WO2012035584A1 - Separator for fuel cell and fuel cell - Google Patents
Separator for fuel cell and fuel cell Download PDFInfo
- Publication number
- WO2012035584A1 WO2012035584A1 PCT/JP2010/005665 JP2010005665W WO2012035584A1 WO 2012035584 A1 WO2012035584 A1 WO 2012035584A1 JP 2010005665 W JP2010005665 W JP 2010005665W WO 2012035584 A1 WO2012035584 A1 WO 2012035584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- flow path
- separator
- cathode
- path forming
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0265—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04291—Arrangements for managing water in solid electrolyte fuel cell systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the present invention relates to a fuel cell separator and a fuel cell.
- a fuel cell such as a polymer electrolyte fuel cell has a separator for separating a fuel gas and an oxidant gas as a reaction gas by a plurality of power generators including an electrolyte membrane and a pair of electrodes (anode and cathode). It is used in the form of a stack structure laminated through.
- a separator having a surface formed with a flow path forming part such as a groove that forms a flow path for flowing a fluid such as a reaction gas or a cooling medium (for example, a cooling liquid) is known. Yes.
- the separator provided with the flow path forming unit includes a flow path on the supply side for circulating a supply gas to be supplied to the membrane electrode assembly, and an exhaust gas discharged from the membrane electrode assembly when stacked.
- a flow path separated from the flow path on the discharge side for circulating the gas is formed, and the supply gas flowing through the flow path on the supply side is directly discharged without going through the inside of the laminate such as a membrane electrode assembly. What suppresses moving to the flow path on the side is known. (Patent Document 1).
- liquid such as generated water generated by power generation is discharged from the supply-side flow path or the supply-side flow path.
- liquid such as generated water generated by power generation is discharged from the supply-side flow path or the supply-side flow path.
- it stays in the laminated body in the vicinity of the space between the side flow paths. The staying liquid hinders the diffusion of the gas flowing in from the supply-side flow path in the supply-side flow path or the laminated body, which may reduce the power generation efficiency of the fuel cell.
- the present invention has been made to solve the above-described problems, and in a fuel cell having a configuration in which a supply-side flow path and a discharge-side flow path are separated, a supply-side flow path and a membrane electrode are provided. It aims at suppressing the fall of the electric power generation efficiency by a liquid staying in the inside of the laminated body containing a joined body.
- the present invention can be realized as the following aspects or application examples.
- a separator for a fuel cell disposed in contact with a laminate including a membrane electrode assembly, A gas supply channel for supplying gas to the membrane electrode assembly, the gas supply channel for forming a gas supply channel having a closed end on the downstream side in the gas flow direction between the laminated body A gas supply flow path forming section; A gas discharge flow path for discharging gas from the membrane electrode assembly, for forming a gas discharge flow path between the laminated body and a closed end on the upstream side in the gas flow direction.
- a gas discharge flow path forming section One end is connected to the gas supply flow path, the other end is connected to the gas discharge flow path, and a gas movement flow path for moving the gas in the gas supply flow path to the gas discharge path
- a separator comprising: a gas movement flow path forming portion for forming a gas movement flow path having a smaller cross-sectional area than the gas supply flow path and the gas discharge flow path between the laminated body.
- the separator when the separator is used in a fuel cell in a state where it is in contact with the laminate including the membrane electrode assembly, the separator is in contact between the gas supply flow path and the gas discharge path.
- a laminate including a supply-side flow path and a membrane electrode assembly It is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the interior.
- Each of the gas supply flow path forming portion and the gas discharge flow path forming portion has a groove shape extending along a first direction, and both the gas flow directions are in the first direction.
- the separator further includes A region formed at the top of the rib formed by the gas supply channel forming part and the gas discharge channel forming part, the rib region extending along the first direction,
- the gas movement flow path forming part has a groove shape formed in a straight line, and is formed in the rib region.
- the separator since the separator includes the groove-shaped gas movement flow path forming portion in the rib region, in the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, It is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the supply-side flow path or the laminate including the membrane electrode assembly.
- the gas supply flow path forming section and the gas discharge flow path forming section are each a pair of side surface portions extending along a first direction, and a closed surface portion connecting the end portions of the pair of side surface portions, With The rib regions are respectively formed between the side surface portion of the gas supply channel forming portion and the side surface portion of the gas discharge channel forming portion,
- the gas movement flow path forming portion has one end portion in which the position in the first direction is equal to the closing surface portion of the gas supply path forming portion in at least some of the rib regions.
- the separator separates the supply-side flow path and the discharge-side flow path.
- the separator since the gas movement flow path forming portion is formed at predetermined intervals along the first direction, the separator separates the supply-side flow path and the discharge-side flow path.
- the fuel cell having the configuration it is possible to suppress a decrease in power generation efficiency due to the liquid staying in the flow path on the supply side or the laminated body including the membrane electrode assembly.
- the predetermined interval is an interval in the range of 0.3 to 1.2 mm,
- the gas movement flow path forming portions are formed at intervals of 0.3 to 1.2 mm along the first direction, and the gas supply flow path forming portion and the gas discharge flow path forming portion are formed.
- the parts are alternately arranged so that the distance between them is in the range of 0.8 to 2 mm. It is possible to suppress a decrease in power generation efficiency due to the liquid staying in the flow path on the side and the laminated body including the membrane electrode assembly.
- the gas movement flow path forming unit is a separator formed such that a cross-sectional area of the gas movement flow path is 1/10 or less of a cross-sectional area of the gas supply path and the gas discharge flow path.
- the separator since the separator includes the gas movement flow path having a cross-sectional area of 1/10 or less of the cross-sectional area of the gas supply path and the gas discharge path, the supply-side flow path and the discharge-side flow path In a fuel cell having a configuration in which a path is separated, it is possible to suppress a decrease in power generation efficiency due to a liquid staying in a supply-side flow path or a laminate including a membrane electrode assembly.
- the gas supply flow path forming portion and the gas discharge flow path forming portion have a groove width in the range of 0.8 to 2 mm and a groove depth in the range of 0.2 to 1 mm, respectively.
- the gas transfer flow path forming portion is a separator formed such that the groove width is in the range of 50 to 200 ⁇ m and the groove depth is in the range of 30 to 150 ⁇ m.
- the separator has a groove width in the range of 0.8 to 2 mm and a groove depth in the range of 0.2 to 1 mm in the gas supply channel formation unit and the gas discharge channel formation unit.
- the gas movement flow path forming portion is formed so that the groove width is in the range of 50 to 200 ⁇ m and the groove depth is in the range of 30 to 150 ⁇ m.
- the arrangement density of the gas movement flow path forming part formed in the rib region is higher than the area in contact with the upstream side in the gas flow direction of the gas supply flow path forming part and the gas discharge flow path forming part.
- the region in contact with the downstream side is formed to be higher. It is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the laminated body including the electrode assembly.
- the second direction is a vertical direction;
- the gas movement flow path forming portion has an upper end side in contact with the side surface portion of the gas supply flow path forming portion and a lower end side in contact with the side surface portion of the gas discharge flow path forming portion among the plurality of rib regions.
- the separator is a rib whose upper end side in the gravity direction is in contact with the side surface portion of the gas supply flow path forming portion and whose lower end side in the gravity direction is in contact with the side surface portion of the gas discharge flow path forming portion among the plurality of rib regions. Since the gas movement flow path forming part is formed only in the region, in the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, the supply-side flow path and the membrane electrode assembly It is possible to suppress a decrease in power generation efficiency due to the liquid staying inside the laminate including.
- the second direction is a vertical direction;
- the gas movement flow path forming part has an upper end side in contact with the side surface part of the gas discharge flow path forming part and a lower end side in contact with the side surface part of the gas supply flow path forming part among the plurality of rib regions.
- a separator comprising a closing portion for closing a part of the gas movement channel in the rib region.
- the separator has a rib in which the upper end side in the gravity direction is in contact with the side surface portion of the gas discharge flow path forming portion and the lower end side in the gravity direction is in contact with the side surface portion of the gas supply flow path forming portion among the plurality of rib regions.
- the supply-side flow path is provided with a closing portion for closing a part of the gas movement flow path forming portion. It is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the flow path and the laminated body including the membrane electrode assembly.
- the width in the vertical direction of the rib region where the upper end side is in contact with the side surface portion of the gas supply flow path forming portion and the lower end side is in contact with the side surface portion of the gas discharge flow path forming portion is as follows.
- the separator is wider than the width in the vertical direction of the rib region that is in contact with the side surface portion and the lower end side is in contact with the side surface portion of the gas supply flow path forming portion.
- the separator in the plurality of rib regions, is in the vertical direction of the rib region in which the upper end side is in contact with the side surface portion of the gas supply flow path forming portion and the lower end side is in contact with the side surface portion of the gas discharge flow path forming portion.
- the width is formed so that the upper end side is in contact with the side surface portion of the gas discharge flow path forming portion and the lower end side is wider than the width in the vertical direction of the rib region in contact with the side surface portion of the gas supply flow path forming portion.
- the gas movement flow path forming unit is configured to have the closed surface portion of the gas discharge path forming portion from one end portion of the gas supply path forming portion having the same position in the first direction as the closed surface portion. And a separator that is formed so as to be parallel to each other or cross each other in the entire range between the same position in the first direction and the other end.
- the separator is formed such that the gas movement flow path forming portions are parallel to each other or cross each other in the entire range in the direction along the first direction of the rib region.
- the generation efficiency is reduced due to the liquid remaining in the supply-side flow path and the laminate including the membrane electrode assembly. Suppression can be achieved.
- the gas movement flow path forming unit is a separator having a shape in which a cross-sectional shape of the gas movement flow path is any one of a triangular shape, a quadrangular shape, and a semicircular shape.
- the separator has the gas movement flow path forming portion formed so that the cross-sectional shape of the gas movement flow path is any one of a triangular shape, a quadrangular shape, and a semicircular shape.
- the generation efficiency is reduced due to the liquid remaining in the supply-side flow path and the laminate including the membrane electrode assembly. Suppression can be achieved.
- the gas movement flow path forming part is a separator having a higher hydrophilicity than a contact surface in contact with the separator of the laminate.
- the separator since the separator includes the gas movement flow path forming portion having a higher hydrophilicity than the contact surface in contact with the separator of the laminate, the flow path on the supply side and the flow path on the discharge side are separated.
- the fuel cell having the above-described configuration it is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the flow path on the supply side and the laminated body including the membrane electrode assembly.
- the separator has a liquid for cooling the fuel cell on the second surface opposite to the first surface on which the gas flow path forming portion and the gas movement flow path forming portion are respectively formed. Since the liquid flow path forming part for forming the liquid flow path for circulation is provided, it is possible to efficiently suppress the temperature increase of the fuel cell due to the flow path on the supply side and power generation.
- a fuel cell A laminate including a membrane electrode assembly; A fuel cell comprising: the separator according to claim 1 disposed on both sides of the laminate.
- the laminated body in the vicinity between the gas supply flow path and the gas discharge path In the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, the supply-side flow path and the inside of the laminate including the membrane electrode assembly are provided. Therefore, it is possible to suppress a decrease in power generation efficiency due to the liquid staying there.
- a fuel cell A laminate including a membrane electrode assembly; A plurality of separators according to claim 14 disposed on both sides of the laminate, Each of the separators is a fuel cell in which the liquid flow path forming portion is arranged so as to face the liquid flow path forming portion of another separator.
- the liquid for suppressing the temperature rise of the fuel cell can be easily configured.
- the laminate includes a gas diffusion layer disposed in contact with the membrane electrode assembly, The fuel cell, wherein the separator is in contact with the gas diffusion layer.
- the gas flows through the gas diffusion layer in the vicinity between the gas supply channel and the gas discharge channel.
- the liquid stays inside the supply-side flow path and the laminate including the membrane electrode assembly.
- the present invention can be realized in various modes.
- a fuel cell separator a fuel cell including a fuel cell separator, a fuel cell manufacturing method, a fuel cell system including a fuel cell, and a fuel cell. It can be realized in the form of a moving body such as an automobile equipped with the system.
- FIG. 10 is an explanatory diagram showing a schematic configuration of a cathode separator in Comparative Example 6.
- FIG. 10 is an explanatory diagram showing a schematic configuration of a cathode separator in Comparative Example 7.
- FIG. 16 is an explanatory diagram illustrating a part of a YY cross section of FIG. 15; It is explanatory drawing for demonstrating the test result in a 3rd test. It is explanatory drawing which shows schematic structure of the cathode side separator in 3rd Example. It is explanatory drawing which showed typically the boundary vicinity of the 1st obstruction
- FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel cell system according to a first embodiment of the present invention.
- the fuel cell system 10 controls the fuel cell 100, a hydrogen tank 50 for storing hydrogen to be supplied to the fuel cell 100, an air compressor 60 for supplying compressed air to the fuel cell 100, and the entire fuel cell system 10.
- the control part 80 to perform is included.
- the fuel cell 100 includes an end plate 110, an insulating plate 120, a current collecting plate 130, and a single cell 140 each having a rectangular shape, and current collecting plates 130 on both sides of a plurality of stacked single cells, respectively.
- the insulating plate 120 and the end plate 110 are arranged in this order.
- a polymer electrolyte fuel cell is used as the fuel cell 100.
- the fuel cell 100 has a stack structure in which a plurality of single cells 140 are stacked.
- the single cell 140 is a unit module that generates power in the fuel cell 100, and generates power by an electrochemical reaction between hydrogen gas and oxygen contained in air. In this embodiment, the configuration and specifications of each single cell 140 are the same.
- the longitudinal direction of the rectangular unit cell 140 is also referred to as “x direction”
- the short direction of the single cell 140 is also referred to as “y direction”
- the stacking direction of the single cells 140 is also referred to as “z direction”.
- the x direction, the y direction, and the z direction are orthogonal to each other.
- Hydrogen as fuel gas stored in the hydrogen tank 50 is decompressed by the decompression valve 51 and then released to the hydrogen gas supply path 53, and adjusted to a predetermined pressure by the pressure regulating valve 52 provided in the hydrogen gas supply path 53. And supplied to the fuel cell 100.
- a gas containing hydrogen (anode supply gas) supplied to the fuel cell 100 is supplied to each single cell 140 via an anode gas supply manifold described later, and is used for power generation in each single cell 140.
- Gas (anode exhaust gas) containing hydrogen that has not been used in each single cell 140 is collected via an anode gas discharge manifold, which will be described later, and discharged to the outside of the fuel cell 100 via the anode exhaust gas passage 54.
- the fuel cell system 10 may be configured to recirculate the anode off-gas to the supply side by providing a connection path and a pump (not shown) that connect the hydrogen gas supply path 53 and the anode exhaust gas path 54.
- the air compressor 60 pressurizes air as an oxidizing gas taken from the outside, and supplies it to the fuel cell 100 via the oxidizing gas supply path 61.
- Air containing oxygen (cathode supply gas) supplied to the fuel cell 100 is supplied to each single cell 140 via a cathode gas supply manifold described later, and is used for power generation in each single cell 140.
- Air (cathode exhaust gas) that has not been used in each single cell 140 is collected via a cathode gas discharge manifold, which will be described later, and discharged to the outside of the fuel cell 100 via a cathode exhaust gas path 63.
- the refrigerant circulation pump 71 supplies the refrigerant to the fuel cell 100 via the refrigerant circulation passage 72.
- the refrigerant is guided to each single cell 140 via a refrigerant supply manifold described later, and cools each single cell 140.
- the refrigerant after cooling each single cell 140 is collected via a refrigerant discharge manifold, which will be described later, and circulated to the radiator 70 via the refrigerant circulation passage 73.
- the refrigerant cooled by the radiator 70 is supplied to the fuel cell 100 again.
- water or non-freezing water such as a mixed solution of water and ethylene glycol can be used. In this embodiment, liquid is used as the refrigerant, but air may be used as the refrigerant.
- the control unit 80 is a computer having a CPU, memory, and the like (not shown).
- the control unit 80 receives signals from a temperature sensor, a pressure sensor, a voltmeter, and the like arranged in each unit of the fuel cell system 10 and controls the entire fuel cell system 10 based on the received signal.
- FIG. 2 is a schematic cross-sectional view showing a schematic configuration of a single cell in the first embodiment.
- a unit cell 140 of the fuel cell 100 includes a power generator 200 including a membrane electrode assembly (also referred to as MEA) 210 in which electrodes of an anode 214 and a cathode 215 are formed on each surface of an electrolyte membrane 212, and a pair of separators (cathode side). The structure is sandwiched between the separator 300 and the anode-side separator 400).
- the power generation body 200 includes an anode side diffusion layer 226 disposed outside the anode 214 and a cathode side diffusion layer 227 disposed outside the cathode 215.
- the anode side diffusion layer 226 and the cathode side diffusion layer 227 are arranged so as to sandwich the MEA 210 from both sides, and supply hydrogen gas or air as a reaction gas to the anode 214 and the cathode 215 while diffusing each.
- the power generation body 200 has a porous material having gas diffusibility and conductivity, such as a metal porous body (for example, expanded metal) or a carbon porous body, outside at least one of the anode side diffusion layer 226 and the cathode side diffusion layer 227. You may provide the porous body flow path layer formed by these.
- the power generator 200 in the present embodiment corresponds to a “laminated body” in the claims.
- the electrolyte membrane 212 is a solid polymer membrane formed of a fluorine resin material or a hydrocarbon resin material, and has good proton conductivity in a wet state.
- the cathode 215 and the anode 214 include, for example, carbon particles (catalyst support carrier) supporting a catalyst metal (for example, platinum) that progresses an electrochemical reaction, and a polymer electrolyte (for example, a fluorine-based resin) having proton conductivity. It is configured.
- the cathode-side separator 300 and the anode-side separator 400 are formed of, for example, a carbon-made member such as dense carbon that has been made to be gas-impermeable by compressing carbon, or a gas-impermeable conductive member such as press-formed stainless steel. ing.
- the cathode side separator 300 and the anode side separator 400 have a concavo-convex shape for forming a gas flow path on the surface.
- the cathode separator 300 forms a cathode gas supply channel CSC through which cathode supply gas flows and a cathode gas discharge channel CEC through which cathode exhaust gas flows, between the cathode side diffusion layer 227 and the cathode side diffusion layer 227.
- the anode-side separator 400 forms an anode gas supply flow path ASC through which anode supply gas flows and an anode gas discharge flow path AEC through which anode exhaust gas flows through the anode-side diffusion layer 226. Further, the cathode side separator 300 and the anode side separator 400 are disposed so as to overlap each other between the two power generators 200 with the surfaces opposite to the surfaces in contact with the anode side diffusion layer 226 or the cathode side diffusion layer 227 being in contact with each other. Then, a refrigerant flow path LFC in which a refrigerant flows between the cathode side separator 300 and the anode side separator 400 is formed. The specific configuration of the separator will be described later with reference to FIGS.
- the anode supply gas supplied from the hydrogen tank 50 flows into the anode gas supply passage ASC via the hydrogen gas supply passage 53 and an anode gas supply manifold described later.
- the anode supply gas flowing through the anode gas supply flow path ASC is supplied to the anode 214 while being diffused by the anode side diffusion layer 226, and is subjected to an electrochemical reaction.
- the anode exhaust gas containing the anode supply gas that has not been subjected to the electrochemical reaction flows from the anode side diffusion layer 226 into the anode gas discharge channel AEC.
- the anode exhaust gas flowing through the anode gas discharge passage AEC is discharged to the outside of the fuel cell 100 via an anode gas discharge manifold and an anode exhaust passage 54 (FIG. 1) described later.
- the cathode supply gas supplied from the air compressor 60 flows into the cathode gas supply channel CSC via the oxidizing gas supply channel 61 and a cathode gas supply manifold described later.
- the cathode supply gas flowing through the cathode gas supply channel CSC is supplied to the cathode 215 while being diffused by the cathode side diffusion layer 227, and is subjected to an electrochemical reaction.
- the cathode exhaust gas containing the cathode supply gas that has not been subjected to the electrochemical reaction flows from the cathode side diffusion layer 227 into the cathode gas discharge channel CEC.
- the cathode exhaust gas flowing through the cathode gas discharge channel CEC is discharged to the outside of the fuel cell 100 via a cathode gas discharge manifold and a cathode exhaust gas channel 63 (FIG. 1) which will be described later.
- the refrigerant Lc sent from the refrigerant circulation pump 71 flows into the refrigerant flow path LFC via the refrigerant circulation flow path 72 (FIG. 1) and a refrigerant supply manifold described later.
- the refrigerant Lc flowing through the refrigerant flow path LFC absorbs heat from the power generator 200 via the cathode side separator 300 or the anode side separator 400 and releases it to the refrigerant circulation flow path 73 (FIG. 1) via the refrigerant discharge manifold. Is done.
- FIG. 3 is an explanatory diagram showing a schematic configuration of the cathode separator in the first embodiment.
- the cathode-side separator 300 has a rectangular plate-like outer shape, and openings for constituting a manifold are formed at both ends in the longitudinal direction (x direction).
- the anode-side separator 400 and a frame-like member (not shown) formed on the outer periphery of the power generator 200 are similarly formed with openings, so that the single cell 140 includes the cathode-side separator 300.
- the frame-shaped member and the anode-side separator 400 By stacking the frame-shaped member and the anode-side separator 400, these openings communicate with each other to form a plurality of manifolds.
- the single cell 140 includes an anode gas supply manifold 162 that distributes the anode supply gas supplied to the fuel cell 100 to each single cell 140, and a cathode supply gas supplied to the fuel cell 100 to each single cell.
- Each manifold is a flow path extending in a direction substantially parallel to the stacking direction (z direction) of the fuel cell 100.
- the cathode-side separator 300 includes a gas supply channel groove 310, a gas discharge channel groove 320, and a gas movement channel groove 330 in addition to the above opening.
- the gas supply channel groove 310 forms a cathode gas supply channel CSC through which the cathode supply gas flows between the cathode side diffusion layer 227 and the gas supply channel groove 310.
- the gas supply channel groove 310 includes a gas supply bundle channel groove 311 and a plurality of gas supply branch channel grooves 312.
- the gas supply bundle channel groove 311 connects the cathode gas supply manifold 152 and the gas supply branch channel groove 312, and distributes the cathode supply gas flowing in from the cathode gas supply manifold 152 to each gas supply branch channel groove 312.
- the gas supply branch channel groove 312 has a long groove-like outer shape extending in the longitudinal direction (x direction) of the cathode-side separator 300, one end is connected to the gas supply bundle channel groove 311, and the other end is It is blocked by the blocking part Pb.
- the gas supply branch passage groove 312 in this embodiment corresponds to a “gas supply passage formation portion” in the claims.
- the gas discharge channel groove 320 forms a cathode gas discharge channel CEC in which the cathode exhaust gas circulates with the cathode side diffusion layer 227.
- the gas discharge channel groove 320 includes a gas discharge bundle channel groove 321 and a plurality of gas discharge branch channel grooves 322.
- the gas discharge bundle channel groove 321 connects the cathode gas discharge manifold 154 and the gas discharge branch channel groove 322, collects the cathode exhaust gas flowing in from the gas discharge branch channel groove 322, and discharges it to the cathode gas discharge manifold 154.
- the gas discharge branch channel groove 322 has a long groove-like outer shape extending in the longitudinal direction (x direction) of the cathode-side separator 300, one end is closed by the closing portion Pb, and the other end is the gas discharge bundle flow. It is connected to the road groove 321.
- the gas discharge branch channel groove 322 in the present embodiment corresponds to a “gas discharge channel forming part” in the claims.
- the cathode separator 300 does not have a configuration in which the gas supply channel groove 310 and the gas discharge channel groove 320 are integrated, but the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 are on the cathode side.
- IDFF Inter-Digitate-Flow-Field
- the cathode separator 300 is formed such that the flow direction of the cathode supply gas flowing through the gas supply bundle flow channel groove 311 and the flow direction of the cathode exhaust gas flowing through the gas discharge bundle flow channel groove 321 are both in the y direction. .
- FIG. 2 shows a cross section of a region where the gas supply branch channel grooves 312 and the gas discharge branch channel grooves 322 are alternately arranged. Further, the number of the gas supply branch channel grooves 312 and the gas discharge branch channel grooves 322 can be arbitrarily set.
- the cathode separator 300 is a rib that is an area formed on the top of a rib formed relatively convex by concave grooves on both sides between the gas supply branch channel groove 312 and the gas discharge branch channel groove 322. A plurality of areas Aw are provided.
- the cathode-side separator 300 includes a plurality of gas movement channel grooves 330 in each rib region Aw.
- the gas movement channel groove 330 has a narrow groove-shaped outer shape in which one end is connected to the gas supply branch channel groove 312 and the other end is connected to the gas discharge branch channel groove 322.
- FIG. 4 is an explanatory view perspectively showing the gas supply branch channel groove and the gas discharge branch channel groove in the first embodiment.
- the lower side of FIG. 4 corresponds to the gas supply bundle channel groove 311 side of FIG. 3, and the upper side of FIG. 4 corresponds to the gas discharge bundle channel groove 321 side of FIG.
- the gas supply branch channel groove 312 includes a pair of gas supply branch channel side surfaces 312 s and a gas supply branch channel blocking surface 312 b.
- Each of the pair of gas supply branch passage side surfaces 312 s has a long outer shape extending in a direction along the extending direction (x direction) of the gas supply branch passage groove 312, and the gas supply branch passage groove 312 extends in the y direction.
- the gas supply branch channel closed surface portion 312b is formed on a surface in contact with the closed portion Pb of the gas supply branch channel groove 312. At the closed end portion of the gas supply branch channel groove 312, a pair of gas supply branch channel side surfaces 312s and Each is connected.
- the gas supply branch passage blocking surface portion 312b is formed so as to connect the ends of the pair of gas supply branch passage side portions 312s.
- the gas supply branch passage side surface 312s in this embodiment corresponds to a “side surface” in the claims.
- the gas supply branch passage blocking surface portion 312b in the present embodiment corresponds to a “closing surface portion” in the claims.
- the gas discharge branch flow channel groove 322 includes a pair of gas discharge branch flow channel side surfaces 322s and a gas discharge branch flow channel blocking surface portion 322b.
- Each of the pair of gas discharge branch channel side surfaces 322s has an elongated outer shape extending in a direction along the extending direction (x direction) of the gas discharge branch channel groove 322, and the gas discharge branch channel groove 322 in the y direction. Side surfaces on both sides are formed in the groove cross section.
- the gas discharge branch channel closed surface portion 322b is formed on a surface in contact with the closed portion Pb of the gas discharge branch channel groove 322.
- a pair of gas discharge branch channel side surfaces 322s and Each is connected.
- the gas discharge branch channel blocking surface portion 322b is formed to connect the ends of the pair of gas discharge branch channel side surfaces 322s.
- the groove width of the gas supply branch channel groove 312 and the gas discharge branch channel groove 322, that is, the width in the y direction is formed to be in the range of 0.8 mm to 2 mm.
- the depths of the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 are formed to be in the range of 0.2 mm to 1 mm.
- the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 are either a pair of gas supply branch channel side portions 312 s or a pair of gas discharge branch channel side portions 322 s (hereinafter each referred to simply as “pair”.
- the bottom surface portion is provided between the pair of side surface portions, and the side surface portions may be in direct contact with each other.
- the cross-sectional shape of the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 is not limited to a shape having a side surface and a bottom surface as in a substantially U shape, but only a side surface as in a substantially V shape.
- the side surface may have a curved line as in a substantially U shape, or the boundary between the side surfaces is uniquely defined by the curved side surfaces on both sides. It may be a shape that cannot be defined.
- the rib region Aw has a rectangular outer shape having a pair of long sides and a pair of short sides, one long side is in contact with the gas supply branch channel side surface 312s, and the other long side is a gas discharge branch channel side surface. It is in contact with the part 322s.
- the position in the x direction of one short side is equal to the position in the x direction of the adjacent gas supply branch passage blocking surface portion 312b, and the position in the x direction of the other short side is the adjacent gas discharge. It is equal to the position in the x direction of the branch channel blocking surface portion 322b.
- the distance from one long side of the rib area Aw to the other long side, that is, the width in the y direction of the rib area Aw is formed to be in the range of 0.8 mm to 2 mm.
- the gap in the y direction between the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 is formed to be in the range of 0.8 mm to 2 mm.
- the gas movement channel groove 330 linearly connects the gas supply branch channel side surface portion 312s in contact with one long side of the rib region Aw and the gas discharge branch channel side surface portion 322s in contact with the other long side. It is formed as follows. A plurality of gas movement flow path grooves 330 are arranged in parallel to each other in the rib region Aw. In the present embodiment, the gas movement flow path grooves 330 are arranged at equal intervals in the x direction in the entire range from one short side to the other short side of the rib region Aw.
- the gas movement flow channel groove 330 is in the entire range from the gas supply branch flow passage blocking surface portion 312b adjacent to the rib region Aw to the gas discharge branch flow passage blocking surface portion 322b adjacent to the rib region Aw. They are arranged at equal intervals. Further, in the present embodiment, the gas movement flow channel groove 330 is located upstream of the position connected to the gas supply branch channel side surface 312s in the x direction from the position connected to the gas discharge branch channel side surface 322s. In such a manner, they are arranged obliquely with respect to the y direction.
- FIG. 5 is an explanatory diagram for explaining the shape of the gas movement channel groove in the first embodiment.
- FIG. 5 schematically shows a configuration when the gas movement channel groove 330 is viewed from the gas supply branch channel groove 312.
- the gas movement channel groove 330 has a V-shaped cross section, is formed so that the groove depth is in the range of 30 ⁇ m to 150 ⁇ m, and the groove width, that is, the width in the x direction is in the range of 50 ⁇ m to 200 ⁇ m. It is formed to become.
- the gas movement flow channel grooves 330 are arranged such that the arrangement interval (pitch) in the x direction is in the range of 0.3 mm to 1.2 mm.
- the gas movement flow channel groove 330 has a sectional area of the gas movement flow channel formed by the gas movement flow channel groove 330 and the cathode side diffusion layer 227, which is a cross sectional area of the cathode gas supply flow channel CSC or the cathode gas discharge flow channel CEC. It is formed so that it may become 1/10 or less. That is, the cross-sectional area of the gas moving flow channel groove 330 is formed to be 1/10 or less of the cross-sectional area of the gas supply branch channel groove 312 and the cross-sectional area of the gas discharge branch channel groove 322. Further, the gas movement flow channel groove 330 is formed so as to be more hydrophilic than the cathode side diffusion layer 227. Thereby, drainage by capillary pressure can be performed. The degree of hydrophilicity of the gas movement channel groove 330 may be such that the contact angle is less than 100 °, for example.
- FIG. 6 is an explanatory view schematically showing the vicinity of the boundary between the cathode side separator and the gas diffusion layer that are not provided with the gas movement flow channel as a comparative example.
- FIG. 7 is an explanatory view schematically showing the vicinity of the boundary between the cathode separator and the gas diffusion layer according to the first embodiment.
- the liquid Wg is inside the cathode side diffusion layer 227, particularly the rib region Aw of the cathode side separator 300w. It stays in the area that touches. This is because the inside of the cathode side diffusion layer 227 is extruded by the cathode supply gas supplied from the cathode gas supply channel CSC in the region in contact with the cathode gas supply channel CSC and the cathode gas discharge channel CEC.
- the discharge to the cathode gas discharge channel CEC suppresses the retention of the liquid Wg, while the distance to the cathode gas supply channel CSC is long inside the region in contact with the rib region Aw.
- the liquid Wg stays in the cathode side diffusion layer 227 in the vicinity of the region in contact with the rib region Aw, so that the cathode supply is provided in the cathode side diffusion layer 227, particularly in the vicinity of the region in contact with the rib region Aw. Gas diffusion is hindered.
- region where cathode supply gas is supplied reduces, and electric power generation efficiency falls.
