受光部4で受光された赤外線同期信号の強度αと、赤外線同期信号発光部1と赤外線同期信号受光部4間の距離との関係を示す図である。図4に示すように、赤外線同期信号受光部4が受光する赤外線同期信号の強度は、赤外線同期信号発光部11と赤外線同期信号受光部4間の距離が大きくなるほど、小さくなる。このことから、赤外線同期信号受光部4が受光する赤外線同期信号の強度から、赤外線同期信号発光部1と赤外線同期信号受光部4間の距離を判断できる。本実施形態では、赤外線同期信号受光部4から与えられる同期信号の強度αを、赤外線同期信号強度設定部3から与えられる強度設定値σと比較することで、赤外線同期信号発光部11と赤外線同期信号受光部4間の距離が、所定距離よりも大きいか否かを判断している。
 赤外線同期信号強度設定部3により与えられる強度設定値σは、赤外線同期信号発光部11と赤外線同期信号受光部4間の距離が所定距離mであるときの赤外線同期信号受光部4で受光される同期信号の強度に等しい値に設定する。これにより、入力同期信号強度αが強度設定値σより低いときは、赤外線同期信号発光部1と赤外線同期信号受光部2間の距離が所定距離mより大きいと判断することができる。逆に、入力同期信号強度αが強度設定値信号σより大きいときは、赤外線同期信号発光部1と赤外線同期信号受光部4間の距離が所定距離mより小さいと判断することができる。このように、赤外線同期信号強度比較部6から出力される比較結果にしたがい、赤外線同期信号発光部1と赤外線同期信号受光部2間の距離が所定距離mより大きいか否かを判断できる。強度設定値σは、所望の所定距離に応じて、図4より、例えば次のように決定される。所定距離を0.2mとして設定する場合、距離を0.2mに対応する赤外線の受光強度は約60となる。そのため、強度設定信号σは60として設定すればよい。
 赤外線同期信号強度比較部6が、入力同期信号強度αが強度設定値σより低いと判断した場合、すなわち、赤外線同期信号発光部1と赤外線同期信号受光部4間の距離が所定距離mより大きいと判断した場合、立体画像処理シャッター制御部7は、立体映像表示装置1上で時間的に交互に表示される左右の映像と同期して、眼鏡シャッター部9の左右のシャッター21、22を交互に開閉する。より具体的には、3D画像処理シャッター制御部7は、立体映像表示装置1が左眼用の映像を表示しているときは、眼鏡シャッター部9の左眼用のシャッター21を透過する光の量を多くし、右眼用のシャッター22を透過する光の量を少なくする。また、立体映像表示装置1が右眼用の映像を表示しているときは、3D画像処理シャッター制御部7は、眼鏡シャッター部9の左眼用のシャッター21を透過する光の量を少なくし、右眼用のシャッター22を透過する光の量を多くする。これにより、3D眼鏡2を着用している視聴者は立体映像を知覚することができる。
 赤外線同期信号強度比較部6が、入力同期信号強度αが強度設定値σ以上であると判断した場合、すなわち、赤外線同期信号発光部11と赤外線同期信号受光部4の間の距離が所定距離m以下であると判断した場合、2D画像処理シャッター制御部8は、眼鏡シャッター部9の左右の眼鏡シャッターを同時に開または閉に制御する。より具体的には、2D画像処理シャッター制御部8は、立体映像表示装置1が左眼用の映像を表示しているときは、眼鏡シャッター部9の左右のシャッター21、22を透過する光の量を多くする(左右のシャッター21、22を開にする)。逆に、立体映像表示装置1が右眼用の映像を表示しているときは、2D画像処理シャッター制御部8は、眼鏡シャッター部9の左右のシャッター21、22を透過する光の量を少なくする(左右のシャッター21、22を閉にする)。このようなシャッターの開閉制御により、視聴者は左眼用映像のみを視認することになり、結果として非立体映像を視認することになる。
