WO2012035659A1 - Integrated environmental control system - Google Patents

Integrated environmental control system Download PDF

Info

Publication number
WO2012035659A1
WO2012035659A1 PCT/JP2010/066222 JP2010066222W WO2012035659A1 WO 2012035659 A1 WO2012035659 A1 WO 2012035659A1 JP 2010066222 W JP2010066222 W JP 2010066222W WO 2012035659 A1 WO2012035659 A1 WO 2012035659A1
Authority
WO
WIPO (PCT)
Prior art keywords
factor
air conditioning
cluster
control system
space
Prior art date
Application number
PCT/JP2010/066222
Other languages
French (fr)
Japanese (ja)
Inventor
康雄 内海
英昭 中根
壮 藤田
一幸 神村
修三 杵嶋
Original Assignee
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立高等専門学校機構 filed Critical 独立行政法人国立高等専門学校機構
Priority to PCT/JP2010/066222 priority Critical patent/WO2012035659A1/en
Priority to JP2012533805A priority patent/JP5604758B2/en
Publication of WO2012035659A1 publication Critical patent/WO2012035659A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/95Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes
    • F24F8/99Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes for treating air sourced from urban areas, e.g. from streets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts

Definitions

  • the present invention relates to a technique for controlling the operation of air conditioning equipment installed in each of a plurality of buildings according to weather conditions.
  • Patent Document 1 A technology has been proposed for controlling the operation of each air-conditioning facility in a plurality of buildings in consideration of energy cost savings (see Patent Document 1).
  • the present invention provides a system that can control the operation of the air conditioning equipment installed in the building in an appropriate manner. Let it be a solution issue.
  • the environmental integrated control system of the present invention is a system configured to control the internal environment of the building through the operation of the air conditioning equipment installed in the building according to the external environment of the building.
  • the weather information including the first factor representing the weather condition having directivity and the second factor representing the weather condition not having directivity is recognized.
  • a meteorological information recognition element configured in the above, the first factor included in the meteorological information recognized by the meteorological information recognition element, and an arrangement mode of singular factors that are variation factors of the second factor in the target space;
  • a clustering element configured to define a raster, and for each cluster defined by the clustering element, the influence of the singular factor on the second factor included in the weather information recognized by the weather information recognition element
  • a control scenario setting element configured to set the control mode of the operation of the air conditioning equipment installed in the building based on the second factor in consideration of the presence or absence or degree thereof
  • the distribution aspect of the space where the second factor is affected by the second factor from the specific factor around the singular factor present in the target space and the space where the degree of influence is low are: In view of fluctuations depending on the directivity of the weather situation represented by the first factor, clustering of a plurality of unit spaces is executed. The cluster has a shape that spreads in a biased manner with reference to a singular factor according to the directivity of the weather situation.
  • the operation mode of the air-conditioning equipment installed in the building is controlled based on the second factor after considering the presence or degree of the influence of the second factor.
  • the operation of the air conditioning equipment is controlled in consideration of the influence of the specific factor on the second factor included in the weather information. Further, in the unit space constituting the second type cluster, the operation of the air conditioning equipment is controlled after mainly taking into account the second factor included in the weather information.
  • the weather information is a concept including not only predicted weather information in the future but also current observed weather information.
  • the operation of the air conditioning equipment in a plurality of geographically dispersed buildings can be comprehensively controlled in an appropriate manner according to the degree of influence of the specific factor with respect to the second factor.
  • the clustering element is configured to define a plurality of clusters having a three-dimensional unit space having a spread in the horizontal direction and the vertical direction as constituent elements, and the control scenario setting elements are different for the same building
  • movement of the said air-conditioning equipment may be set so that an air-conditioning aspect may differ for every said part (2nd invention).
  • the clustering element is based on a wind direction or a wind direction and a wind speed as the first factor, a cold source or a heat source as the singular factor, and at least one position of an object that obstructs the flow of air.
  • the control scenario is configured to define a plurality of clusters including a seed cluster and the second type cluster, and the control scenario setting element controls the operation of the air conditioning equipment based on temperature or temperature and humidity as the second factor. May be configured (third invention).
  • the clustering element includes the first type cluster and the second type based on the sunshine direction or the sunshine direction and the amount of solar radiation as the first factor, and at least one position among objects that obstruct sunshine as the specific factor.
  • the control scenario setting element is configured to set a control mode of operation of the air conditioning equipment based on temperature or temperature and humidity as the second factor. (4th invention).
  • the control scenario setting element is such that the air conditioning cost of the building for each cluster or the environmental load applied to the external environment by the air conditioning is equal to or less than a threshold value, or the internal environment of the building approaches the designated internal environment.
  • the control mode of the operation of the air conditioning equipment may be set (the fifth invention).
  • each air conditioning cost saving of the building (1) air conditioning cost saving of the building, (2) reduction of environmental load given to the external environment by the air conditioning, or (3) comfort inside the building.
  • the operation of each air conditioning facility can be controlled so that the performance and the like can be improved.
  • the environmental integrated control system 1 shown in FIG. 1 is configured by one or a plurality of server computers configured to be able to communicate with an air conditioning facility 2 installed in each building through a network.
  • the environmental integrated control system 1 includes a weather information recognition element 11, a clustering element 12, and a control scenario setting element 13.
  • Each component of the system is composed of a CPU (arithmetic processing unit) and a memory (storage device) which are hardware resources of the computer.
  • Each component may be configured in whole or in part by physically common hardware resources, or may be configured by physically separate hardware resources.
  • the computer or its constituent elements are configured to execute a certain arithmetic process.
  • the CPU reads data and a program (software) from the memory, and executes the arithmetic process according to the program for the read data. Means that it has been programmed.
  • the weather information recognition element 11 is configured to receive, for example, weather information for each unit space from an external weather information station via a network.
  • the meteorological information bureau collects the weather information for each unit space by collecting the detection results of various weather condition sensors such as thermometers, hygrometers, anemometers and anemometers installed at different locations via the network. It is configured to observe and predict.
  • the weather information is basically created without considering the existence of specific factors described later.
  • the weather information includes, for each unit space, a “first factor” representing a weather condition having directivity and a “second factor” representing a weather condition having no directivity.
  • the clustering element 12 is configured to classify a plurality of unit spaces defined by dividing the target space into a plurality of clusters including a first type cluster and a second type cluster based on weather information. Yes.
  • the “first type cluster” is composed of a unit space in which the second factor is influenced in view of the first factor and the arrangement of specific factors that are the variation factors of the second factor in the target space.
  • the “second type cluster” is composed of a unit space that is not affected by the influence.
  • the control scenario setting element 13 takes into account the presence or degree of the influence of a specific factor on the second factor included in the weather information for each cluster, and then is installed in the building based on the second factor. It is comprised so that the control aspect of operation
  • the air-conditioning facility 2 includes an air-conditioning control device 21 and air-conditioning equipment 22 arranged at one or more different locations in the building.
  • the air conditioning control device 21 is configured by a computer or a personal computer configured to be able to communicate with the environmental integrated control system 1 via a network.
  • the air conditioning control device 21 receives a control command signal according to the control mode of the air conditioning equipment 2 set by the control scenario setting element 13 via the network.
  • the air conditioning control device 21 is configured to control the operation of each air conditioning device 22 in accordance with the control command signal. Further, the air conditioner may transmit a detection result by a weather condition sensor (not shown) set in the building to the environmental integrated system 1 via the network.
  • the air conditioner 22 is configured to adjust the internal environment of the building, specifically, the temperature, humidity, air volume, and the like by its operation.
  • weather information for each unit space is recognized by the weather information recognition element 11 (FIG. 2 / STEP01).
  • the weather information includes “wind direction” as a first factor representing a weather condition having directivity, and “temperature” as a second factor representing a weather condition having no directivity.
  • the weather information is, for example, predicted weather information, and represents a change in weather conditions every hour in the future.
  • a plurality of clusters including the “first type cluster” and the “second type cluster” are defined by the clustering element 12 according to the weather information (FIG. 2 / STEP02). Details of the clustering will be described later.
  • the control scenario setting element 13 is installed in the building based on the second factor after considering the presence or degree of the influence of the specific factor on the second factor included in the weather information for each cluster.
  • the control mode of the operation of the existing air conditioning equipment 2 is set (FIG. 2 / STEP03). Specifically, the control mode of the air conditioning equipment 2 is set based on the second factor after taking into account the presence or degree of the influence of the specific factor on the second factor included in the weather information. . Details of the control of the air conditioning equipment 2 will be described later.
  • Clustering Clustering (first embodiment)
  • the lengths of the long side and the short side of the unit space sij can be arbitrarily changed.
  • the hatched unit space sij is a “first singular space” including a cold heat source (first singular factor) such as a park or an artificial pond.