- the fuel cell 100 since the fuel cell 100 according to the present embodiment includes the gas movement flow channel groove 330 between the gas supply branch channel groove 312 and the gas discharge branch channel groove 322, as shown in FIG. A gas movement channel is formed between the supply channel CSC and the cathode gas discharge channel CEC.
- the fuel cell 100 using a separator having an IDFF type channel groove such as the cathode side separator 300 has a pressure difference between the inside of the cathode gas supply channel CSC and the inside of the cathode gas discharge channel CEC during power generation. Therefore, the cathode supply gas inside the cathode gas supply channel CSC is led out to the cathode gas discharge channel CEC via the gas transfer channel by the gas transfer channel.
- the cathode supply gas can be forced to flow between the rib region Aw of the cathode separator 300 w and the cathode diffusion layer 227.
- the liquid Wg in the cathode side diffusion layer 227 moves to the gas movement flow path side. Therefore, the liquid Wg can be prevented from staying in the cathode side diffusion layer 227. Therefore, the region where the diffusion of the cathode supply gas is hindered by the liquid Wg inside the cathode side diffusion layer 227 can be reduced, and the power generation efficiency can be improved.
- the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 have a groove width of 0.8 mm, and the rib region Aw has a width in the y direction. , 1.6 mm, and is provided with a gas movement channel groove 330 in the rib region Aw.
- the cathode side separator of Comparative Example 2 is different from the cathode side separator 300 of Example 1 only in that the gas movement flow channel groove 330 is not provided in the rib region Aw.
- the cathode side separator of Comparative Example 3 has the IDFF type channel groove as shown in FIG. 3 while the cathode side separator of Example 1 and Comparative Example 2 does not include the blocking portion Pb.
- the gas supply bundle channel groove 311 and the gas discharge bundle channel groove 321 have straight type channel grooves linearly connected by the gas supply branch channel groove 312 and the gas discharge branch channel groove 322.
- the cathode side separator of Comparative Example 3 does not include the gas movement flow path groove 330 in the rib region Aw.
- the power generation performance was compared under conditions of 40 ° C. and excessive humidification.
- FIG. 8 is an explanatory diagram for explaining a test result in the first test.
- the vertical axis of the graph shown in FIG. 8 indicates the voltage (V) generated by power generation in the single cell of the fuel cell, and the horizontal axis indicates the current density (A / cm 2 ) of the current flowing through the electrolyte membrane.
- V the voltage
- a / cm 2 the current density of the current flowing through the electrolyte membrane.
- the diffusion of the cathode supply gas is hindered by the staying liquid Wg in the cathode side diffusion layer 227.
- the voltage drop occurs in any of the fuel cells of Comparative Example 2 and Comparative Example 3, the voltage drop is not limited to the separator having a straight flow channel, but a separator having an IDFF flow channel.
- the liquid Wg staying in the cathode side diffusion layer 227 cannot be easily discharged when the gas movement flow path groove 330 is not provided.
- the cathode-side separator of Comparative Example 4 has a straight-type channel groove, and does not include the blocking portion Pb as compared with the cathode-side separator 300 shown in FIG. 3, and includes the gas supply branch channel groove 312 and the gas discharge branch channel.
- the groove 322 is formed so that the groove width is 0.8 mm, and the rib region Aw is 1.2 mm in width in the y direction.
- the cathode side separator of the comparative example 4 is not provided with the gas movement flow path groove 330 in the rib area
- the cathode separator of Comparative Example 5 is different from the cathode separator of Comparative Example 4 only in that the gas movement channel groove 330 is provided in the rib region Aw.
- the power generation performance of the three fuel cells using Example 1, Comparative Example 4, and Comparative Example 5 was compared at 40 ° C. under excessively humidified conditions.
- FIG. 9 is an explanatory diagram for explaining a test result in the second test.
- the vertical axis and the horizontal axis of the graph shown in FIG. 9 are the same as those in FIG. 8, the vertical axis indicates the voltage (V) generated by power generation in the single cell of the fuel cell, and the horizontal axis indicates the current flowing through the electrolyte membrane. Current density (A / cm 2 ).
- the cathode side separator of Comparative Example 5 is 1.2 mm in the width in the y direction of the rib region Aw, whereas the cathode side separator 300 of Example 1 is. Since the width of the rib region Aw is 1.6 mm, the ratio of the gas supply branch channel grooves 312 in the short side direction (y direction) of the separator is relatively small. Therefore, the fuel cell 100 using the cathode-side separator 300 of Example 1 is inferior to the fuel cell using the cathode-side separator of Comparative Example 5 in supplying the cathode supply gas to the cathode 215.
- the cathode supply gas is forced to flow through the gas movement channel and the liquid Wg inside the cathode side diffusion layer 227 is discharged to the gas movement channel. Therefore, the cathode supply gas can be diffused in a wider range inside the cathode side diffusion layer 227 compared to the fuel cell using the cathode side separator of Comparative Example 5. Therefore, the fuel cell 100 using the cathode-side separator 300 of Example 1 can supply the cathode supply gas to a wider range of the cathode 215, and can greatly improve the power generation efficiency.
- the cathode separator 300 in the fuel cell using the separator having the IDFF type channel groove, between the cathode gas supply channel CSC and the cathode gas discharge channel CEC. Since the gas movement flow path for moving the cathode supply gas in the cathode gas supply flow path CSC to the cathode gas discharge flow path CEC can be formed, the liquid Wg stays in the cathode side diffusion layer 227. It is possible to suppress a decrease in power generation efficiency due to the above. Specifically, when the cathode-side separator 300 is used in the fuel cell 100, the ends thereof are connected to the cathode gas supply channel CSC and the cathode gas discharge channel CEC, respectively.
- a gas movement channel having a smaller cross-sectional area than the gas discharge channel CEC is formed between the cathode gas supply channel CSC and the cathode gas discharge channel CEC.
- the liquid Wg stays inside the cathode side diffusion layer 227 in contact with the rib region Aw of the separator, and the diffusion of the cathode supply gas is prevented.
- the power generation efficiency may be reduced.
- the fuel cell 100 using the cathode separator 300 according to the present invention uses the pressure difference between the cathode gas supply channel CSC and the cathode gas discharge channel CEC generated during power generation to use the cathode separator.
- the cathode supply gas can be forced to flow between the 300 w rib region Aw and the cathode side diffusion layer 227.
- the liquid Wg can be prevented from staying inside the cathode side diffusion layer 227. Therefore, the region where the diffusion of the cathode supply gas is hindered by the liquid Wg inside the cathode side diffusion layer 227 can be reduced, and the power generation efficiency can be improved.
- the gas movement flow path grooves 330 are arranged at equal intervals in the x direction over the entire range from one short side to the other short side of the rib region Aw. Therefore, it is possible to suppress a decrease in power generation efficiency due to the liquid Wg staying inside the power generation body 200. Specifically, the liquid Wg generated by power generation or the like stays in a wide range inside the cathode side diffusion layer 227 and prevents diffusion of the cathode supply gas supplied from the cathode gas supply channel CSC.
- the cathode supply gas is forcibly forced between the rib region Aw of the cathode side separator 300w and the cathode side diffusion layer 227 in a wide range.
- the liquid Wg that flows and stays inside the cathode side diffusion layer 227 can be discharged to the outside of the cathode side diffusion layer 227. Therefore, power generation efficiency can be improved in a fuel cell using a separator having an IDFF type channel groove.
- the gas movement flow channel groove 330 has a cross-sectional area of the gas movement flow channel that is 1 / of the cross-sectional area of the cathode gas supply flow channel CSC and the cathode gas discharge flow channel CEC. Since it is formed to be 10 or less, it is possible to suppress a decrease in power generation efficiency due to the liquid Wg staying inside the power generation body 200. Specifically, by setting the cross-sectional area of the gas movement flow path to 1/10 or less of the cross-sectional areas of the cathode gas supply flow path CSC and the cathode gas discharge flow path CEC to which both ends of the gas movement flow path are connected.
- a pressure difference is generated at both ends of the gas movement channel due to a pressure loss inside the gas movement channel. Due to this pressure difference, the gas can be forced to flow inside the gas movement channel, so that the liquid Wg staying inside the cathode side diffusion layer 227 can be discharged to the outside of the cathode side diffusion layer 227. . That is, power generation efficiency can be improved in a fuel cell using a separator having an IDFF type channel groove.
- the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 are formed so that the groove width is in the range of 0.8 to 2 mm and the groove depth is in the range of 0.2 to 1 mm.
- a fuel cell using a separator having an IDFF type channel groove by forming the gas movement channel groove 330 to have a groove width of 50 to 200 ⁇ m and a groove depth of 30 to 150 ⁇ m. Therefore, the power generation efficiency can be improved.
- FIG. 10 is an explanatory diagram for explaining a schematic configuration of a cathode-side separator in a modification of the first embodiment.
- FIG. 10 corresponds to FIG. 4 in the first embodiment.
- a plurality of gas movement channel grooves 330 are arranged in parallel to each other in the rib region Aw, but the arrangement pattern of the gas movement channel grooves 330 is as follows.
- the present invention is not limited to the first embodiment, and other arrangement patterns may be provided.
- the gas moving flow channel grooves 330a are formed so as to cross each other in the entire range from one short side to the other short side of the rib region Aw. May be.
- the liquid Wg that stays inside the cathode side diffusion layer 227 by forcibly flowing the cathode supply gas in a wider range between the rib region Aw of the cathode side separator 300a and the cathode side diffusion layer 227 can be obtained. It can be discharged to the outside of the cathode side diffusion layer 227.
- FIG. 11 is an explanatory diagram for explaining the shape of the gas movement channel groove in the modification of the first embodiment.
- the gas movement flow path groove 330 has a V-shaped cross section, but the cross-sectional shape of the gas movement flow path groove 330 is limited to the first embodiment. It may be a shape other than this.
- the gas movement channel groove 330 has a plurality of corners in the cross section so that a polygonal gas movement channel other than a triangle is formed, such as a quadrangle or a pentagon.
- the shape provided may be sufficient, and as shown in FIG.11 (b), the shape which does not have a corner
- Second embodiment In the first embodiment, the cathode side separator in which the gas movement channel grooves are arranged at equal intervals in the x direction has been described. In the second embodiment, the arrangement interval of the gas movement channel grooves is on the upstream side of the separator. Cathode side separators that are different on the downstream side will be described. Since the schematic configuration of the fuel cell system and the schematic configuration of the fuel cell other than the arrangement interval of the gas moving flow channel grooves formed in the cathode separator are the same as those in the first embodiment, description thereof will be omitted.
- FIG. 12 is an explanatory diagram showing a schematic configuration of the cathode-side separator in the second embodiment.
- the cathode side separator 300b of the second embodiment has the same outer shape and opening as the cathode side separator of the first embodiment. Further, in the cathode side separator 300b of the second embodiment, the same reference numerals as those of the cathode side separator of the first embodiment are provided with the same shape and configuration as those of the first embodiment.
- the gas movement flow path groove 330b of the second embodiment is mutually in the entire range from one short side to the other short side of the rib region Aw. A plurality are arranged in parallel.
- the gas movement flow path grooves 330b of the second embodiment are arranged so that the arrangement density on the upstream side of the separator is lower than the arrangement density on the downstream side in the rib region Aw.
- the arrangement density of the gas movement flow path grooves 330b refers to the ratio of the gas movement flow path grooves 330b included in the unit area of the rib area Aw.
- the gas movement flow path grooves included in the unit area of the rib area Aw are examples of the unit area of the rib area Aw.
- the number can be specified by the number of 330b and the average value of the arrangement interval of the gas movement flow path grooves 330b in the unit area of the rib region Aw.
- the gas movement flow path grooves 330b are arranged such that the arrangement interval in the rib region Aw is wide on the upstream side of the separator and narrows toward the downstream side. Specifically, Wp1, Wp2, Wp3,..., Wpn-1, Wpn (n is an integer less than the number of the gas movement flow channel grooves 330b) by arranging the arrangement intervals of the gas movement flow channel grooves 330b in order from the upstream side. Then, the gas movement flow path grooves 330b are arranged such that the arrangement interval in the rib region Aw is Wp1 ⁇ Wp2 ⁇ Wp3 ⁇ ... ⁇ Wpn ⁇ 1 ⁇ Wpn.
- FIG. 13 is an explanatory view schematically showing the vicinity of the boundary between the cathode separator and the gas diffusion layer according to the second embodiment.
- the fuel cell tends to be deficient in moisture due to the circulation of the cathode supply gas or the like on the upstream side of the cathode 215 or the cathode diffusion layer 227 in the flow direction of the cathode supply gas.
- the arrangement density of the gas moving flow path is low on the upstream side in the flow direction of the cathode supply gas, and therefore, the cathode side diffusion layer 227 from the gas moving flow path to each region of the cathode 215.
- the diffusion distance of the cathode supply gas inside is long, and the diffusion resistance of the gas can be increased on the upstream side of the cathode 215 and the cathode side diffusion layer 227.
- the fuel cell using the cathode side separator 300b can suppress moisture discharge on the upstream side of the cathode 215 or the cathode side diffusion layer 227 to improve the moisture retention.
- the fuel cell using the cathode separator 300b increases the supply amount of the cathode supply gas to the cathode 215 so that the cathode supply gas supplied to the downstream side of the cathode 215 or the cathode diffusion layer 227 is insufficient. Occurrence can be suppressed.
- the arrangement density of the gas moving flow channel grooves 330b is low on the upstream side of the separator and is downstream in the rib region Aw. It is arranged to be higher on the side.
- FIG. 14 is an explanatory diagram showing a schematic configuration of the cathode-side separator in Comparative Example 6.
- the cathode-side separator 300x of Comparative Example 6 has the same configuration as that of the cathode-side separator 300b of Example 2 except for the arrangement density of the gas moving flow channel grooves in the rib region Aw.
- the cathode-side separator 300x is formed so that the arrangement density of the gas movement flow path grooves 330x in the rib region Aw is equal on the upstream side and the downstream side of the separator.
- the cathode-side separator 300x is formed such that in the rib region Aw, the arrangement intervals of the gas movement flow path grooves 330b in the x direction are all constant at Wpx.
- FIG. 15 is an explanatory diagram showing a schematic configuration of the cathode-side separator in Comparative Example 7.
- FIG. 16 is an explanatory view illustrating a part of the YY cross section of FIG.
- the cathode-side separator 300y of Comparative Example 7 is provided with a straight type gas channel groove Ggf, the width of the gas channel groove Ggf is narrowed on the upstream side in order to suppress moisture deficiency, and the cathode supply gas is downstream. In order to increase the supply amount of the gas, the gas channel groove Ggf is formed to have a wide width.
- the cathode separator 300y does not include a gas movement flow path groove in the rib region Aw.
- the following problems are pointed out with respect to the configuration in which the width of the gas flow channel groove is changed between the upstream side and the downstream side as in Comparative Example 7. ing.
- the gas passage groove Ggf has a narrow width, so that the supply capacity of the cathode supply gas decreases.
- the cooling capacity by the refrigerant Lc via the cathode-side separator 300y decreases. That is, the improvement in cathode supply gas supply capacity and the improvement in cooling capacity by the refrigerant Lc are contradictory.
- Example 2 Comparative Example 6, and were maintained Comparative Example 7 for three fuel cells using respectively, the current density of the current flowing through the electrolyte membrane (A / cm 2) to 1.2A / cm 2
- the power generation performance was compared in the state.
- FIG. 17 is an explanatory diagram for explaining a test result in the third test.
- the vertical axis of the graph shown in FIG. 17 indicates the cell voltage (V), and the horizontal axis indicates the cell temperature (° C.). Comparing Example 2 and Comparative Example 6 with Comparative Example 7, it can be seen that the power generation performance in the low temperature region is improved when the gas movement channel groove is formed in the separator.
- the moisture inside the cathode 215 and the cathode-side diffusion layer 227 can be easily discharged to the outside by the gas movement channel groove. It can also be seen that when the gas movement channel groove is formed in the separator, the power generation performance is improved even in a high temperature region. This is because the contact area between the rib region Aw and the cathode-side diffusion layer 227 can be sufficiently secured even on the downstream side by the gas movement flow channel groove, and therefore, it can be easily cooled by the refrigerant Lc.
- the cathode-side separator 300b of Example 2 has a low arrangement density of the gas moving flow channel grooves on the upstream side, and therefore, dry-up on the upstream side is suppressed by the moisturizing effect. It can be seen that the power generation performance is improved.
- the cathode side separator 300b of Example 2 has a high arrangement density of the gas moving flow channel grooves on the downstream side, the supply amount of the cathode supply gas to the cathode 215 increases on the downstream side where moisture tends to stay, and the power generation performance. It can be seen that is improved.
- the separator having the gas moving flow channel groove is used by changing the arrangement density of the gas moving flow channel grooves 330b between the upstream side and the downstream side.
- the power generation efficiency of the conventional fuel cell can be further improved.
- the cathode side separator 300b since the cathode side separator 300b has a low arrangement density of the gas moving flow channel grooves on the upstream side, it is possible to suppress the occurrence of dry-up due to the moisturizing effect. Further, since the cathode-side separator 300b has a high arrangement density of gas movement flow channel grooves on the downstream side, the supply amount of the cathode supply gas supplied to the cathode 215 can be increased. By these, the power generation efficiency of the fuel cell can be further improved.
- the cathode 215 and the cathode side diffusion layer 227 of the fuel cell are likely to be deficient in moisture due to deprivation of moisture by the cathode supply gas on the upstream side in the flow direction of the cathode supply gas.
- moisture tends to stay and the moisture tends to be excessive.
- the cathode side separator 300b of the present embodiment has a low arrangement density of the gas movement flow channel grooves on the upstream side, the fuel cell using the cathode side separator 300b has a gas movement on the upstream side as shown in FIG.
- the diffusion distance of the cathode supply gas from the flow path to each region of the cathode 215 becomes longer, and moisture discharge due to the cathode supply gas can be suppressed.
- the cathode side separator 300b of this embodiment has a high arrangement density of the gas movement flow path grooves on the downstream side, the fuel cell using the cathode side separator 300b has a gas movement on the downstream side as shown in FIG.
- the diffusion distance of the cathode supply gas from the flow path to each region of the cathode 215 is shortened, and the supply amount of the cathode supply gas to the cathode 215 can be increased. Accordingly, it is possible to suppress a decrease in power generation efficiency due to insufficient supply of the cathode supply gas to the cathode 215 even in a state where moisture remains.
- the cathode side separator having the gas movement flow channel groove that linearly connects the gas supply branch channel groove and the gas discharge branch channel groove has been described.
- the gas supply branch channel is described.
- a cathode-side separator having a gas supply branch channel groove in which a part of the groove is divided between the groove and the gas discharge branch channel groove will be described. Since the schematic configuration of the fuel cell system and the schematic configuration of the fuel cell are the same as those in the first embodiment except for the shape of the gas transfer channel groove formed in the cathode-side separator, description thereof will be omitted.
- the fuel cell according to the third embodiment is installed such that the direction along the y direction in FIGS. 1 and 2 is the gravity direction (vertical direction).
- FIG. 18 is an explanatory diagram showing a schematic configuration of the cathode-side separator in the third embodiment.
- the cathode side separator 300c of the third embodiment has the same outer shape and opening as the cathode side separator of the first embodiment. Further, in the cathode side separator 300c of the third embodiment, the same reference numerals as those of the cathode side separator of the first embodiment are provided with the same shape and configuration as in the first embodiment.
- the cathode-side separator 300c of the third embodiment is arranged in the fuel cell so that the gas supply branch channel grooves 312 and the gas discharge branch channel grooves 322 are alternately arranged along the direction of gravity.
- the cathode-side separator 300c of the third embodiment includes a gas supply branch channel groove 312 and a gas discharge branch channel groove 322 that correspond to each other.
- the gas discharge branch channel groove 322 is arranged in the direction of the lower side in the direction of gravity.
- the gas movement flow path groove 330c of the third embodiment is mutually in the entire range from one short side to the other short side of the rib region Aw. A plurality are arranged in parallel.
- the gas movement channel groove 330c of the third embodiment is formed in a part of the rib regions Aw among the plurality of rib regions Aw formed between the gas supply branch channel groove 312 and the gas discharge branch channel groove 322. A part of the groove is closed by the closing part Pp.
- the gas movement flow path groove 330c of the third embodiment is the first closed type gas movement flow path groove 330c1 or the second closed type gas movement flow path in which a part of the groove is closed by the closed portion Pp. It includes a groove 330c2 and a communication type gas movement flow path groove 330c3 that is communicated from the upper end to the lower end without being closed by the closing portion Pp.
- the cathode-side separator 300c includes a first rib region Aw1 in which the upper long side is in contact with the gas discharge branch channel groove 322 and the lower long side is in contact with the gas supply branch channel groove 312 in the rib region Aw.
- the first closed type gas moving flow channel groove 330c1 or the second closed type gas moving flow channel groove 330c2 is formed.
- the cathode-side separator 300c has a second rib region Aw2 in which the upper long side is in contact with the gas supply branch channel groove 312 and the lower long side is in contact with the gas discharge branch channel groove 322 in the rib region Aw. Is formed with a communication type gas movement flow path groove 330c3.
- the first closed type gas moving flow channel groove 330c1 has the same outer shape as the gas moving flow channel groove 330 of the first embodiment, but the upper end portion of the groove in contact with the gas discharge branch flow channel groove 322 is a closed portion. It is blocked by Pp.
- the second closed type gas movement flow path groove 330c2 has the same outer shape as the gas movement flow path groove 330 of the first embodiment, but the central part of the groove is closed by the closing part Pp.
- the communication type gas movement flow path groove 330c3 is connected to the gas discharge branch flow path groove 322 from one end connected to the gas supply branch flow path groove 312 similarly to the gas movement flow path groove 330 of the first embodiment. The groove communicates with the other connected end.
- FIG. 19 is an explanatory view schematically showing the vicinity of the boundary between the first closed gas movement channel groove formed in the cathode side separator and the gas diffusion layer.
- FIG. 20 is an explanatory view schematically showing the vicinity of the boundary between the second closed-type gas movement channel groove formed in the cathode-side separator and the gas diffusion layer.
- FIG. 21 is an explanatory diagram for explaining the movement direction of moisture in the cathode-side separator in the comparative example.
- FIG. 22 is an explanatory diagram for explaining the movement direction of moisture in the cathode-side separator in this example.
- the cathode-side separator 300c has the first closed gas movement flow channel groove 330c1 or the second closed gas movement flow channel groove 330c2 formed in the first rib region Aw1
- the gas movement channel formed between the upper cathode gas discharge channel CEC and the lower cathode gas supply channel CSC is closed by the blocking part Pp.
- the cathode-side separator 300c since the cathode-side separator 300c has the communication gas movement channel groove 330c3 formed in the second rib region Aw2, the cathode-side separator 300c is discharged into the cathode gas supply channel CSC inside the fuel cell using the cathode-side separator 300c.
- the liquid Wg thus discharged can be discharged to the lower cathode gas discharge channel CEC by gravity.
- the fuel cell using the cathode-side separator 300z in which all the gas movement flow path grooves formed in the rib region Aw are in communication type has all the cathode gas supply flow paths CSC by the gas movement flow path. And the cathode gas discharge channel CEC communicate with each other. Therefore, when the fuel cell is used in a state where the cathode gas supply channel CSC and the cathode gas discharge channel CEC are aligned in the direction of gravity, the liquid Wg moves downward due to gravity, and the liquid is formed in the channel formed below. Wg stays. Thereby, since the circulation of the cathode supply gas is suppressed by the retained liquid Wg, there is a problem that the power generation performance is deteriorated.
- the fuel cell using the cathode-side separator 300c of this embodiment suppresses the liquid Wg from moving from the cathode gas discharge channel CEC to the lower cathode gas supply channel CSC due to gravity.
- the liquid Wg can be collected in the cathode gas discharge channel CEC and discharged to the cathode gas discharge manifold 154 together with the cathode exhaust gas. Thereby, the fall of the power generation performance by retention of the liquid Wg can be suppressed.
- the cathode side separator 300c of the present embodiment does not have a configuration in which the first rib region Aw1 is not provided with the gas movement flow channel groove, but the first closed type gas movement in which a part of the groove is closed by the closed portion Pp.
- the flow path groove 330c1 or the second closed type gas movement flow path groove 330c2 is provided. The effect obtained by this will be further described.
- the fuel cell using the cathode side separator 300c is connected to the cathode side separator 300c and the cathode by the first closed type gas moving flow channel groove 330c1 or the second closed type gas moving flow channel groove 330c2.
- the cathode supply gas supplied from the cathode gas supply channel CSC is supplied to a wider range of the cathode side diffusion layer 227 via the closed gas movement channel, thereby improving the power generation efficiency.
- the first closed type gas moving flow channel groove 330c1 and the second closed type gas moving flow channel groove 330c2 is connected to the cathode gas supply flow channel CSC. Since the length of the flow path becomes long, the power generation efficiency can be further increased.
- a cathode-side separator of Example 3 which is an aspect of the present invention, the first closed gas movement flow channel groove 330c1 or the second closed gas movement flow channel groove in the first rib region Aw1 shown in FIG.
- the cathode side separator 300c in which 330c2 was formed was used.
- Comparative Example 8 a cathode-side separator 300z shown in FIG. 21 in which all the gas movement flow channel grooves formed in the rib region Aw are of the communication type was used.
- FIG. 23 is an explanatory diagram for explaining a test result in the fourth test.
- the vertical axis of the graph shown in FIG. 23 indicates the cell voltage (V), and the horizontal axis indicates the cell temperature (° C.).
- the gas discharge branch channel groove 322 is formed in the first rib region Aw1 in the gravity direction upper side and the gas supply branch channel groove 312 is in the gravity direction lower side. Since a part of the gas movement channel groove to be formed is blocked by the blocking part Pp, the power generation efficiency of the fuel cell using the separator having the gas movement channel can be further improved. Specifically, in the fuel cell using the cathode separator 300c, the gas movement channel formed between the upper cathode gas discharge channel CEC and the lower cathode gas supply channel CSC has a closed portion Pp.
- the liquid Wg discharged to the cathode gas discharge channel CEC can be prevented from moving to the lower cathode gas supply channel CSC due to gravity. Thereby, it is possible to reduce the occurrence of a state in which the liquid Wg stays in the flow path formed on the lower side in the gravity direction and the flow of the cathode supply gas is suppressed. That is, it is possible to suppress a decrease in power generation performance due to non-uniform distribution of the cathode supply gas in the cathode gas supply channel CSC.
- the cathode supply gas can be forced to flow between the rib region Aw and the cathode side diffusion layer 227 to improve the power generation efficiency.
- the channel grooves 312 and the gas discharge branch channel grooves 322 are alternately arranged in the gravity direction, the liquid Wg inside moves to a channel formed on the lower side in the gravity direction of the separator and moves below the separator.
- the flow of the cathode supply gas may be hindered.
- the gas movement channel is formed in the rib region Aw of the separator by closing the gas movement channel groove formed in the first rib region Aw1 with the closing part Pp. While obtaining, the malfunction which arises by forming a gas movement flow path in rib area
- the cathode-side separator 300c shown in the present embodiment does not have a configuration in which the first rib region Aw1 is not provided with a gas movement flow channel groove, but a closed type in which a part of the groove is closed by a closed portion Pp. Therefore, the power generation efficiency of the fuel cell can be further improved.
- a gas movement flow path closed by the closing portion Pp is formed between the cathode-side separator 300c and the cathode-side diffusion layer 227.
- the cathode supply gas supplied from the cathode gas supply channel CSC is supplied to a wider area of the cathode side diffusion layer 227 via the closed gas movement channel, thereby improving the power generation efficiency. be able to.
- FIG. 24 is an explanatory diagram for explaining a schematic configuration of a cathode-side separator in Modification 1 of the third embodiment.
- the cathode-side separator 300c includes two types of first closed gas movement flow channel grooves 330c1 and second closed gas movement flow channel grooves 330c2 in the first rib region Aw1.
- the gas movement channel groove is formed, the gas movement channel groove formed in the first rib region Aw1 does not have to be two types, and may be one type or three or more types. May be.
- FIG. 24 is an explanatory diagram for explaining a schematic configuration of a cathode-side separator in Modification 1 of the third embodiment.
- the cathode-side separator 300c includes two types of first closed gas movement flow channel grooves 330c1 and second closed gas movement flow channel grooves 330c2 in the first rib region Aw1.
- the gas movement channel groove is formed, the gas movement channel groove formed in the first rib region Aw1 does not have to be two types,
- the cathode-side separator 300d only the first closed-type gas movement flow path groove 330c1 may be formed in the first rib region Aw1, or the second closed-type gas movement flow path groove may be formed. Only 330c2 may be formed. Further, the cathode-side separator may be formed with three or more types of closed gas movement flow channel grooves in the first rib region Aw1 having different positions and ranges closed by the closed portion Pp. In any of these cases, the same effect as that shown in the above embodiment can be obtained, so that the power generation efficiency of the fuel cell using the separator having the gas moving flow path can be further improved. .
- FIG. 25 is an explanatory diagram for explaining a schematic configuration of the cathode-side separator in the second modification of the third embodiment.
- the cathode-side separator 300c has a gas movement flow channel groove, either the first closed gas movement flow channel groove 330c1 or the second closed gas movement flow channel groove 330c2.
- it is formed in the first rib region Aw1, it may be configured such that no gas movement channel groove is formed in the first rib region Aw1, as in the cathode-side separator 300e shown in FIG.
- the liquid Wg discharged to the cathode gas discharge channel CEC is prevented from moving to the lower cathode gas supply channel CSC due to gravity inside the fuel cell using the cathode separator 300e. Therefore, it is possible to suppress problems caused by forming the gas movement channel in the first rib region Aw1, while obtaining the advantage of forming the gas movement channel in the second rib region Aw2 of the separator.
- FIG. 26 is an explanatory diagram for explaining a schematic configuration of the cathode separator in the third modification of the third embodiment.
- the relationship between the width W1 of the first rib region Aw1 in the gravity direction (y direction) and the width W2 of the second rib region Aw2 in the y direction is particularly limited.
- the width W1 of the first rib area Aw1 to be not more than 0.8 times the width W2 of the second rib area Aw2
- the fuel using the separator having the gas movement flow path is used.
- the power generation efficiency of the battery can be further improved.
- the contact area between the first rib region Aw1 and the cathode side diffusion layer 227 can be reduced by reducing the width W1 of the first rib region Aw1.
- a plurality of gas movement channel grooves 330 are arranged so as to be parallel to each other in the rib region Aw, but each gas movement channel groove 330 is connected to the cathode gas supply channel CSC. As long as a gas movement flow path communicating with the cathode gas discharge flow path CEC can be formed, it is not always necessary to be parallel to each other.
- a plurality of gas movement channel grooves 330 are arranged side by side in the entire range from one short side to the other short side of the rib region Aw. Plural 330 may be located in a part of the rib area Aw, or only one 330 may be arranged in a part of the rib area Aw.
- the gas movement flow path grooves 330 are shown to have the same number and interval in each rib area Aw, but the number of gas movement flow path grooves 330 for each rib area Aw The interval may be different. Further, in the present embodiment, the gas movement flow path grooves 330 and 430 are formed in a straight line, but at least a part thereof may be a curve or a part thereof may be bent.
- the fuel cell 100 is described as a configuration in which the diffusion layer and the separator are in contact with each other.
- the fuel cell 100 has a gas flow path member such as foam metal or punching metal between the diffusion layer and the separator.
- the separator may be in contact with the gas flow path member. Even in this case, it is possible to suppress a decrease in power generation efficiency due to the liquid Wg remaining in the gas flow path member and the diffusion layer in addition to the gas flow path.
- the cathode-side separator 300 and the anode-side separator 400 are used in a fuel cell in a state where the cathode-side separator 300 and the anode-side separator 400 are stacked. It can also be realized as a separator.