 このように、3D眼鏡2を着用している視聴者が、立体映像表示装置1に近づきすぎると(立体映像表示装置1と映像視聴用眼鏡2との距離が所定距離m以下になると)、映像視聴用眼鏡2は、自動的に視聴者に対する立体映像の提示を停止し、視聴者に対して非立体映像を視認させるようにする。これにより、視聴者が、立体視聴可能範囲を超えて立体映像表示装置1に近づきすぎた場合であっても、視聴が好適に視聴できる画像を提供することができる。
 なお、上記の説明では、立体映像表示装置1が左眼用映像を表示しているときに、眼鏡シャッター部9の左右の眼鏡シャッターを同時に開とする(透過する光の量を大きくする)場合を例として説明したが、これに限定するものではない。逆に、立体映像表示装置1が右眼用映像を表示しているときに、眼鏡シャッター部9の左右の眼鏡シャッターを同時に開としてもよい。
 図5、図6は、本実施形態の3D眼鏡2における各種の制御信号のタイミングチャートを示した図である。図5は、入力同期信号強度αが強度設定値σを超えたときに、2D画像処理シャーター制御部8が左眼用映像に同期して左右のシャッター21、22を同時にON(開)、OFF(閉)に制御する場合のタイミングチャートを示す。図6は、入力同期信号強度αが強度設定値σよりも小さいときに、3D画像処理シャーター制御部7が左右の眼の映像に同期して左右のシャッター21、22を交互にON(開)に制御する場合のタイミングチャートを示す。
 図5、6において、S1は、3D眼鏡2が立体映像表示装置1から受信した赤外線同期信号を示したものである。S2は、立体映像表示装置1に表示される画像(左眼用の画像または右眼用の画像)を示したものである。
 S3は、眼鏡シャッター部9の左眼用シャッター21の開閉状態を制御する制御信号の時間変化を示したものである。S4は、眼鏡シャッター部9の右眼用シャッター22の開閉を制御する制御信号の時間変化を示したものである。
 S5は、3D眼鏡2を着用した視聴者の左眼で視認される画像の種別を時間軸に沿って示したものである。S6は、3D眼鏡2を着用した視聴者の右眼で視認される画像の種別を時間軸に沿って示したものである。
 赤外線同期信号受光部4が算出した入力同期信号強度(赤外線受光同期信号の強度)αが強度設定値σより大きい場合、図5に示すように、2D画像処理シャーター制御部8は、立体映像表示装置1で表示される画像のうちの左眼画像(映像)の表示に同期して、左眼シャッター信号と右眼シャッター信号を両方同時にON状態又はOFF状態に制御する。これにより、視聴者の左右両眼には左目画像のみが視認される。この結果、視聴者により、立体映像表示装置1で表示される(映像)は、立体映像(3D画像)ではなく非立体映像(2D画像)として視認される。
 この制御により、視聴者が立体映像表示装置1に適切な距離を超えて近づきすぎた場合に、3D眼鏡2が自動的に立体映像の視認を停止する。そのため、視聴者は、視聴者が立体映像の視認において好適な距離範囲にあるときのみ、立体映像を鑑賞することが可能となる。
 一方、赤外線同期信号受光部4が算出した入力同期信号強度αが強度設定値σよりも小さい場合、図6に示すように、3D画像処理シャーター制御部7は、立体映像表示装置1で表示される左眼画像および右眼画像の表示に同期して、左眼シャッター信号と右眼シャッター信号を交互にON状態に制御する。これにより、視聴者の左眼には左眼画像のみが視認され、右眼には右眼画像のみが視認されるようになる。この結果、視聴者により、立体映像表示装置1で表示される(映像)が3D画像として視認される。