  • a plurality of unit spaces are fluidly clustered based on the first singular space sij.
  • the weather information is obtained that the wind direction in a certain time zone is “east”, that is, the wind WE blows from the unit space sij + 1 to the first singular space sij.
  • a plurality of clusters including si-1j, si + 1j, and si-1j + 1 to si-1j + 1 ⁇ are defined.
  • type 1 clusters configured by unit area groups adjacent on the leeward side to the type 1 cluster C1 may be defined.
  • another second type cluster configured by unit area groups adjacent on the windward side to the second type cluster C2 may be defined.
  • the wind direction since the wind direction is exemplified, it can be expressed in various directions such as south-southwest, southeast, etc., for example, 16 directions. Also good.
  • the first type cluster may be defined so that the area increases as the wind speed increases (or the wind power increases).
  • the first unique area may constitute a cluster separate from the first type cluster and the second type cluster, or may constitute a part of the first type cluster or the second type cluster.
  • first singular space group including Also in this case, the plurality of unit spaces are fluidly clustered based on the first singular space group ⁇ sij ⁇ according to the wind direction and the like included in the weather information.
  • the weather information that the wind direction in a certain time zone is “north”, that is, the wind WN blows substantially along the first singular space group ⁇ sij ⁇ is obtained.
  • the first type cluster C1 (WN) ⁇ sij ⁇ 1
  • i which includes a space adjacent to the first singular space ⁇ sij ⁇ as shown in FIG. 1 to n ⁇ + ⁇ sij + 1
  • i 1 to including a unit space adjacent to the cluster C1 (W1)
  • the weather information is obtained that the wind direction in a certain time zone is “northwest”, that is, the wind WNW blows across the first singular space group ⁇ sij ⁇ .
  • the first type cluster C1 (WNW) ⁇ sij including the unit space adjacent on the leeward side to the first singular space group ⁇ sij ⁇ as shown in FIG. 4C by clustering.
  • a plurality of clusters including the second type cluster C2 (W2) ⁇ sij-1
  • i 1 to n ⁇ + ⁇ sij + 3
  • the unit space sij is a first singular space including a thermal source (first singular factor) such as a plant
  • first singular space is similarly selected according to the wind direction or the wind direction and the wind speed as the first factor. Clustering of unit space is executed with reference to.
  • Clustering (Third Example) If the unit space contains a second singular factor that hinders airflow or sunshine, such as terrain such as hills, dense buildings, etc., consider the existence of the unit space (second singular space) Clustering may be performed.
  • the first type cluster C1 (WNW) shown in FIG. 3A corresponds to the second singular space
  • the second singular space si + 1j + 1 and the unit space si + 2j + 2 on the leeward side may be excluded, and the excluded cluster may constitute a separate cluster such as the second type cluster C2 (WNW).
  • the second type cluster C1 (WE) shown in FIG. 3A corresponds to the second singular space
  • the unit spaces si + 1j-1 and si + 1j-2 on the leeward side of the singular space si + 1j may be excluded, and the excluded cluster may constitute a separate cluster such as the second type cluster C2 (WE). .
  • the first type cluster including the unit space downstream of the second singular space with respect to the solar radiation direction, and the solar radiation direction
  • a second type cluster including a unit space upstream of the second singular space may be defined. Since the amount of sunshine is a local weather condition rather than the wind, there is a unit space that is smaller in size than the case where the wind direction is taken into account (for example, a space that is wide enough to include two or three adjacent buildings). May be defined.
  • the second singular space may constitute a cluster separate from the first type cluster and the second type cluster, or may constitute a part of the first type cluster or the second type cluster.
  • Clustering (fourth embodiment)
  • the ease of wind flow in the height direction may differ depending on the density of the buildings in the space near the river as the first singular factor or the topography.
  • a three-dimensional (cuboid) unit space that extends not only in the horizontal direction but also in the vertical direction is defined, and three-dimensional for the unit space. Clustering is performed.
  • the unit space is defined in the vertical direction by dividing into elevation ranges H0 to H0 + H1 (first layer) and elevation ranges H0 + H1 to H0 + H2 (second layer).
  • the shape of the three-dimensional unit space can be changed variously.
  • an inclined columnar unit space in which the upper surface or the top surface of the column is displaced in the same direction as the wind direction as the first factor with respect to the lower surface or the bottom surface of the column may be defined.
  • the amount of displacement of the upper surface relative to the lower surface of the column may be changed according to the wind speed process.
  • different clusters in the horizontal direction may be defined in layers having different heights.
  • the first layer defines the clusters shown in FIG. 3 (b) or 4 (b) in the horizontal direction
  • the second layer defines FIG. 3 (c) or FIG. 4 (c) in the horizontal direction. May be defined.
  • the control scenario setting element 13 is installed in the building based on the second factor after taking into consideration the presence or absence of the influence of the specific factor on the second factor included in the weather information for each cluster.
  • the control mode of the operation of the air conditioning equipment 2 is set.
  • the temperature as the second factor included in the weather information is corrected for the unit space belonging to the first type cluster C1.
  • a cooling effect or a thermal effect of the external atmosphere of the building by the wind passing through the cold source or the thermal source as a first singular factor is expected.
  • the thermal effect will be reduced by blocking sunlight.
  • the humidity as the second factor may be corrected.
  • each building is designed so that (1) the air conditioning cost of the building, (2) the environmental burden given to the external environment by the air conditioning, or (3) the human comfort index of the internal environment of the building falls within the target range.
  • the operation control mode of the air conditioning equipment 2 is set.
  • any one of the air-conditioning control factors (1) to (3) is individually designated for each air-conditioning equipment 2 or air-conditioning equipment 22 through the user's operation of the input device (keyboard, mouse pointing device, etc.) of the air-conditioning control device 2 Can be done.
  • Air conditioning costs are expressed in terms of energy consumption or electricity charges. Based on the deviation between the external temperature of the building and the internal temperature of the building as the second factor, the electric power consumed by the air conditioner 22 to make the internal temperature coincide with the target temperature is calculated.
  • the power consumption in addition to the volume of the room or internal space that is the target of air conditioning control, consideration is given to differences in the structure of the building, such as the distinction between a wooden structure and a reinforced concrete structure. Then, the air conditioning cost can be calculated based on the power consumption.
  • Environmental impact is expressed in terms of CO 2 emissions.
  • the environmental load can be calculated based on the power consumption calculated as described above.
  • the comfort index of the internal environment is expressed in terms of PMV (PredicteddictMean Vote) or the inverse of the discomfort index.
  • PMV PredicteddictMean Vote
  • the comfort index can be calculated based on the temperature and humidity inside the building measured by the thermometer of the air conditioner 2.
  • the algorithm for calculating the numerical value of each index is stored in the storage device constituting the environment control system 1 in the form of a conversion formula, a conversion chart or a table.
  • the operation of the air conditioning equipment 2 may be feedforward controlled based on the predicted weather information. For example, prior to the predicted increase in the amount of sunlight included in the weather information, the operation control of the air conditioning equipment 2 may be started so that the internal temperature of the building is maintained within the target temperature range after that time.
  • the feedforward control is only required to be employed in a time zone or a situation where there is a high probability that the internal environment of the building deviates from the target environment, although it is temporary, due to a response delay due to feedback control.
  • the measured value is determined for each of the target temperature range and target humidity range determined from the viewpoint of keeping the waterfall index value within the target range.
  • the operation of the air conditioning equipment 2 may be feedback controlled so as to be accommodated.
  • the operation of the air conditioner 22 installed in different places may be controlled in different modes.
  • the air conditioning control mode of the lower floor portion corresponding to the first layer shown in FIGS. 5A and 5B and the air conditioning control mode of the upper floor portion corresponding to the second layer are as follows. May be different. This is because in the second layer, a cooling effect or a thermal effect of the external atmosphere of the building due to the wind that has passed through the first specific factor is expected.
  • the strength of cooling or heating may be differentiated compared to other rooms.
  • the distribution aspect of the space where the second factor is affected by the second factor from the specific factor around the singular factor present in the target space and the space where the degree of influence is low are: In view of fluctuations depending on the directivity of the weather situation represented by the first factor, clustering of a plurality of unit spaces is executed.
  • the operation mode of the air-conditioning equipment installed in the building is controlled based on the second factor after considering the presence or degree of the influence of the second factor.
  • the operation of the air conditioning equipment 2 is controlled in consideration of the influence of a specific factor on the temperature (second factor) included in the weather information. Further, in the unit space constituting the second type cluster C2, the operation of the air conditioning equipment 2 is controlled after mainly considering the temperature (second factor) included in the weather information.
  • the operation of the air conditioner 2 in a plurality of geographically dispersed buildings is performed in an appropriate manner according to the degree of influence of the heat source or the airflow obstruction object (specific factor) on the temperature (second factor). It can be comprehensively controlled.
  • air conditioning costs can be reduced so that (1) the air conditioning costs of the building can be reduced, (2) the environmental load imposed on the external environment by the air conditioning can be reduced, or (3) the comfort inside the building can be improved.
  • the operation of the equipment can be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

By means of this integrated environmental control system (1), a plurality of unit spaces are clustered while taking into account the changes, which are in accordance with the directivity of the weather conditions represented by a first factor, of the distribution state of a space wherein the degree of effect a second factor receives from a specific factor is high and a space wherein the degree of effect is low. Also, for each cluster, the operation state of air conditioning equipment (2) installed in a building is controlled on the basis of the second factor in light of having considered the presence or extent of the effect the second factor receives.