- the fuel cell 100 is a solid polymer fuel cell, but the present invention can also be applied to other types of fuel cells (for example, direct methanol fuel cells and phosphoric acid fuel cells). is there.
- SYMBOLS 10 Fuel cell system 50 ... Hydrogen tank 60 ... Air compressor 70 ... Radiator 80 ... Control part 100 ... Fuel cell 110 ... End plate 120 ... Insulating plate 130 ... Current collecting plate 140 ... Single cell 152 ... Cathode gas supply manifold 154 ... Cathode Gas discharge manifold 162 ... Anode gas supply manifold 164 ... Anode gas discharge manifold 172 ... Refrigerant supply manifold 174 ... Refrigerant discharge manifold 200 ... Power generator 210 ... MEA DESCRIPTION OF SYMBOLS 212 ... Electrolyte membrane 214 ... Anode 215 ... Cathode 226 ...
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Provided is a separator for a fuel cell, positioned to be in contact with a laminated body including a membrane electrode assembly, comprising: a gas supply path forming section for forming with the laminated body a gas supply path that has a blocked end section on the downstream side in the gas flow direction and which is a gas supply path; a gas discharge path forming section for forming with the laminated body a gas discharge path that has a blocked end section on the upstream side in the gas flow direction and which is a gas discharge path; and a gas travel path forming section for forming with the laminated body a gas travel path that has a smaller cross-sectional area than the gas supply path and the gas discharge path, and which is a gas travel path for making gas inside the gas supply path travel to the gas discharge path.
Description
本発明は、燃料電池用のセパレータおよび燃料電池に関する。
The present invention relates to a fuel cell separator and a fuel cell.
一般に、固体高分子型燃料電池等の燃料電池は、電解質膜および一対の電極(アノードおよびカソード)を含む複数の発電体が、反応ガスとしての燃料ガスおよび酸化剤ガスを分離するためのセパレータを介して積層されたスタック構造の形態で利用される。セパレータには、積層されたときに、反応ガスや冷却媒体(例えば冷却液)などの流体を流通させるための流路を構成する溝などの流路形成部を表面に備えたものが知られている。
Generally, a fuel cell such as a polymer electrolyte fuel cell has a separator for separating a fuel gas and an oxidant gas as a reaction gas by a plurality of power generators including an electrolyte membrane and a pair of electrodes (anode and cathode). It is used in the form of a stack structure laminated through. A separator having a surface formed with a flow path forming part such as a groove that forms a flow path for flowing a fluid such as a reaction gas or a cooling medium (for example, a cooling liquid) is known. Yes.
この流路形成部を備えるセパレータには、積層されたときに、膜電極接合体に供給するための供給ガスを流通させるための供給側の流路と、膜電極接合体から排出される排出ガスを流通させるための排出側の流路とが分離した流路が形成され、供給側の流路を流通する供給ガスが膜電極接合体などの積層体の内部を経由せずに直接的に排出側の流路に移動することを抑制するものが知られている。(特許文献1)。
The separator provided with the flow path forming unit includes a flow path on the supply side for circulating a supply gas to be supplied to the membrane electrode assembly, and an exhaust gas discharged from the membrane electrode assembly when stacked. A flow path separated from the flow path on the discharge side for circulating the gas is formed, and the supply gas flowing through the flow path on the supply side is directly discharged without going through the inside of the laminate such as a membrane electrode assembly. What suppresses moving to the flow path on the side is known. (Patent Document 1).
しかし、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池では、発電により生じた生成水などの液体が、供給側の流路や、供給側の流路と排出側の流路との間付近における積層体の内部で滞留することがあった。この滞留した液体により、供給側の流路や積層体の内部において、供給側の流路から流入したガスの拡散が妨げられ、燃料電池の発電性効率が低下する虞があった。
However, in a fuel cell having a configuration in which a supply-side flow path and a discharge-side flow path are separated, liquid such as generated water generated by power generation is discharged from the supply-side flow path or the supply-side flow path. In some cases, it stays in the laminated body in the vicinity of the space between the side flow paths. The staying liquid hinders the diffusion of the gas flowing in from the supply-side flow path in the supply-side flow path or the laminated body, which may reduce the power generation efficiency of the fuel cell.
本発明は、上記の課題を解決するためになされたものであり、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることを目的とする。
The present invention has been made to solve the above-described problems, and in a fuel cell having a configuration in which a supply-side flow path and a discharge-side flow path are separated, a supply-side flow path and a membrane electrode are provided. It aims at suppressing the fall of the electric power generation efficiency by a liquid staying in the inside of the laminated body containing a joined body.
上記課題の少なくとも一部を解決するために、本願発明は、以下の態様または適用例として実現することが可能である。
In order to solve at least a part of the above problems, the present invention can be realized as the following aspects or application examples.
[適用例1]
膜電極接合体を含む積層体と接触して配置される燃料電池用のセパレータであって、
前記膜電極接合体にガスを供給するためのガス供給流路であって、ガスの流通方向における下流側の端部が閉塞されたガス供給流路を前記積層体との間に形成するためのガス供給流路形成部と、
前記膜電極接合体からガスを排出させるためのガス排出流路であって、ガスの流通方向における上流側の端部が閉塞されたガス排出流路を前記積層体との間に形成するためのガス排出流路形成部と、
一方の端部が前記ガス供給流路に接続され、他方の端部が前記ガス排出流路に接続され、前記ガス供給流路内のガスを前記ガス排出経路に移動させるためのガス移動流路であって、前記ガス供給流路および前記ガス排出流路より断面積の小さいガス移動流路を前記積層体との間に形成するためのガス移動流路形成部と、を備えるセパレータ。 [Application Example 1]
A separator for a fuel cell disposed in contact with a laminate including a membrane electrode assembly,
A gas supply channel for supplying gas to the membrane electrode assembly, the gas supply channel for forming a gas supply channel having a closed end on the downstream side in the gas flow direction between the laminated body A gas supply flow path forming section;
A gas discharge flow path for discharging gas from the membrane electrode assembly, for forming a gas discharge flow path between the laminated body and a closed end on the upstream side in the gas flow direction. A gas discharge flow path forming section;
One end is connected to the gas supply flow path, the other end is connected to the gas discharge flow path, and a gas movement flow path for moving the gas in the gas supply flow path to the gas discharge path A separator comprising: a gas movement flow path forming portion for forming a gas movement flow path having a smaller cross-sectional area than the gas supply flow path and the gas discharge flow path between the laminated body.
膜電極接合体を含む積層体と接触して配置される燃料電池用のセパレータであって、
前記膜電極接合体にガスを供給するためのガス供給流路であって、ガスの流通方向における下流側の端部が閉塞されたガス供給流路を前記積層体との間に形成するためのガス供給流路形成部と、
前記膜電極接合体からガスを排出させるためのガス排出流路であって、ガスの流通方向における上流側の端部が閉塞されたガス排出流路を前記積層体との間に形成するためのガス排出流路形成部と、
一方の端部が前記ガス供給流路に接続され、他方の端部が前記ガス排出流路に接続され、前記ガス供給流路内のガスを前記ガス排出経路に移動させるためのガス移動流路であって、前記ガス供給流路および前記ガス排出流路より断面積の小さいガス移動流路を前記積層体との間に形成するためのガス移動流路形成部と、を備えるセパレータ。 [Application Example 1]
A separator for a fuel cell disposed in contact with a laminate including a membrane electrode assembly,
A gas supply channel for supplying gas to the membrane electrode assembly, the gas supply channel for forming a gas supply channel having a closed end on the downstream side in the gas flow direction between the laminated body A gas supply flow path forming section;
A gas discharge flow path for discharging gas from the membrane electrode assembly, for forming a gas discharge flow path between the laminated body and a closed end on the upstream side in the gas flow direction. A gas discharge flow path forming section;
One end is connected to the gas supply flow path, the other end is connected to the gas discharge flow path, and a gas movement flow path for moving the gas in the gas supply flow path to the gas discharge path A separator comprising: a gas movement flow path forming portion for forming a gas movement flow path having a smaller cross-sectional area than the gas supply flow path and the gas discharge flow path between the laminated body.
この構成によれば、セパレータは、膜電極接合体を含む積層体と接触させた状態で燃料電池に用いられたときに、ガス供給流路とガス排出経路との間において、接触する積層体との間にガスを流通させることができるため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, when the separator is used in a fuel cell in a state where it is in contact with the laminate including the membrane electrode assembly, the separator is in contact between the gas supply flow path and the gas discharge path. In a fuel cell having a configuration in which a supply-side flow path and a discharge-side flow path are separated from each other, a laminate including a supply-side flow path and a membrane electrode assembly It is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the interior.
[適用例2]
適用例1に記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、それぞれ、第1の方向に沿って延伸する溝形状を有し、ガスの流通方向がともに前記第1の方向となるようにして、第2の方向に沿って交互に並んで配置され、
前記セパレータは、さらに、
前記ガス供給流路形成部と前記ガス排出流路形成部により形成されるリブの頂部に形成される領域であって、前記第1の方向に沿って延伸するリブ領域を備え、
前記ガス移動流路形成部は、直線状に形成された溝形状を有し、前記リブ領域に形成されている、セパレータ。 [Application Example 2]
In the separator described in Application Example 1,
Each of the gas supply flow path forming portion and the gas discharge flow path forming portion has a groove shape extending along a first direction, and both the gas flow directions are in the first direction. , Arranged alternately along the second direction,
The separator further includes
A region formed at the top of the rib formed by the gas supply channel forming part and the gas discharge channel forming part, the rib region extending along the first direction,
The gas movement flow path forming part has a groove shape formed in a straight line, and is formed in the rib region.
適用例1に記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、それぞれ、第1の方向に沿って延伸する溝形状を有し、ガスの流通方向がともに前記第1の方向となるようにして、第2の方向に沿って交互に並んで配置され、
前記セパレータは、さらに、
前記ガス供給流路形成部と前記ガス排出流路形成部により形成されるリブの頂部に形成される領域であって、前記第1の方向に沿って延伸するリブ領域を備え、
前記ガス移動流路形成部は、直線状に形成された溝形状を有し、前記リブ領域に形成されている、セパレータ。 [Application Example 2]
In the separator described in Application Example 1,
Each of the gas supply flow path forming portion and the gas discharge flow path forming portion has a groove shape extending along a first direction, and both the gas flow directions are in the first direction. , Arranged alternately along the second direction,
The separator further includes
A region formed at the top of the rib formed by the gas supply channel forming part and the gas discharge channel forming part, the rib region extending along the first direction,
The gas movement flow path forming part has a groove shape formed in a straight line, and is formed in the rib region.
この構成によれば、セパレータは、リブ領域に溝形状のガス移動流路形成部を備えているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, since the separator includes the groove-shaped gas movement flow path forming portion in the rib region, in the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, It is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the supply-side flow path or the laminate including the membrane electrode assembly.
[適用例3]
適用例2に記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、それぞれ、第1の方向に沿って延伸する一対の側面部と、前記一対の側面部の互いの端部を繋ぐ閉塞面部と、を備え、
前記リブ領域は、前記ガス供給流路形成部の前記側面部と、前記ガス排出流路形成部の前記側面部との間にそれぞれ形成され、
前記ガス移動流路形成部は、複数の前記リブ領域のうち、少なくとも一部の前記リブ領域において、前記ガス供給経路形成部の前記閉塞面部と前記第1の方向における位置が等しい一方の端部から、前記ガス排出経路形成部の前記閉塞面部と前記第1の方向における位置が等しい他方の端部までの間の全範囲で前記第1の方向に沿って所定の間隔毎に形成されている、セパレータ。 [Application Example 3]
In the separator described in Application Example 2,
The gas supply flow path forming section and the gas discharge flow path forming section are each a pair of side surface portions extending along a first direction, and a closed surface portion connecting the end portions of the pair of side surface portions, With
The rib regions are respectively formed between the side surface portion of the gas supply channel forming portion and the side surface portion of the gas discharge channel forming portion,
The gas movement flow path forming portion has one end portion in which the position in the first direction is equal to the closing surface portion of the gas supply path forming portion in at least some of the rib regions. To the closed surface portion of the gas discharge path forming portion and the other end portion having the same position in the first direction, and is formed at predetermined intervals along the first direction. , Separator.
適用例2に記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、それぞれ、第1の方向に沿って延伸する一対の側面部と、前記一対の側面部の互いの端部を繋ぐ閉塞面部と、を備え、
前記リブ領域は、前記ガス供給流路形成部の前記側面部と、前記ガス排出流路形成部の前記側面部との間にそれぞれ形成され、
前記ガス移動流路形成部は、複数の前記リブ領域のうち、少なくとも一部の前記リブ領域において、前記ガス供給経路形成部の前記閉塞面部と前記第1の方向における位置が等しい一方の端部から、前記ガス排出経路形成部の前記閉塞面部と前記第1の方向における位置が等しい他方の端部までの間の全範囲で前記第1の方向に沿って所定の間隔毎に形成されている、セパレータ。 [Application Example 3]
In the separator described in Application Example 2,
The gas supply flow path forming section and the gas discharge flow path forming section are each a pair of side surface portions extending along a first direction, and a closed surface portion connecting the end portions of the pair of side surface portions, With
The rib regions are respectively formed between the side surface portion of the gas supply channel forming portion and the side surface portion of the gas discharge channel forming portion,
The gas movement flow path forming portion has one end portion in which the position in the first direction is equal to the closing surface portion of the gas supply path forming portion in at least some of the rib regions. To the closed surface portion of the gas discharge path forming portion and the other end portion having the same position in the first direction, and is formed at predetermined intervals along the first direction. , Separator.
この構成によれば、セパレータは、ガス移動流路形成部が第1の方向に沿って所定の間隔毎に形成されているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, since the gas movement flow path forming portion is formed at predetermined intervals along the first direction, the separator separates the supply-side flow path and the discharge-side flow path. In the fuel cell having the configuration, it is possible to suppress a decrease in power generation efficiency due to the liquid staying in the flow path on the supply side or the laminated body including the membrane electrode assembly.
[適用例4]
適用例3に記載のセパレータにおいて、
前記所定の間隔は、0.3~1.2mmの範囲の間隔であり、
前記ガス供給流路形成部および前記ガス排出流路形成部は、前記第2の方向における互いの間隔が0.8~2mmの範囲となるようにして交互に配置されている、セパレータ。 [Application Example 4]
In the separator described in Application Example 3,
The predetermined interval is an interval in the range of 0.3 to 1.2 mm,
The separator, wherein the gas supply flow path forming part and the gas discharge flow path forming part are alternately arranged so that the distance between them in the second direction is in the range of 0.8 to 2 mm.
適用例3に記載のセパレータにおいて、
前記所定の間隔は、0.3~1.2mmの範囲の間隔であり、
前記ガス供給流路形成部および前記ガス排出流路形成部は、前記第2の方向における互いの間隔が0.8~2mmの範囲となるようにして交互に配置されている、セパレータ。 [Application Example 4]
In the separator described in Application Example 3,
The predetermined interval is an interval in the range of 0.3 to 1.2 mm,
The separator, wherein the gas supply flow path forming part and the gas discharge flow path forming part are alternately arranged so that the distance between them in the second direction is in the range of 0.8 to 2 mm.
この構成によれば、セパレータは、ガス移動流路形成部が第1の方向に沿って0.3~1.2mmの範囲の間隔で形成され、ガス供給流路形成部およびガス排出流路形成部が互いの間隔が0.8~2mmの範囲となるようにして交互に配置されているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, in the separator, the gas movement flow path forming portions are formed at intervals of 0.3 to 1.2 mm along the first direction, and the gas supply flow path forming portion and the gas discharge flow path forming portion are formed. In the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated from each other, the parts are alternately arranged so that the distance between them is in the range of 0.8 to 2 mm. It is possible to suppress a decrease in power generation efficiency due to the liquid staying in the flow path on the side and the laminated body including the membrane electrode assembly.
[適用例5]
適用例1ないし適用例4のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記ガス移動流路の断面積が、前記ガス供給路およびガス排出流路の断面積の1/10以下となるように形成されている、セパレータ。 [Application Example 5]
In the separator according to any one of Application Examples 1 to 4,
The gas movement flow path forming unit is a separator formed such that a cross-sectional area of the gas movement flow path is 1/10 or less of a cross-sectional area of the gas supply path and the gas discharge flow path.
適用例1ないし適用例4のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記ガス移動流路の断面積が、前記ガス供給路およびガス排出流路の断面積の1/10以下となるように形成されている、セパレータ。 [Application Example 5]
In the separator according to any one of Application Examples 1 to 4,
The gas movement flow path forming unit is a separator formed such that a cross-sectional area of the gas movement flow path is 1/10 or less of a cross-sectional area of the gas supply path and the gas discharge flow path.
この構成によれば、セパレータは、ガス供給路およびガス排出流路の断面積の1/10以下の断面積を有するガス移動流路を備えているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, since the separator includes the gas movement flow path having a cross-sectional area of 1/10 or less of the cross-sectional area of the gas supply path and the gas discharge path, the supply-side flow path and the discharge-side flow path In a fuel cell having a configuration in which a path is separated, it is possible to suppress a decrease in power generation efficiency due to a liquid staying in a supply-side flow path or a laminate including a membrane electrode assembly.
[適用例6]
適用例2ないし適用例5のいずれかに記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、溝の幅がそれぞれ、0.8~2mmの範囲となり、溝の深さがそれぞれ、0.2~1mmの範囲となるように形成され、
前記ガス移動流路形成部は、溝の幅が、50~200μmの範囲となり、溝の深さが、30~150μmの範囲となるように形成されている、セパレータ。 [Application Example 6]
In the separator according to any one of Application Examples 2 to 5,
The gas supply flow path forming portion and the gas discharge flow path forming portion have a groove width in the range of 0.8 to 2 mm and a groove depth in the range of 0.2 to 1 mm, respectively. Formed,
The gas transfer flow path forming portion is a separator formed such that the groove width is in the range of 50 to 200 μm and the groove depth is in the range of 30 to 150 μm.
適用例2ないし適用例5のいずれかに記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、溝の幅がそれぞれ、0.8~2mmの範囲となり、溝の深さがそれぞれ、0.2~1mmの範囲となるように形成され、
前記ガス移動流路形成部は、溝の幅が、50~200μmの範囲となり、溝の深さが、30~150μmの範囲となるように形成されている、セパレータ。 [Application Example 6]
In the separator according to any one of Application Examples 2 to 5,
The gas supply flow path forming portion and the gas discharge flow path forming portion have a groove width in the range of 0.8 to 2 mm and a groove depth in the range of 0.2 to 1 mm, respectively. Formed,
The gas transfer flow path forming portion is a separator formed such that the groove width is in the range of 50 to 200 μm and the groove depth is in the range of 30 to 150 μm.
この構成によれば、セパレータは、ガス供給流路形成部およびガス排出流路形成部の溝の幅が0.8~2mmの範囲、溝の深さが0.2~1mmの範囲となるように形成され、また、ガス移動流路形成部は、溝の幅が50~200μmの範囲、溝の深さが30~150μmの範囲となるように形成されているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, the separator has a groove width in the range of 0.8 to 2 mm and a groove depth in the range of 0.2 to 1 mm in the gas supply channel formation unit and the gas discharge channel formation unit. In addition, the gas movement flow path forming portion is formed so that the groove width is in the range of 50 to 200 μm and the groove depth is in the range of 30 to 150 μm. In a fuel cell having a configuration in which a flow path on the discharge side is separated, a reduction in power generation efficiency due to liquid staying inside the flow path on the supply side and the laminate including the membrane electrode assembly is suppressed. Can do.
[適用例7]
適用例3ないし適用例6のいずれかに記載のセパレータにおいて、
前記リブ領域における前記ガス移動流路形成部の配置密度は、前記ガス供給流路形成部および前記ガス排出流路形成部の上流側と接する領域よりも、前記ガス供給流路形成部および前記ガス排出流路形成部の下流側と接する領域の方が高い、セパレータ。 [Application Example 7]
In the separator according to any one of Application Example 3 to Application Example 6,
The arrangement density of the gas movement flow path forming part in the rib area is higher than the area in contact with the upstream side of the gas supply flow path forming part and the gas discharge flow path forming part. The separator is higher in the area in contact with the downstream side of the discharge flow path forming portion.
適用例3ないし適用例6のいずれかに記載のセパレータにおいて、
前記リブ領域における前記ガス移動流路形成部の配置密度は、前記ガス供給流路形成部および前記ガス排出流路形成部の上流側と接する領域よりも、前記ガス供給流路形成部および前記ガス排出流路形成部の下流側と接する領域の方が高い、セパレータ。 [Application Example 7]
In the separator according to any one of Application Example 3 to Application Example 6,
The arrangement density of the gas movement flow path forming part in the rib area is higher than the area in contact with the upstream side of the gas supply flow path forming part and the gas discharge flow path forming part. The separator is higher in the area in contact with the downstream side of the discharge flow path forming portion.
この構成によれば、セパレータは、リブ領域に形成されたガス移動流路形成部の配置密度が、ガス供給流路形成部およびガス排出流路形成部のガスの流通方向上流側と接する領域よりも下流側と接する領域の方が高くなるように形成されているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, in the separator, the arrangement density of the gas movement flow path forming part formed in the rib region is higher than the area in contact with the upstream side in the gas flow direction of the gas supply flow path forming part and the gas discharge flow path forming part. In the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, the region in contact with the downstream side is formed to be higher. It is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the laminated body including the electrode assembly.
[適用例8]
適用例3ないし適用例7のいずれかに記載のセパレータにおいて、
前記第2の方向は、鉛直方向であり、
前記ガス移動流路形成部は、前記複数のリブ領域のうち、上端側が前記ガス供給流路形成部の前記側面部と接し、下端側が前記ガス排出流路形成部の前記側面部と接しているリブ領域にのみ形成されている、セパレータ。 [Application Example 8]
In the separator according to any one of Application Example 3 to Application Example 7,
The second direction is a vertical direction;
The gas movement flow path forming portion has an upper end side in contact with the side surface portion of the gas supply flow path forming portion and a lower end side in contact with the side surface portion of the gas discharge flow path forming portion among the plurality of rib regions. A separator formed only in the rib region.
適用例3ないし適用例7のいずれかに記載のセパレータにおいて、
前記第2の方向は、鉛直方向であり、
前記ガス移動流路形成部は、前記複数のリブ領域のうち、上端側が前記ガス供給流路形成部の前記側面部と接し、下端側が前記ガス排出流路形成部の前記側面部と接しているリブ領域にのみ形成されている、セパレータ。 [Application Example 8]
In the separator according to any one of Application Example 3 to Application Example 7,
The second direction is a vertical direction;
The gas movement flow path forming portion has an upper end side in contact with the side surface portion of the gas supply flow path forming portion and a lower end side in contact with the side surface portion of the gas discharge flow path forming portion among the plurality of rib regions. A separator formed only in the rib region.
この構成によれば、セパレータは、複数のリブ領域のうち、重力方向上端側がガス供給流路形成部の側面部と接し、重力方向下端側がガス排出流路形成部の側面部と接しているリブ領域にのみガス移動流路形成部が形成されているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, the separator is a rib whose upper end side in the gravity direction is in contact with the side surface portion of the gas supply flow path forming portion and whose lower end side in the gravity direction is in contact with the side surface portion of the gas discharge flow path forming portion among the plurality of rib regions. Since the gas movement flow path forming part is formed only in the region, in the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, the supply-side flow path and the membrane electrode assembly It is possible to suppress a decrease in power generation efficiency due to the liquid staying inside the laminate including.
[適用例9]
適用例3ないし適用例7のいずれかに記載のセパレータにおいて、
前記第2の方向は、鉛直方向であり、
前記ガス移動流路形成部は、前記複数のリブ領域のうち、上端側が前記ガス排出流路形成部の前記側面部と接し、下端側が前記ガス供給流路形成部の前記側面部と接しているリブ領域において、前記ガス移動流路の一部を閉塞するための閉塞部を備えている、セパレータ。 [Application Example 9]
In the separator according to any one of Application Example 3 to Application Example 7,
The second direction is a vertical direction;
The gas movement flow path forming part has an upper end side in contact with the side surface part of the gas discharge flow path forming part and a lower end side in contact with the side surface part of the gas supply flow path forming part among the plurality of rib regions. A separator comprising a closing portion for closing a part of the gas movement channel in the rib region.
適用例3ないし適用例7のいずれかに記載のセパレータにおいて、
前記第2の方向は、鉛直方向であり、
前記ガス移動流路形成部は、前記複数のリブ領域のうち、上端側が前記ガス排出流路形成部の前記側面部と接し、下端側が前記ガス供給流路形成部の前記側面部と接しているリブ領域において、前記ガス移動流路の一部を閉塞するための閉塞部を備えている、セパレータ。 [Application Example 9]
In the separator according to any one of Application Example 3 to Application Example 7,
The second direction is a vertical direction;
The gas movement flow path forming part has an upper end side in contact with the side surface part of the gas discharge flow path forming part and a lower end side in contact with the side surface part of the gas supply flow path forming part among the plurality of rib regions. A separator comprising a closing portion for closing a part of the gas movement channel in the rib region.
この構成によれば、セパレータは、複数のリブ領域のうち、重力方向上端側がガス排出流路形成部の側面部と接し、重力方向下端側がガス供給流路形成部の側面部と接しているリブ領域において、ガス移動流路形成部の一部を閉塞するための閉塞部を備えているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, the separator has a rib in which the upper end side in the gravity direction is in contact with the side surface portion of the gas discharge flow path forming portion and the lower end side in the gravity direction is in contact with the side surface portion of the gas supply flow path forming portion among the plurality of rib regions. In the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated from each other in the region, the supply-side flow path is provided with a closing portion for closing a part of the gas movement flow path forming portion. It is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the flow path and the laminated body including the membrane electrode assembly.
[適用例10]
適用例8または適用例9のいずれかに記載のセパレータにおいて、
上端側が前記ガス供給流路形成部の前記側面部と接し、下端側が前記ガス排出流路形成部の前記側面部と接しているリブ領域の鉛直方向における幅は、上端側が前記ガス排出流路形成部の前記側面部と接し、下端側が前記ガス供給流路形成部の前記側面部と接しているリブ領域の鉛直方向における幅よりも広い、セパレータ。 [Application Example 10]
In the separator according to Application Example 8 or Application Example 9,
The width in the vertical direction of the rib region where the upper end side is in contact with the side surface portion of the gas supply flow path forming portion and the lower end side is in contact with the side surface portion of the gas discharge flow path forming portion is as follows. The separator is wider than the width in the vertical direction of the rib region that is in contact with the side surface portion and the lower end side is in contact with the side surface portion of the gas supply flow path forming portion.
適用例8または適用例9のいずれかに記載のセパレータにおいて、
上端側が前記ガス供給流路形成部の前記側面部と接し、下端側が前記ガス排出流路形成部の前記側面部と接しているリブ領域の鉛直方向における幅は、上端側が前記ガス排出流路形成部の前記側面部と接し、下端側が前記ガス供給流路形成部の前記側面部と接しているリブ領域の鉛直方向における幅よりも広い、セパレータ。 [Application Example 10]
In the separator according to Application Example 8 or Application Example 9,
The width in the vertical direction of the rib region where the upper end side is in contact with the side surface portion of the gas supply flow path forming portion and the lower end side is in contact with the side surface portion of the gas discharge flow path forming portion is as follows. The separator is wider than the width in the vertical direction of the rib region that is in contact with the side surface portion and the lower end side is in contact with the side surface portion of the gas supply flow path forming portion.
この構成によれば、セパレータは、複数のリブ領域において、上端側がガス供給流路形成部の側面部と接し、下端側がガス排出流路形成部の側面部と接しているリブ領域の鉛直方向における幅が、上端側がガス排出流路形成部の側面部と接し、下端側がガス供給流路形成部の側面部と接しているリブ領域の鉛直方向における幅よりも広くなるように形成されているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, in the plurality of rib regions, the separator is in the vertical direction of the rib region in which the upper end side is in contact with the side surface portion of the gas supply flow path forming portion and the lower end side is in contact with the side surface portion of the gas discharge flow path forming portion. The width is formed so that the upper end side is in contact with the side surface portion of the gas discharge flow path forming portion and the lower end side is wider than the width in the vertical direction of the rib region in contact with the side surface portion of the gas supply flow path forming portion. In a fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, the power generation efficiency due to the liquid staying inside the supply-side flow path and the laminate including the membrane electrode assembly Can be suppressed.
[適用例11]
適用例3ないし適用例10のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記リブ領域において、前記ガス供給経路形成部の前記閉塞面部と前記第1の方向における位置が等しい一方の端部から、前記ガス排出経路形成部の前記閉塞面部と前記第1の方向における位置が等しい他方の端部までの間の全範囲で互いに平行、もしくは、互いに交叉するように形成されている、セパレータ。 [Application Example 11]
In the separator according to any one of Application Example 3 to Application Example 10,
In the rib region, the gas movement flow path forming unit is configured to have the closed surface portion of the gas discharge path forming portion from one end portion of the gas supply path forming portion having the same position in the first direction as the closed surface portion. And a separator that is formed so as to be parallel to each other or cross each other in the entire range between the same position in the first direction and the other end.
適用例3ないし適用例10のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記リブ領域において、前記ガス供給経路形成部の前記閉塞面部と前記第1の方向における位置が等しい一方の端部から、前記ガス排出経路形成部の前記閉塞面部と前記第1の方向における位置が等しい他方の端部までの間の全範囲で互いに平行、もしくは、互いに交叉するように形成されている、セパレータ。 [Application Example 11]
In the separator according to any one of Application Example 3 to Application Example 10,
In the rib region, the gas movement flow path forming unit is configured to have the closed surface portion of the gas discharge path forming portion from one end portion of the gas supply path forming portion having the same position in the first direction as the closed surface portion. And a separator that is formed so as to be parallel to each other or cross each other in the entire range between the same position in the first direction and the other end.
この構成によれば、セパレータは、リブ領域の第1の方向に沿った方向における全範囲において、ガス移動流路形成部が互いに平行、もしくは、互いに交叉するように形成されているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, the separator is formed such that the gas movement flow path forming portions are parallel to each other or cross each other in the entire range in the direction along the first direction of the rib region. In the fuel cell having a configuration in which the flow path and the discharge-side flow path are separated, the generation efficiency is reduced due to the liquid remaining in the supply-side flow path and the laminate including the membrane electrode assembly. Suppression can be achieved.
[適用例12]
適用例2ないし適用例11のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記ガス移動流路の断面形状が、三角形状、四角形状、および、半円形状のいずれかとなる形状を備えている、セパレータ。 [Application Example 12]
In the separator according to any one of Application Examples 2 to 11,
The gas movement flow path forming unit is a separator having a shape in which a cross-sectional shape of the gas movement flow path is any one of a triangular shape, a quadrangular shape, and a semicircular shape.
適用例2ないし適用例11のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記ガス移動流路の断面形状が、三角形状、四角形状、および、半円形状のいずれかとなる形状を備えている、セパレータ。 [Application Example 12]
In the separator according to any one of Application Examples 2 to 11,
The gas movement flow path forming unit is a separator having a shape in which a cross-sectional shape of the gas movement flow path is any one of a triangular shape, a quadrangular shape, and a semicircular shape.
この構成によれば、セパレータは、ガス移動流路の断面形状が、三角形状、四角形状、および、半円形状のいずれかとなるようにガス移動流路形成部が形状されているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, the separator has the gas movement flow path forming portion formed so that the cross-sectional shape of the gas movement flow path is any one of a triangular shape, a quadrangular shape, and a semicircular shape. In the fuel cell having a configuration in which the flow path and the discharge-side flow path are separated, the generation efficiency is reduced due to the liquid remaining in the supply-side flow path and the laminate including the membrane electrode assembly. Suppression can be achieved.