 この制御により、視聴者が立体映像表示装置1に対して適切な距離範囲で視聴している場合は、3D眼鏡2は立体映像の視聴を可能にする。そのため、視聴者は、視聴者が立体映像の視認において好適な距離範囲にあるときには、立体映像を鑑賞することが可能となる。
3.まとめ
 本実施の形態の3D眼鏡2は、立体映像表示装置1に表示された映像に基づいて視聴者に立体映像の視認を可能とさせる眼鏡である。3D眼鏡2は、視聴者の左眼の視野を制御する左眼用シャッター21と、視聴者の右眼の視野を制御する右眼用シャッター22と、立体映像表示装置1と3D眼鏡2間の距離を検出し、検出した距離(入力信号強度α)が所定値(強度設定値σ)よりも小さいか否かを判断する赤外線同期信号強度比較部6と、赤外線同期信号強度比較部6による判断結果に基づき、検出した距離が設定値よりも大きい場合、視聴者に対して立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御する3D画像処理シャッター制御部7と、検出した距離が所定値よりも小さい場合、視聴者に対して非立体映像を視聴させるように左眼用および右眼用シャッターの開閉を制御する2D画像処理シャッター制御部8と、を備える。
 本実施の形態の3D眼鏡2は、立体映像表示装置1から出力された同期信号に基づいて、立体映像表示装置1と3D眼鏡2(すなわち、視聴者)間の距離が立体映像の視聴に好適な距離であるか否かを判断し、好適であると判断できる場合にのみ、視聴者に立体映像を視認させるように左右のシャッターを制御する。
他の実施の形態
 以上、本発明の一つの実施形態について説明したが、本発明の具体的な態様は上記の実施の形態に限定されない。本発明の他の実施形態について以下に説明する。
 実施の形態1では、赤外線同期信号の受光強度に基づいて、立体映像表示装置1と3D眼鏡2すなわち視聴者との距離を検出した。立体映像表示装置1と3D眼鏡2(すなわち視聴者)間の距離の検出方法は、この方法に限定されない。例えば、赤外線信号の代わりに無線信号を用いてもよい。この場合、立体映像表示装置1は、所定の情報(例えば、時刻や3D眼鏡シャッターの開閉情報など)を含む無線信号を送信する。3D眼鏡2は、最初、所定の距離で立体映像表示装置1とのペアリング設定時に、所定の距離検出コードを相互に送受信しその時刻を参照値としてとっておき、その後、立体映像表示装置1と3D眼鏡2との間で、所定の時間間隔で所定の距離検出コードを送受信し、その時刻を求め、上記参照値と比較し、立体映像表示装置1と3D眼鏡2すなわち視聴者との距離を検出することができる。または、従来から存在する他の測距方法(手段)を利用することもできる。要するに、立体映像表示装置1と3D眼鏡2間の距離を検出することができれば、任意の測距方法(手段)を利用することができる。
 赤外線同期信号強度設定部3により設定される強度設定値σの値は、立体映像の視聴者が、立体映像表示装置12により表示される立体映像を好適に視聴できる距離の範囲の下限(最小値)の値に設定するのが好ましい。
 また、実施の形態1では、強度設定値σを固定値としたが、強度設定値σを可変値としてもよい。すなわち、3D眼鏡2において強度設定値σを変更できるようにしてもよい。
 また、サイズの異なる複数の3D眼鏡2を用意し、各3D眼鏡において異なる強度設定値σを設定してもよい。ここで、3D眼鏡のサイズとは、3D眼鏡の使用者の瞳孔間距離(左右の眼の瞳の中心間の距離)に対応する左右のグラスの中心間の距離をいう。例えば、図7(a)に示すように、3つの異なるサイズの3D眼鏡を用意しても良い。図7(a)の例では、大、中、小、3つのサイズの3D眼鏡2a、2b、2cが提供されている。中サイズの3D眼鏡2bは、左右のグラスの中心間の距離が一般成人の平均の瞳孔間距離(6.5cm)に対応した値となるように作製される。大サイズの3D眼鏡2aは、その左右のグラスの中心間の距離が中サイズの3D眼鏡2bにおける左右のグラスの中心間の距離よりも大きくなるように作製される。小サイズの3D眼鏡2cは、その左右のグラスの中心間の距離が、中サイズの3D眼鏡2bにおける左右のグラスの中心間の距離よりも小さくなるように作製される。このようにサイズの異なる複数の3D眼鏡を用意することの利点を以下に説明する。