Description

環境総合制御システムIntegrated environmental control system
 本発明は、気象状況に応じて、複数の建造物のそれぞれに設置されている空調設備の動作を制御する技術に関する。 The present invention relates to a technique for controlling the operation of air conditioning equipment installed in each of a plurality of buildings according to weather conditions.
 複数のビルのそれぞれの空調等の設備の動作を、エネルギーコストの節約を考慮しながら制御する技術が提案されている(特許文献1参照)。 A technology has been proposed for controlling the operation of each air-conditioning facility in a plurality of buildings in consideration of energy cost savings (see Patent Document 1).
 都市を分割する各区域における空気汚染レベルを観測し、あるいは、風向、風速および地形等の因子を考慮に入れて予測し、空気汚染レベルの観測または予測結果に基づいて各区域における建物の換気装置の動作を制御する技術が提案されている(特許文献2参照)。 Observe air pollution levels in each area that divides the city, or predict factors that take into account factors such as wind direction, wind speed, and terrain, and ventilate buildings in each area based on the observation or prediction results of air pollution levels There has been proposed a technique for controlling the operation (see Patent Document 2).
特開2001-338036号公報JP 2001-338036 A 特表2009-527838号公報Special table 2009-527838
 しかし、前記先行技術に開示されている因子が考慮されただけでは、地理的に分散して配置されている複数の建造物の空調設備の動作の制御態様が、建造物の環境に鑑みて不適当なものになる可能性があった。 However, if only the factors disclosed in the prior art are taken into consideration, the control mode of the operation of the air conditioning facilities of a plurality of geographically dispersed buildings is not considered in view of the environment of the building. There was a possibility that it would be appropriate.
 そこで、本発明は、建造物の環境に影響を与える様々な因子の存在に鑑みて、建造物に設置されている空調設備の動作を適当な態様で制御することができるシステムを提供することを解決課題とする。 Therefore, in view of the existence of various factors that affect the environment of the building, the present invention provides a system that can control the operation of the air conditioning equipment installed in the building in an appropriate manner. Let it be a solution issue.
 本発明の環境総合制御システムは、建造物の外部環境に応じて、当該建造物に設置されている空調設備の動作を通じて当該建造物の内部環境を制御するように構成されているシステムであって、対象空間が分割されることにより定義されている単位空間ごとに、指向性を有する気象状況を表わす第1因子および指向性を有しない気象状況を表わす第2因子を含む気象情報を認識するように構成されている気象情報認識要素と、前記気象情報認識要素により認識された気象情報に含まれる前記第1因子と、前記対象空間において前記第2因子の変動因子となる特異因子の配置態様とに鑑みて、前記第2因子が影響を受ける単位空間から構成される第1種クラスタと、当該影響を受けない単位空間から構成される第2種クラスタとを含む複数のクラスタを定義するように構成されているクラスタリング要素と、前記クラスタリング要素により定義されたクラスタごとに、前記気象情報認識要素により認識された気象情報に含まれる前記第2因子に対する前記特異因子による影響の有無または程度を考慮に入れた上で、当該第2因子に基づいて建造物に設置されている前記空調設備の動作の制御態様を設定するように構成されている制御シナリオ設定要素とを備えていることを特徴とする(第1発明)。 The environmental integrated control system of the present invention is a system configured to control the internal environment of the building through the operation of the air conditioning equipment installed in the building according to the external environment of the building. For each unit space defined by dividing the target space, the weather information including the first factor representing the weather condition having directivity and the second factor representing the weather condition not having directivity is recognized. A meteorological information recognition element configured in the above, the first factor included in the meteorological information recognized by the meteorological information recognition element, and an arrangement mode of singular factors that are variation factors of the second factor in the target space; In view of the above, there are a plurality of first-type clusters composed of unit spaces affected by the second factor and second-type clusters composed of unit spaces not affected by the second factors. A clustering element configured to define a raster, and for each cluster defined by the clustering element, the influence of the singular factor on the second factor included in the weather information recognized by the weather information recognition element A control scenario setting element configured to set the control mode of the operation of the air conditioning equipment installed in the building based on the second factor in consideration of the presence or absence or degree thereof (First invention).
 本発明の環境総合制御システムによれば、対象空間に存在する特異因子の周囲において、当該特異因子から第2因子が受ける影響度が高い空間と、当該影響度が低い空間との分布態様が、第1因子により表わされる気象状況の指向性に応じて変動することに鑑みて、複数の単位空間のクラスタリングが実行される。クラスタは、気象状況の指向性に応じて、特異因子を基準として偏向的に広がった形状を有している。 According to the environmental integrated control system of the present invention, the distribution aspect of the space where the second factor is affected by the second factor from the specific factor around the singular factor present in the target space and the space where the degree of influence is low are: In view of fluctuations depending on the directivity of the weather situation represented by the first factor, clustering of a plurality of unit spaces is executed. The cluster has a shape that spreads in a biased manner with reference to a singular factor according to the directivity of the weather situation.
 そして、クラスタリングにより定義されたクラスタごとに、第2因子が受ける影響の有無または程度が考慮された上で、当該第2因子に基づいて建造物に設置されている空調設備の動作態様が制御される。 Then, for each cluster defined by clustering, the operation mode of the air-conditioning equipment installed in the building is controlled based on the second factor after considering the presence or degree of the influence of the second factor. The
 たとえば、第1種クラスタを構成する単位空間においては、気象情報に含まれる第2因子に対する特異因子の影響が勘案された上で、空調設備の動作が制御される。また、第2種クラスタを構成する単位空間においては、気象情報に含まれる第2因子が主に勘案された上で、空調設備の動作が制御される。ここで、気象情報は、未来における予測気象情報のほか、現在における観測気象情報をも包含する概念である。 For example, in the unit space constituting the first type cluster, the operation of the air conditioning equipment is controlled in consideration of the influence of the specific factor on the second factor included in the weather information. Further, in the unit space constituting the second type cluster, the operation of the air conditioning equipment is controlled after mainly taking into account the second factor included in the weather information. Here, the weather information is a concept including not only predicted weather information in the future but also current observed weather information.
 これにより、第2因子に対する特異因子の影響度の高低に応じた適当な態様で、地理的に分散している複数の建造物における空調設備の動作が総合的に制御されうる。 Thereby, the operation of the air conditioning equipment in a plurality of geographically dispersed buildings can be comprehensively controlled in an appropriate manner according to the degree of influence of the specific factor with respect to the second factor.
 前記クラスタリング要素が、水平方向および鉛直方向のそれぞれに広がりを有する立体的な単位空間を構成要素とする複数のクラスタを定義するように構成され、前記制御シナリオ設定要素が、同一の建造物に異なるクラスタに属する部分が並存している場合、当該部分ごとに空調態様が異なるように、前記空調設備の動作の制御態様を設定するように構成されていてもよい(第2発明)。 The clustering element is configured to define a plurality of clusters having a three-dimensional unit space having a spread in the horizontal direction and the vertical direction as constituent elements, and the control scenario setting elements are different for the same building When the part which belongs to a cluster exists side by side, you may be comprised so that the control aspect of the operation | movement of the said air-conditioning equipment may be set so that an air-conditioning aspect may differ for every said part (2nd invention).
 前記クラスタリング要素が、前記第1因子としての風向または風向および風速と、前記特異因子としての冷熱源または温熱源、および、空気の流れを妨げる物体のうち少なくとも1つの位置とに基づき、前記第1種クラスタと前記第2種クラスタを含む複数のクラスタを定義するように構成され、前記制御シナリオ設定要素が、前記第2因子としての温度または温度および湿度に基づき、前記空調設備の動作の制御態様を設定するように構成されていてもよい(第3発明)。 The clustering element is based on a wind direction or a wind direction and a wind speed as the first factor, a cold source or a heat source as the singular factor, and at least one position of an object that obstructs the flow of air. The control scenario is configured to define a plurality of clusters including a seed cluster and the second type cluster, and the control scenario setting element controls the operation of the air conditioning equipment based on temperature or temperature and humidity as the second factor. May be configured (third invention).
 前記クラスタリング要素が、前記第1因子としての日照方向または日照方向および日射量と、前記特異因子としての日照を妨げる物体のうち少なくとも1つの位置とに基づき、前記第1種クラスタと前記第2種クラスタを含む複数のクラスタを定義するように構成され、前記制御シナリオ設定要素が、前記第2因子としての温度または温度および湿度に基づき、前記空調設備の動作の制御態様を設定するように構成されていてもよい(第4発明)。 The clustering element includes the first type cluster and the second type based on the sunshine direction or the sunshine direction and the amount of solar radiation as the first factor, and at least one position among objects that obstruct sunshine as the specific factor. The control scenario setting element is configured to set a control mode of operation of the air conditioning equipment based on temperature or temperature and humidity as the second factor. (4th invention).
 前記制御シナリオ設定要素が、前記クラスタごとに建造物の空調コスト、もしくは、当該空調により外部環境に与えられる環境負荷が閾値以下になるように、または、建造物の内部環境が指定内部環境に近づくように、前記空調設備の動作の制御態様を設定するように構成されていてもよい(第5発明)。 The control scenario setting element is such that the air conditioning cost of the building for each cluster or the environmental load applied to the external environment by the air conditioning is equal to or less than a threshold value, or the internal environment of the building approaches the designated internal environment. As described above, the control mode of the operation of the air conditioning equipment may be set (the fifth invention).
 当該構成の環境総合制御システムによれば、クラスタごとに(1)建造物の空調コスト節約、(2)当該空調により外部環境に与えられる環境負荷低減、または、(3)建造物の内部における快適性等の向上を図りうるように、各空調設備の動作が制御されうる。 According to the environmental integrated control system having the above configuration, for each cluster, (1) air conditioning cost saving of the building, (2) reduction of environmental load given to the external environment by the air conditioning, or (3) comfort inside the building. The operation of each air conditioning facility can be controlled so that the performance and the like can be improved.