[適用例13]
適用例2ないし適用例12のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記積層体の前記セパレータと接触する接触面よりも親水性が高い、セパレータ。 [Application Example 13]
In the separator according to any one of Application Examples 2 to 12,
The gas movement flow path forming part is a separator having a higher hydrophilicity than a contact surface in contact with the separator of the laminate.
適用例2ないし適用例12のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記積層体の前記セパレータと接触する接触面よりも親水性が高い、セパレータ。 [Application Example 13]
In the separator according to any one of Application Examples 2 to 12,
The gas movement flow path forming part is a separator having a higher hydrophilicity than a contact surface in contact with the separator of the laminate.
この構成によれば、セパレータは、積層体のセパレータと接触する接触面よりも親水性の高いガス移動流路形成部を備えているため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, since the separator includes the gas movement flow path forming portion having a higher hydrophilicity than the contact surface in contact with the separator of the laminate, the flow path on the supply side and the flow path on the discharge side are separated. In the fuel cell having the above-described configuration, it is possible to suppress a decrease in power generation efficiency due to the liquid remaining in the flow path on the supply side and the laminated body including the membrane electrode assembly.
[適用例14]
適用例2ないし適用例12のいずれかに記載のセパレータはさらに、
前記ガス供給流路形成部、前記ガス流路形成部、および、前記ガス移動流路形成部がそれぞれ形成されている第1の面と反対側の第2の面に、燃料電池を冷却するための液体を流通させるための液体流路を形成するための液体流路形成部を備えているセパレータ。 [Application Example 14]
The separator according to any one of Application Example 2 to Application Example 12,
In order to cool the fuel cell on the second surface opposite to the first surface on which the gas supply flow path forming section, the gas flow path forming section, and the gas movement flow path forming section are respectively formed. A separator having a liquid flow path forming part for forming a liquid flow path for circulating the liquid.
適用例2ないし適用例12のいずれかに記載のセパレータはさらに、
前記ガス供給流路形成部、前記ガス流路形成部、および、前記ガス移動流路形成部がそれぞれ形成されている第1の面と反対側の第2の面に、燃料電池を冷却するための液体を流通させるための液体流路を形成するための液体流路形成部を備えているセパレータ。 [Application Example 14]
The separator according to any one of Application Example 2 to Application Example 12,
In order to cool the fuel cell on the second surface opposite to the first surface on which the gas supply flow path forming section, the gas flow path forming section, and the gas movement flow path forming section are respectively formed. A separator having a liquid flow path forming part for forming a liquid flow path for circulating the liquid.
この構成によれば、セパレータは、ガス流路形成部およびガス移動流路形成部がそれぞれ形成されている第1の面と反対側の第2の面に、燃料電池を冷却するための液体を流通させるための液体流路を形成するための液体流路形成部を備えているため、供給側の流路や、発電による燃料電池の昇温を効率的に抑制することができる。
According to this configuration, the separator has a liquid for cooling the fuel cell on the second surface opposite to the first surface on which the gas flow path forming portion and the gas movement flow path forming portion are respectively formed. Since the liquid flow path forming part for forming the liquid flow path for circulation is provided, it is possible to efficiently suppress the temperature increase of the fuel cell due to the flow path on the supply side and power generation.
[適用例15]
燃料電池であって、
膜電極接合体を含む積層体と、
前記積層体の両側に配置される請求項1ないし請求項14に記載のセパレータと、を備える、燃料電池。 [Application Example 15]
A fuel cell,
A laminate including a membrane electrode assembly;
A fuel cell comprising: the separator according toclaim 1 disposed on both sides of the laminate.
燃料電池であって、
膜電極接合体を含む積層体と、
前記積層体の両側に配置される請求項1ないし請求項14に記載のセパレータと、を備える、燃料電池。 [Application Example 15]
A fuel cell,
A laminate including a membrane electrode assembly;
A fuel cell comprising: the separator according to
この構成によれば、燃料電池は、内部において供給側の流路と排出側の流路とを分離させた構成を備えていても、ガス供給流路とガス排出経路との間付近の積層体にガスを流通させることができるため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, even if the fuel cell has a configuration in which the supply-side flow path and the discharge-side flow path are separated inside, the laminated body in the vicinity between the gas supply flow path and the gas discharge path In the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, the supply-side flow path and the inside of the laminate including the membrane electrode assembly are provided. Therefore, it is possible to suppress a decrease in power generation efficiency due to the liquid staying there.
[適用例16]
燃料電池であって、
膜電極接合体を含む積層体と、
前記積層体の両側に配置される請求項14に記載のセパレータと、をそれぞれ複数備え、
各前記セパレータは、前記液体流路形成部が他の前記セパレータの前記液体流路形成部と対向するように重ねて配置されている、燃料電池。 [Application Example 16]
A fuel cell,
A laminate including a membrane electrode assembly;
A plurality of separators according to claim 14 disposed on both sides of the laminate,
Each of the separators is a fuel cell in which the liquid flow path forming portion is arranged so as to face the liquid flow path forming portion of another separator.
燃料電池であって、
膜電極接合体を含む積層体と、
前記積層体の両側に配置される請求項14に記載のセパレータと、をそれぞれ複数備え、
各前記セパレータは、前記液体流路形成部が他の前記セパレータの前記液体流路形成部と対向するように重ねて配置されている、燃料電池。 [Application Example 16]
A fuel cell,
A laminate including a membrane electrode assembly;
A plurality of separators according to claim 14 disposed on both sides of the laminate,
Each of the separators is a fuel cell in which the liquid flow path forming portion is arranged so as to face the liquid flow path forming portion of another separator.
この構成によれば、燃料電池は、セパレータの液体流路形成部が他のセパレータの液体流路形成部と互いに対向するように配置されているため、燃料電池の昇温を抑制するための液体流路を容易に構成することができる。
According to this configuration, since the fuel cell is disposed so that the liquid flow path forming part of the separator faces the liquid flow path forming part of the other separator, the liquid for suppressing the temperature rise of the fuel cell The flow path can be easily configured.
[適用例17]
適用例15もしくは適用例16に記載の燃料電池において、
前記積層体は、前記膜電極接合体と接触して配置されるガス拡散層を備え、
前記セパレータは、前記ガス拡散層と接触している、燃料電池。 [Application Example 17]
In the fuel cell according to Application Example 15 or Application Example 16,
The laminate includes a gas diffusion layer disposed in contact with the membrane electrode assembly,
The fuel cell, wherein the separator is in contact with the gas diffusion layer.
適用例15もしくは適用例16に記載の燃料電池において、
前記積層体は、前記膜電極接合体と接触して配置されるガス拡散層を備え、
前記セパレータは、前記ガス拡散層と接触している、燃料電池。 [Application Example 17]
In the fuel cell according to Application Example 15 or Application Example 16,
The laminate includes a gas diffusion layer disposed in contact with the membrane electrode assembly,
The fuel cell, wherein the separator is in contact with the gas diffusion layer.
この構成によれば、燃料電池は、セパレータと膜電極接合体との間にガス拡散層を有していても、ガス供給流路とガス排出経路との間付近のガス拡散層にガスを流通させることができるため、供給側の流路と排出側の流路とを分離させた構成を備える燃料電池において、供給側の流路や、膜電極接合体を含む積層体の内部に液体が滞留することによる発電効率の低下の抑制を図ることができる。
According to this configuration, even if the fuel cell has the gas diffusion layer between the separator and the membrane electrode assembly, the gas flows through the gas diffusion layer in the vicinity between the gas supply channel and the gas discharge channel. In the fuel cell having a configuration in which the supply-side flow path and the discharge-side flow path are separated, the liquid stays inside the supply-side flow path and the laminate including the membrane electrode assembly. By doing so, it is possible to suppress a decrease in power generation efficiency.
なお、本発明は、種々の態様で実現することが可能であり、例えば、燃料電池用セパレータ、燃料電池用セパレータを備える燃料電池、燃料電池の製造方法、燃料電池を備える燃料電池システム、燃料電池システムを備える自動車等の移動体等の形態で実現することができる。
The present invention can be realized in various modes. For example, a fuel cell separator, a fuel cell including a fuel cell separator, a fuel cell manufacturing method, a fuel cell system including a fuel cell, and a fuel cell. It can be realized in the form of a moving body such as an automobile equipped with the system.
次に、本発明の実施の形態を実施例に基づいて説明する。
Next, embodiments of the present invention will be described based on examples.
A.第1実施例:
A-1.燃料電池システムの概略構成:
図1は、本発明の第1実施例における燃料電池システムの概略構成を示す説明図である。燃料電池システム10は、燃料電池100と、燃料電池100に供給する水素を貯蔵する水素タンク50と、燃料電池100に圧縮空気を供給するためのエアコンプレッサ60と、燃料電池システム10全体の制御をおこなう制御部80を含んでいる。 A. First embodiment:
A-1. General configuration of the fuel cell system:
FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel cell system according to a first embodiment of the present invention. Thefuel cell system 10 controls the fuel cell 100, a hydrogen tank 50 for storing hydrogen to be supplied to the fuel cell 100, an air compressor 60 for supplying compressed air to the fuel cell 100, and the entire fuel cell system 10. The control part 80 to perform is included.
A-1.燃料電池システムの概略構成:
図1は、本発明の第1実施例における燃料電池システムの概略構成を示す説明図である。燃料電池システム10は、燃料電池100と、燃料電池100に供給する水素を貯蔵する水素タンク50と、燃料電池100に圧縮空気を供給するためのエアコンプレッサ60と、燃料電池システム10全体の制御をおこなう制御部80を含んでいる。 A. First embodiment:
A-1. General configuration of the fuel cell system:
FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel cell system according to a first embodiment of the present invention. The
燃料電池100は、それぞれ長方形状を有する、エンドプレート110と、絶縁板120と、集電板130と、単セル140とを備え、積層された複数の単セルの両側にそれぞれ集電板130、絶縁板120およびエンドプレート110がこの順に配置されている。燃料電池100としては種々の種類の燃料電池を用いることが可能であるが、本実施例では、燃料電池100として固体高分子型燃料電池を用いている。燃料電池100は、複数の単セル140が積層されたスタック構造を有している。単セル140は燃料電池100における発電を行う単位モジュールであり、水素ガスと空気に含まれる酸素との電気化学反応により発電を行う。なお、本実施例において、各単セル140の構成や仕様は互いに同一である。各セルの具体的な構成は図2を用いて後述する。なお、本実施例では、長方形状を有する単セル140の長手方向を「x方向」、単セル140の短手方向を「y方向」、単セル140の積層方向を「z方向」とも呼ぶ。x方向、y方向、および、z方向は互いに直交する。
The fuel cell 100 includes an end plate 110, an insulating plate 120, a current collecting plate 130, and a single cell 140 each having a rectangular shape, and current collecting plates 130 on both sides of a plurality of stacked single cells, respectively. The insulating plate 120 and the end plate 110 are arranged in this order. Although various types of fuel cells can be used as the fuel cell 100, in this embodiment, a polymer electrolyte fuel cell is used as the fuel cell 100. The fuel cell 100 has a stack structure in which a plurality of single cells 140 are stacked. The single cell 140 is a unit module that generates power in the fuel cell 100, and generates power by an electrochemical reaction between hydrogen gas and oxygen contained in air. In this embodiment, the configuration and specifications of each single cell 140 are the same. A specific configuration of each cell will be described later with reference to FIG. In the present embodiment, the longitudinal direction of the rectangular unit cell 140 is also referred to as “x direction”, the short direction of the single cell 140 is also referred to as “y direction”, and the stacking direction of the single cells 140 is also referred to as “z direction”. The x direction, the y direction, and the z direction are orthogonal to each other.
水素タンク50に貯蔵された燃料ガスとしての水素は、減圧弁51によって減圧された後に水素ガス供給路53に放出され、水素ガス供給路53に設けられた圧力調整弁52によって所定の圧力に調整されて、燃料電池100に供給される。燃料電池100に供給された水素を含有するガス(アノード供給ガス)は、後述するアノードガス供給マニホールドを介して各単セル140に供給され、各単セル140における発電に利用される。各単セル140において利用されなかった水素を含有するガス(アノード排ガス)は、後述するアノードガス排出マニホールドを介して集約され、アノード排ガス路54を介して燃料電池100の外部に排出される。なお、燃料電池システム10は、水素ガス供給路53とアノード排ガス路54とを接続する図示しない接続路やポンプを備えることにより、アノードオフガスを供給側に再循環させる構成としてもよい。
Hydrogen as fuel gas stored in the hydrogen tank 50 is decompressed by the decompression valve 51 and then released to the hydrogen gas supply path 53, and adjusted to a predetermined pressure by the pressure regulating valve 52 provided in the hydrogen gas supply path 53. And supplied to the fuel cell 100. A gas containing hydrogen (anode supply gas) supplied to the fuel cell 100 is supplied to each single cell 140 via an anode gas supply manifold described later, and is used for power generation in each single cell 140. Gas (anode exhaust gas) containing hydrogen that has not been used in each single cell 140 is collected via an anode gas discharge manifold, which will be described later, and discharged to the outside of the fuel cell 100 via the anode exhaust gas passage 54. The fuel cell system 10 may be configured to recirculate the anode off-gas to the supply side by providing a connection path and a pump (not shown) that connect the hydrogen gas supply path 53 and the anode exhaust gas path 54.
エアコンプレッサ60は、外部から取り込んだ酸化ガスとしての空気を加圧し、酸化ガス供給路61を介して燃料電池100に供給する。燃料電池100に供給された酸素を含む空気(カソード供給ガス)は、後述するカソードガス供給マニホールドを介して各単セル140に供給され、各単セル140における発電に利用される。各単セル140において利用されなかった空気(カソード排ガス)は、後述するカソードガス排出マニホールドを介して集約され、カソード排ガス路63を介して燃料電池100の外部に排出される。
The air compressor 60 pressurizes air as an oxidizing gas taken from the outside, and supplies it to the fuel cell 100 via the oxidizing gas supply path 61. Air containing oxygen (cathode supply gas) supplied to the fuel cell 100 is supplied to each single cell 140 via a cathode gas supply manifold described later, and is used for power generation in each single cell 140. Air (cathode exhaust gas) that has not been used in each single cell 140 is collected via a cathode gas discharge manifold, which will be described later, and discharged to the outside of the fuel cell 100 via a cathode exhaust gas path 63.
冷媒循環ポンプ71は、冷媒循環流路72を介して、燃料電池100に冷媒を供給する。冷媒は、後述する冷媒供給マニホールドを介して各単セル140に導かれ、各単セル140を冷却する。各単セル140を冷却した後の冷媒は、後述する冷媒排出マニホールドを介して集約され、冷媒循環流路73を介してラジエータ70に循環される。ラジエータ70により冷却された冷媒は、再び燃料電池100に供給される。冷媒としては、水や、水とエチレングリコールとの混合液などの不凍水を用いることができる。本実施例では、冷媒として液体を用いているが、冷媒として空気を用いる構成であってもよい。
The refrigerant circulation pump 71 supplies the refrigerant to the fuel cell 100 via the refrigerant circulation passage 72. The refrigerant is guided to each single cell 140 via a refrigerant supply manifold described later, and cools each single cell 140. The refrigerant after cooling each single cell 140 is collected via a refrigerant discharge manifold, which will be described later, and circulated to the radiator 70 via the refrigerant circulation passage 73. The refrigerant cooled by the radiator 70 is supplied to the fuel cell 100 again. As the refrigerant, water or non-freezing water such as a mixed solution of water and ethylene glycol can be used. In this embodiment, liquid is used as the refrigerant, but air may be used as the refrigerant.
制御部80は、図示しないCPUやメモリ等を備えたコンピュータである。制御部80は、燃料電池システム10の各部に配された温度センサや圧力センサ、電圧計等からの信号を受領し、受領した信号に基づき燃料電池システム10全体の制御を行う。
The control unit 80 is a computer having a CPU, memory, and the like (not shown). The control unit 80 receives signals from a temperature sensor, a pressure sensor, a voltmeter, and the like arranged in each unit of the fuel cell system 10 and controls the entire fuel cell system 10 based on the received signal.
A-2.燃料電池の概略構成:
図2は、第1実施例における単セルの概略構成を表わす断面模式図である。燃料電池100の単セル140は、電解質膜212の各面にアノード214およびカソード215の電極が形成された膜電極接合体(MEAとも呼ばれる)210を含む発電体200を、一対のセパレータ(カソード側セパレータ300およびアノード側セパレータ400)によって挟持した構成を有している。発電体200は、アノード214の外側に配置されたアノード側拡散層226と、カソード215の外側に配置されたカソード側拡散層227と、を含んでいる。アノード側拡散層226およびカソード側拡散層227は、MEA210を両側から挟むように配置され、それぞれ反応ガスとしての水素ガスもしくは空気を拡散させつつアノード214やカソード215に供給する。なお、発電体200は、アノード側拡散層226およびカソード側拡散層227の少なくとも一方の外側に金属多孔体(例えばエキスパンドメタル)やカーボン多孔体などのガス拡散性および導電性を有する多孔質の材料で形成された多孔体流路層を備えていてもよい。本実施例における発電体200は、特許請求の範囲における「積層体」に該当する。 A-2. Schematic configuration of fuel cell:
FIG. 2 is a schematic cross-sectional view showing a schematic configuration of a single cell in the first embodiment. Aunit cell 140 of the fuel cell 100 includes a power generator 200 including a membrane electrode assembly (also referred to as MEA) 210 in which electrodes of an anode 214 and a cathode 215 are formed on each surface of an electrolyte membrane 212, and a pair of separators (cathode side). The structure is sandwiched between the separator 300 and the anode-side separator 400). The power generation body 200 includes an anode side diffusion layer 226 disposed outside the anode 214 and a cathode side diffusion layer 227 disposed outside the cathode 215. The anode side diffusion layer 226 and the cathode side diffusion layer 227 are arranged so as to sandwich the MEA 210 from both sides, and supply hydrogen gas or air as a reaction gas to the anode 214 and the cathode 215 while diffusing each. The power generation body 200 has a porous material having gas diffusibility and conductivity, such as a metal porous body (for example, expanded metal) or a carbon porous body, outside at least one of the anode side diffusion layer 226 and the cathode side diffusion layer 227. You may provide the porous body flow path layer formed by these. The power generator 200 in the present embodiment corresponds to a “laminated body” in the claims.
図2は、第1実施例における単セルの概略構成を表わす断面模式図である。燃料電池100の単セル140は、電解質膜212の各面にアノード214およびカソード215の電極が形成された膜電極接合体(MEAとも呼ばれる)210を含む発電体200を、一対のセパレータ(カソード側セパレータ300およびアノード側セパレータ400)によって挟持した構成を有している。発電体200は、アノード214の外側に配置されたアノード側拡散層226と、カソード215の外側に配置されたカソード側拡散層227と、を含んでいる。アノード側拡散層226およびカソード側拡散層227は、MEA210を両側から挟むように配置され、それぞれ反応ガスとしての水素ガスもしくは空気を拡散させつつアノード214やカソード215に供給する。なお、発電体200は、アノード側拡散層226およびカソード側拡散層227の少なくとも一方の外側に金属多孔体(例えばエキスパンドメタル)やカーボン多孔体などのガス拡散性および導電性を有する多孔質の材料で形成された多孔体流路層を備えていてもよい。本実施例における発電体200は、特許請求の範囲における「積層体」に該当する。 A-2. Schematic configuration of fuel cell:
FIG. 2 is a schematic cross-sectional view showing a schematic configuration of a single cell in the first embodiment. A
電解質膜212は、フッ素系樹脂材料あるいは炭化水素系樹脂材料で形成された固体高分子膜であり、湿潤状態において良好なプロトン導電性を有する。カソード215およびアノード214は、例えば、電気化学反応を進行する触媒金属(例えば白金)を担持したカーボン粒子(触媒担持担体)と、プロトン伝導性を有する高分子電解質(例えばフッ素系樹脂)を含んで構成されている。
The electrolyte membrane 212 is a solid polymer membrane formed of a fluorine resin material or a hydrocarbon resin material, and has good proton conductivity in a wet state. The cathode 215 and the anode 214 include, for example, carbon particles (catalyst support carrier) supporting a catalyst metal (for example, platinum) that progresses an electrochemical reaction, and a polymer electrolyte (for example, a fluorine-based resin) having proton conductivity. It is configured.
カソード側セパレータ300およびアノード側セパレータ400は、例えば、カーボンを圧縮してガス不透過とした緻密質カーボン等のカーボン製部材や、プレス成形したステンレス鋼など、ガス不透過の導電性部材によって形成されている。カソード側セパレータ300およびアノード側セパレータ400は、表面にガス流路を形成するための凹凸形状を有している。カソード側セパレータ300は、カソード側拡散層227との間に、カソード供給ガスが流通するカソードガス供給流路CSCと、カソード排ガスが流通するカソードガス排出流路CECとを形成する。アノード側セパレータ400は、アノード側拡散層226との間に、アノード供給ガスが流通するアノードガス供給流路ASCと、アノード排ガスが流通するアノードガス排出流路AECとを形成する。また、カソード側セパレータ300およびアノード側セパレータ400は、2つの発電体200の間において、アノード側拡散層226もしくはカソード側拡散層227と接する面と反対の面を互いに接触させた状態で重ねて配置され、カソード側セパレータ300と、アノード側セパレータ400との間に冷媒が流通する冷媒流路LFCを形成する。セパレータの具体的な構成は図3~5を用いて後述する。
The cathode-side separator 300 and the anode-side separator 400 are formed of, for example, a carbon-made member such as dense carbon that has been made to be gas-impermeable by compressing carbon, or a gas-impermeable conductive member such as press-formed stainless steel. ing. The cathode side separator 300 and the anode side separator 400 have a concavo-convex shape for forming a gas flow path on the surface. The cathode separator 300 forms a cathode gas supply channel CSC through which cathode supply gas flows and a cathode gas discharge channel CEC through which cathode exhaust gas flows, between the cathode side diffusion layer 227 and the cathode side diffusion layer 227. The anode-side separator 400 forms an anode gas supply flow path ASC through which anode supply gas flows and an anode gas discharge flow path AEC through which anode exhaust gas flows through the anode-side diffusion layer 226. Further, the cathode side separator 300 and the anode side separator 400 are disposed so as to overlap each other between the two power generators 200 with the surfaces opposite to the surfaces in contact with the anode side diffusion layer 226 or the cathode side diffusion layer 227 being in contact with each other. Then, a refrigerant flow path LFC in which a refrigerant flows between the cathode side separator 300 and the anode side separator 400 is formed. The specific configuration of the separator will be described later with reference to FIGS.
水素タンク50(図1)から供給されたアノード供給ガスは、水素ガス供給路53および後述するアノードガス供給マニホールドを経由してアノードガス供給流路ASCに流入する。アノードガス供給流路ASCを流通するアノード供給ガスは、アノード側拡散層226で拡散されつつアノード214に供給され、電気化学反応に供される。一方、アノード側拡散層226で拡散されたアノード供給ガスのうち、電気化学反応に供されなかったアノード供給ガスを含むアノード排ガスは、アノード側拡散層226からアノードガス排出流路AECに流入する。アノードガス排出流路AECを流通するアノード排ガスは、後述するアノードガス排出マニホールドおよびアノード排ガス路54(図1)を経由して燃料電池100の外部に放出される。
The anode supply gas supplied from the hydrogen tank 50 (FIG. 1) flows into the anode gas supply passage ASC via the hydrogen gas supply passage 53 and an anode gas supply manifold described later. The anode supply gas flowing through the anode gas supply flow path ASC is supplied to the anode 214 while being diffused by the anode side diffusion layer 226, and is subjected to an electrochemical reaction. On the other hand, of the anode supply gas diffused in the anode side diffusion layer 226, the anode exhaust gas containing the anode supply gas that has not been subjected to the electrochemical reaction flows from the anode side diffusion layer 226 into the anode gas discharge channel AEC. The anode exhaust gas flowing through the anode gas discharge passage AEC is discharged to the outside of the fuel cell 100 via an anode gas discharge manifold and an anode exhaust passage 54 (FIG. 1) described later.
エアコンプレッサ60(図1)から供給されたカソード供給ガスは、酸化ガス供給路61および後述するカソードガス供給マニホールドを経由してカソードガス供給流路CSCに流入する。カソードガス供給流路CSCを流通するカソード供給ガスは、カソード側拡散層227で拡散されつつカソード215に供給され、電気化学反応に供される。一方、カソード側拡散層227で拡散されたカソード供給ガスのうち、電気化学反応に供されなかったカソード供給ガスを含むカソード排ガスは、カソード側拡散層227からカソードガス排出流路CECに流入する。カソードガス排出流路CECを流通するカソード排ガスは、後述するカソードガス排出マニホールドおよびカソード排ガス路63(図1)を経由して燃料電池100の外部に放出される。
The cathode supply gas supplied from the air compressor 60 (FIG. 1) flows into the cathode gas supply channel CSC via the oxidizing gas supply channel 61 and a cathode gas supply manifold described later. The cathode supply gas flowing through the cathode gas supply channel CSC is supplied to the cathode 215 while being diffused by the cathode side diffusion layer 227, and is subjected to an electrochemical reaction. On the other hand, of the cathode supply gas diffused in the cathode side diffusion layer 227, the cathode exhaust gas containing the cathode supply gas that has not been subjected to the electrochemical reaction flows from the cathode side diffusion layer 227 into the cathode gas discharge channel CEC. The cathode exhaust gas flowing through the cathode gas discharge channel CEC is discharged to the outside of the fuel cell 100 via a cathode gas discharge manifold and a cathode exhaust gas channel 63 (FIG. 1) which will be described later.
冷媒循環ポンプ71から送られる冷媒Lcは、冷媒循環流路72(図1)および後述する冷媒供給マニホールドを経由して冷媒流路LFCに流入する。冷媒流路LFCを流通する冷媒Lcは、カソード側セパレータ300もしくはアノード側セパレータ400を介して発電体200から熱を吸収し、冷媒排出マニホールドを経由して冷媒循環流路73(図1)に放出される。
The refrigerant Lc sent from the refrigerant circulation pump 71 flows into the refrigerant flow path LFC via the refrigerant circulation flow path 72 (FIG. 1) and a refrigerant supply manifold described later. The refrigerant Lc flowing through the refrigerant flow path LFC absorbs heat from the power generator 200 via the cathode side separator 300 or the anode side separator 400 and releases it to the refrigerant circulation flow path 73 (FIG. 1) via the refrigerant discharge manifold. Is done.
A-3.セパレータの概略構成:
図3は、第1実施例におけるカソード側セパレータの概略構成を示す説明図である。本実施例では、カソード側セパレータ300とアノード側セパレータ400は同様の形状を有しているため、ここでは、カソード側セパレータ300の概略構成についてのみ説明する。カソード側セパレータ300は、長方形の板状の外形を備え、長手方向(x方向)の両端部にマニホールドを構成するための開口部が形成されている。カソード側セパレータ300のほか、アノード側セパレータ400や、発電体200の外周部に形成された図示しない枠状部材においても同様に開口部が形成されているため、単セル140は、カソード側セパレータ300、枠状部材、および、アノード側セパレータ400が積層されることにより、これらの開口部が連通して、複数のマニホールドが形成される。 A-3. Schematic configuration of separator:
FIG. 3 is an explanatory diagram showing a schematic configuration of the cathode separator in the first embodiment. In this embodiment, since thecathode side separator 300 and the anode side separator 400 have the same shape, only the schematic configuration of the cathode side separator 300 will be described here. The cathode-side separator 300 has a rectangular plate-like outer shape, and openings for constituting a manifold are formed at both ends in the longitudinal direction (x direction). In addition to the cathode-side separator 300, the anode-side separator 400 and a frame-like member (not shown) formed on the outer periphery of the power generator 200 are similarly formed with openings, so that the single cell 140 includes the cathode-side separator 300. By stacking the frame-shaped member and the anode-side separator 400, these openings communicate with each other to form a plurality of manifolds.
図3は、第1実施例におけるカソード側セパレータの概略構成を示す説明図である。本実施例では、カソード側セパレータ300とアノード側セパレータ400は同様の形状を有しているため、ここでは、カソード側セパレータ300の概略構成についてのみ説明する。カソード側セパレータ300は、長方形の板状の外形を備え、長手方向(x方向)の両端部にマニホールドを構成するための開口部が形成されている。カソード側セパレータ300のほか、アノード側セパレータ400や、発電体200の外周部に形成された図示しない枠状部材においても同様に開口部が形成されているため、単セル140は、カソード側セパレータ300、枠状部材、および、アノード側セパレータ400が積層されることにより、これらの開口部が連通して、複数のマニホールドが形成される。 A-3. Schematic configuration of separator:
FIG. 3 is an explanatory diagram showing a schematic configuration of the cathode separator in the first embodiment. In this embodiment, since the
具体的には、単セル140には、燃料電池100に供給されたアノード供給ガスを各単セル140に分配するアノードガス供給マニホールド162と、燃料電池100に供給されたカソード供給ガスを各単セル140に分配するカソードガス供給マニホールド152と、各単セル140から排出されるアノード排ガスを集めて燃料電池100の外部に排出するアノードガス排出マニホールド164と、各単セル140から排出されるカソード排ガスを集めて燃料電池100の外部に排出するカソードガス排出マニホールド154と、燃料電池100に供給された冷媒Lcを各単セル140に分配する冷媒供給マニホールド172と、各単セル140から排出される冷媒Lcを集めて燃料電池100の外部に排出する冷媒排出マニホールド174と、が形成される。上記各マニホールドは、燃料電池100の積層方向(z方向)に略平行な方向に延伸する流路である。
Specifically, the single cell 140 includes an anode gas supply manifold 162 that distributes the anode supply gas supplied to the fuel cell 100 to each single cell 140, and a cathode supply gas supplied to the fuel cell 100 to each single cell. A cathode gas supply manifold 152 that distributes to 140, an anode gas discharge manifold 164 that collects anode exhaust gas discharged from each single cell 140 and discharges it to the outside of the fuel cell 100, and a cathode exhaust gas discharged from each single cell 140. The cathode gas discharge manifold 154 that collects and discharges the fuel cell 100 to the outside, the refrigerant supply manifold 172 that distributes the refrigerant Lc supplied to the fuel cell 100 to each single cell 140, and the refrigerant Lc discharged from each single cell 140 The refrigerant discharge manifold 1 that collects and discharges the fuel to the outside of the fuel cell 100 4, is formed. Each manifold is a flow path extending in a direction substantially parallel to the stacking direction (z direction) of the fuel cell 100.
カソード側セパレータ300は、上記の開口部の他に、ガス供給流路溝310と、ガス排出流路溝320と、ガス移動流路溝330と、を備える。ガス供給流路溝310は、カソード側拡散層227との間にカソード供給ガスが流通するカソードガス供給流路CSCを形成する。ガス供給流路溝310は、ガス供給束流路溝311と、複数のガス供給支流路溝312と、を備えている。ガス供給束流路溝311は、カソードガス供給マニホールド152とガス供給支流路溝312とを接続し、カソードガス供給マニホールド152から流入するカソード供給ガスを各ガス供給支流路溝312に分配する。ガス供給支流路溝312は、カソード側セパレータ300の長手方向(x方向)に延伸した長溝状の外形を備え、一方の端部がガス供給束流路溝311に接続され、他方の端部が閉塞部Pbにより閉塞されている。本実施例におけるガス供給支流路溝312は、特許請求の範囲における「ガス供給流路形成部」に該当する。
The cathode-side separator 300 includes a gas supply channel groove 310, a gas discharge channel groove 320, and a gas movement channel groove 330 in addition to the above opening. The gas supply channel groove 310 forms a cathode gas supply channel CSC through which the cathode supply gas flows between the cathode side diffusion layer 227 and the gas supply channel groove 310. The gas supply channel groove 310 includes a gas supply bundle channel groove 311 and a plurality of gas supply branch channel grooves 312. The gas supply bundle channel groove 311 connects the cathode gas supply manifold 152 and the gas supply branch channel groove 312, and distributes the cathode supply gas flowing in from the cathode gas supply manifold 152 to each gas supply branch channel groove 312. The gas supply branch channel groove 312 has a long groove-like outer shape extending in the longitudinal direction (x direction) of the cathode-side separator 300, one end is connected to the gas supply bundle channel groove 311, and the other end is It is blocked by the blocking part Pb. The gas supply branch passage groove 312 in this embodiment corresponds to a “gas supply passage formation portion” in the claims.