 大人の瞳孔間距離(左右の眼の瞳の中心間の距離)に比べて子供の瞳孔間距離は小さい。瞳孔間距離が異なると、同じ視差の映像を同じ位置で視聴しても、立体視できるオブジェクトの深さ方向の位置が異なる。図7(b)は、瞳孔間距離が異なる3人の視聴者X,Y,Zが、同じ視差のオブジェクトを同じ視聴位置で視聴した場合に、それぞれの視聴者X,Y,Zが立体視できるオブジェクトの位置を説明した図である。視聴者X、視聴者Y、視聴者Zの順に瞳孔間距離が大きいとする。同図に示すように、各視聴者が立体視できるオブジェクト31の位置は、視聴者Z、視聴者Y、視聴者Xの順に、表示画面からより離れた位置となる。すなわち、瞳孔間距離がより小さいほど、より視聴者に近い位置にオブジェクトが視認される。
 このため、子供の場合、大人と同じ映像を視聴しても、立体映像を好適に視聴できる立体映像表示装置1までの距離の最小値は、成人の場合よりも長くなる。そこで、強度設定値σを、視聴者の瞳孔間距離すなわち3D眼鏡のサイズに応じて設定することで、視聴者の瞳孔間距離に応じた適切な制御が可能となる。すなわち、サイズがより小さい3D眼鏡で映像を視聴するときの強度設定信号σを、より大きいサイズの3D眼鏡で映像を視聴する場合よりも大きくする。これにより、瞳孔間距離がより小さい子供が映像を視聴するときには、大人の場合よりも、立体映像表示装置1からより離れた位置で立体映像を視聴することになり、子供に対して好適な視聴距離の範囲でのみ立体映像を視認させることが可能となる。
 3D眼鏡のサイズが異なっていることにより、視聴者は3D眼鏡2が大人用なのか子供用なのかをサイズにより容易に区別することができる。なお、3D眼鏡2のサイズの種類は、3種類に限らない。2または4以上であってもよい。その場合、3D眼鏡において、強度設定値σは3D眼鏡のサイズが小さいほど大きくなるように設定する。
 以上の構成により、立体映像の視聴者が立体映像表示装置1に近づきすぎた場合に自動的に立体映像の視聴を停止させることができる。また、本実施の形態で説明した方法によれば、視聴者の瞳孔間距離に応じて、立体映像の視聴を停止させるための立体映像表示装置1までの距離を変更することも可能である。これにより、それぞれの視聴者の瞳孔間距離に応じた立体映像を好適に視聴できる範囲でのみ、立体映像の視聴を可能とさせる。
 なお、以上の実施の形態では、立体映像視聴用眼鏡を例として説明したが本出願の発明はこれに限定するものではない。例えば、上記の立体映像視聴用眼鏡の制御方法としても、同様に、本出願の発明を構成することができる。この際には、これらの制御方法をコンピュータ等で処理されるプログラムとして実現することが可能である。
 本発明は、視聴者に立体映像の視聴を可能とするために、立体映像表示装置とともに使用される立体視用眼鏡に適用することができる。
 1 赤外線同期信号発光部
 2 立体映像視聴用眼鏡
 3 赤外線同期信号強度設定部
 4 赤外線同期信号受光部
 5 赤外線同期信号ロックオン部
 6 赤外線同期信号強度比較部
 7 3D画像処理シャッター制御部
 8 2D画像処理シャッター制御部
 9 眼鏡シャッター部
11 赤外線同期信号発光装置
12 立体映像表示装置
13 立体映像視聴用眼鏡
17 ノイズ除去部及び微分部
18 赤外線同期信号ロックオン部