本発明の環境総合制御システムの構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Configuration explanatory drawing of the environmental comprehensive control system of this invention. 本発明の環境総合制御方法に関する説明図。Explanatory drawing regarding the environmental comprehensive control method of this invention. 平面的クラスタリングに関する第1の例示説明図。The 1st illustration explanatory drawing regarding planar clustering. 平面的クラスタリングに関する第2の例示説明図。The 2nd illustration explanatory drawing regarding planar clustering. 立体的クラスタリングに関する説明図。Explanatory drawing regarding three-dimensional clustering.
 (環境総合制御システムの構成)
 図1に示されている環境総合制御システム1は、各建造物に設置されている空調設備2とネットワークを通じて通信可能に構成されている、一または複数のサーバコンピュータにより構成されている。
(Configuration of integrated environmental control system)
The environmental integrated control system 1 shown in FIG. 1 is configured by one or a plurality of server computers configured to be able to communicate with an air conditioning facility 2 installed in each building through a network.
 環境総合制御システム1は、気象情報認識要素11と、クラスタリング要素12と、制御シナリオ設定要素13とを備えている。システムの各構成用要素は、コンピュータのハードウェア資源であるCPU(演算処理装置)およびメモリ(記憶装置)により構成されている。各構成要素は全体的にまたは部分的に物理的に共通のハードウェア資源によって構成されていてもよく、物理的に別個のハードウェア資源によって構成されてもよい。 The environmental integrated control system 1 includes a weather information recognition element 11, a clustering element 12, and a control scenario setting element 13. Each component of the system is composed of a CPU (arithmetic processing unit) and a memory (storage device) which are hardware resources of the computer. Each component may be configured in whole or in part by physically common hardware resources, or may be configured by physically separate hardware resources.
 コンピュータまたはその構成要素がある演算処理を実行するように構成されているとは、CPUがメモリからデータおよびプログラム(ソフトウェア)を読み取り、読み取ったデータを対象にこのプログラムにしたがって当該演算処理を実行するようにプログラムされていることを意味する。 The computer or its constituent elements are configured to execute a certain arithmetic process. The CPU reads data and a program (software) from the memory, and executes the arithmetic process according to the program for the read data. Means that it has been programmed.
 気象情報認識要素11は、たとえば外部の気象情報局から、ネットワーク経由で単位空間ごとの気象情報を受信するように構成されている。気象情報局は、複数の異なる個所に設置された温度計、湿度計、風向計および風量計等のさまざまな気象状況センサによる検知結果をネットワーク経由で収集することにより、単位空間ごとの気象情報を観測かつ予測するように構成されている。気象情報は、基本的に後述する特異因子の存在は考慮されずに作成されている。気象情報には、単位空間ごとに、指向性を有する気象状況を表わす「第1因子」および指向性を有しない気象状況を表わす「第2因子」が含まれている。 The weather information recognition element 11 is configured to receive, for example, weather information for each unit space from an external weather information station via a network. The meteorological information bureau collects the weather information for each unit space by collecting the detection results of various weather condition sensors such as thermometers, hygrometers, anemometers and anemometers installed at different locations via the network. It is configured to observe and predict. The weather information is basically created without considering the existence of specific factors described later. The weather information includes, for each unit space, a “first factor” representing a weather condition having directivity and a “second factor” representing a weather condition having no directivity.
 クラスタリング要素12は、対象空間が分割されることにより定義されている複数の単位空間を、気象情報に基づいて第1種クラスタおよび第2種クラスタを含む複数のクラスタに分類するように構成されている。「第1種クラスタ」は、第1因子と、対象空間において第2因子の変動因子となる特異因子の配置態様とに鑑みて、第2因子が影響を受ける単位空間から構成される。「第2種クラスタ」は、当該影響を受けない単位空間から構成される。 The clustering element 12 is configured to classify a plurality of unit spaces defined by dividing the target space into a plurality of clusters including a first type cluster and a second type cluster based on weather information. Yes. The “first type cluster” is composed of a unit space in which the second factor is influenced in view of the first factor and the arrangement of specific factors that are the variation factors of the second factor in the target space. The “second type cluster” is composed of a unit space that is not affected by the influence.
 制御シナリオ設定要素13は、クラスタごとに気象情報に含まれる第2因子に対する特異因子による影響の有無または程度を考慮に入れた上で、当該第2因子に基づいて建造物に設置されている空調設備2の動作の制御態様を設定するように構成されている。 The control scenario setting element 13 takes into account the presence or degree of the influence of a specific factor on the second factor included in the weather information for each cluster, and then is installed in the building based on the second factor. It is comprised so that the control aspect of operation | movement of the installation 2 may be set.
 空調設備2は、空調制御装置21と、建造物における一または複数の異なる箇所に配置されている空調機器22とを備えている。 The air-conditioning facility 2 includes an air-conditioning control device 21 and air-conditioning equipment 22 arranged at one or more different locations in the building.
 空調制御装置21は、ネットワーク経由で環境総合制御システム1と相互通信可能に構成されているコンピュータまたはパソコンにより構成されている。空調制御装置21は、制御シナリオ設定要素13により設定された空調設備2の制御態様に応じた制御指令信号をネットワーク経由で受信する。また、空調制御装置21は、当該制御指令信号に応じて、個々の空調機器22の動作を制御するように構成されている。さらに、空調機器は、建造物に設定されている気象状況センサ(図示略)による検知結果をネットワーク経由で環境総合システム1に対して送信してもよい。 The air conditioning control device 21 is configured by a computer or a personal computer configured to be able to communicate with the environmental integrated control system 1 via a network. The air conditioning control device 21 receives a control command signal according to the control mode of the air conditioning equipment 2 set by the control scenario setting element 13 via the network. The air conditioning control device 21 is configured to control the operation of each air conditioning device 22 in accordance with the control command signal. Further, the air conditioner may transmit a detection result by a weather condition sensor (not shown) set in the building to the environmental integrated system 1 via the network.
 空調機器22は、その動作により、建造物の内部環境、具体的には、温度、湿度および風量等を調節するように構成されている。 The air conditioner 22 is configured to adjust the internal environment of the building, specifically, the temperature, humidity, air volume, and the like by its operation.
 (環境総合制御システムの機能)
 まず、気象情報認識要素11により、単位空間ごとの気象情報が認識される(図2/STEP01)。気象情報には、指向性を有する気象状況を表わす第1因子として「風向」が含まれ、かつ、指向性を有しない気象状況を表わす第2因子として「温度」が含まれている。気象情報は、たとえば予測気象情報であり、未来における1時間ごとの気象状況の変化を表わしている。
(Function of integrated environmental control system)
First, weather information for each unit space is recognized by the weather information recognition element 11 (FIG. 2 / STEP01). The weather information includes “wind direction” as a first factor representing a weather condition having directivity, and “temperature” as a second factor representing a weather condition having no directivity. The weather information is, for example, predicted weather information, and represents a change in weather conditions every hour in the future.
 次に、クラスタリング要素12により、気象情報に応じて、「第1種クラスタ」および「第2種クラスタ」を含む複数のクラスタが定義される(図2/STEP02)。クラスタリングの詳細については後述する。 Next, a plurality of clusters including the “first type cluster” and the “second type cluster” are defined by the clustering element 12 according to the weather information (FIG. 2 / STEP02). Details of the clustering will be described later.
 そして、制御シナリオ設定要素13により、クラスタごとに、気象情報に含まれる第2因子に対する特異因子による影響の有無または程度を考慮された上で、当該第2因子に基づいて建造物に設置されている空調設備2の動作の制御態様が設定される(図2/STEP03)。具体的には、気象情報に含まれる前記第2因子に対する前記特異因子による影響の有無または程度を考慮に入れられた上で、当該第2因子に基づき、空調設備2の制御態様が設定される。空調設備2の制御の詳細は後述する。 Then, the control scenario setting element 13 is installed in the building based on the second factor after considering the presence or degree of the influence of the specific factor on the second factor included in the weather information for each cluster. The control mode of the operation of the existing air conditioning equipment 2 is set (FIG. 2 / STEP03). Specifically, the control mode of the air conditioning equipment 2 is set based on the second factor after taking into account the presence or degree of the influence of the specific factor on the second factor included in the weather information. . Details of the control of the air conditioning equipment 2 will be described later.
 (クラスタリング実施例)
 (クラスタリング(第1実施例))
 単位空間の定義態様は多種多様である。ここでは、簡単のため、図3(a)に示されているように、制御対象となる建造物が存在する対象空間が東西南北に分割されることにより、矩形状の単位空間sij(i=1,2,‥,j=1,2,‥)が定義されていると仮定する。単位空間sijの長辺および短辺のそれぞれの長さは任意に変更されうる。斜線が付されている単位空間sijは、公園、人工池などの冷熱源(第1特異因子)を含む「第1特異空間」である。第1特異空間sijを基準として複数の単位空間が流動的にクラスタリングされる。
(Example of clustering)
(Clustering (first embodiment))
There are a variety of definitions of the unit space. Here, for the sake of simplicity, as shown in FIG. 3A, the target space where the building to be controlled exists is divided into the east, west, south, and north directions, so that the rectangular unit space sij (i = , 1,..., J = 1, 2,. The lengths of the long side and the short side of the unit space sij can be arbitrarily changed. The hatched unit space sij is a “first singular space” including a cold heat source (first singular factor) such as a park or an artificial pond. A plurality of unit spaces are fluidly clustered based on the first singular space sij.
 ある時間帯の風向(第1因子)が「北西」である、すなわち、単位空間si-1j-1から第1特異空間sijに向かう風WNWが吹くという気象情報が得られたと仮定する。この場合、図3(b)に示されているように第1特異空間sijに対して風下側で隣接する単位空間を包含する第1種クラスタC1(WNE)={si+1j~si+2j,sij+1~si+2j+1,sij+2~si+2j+2}と、第1特異空間sijに対して風上側で隣接する単位空間を包含する第2種クラスタC2(WNE)={si-1j-1~si+1j-1,si-1j,si-1j+1}とを含む複数のクラスタが定義される。 It is assumed that the weather information that the wind direction (first factor) in a certain time zone is “northwest”, that is, the wind WNW blowing from the unit space si-1j-1 to the first singular space sij is obtained. In this case, as shown in FIG. 3B, the first type cluster C1 (WNE) including the unit space adjacent on the leeward side to the first singular space sij = {si + 1j to si + 2j , Sij + 1 to si + 2j + 1, sij + 2 to si + 2j + 2}, and the second type cluster C2 (WNE) including a unit space adjacent to the first singular space sij on the windward side = A plurality of clusters including {si-1j-1 to si + 1j-1, si-1j, si-1j + 1} are defined.