一方、ガス排出流路溝320は、カソード側拡散層227との間にカソード排ガスが流通するカソードガス排出流路CECを形成する。ガス排出流路溝320は、ガス排出束流路溝321と、複数のガス排出支流路溝322と、を備えている。ガス排出束流路溝321は、カソードガス排出マニホールド154とガス排出支流路溝322とを接続し、ガス排出支流路溝322から流入するカソード排ガスを集めてカソードガス排出マニホールド154に排出する。ガス排出支流路溝322は、カソード側セパレータ300の長手方向(x方向)に延伸した長溝状の外形を備え、一方の端部が閉塞部Pbにより閉塞され、他方の端部がガス排出束流路溝321に接続されている。本実施例におけるガス排出支流路溝322は、特許請求の範囲における「ガス排出流路形成部」に該当する。
On the other hand, the gas discharge channel groove 320 forms a cathode gas discharge channel CEC in which the cathode exhaust gas circulates with the cathode side diffusion layer 227. The gas discharge channel groove 320 includes a gas discharge bundle channel groove 321 and a plurality of gas discharge branch channel grooves 322. The gas discharge bundle channel groove 321 connects the cathode gas discharge manifold 154 and the gas discharge branch channel groove 322, collects the cathode exhaust gas flowing in from the gas discharge branch channel groove 322, and discharges it to the cathode gas discharge manifold 154. The gas discharge branch channel groove 322 has a long groove-like outer shape extending in the longitudinal direction (x direction) of the cathode-side separator 300, one end is closed by the closing portion Pb, and the other end is the gas discharge bundle flow. It is connected to the road groove 321. The gas discharge branch channel groove 322 in the present embodiment corresponds to a “gas discharge channel forming part” in the claims.
カソード側セパレータ300は、ガス供給流路溝310と、ガス排出流路溝320と、が一体となった構成をとらずに、ガス供給支流路溝312とガス排出支流路溝322とがカソード側セパレータ300の短手方向(y方向)において交互に配置された、いわゆるIDFF(Inter-Digitate Flow Field)型の流路溝を備えている。カソード側セパレータ300は、ガス供給束流路溝311を流通するカソード供給ガスの流通方向とガス排出束流路溝321を流通するカソード排ガスの流通方向がともにy方向となるように形成されている。以後、カソード側セパレータ300のx方向において、ガス供給束流路溝311やガス排出束流路溝321を流通するガスの流通方向上流側をカソード側セパレータ300の上流側とも呼び、ガス供給束流路溝311やガス排出束流路溝321を流通するガスの流通方向下流側をカソード側セパレータ300の下流側とも呼ぶ。なお、図2は、ガス供給支流路溝312とガス排出支流路溝322とが交互に配置されている領域の断面を表している。また、ガス供給支流路溝312とガス排出支流路溝322の数は任意に設定することができる。
The cathode separator 300 does not have a configuration in which the gas supply channel groove 310 and the gas discharge channel groove 320 are integrated, but the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 are on the cathode side. There are provided so-called IDFF (Inter-Digitate-Flow-Field) -type channel grooves alternately arranged in the short direction (y-direction) of the separator 300. The cathode separator 300 is formed such that the flow direction of the cathode supply gas flowing through the gas supply bundle flow channel groove 311 and the flow direction of the cathode exhaust gas flowing through the gas discharge bundle flow channel groove 321 are both in the y direction. . Hereinafter, in the x direction of the cathode-side separator 300, the upstream side of the gas flowing in the gas supply bundle channel groove 311 and the gas discharge bundle channel groove 321 is also called the upstream side of the cathode-side separator 300, and the gas supply bundle flow The downstream side in the flow direction of the gas flowing through the channel groove 311 and the gas discharge bundle channel groove 321 is also referred to as the downstream side of the cathode separator 300. FIG. 2 shows a cross section of a region where the gas supply branch channel grooves 312 and the gas discharge branch channel grooves 322 are alternately arranged. Further, the number of the gas supply branch channel grooves 312 and the gas discharge branch channel grooves 322 can be arbitrarily set.
カソード側セパレータ300は、ガス供給支流路溝312とガス排出支流路溝322との間に、両側の凹状の溝によって相対的に凸状に形成されたリブの頂部に形成された領域であるリブ領域Awを複数備えている。カソード側セパレータ300は、各リブ領域Awに複数のガス移動流路溝330を備えている。ガス移動流路溝330は、一方の端部がガス供給支流路溝312と接続され、他方の端部がガス排出支流路溝322と接続された細溝状の外形を備える。これにより、ガス移動流路溝330は、カソード側拡散層227との間に、カソードガス供給流路CSCを流通するカソード供給ガスの一部がカソード側拡散層227を経由せずにカソードガス排出流路CECに移動するためのバイパス流路を形成する。ガス供給支流路溝312、ガス排出支流路溝322、および、ガス移動流路溝330について、図4~図5を用いて詳述する。
The cathode separator 300 is a rib that is an area formed on the top of a rib formed relatively convex by concave grooves on both sides between the gas supply branch channel groove 312 and the gas discharge branch channel groove 322. A plurality of areas Aw are provided. The cathode-side separator 300 includes a plurality of gas movement channel grooves 330 in each rib region Aw. The gas movement channel groove 330 has a narrow groove-shaped outer shape in which one end is connected to the gas supply branch channel groove 312 and the other end is connected to the gas discharge branch channel groove 322. As a result, a part of the cathode supply gas flowing through the cathode gas supply channel CSC does not pass through the cathode side diffusion layer 227 between the gas movement channel groove 330 and the cathode side diffusion layer 227, and the cathode gas is discharged. A bypass channel for moving to the channel CEC is formed. The gas supply branch channel groove 312, the gas discharge branch channel groove 322, and the gas movement channel groove 330 will be described in detail with reference to FIGS.
図4は、第1実施例におけるガス供給支流路溝およびガス排出支流路溝を斜視的に示した説明図である。図4の下方側は、図3のガス供給束流路溝311側と対応し、図4の上方側は、図3のガス排出束流路溝321側に対応している。図4に示すように、ガス供給支流路溝312は、一対のガス供給支流路側面部312sと、ガス供給支流路閉塞面部312bとを備えている。一対のガス供給支流路側面部312sは、それぞれガス供給支流路溝312の延伸方向(x方向)と沿った方向に延伸した長尺状の外形を備え、ガス供給支流路溝312のy方向の溝断面において、両側の側面を形成する。ガス供給支流路閉塞面部312bは、ガス供給支流路溝312の閉塞部Pbと接する面に形成され、ガス供給支流路溝312の閉塞された端部において、一対のガス供給支流路側面部312sとそれぞれ接続されている。すなわち、ガス供給支流路閉塞面部312bは、一対のガス供給支流路側面部312sの互いの端部を繋ぐように形成されている。本実施例におけるガス供給支流路側面部312sは、特許請求の範囲における「側面部」に該当する。本実施例におけるガス供給支流路閉塞面部312bは、特許請求の範囲における「閉塞面部」に該当する。
FIG. 4 is an explanatory view perspectively showing the gas supply branch channel groove and the gas discharge branch channel groove in the first embodiment. The lower side of FIG. 4 corresponds to the gas supply bundle channel groove 311 side of FIG. 3, and the upper side of FIG. 4 corresponds to the gas discharge bundle channel groove 321 side of FIG. As shown in FIG. 4, the gas supply branch channel groove 312 includes a pair of gas supply branch channel side surfaces 312 s and a gas supply branch channel blocking surface 312 b. Each of the pair of gas supply branch passage side surfaces 312 s has a long outer shape extending in a direction along the extending direction (x direction) of the gas supply branch passage groove 312, and the gas supply branch passage groove 312 extends in the y direction. Side surfaces on both sides are formed in the groove cross section. The gas supply branch channel closed surface portion 312b is formed on a surface in contact with the closed portion Pb of the gas supply branch channel groove 312. At the closed end portion of the gas supply branch channel groove 312, a pair of gas supply branch channel side surfaces 312s and Each is connected. In other words, the gas supply branch passage blocking surface portion 312b is formed so as to connect the ends of the pair of gas supply branch passage side portions 312s. The gas supply branch passage side surface 312s in this embodiment corresponds to a “side surface” in the claims. The gas supply branch passage blocking surface portion 312b in the present embodiment corresponds to a “closing surface portion” in the claims.
一方、ガス排出支流路溝322は、一対のガス排出支流路側面部322sと、ガス排出支流路閉塞面部322bとを備えている。一対のガス排出支流路側面部322sは、それぞれガス排出支流路溝322の延伸方向(x方向)と沿った方向に延伸した長尺状の外形を備え、ガス排出支流路溝322のy方向の溝断面において、両側の側面を形成する。ガス排出支流路閉塞面部322bは、ガス排出支流路溝322の閉塞部Pbと接する面に形成され、ガス排出支流路溝322の閉塞された端部において、一対のガス排出支流路側面部322sとそれぞれ接続されている。すなわち、ガス排出支流路閉塞面部322bは、一対のガス排出支流路側面部322sの互いの端部を繋ぐように形成されている。
On the other hand, the gas discharge branch flow channel groove 322 includes a pair of gas discharge branch flow channel side surfaces 322s and a gas discharge branch flow channel blocking surface portion 322b. Each of the pair of gas discharge branch channel side surfaces 322s has an elongated outer shape extending in a direction along the extending direction (x direction) of the gas discharge branch channel groove 322, and the gas discharge branch channel groove 322 in the y direction. Side surfaces on both sides are formed in the groove cross section. The gas discharge branch channel closed surface portion 322b is formed on a surface in contact with the closed portion Pb of the gas discharge branch channel groove 322. At the closed end of the gas discharge branch channel groove 322, a pair of gas discharge branch channel side surfaces 322s and Each is connected. In other words, the gas discharge branch channel blocking surface portion 322b is formed to connect the ends of the pair of gas discharge branch channel side surfaces 322s.
本実施例では、ガス供給支流路溝312およびガス排出支流路溝322の溝幅、すなわち、y方向の幅は、0.8mm~2mmの範囲となるように形成されている。また、ガス供給支流路溝312およびガス排出支流路溝322の溝の深さは、0.2mm~1mmの範囲となるように形成されている。なお、本実施例では、ガス供給支流路溝312およびガス排出支流路溝322は、一対のガス供給支流路側面部312sもしくは一対のガス排出支流路側面部322s(以後、それぞれを単に、「一対の側面部」とも呼ぶ)の間に底面部を備えているが、一対の側面部の間に底面部を備えず、側面部同士が直接接する形状であってもよい。すなわち、ガス供給支流路溝312およびガス排出支流路溝322の断面形状は、略コの字状のように側面と底面とを備える形状に限定されず、略Vの字状のように側面のみにより構成される形状であってもよいし、略Uの字状のように側面が曲線を有していてもよいし、両側の側面が曲線を有することにより側面同士が接する境界が一義的に規定できない形状であってもよい。
In this embodiment, the groove width of the gas supply branch channel groove 312 and the gas discharge branch channel groove 322, that is, the width in the y direction is formed to be in the range of 0.8 mm to 2 mm. The depths of the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 are formed to be in the range of 0.2 mm to 1 mm. In the present embodiment, the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 are either a pair of gas supply branch channel side portions 312 s or a pair of gas discharge branch channel side portions 322 s (hereinafter each referred to simply as “pair”. The bottom surface portion is provided between the pair of side surface portions, and the side surface portions may be in direct contact with each other. That is, the cross-sectional shape of the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 is not limited to a shape having a side surface and a bottom surface as in a substantially U shape, but only a side surface as in a substantially V shape. The side surface may have a curved line as in a substantially U shape, or the boundary between the side surfaces is uniquely defined by the curved side surfaces on both sides. It may be a shape that cannot be defined.
リブ領域Awは、一対の長辺と一対の短辺とを備える長方形状の外形を有し、一方の長辺がガス供給支流路側面部312sと接し、他方の長辺がガス排出支流路側面部322sと接している。また、リブ領域Awは、一方の短辺のx方向における位置が、隣接するガス供給支流路閉塞面部312bのx方向における位置と等しく、他方の短辺のx方向における位置が、隣接するガス排出支流路閉塞面部322bのx方向における位置と等しい。リブ領域Awの一方の長辺から他方の長辺までの距離、すなわち、リブ領域Awのy方向における幅は、0.8mm~2mmの範囲となるように形成されている。また言い換えると、ガス供給支流路溝312とガス排出支流路溝322とのy方向における間隔は、0.8mm~2mmの範囲となるように形成されている。
The rib region Aw has a rectangular outer shape having a pair of long sides and a pair of short sides, one long side is in contact with the gas supply branch channel side surface 312s, and the other long side is a gas discharge branch channel side surface. It is in contact with the part 322s. In the rib region Aw, the position in the x direction of one short side is equal to the position in the x direction of the adjacent gas supply branch passage blocking surface portion 312b, and the position in the x direction of the other short side is the adjacent gas discharge. It is equal to the position in the x direction of the branch channel blocking surface portion 322b. The distance from one long side of the rib area Aw to the other long side, that is, the width in the y direction of the rib area Aw is formed to be in the range of 0.8 mm to 2 mm. In other words, the gap in the y direction between the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 is formed to be in the range of 0.8 mm to 2 mm.
ガス移動流路溝330は、リブ領域Awの一方の長辺と接しているガス供給支流路側面部312sと、他方の長辺と接しているガス排出支流路側面部322sとを直線状に繋ぐように形成されている。ガス移動流路溝330は、リブ領域Awにおいて、互いに平行になるようにして複数配置されている。本実施例では、ガス移動流路溝330は、リブ領域Awの一方の短辺から他方の短辺までの間の全範囲において、x方向に等間隔に並んで配置されている。すなわち、ガス移動流路溝330は、x方向において、リブ領域Awと隣接するガス供給支流路閉塞面部312bから、リブ領域Awと隣接するガス排出支流路閉塞面部322bのまでの間の全範囲において等間隔に並んで配置されている。また、本実施例では、ガス移動流路溝330は、ガス供給支流路側面部312sと接続されている位置が、ガス排出支流路側面部322sと接続さている位置より、x方向において上流側となるように、y方向に対して斜めに配置されている。
The gas movement channel groove 330 linearly connects the gas supply branch channel side surface portion 312s in contact with one long side of the rib region Aw and the gas discharge branch channel side surface portion 322s in contact with the other long side. It is formed as follows. A plurality of gas movement flow path grooves 330 are arranged in parallel to each other in the rib region Aw. In the present embodiment, the gas movement flow path grooves 330 are arranged at equal intervals in the x direction in the entire range from one short side to the other short side of the rib region Aw. That is, in the x direction, the gas movement flow channel groove 330 is in the entire range from the gas supply branch flow passage blocking surface portion 312b adjacent to the rib region Aw to the gas discharge branch flow passage blocking surface portion 322b adjacent to the rib region Aw. They are arranged at equal intervals. Further, in the present embodiment, the gas movement flow channel groove 330 is located upstream of the position connected to the gas supply branch channel side surface 312s in the x direction from the position connected to the gas discharge branch channel side surface 322s. In such a manner, they are arranged obliquely with respect to the y direction.
図5は、第1実施例におけるガス移動流路溝の形状を説明するための説明図である。図5は、ガス供給支流路溝312からガス移動流路溝330を見たときの構成を模式的に示している。ガス移動流路溝330は、Vの字状の断面を備え、溝の深さが、30μm~150μmの範囲となるように形成され、溝幅すなわちx方向の幅が、50μm~200μmの範囲となるように形成されている。また、ガス移動流路溝330は、x方向における配置間隔(ピッチ)が、0.3mm~1.2mmの範囲となるように配置されている。ガス移動流路溝330は、ガス移動流路溝330と、カソード側拡散層227により形成されるガス移動流路の断面積が、カソードガス供給流路CSCやカソードガス排出流路CECの断面積の1/10以下となるように形成されている。すなわち、ガス移動流路溝330の断面積は、ガス供給支流路溝312の断面積やガス排出支流路溝322の断面積の1/10以下となるように形成されている。また、ガス移動流路溝330は、カソード側拡散層227より親水性が高くなるように形成されている。これにより、キャピラリー圧による排水をおこなうことができる。ガス移動流路溝330の親水性の程度は、例えば、接触角が100°より小さくなる程度であればよい。
FIG. 5 is an explanatory diagram for explaining the shape of the gas movement channel groove in the first embodiment. FIG. 5 schematically shows a configuration when the gas movement channel groove 330 is viewed from the gas supply branch channel groove 312. The gas movement channel groove 330 has a V-shaped cross section, is formed so that the groove depth is in the range of 30 μm to 150 μm, and the groove width, that is, the width in the x direction is in the range of 50 μm to 200 μm. It is formed to become. Further, the gas movement flow channel grooves 330 are arranged such that the arrangement interval (pitch) in the x direction is in the range of 0.3 mm to 1.2 mm. The gas movement flow channel groove 330 has a sectional area of the gas movement flow channel formed by the gas movement flow channel groove 330 and the cathode side diffusion layer 227, which is a cross sectional area of the cathode gas supply flow channel CSC or the cathode gas discharge flow channel CEC. It is formed so that it may become 1/10 or less. That is, the cross-sectional area of the gas moving flow channel groove 330 is formed to be 1/10 or less of the cross-sectional area of the gas supply branch channel groove 312 and the cross-sectional area of the gas discharge branch channel groove 322. Further, the gas movement flow channel groove 330 is formed so as to be more hydrophilic than the cathode side diffusion layer 227. Thereby, drainage by capillary pressure can be performed. The degree of hydrophilicity of the gas movement channel groove 330 may be such that the contact angle is less than 100 °, for example.
A-4.効果例:
ここでは、燃料電池100にカソード側セパレータ300を用いることにより生じる効果の一例について説明する。図6は、比較例としてのガス移動流路溝を備えていないカソード側セパレータとガス拡散層との境界付近を模式的に示した説明図である。図7は、第1実施例に係るカソード側セパレータとガス拡散層との境界付近を模式的に示した説明図である。 A-4. Example of effect:
Here, an example of an effect produced by using the cathode-side separator 300 in the fuel cell 100 will be described. FIG. 6 is an explanatory view schematically showing the vicinity of the boundary between the cathode side separator and the gas diffusion layer that are not provided with the gas movement flow channel as a comparative example. FIG. 7 is an explanatory view schematically showing the vicinity of the boundary between the cathode separator and the gas diffusion layer according to the first embodiment.
ここでは、燃料電池100にカソード側セパレータ300を用いることにより生じる効果の一例について説明する。図6は、比較例としてのガス移動流路溝を備えていないカソード側セパレータとガス拡散層との境界付近を模式的に示した説明図である。図7は、第1実施例に係るカソード側セパレータとガス拡散層との境界付近を模式的に示した説明図である。 A-4. Example of effect:
Here, an example of an effect produced by using the cathode-
比較例に係る燃料電池100wでは、図6に示すように、電気化学反応等によりカソード内部に液体Wgが生じると、液体Wgがカソード側拡散層227の内部、特にカソード側セパレータ300wのリブ領域Awと接している領域の内部に滞留する。これは、カソード側拡散層227の内部のうち、カソードガス供給流路CSCやカソードガス排出流路CECと接している領域の内部では、カソードガス供給流路CSCから供給されるカソード供給ガスによる押し出しや、カソードガス排出流路CECへの排出により、液体Wgの滞留が抑制されるのに対し、リブ領域Awと接している領域の内部では、カソードガス供給流路CSCまでの距離が長いことによるガス圧損の増大や、排出先のカソードガス排出流路CECまでの距離が長いこと等により、液体Wgが容易に排出されないためである。リブ領域Awと接している領域の付近のカソード側拡散層227の内部に液体Wgが滞留することにより、カソード側拡散層227の内部、特にリブ領域Awと接している領域付近の内部においてカソード供給ガスの拡散が妨げられる。これにより、カソード215において、カソード供給ガスが供給される領域の面積が減少し、発電効率が低下する。
In the fuel cell 100w according to the comparative example, as shown in FIG. 6, when the liquid Wg is generated inside the cathode due to an electrochemical reaction or the like, the liquid Wg is inside the cathode side diffusion layer 227, particularly the rib region Aw of the cathode side separator 300w. It stays in the area that touches. This is because the inside of the cathode side diffusion layer 227 is extruded by the cathode supply gas supplied from the cathode gas supply channel CSC in the region in contact with the cathode gas supply channel CSC and the cathode gas discharge channel CEC. Further, the discharge to the cathode gas discharge channel CEC suppresses the retention of the liquid Wg, while the distance to the cathode gas supply channel CSC is long inside the region in contact with the rib region Aw. This is because the liquid Wg is not easily discharged due to an increase in gas pressure loss and a long distance to the cathode gas discharge channel CEC as a discharge destination. The liquid Wg stays in the cathode side diffusion layer 227 in the vicinity of the region in contact with the rib region Aw, so that the cathode supply is provided in the cathode side diffusion layer 227, particularly in the vicinity of the region in contact with the rib region Aw. Gas diffusion is hindered. Thereby, in the cathode 215, the area of the area | region where cathode supply gas is supplied reduces, and electric power generation efficiency falls.
一方、本実施例に係る燃料電池100は、ガス供給支流路溝312とガス排出支流路溝322との間にガス移動流路溝330を備えているため、図7に示すように、カソードガス供給流路CSCとカソードガス排出流路CECとの間にガス移動流路が形成される。カソード側セパレータ300のようなIDFF型の流路溝を有するセパレータを用いた燃料電池100は、発電時にカソードガス供給流路CSCの内部とカソードガス排出流路CECの内部との間で圧力差が生じているため、ガス移動流路によって、カソードガス供給流路CSCの内部のカソード供給ガスがガス移動流路を経由してカソードガス排出流路CECに導出される。すなわち、カソード側セパレータ300wのリブ領域Awとカソード側拡散層227との間にカソード供給ガスを強制的に流通させることができる。これにより、カソード側セパレータ300wのリブ領域Awと接しているカソード側拡散層227の内部に液体Wgが存在しても、カソード側拡散層227の内部の液体Wgは、ガス移動流路側に移動してガス移動流路から排出されるため、カソード側拡散層227の内部に液体Wgが滞留することを抑制することができる。よって、カソード側拡散層227の内部において液体Wgによりカソード供給ガスの拡散が妨げられる領域を低減させることができ、発電効率を向上させることができる。
On the other hand, since the fuel cell 100 according to the present embodiment includes the gas movement flow channel groove 330 between the gas supply branch channel groove 312 and the gas discharge branch channel groove 322, as shown in FIG. A gas movement channel is formed between the supply channel CSC and the cathode gas discharge channel CEC. The fuel cell 100 using a separator having an IDFF type channel groove such as the cathode side separator 300 has a pressure difference between the inside of the cathode gas supply channel CSC and the inside of the cathode gas discharge channel CEC during power generation. Therefore, the cathode supply gas inside the cathode gas supply channel CSC is led out to the cathode gas discharge channel CEC via the gas transfer channel by the gas transfer channel. That is, the cathode supply gas can be forced to flow between the rib region Aw of the cathode separator 300 w and the cathode diffusion layer 227. Thereby, even if the liquid Wg exists in the cathode side diffusion layer 227 in contact with the rib region Aw of the cathode side separator 300w, the liquid Wg in the cathode side diffusion layer 227 moves to the gas movement flow path side. Therefore, the liquid Wg can be prevented from staying in the cathode side diffusion layer 227. Therefore, the region where the diffusion of the cathode supply gas is hindered by the liquid Wg inside the cathode side diffusion layer 227 can be reduced, and the power generation efficiency can be improved.
A-5.試験例:
(第1試験)
第1試験では、本発明の一態様となるカソード側セパレータを含む、3つのカソード側セパレータを用いて、ガス移動流路溝の有無による発電性能の違いについて調べた。まず、本発明の一態様となる実施例1のカソード側セパレータ300は、ガス供給支流路溝312およびガス排出支流路溝322の溝幅が、0.8mm、リブ領域Awのy方向における幅が、1.6mmとなるように形成され、リブ領域Awにガス移動流路溝330を備えている。比較例2のカソード側セパレータは、実施例1のカソード側セパレータ300と比較して、リブ領域Awにガス移動流路溝330を備えていない点のみが異なる。比較例3のカソード側セパレータは、実施例1および比較例2のカソード側セパレータが図3に示すようなIDFF型流路溝を有しているのに対して、閉塞部Pbを備えずに、ガス供給束流路溝311およびガス排出束流路溝321が、ガス供給支流路溝312およびガス排出支流路溝322によって直線的に接続されたストレート型流路溝を有する。比較例3のカソード側セパレータは、リブ領域Awにガス移動流路溝330を備えていない。実施例1、比較例2、および、比較例3をそれぞれ用いた3つの燃料電池について、40℃、過加湿条件下で発電性能を比較した。 A-5. Test example:
(First test)
In the first test, the difference in power generation performance depending on the presence / absence of a gas movement flow channel groove was examined using three cathode-side separators including the cathode-side separator according to one embodiment of the present invention. First, in the cathode-side separator 300 of Example 1 which is an aspect of the present invention, the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 have a groove width of 0.8 mm, and the rib region Aw has a width in the y direction. , 1.6 mm, and is provided with a gas movement channel groove 330 in the rib region Aw. The cathode side separator of Comparative Example 2 is different from the cathode side separator 300 of Example 1 only in that the gas movement flow channel groove 330 is not provided in the rib region Aw. The cathode side separator of Comparative Example 3 has the IDFF type channel groove as shown in FIG. 3 while the cathode side separator of Example 1 and Comparative Example 2 does not include the blocking portion Pb. The gas supply bundle channel groove 311 and the gas discharge bundle channel groove 321 have straight type channel grooves linearly connected by the gas supply branch channel groove 312 and the gas discharge branch channel groove 322. The cathode side separator of Comparative Example 3 does not include the gas movement flow path groove 330 in the rib region Aw. For three fuel cells using Example 1, Comparative Example 2, and Comparative Example 3, respectively, the power generation performance was compared under conditions of 40 ° C. and excessive humidification.
(第1試験)
第1試験では、本発明の一態様となるカソード側セパレータを含む、3つのカソード側セパレータを用いて、ガス移動流路溝の有無による発電性能の違いについて調べた。まず、本発明の一態様となる実施例1のカソード側セパレータ300は、ガス供給支流路溝312およびガス排出支流路溝322の溝幅が、0.8mm、リブ領域Awのy方向における幅が、1.6mmとなるように形成され、リブ領域Awにガス移動流路溝330を備えている。比較例2のカソード側セパレータは、実施例1のカソード側セパレータ300と比較して、リブ領域Awにガス移動流路溝330を備えていない点のみが異なる。比較例3のカソード側セパレータは、実施例1および比較例2のカソード側セパレータが図3に示すようなIDFF型流路溝を有しているのに対して、閉塞部Pbを備えずに、ガス供給束流路溝311およびガス排出束流路溝321が、ガス供給支流路溝312およびガス排出支流路溝322によって直線的に接続されたストレート型流路溝を有する。比較例3のカソード側セパレータは、リブ領域Awにガス移動流路溝330を備えていない。実施例1、比較例2、および、比較例3をそれぞれ用いた3つの燃料電池について、40℃、過加湿条件下で発電性能を比較した。 A-5. Test example:
(First test)
In the first test, the difference in power generation performance depending on the presence / absence of a gas movement flow channel groove was examined using three cathode-side separators including the cathode-side separator according to one embodiment of the present invention. First, in the cathode-
図8は、第1試験における試験結果を説明するための説明図である。図8に示したグラフの縦軸は、燃料電池の単セルにおいて発電により生じる電圧(V)を示し、横軸は、電解質膜を流れる電流の電流密度(A/cm2)を示している。比較例2および比較例3のガス移動流路を備えていないカソード側セパレータを用いた燃料電池では、電気化学反応が活発化して液体Wgの発生量が増大する高電流密度域(>1A)では電圧降下が生じている。このことから、カソード側拡散層227の内部において、滞留した液体Wgによりカソード供給ガスの拡散が妨げられていることがわかる。また、電圧降下は、比較例2および比較例3のいずれの燃料電池においても発生していることから、ストレート型流路溝を有するセパレータに限られず、IDFF型流路溝を有するセパレータであっても、ガス移動流路溝330を備えていない場合には、カソード側拡散層227の内部に滞留する液体Wgを容易に排出できないことがわかる。
FIG. 8 is an explanatory diagram for explaining a test result in the first test. The vertical axis of the graph shown in FIG. 8 indicates the voltage (V) generated by power generation in the single cell of the fuel cell, and the horizontal axis indicates the current density (A / cm 2 ) of the current flowing through the electrolyte membrane. In the fuel cell using the cathode-side separator that is not provided with the gas movement flow path of Comparative Example 2 and Comparative Example 3, in the high current density region (> 1A) where the electrochemical reaction is activated and the generation amount of the liquid Wg is increased. There is a voltage drop. From this, it can be seen that the diffusion of the cathode supply gas is hindered by the staying liquid Wg in the cathode side diffusion layer 227. In addition, since the voltage drop occurs in any of the fuel cells of Comparative Example 2 and Comparative Example 3, the voltage drop is not limited to the separator having a straight flow channel, but a separator having an IDFF flow channel. However, it can be seen that the liquid Wg staying in the cathode side diffusion layer 227 cannot be easily discharged when the gas movement flow path groove 330 is not provided.
(第2試験)
第2試験では、上述の実施例1のカソード側セパレータを含む、3つのカソード側セパレータを用いて、IDFF型流路溝を有するセパレータにガス移動流路溝を形成した場合と、ストレート型流路溝を有するセパレータにガス移動流路溝を形成した場合の発電性能の違いについて調べた。比較例4のカソード側セパレータは、ストレート型流路溝を有し、図3に示したカソード側セパレータ300と比較して、閉塞部Pbを備えず、ガス供給支流路溝312およびガス排出支流路溝322の溝幅が、0.8mm、リブ領域Awのy方向における幅が、1.2mmとなるように形成されている。なお、比較例4のカソード側セパレータは、リブ領域Awにガス移動流路溝330を備えていない。比較例5のカソード側セパレータは、比較例4のカソード側セパレータと比較して、リブ領域Awにガス移動流路溝330を備えている点のみが異なる。実施例1、比較例4、および、比較例5をそれぞれ用いた3つの燃料電池について、40℃、過加湿条件下で発電性能を比較した。 (Second test)
In the second test, the case where the gas movement channel groove was formed in the separator having the IDFF type channel groove using three cathode side separators including the cathode side separator of Example 1 described above, and the straight type channel The difference in power generation performance when the gas transfer channel groove was formed in the separator having the groove was investigated. The cathode-side separator of Comparative Example 4 has a straight-type channel groove, and does not include the blocking portion Pb as compared with the cathode-side separator 300 shown in FIG. 3, and includes the gas supply branch channel groove 312 and the gas discharge branch channel. The groove 322 is formed so that the groove width is 0.8 mm, and the rib region Aw is 1.2 mm in width in the y direction. In addition, the cathode side separator of the comparative example 4 is not provided with the gas movement flow path groove 330 in the rib area | region Aw. The cathode separator of Comparative Example 5 is different from the cathode separator of Comparative Example 4 only in that the gas movement channel groove 330 is provided in the rib region Aw. The power generation performance of the three fuel cells using Example 1, Comparative Example 4, and Comparative Example 5 was compared at 40 ° C. under excessively humidified conditions.