Claims (6)

  1.  表示装置に表示された映像に基づいて視聴者に立体映像の視認を可能とさせる眼鏡であって、
     視聴者の左眼の視野を制御する左眼用シャッターと、
     視聴者の右眼の視野を制御する右眼用シャッターと、
     前記表示装置と前記眼鏡間の距離を検出し、前記検出した距離が所定値よりも小さいか否かを判断する距離判断部と、
     前記距離判断部による判断結果に基づき、前記検出した距離が所定値よりも大きい場合、視聴者に対して立体映像を視認させるように前記左眼用シャッターおよび右眼用シャッターの開閉を制御し、前記検出した距離が前記所定値よりも小さい場合、視聴者に対して非立体映像を視認させるように前記左眼用シャッターおよび右眼用シャッターの開閉を制御するシャッター制御部と、
     を備える、
    立体映像視聴用の眼鏡。
  2.  前記シャッター制御部は、前記検出した距離が前記所定値よりも小さい場合、左眼用画像および右眼用画像のうちのいずれか一方の画像の表示に同期して、前記左眼用および右眼用シャッターを同時に開に制御し、他方の画像の表示に同期して、前記左眼用および右眼用シャッターを同時に閉に制御する、
    請求項1記載の立体映像視聴用眼鏡。
  3.  前記立体映像表示装置から、前記左眼用シャッターと前記右眼用シャッターの開閉のタイミングを与える同期信号を受信する同期信号受信部をさらに備え、
     前記距離判断部は、前記同期信号受信部で受信した同期信号に基づき前記距離を検出する、
    請求項1または2に記載の立体映像視聴用眼鏡。
  4.  前記シャッター制御部は、前記検出した距離が前記所定値よりも大きい場合、左眼用画像の表示に同期して、前記左眼用シャッターを開にかつ右眼用シャッターを閉に制御し、右眼用画像の表示に同期して、前記左眼用シャッターを閉にかつ右眼用シャッターを開に制御する、
     請求項1または2に記載の立体映像視聴用眼鏡。
  5.  立体映像の視聴を可能とするための映像を表示する表示装置と、
     前記表示装置に表示された映像に基づき視聴者に立体映像の視聴を可能とさせる複数の立体映像視聴用眼鏡と、を含み、
     各立体映像視聴用眼鏡は、
      視聴者の左眼の視野を制御する左眼用シャッターと、
      視聴者の右眼の視野を制御する右眼用シャッターと、
      前記表示装置と前記眼鏡間の距離を検出し、前記検出した距離が所定値よりも小さいか否かを判断する距離判断部と、
      前記距離判断部による判断結果に基づき、前記検出した距離が所定値よりも大きい場合に、視聴者に対して立体映像を視聴させるように前記左眼用および右眼用シャッターの開閉を制御し、前記検出した距離が所定値よりも小さい場合に、視聴者に対して非立体映像を視聴させるように前記左眼用および右眼用シャッターの開閉を制御するシャッター制御部と、を備え、
     前記複数の立体映像視聴用眼鏡はそれぞれ、左眼用グラスと右眼用グラスの中心間の距離が異なり、
     各立体映像視聴用眼鏡における前記所定値は、左眼用グラスと右眼用グラスの中心間の距離が小さいほど、より大きい値に設定される、
    立体映像再生システム。
  6.  表示装置に表示された映像に基づいて視聴者に立体映像の視認を可能とさせる眼鏡であって、視聴者の左眼の視野を制御する左眼用シャッターと視聴者の右眼の視野を制御する右眼用シャッターとを備えた立体映像視聴用眼鏡の制御方法であって、
     前記表示装置と前記眼鏡間の距離を検出し、前記検出した距離が所定値よりも小さいか否かを判断し、
     前記距離判断部による判断結果に基づき、前記検出した距離が所定値よりも大きい場合、視聴者に対して立体映像を視聴させるように前記左眼用および右眼用シャッターの開閉を制御し、
     前記検出した距離が所定値よりも小さい場合、視聴者に対して非立体映像を視聴させるように前記左眼用および右眼用シャッターの開閉を制御する、
    立体映像視聴用眼鏡の制御方法。
PCT/JP2011/005086 2010-09-14 2011-09-09 立体映像視聴用眼鏡及びその制御方法 WO2012035734A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012533855A JP5511969B2 (ja) 2010-09-14 2011-09-09 立体映像視聴用眼鏡及びその制御方法
US13/799,065 US9575327B2 (en) 2010-09-14 2013-03-13 Stereoscopic image viewing eyewear and method for controlling the viewing of stereoscopic images based on a detected distance between a display device and the eyewear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010205112 2010-09-14
JP2010-205112 2010-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/799,065 Continuation US9575327B2 (en) 2010-09-14 2013-03-13 Stereoscopic image viewing eyewear and method for controlling the viewing of stereoscopic images based on a detected distance between a display device and the eyewear