 また、ある時間帯の風向が「東」である、すなわち、単位空間sij+1から第1特異空間sijに向かう風WEが吹くという気象情報が得られたと仮定する。この場合、クラスタリングにより、図3(c)に示されているように第1特異空間sijに対して風下側で隣接する単位空間を包含する第1種クラスタC1(WE)={si-1j-2~si+1j-2,si-1j-1~si+1j-1}と、第1特異空間sijに対して風上側で隣接する単位空間を包含する第2種クラスタC2(WE)={si-1j,si+1j,si-1j+1~si-1j+1}とを含む複数のクラスタが定義される。 Further, it is assumed that the weather information is obtained that the wind direction in a certain time zone is “east”, that is, the wind WE blows from the unit space sij + 1 to the first singular space sij. In this case, the first type cluster C1 (WE) = {si-1j− including the unit space adjacent to the first singular space sij on the leeward side by clustering as shown in FIG. 2 to si + 1j-2, si-1j-1 to si + 1j-1} and a second type cluster C2 (WE) = {including unit spaces adjacent to the first singular space sij on the windward side A plurality of clusters including si-1j, si + 1j, and si-1j + 1 to si-1j + 1} are defined.
 第1種クラスタC1に対して風下側で隣接する単位エリア群によって構成されている他の第1種クラスタが定義されてもよい。同様に、第2種クラスタC2に対して風上側で隣接する単位エリア群によって構成されている他の第2種クラスタが定義されてもよい。 Other type 1 clusters configured by unit area groups adjacent on the leeward side to the type 1 cluster C1 may be defined. Similarly, another second type cluster configured by unit area groups adjacent on the windward side to the second type cluster C2 may be defined.
 なお、風向は例示したほか、南南西、東南等、たとえば16方位によりさまざまに表現されうるため、当該風向に応じて形状が異なるように、第1種クラスタおよび第2種クラスタのそれぞれが定義されてもよい。風速が高いほど(または風力が強いほど)面積が大きくなるように第1種クラスタが定義されてもよい。 In addition, since the wind direction is exemplified, it can be expressed in various directions such as south-southwest, southeast, etc., for example, 16 directions. Also good. The first type cluster may be defined so that the area increases as the wind speed increases (or the wind power increases).
 第1特異エリアは第1種クラスタおよび第2種クラスタとは別個のクラスタを構成してもよく、第1種クラスタまたは第2種クラスタの一部を構成してもよい。 The first unique area may constitute a cluster separate from the first type cluster and the second type cluster, or may constitute a part of the first type cluster or the second type cluster.
 (クラスタリング(第2実施例))
 次に、図4(a)に示されているように、斜線が付されている一連の単位空間群{sij|i=1~n}が河川、森林などの冷熱源(第1特異因子)を含む「第1特異空間群」である場合について考える。この場合も、気象情報に含まれる風向等に応じて、第1特異空間群{sij}を基準として複数の単位空間が流動的にクラスタリングされる。
(Clustering (second embodiment))
Next, as shown in FIG. 4 (a), a series of unit space groups {sij | i = 1 to n} that are shaded are cold sources such as rivers and forests (first singular factors). Consider the case of the “first singular space group” including Also in this case, the plurality of unit spaces are fluidly clustered based on the first singular space group {sij} according to the wind direction and the like included in the weather information.
 たとえば、ある時間帯の風向が「北」である、すなわち、ほぼ第1特異空間群{sij}に沿って風WNが吹くという気象情報が得られたと仮定する。この場合、クラスタリングにより、図4(b)に示されているように第1特異空間{sij}に対して隣接する空間を包含する第1種クラスタC1(WN)={sij-1|i=1~n}+{sij+1|i=1~n}と、当該クラスタC1(W1)に隣接する単位空間を包含する第2種クラスタC2(WN)={sij-2|i=1~n}+{sij+2|i=1~n}とを含む複数のクラスタが定義される。 For example, it is assumed that the weather information that the wind direction in a certain time zone is “north”, that is, the wind WN blows substantially along the first singular space group {sij} is obtained. In this case, the first type cluster C1 (WN) = {sij−1 | i = which includes a space adjacent to the first singular space {sij} as shown in FIG. 1 to n} + {sij + 1 | i = 1 to n} and a second type cluster C2 (WN) = {sij−2 | i = 1 to including a unit space adjacent to the cluster C1 (W1) A plurality of clusters including n} + {sij + 2 | i = 1 to n} are defined.
 また、ある時間帯の風向が「北西」である、すなわち、第1特異空間群{sij}を横切る風WNWが吹くという気象情報が得られたと仮定する。この場合、クラスタリングにより、図4(c)に示されているように第1特異空間群{sij}に対して風下側で隣接する単位空間を包含する第1種クラスタC1(WNW)={sij+1|i=1~n}+{sij+2|i=1~n}と、当該第1種クラスタC1(WNW)に対して風下側で接する単位空間および第1特異空間sijに対して風上側で隣接する単位空間を包含する第2種クラスタC2(W2)={sij-1|i=1~n}+{sij+3|i=1~n}とを含む複数のクラスタが定義される。 It is also assumed that the weather information is obtained that the wind direction in a certain time zone is “northwest”, that is, the wind WNW blows across the first singular space group {sij}. In this case, the first type cluster C1 (WNW) = {sij including the unit space adjacent on the leeward side to the first singular space group {sij} as shown in FIG. 4C by clustering. +1 | i = 1 to n} + {sij + 2 | i = 1 to n} and the unit space and the first singular space sij that contact the first type cluster C1 (WNW) on the leeward side A plurality of clusters including the second type cluster C2 (W2) = {sij-1 | i = 1 to n} + {sij + 3 | i = 1 to n} including unit spaces adjacent on the windward side are defined. Is done.
 単位空間sijが、プラント等の温熱源(第1特異因子)を含む第1特異空間である場合も同様に、第1因子としての風向、または、風向および風速に応じて、当該第1特異空間を基準として単位空間のクラスタリングが実行される。 Similarly, when the unit space sij is a first singular space including a thermal source (first singular factor) such as a plant, the first singular space is similarly selected according to the wind direction or the wind direction and the wind speed as the first factor. Clustering of unit space is executed with reference to.
 (クラスタリング(第3実施例))
 単位空間に、丘陵等の地形、密集した建造物群等、気流または日照を阻害するような第2特異因子が含まれている場合、当該単位空間(第2特異空間)の存在を考慮してクラスタリングが実行されてもよい。
(Clustering (Third Example))
If the unit space contains a second singular factor that hinders airflow or sunshine, such as terrain such as hills, dense buildings, etc., consider the existence of the unit space (second singular space) Clustering may be performed.
 たとえば、図3(a)に示されている単位空間si+1j+1が第2特異空間に該当する場合、図3(b)に示されている第1種クラスタC1(WNW)から、当該第2特異空間si+1j+1およびその風下側の単位空間si+2j+2が除外され、当該除外クラスタが第2種クラスタC2(WNW)等の別個のクラスタを構成してもよい。 For example, when the unit space si + 1j + 1 shown in FIG. 3A corresponds to the second singular space, the first type cluster C1 (WNW) shown in FIG. The second singular space si + 1j + 1 and the unit space si + 2j + 2 on the leeward side may be excluded, and the excluded cluster may constitute a separate cluster such as the second type cluster C2 (WNW).
 また、図3(a)に示されている単位空間si+1jが第2特異空間に該当する場合、図3(c)に示されている第1種クラスタC1(WE)から、当該第2特異空間si+1jの風下側にある単位空間si+1j-1およびsi+1j-2が除外され、当該除外クラスタが第2種クラスタC2(WE)等の別個のクラスタを構成してもよい。 Further, when the unit space si + 1j shown in FIG. 3A corresponds to the second singular space, the second type cluster C1 (WE) shown in FIG. The unit spaces si + 1j-1 and si + 1j-2 on the leeward side of the singular space si + 1j may be excluded, and the excluded cluster may constitute a separate cluster such as the second type cluster C2 (WE). .
 第1因子として日射方向、または、日射方向および日照量が含まれている気象情報に基づき、日射方向について第2特異空間の下流側となる単位空間を包含する第1種クラスタと、日射方向について第2特異空間の上流側となる単位空間を包含する第2種クラスタとが定義されてもよい。日照量は、風よりも局所的な気象状況であるため、風向を考慮する場合よりもサイズが小さい単位空間(たとえば、2~3の隣接した建造物を包含する程度の広がりを有する空間)が定義されてもよい。 Based on the solar radiation direction or weather information including the solar radiation direction and the amount of sunlight as the first factor, the first type cluster including the unit space downstream of the second singular space with respect to the solar radiation direction, and the solar radiation direction A second type cluster including a unit space upstream of the second singular space may be defined. Since the amount of sunshine is a local weather condition rather than the wind, there is a unit space that is smaller in size than the case where the wind direction is taken into account (for example, a space that is wide enough to include two or three adjacent buildings). May be defined.
 第2特異空間は第1種クラスタおよび第2種クラスタとは別個のクラスタを構成してもよく、第1種クラスタまたは第2種クラスタの一部を構成してもよい。 The second singular space may constitute a cluster separate from the first type cluster and the second type cluster, or may constitute a part of the first type cluster or the second type cluster.
 (クラスタリング(第4実施例))
 図5(a)に示されているように、第1特異因子としての河川の近傍空間における建造物の密集度合または地形等により、高さ方向について風の流れやすさが異なる場合がある。この場合、図5(b)に示されているように水平方向のみならず、鉛直方向にも広がりを有する立体的な(直方体状の)単位空間が定義され、当該単位空間を対象として3次元的にクラスタリングが実行される。図5(a)では、鉛直方向について、標高範囲H0~H0+H1(第1層)と、標高範囲H0+H1~H0+H2(第2層)とのそれぞれに区分して単位空間が定義される。
(Clustering (fourth embodiment))
As shown in FIG. 5A, the ease of wind flow in the height direction may differ depending on the density of the buildings in the space near the river as the first singular factor or the topography. In this case, as shown in FIG. 5 (b), a three-dimensional (cuboid) unit space that extends not only in the horizontal direction but also in the vertical direction is defined, and three-dimensional for the unit space. Clustering is performed. In FIG. 5A, the unit space is defined in the vertical direction by dividing into elevation ranges H0 to H0 + H1 (first layer) and elevation ranges H0 + H1 to H0 + H2 (second layer).
 立体的な単位空間の形状はさまざまに変更されうる。たとえば、柱の下面または底面に対して、第1因子としての風向と同じ方向に当該柱の上面または天面が変位した、傾斜柱状の単位空間が定義されてもよい。柱の下面に対する上面の変位量の多少は風速の工程に応じて変更されてもよい。 The shape of the three-dimensional unit space can be changed variously. For example, an inclined columnar unit space in which the upper surface or the top surface of the column is displaced in the same direction as the wind direction as the first factor with respect to the lower surface or the bottom surface of the column may be defined. The amount of displacement of the upper surface relative to the lower surface of the column may be changed according to the wind speed process.
 風向および風速が同じであっても、高さが異なる層において水平方向について異なるクラスタが定義されてもよい。たとえば、第1層では水平方向について図3(b)または図4(b)に示されているクラスタが定義される一方、第2層では水平方向について図3(c)または図4(c)に示されているクラスタが定義されてもよい。 Even if the wind direction and the wind speed are the same, different clusters in the horizontal direction may be defined in layers having different heights. For example, the first layer defines the clusters shown in FIG. 3 (b) or 4 (b) in the horizontal direction, while the second layer defines FIG. 3 (c) or FIG. 4 (c) in the horizontal direction. May be defined.
 ただし、風向は水平方向であるとは限らないので、風向の鉛直方向成分をも考慮して3次元クラスタリングが実行されうる。たとえば、図5(a)において、左から右に吹き降ろすような風が吹いている場合、河川近傍の建造物の密集の影響は少ないと予測されるので、第1層および第2層のそれぞれにおいて水平方向に同等のクラスタが定義されてもよい。 However, since the wind direction is not always horizontal, three-dimensional clustering can be performed in consideration of the vertical component of the wind direction. For example, in FIG. 5 (a), when a wind blowing down from the left to the right is blown, it is predicted that there is little influence of the buildings in the vicinity of the river, so each of the first layer and the second layer In FIG. 8, an equivalent cluster may be defined in the horizontal direction.