第2試験では、上述の実施例1のカソード側セパレータを含む、3つのカソード側セパレータを用いて、IDFF型流路溝を有するセパレータにガス移動流路溝を形成した場合と、ストレート型流路溝を有するセパレータにガス移動流路溝を形成した場合の発電性能の違いについて調べた。比較例4のカソード側セパレータは、ストレート型流路溝を有し、図3に示したカソード側セパレータ300と比較して、閉塞部Pbを備えず、ガス供給支流路溝312およびガス排出支流路溝322の溝幅が、0.8mm、リブ領域Awのy方向における幅が、1.2mmとなるように形成されている。なお、比較例4のカソード側セパレータは、リブ領域Awにガス移動流路溝330を備えていない。比較例5のカソード側セパレータは、比較例4のカソード側セパレータと比較して、リブ領域Awにガス移動流路溝330を備えている点のみが異なる。実施例1、比較例4、および、比較例5をそれぞれ用いた3つの燃料電池について、40℃、過加湿条件下で発電性能を比較した。 (Second test)
In the second test, the case where the gas movement channel groove was formed in the separator having the IDFF type channel groove using three cathode side separators including the cathode side separator of Example 1 described above, and the straight type channel The difference in power generation performance when the gas transfer channel groove was formed in the separator having the groove was investigated. The cathode-side separator of Comparative Example 4 has a straight-type channel groove, and does not include the blocking portion Pb as compared with the cathode-
図9は、第2試験における試験結果を説明するための説明図である。図9に示したグラフの縦軸および横軸は、図8と同様であり、縦軸は、燃料電池の単セルにおいて発電により生じる電圧(V)を示し、横軸は、電解質膜を流れる電流の電流密度(A/cm2)を示している。まず、比較例4と比較例5とを比較すると、ストレート型流路溝を有するセパレータにおいても、ガス移動流路溝を形成することで発電性能が向上することがわかる。しかし、IDFF型流路溝を有するセパレータと比較すると、ガス移動流路溝を形成することによる発電性能の向上効果は小さい。これは、ストレート型流路溝を有するセパレータを用いた燃料電池は、発電中であってもカソードガス供給流路CSCとカソードガス排出流路CECの内部との間で圧力差が生じにくく、カソード側拡散層227に滞留している液体Wgを十分に排出できる程度にカソード供給ガスがガス移動流路を流通しないためである。なお、ストレート型流路溝を有するセパレータにガス移動流路溝を形成したことによる発電性能の向上効果は、ガス移動流路溝により形成されるガス移動流路を経由してカソード供給ガスがカソード側拡散層227のより広い範囲に供給されたことにより生じている。
FIG. 9 is an explanatory diagram for explaining a test result in the second test. The vertical axis and the horizontal axis of the graph shown in FIG. 9 are the same as those in FIG. 8, the vertical axis indicates the voltage (V) generated by power generation in the single cell of the fuel cell, and the horizontal axis indicates the current flowing through the electrolyte membrane. Current density (A / cm 2 ). First, when Comparative Example 4 and Comparative Example 5 are compared, it can be seen that the power generation performance is improved by forming the gas movement flow channel groove even in the separator having the straight flow channel. However, compared with a separator having an IDFF type channel groove, the effect of improving the power generation performance by forming the gas movement channel groove is small. This is because a fuel cell using a separator having a straight channel groove is unlikely to generate a pressure difference between the cathode gas supply channel CSC and the cathode gas discharge channel CEC even during power generation. This is because the cathode supply gas does not flow through the gas movement flow path to such an extent that the liquid Wg staying in the side diffusion layer 227 can be sufficiently discharged. The effect of improving the power generation performance by forming the gas movement flow channel groove in the separator having the straight type flow channel groove is that the cathode supply gas is supplied to the cathode via the gas movement flow channel formed by the gas movement flow channel groove. This is caused by being supplied to a wider range of the side diffusion layer 227.
また、実施例1と比較例5とを比較すると、比較例5のカソード側セパレータは、リブ領域Awのy方向における幅が、1.2mmであるのに対し、実施例1のカソード側セパレータ300は、リブ領域Awの幅が1.6mmであるため、セパレータの短辺方向(y方向)においてガス供給支流路溝312が占める割合が相対的に少ない。そのため、実施例1のカソード側セパレータ300を用いた燃料電池100は、比較例5のカソード側セパレータを用いた燃料電池よりもカソード215へのカソード供給ガスの供給能力が劣る。しかし、実施例1のカソード側セパレータ300を用いた燃料電池100は、ガス移動流路にカソード供給ガスを強制的に流通させてカソード側拡散層227の内部の液体Wgをガス移動流路に排出されることができるため、比較例5のカソード側セパレータを用いた燃料電池に比べて、カソード側拡散層227の内部においてカソード供給ガスをより広い範囲に拡散させることができる。そのため、実施例1のカソード側セパレータ300を用いた燃料電池100は、カソード215のより広い範囲にカソード供給ガスを供給することができ、発電効率を大きく向上させることができる。
Further, when Example 1 and Comparative Example 5 are compared, the cathode side separator of Comparative Example 5 is 1.2 mm in the width in the y direction of the rib region Aw, whereas the cathode side separator 300 of Example 1 is. Since the width of the rib region Aw is 1.6 mm, the ratio of the gas supply branch channel grooves 312 in the short side direction (y direction) of the separator is relatively small. Therefore, the fuel cell 100 using the cathode-side separator 300 of Example 1 is inferior to the fuel cell using the cathode-side separator of Comparative Example 5 in supplying the cathode supply gas to the cathode 215. However, in the fuel cell 100 using the cathode separator 300 of Example 1, the cathode supply gas is forced to flow through the gas movement channel and the liquid Wg inside the cathode side diffusion layer 227 is discharged to the gas movement channel. Therefore, the cathode supply gas can be diffused in a wider range inside the cathode side diffusion layer 227 compared to the fuel cell using the cathode side separator of Comparative Example 5. Therefore, the fuel cell 100 using the cathode-side separator 300 of Example 1 can supply the cathode supply gas to a wider range of the cathode 215, and can greatly improve the power generation efficiency.
以上説明した、第1実施例に係るカソード側セパレータ300によれば、IDFF型流路溝を有するセパレータを用いた燃料電池において、カソードガス供給流路CSCとカソードガス排出流路CECとの間に、カソードガス供給流路CSC内のカソード供給ガスをカソードガス排出流路CECに移動させるためのガス移動流路を形成することができるため、カソード側拡散層227の内部に液体Wgが滞留することによる発電効率の低下の抑制を図ることができる。具体的には、カソード側セパレータ300は、燃料電池100に用いられたときに、カソードガス供給流路CSCとカソードガス排出流路CECに端部がそれぞれ接続され、カソードガス供給流路CSCおよびカソードガス排出流路CECより断面積の小さいガス移動流路をカソードガス供給流路CSCとカソードガス排出流路CECとの間に形成する。これにより、燃料電池100は、発電時にガス移動流路の内部にカソード供給ガスを強制的に流通させてカソード側拡散層227の内部に滞留する液体Wgをカソード側拡散層227の外部に排出することができるため、IDFF型流路溝を有するセパレータを用いた燃料電池において、発電効率の低下の抑制を図ることができる。
According to the cathode separator 300 according to the first embodiment described above, in the fuel cell using the separator having the IDFF type channel groove, between the cathode gas supply channel CSC and the cathode gas discharge channel CEC. Since the gas movement flow path for moving the cathode supply gas in the cathode gas supply flow path CSC to the cathode gas discharge flow path CEC can be formed, the liquid Wg stays in the cathode side diffusion layer 227. It is possible to suppress a decrease in power generation efficiency due to the above. Specifically, when the cathode-side separator 300 is used in the fuel cell 100, the ends thereof are connected to the cathode gas supply channel CSC and the cathode gas discharge channel CEC, respectively. A gas movement channel having a smaller cross-sectional area than the gas discharge channel CEC is formed between the cathode gas supply channel CSC and the cathode gas discharge channel CEC. Thereby, the fuel cell 100 forcibly circulates the cathode supply gas inside the gas movement channel during power generation and discharges the liquid Wg staying inside the cathode side diffusion layer 227 to the outside of the cathode side diffusion layer 227. Therefore, in a fuel cell using a separator having an IDFF type channel groove, reduction in power generation efficiency can be suppressed.
従来から、IDFF型の流路溝を有するセパレータを用いた燃料電池では、セパレータのリブ領域Awと接するカソード側拡散層227の内部において液体Wgが滞留し、カソード供給ガスの拡散が妨げられることで発電効率が低下することがあった。しかし、本発明に係るカソード側セパレータ300を用いた燃料電池100は、発電時に生じるカソードガス供給流路CSCの内部とカソードガス排出流路CECの内部との圧力差を利用して、カソード側セパレータ300wのリブ領域Awとカソード側拡散層227との間にカソード供給ガスを強制的に流通させることができる。これにより、カソード側セパレータ300wのリブ領域Awと接しているカソード側拡散層227の内部に液体Wgが存在しても、液体Wgは、ガス移動流路側に移動してガス移動流路から排出されるため、カソード側拡散層227の内部に液体Wgが滞留することを抑制することができる。よって、カソード側拡散層227の内部において液体Wgによりカソード供給ガスの拡散が妨げられる領域を低減させることができ、発電効率を向上させることができる。
Conventionally, in a fuel cell using a separator having an IDFF type channel groove, the liquid Wg stays inside the cathode side diffusion layer 227 in contact with the rib region Aw of the separator, and the diffusion of the cathode supply gas is prevented. The power generation efficiency may be reduced. However, the fuel cell 100 using the cathode separator 300 according to the present invention uses the pressure difference between the cathode gas supply channel CSC and the cathode gas discharge channel CEC generated during power generation to use the cathode separator. The cathode supply gas can be forced to flow between the 300 w rib region Aw and the cathode side diffusion layer 227. Thereby, even if the liquid Wg exists inside the cathode side diffusion layer 227 in contact with the rib region Aw of the cathode side separator 300w, the liquid Wg moves to the gas movement channel side and is discharged from the gas movement channel. Therefore, the liquid Wg can be prevented from staying inside the cathode side diffusion layer 227. Therefore, the region where the diffusion of the cathode supply gas is hindered by the liquid Wg inside the cathode side diffusion layer 227 can be reduced, and the power generation efficiency can be improved.
第1実施例に係るカソード側セパレータ300によれば、ガス移動流路溝330は、リブ領域Awの一方の短辺から他方の短辺までの間の全範囲において、x方向に等間隔に並んで配置されているため、発電体200の内部に液体Wgが滞留することによる発電効率の低下の抑制を図ることができる。具体的には、発電などにより生じた液体Wgは、カソード側拡散層227の内部の広い範囲で滞留し、カソードガス供給流路CSCから供給されたカソード供給ガスの拡散を妨げる。そのため、ガス移動流路溝330をリブ領域Awの全範囲に形成することにより、広い範囲で、カソード側セパレータ300wのリブ領域Awとカソード側拡散層227との間にカソード供給ガスを強制的に流通させてカソード側拡散層227の内部に滞留する液体Wgをカソード側拡散層227の外部に排出することができる。よって、IDFF型流路溝を有するセパレータを用いた燃料電池において、発電効率を向上させることができる。
According to the cathode-side separator 300 according to the first embodiment, the gas movement flow path grooves 330 are arranged at equal intervals in the x direction over the entire range from one short side to the other short side of the rib region Aw. Therefore, it is possible to suppress a decrease in power generation efficiency due to the liquid Wg staying inside the power generation body 200. Specifically, the liquid Wg generated by power generation or the like stays in a wide range inside the cathode side diffusion layer 227 and prevents diffusion of the cathode supply gas supplied from the cathode gas supply channel CSC. Therefore, by forming the gas movement channel groove 330 in the entire range of the rib region Aw, the cathode supply gas is forcibly forced between the rib region Aw of the cathode side separator 300w and the cathode side diffusion layer 227 in a wide range. The liquid Wg that flows and stays inside the cathode side diffusion layer 227 can be discharged to the outside of the cathode side diffusion layer 227. Therefore, power generation efficiency can be improved in a fuel cell using a separator having an IDFF type channel groove.
第1実施例に係るカソード側セパレータ300によれば、ガス移動流路溝330は、ガス移動流路の断面積が、カソードガス供給流路CSCおよびカソードガス排出流路CECの断面積の1/10以下となるように形成されているため、発電体200の内部に液体Wgが滞留することによる発電効率の低下の抑制を図ることができる。具体的には、ガス移動流路の断面積を、ガス移動流路の両端が接続されているカソードガス供給流路CSCおよびカソードガス排出流路CECの断面積の1/10以下とすることで、ガス移動流路の内部の圧力損失によりガス移動流路の両端で圧力差が生じる。この圧力差により、ガス移動流路の内部にガスを強制的に流通させることができるため、カソード側拡散層227の内部に滞留する液体Wgをカソード側拡散層227の外部に排出することができる。すなわち、IDFF型流路溝を有するセパレータを用いた燃料電池において、発電効率を向上させることができる。具体的な一例として、ガス供給支流路溝312およびガス排出支流路溝322の溝の幅が0.8~2mmの範囲、溝の深さが0.2~1mmの範囲となるように形成し、ガス移動流路溝330の溝の幅が50~200μmの範囲、溝の深さが30~150μmの範囲となるように形成することにより、IDFF型流路溝を有するセパレータを用いた燃料電池において、発電効率を向上させることができる。
According to the cathode-side separator 300 according to the first embodiment, the gas movement flow channel groove 330 has a cross-sectional area of the gas movement flow channel that is 1 / of the cross-sectional area of the cathode gas supply flow channel CSC and the cathode gas discharge flow channel CEC. Since it is formed to be 10 or less, it is possible to suppress a decrease in power generation efficiency due to the liquid Wg staying inside the power generation body 200. Specifically, by setting the cross-sectional area of the gas movement flow path to 1/10 or less of the cross-sectional areas of the cathode gas supply flow path CSC and the cathode gas discharge flow path CEC to which both ends of the gas movement flow path are connected. A pressure difference is generated at both ends of the gas movement channel due to a pressure loss inside the gas movement channel. Due to this pressure difference, the gas can be forced to flow inside the gas movement channel, so that the liquid Wg staying inside the cathode side diffusion layer 227 can be discharged to the outside of the cathode side diffusion layer 227. . That is, power generation efficiency can be improved in a fuel cell using a separator having an IDFF type channel groove. As a specific example, the gas supply branch channel groove 312 and the gas discharge branch channel groove 322 are formed so that the groove width is in the range of 0.8 to 2 mm and the groove depth is in the range of 0.2 to 1 mm. A fuel cell using a separator having an IDFF type channel groove by forming the gas movement channel groove 330 to have a groove width of 50 to 200 μm and a groove depth of 30 to 150 μm. Therefore, the power generation efficiency can be improved.
A-6.第1実施例の変形例:
図10は、第1実施例の変形例におけるカソード側セパレータの概略構成を説明するための説明図である。図10は、第1実施例における図4と対応している。図4に示すように、第1実施例では、ガス移動流路溝330は、リブ領域Awにおいて、互いに平行になるようにして複数配置されているが、ガス移動流路溝330の配置パターンは、第1実施例に限定されず、これ以外の配置パターンを備えていてもよい。例えば、図10に示すカソード側セパレータ300aのように、ガス移動流路溝330aがリブ領域Awの一方の短辺から他方の短辺までの間の全範囲において、互いに交叉するように形成されていてもよい。こうすることで、カソード側セパレータ300aのリブ領域Awとカソード側拡散層227との間のより広い範囲でカソード供給ガスを強制的に流通させてカソード側拡散層227の内部に滞留する液体Wgをカソード側拡散層227の外部に排出することができる。 A-6. Modification of the first embodiment:
FIG. 10 is an explanatory diagram for explaining a schematic configuration of a cathode-side separator in a modification of the first embodiment. FIG. 10 corresponds to FIG. 4 in the first embodiment. As shown in FIG. 4, in the first embodiment, a plurality of gasmovement channel grooves 330 are arranged in parallel to each other in the rib region Aw, but the arrangement pattern of the gas movement channel grooves 330 is as follows. The present invention is not limited to the first embodiment, and other arrangement patterns may be provided. For example, like the cathode-side separator 300a shown in FIG. 10, the gas moving flow channel grooves 330a are formed so as to cross each other in the entire range from one short side to the other short side of the rib region Aw. May be. In this way, the liquid Wg that stays inside the cathode side diffusion layer 227 by forcibly flowing the cathode supply gas in a wider range between the rib region Aw of the cathode side separator 300a and the cathode side diffusion layer 227 can be obtained. It can be discharged to the outside of the cathode side diffusion layer 227.
図10は、第1実施例の変形例におけるカソード側セパレータの概略構成を説明するための説明図である。図10は、第1実施例における図4と対応している。図4に示すように、第1実施例では、ガス移動流路溝330は、リブ領域Awにおいて、互いに平行になるようにして複数配置されているが、ガス移動流路溝330の配置パターンは、第1実施例に限定されず、これ以外の配置パターンを備えていてもよい。例えば、図10に示すカソード側セパレータ300aのように、ガス移動流路溝330aがリブ領域Awの一方の短辺から他方の短辺までの間の全範囲において、互いに交叉するように形成されていてもよい。こうすることで、カソード側セパレータ300aのリブ領域Awとカソード側拡散層227との間のより広い範囲でカソード供給ガスを強制的に流通させてカソード側拡散層227の内部に滞留する液体Wgをカソード側拡散層227の外部に排出することができる。 A-6. Modification of the first embodiment:
FIG. 10 is an explanatory diagram for explaining a schematic configuration of a cathode-side separator in a modification of the first embodiment. FIG. 10 corresponds to FIG. 4 in the first embodiment. As shown in FIG. 4, in the first embodiment, a plurality of gas
図11は、第1実施例の変形例におけるガス移動流路溝の形状を説明するための説明図である。図5に示すように、第1実施例では、ガス移動流路溝330は、Vの字状の断面を備えているが、ガス移動流路溝330の断面形状は第1実施例に限定されず、これ以外の形状であってもよい。例えば、図11(a)に示すように、ガス移動流路溝330は、四角形や五角形のように三角形以外の多角形のガス移動流路が形成されるように、断面に複数の角部を備えた形状であってもよいし、図11(b)に示すように、半円状のガス移動流路が形成されるように、断面に角部を備えない形状であってもよい。
FIG. 11 is an explanatory diagram for explaining the shape of the gas movement channel groove in the modification of the first embodiment. As shown in FIG. 5, in the first embodiment, the gas movement flow path groove 330 has a V-shaped cross section, but the cross-sectional shape of the gas movement flow path groove 330 is limited to the first embodiment. It may be a shape other than this. For example, as shown in FIG. 11A, the gas movement channel groove 330 has a plurality of corners in the cross section so that a polygonal gas movement channel other than a triangle is formed, such as a quadrangle or a pentagon. The shape provided may be sufficient, and as shown in FIG.11 (b), the shape which does not have a corner | angular part in a cross section may be sufficient so that a semicircle-shaped gas movement flow path may be formed.
B.第2実施例:
第1実施例では、ガス移動流路溝がx方向に等間隔に並んで配置されたカソード側セパレータについて説明したが、第2実施例では、ガス移動流路溝の配置間隔がセパレータの上流側と下流側とで異なるカソード側セパレータについて説明する。燃料電池システムの概略構成や、燃料電池の概略構成など、カソード側セパレータに形成されたガス移動流路溝の配置間隔以外については、第1実施例と同様であるため説明を省略する。 B. Second embodiment:
In the first embodiment, the cathode side separator in which the gas movement channel grooves are arranged at equal intervals in the x direction has been described. In the second embodiment, the arrangement interval of the gas movement channel grooves is on the upstream side of the separator. Cathode side separators that are different on the downstream side will be described. Since the schematic configuration of the fuel cell system and the schematic configuration of the fuel cell other than the arrangement interval of the gas moving flow channel grooves formed in the cathode separator are the same as those in the first embodiment, description thereof will be omitted.
第1実施例では、ガス移動流路溝がx方向に等間隔に並んで配置されたカソード側セパレータについて説明したが、第2実施例では、ガス移動流路溝の配置間隔がセパレータの上流側と下流側とで異なるカソード側セパレータについて説明する。燃料電池システムの概略構成や、燃料電池の概略構成など、カソード側セパレータに形成されたガス移動流路溝の配置間隔以外については、第1実施例と同様であるため説明を省略する。 B. Second embodiment:
In the first embodiment, the cathode side separator in which the gas movement channel grooves are arranged at equal intervals in the x direction has been described. In the second embodiment, the arrangement interval of the gas movement channel grooves is on the upstream side of the separator. Cathode side separators that are different on the downstream side will be described. Since the schematic configuration of the fuel cell system and the schematic configuration of the fuel cell other than the arrangement interval of the gas moving flow channel grooves formed in the cathode separator are the same as those in the first embodiment, description thereof will be omitted.
B-1.セパレータの概略構成:
図12は、第2実施例におけるカソード側セパレータの概略構成を示す説明図である。第2実施例のカソード側セパレータ300bは、第1実施例のカソード側セパレータと同様の外形形状や開口部を有している。また、第2実施例のカソード側セパレータ300bにおいて、第1実施例のカソード側セパレータと同じ符号が付されている部分については、第1実施例と同様の形状や構成を備えている。 B-1. Schematic configuration of separator:
FIG. 12 is an explanatory diagram showing a schematic configuration of the cathode-side separator in the second embodiment. Thecathode side separator 300b of the second embodiment has the same outer shape and opening as the cathode side separator of the first embodiment. Further, in the cathode side separator 300b of the second embodiment, the same reference numerals as those of the cathode side separator of the first embodiment are provided with the same shape and configuration as those of the first embodiment.
図12は、第2実施例におけるカソード側セパレータの概略構成を示す説明図である。第2実施例のカソード側セパレータ300bは、第1実施例のカソード側セパレータと同様の外形形状や開口部を有している。また、第2実施例のカソード側セパレータ300bにおいて、第1実施例のカソード側セパレータと同じ符号が付されている部分については、第1実施例と同様の形状や構成を備えている。 B-1. Schematic configuration of separator:
FIG. 12 is an explanatory diagram showing a schematic configuration of the cathode-side separator in the second embodiment. The
第2実施例のガス移動流路溝330bは、第1実施例のガス移動流路溝330と同様に、リブ領域Awの一方の短辺から他方の短辺までの間の全範囲において、互いに平行になるようにして複数配置されている。一方、第2実施例のガス移動流路溝330bは、リブ領域Awにおいて、セパレータの上流側における配置密度が下流側の配置密度より低くなるように配置されている。ガス移動流路溝330bの配置密度とは、リブ領域Awの単位面積に含まれているガス移動流路溝330bの割合をいい、例えば、リブ領域Awの単位面積に含まれるガス移動流路溝330bの本数や、リブ領域Awの単位面積におけるガス移動流路溝330bの配置間隔の平均値により特定することができる。本実施例では、ガス移動流路溝330bは、リブ領域Awにおける配置間隔がセパレータの上流側で広く、下流側にいくに従って狭くなるように配置されている。具体的には、ガス移動流路溝330bの配置間隔を上流側から順にWp1、Wp2、Wp3、・・・、Wpn-1、Wpn(nはガス移動流路溝330bの本数より1少ない整数)とすると、ガス移動流路溝330bは、リブ領域Awにおいて配置間隔がWp1≧Wp2≧Wp3≧・・・≧Wpn-1≧Wpnとなるように配置されている。
Similarly to the gas movement flow path groove 330 of the first embodiment, the gas movement flow path groove 330b of the second embodiment is mutually in the entire range from one short side to the other short side of the rib region Aw. A plurality are arranged in parallel. On the other hand, the gas movement flow path grooves 330b of the second embodiment are arranged so that the arrangement density on the upstream side of the separator is lower than the arrangement density on the downstream side in the rib region Aw. The arrangement density of the gas movement flow path grooves 330b refers to the ratio of the gas movement flow path grooves 330b included in the unit area of the rib area Aw. For example, the gas movement flow path grooves included in the unit area of the rib area Aw. The number can be specified by the number of 330b and the average value of the arrangement interval of the gas movement flow path grooves 330b in the unit area of the rib region Aw. In the present embodiment, the gas movement flow path grooves 330b are arranged such that the arrangement interval in the rib region Aw is wide on the upstream side of the separator and narrows toward the downstream side. Specifically, Wp1, Wp2, Wp3,..., Wpn-1, Wpn (n is an integer less than the number of the gas movement flow channel grooves 330b) by arranging the arrangement intervals of the gas movement flow channel grooves 330b in order from the upstream side. Then, the gas movement flow path grooves 330b are arranged such that the arrangement interval in the rib region Aw is Wp1 ≧ Wp2 ≧ Wp3 ≧... ≧ Wpn−1 ≧ Wpn.
B-2.効果例:
ここでは、カソード側セパレータにおいてガス移動流路溝の配置密度をセパレータの上流側で低くし、下流側で高くすることにより生じる効果の一例について説明する。図13は、第2実施例に係るカソード側セパレータとガス拡散層との境界付近を模式的に示した説明図である。一般的に燃料電池は、カソード215やカソード側拡散層227のカソード供給ガスの流通方向上流側では、カソード供給ガスの流通等により水分が欠乏した状態となりやすい。一方、カソード側セパレータ300bを用いた燃料電池は、カソード供給ガスの流通方向上流側においてガス移動流路の配置密度が低いため、ガス移動流路からカソード215の各領域までのカソード側拡散層227の内部におけるカソード供給ガスの拡散距離が長く、カソード215やカソード側拡散層227の上流側においてガスの拡散抵抗を高めることができる。これにより、カソード側セパレータ300bを用いた燃料電池は、カソード215やカソード側拡散層227の上流側において水分の排出を抑制させて保湿性を高めることができる。 B-2. Example of effect:
Here, an example of the effect produced by lowering the arrangement density of the gas moving flow channel grooves on the cathode side separator on the upstream side and increasing on the downstream side will be described. FIG. 13 is an explanatory view schematically showing the vicinity of the boundary between the cathode separator and the gas diffusion layer according to the second embodiment. In general, the fuel cell tends to be deficient in moisture due to the circulation of the cathode supply gas or the like on the upstream side of thecathode 215 or the cathode diffusion layer 227 in the flow direction of the cathode supply gas. On the other hand, in the fuel cell using the cathode separator 300b, the arrangement density of the gas moving flow path is low on the upstream side in the flow direction of the cathode supply gas, and therefore, the cathode side diffusion layer 227 from the gas moving flow path to each region of the cathode 215. The diffusion distance of the cathode supply gas inside is long, and the diffusion resistance of the gas can be increased on the upstream side of the cathode 215 and the cathode side diffusion layer 227. Thereby, the fuel cell using the cathode side separator 300b can suppress moisture discharge on the upstream side of the cathode 215 or the cathode side diffusion layer 227 to improve the moisture retention.
ここでは、カソード側セパレータにおいてガス移動流路溝の配置密度をセパレータの上流側で低くし、下流側で高くすることにより生じる効果の一例について説明する。図13は、第2実施例に係るカソード側セパレータとガス拡散層との境界付近を模式的に示した説明図である。一般的に燃料電池は、カソード215やカソード側拡散層227のカソード供給ガスの流通方向上流側では、カソード供給ガスの流通等により水分が欠乏した状態となりやすい。一方、カソード側セパレータ300bを用いた燃料電池は、カソード供給ガスの流通方向上流側においてガス移動流路の配置密度が低いため、ガス移動流路からカソード215の各領域までのカソード側拡散層227の内部におけるカソード供給ガスの拡散距離が長く、カソード215やカソード側拡散層227の上流側においてガスの拡散抵抗を高めることができる。これにより、カソード側セパレータ300bを用いた燃料電池は、カソード215やカソード側拡散層227の上流側において水分の排出を抑制させて保湿性を高めることができる。 B-2. Example of effect:
Here, an example of the effect produced by lowering the arrangement density of the gas moving flow channel grooves on the cathode side separator on the upstream side and increasing on the downstream side will be described. FIG. 13 is an explanatory view schematically showing the vicinity of the boundary between the cathode separator and the gas diffusion layer according to the second embodiment. In general, the fuel cell tends to be deficient in moisture due to the circulation of the cathode supply gas or the like on the upstream side of the
一方、一般的に燃料電池は、カソード215やカソード側拡散層227のカソード供給ガスの流通方向下流側では、水分が滞留しやすく水分が過剰な状態となりやすい。一方、カソード側セパレータ300bを用いた燃料電池は、カソード供給ガスの流通方向下流側においてガス移動流路の配置密度が高いため、ガス移動流路からカソード215の各領域までのカソード側拡散層227の内部におけるカソード供給ガスの拡散距離を短くすることができる。これにより、カソード側セパレータ300bを用いた燃料電池は、カソード215へのカソード供給ガスの供給量を増やしてカソード215やカソード側拡散層227の下流側に供給されるカソード供給ガスが不足する状態の発生を抑制することができる。
On the other hand, in general, in a fuel cell, moisture tends to stay on the downstream side of the cathode 215 and the cathode-side diffusion layer 227 in the flow direction of the cathode supply gas, and the moisture tends to be excessive. On the other hand, in the fuel cell using the cathode-side separator 300b, the arrangement density of the gas movement channels is high on the downstream side in the flow direction of the cathode supply gas, and therefore, the cathode-side diffusion layer 227 from the gas movement channel to each region of the cathode 215. The diffusion distance of the cathode supply gas inside can be shortened. As a result, the fuel cell using the cathode separator 300b increases the supply amount of the cathode supply gas to the cathode 215 so that the cathode supply gas supplied to the downstream side of the cathode 215 or the cathode diffusion layer 227 is insufficient. Occurrence can be suppressed.
B-3.試験例:
(第3試験)
第3試験では、3つのカソード側セパレータを用いて、ガス移動流路溝の配置間隔をセパレータの上流側と下流側とで変化させることによる発電性能の違いについて調べた。まず、本発明の一態様となる実施例2のカソード側セパレータ300bは、図12に示すように、リブ領域Awにおいて、ガス移動流路溝330bの配置密度が、セパレータの上流側で低く、下流側で高くなるように配置されている。 B-3. Test example:
(Third test)
In the third test, using three cathode-side separators, the difference in power generation performance by changing the arrangement interval of the gas movement flow channel grooves between the upstream side and the downstream side of the separator was examined. First, as shown in FIG. 12, in thecathode side separator 300b of Example 2 which is an aspect of the present invention, the arrangement density of the gas moving flow channel grooves 330b is low on the upstream side of the separator and is downstream in the rib region Aw. It is arranged to be higher on the side.
(第3試験)
第3試験では、3つのカソード側セパレータを用いて、ガス移動流路溝の配置間隔をセパレータの上流側と下流側とで変化させることによる発電性能の違いについて調べた。まず、本発明の一態様となる実施例2のカソード側セパレータ300bは、図12に示すように、リブ領域Awにおいて、ガス移動流路溝330bの配置密度が、セパレータの上流側で低く、下流側で高くなるように配置されている。 B-3. Test example:
(Third test)
In the third test, using three cathode-side separators, the difference in power generation performance by changing the arrangement interval of the gas movement flow channel grooves between the upstream side and the downstream side of the separator was examined. First, as shown in FIG. 12, in the
図14は、比較例6におけるカソード側セパレータの概略構成を示す説明図である。比較例6のカソード側セパレータ300xは、リブ領域Awにおけるガス移動流路溝の配置密度以外については、実施例2のカソード側セパレータ300bと同様の構成を有している。カソード側セパレータ300xは、リブ領域Awにおけるガス移動流路溝330xの配置密度が、セパレータの上流側と下流側とで等しくなるように形成されている。具体的には、図14に示すように、カソード側セパレータ300xは、リブ領域Awにおいて、ガス移動流路溝330bのx方向における配置間隔がすべてWpxで一定となるように形成されている。
FIG. 14 is an explanatory diagram showing a schematic configuration of the cathode-side separator in Comparative Example 6. The cathode-side separator 300x of Comparative Example 6 has the same configuration as that of the cathode-side separator 300b of Example 2 except for the arrangement density of the gas moving flow channel grooves in the rib region Aw. The cathode-side separator 300x is formed so that the arrangement density of the gas movement flow path grooves 330x in the rib region Aw is equal on the upstream side and the downstream side of the separator. Specifically, as shown in FIG. 14, the cathode-side separator 300x is formed such that in the rib region Aw, the arrangement intervals of the gas movement flow path grooves 330b in the x direction are all constant at Wpx.