Publications (1)

Publication Number Publication Date
WO2012035734A1 true WO2012035734A1 (ja) 2012-03-22

Family

ID=45831225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005086 WO2012035734A1 (ja) 2010-09-14 2011-09-09 立体映像視聴用眼鏡及びその制御方法

Country Status (3)

Country Link
US (1) US9575327B2 (ja)
JP (1) JP5511969B2 (ja)
WO (1) WO2012035734A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190346921A1 (en) * 2018-03-20 2019-11-14 Johnson & Johnson Vision Care, Inc. Devices having system with enhanced functionality for reducing the impact of near distance viewing on myopia onset and/or myopia progression
US11030438B2 (en) * 2018-03-20 2021-06-08 Johnson & Johnson Vision Care, Inc. Devices having system for reducing the impact of near distance viewing on myopia onset and/or myopia progression

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153045A (ja) * 1991-11-25 1993-06-18 Sharp Corp 電子機器
JPH1083460A (ja) * 1996-06-27 1998-03-31 Toshiba Corp 立体視システム、立体視方法、及び、異なる2つの視点から見た一対の画像を立体視可能に表示させるコンピュータプログラムを格納する記憶媒体
JPH11234703A (ja) * 1998-02-09 1999-08-27 Toshiba Corp 立体表示装置
JP2010154533A (ja) * 2008-12-24 2010-07-08 Samsung Electronics Co Ltd 立体画像表示装置及びその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293227A (en) 1992-07-24 1994-03-08 Tektronix, Inc. Self-synchronizing optical state controller for infrared linked stereoscopic glasses
DE69706611T2 (de) 1996-06-27 2002-07-04 Kabushiki Kaisha Toshiba, Kawasaki Stereoskopisches Display-System und -Verfahren
US8269822B2 (en) 2007-04-03 2012-09-18 Sony Computer Entertainment America, LLC Display viewing system and methods for optimizing display view based on active tracking
JP5025772B2 (ja) 2010-08-30 2012-09-12 株式会社東芝 立体視用眼鏡及び立体視映像表示システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153045A (ja) * 1991-11-25 1993-06-18 Sharp Corp 電子機器
JPH1083460A (ja) * 1996-06-27 1998-03-31 Toshiba Corp 立体視システム、立体視方法、及び、異なる2つの視点から見た一対の画像を立体視可能に表示させるコンピュータプログラムを格納する記憶媒体
JPH11234703A (ja) * 1998-02-09 1999-08-27 Toshiba Corp 立体表示装置
JP2010154533A (ja) * 2008-12-24 2010-07-08 Samsung Electronics Co Ltd 立体画像表示装置及びその制御方法

Also Published As

Publication number Publication date
US9575327B2 (en) 2017-02-21
US20130194663A1 (en) 2013-08-01
JP5511969B2 (ja) 2014-06-04
JPWO2012035734A1 (ja) 2014-01-20

Similar Documents

Publication Publication Date Title
EP2056155B1 (en) Apparatus and method for three-dimensional (3D) viewing
KR101677251B1 (ko) 3d 디스플레이 장치 및 그의 gui 설정 방법, 그리고 3d 안경
US20140139653A1 (en) Method for generating signal to display three-dimensional(3d) image and image display apparatus using the same
US20110221746A1 (en) 3d eyeglasses, method for driving 3d eyeglasses and system for providing 3d image
US20110248989A1 (en) 3d display apparatus, method for setting display mode, and 3d display system
KR20110080035A (ko) 3d 글래스 구동 방법 및 이를 이용한 3d 글래스와 3d 디스플레이 장치
KR20110112575A (ko) 3d안경, 디스플레이 장치 및 제어단말기의 제어방법, 및 이에 관련된 3d안경, 디스플레이 장치, 제어단말기, 및 3d 디스플레이 시스템
US20120099195A1 (en) Eyewear, three-dimensional image display system employing the same, and method of allowing viewing of image
JP2011015119A (ja) 映像表示装置、映像視聴用眼鏡、及び映像システム
US20130169770A1 (en) Security display apparatus
CA2788996C (en) Stereoscopic display system based on glasses using photochromatic lenses
JP2011250368A (ja) 立体表示装置、表示制御回路、および表示方法
JP5107482B2 (ja) 表示装置、眼鏡装置及び映像システム
JP5511969B2 (ja) 立体映像視聴用眼鏡及びその制御方法
KR20060007662A (ko) 액정셔터 방식의 입체영상 표시 장치 및 방법
KR20110009421A (ko) 3차원 영상 제공장치와 수신장치, 이를 이용한 3차원 영상 제공방법과 수신방법, 그리고, 3차원 영상 시스템
KR20120040947A (ko) 3차원 디스플레이 장치 및 3차원 영상 처리방법
KR20120059947A (ko) 3차원 안경 및 이에 적용되는 3차원 안경 제어방법
KR101768538B1 (ko) 3d 영상 화질 조정 방법, 3d 디스플레이 장치, 3d 안경 및 3d 영상 제공 시스템
KR20100137695A (ko) 액정 셔터와 안경 필터가 적용된 입체 영상 구현 시스템
JP2012019376A (ja) 立体映像観賞用メガネ
JP2013168693A (ja) 液晶シャッタ眼鏡の駆動装置
KR200366330Y1 (ko) 액정셔터 방식의 입체영상 표시 장치
JP2010283653A (ja) 映像表示システム、眼鏡装置およびテレビジョンシステム
KR20120015831A (ko) 3d 안경, 3d 안경의 구동방법 및 3d 영상 제공 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012533855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824751

Country of ref document: EP

Kind code of ref document: A1