 (空調設備の動作制御実施例)
 制御シナリオ設定要素13は、クラスタごとに、気象情報に含まれる第2因子に対する特異因子による影響の有無または程度を考慮に入れた上で、当該第2因子に基づいて建造物に設置されている空調設備2の動作の制御態様を設定する。
(Operation control example of air conditioning equipment)
The control scenario setting element 13 is installed in the building based on the second factor after taking into consideration the presence or absence of the influence of the specific factor on the second factor included in the weather information for each cluster. The control mode of the operation of the air conditioning equipment 2 is set.
 具体的には、第1種クラスタC1に属する単位空間に関して、気象情報に含まれている第2因子としての温度が補正処理される。これは、第1種クラスタC1に属する空間では、第1特異因子としての冷熱源または温熱源を通過した風による建造物の外部雰囲気の冷却効果または温熱効果が期待されるためである。また、第2特異因子としての密集した建造物等により、日照が遮られる第1種クラスタC1に属する空間では、日照遮断による温熱効果の低減が期待されるためである。なお、温度に加えて第2因子としての湿度が補正されてもよい。 Specifically, the temperature as the second factor included in the weather information is corrected for the unit space belonging to the first type cluster C1. This is because, in the space belonging to the first type cluster C1, a cooling effect or a thermal effect of the external atmosphere of the building by the wind passing through the cold source or the thermal source as a first singular factor is expected. In addition, in a space belonging to the first type cluster C1 where sunlight is blocked by a dense building or the like as the second singular factor, it is expected that the thermal effect will be reduced by blocking sunlight. In addition to the temperature, the humidity as the second factor may be corrected.
 また、(1)建造物の空調コスト、(2)当該空調により外部環境に与えられる環境負荷、または(3)建造物の内部環境の人間にとっての快適指数が目標範囲に収まるように、各建造物の空調設備2の動作制御態様が設定される。 In addition, each building is designed so that (1) the air conditioning cost of the building, (2) the environmental burden given to the external environment by the air conditioning, or (3) the human comfort index of the internal environment of the building falls within the target range. The operation control mode of the air conditioning equipment 2 is set.
 空調制御因子(1)~(3)のうちいずれか1つが、空調制御装置2の入力装置(キーボード、マウスポインティング装置など)のユーザによる操作を通じて、空調設備2または空調機器22ごとに個別に指定されうる。 Any one of the air-conditioning control factors (1) to (3) is individually designated for each air-conditioning equipment 2 or air-conditioning equipment 22 through the user's operation of the input device (keyboard, mouse pointing device, etc.) of the air-conditioning control device 2 Can be done.
 空調コストは、エネルギー消費量または電気料金に換算して表現される。第2因子としての建造物の外部温度と、建造物の内部温度との偏差に基づき、当該内部温度を目標温度に一致させるために空調機器22が消費する電力が算出される。消費電力の算出に際しては、空調制御対象となる部屋または内部空間の容積のほか、木構造および鉄筋コンクリート構造の別等、建造物の構造の相違等が考慮される。その上で、当該消費電力に基づき、空調コストが算出されうる。 Air conditioning costs are expressed in terms of energy consumption or electricity charges. Based on the deviation between the external temperature of the building and the internal temperature of the building as the second factor, the electric power consumed by the air conditioner 22 to make the internal temperature coincide with the target temperature is calculated. When calculating the power consumption, in addition to the volume of the room or internal space that is the target of air conditioning control, consideration is given to differences in the structure of the building, such as the distinction between a wooden structure and a reinforced concrete structure. Then, the air conditioning cost can be calculated based on the power consumption.
 環境負荷はCO2排出量に換算して表現される。前記のように算出される消費電力に基づき、環境負荷が算出されうる。 Environmental impact is expressed in terms of CO 2 emissions. The environmental load can be calculated based on the power consumption calculated as described above.
 内部環境の快適指数は、PMV(Predicted Mean Vote)または不快指数の逆数に換算して表現される。空調設備2が有する温度計により測定される建造物の内部の温度および湿度等に基づき、快適指数が算出されうる。 The comfort index of the internal environment is expressed in terms of PMV (PredicteddictMean Vote) or the inverse of the discomfort index. The comfort index can be calculated based on the temperature and humidity inside the building measured by the thermometer of the air conditioner 2.
 各指標の数値を算出するためのアルゴリズムは、換算式または換算用チャートもしくはテーブルの形で、環境制御システム1を構成する記憶装置に保存されている。 The algorithm for calculating the numerical value of each index is stored in the storage device constituting the environment control system 1 in the form of a conversion formula, a conversion chart or a table.
 空調設備2の動作が予測気象情報に基づいてフィードフォワード制御されてもよい。たとえば、気象情報に含まれる日照量の増加予測時刻に先立ち、建造物の内部温度が当該時刻以降も目標温度範囲に維持されるように、空調設備2の動作制御が開始されてもよい。 The operation of the air conditioning equipment 2 may be feedforward controlled based on the predicted weather information. For example, prior to the predicted increase in the amount of sunlight included in the weather information, the operation control of the air conditioning equipment 2 may be started so that the internal temperature of the building is maintained within the target temperature range after that time.
 これにより、日照量が実際に多くなってから追従的に建造物の空調設備2の動作制御が開始される場合と比較して、当該建造物の内部温度が一時的に上昇する可能性が低減されうる。フィードフォワード制御は、フィードバック制御による応答遅れのために、一時的とはいえ建造物の内部環境が、目標とする環境から乖離する蓋然性が高い時間帯または状況において採用されれば足りる。 Thereby, compared with the case where the operation control of the building air conditioning equipment 2 is started following the amount of sunshine actually increased, the possibility that the internal temperature of the building temporarily rises is reduced. Can be done. The feedforward control is only required to be employed in a time zone or a situation where there is a high probability that the internal environment of the building deviates from the target environment, although it is temporary, due to a response delay due to feedback control.
 建造物の内部に設けられている温度計および湿度計による測定結果に応じて、当該測定値が、線滝指標値が目標範囲に収める観点から決定される目標温度範囲および目標湿度範囲のそれぞれに収まるように、空調設備2の動作がフィードバック制御されてもよい。 Depending on the measurement results of the thermometer and hygrometer provided inside the building, the measured value is determined for each of the target temperature range and target humidity range determined from the viewpoint of keeping the waterfall index value within the target range. The operation of the air conditioning equipment 2 may be feedback controlled so as to be accommodated.
 同一の建造物であっても、異なる箇所に設置されている空調機器22の動作が異なる態様で制御されてもよい。たとえば、建造物のうち、図5(a)(b)に示されている第1層に該当する下層階部分の空調制御態様と、第2層に該当する上層階部分の空調制御態様とが異なっていてもよい。これは、第2層では、第1特異因子を通過した風による建造物の外部雰囲気の冷却効果または温熱効果が期待されるためである。 Even in the same building, the operation of the air conditioner 22 installed in different places may be controlled in different modes. For example, among the buildings, the air conditioning control mode of the lower floor portion corresponding to the first layer shown in FIGS. 5A and 5B and the air conditioning control mode of the upper floor portion corresponding to the second layer are as follows. May be different. This is because in the second layer, a cooling effect or a thermal effect of the external atmosphere of the building due to the wind that has passed through the first specific factor is expected.
 同様の観点から、風上側の部屋または日照方向に向いている部屋については、その他の部屋と比較して冷房または暖房の強弱が差別化されてもよい。 From the same point of view, in the room on the windward side or the room facing the sunshine direction, the strength of cooling or heating may be differentiated compared to other rooms.
 (環境総合制御システムの作用効果)
 本発明の環境総合制御システムによれば、対象空間に存在する特異因子の周囲において、当該特異因子から第2因子が受ける影響度が高い空間と、当該影響度が低い空間との分布態様が、第1因子により表わされる気象状況の指向性に応じて変動することに鑑みて、複数の単位空間のクラスタリングが実行される。
(Operational effects of the integrated environmental control system)
According to the environmental integrated control system of the present invention, the distribution aspect of the space where the second factor is affected by the second factor from the specific factor around the singular factor present in the target space and the space where the degree of influence is low are: In view of fluctuations depending on the directivity of the weather situation represented by the first factor, clustering of a plurality of unit spaces is executed.
 そして、クラスタリングにより定義されたクラスタごとに、第2因子が受ける影響の有無または程度が考慮された上で、当該第2因子に基づいて建造物に設置されている空調設備の動作態様が制御される。 Then, for each cluster defined by clustering, the operation mode of the air-conditioning equipment installed in the building is controlled based on the second factor after considering the presence or degree of the influence of the second factor. The
 たとえば、第1種クラスタC1を構成する単位空間においては、気象情報に含まれる温度(第2因子)に対する特異因子の影響が勘案された上で、空調設備2の動作が制御される。また、第2種クラスタC2を構成する単位空間においては、気象情報に含まれる温度(第2因子)が主に勘案された上で、空調設備2の動作が制御される。 For example, in the unit space constituting the first type cluster C1, the operation of the air conditioning equipment 2 is controlled in consideration of the influence of a specific factor on the temperature (second factor) included in the weather information. Further, in the unit space constituting the second type cluster C2, the operation of the air conditioning equipment 2 is controlled after mainly considering the temperature (second factor) included in the weather information.
 これにより、温度(第2因子)に対する熱源または気流阻害物体(特異因子)の影響度の高低に応じた適当な態様で、地理的に分散している複数の建造物における空調設備2の動作が総合的に制御されうる。 Thereby, the operation of the air conditioner 2 in a plurality of geographically dispersed buildings is performed in an appropriate manner according to the degree of influence of the heat source or the airflow obstruction object (specific factor) on the temperature (second factor). It can be comprehensively controlled.
 クラスタごとに(1)建造物の空調コスト節約、(2)当該空調により外部環境に与えられる環境負荷低減、または(3)建造物の内部における快適性等の向上を図りうるように、各空調設備の動作が制御されうる。 For each cluster, air conditioning costs can be reduced so that (1) the air conditioning costs of the building can be reduced, (2) the environmental load imposed on the external environment by the air conditioning can be reduced, or (3) the comfort inside the building can be improved. The operation of the equipment can be controlled.