図15は、比較例7におけるカソード側セパレータの概略構成を示す説明図である。図16は、図15のY-Y断面の一部を例示した説明図である。比較例7のカソード側セパレータ300yは、ストレート型のガス流路溝Ggfを備え、上流側では水分の欠乏状態を抑制するためにガス流路溝Ggfの幅を狭くし、下流側ではカソード供給ガスの供給量を増やすためにガス流路溝Ggfの幅が広くなるように形成されている。カソード側セパレータ300yは、リブ領域Awにガス移動流路溝を備えていない。なお、ストレート型のガス流路溝を備えるセパレータにおいて、比較例7のように、ガス流路溝の幅を上流側と下流側とで変化させた構成については、以下のような不具合が指摘されている。図16に示すように、カソード側セパレータ300yは、上流側では、ガス流路溝Ggfの幅が狭いため、カソード供給ガスの供給能力が低下する。一方、下流側では、リブ領域Awの幅が狭いため、カソード側セパレータ300yを介した冷媒Lcによる冷却能力が低下する。すなわち、カソード供給ガスの供給能力の向上と冷媒Lcによる冷却能力の向上とが二律背反する構成となっている。
FIG. 15 is an explanatory diagram showing a schematic configuration of the cathode-side separator in Comparative Example 7. FIG. 16 is an explanatory view illustrating a part of the YY cross section of FIG. The cathode-side separator 300y of Comparative Example 7 is provided with a straight type gas channel groove Ggf, the width of the gas channel groove Ggf is narrowed on the upstream side in order to suppress moisture deficiency, and the cathode supply gas is downstream. In order to increase the supply amount of the gas, the gas channel groove Ggf is formed to have a wide width. The cathode separator 300y does not include a gas movement flow path groove in the rib region Aw. In addition, in the separator having the straight type gas flow channel groove, the following problems are pointed out with respect to the configuration in which the width of the gas flow channel groove is changed between the upstream side and the downstream side as in Comparative Example 7. ing. As shown in FIG. 16, in the cathode-side separator 300y, on the upstream side, the gas passage groove Ggf has a narrow width, so that the supply capacity of the cathode supply gas decreases. On the other hand, on the downstream side, since the width of the rib region Aw is narrow, the cooling capacity by the refrigerant Lc via the cathode-side separator 300y decreases. That is, the improvement in cathode supply gas supply capacity and the improvement in cooling capacity by the refrigerant Lc are contradictory.
以上の、実施例2、比較例6、および、比較例7をそれぞれ用いた3つの燃料電池について、電解質膜を流れる電流の電流密度(A/cm2)を1.2A/cm2に維持した状態で発電性能の比較をおこなった。図17は、第3試験における試験結果を説明するための説明図である。図17に示したグラフの縦軸は、セル電圧(V)を示し、横軸は、セル温度(℃)を示している。実施例2および比較例6と、比較例7とを比較すると、セパレータにガス移動流路溝を形成すると、低温域における発電性能が向上することわかる。これは、ガス移動流路溝により、カソード215やカソード側拡散層227の内部の水分を容易に外部に排出することができるためである。また、セパレータにガス移動流路溝を形成すると、高温域においても発電性能が向上することわかる。これは、ガス移動流路溝によって、下流側においても、リブ領域Awとカソード側拡散層227との接触面積を十分に確保できるため、冷媒Lcにより容易に冷却することができるためである。
Above, Example 2, Comparative Example 6, and were maintained Comparative Example 7 for three fuel cells using respectively, the current density of the current flowing through the electrolyte membrane (A / cm 2) to 1.2A / cm 2 The power generation performance was compared in the state. FIG. 17 is an explanatory diagram for explaining a test result in the third test. The vertical axis of the graph shown in FIG. 17 indicates the cell voltage (V), and the horizontal axis indicates the cell temperature (° C.). Comparing Example 2 and Comparative Example 6 with Comparative Example 7, it can be seen that the power generation performance in the low temperature region is improved when the gas movement channel groove is formed in the separator. This is because the moisture inside the cathode 215 and the cathode-side diffusion layer 227 can be easily discharged to the outside by the gas movement channel groove. It can also be seen that when the gas movement channel groove is formed in the separator, the power generation performance is improved even in a high temperature region. This is because the contact area between the rib region Aw and the cathode-side diffusion layer 227 can be sufficiently secured even on the downstream side by the gas movement flow channel groove, and therefore, it can be easily cooled by the refrigerant Lc.
また、実験例2と比較例6とを比較すると、実施例2のカソード側セパレータ300bは、上流側におけるガス移動流路溝の配置密度が低いため、保湿効果により上流側のドライアップが抑制されて発電性能が向上していることがわかる。また、実施例2のカソード側セパレータ300bは、下流側におけるガス移動流路溝の配置密度が高いため、水分が滞留しやすい下流側においてカソード215へのカソード供給ガスの供給量が増えて発電性能が向上していることがわかる。
Further, comparing Experimental Example 2 with Comparative Example 6, the cathode-side separator 300b of Example 2 has a low arrangement density of the gas moving flow channel grooves on the upstream side, and therefore, dry-up on the upstream side is suppressed by the moisturizing effect. It can be seen that the power generation performance is improved. In addition, since the cathode side separator 300b of Example 2 has a high arrangement density of the gas moving flow channel grooves on the downstream side, the supply amount of the cathode supply gas to the cathode 215 increases on the downstream side where moisture tends to stay, and the power generation performance. It can be seen that is improved.
以上説明した、第2実施例に係るカソード側セパレータ300bによれば、ガス移動流路溝330bの配置密度を上流側と下流側とで変化させることにより、ガス移動流路溝を有するセパレータを用いた燃料電池の発電効率をさらに向上させることができる。具体的には、カソード側セパレータ300bは、上流側ではガス移動流路溝の配置密度が低いため、保湿効果よりドライアップの発生を抑制することができる。また、カソード側セパレータ300bは、下流側ではガス移動流路溝の配置密度が高いため、カソード215に供給されるカソード供給ガスの供給量を増やすことができる。これらによって、燃料電池の発電効率をさらに向上させることができる。
According to the cathode side separator 300b according to the second embodiment described above, the separator having the gas moving flow channel groove is used by changing the arrangement density of the gas moving flow channel grooves 330b between the upstream side and the downstream side. The power generation efficiency of the conventional fuel cell can be further improved. Specifically, since the cathode side separator 300b has a low arrangement density of the gas moving flow channel grooves on the upstream side, it is possible to suppress the occurrence of dry-up due to the moisturizing effect. Further, since the cathode-side separator 300b has a high arrangement density of gas movement flow channel grooves on the downstream side, the supply amount of the cathode supply gas supplied to the cathode 215 can be increased. By these, the power generation efficiency of the fuel cell can be further improved.
一般的に、燃料電池のカソード215やカソード側拡散層227は、カソード供給ガスの流通方向上流側では、カソード供給ガスにより水分を奪われるなどして水分が欠乏した状態となりやすい。一方、カソード供給ガスの流通方向下流側では、水分が滞留しやすく水分が過剰な状態となりやすい。しかし、本実施例のカソード側セパレータ300bは、上流側におけるガス移動流路溝の配置密度が低いため、カソード側セパレータ300bを用いた燃料電池は、図13に示すように、上流側においてガス移動流路からカソード215の各領域までのカソード供給ガスの拡散距離が長くなり、カソード供給ガスによる水分の排出を抑制することができる。一方、本実施例のカソード側セパレータ300bは、下流側におけるガス移動流路溝の配置密度を高いため、カソード側セパレータ300bを用いた燃料電池は、図13に示すように、下流側においてガス移動流路からカソード215の各領域までのカソード供給ガスの拡散距離が短くなり、カソード215へのカソード供給ガスの供給量を増やすことができる。これにより、水分が滞留した状態であってもカソード215へのカソード供給ガスの供給不足による発電効率の低下を抑制することができる。
In general, the cathode 215 and the cathode side diffusion layer 227 of the fuel cell are likely to be deficient in moisture due to deprivation of moisture by the cathode supply gas on the upstream side in the flow direction of the cathode supply gas. On the other hand, on the downstream side in the flow direction of the cathode supply gas, moisture tends to stay and the moisture tends to be excessive. However, since the cathode side separator 300b of the present embodiment has a low arrangement density of the gas movement flow channel grooves on the upstream side, the fuel cell using the cathode side separator 300b has a gas movement on the upstream side as shown in FIG. The diffusion distance of the cathode supply gas from the flow path to each region of the cathode 215 becomes longer, and moisture discharge due to the cathode supply gas can be suppressed. On the other hand, since the cathode side separator 300b of this embodiment has a high arrangement density of the gas movement flow path grooves on the downstream side, the fuel cell using the cathode side separator 300b has a gas movement on the downstream side as shown in FIG. The diffusion distance of the cathode supply gas from the flow path to each region of the cathode 215 is shortened, and the supply amount of the cathode supply gas to the cathode 215 can be increased. Accordingly, it is possible to suppress a decrease in power generation efficiency due to insufficient supply of the cathode supply gas to the cathode 215 even in a state where moisture remains.
C.第3実施例:
第1実施例では、ガス供給支流路溝とガス排出支流路溝との間を直線的に繋ぐガス移動流路溝を有するカソード側セパレータについて説明したが、第3実施例では、ガス供給支流路溝とガス排出支流路溝との間において溝の一部が分断したガス供給支流路溝を有するカソード側セパレータについて説明する。燃料電池システムの概略構成や、燃料電池の概略構成など、カソード側セパレータに形成されたガス移動流路溝の形状以外については、第1実施例と同様であるため説明を省略する。ただし、第3実施例に係る燃料電池は、図1や図2においてy方向と沿った方向が重力方向(鉛直方向)となるように設置される。 C. Third embodiment:
In the first embodiment, the cathode side separator having the gas movement flow channel groove that linearly connects the gas supply branch channel groove and the gas discharge branch channel groove has been described. In the third example, the gas supply branch channel is described. A cathode-side separator having a gas supply branch channel groove in which a part of the groove is divided between the groove and the gas discharge branch channel groove will be described. Since the schematic configuration of the fuel cell system and the schematic configuration of the fuel cell are the same as those in the first embodiment except for the shape of the gas transfer channel groove formed in the cathode-side separator, description thereof will be omitted. However, the fuel cell according to the third embodiment is installed such that the direction along the y direction in FIGS. 1 and 2 is the gravity direction (vertical direction).
第1実施例では、ガス供給支流路溝とガス排出支流路溝との間を直線的に繋ぐガス移動流路溝を有するカソード側セパレータについて説明したが、第3実施例では、ガス供給支流路溝とガス排出支流路溝との間において溝の一部が分断したガス供給支流路溝を有するカソード側セパレータについて説明する。燃料電池システムの概略構成や、燃料電池の概略構成など、カソード側セパレータに形成されたガス移動流路溝の形状以外については、第1実施例と同様であるため説明を省略する。ただし、第3実施例に係る燃料電池は、図1や図2においてy方向と沿った方向が重力方向(鉛直方向)となるように設置される。 C. Third embodiment:
In the first embodiment, the cathode side separator having the gas movement flow channel groove that linearly connects the gas supply branch channel groove and the gas discharge branch channel groove has been described. In the third example, the gas supply branch channel is described. A cathode-side separator having a gas supply branch channel groove in which a part of the groove is divided between the groove and the gas discharge branch channel groove will be described. Since the schematic configuration of the fuel cell system and the schematic configuration of the fuel cell are the same as those in the first embodiment except for the shape of the gas transfer channel groove formed in the cathode-side separator, description thereof will be omitted. However, the fuel cell according to the third embodiment is installed such that the direction along the y direction in FIGS. 1 and 2 is the gravity direction (vertical direction).
C-1.セパレータの概略構成:
図18は、第3実施例におけるカソード側セパレータの概略構成を示す説明図である。第3実施例のカソード側セパレータ300cは、第1実施例のカソード側セパレータと同様の外形形状や開口部を有している。また、第3実施例のカソード側セパレータ300cにおいて、第1実施例のカソード側セパレータと同じ符号が付されている部分については、第1実施例と同様の形状や構成を備えている。第3実施例のカソード側セパレータ300cは、図18に示すように、ガス供給支流路溝312およびガス排出支流路溝322が重力方向に沿って交互に並ぶようにして燃料電池に配置される。具体的には、第3実施例のカソード側セパレータ300cは、互いに対応するガス供給支流路溝312およびガス排出支流路溝322の1つの組み合わせにおいて、ガス供給支流路溝312が重力方向上方側、ガス排出支流路溝322が重力方向下方側となる向きに配置される。 C-1. Schematic configuration of separator:
FIG. 18 is an explanatory diagram showing a schematic configuration of the cathode-side separator in the third embodiment. Thecathode side separator 300c of the third embodiment has the same outer shape and opening as the cathode side separator of the first embodiment. Further, in the cathode side separator 300c of the third embodiment, the same reference numerals as those of the cathode side separator of the first embodiment are provided with the same shape and configuration as in the first embodiment. As shown in FIG. 18, the cathode-side separator 300c of the third embodiment is arranged in the fuel cell so that the gas supply branch channel grooves 312 and the gas discharge branch channel grooves 322 are alternately arranged along the direction of gravity. Specifically, the cathode-side separator 300c of the third embodiment includes a gas supply branch channel groove 312 and a gas discharge branch channel groove 322 that correspond to each other. The gas discharge branch channel groove 322 is arranged in the direction of the lower side in the direction of gravity.
図18は、第3実施例におけるカソード側セパレータの概略構成を示す説明図である。第3実施例のカソード側セパレータ300cは、第1実施例のカソード側セパレータと同様の外形形状や開口部を有している。また、第3実施例のカソード側セパレータ300cにおいて、第1実施例のカソード側セパレータと同じ符号が付されている部分については、第1実施例と同様の形状や構成を備えている。第3実施例のカソード側セパレータ300cは、図18に示すように、ガス供給支流路溝312およびガス排出支流路溝322が重力方向に沿って交互に並ぶようにして燃料電池に配置される。具体的には、第3実施例のカソード側セパレータ300cは、互いに対応するガス供給支流路溝312およびガス排出支流路溝322の1つの組み合わせにおいて、ガス供給支流路溝312が重力方向上方側、ガス排出支流路溝322が重力方向下方側となる向きに配置される。 C-1. Schematic configuration of separator:
FIG. 18 is an explanatory diagram showing a schematic configuration of the cathode-side separator in the third embodiment. The
第3実施例のガス移動流路溝330cは、第1実施例のガス移動流路溝330と同様に、リブ領域Awの一方の短辺から他方の短辺までの間の全範囲において、互いに平行になるようにして複数配置されている。一方、第3実施例のガス移動流路溝330cは、ガス供給支流路溝312とガス排出支流路溝322との間に形成される複数のリブ領域Awのうちの一部のリブ領域Awにおいて、溝の一部が閉塞部Ppにより閉塞されている。具体的には、第3実施例のガス移動流路溝330cは、溝の一部が閉塞部Ppにより閉塞されている第1閉塞型ガス移動流路溝330c1または第2閉塞型ガス移動流路溝330c2と、溝が閉塞部Ppにより閉塞されずに上端から下端まで連通している連通型ガス移動流路溝330c3とを含んでいる。
Similarly to the gas movement flow path groove 330 of the first embodiment, the gas movement flow path groove 330c of the third embodiment is mutually in the entire range from one short side to the other short side of the rib region Aw. A plurality are arranged in parallel. On the other hand, the gas movement channel groove 330c of the third embodiment is formed in a part of the rib regions Aw among the plurality of rib regions Aw formed between the gas supply branch channel groove 312 and the gas discharge branch channel groove 322. A part of the groove is closed by the closing part Pp. Specifically, the gas movement flow path groove 330c of the third embodiment is the first closed type gas movement flow path groove 330c1 or the second closed type gas movement flow path in which a part of the groove is closed by the closed portion Pp. It includes a groove 330c2 and a communication type gas movement flow path groove 330c3 that is communicated from the upper end to the lower end without being closed by the closing portion Pp.
カソード側セパレータ300cは、リブ領域Awのうち、上方側の長辺がガス排出支流路溝322と接し、下方側の長辺がガス供給支流路溝312と接している第1リブ領域Aw1には、第1閉塞型ガス移動流路溝330c1もしくは第2閉塞型ガス移動流路溝330c2が形成されている。一方、カソード側セパレータ300cは、リブ領域Awのうち、上方側の長辺がガス供給支流路溝312と接し、下方側の長辺がガス排出支流路溝322と接している第2リブ領域Aw2には、連通型ガス移動流路溝330c3が形成されている。
The cathode-side separator 300c includes a first rib region Aw1 in which the upper long side is in contact with the gas discharge branch channel groove 322 and the lower long side is in contact with the gas supply branch channel groove 312 in the rib region Aw. The first closed type gas moving flow channel groove 330c1 or the second closed type gas moving flow channel groove 330c2 is formed. On the other hand, the cathode-side separator 300c has a second rib region Aw2 in which the upper long side is in contact with the gas supply branch channel groove 312 and the lower long side is in contact with the gas discharge branch channel groove 322 in the rib region Aw. Is formed with a communication type gas movement flow path groove 330c3.
第1閉塞型ガス移動流路溝330c1は、第1実施例のガス移動流路溝330と同様の外形を備えているが、ガス排出支流路溝322と接している溝の上端部が閉塞部Ppにより閉塞されている。第2閉塞型ガス移動流路溝330c2は、第1実施例のガス移動流路溝330と同様の外形を備えているが、溝の中央部付近が閉塞部Ppにより閉塞されている。一方、連通型ガス移動流路溝330c3は、第1実施例のガス移動流路溝330と同様に、ガス供給支流路溝312に接続されている一方の端部からガス排出支流路溝322に接続されている他方の端部まで溝が連通している。
The first closed type gas moving flow channel groove 330c1 has the same outer shape as the gas moving flow channel groove 330 of the first embodiment, but the upper end portion of the groove in contact with the gas discharge branch flow channel groove 322 is a closed portion. It is blocked by Pp. The second closed type gas movement flow path groove 330c2 has the same outer shape as the gas movement flow path groove 330 of the first embodiment, but the central part of the groove is closed by the closing part Pp. On the other hand, the communication type gas movement flow path groove 330c3 is connected to the gas discharge branch flow path groove 322 from one end connected to the gas supply branch flow path groove 312 similarly to the gas movement flow path groove 330 of the first embodiment. The groove communicates with the other connected end.
C-2.効果例:
ここでは、ガス排出支流路溝322が上方側、ガス供給支流路溝312が下方側となる第1リブ領域Aw1に形成されているガス移動流路溝の一部を閉塞部Ppにより閉塞することにより生じる効果の一例について図19~図22を用いて説明する。図19は、カソード側セパレータに形成された第1閉塞型ガス移動流路溝とガス拡散層との境界付近を模式的に示した説明図である。図20は、カソード側セパレータに形成された第2閉塞型ガス移動流路溝とガス拡散層との境界付近を模式的に示した説明図である。図21は、比較例におけるカソード側セパレータの水分の移動方向を説明するための説明図である。図22は、本実施例におけるカソード側セパレータの水分の移動方向を説明するための説明図である。 C-2. Example of effect:
Here, a part of the gas movement channel groove formed in the first rib region Aw1 in which the gas dischargebranch channel groove 322 is on the upper side and the gas supply branch channel groove 312 is on the lower side is blocked by the blocking portion Pp. An example of the effect produced by the above will be described with reference to FIGS. FIG. 19 is an explanatory view schematically showing the vicinity of the boundary between the first closed gas movement channel groove formed in the cathode side separator and the gas diffusion layer. FIG. 20 is an explanatory view schematically showing the vicinity of the boundary between the second closed-type gas movement channel groove formed in the cathode-side separator and the gas diffusion layer. FIG. 21 is an explanatory diagram for explaining the movement direction of moisture in the cathode-side separator in the comparative example. FIG. 22 is an explanatory diagram for explaining the movement direction of moisture in the cathode-side separator in this example.
ここでは、ガス排出支流路溝322が上方側、ガス供給支流路溝312が下方側となる第1リブ領域Aw1に形成されているガス移動流路溝の一部を閉塞部Ppにより閉塞することにより生じる効果の一例について図19~図22を用いて説明する。図19は、カソード側セパレータに形成された第1閉塞型ガス移動流路溝とガス拡散層との境界付近を模式的に示した説明図である。図20は、カソード側セパレータに形成された第2閉塞型ガス移動流路溝とガス拡散層との境界付近を模式的に示した説明図である。図21は、比較例におけるカソード側セパレータの水分の移動方向を説明するための説明図である。図22は、本実施例におけるカソード側セパレータの水分の移動方向を説明するための説明図である。 C-2. Example of effect:
Here, a part of the gas movement channel groove formed in the first rib region Aw1 in which the gas discharge
図19および図20に示すように、カソード側セパレータ300cは、第1リブ領域Aw1に第1閉塞型ガス移動流路溝330c1もしくは第2閉塞型ガス移動流路溝330c2が形成されているため、カソード側セパレータ300cを用いた燃料電池は、上方側のカソードガス排出流路CECと下方側のカソードガス供給流路CSCとの間に形成されるガス移動流路が閉塞部Ppにより閉塞される。これにより、燃料電池の内部において、カソードガス排出流路CECに排出された液体Wgが重力により下方のカソードガス供給流路CSCに移動することを抑制することができる。一方、カソード側セパレータ300cは、第2リブ領域Aw2に連通型ガス移動流路溝330c3が形成されているため、カソード側セパレータ300cを用いた燃料電池の内部において、カソードガス供給流路CSCに排出された液体Wgを重力により下方のカソードガス排出流路CECに排出することができる。
As shown in FIGS. 19 and 20, the cathode-side separator 300c has the first closed gas movement flow channel groove 330c1 or the second closed gas movement flow channel groove 330c2 formed in the first rib region Aw1, In the fuel cell using the cathode separator 300c, the gas movement channel formed between the upper cathode gas discharge channel CEC and the lower cathode gas supply channel CSC is closed by the blocking part Pp. Thereby, it is possible to suppress the liquid Wg discharged to the cathode gas discharge channel CEC from moving to the lower cathode gas supply channel CSC due to gravity inside the fuel cell. On the other hand, since the cathode-side separator 300c has the communication gas movement channel groove 330c3 formed in the second rib region Aw2, the cathode-side separator 300c is discharged into the cathode gas supply channel CSC inside the fuel cell using the cathode-side separator 300c. The liquid Wg thus discharged can be discharged to the lower cathode gas discharge channel CEC by gravity.
図21に示すように、リブ領域Awに形成されているガス移動流路溝がすべて連通型であるカソード側セパレータ300zを用いた燃料電池は、ガス移動流路によってすべてのカソードガス供給流路CSCとカソードガス排出流路CECが連通する。そのため、燃料電池がカソードガス供給流路CSCとカソードガス排出流路CECが重力方向に並ぶ状態で使用されると、重力によって液体Wgが下方側に移動し、下方に形成された流路において液体Wgが滞留する。これにより、滞留した液体Wgによりカソード供給ガスの流通が抑制されるため、発電性能が低下する問題があった。しかし、図22に示すように、本実施例のカソード側セパレータ300cを用いた燃料電池は、重力によって液体Wgがカソードガス排出流路CECから下方のカソードガス供給流路CSCに移動することを抑制でき、液体Wgをカソードガス排出流路CECに集合させてカソード排ガスとともにカソードガス排出マニホールド154に排出することができる。これにより、液体Wgの滞留による発電性能の低下を抑制することができる。
As shown in FIG. 21, the fuel cell using the cathode-side separator 300z in which all the gas movement flow path grooves formed in the rib region Aw are in communication type has all the cathode gas supply flow paths CSC by the gas movement flow path. And the cathode gas discharge channel CEC communicate with each other. Therefore, when the fuel cell is used in a state where the cathode gas supply channel CSC and the cathode gas discharge channel CEC are aligned in the direction of gravity, the liquid Wg moves downward due to gravity, and the liquid is formed in the channel formed below. Wg stays. Thereby, since the circulation of the cathode supply gas is suppressed by the retained liquid Wg, there is a problem that the power generation performance is deteriorated. However, as shown in FIG. 22, the fuel cell using the cathode-side separator 300c of this embodiment suppresses the liquid Wg from moving from the cathode gas discharge channel CEC to the lower cathode gas supply channel CSC due to gravity. The liquid Wg can be collected in the cathode gas discharge channel CEC and discharged to the cathode gas discharge manifold 154 together with the cathode exhaust gas. Thereby, the fall of the power generation performance by retention of the liquid Wg can be suppressed.
本実施例のカソード側セパレータ300cは、第1リブ領域Aw1にガス移動流路溝を備えない構成とするのではなく、溝の一部が閉塞部Ppにより閉塞されている第1閉塞型ガス移動流路溝330c1もしくは第2閉塞型ガス移動流路溝330c2を備える構成としている。このことにより得られる効果についてさらに説明する。図19および図20に示すように、カソード側セパレータ300cを用いた燃料電池は、第1閉塞型ガス移動流路溝330c1もしくは第2閉塞型ガス移動流路溝330c2によって、カソード側セパレータ300cとカソード側拡散層227との間に閉塞部Ppにより閉塞されたガス移動流路が形成される。これにより、カソードガス供給流路CSCから供給されたカソード供給ガスは、この閉塞されたガス移動流路を経由してカソード側拡散層227のより広い範囲に供給されるため、発電効率の向上を図ることができる。なお、第1閉塞型ガス移動流路溝330c1と第2閉塞型ガス移動流路溝330c2では、第1閉塞型ガス移動流路溝330c1の方がカソードガス供給流路CSCと接続されたガス移動流路の長さが長くなるため、発電効率をより高めることができる。
The cathode side separator 300c of the present embodiment does not have a configuration in which the first rib region Aw1 is not provided with the gas movement flow channel groove, but the first closed type gas movement in which a part of the groove is closed by the closed portion Pp. The flow path groove 330c1 or the second closed type gas movement flow path groove 330c2 is provided. The effect obtained by this will be further described. As shown in FIGS. 19 and 20, the fuel cell using the cathode side separator 300c is connected to the cathode side separator 300c and the cathode by the first closed type gas moving flow channel groove 330c1 or the second closed type gas moving flow channel groove 330c2. Between the side diffusion layer 227, a gas movement flow path blocked by the blocking portion Pp is formed. As a result, the cathode supply gas supplied from the cathode gas supply channel CSC is supplied to a wider range of the cathode side diffusion layer 227 via the closed gas movement channel, thereby improving the power generation efficiency. Can be planned. In the first closed type gas moving flow channel groove 330c1 and the second closed type gas moving flow channel groove 330c2, the first closed type gas moving flow channel groove 330c1 is connected to the cathode gas supply flow channel CSC. Since the length of the flow path becomes long, the power generation efficiency can be further increased.
C-3.試験例:
(第4試験)
第4試験では、2つのカソード側セパレータを用いて、第1リブ領域Aw1に形成されたガス移動流路溝の一部を閉塞部Ppにより閉塞することによる発電性能の違いについて調べた。まず、本発明の一態様となる実施例3のカソード側セパレータとして、図18に示した、第1リブ領域Aw1に第1閉塞型ガス移動流路溝330c1もしくは第2閉塞型ガス移動流路溝330c2が形成されているカソード側セパレータ300cを用いた。一方、比較例8として、図21に示した、リブ領域Awに形成されたガス移動流路溝がすべて連通型であるカソード側セパレータ300zを用いた。 C-3. Test example:
(4th test)
In the fourth test, the difference in power generation performance was examined by using two cathode-side separators to block part of the gas movement flow channel groove formed in the first rib region Aw1 with the blocking portion Pp. First, as a cathode-side separator of Example 3 which is an aspect of the present invention, the first closed gas movement flow channel groove 330c1 or the second closed gas movement flow channel groove in the first rib region Aw1 shown in FIG. Thecathode side separator 300c in which 330c2 was formed was used. On the other hand, as Comparative Example 8, a cathode-side separator 300z shown in FIG. 21 in which all the gas movement flow channel grooves formed in the rib region Aw are of the communication type was used.
(第4試験)
第4試験では、2つのカソード側セパレータを用いて、第1リブ領域Aw1に形成されたガス移動流路溝の一部を閉塞部Ppにより閉塞することによる発電性能の違いについて調べた。まず、本発明の一態様となる実施例3のカソード側セパレータとして、図18に示した、第1リブ領域Aw1に第1閉塞型ガス移動流路溝330c1もしくは第2閉塞型ガス移動流路溝330c2が形成されているカソード側セパレータ300cを用いた。一方、比較例8として、図21に示した、リブ領域Awに形成されたガス移動流路溝がすべて連通型であるカソード側セパレータ300zを用いた。 C-3. Test example:
(4th test)
In the fourth test, the difference in power generation performance was examined by using two cathode-side separators to block part of the gas movement flow channel groove formed in the first rib region Aw1 with the blocking portion Pp. First, as a cathode-side separator of Example 3 which is an aspect of the present invention, the first closed gas movement flow channel groove 330c1 or the second closed gas movement flow channel groove in the first rib region Aw1 shown in FIG. The
実施例3および比較例8をそれぞれ用いた2つの燃料電池について、電解質膜を流れる電流の電流密度(A/cm2)を1.2A/cm2に維持した状態で発電性能の比較をおこなった。図23は、第4試験における試験結果を説明するための説明図である。図23に示したグラフの縦軸は、セル電圧(V)を示し、横軸は、セル温度(℃)を示している。実施例3と比較例8とを比較すると、セパレータにおいて、第1リブ領域Aw1に形成されるガス移動流路溝を閉塞部Ppにより閉塞すると、低温域における発電性能が向上することわかる。これは、上述したように、カソードガス排出流路CECに排出された液体Wgが下方のカソードガス供給流路CSCに移動せずにカソードガス排出マニホールド154から排出されることで発電性能が向上したためである。
The two fuel cell using Example 3 and Comparative Example 8, respectively, were subjected to comparison of power generation performance in a state in which the current density of the current flowing through the electrolyte membrane (A / cm 2) was maintained at 1.2A / cm 2 . FIG. 23 is an explanatory diagram for explaining a test result in the fourth test. The vertical axis of the graph shown in FIG. 23 indicates the cell voltage (V), and the horizontal axis indicates the cell temperature (° C.). When Example 3 and Comparative Example 8 are compared, it can be seen that, in the separator, the power generation performance in the low temperature region is improved when the gas movement flow path groove formed in the first rib region Aw1 is closed by the closing portion Pp. This is because, as described above, the liquid Wg discharged to the cathode gas discharge channel CEC is discharged from the cathode gas discharge manifold 154 without moving to the lower cathode gas supply channel CSC, thereby improving the power generation performance. It is.