Claims (5)

  1.  気象状況に応じて、複数の建造物のそれぞれに設置されている空調設備の動作を制御するように構成されているシステムであって、
     対象空間が分割されることにより定義されている単位空間ごとに、指向性を有する気象状況を表わす第1因子および指向性を有しない気象状況を表わす第2因子を含む気象情報を認識するように構成されている気象情報認識要素と、
     前記気象情報認識要素により認識された気象情報に含まれる前記第1因子と、前記対象空間において前記第2因子の変動因子となる特異因子の配置態様とに鑑みて、前記第2因子が影響を受ける単位空間から構成される第1種クラスタと、当該影響を受けない単位空間から構成される第2種クラスタとを含む複数のクラスタを定義するように構成されているクラスタリング要素と、
     前記クラスタリング要素により定義されたクラスタごとに、前記気象情報認識要素により認識された気象情報に含まれる前記第2因子に対する前記特異因子による影響の有無または程度を考慮に入れた上で、当該第2因子に基づいて建造物に設置されている前記空調設備の動作の制御態様を設定するように構成されている制御シナリオ設定要素とを備えていることを特徴とする環境総合制御システム。
    A system configured to control the operation of air conditioning equipment installed in each of a plurality of buildings according to weather conditions,
    For each unit space defined by dividing the target space, weather information including a first factor representing a weather condition having directivity and a second factor representing a weather condition having no directivity is recognized. Configured weather information recognition elements,
    In view of the first factor included in the weather information recognized by the meteorological information recognition element and the arrangement mode of the specific factor that becomes the variation factor of the second factor in the target space, the second factor has an influence. A clustering element configured to define a plurality of clusters including a first type cluster configured from a unit space to be received and a second type cluster configured from a unit space not affected by the unit space;
    For each cluster defined by the clustering element, after taking into account the presence or degree of the influence of the specific factor on the second factor included in the weather information recognized by the weather information recognition element, the second A comprehensive environment control system comprising: a control scenario setting element configured to set a control mode of operation of the air conditioning equipment installed in a building based on a factor.
  2.  請求項1記載の環境総合制御システムにおいて、
     前記クラスタリング要素が、水平方向および鉛直方向のそれぞれに広がりを有する立体的な単位空間を構成要素とする複数のクラスタを定義するように構成され、
     前記制御シナリオ設定要素が、同一の建造物に異なるクラスタに属する部分が並存している場合、当該部分ごとに空調態様が異なるように、前記空調設備の動作の制御態様を設定するように構成されていることを特徴とする環境総合制御システム。
    In the environmental integrated control system according to claim 1,
    The clustering element is configured to define a plurality of clusters having a three-dimensional unit space having a spread in each of a horizontal direction and a vertical direction as components.
    The control scenario setting element is configured to set the control mode of the operation of the air conditioning equipment so that the air conditioning mode is different for each part when there are portions belonging to different clusters in the same building. Environmental control system characterized by
  3.  請求項1記載の環境総合制御システムにおいて、
     前記クラスタリング要素が、前記第1因子としての風向または風向および風速と、前記特異因子としての冷熱源または温熱源、および、空気の流れを妨げる物体のうち少なくとも1つの位置とに基づき、前記第1種クラスタと前記第2種クラスタを含む複数のクラスタを定義するように構成され、
     前記制御シナリオ設定要素が、前記第2因子としての温度または温度および湿度に基づき、前記空調設備の動作の制御態様を設定するように構成されていることを特徴とする環境総合制御システム。
    In the environmental integrated control system according to claim 1,
    The clustering element is based on a wind direction or a wind direction and a wind speed as the first factor, a cold source or a heat source as the singular factor, and at least one position of an object that obstructs the flow of air. Configured to define a plurality of clusters including a seed cluster and the second seed cluster;
    The environment comprehensive control system, wherein the control scenario setting element is configured to set a control mode of operation of the air conditioning equipment based on temperature or temperature and humidity as the second factor.
  4.  請求項1記載の環境総合制御システムにおいて、
     前記クラスタリング要素が、前記第1因子としての日照方向または日照方向および日射量と、前記特異因子としての日照を妨げる物体のうち少なくとも1つの位置とに基づき、前記第1種クラスタと前記第2種クラスタを含む複数のクラスタを定義するように構成され、
     前記制御シナリオ設定要素が、前記第2因子としての温度または温度および湿度に基づき、前記空調設備の動作の制御態様を設定するように構成されていることを特徴とする環境総合制御システム。
    In the environmental integrated control system according to claim 1,
    The clustering element includes the first type cluster and the second type based on the sunshine direction or the sunshine direction and the amount of solar radiation as the first factor, and at least one position among objects that obstruct sunshine as the specific factor. Configured to define multiple clusters, including clusters,
    The environment comprehensive control system, wherein the control scenario setting element is configured to set a control mode of operation of the air conditioning equipment based on temperature or temperature and humidity as the second factor.
  5.  請求項1記載の環境総合制御システムにおいて、
     前記制御シナリオ設定要素が、前記クラスタごとに建造物の空調コスト、当該空調により外部環境に与えられる環境負荷、または、建造物の内部環境の人間にとっての快適指数が目標範囲に収まるように、前記空調設備の動作の制御態様を設定するように構成されていることを特徴とする環境総合制御システム。
    In the environmental integrated control system according to claim 1,
    The control scenario setting element is configured so that the air conditioning cost of the building for each cluster, the environmental load given to the external environment by the air conditioning, or the comfort index for humans of the internal environment of the building falls within the target range. An integrated environmental control system configured to set a control mode of operation of an air conditioner.
PCT/JP2010/066222 2010-09-17 2010-09-17 Integrated environmental control system WO2012035659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/066222 WO2012035659A1 (en) 2010-09-17 2010-09-17 Integrated environmental control system
JP2012533805A JP5604758B2 (en) 2010-09-17 2010-09-17 Integrated environmental control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066222 WO2012035659A1 (en) 2010-09-17 2010-09-17 Integrated environmental control system

Publications (1)

Publication Number Publication Date
WO2012035659A1 true WO2012035659A1 (en) 2012-03-22

Family

ID=45831157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066222 WO2012035659A1 (en) 2010-09-17 2010-09-17 Integrated environmental control system

Country Status (2)

Country Link
JP (1) JP5604758B2 (en)
WO (1) WO2012035659A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388886A (en) * 2012-05-08 2013-11-13 珠海格力电器股份有限公司 Control method of air conditioning system and data processing platform
JP2019060535A (en) * 2017-09-26 2019-04-18 パナソニックIpマネジメント株式会社 Air conditioning control system, and air conditioning control method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106895544A (en) * 2015-12-21 2017-06-27 北京奇虎科技有限公司 Purifying treatment method and air cleaning facility based on air cleaning facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003099697A (en) * 2001-09-21 2003-04-04 Rikogaku Shinkokai Prediction method of thermal environment, and program
JP2004028387A (en) * 2002-06-24 2004-01-29 Daikin Ind Ltd Remote management control system and management server for air conditioner
JP2008198036A (en) * 2007-02-15 2008-08-28 Takenaka Komuten Co Ltd Thermal environment control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003099697A (en) * 2001-09-21 2003-04-04 Rikogaku Shinkokai Prediction method of thermal environment, and program
JP2004028387A (en) * 2002-06-24 2004-01-29 Daikin Ind Ltd Remote management control system and management server for air conditioner
JP2008198036A (en) * 2007-02-15 2008-08-28 Takenaka Komuten Co Ltd Thermal environment control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Heisei 20 Nendo Minsei Un'yu Bumon ni Okeru Chukakuteki Taisaku Gijutsu Hokokusho", CHUKAKUTEKI ONDANKA TAISAKU GIJUTSU KENTOKAI, March 2009 (2009-03-01), pages 154 - 156, Retrieved from the Internet <URL:http://www.env.go.jp/earth/report/h21-03/> [retrieved on 20101012] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388886A (en) * 2012-05-08 2013-11-13 珠海格力电器股份有限公司 Control method of air conditioning system and data processing platform
JP2019060535A (en) * 2017-09-26 2019-04-18 パナソニックIpマネジメント株式会社 Air conditioning control system, and air conditioning control method, and program

Also Published As

Publication number Publication date
JP5604758B2 (en) 2014-10-15
JPWO2012035659A1 (en) 2014-01-20

Similar Documents

Publication Publication Date Title
Aflaki et al. A review on natural ventilation applications through building façade components and ventilation openings in tropical climates
Schito et al. Multi-objective optimization of HVAC control in museum environment for artwork preservation, visitors’ thermal comfort and energy efficiency
Rijksen et al. Reducing peak requirements for cooling by using thermally activated building systems
Bay et al. Assessment of natural ventilation strategies in historical buildings in a hot and humid climate using energy and CFD simulations
Daaboul et al. Mixed-mode ventilation and air conditioning as alternative for energy savings: a case study in Beirut current and future climate
Hsieh et al. Managing heat rejected from air conditioning systems to save energy and improve the microclimates of residential buildings
Yi et al. Microclimate change outdoor and indoor coupled simulation for passive building adaptation design
Cheng et al. Natural ventilation potential for gymnasia–Case study of ventilation and comfort in a multisport facility in northeastern United States
Li et al. A multi-factor optimization method based on thermal comfort for building energy performance with natural ventilation
Rabani Performance analysis of a passive cooling system equipped with a new designed solar chimney and a water spraying system in an underground channel
Bonato et al. Modelling and simulation-based analysis of a façade-integrated decentralized ventilation unit
JP5604758B2 (en) Integrated environmental control system
Baghoolizadeh et al. Optimization of annual electricity consumption costs and the costs of insulation and phase change materials in the residential building using artificial neural network and genetic algorithm methods
Daemei et al. Study on vernacular architecture patterns to improve natural ventilation estimating in humid subtropical climate
Medved et al. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system
Rizk et al. A review on wind-driven cross–ventilation techniques inside single rooms
Chen et al. An hour-ahead predictive control strategy for maximizing natural ventilation in passive buildings based on weather forecasting
Sayed et al. An analysis of thermal comfort for indoor environment of the New Assiut Housing in Egypt
Kayapinar et al. Time-stepped exergy analysis, environmental and economic evaluation of a new designed natural ventilation system
Kolokotroni et al. Ventilation for cooling
JP4842851B2 (en) Thermal environment control system
Hassan et al. A novel adaptive predictive control strategy of hybrid radiant-air cooling systems in hot and dry climates
Ghiaus et al. Natural ventilation in an urban context
Fitriaty et al. Energy Efficient Features of Vernacular Houses in Tropical Hilly Area of Indonesia
Bottarelli et al. On the heat transfer through roof tile coverings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533805

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857292

Country of ref document: EP

Kind code of ref document: A1