以上説明した、第3実施例に係るカソード側セパレータ300cによれば、ガス排出支流路溝322が重力方向上方側、ガス供給支流路溝312が重力方向下方側となる第1リブ領域Aw1に形成されるガス移動流路溝の一部が閉塞部Ppにより閉塞されているため、ガス移動流路を有するセパレータを用いた燃料電池の発電効率をさらに向上させることができる。具体的には、カソード側セパレータ300cを用いた燃料電池は、上方側のカソードガス排出流路CECと下方側のカソードガス供給流路CSCとの間に形成されるガス移動流路が閉塞部Ppにより閉塞されるため、カソードガス排出流路CECに排出された液体Wgが重力により下方側のカソードガス供給流路CSCに移動することを抑制することができる。これにより、重力方向下方側に形成された流路において液体Wgが滞留してカソード供給ガスの流通が抑制される状態の発生を低減することができる。すなわち、カソードガス供給流路CSCにおいてカソード供給ガスが不均一に流通することによる発電性能の低下を抑制することができる。
According to the cathode side separator 300c according to the third embodiment described above, the gas discharge branch channel groove 322 is formed in the first rib region Aw1 in the gravity direction upper side and the gas supply branch channel groove 312 is in the gravity direction lower side. Since a part of the gas movement channel groove to be formed is blocked by the blocking part Pp, the power generation efficiency of the fuel cell using the separator having the gas movement channel can be further improved. Specifically, in the fuel cell using the cathode separator 300c, the gas movement channel formed between the upper cathode gas discharge channel CEC and the lower cathode gas supply channel CSC has a closed portion Pp. Therefore, the liquid Wg discharged to the cathode gas discharge channel CEC can be prevented from moving to the lower cathode gas supply channel CSC due to gravity. Thereby, it is possible to reduce the occurrence of a state in which the liquid Wg stays in the flow path formed on the lower side in the gravity direction and the flow of the cathode supply gas is suppressed. That is, it is possible to suppress a decrease in power generation performance due to non-uniform distribution of the cathode supply gas in the cathode gas supply channel CSC.
ガス移動流路を有するセパレータを用いた燃料電池は、リブ領域Awとカソード側拡散層227との間にカソード供給ガスを強制的に流通させて発電効率の向上が図れる反面、セパレータのガス供給支流路溝312およびガス排出支流路溝322が重力方向に交互に並ぶように配置された場合には、内部の液体Wgがセパレータの重力方向下方側に形成された流路に移動してセパレータの下方側においてカソード供給ガスの流通が妨げられる虞があった。しかし、本実施例で示したように、第1リブ領域Aw1に形成されるガス移動流路溝を閉塞部Ppにより閉塞することにより、セパレータのリブ領域Awにガス移動流路を形成する利点を得つつ、リブ領域Awにガス移動流路を形成することにより生じる不具合の抑制を図ることができる。
In the fuel cell using the separator having the gas moving flow path, the cathode supply gas can be forced to flow between the rib region Aw and the cathode side diffusion layer 227 to improve the power generation efficiency. When the channel grooves 312 and the gas discharge branch channel grooves 322 are alternately arranged in the gravity direction, the liquid Wg inside moves to a channel formed on the lower side in the gravity direction of the separator and moves below the separator. On the side, there is a possibility that the flow of the cathode supply gas may be hindered. However, as shown in the present embodiment, the gas movement channel is formed in the rib region Aw of the separator by closing the gas movement channel groove formed in the first rib region Aw1 with the closing part Pp. While obtaining, the malfunction which arises by forming a gas movement flow path in rib area | region Aw can be aimed at.
また、本実施例で示したカソード側セパレータ300cは、第1リブ領域Aw1にガス移動流路溝を備えない構成とするのではなく、溝の一部が閉塞部Ppにより閉塞されている閉塞型のガス移動流路溝を備える構成としているため、燃料電池の発電効率をさらに向上させることができる。具体的には、カソード側セパレータ300cを用いた燃料電池は、カソード側セパレータ300cとカソード側拡散層227との間に閉塞部Ppにより閉塞されたガス移動流路が形成される。これにより、カソードガス供給流路CSCから供給されたカソード供給ガスは、閉塞されたガス移動流路を経由してカソード側拡散層227のより広い範囲に供給されるため、発電効率の向上を図ることができる。
In addition, the cathode-side separator 300c shown in the present embodiment does not have a configuration in which the first rib region Aw1 is not provided with a gas movement flow channel groove, but a closed type in which a part of the groove is closed by a closed portion Pp. Therefore, the power generation efficiency of the fuel cell can be further improved. Specifically, in the fuel cell using the cathode-side separator 300c, a gas movement flow path closed by the closing portion Pp is formed between the cathode-side separator 300c and the cathode-side diffusion layer 227. As a result, the cathode supply gas supplied from the cathode gas supply channel CSC is supplied to a wider area of the cathode side diffusion layer 227 via the closed gas movement channel, thereby improving the power generation efficiency. be able to.
C-4.第3実施例の変形例:
図24は、第3実施例の変形例1におけるカソード側セパレータの概略構成を説明するための説明図である。第3実施例では、図18に示すように、カソード側セパレータ300cは、第1リブ領域Aw1に第1閉塞型ガス移動流路溝330c1および第2閉塞型ガス移動流路溝330c2の2種類のガス移動流路溝が形成されているが、第1リブ領域Aw1に形成されるガス移動流路溝は、2種類である必要はなく、1種類であってもよいし、3種類以上であってもよい。例えば、図24に示すように、カソード側セパレータ300dは、第1リブ領域Aw1に第1閉塞型ガス移動流路溝330c1のみが形成されていてもよいし、第2閉塞型ガス移動流路溝330c2のみが形成されていてもよい。また、カソード側セパレータは、閉塞部Ppにより閉塞されている位置や範囲が異なる3種類以上の閉塞型ガス移動流路溝が第1リブ領域Aw1に形成されていてもよい。これらのいずれの場合であっても、上記実施例で示した効果と同様の効果を得ることができるため、ガス移動流路を有するセパレータを用いた燃料電池の発電効率をさらに向上させることができる。 C-4. Modification of the third embodiment:
FIG. 24 is an explanatory diagram for explaining a schematic configuration of a cathode-side separator inModification 1 of the third embodiment. In the third embodiment, as shown in FIG. 18, the cathode-side separator 300c includes two types of first closed gas movement flow channel grooves 330c1 and second closed gas movement flow channel grooves 330c2 in the first rib region Aw1. Although the gas movement channel groove is formed, the gas movement channel groove formed in the first rib region Aw1 does not have to be two types, and may be one type or three or more types. May be. For example, as shown in FIG. 24, in the cathode-side separator 300d, only the first closed-type gas movement flow path groove 330c1 may be formed in the first rib region Aw1, or the second closed-type gas movement flow path groove may be formed. Only 330c2 may be formed. Further, the cathode-side separator may be formed with three or more types of closed gas movement flow channel grooves in the first rib region Aw1 having different positions and ranges closed by the closed portion Pp. In any of these cases, the same effect as that shown in the above embodiment can be obtained, so that the power generation efficiency of the fuel cell using the separator having the gas moving flow path can be further improved. .
図24は、第3実施例の変形例1におけるカソード側セパレータの概略構成を説明するための説明図である。第3実施例では、図18に示すように、カソード側セパレータ300cは、第1リブ領域Aw1に第1閉塞型ガス移動流路溝330c1および第2閉塞型ガス移動流路溝330c2の2種類のガス移動流路溝が形成されているが、第1リブ領域Aw1に形成されるガス移動流路溝は、2種類である必要はなく、1種類であってもよいし、3種類以上であってもよい。例えば、図24に示すように、カソード側セパレータ300dは、第1リブ領域Aw1に第1閉塞型ガス移動流路溝330c1のみが形成されていてもよいし、第2閉塞型ガス移動流路溝330c2のみが形成されていてもよい。また、カソード側セパレータは、閉塞部Ppにより閉塞されている位置や範囲が異なる3種類以上の閉塞型ガス移動流路溝が第1リブ領域Aw1に形成されていてもよい。これらのいずれの場合であっても、上記実施例で示した効果と同様の効果を得ることができるため、ガス移動流路を有するセパレータを用いた燃料電池の発電効率をさらに向上させることができる。 C-4. Modification of the third embodiment:
FIG. 24 is an explanatory diagram for explaining a schematic configuration of a cathode-side separator in
図25は、第3実施例の変形例2におけるカソード側セパレータの概略構成を説明するための説明図である。第3実施例では、図18に示すように、カソード側セパレータ300cは、第1閉塞型ガス移動流路溝330c1もしくは第2閉塞型ガス移動流路溝330c2のいずれかのガス移動流路溝が第1リブ領域Aw1に形成されているが、図25に示すカソード側セパレータ300eのように、第1リブ領域Aw1にガス移動流路溝が形成されていない構成としてもよい。この場合であっても、カソード側セパレータ300eを用いた燃料電池の内部において、カソードガス排出流路CECに排出された液体Wgが重力により下方のカソードガス供給流路CSCに移動することを抑制することができるため、セパレータの第2リブ領域Aw2にガス移動流路を形成する利点を得つつ、第1リブ領域Aw1にガス移動流路を形成することにより生じる不具合の抑制を図ることができる。
FIG. 25 is an explanatory diagram for explaining a schematic configuration of the cathode-side separator in the second modification of the third embodiment. In the third embodiment, as shown in FIG. 18, the cathode-side separator 300c has a gas movement flow channel groove, either the first closed gas movement flow channel groove 330c1 or the second closed gas movement flow channel groove 330c2. Although it is formed in the first rib region Aw1, it may be configured such that no gas movement channel groove is formed in the first rib region Aw1, as in the cathode-side separator 300e shown in FIG. Even in this case, the liquid Wg discharged to the cathode gas discharge channel CEC is prevented from moving to the lower cathode gas supply channel CSC due to gravity inside the fuel cell using the cathode separator 300e. Therefore, it is possible to suppress problems caused by forming the gas movement channel in the first rib region Aw1, while obtaining the advantage of forming the gas movement channel in the second rib region Aw2 of the separator.
図26は、第3実施例の変形例3におけるカソード側セパレータの概略構成を説明するための説明図である。図25で示した変形例2のカソード側セパレータ300eは、第1リブ領域Aw1の重力方向(y方向)における幅W1と、第2リブ領域Aw2のy方向における幅W2との関係について特に限定していないが、図26に示すように、第1リブ領域Aw1の幅W1を第2リブ領域Aw2の幅W2の0.8倍以下とすることにより、ガス移動流路を有するセパレータを用いた燃料電池の発電効率をさらに向上させることができる。具体的には、第1リブ領域Aw1の幅W1を小さくすることで、第1リブ領域Aw1とカソード側拡散層227との接触面積を小さくすることができる。これにより、第1リブ領域Aw1と接しているカソード側拡散層227の内部における液体Wgの滞留を抑制することができるため、発電効率をさらに向上させることができる。
FIG. 26 is an explanatory diagram for explaining a schematic configuration of the cathode separator in the third modification of the third embodiment. In the cathode-side separator 300e of Modification 2 shown in FIG. 25, the relationship between the width W1 of the first rib region Aw1 in the gravity direction (y direction) and the width W2 of the second rib region Aw2 in the y direction is particularly limited. However, as shown in FIG. 26, by using the width W1 of the first rib area Aw1 to be not more than 0.8 times the width W2 of the second rib area Aw2, the fuel using the separator having the gas movement flow path is used. The power generation efficiency of the battery can be further improved. Specifically, the contact area between the first rib region Aw1 and the cathode side diffusion layer 227 can be reduced by reducing the width W1 of the first rib region Aw1. Thereby, since the retention of the liquid Wg in the cathode side diffusion layer 227 in contact with the first rib region Aw1 can be suppressed, the power generation efficiency can be further improved.
D.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。 D. Variation:
The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。 D. Variation:
The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.
D1.変形例1:
本実施例では、ガス移動流路溝330は、リブ領域Awにおいて、互いに平行になるようにして複数配置されているが、各ガス移動流路溝330は、それぞれ、カソードガス供給流路CSCとカソードガス排出流路CECとを連通するガス移動流路が形成可能であれば、必ずしも互いに平行でなくてもよい。また、本実施例では、ガス移動流路溝330は、リブ領域Awの一方の短辺から他方の短辺までの間の全範囲において、並んで複数配置されているが、ガス移動流路溝330は、リブ領域Awの一部に複数は位置されていてもよいし、リブ領域Awの一部に1つのみ配置されていてもよい。また、本実施例では、ガス移動流路溝330は、各リブ領域Awにおける本数や間隔が同程度となるように示されているが、リブ領域Awごとにガス移動流路溝330の本数や間隔が異なっていてもよい。また、本実施例では、ガス移動流路溝330、430は、直線状に形成されているが、少なくとも一部が曲線であったてもよいし、一部が折れ曲がっていてもよい。 D1. Modification 1:
In the present embodiment, a plurality of gasmovement channel grooves 330 are arranged so as to be parallel to each other in the rib region Aw, but each gas movement channel groove 330 is connected to the cathode gas supply channel CSC. As long as a gas movement flow path communicating with the cathode gas discharge flow path CEC can be formed, it is not always necessary to be parallel to each other. In the present embodiment, a plurality of gas movement channel grooves 330 are arranged side by side in the entire range from one short side to the other short side of the rib region Aw. Plural 330 may be located in a part of the rib area Aw, or only one 330 may be arranged in a part of the rib area Aw. Further, in this embodiment, the gas movement flow path grooves 330 are shown to have the same number and interval in each rib area Aw, but the number of gas movement flow path grooves 330 for each rib area Aw The interval may be different. Further, in the present embodiment, the gas movement flow path grooves 330 and 430 are formed in a straight line, but at least a part thereof may be a curve or a part thereof may be bent.
本実施例では、ガス移動流路溝330は、リブ領域Awにおいて、互いに平行になるようにして複数配置されているが、各ガス移動流路溝330は、それぞれ、カソードガス供給流路CSCとカソードガス排出流路CECとを連通するガス移動流路が形成可能であれば、必ずしも互いに平行でなくてもよい。また、本実施例では、ガス移動流路溝330は、リブ領域Awの一方の短辺から他方の短辺までの間の全範囲において、並んで複数配置されているが、ガス移動流路溝330は、リブ領域Awの一部に複数は位置されていてもよいし、リブ領域Awの一部に1つのみ配置されていてもよい。また、本実施例では、ガス移動流路溝330は、各リブ領域Awにおける本数や間隔が同程度となるように示されているが、リブ領域Awごとにガス移動流路溝330の本数や間隔が異なっていてもよい。また、本実施例では、ガス移動流路溝330、430は、直線状に形成されているが、少なくとも一部が曲線であったてもよいし、一部が折れ曲がっていてもよい。 D1. Modification 1:
In the present embodiment, a plurality of gas
D2.変形例2:
本実施例では、燃料電池100は、拡散層とセパレータとが接する構成として説明しているが、燃料電池100は、拡散層とセパレータとの間に発泡金属やパンチングメタルなどのガス流路部材を備え、セパレータがガス流路部材と接する構成であってもよい。この場合であっても、ガス流路のほか、ガス流路部材や拡散層の内部に液体Wgが滞留することによる発電効率の低下の抑制を図ることができる。 D2. Modification 2:
In the present embodiment, thefuel cell 100 is described as a configuration in which the diffusion layer and the separator are in contact with each other. However, the fuel cell 100 has a gas flow path member such as foam metal or punching metal between the diffusion layer and the separator. The separator may be in contact with the gas flow path member. Even in this case, it is possible to suppress a decrease in power generation efficiency due to the liquid Wg remaining in the gas flow path member and the diffusion layer in addition to the gas flow path.
本実施例では、燃料電池100は、拡散層とセパレータとが接する構成として説明しているが、燃料電池100は、拡散層とセパレータとの間に発泡金属やパンチングメタルなどのガス流路部材を備え、セパレータがガス流路部材と接する構成であってもよい。この場合であっても、ガス流路のほか、ガス流路部材や拡散層の内部に液体Wgが滞留することによる発電効率の低下の抑制を図ることができる。 D2. Modification 2:
In the present embodiment, the
D3.変形例3:
本実施例では、カソード側セパレータ300とアノード側セパレータ400とを重ねた状態で燃料電池に使用されているが、本発明は、カソード側セパレータ300とアノード側セパレータ400とを一体化した1枚のセパレータとしても実現することができる。 D3. Modification 3:
In this embodiment, the cathode-side separator 300 and the anode-side separator 400 are used in a fuel cell in a state where the cathode-side separator 300 and the anode-side separator 400 are stacked. It can also be realized as a separator.
本実施例では、カソード側セパレータ300とアノード側セパレータ400とを重ねた状態で燃料電池に使用されているが、本発明は、カソード側セパレータ300とアノード側セパレータ400とを一体化した1枚のセパレータとしても実現することができる。 D3. Modification 3:
In this embodiment, the cathode-
D4.変形例4:
本実施例では、燃料電池100は固体高分子型燃料電池であるとしているが、本発明は他の種類の燃料電池(例えば、ダイレクトメタノール形燃料電池やリン酸形燃料電池)にも適用可能である。 D4. Modification 4:
In the present embodiment, thefuel cell 100 is a solid polymer fuel cell, but the present invention can also be applied to other types of fuel cells (for example, direct methanol fuel cells and phosphoric acid fuel cells). is there.
本実施例では、燃料電池100は固体高分子型燃料電池であるとしているが、本発明は他の種類の燃料電池(例えば、ダイレクトメタノール形燃料電池やリン酸形燃料電池)にも適用可能である。 D4. Modification 4:
In the present embodiment, the
10…燃料電池システム
50…水素タンク
60…エアコンプレッサ
70…ラジエータ
80…制御部
100…燃料電池
110…エンドプレート
120…絶縁板
130…集電板
140…単セル
152…カソードガス供給マニホールド
154…カソードガス排出マニホールド
162…アノードガス供給マニホールド
164…アノードガス排出マニホールド
172…冷媒供給マニホールド
174…冷媒排出マニホールド
200…発電体
210…MEA
212…電解質膜
214…アノード
215…カソード
226…アノード側拡散層
227…カソード側拡散層
300…カソード側セパレータ
310…ガス供給流路溝
311…ガス供給束流路溝
312…ガス供給支流路溝
312b…ガス供給支流路閉塞面部
312s…ガス供給支流路側面部
320…ガス排出流路溝
321…ガス排出束流路溝
322…ガス排出支流路溝
322b…ガス排出支流路閉塞面部
322s…ガス排出支流路側面部
330…ガス移動流路溝
400…アノード側セパレータ
410…ガス供給流路溝
411…ガス供給束流路溝
412…ガス供給支流路溝
420…ガス排出流路溝
421…ガス排出束流路溝
422…ガス排出支流路溝
Pb、Pp…閉塞部
Lc…冷媒
Aw…リブ領域
CEC…カソードガス排出流路
AEC…アノードガス排出流路
LFC…冷媒流路
CSC…カソードガス供給流路
ASC…アノードガス供給流路 DESCRIPTION OFSYMBOLS 10 ... Fuel cell system 50 ... Hydrogen tank 60 ... Air compressor 70 ... Radiator 80 ... Control part 100 ... Fuel cell 110 ... End plate 120 ... Insulating plate 130 ... Current collecting plate 140 ... Single cell 152 ... Cathode gas supply manifold 154 ... Cathode Gas discharge manifold 162 ... Anode gas supply manifold 164 ... Anode gas discharge manifold 172 ... Refrigerant supply manifold 174 ... Refrigerant discharge manifold 200 ... Power generator 210 ... MEA
DESCRIPTION OFSYMBOLS 212 ... Electrolyte membrane 214 ... Anode 215 ... Cathode 226 ... Anode side diffusion layer 227 ... Cathode side diffusion layer 300 ... Cathode side separator 310 ... Gas supply channel groove 311 ... Gas supply bundle channel groove 312 ... Gas supply branch channel groove 312b ... gas supply branch channel closed surface portion 312s ... gas supply branch channel side surface portion 320 ... gas discharge channel groove 321 ... gas discharge bundle channel groove 322 ... gas discharge branch channel groove 322b ... gas discharge branch channel closed surface portion 322s ... gas discharge branch Road side surface portion 330... Gas movement passage groove 400... Anode side separator 410. Gas supply passage groove 411. Gas supply bundle passage groove 412. Gas supply branch passage groove 420. Channel groove 422 ... Gas discharge branch channel groove Pb, Pp ... Blocking portion Lc ... Refrigerant Aw ... Rib area CEC ... Cathode gas discharge passage AEC ... anode gas discharge channel LFC ... coolant channel CSC ... cathode gas supply passage ASC ... anode gas supply conduit
50…水素タンク
60…エアコンプレッサ
70…ラジエータ
80…制御部
100…燃料電池
110…エンドプレート
120…絶縁板
130…集電板
140…単セル
152…カソードガス供給マニホールド
154…カソードガス排出マニホールド
162…アノードガス供給マニホールド
164…アノードガス排出マニホールド
172…冷媒供給マニホールド
174…冷媒排出マニホールド
200…発電体
210…MEA
212…電解質膜
214…アノード
215…カソード
226…アノード側拡散層
227…カソード側拡散層
300…カソード側セパレータ
310…ガス供給流路溝
311…ガス供給束流路溝
312…ガス供給支流路溝
312b…ガス供給支流路閉塞面部
312s…ガス供給支流路側面部
320…ガス排出流路溝
321…ガス排出束流路溝
322…ガス排出支流路溝
322b…ガス排出支流路閉塞面部
322s…ガス排出支流路側面部
330…ガス移動流路溝
400…アノード側セパレータ
410…ガス供給流路溝
411…ガス供給束流路溝
412…ガス供給支流路溝
420…ガス排出流路溝
421…ガス排出束流路溝
422…ガス排出支流路溝
Pb、Pp…閉塞部
Lc…冷媒
Aw…リブ領域
CEC…カソードガス排出流路
AEC…アノードガス排出流路
LFC…冷媒流路
CSC…カソードガス供給流路
ASC…アノードガス供給流路 DESCRIPTION OF
DESCRIPTION OF
Claims (17)
- 膜電極接合体を含む積層体と接触して配置される燃料電池用のセパレータであって、
前記膜電極接合体にガスを供給するためのガス供給流路であって、ガスの流通方向における下流側の端部が閉塞されたガス供給流路を前記積層体との間に形成するためのガス供給流路形成部と、
前記膜電極接合体からガスを排出させるためのガス排出流路であって、ガスの流通方向における上流側の端部が閉塞されたガス排出流路を前記積層体との間に形成するためのガス排出流路形成部と、
一方の端部が前記ガス供給流路に接続され、他方の端部が前記ガス排出流路に接続され、前記ガス供給流路内のガスを前記ガス排出経路に移動させるためのガス移動流路であって、前記ガス供給流路および前記ガス排出流路より断面積の小さいガス移動流路を前記積層体との間に形成するためのガス移動流路形成部と、を備えるセパレータ。 A separator for a fuel cell disposed in contact with a laminate including a membrane electrode assembly,
A gas supply channel for supplying gas to the membrane electrode assembly, the gas supply channel for forming a gas supply channel having a closed end on the downstream side in the gas flow direction between the laminated body A gas supply flow path forming section;
A gas discharge flow path for discharging gas from the membrane electrode assembly, for forming a gas discharge flow path between the laminated body and a closed end on the upstream side in the gas flow direction. A gas discharge flow path forming section;
One end is connected to the gas supply flow path, the other end is connected to the gas discharge flow path, and a gas movement flow path for moving the gas in the gas supply flow path to the gas discharge path A separator comprising: a gas movement flow path forming portion for forming a gas movement flow path having a smaller cross-sectional area than the gas supply flow path and the gas discharge flow path between the laminated body. - 請求項1に記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、それぞれ、第1の方向に沿って延伸する溝形状を有し、ガスの流通方向がともに前記第1の方向となるようにして、第2の方向に沿って交互に並んで配置され、
前記セパレータは、さらに、
前記ガス供給流路形成部と前記ガス排出流路形成部により形成されるリブの頂部に形成される領域であって、前記第1の方向に沿って延伸するリブ領域を備え、
前記ガス移動流路形成部は、直線状に形成された溝形状を有し、前記リブ領域に形成されている、セパレータ。 The separator according to claim 1,
Each of the gas supply flow path forming portion and the gas discharge flow path forming portion has a groove shape extending along a first direction, and both the gas flow directions are in the first direction. , Arranged alternately along the second direction,
The separator further includes
A region formed at the top of the rib formed by the gas supply channel forming part and the gas discharge channel forming part, the rib region extending along the first direction,
The gas movement flow path forming part has a groove shape formed in a straight line, and is formed in the rib region. - 請求項2に記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、それぞれ、第1の方向に沿って延伸する一対の側面部と、前記一対の側面部の互いの端部を繋ぐ閉塞面部と、を備え、
前記リブ領域は、前記ガス供給流路形成部の前記側面部と、前記ガス排出流路形成部の前記側面部との間にそれぞれ形成され、
前記ガス移動流路形成部は、複数の前記リブ領域のうち、少なくとも一部の前記リブ領域において、前記ガス供給経路形成部の前記閉塞面部と前記第1の方向における位置が等しい一方の端部から、前記ガス排出経路形成部の前記閉塞面部と前記第1の方向における位置が等しい他方の端部までの間の全範囲で前記第1の方向に沿って所定の間隔毎に形成されている、セパレータ。 The separator according to claim 2,
The gas supply flow path forming section and the gas discharge flow path forming section are each a pair of side surface portions extending along a first direction, and a closed surface portion connecting the end portions of the pair of side surface portions, With
The rib regions are respectively formed between the side surface portion of the gas supply channel forming portion and the side surface portion of the gas discharge channel forming portion,
The gas movement flow path forming portion has one end portion in which the position in the first direction is equal to the closing surface portion of the gas supply path forming portion in at least some of the rib regions. To the closed surface portion of the gas discharge path forming portion and the other end portion having the same position in the first direction, and is formed at predetermined intervals along the first direction. , Separator. - 請求項3に記載のセパレータにおいて、
前記所定の間隔は、0.3~1.2mmの範囲の間隔であり、
前記ガス供給流路形成部および前記ガス排出流路形成部は、前記第2の方向における互いの間隔が0.8~2mmの範囲となるようにして交互に配置されている、セパレータ。 The separator according to claim 3,
The predetermined interval is an interval in the range of 0.3 to 1.2 mm,
The separator, wherein the gas supply flow path forming part and the gas discharge flow path forming part are alternately arranged so that the distance between them in the second direction is in the range of 0.8 to 2 mm. - 請求項1ないし請求項4のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記ガス移動流路の断面積が、前記ガス供給路およびガス排出流路の断面積の1/10以下となるように形成されている、セパレータ。 The separator according to any one of claims 1 to 4,
The gas movement flow path forming unit is a separator formed such that a cross-sectional area of the gas movement flow path is 1/10 or less of a cross-sectional area of the gas supply path and the gas discharge flow path. - 請求項2ないし請求項5のいずれかに記載のセパレータにおいて、
前記ガス供給流路形成部および前記ガス排出流路形成部は、溝の幅がそれぞれ、0.8~2mmの範囲となり、溝の深さがそれぞれ、0.2~1mmの範囲となるように形成され、
前記ガス移動流路形成部は、溝の幅が、50~200μmの範囲となり、溝の深さが、30~150μmの範囲となるように形成されている、セパレータ。 In the separator according to any one of claims 2 to 5,
The gas supply flow path forming portion and the gas discharge flow path forming portion have a groove width in the range of 0.8 to 2 mm and a groove depth in the range of 0.2 to 1 mm, respectively. Formed,
The gas transfer flow path forming portion is a separator formed such that the groove width is in the range of 50 to 200 μm and the groove depth is in the range of 30 to 150 μm. - 請求項3ないし請求項6のいずれかに記載のセパレータにおいて、
前記リブ領域における前記ガス移動流路形成部の配置密度は、前記ガス供給流路形成部および前記ガス排出流路形成部の上流側と接する領域よりも、前記ガス供給流路形成部および前記ガス排出流路形成部の下流側と接する領域の方が高い、セパレータ。 The separator according to any one of claims 3 to 6,
The arrangement density of the gas movement flow path forming part in the rib area is higher than the area in contact with the upstream side of the gas supply flow path forming part and the gas discharge flow path forming part. The separator is higher in the area in contact with the downstream side of the discharge flow path forming portion. - 請求項3ないし請求項7のいずれかに記載のセパレータにおいて、
前記第2の方向は、鉛直方向であり、
前記ガス移動流路形成部は、前記複数のリブ領域のうち、上端側が前記ガス供給流路形成部の前記側面部と接し、下端側が前記ガス排出流路形成部の前記側面部と接しているリブ領域にのみ形成されている、セパレータ。 The separator according to any one of claims 3 to 7,
The second direction is a vertical direction;
The gas movement flow path forming portion has an upper end side in contact with the side surface portion of the gas supply flow path forming portion and a lower end side in contact with the side surface portion of the gas discharge flow path forming portion among the plurality of rib regions. A separator formed only in the rib region. - 請求項3ないし請求項7のいずれかに記載のセパレータにおいて、
前記第2の方向は、鉛直方向であり、
前記ガス移動流路形成部は、前記複数のリブ領域のうち、上端側が前記ガス排出流路形成部の前記側面部と接し、下端側が前記ガス供給流路形成部の前記側面部と接しているリブ領域において、前記ガス移動流路の一部を閉塞するための閉塞部を備えている、セパレータ。 The separator according to any one of claims 3 to 7,
The second direction is a vertical direction;
The gas movement flow path forming part has an upper end side in contact with the side surface part of the gas discharge flow path forming part and a lower end side in contact with the side surface part of the gas supply flow path forming part among the plurality of rib regions. A separator comprising a closing portion for closing a part of the gas movement channel in the rib region. - 請求項8または請求項9のいずれかに記載のセパレータにおいて、
上端側が前記ガス供給流路形成部の前記側面部と接し、下端側が前記ガス排出流路形成部の前記側面部と接しているリブ領域の鉛直方向における幅は、上端側が前記ガス排出流路形成部の前記側面部と接し、下端側が前記ガス供給流路形成部の前記側面部と接しているリブ領域の鉛直方向における幅よりも広い、セパレータ。 In the separator according to claim 8 or 9,
The width in the vertical direction of the rib region where the upper end side is in contact with the side surface portion of the gas supply flow path forming portion and the lower end side is in contact with the side surface portion of the gas discharge flow path forming portion is as follows. The separator is wider than the width in the vertical direction of the rib region that is in contact with the side surface portion and the lower end side is in contact with the side surface portion of the gas supply flow path forming portion. - 請求項3ないし請求項10のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記リブ領域において、前記ガス供給経路形成部の前記閉塞面部と前記第1の方向における位置が等しい一方の端部から、前記ガス排出経路形成部の前記閉塞面部と前記第1の方向における位置が等しい他方の端部までの間の全範囲で互いに平行、もしくは、互いに交叉するように形成されている、セパレータ。 The separator according to any one of claims 3 to 10,
In the rib region, the gas movement flow path forming unit is configured to have the closed surface portion of the gas discharge path forming portion from one end portion of the gas supply path forming portion having the same position in the first direction as the closed surface portion. And a separator that is formed so as to be parallel to each other or cross each other in the entire range between the same position in the first direction and the other end. - 請求項2ないし請求項11のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記ガス移動流路の断面形状が、三角形状、四角形状、および、半円形状のいずれかとなる形状を備えている、セパレータ。 The separator according to any one of claims 2 to 11,
The gas movement flow path forming unit is a separator having a shape in which a cross-sectional shape of the gas movement flow path is any one of a triangular shape, a quadrangular shape, and a semicircular shape. - 請求項2ないし請求項12のいずれかに記載のセパレータにおいて、
前記ガス移動流路形成部は、前記積層体の前記セパレータと接触する接触面よりも親水性が高い、セパレータ。 The separator according to any one of claims 2 to 12,
The gas movement flow path forming part is a separator having a higher hydrophilicity than a contact surface in contact with the separator of the laminate. - 請求項2ないし請求項12のいずれかに記載のセパレータはさらに、
前記ガス供給流路形成部、前記ガス流路形成部、および、前記ガス移動流路形成部がそれぞれ形成されている第1の面と反対側の第2の面に、燃料電池を冷却するための液体を流通させるための液体流路を形成するための液体流路形成部を備えているセパレータ。 The separator according to any one of claims 2 to 12,
In order to cool the fuel cell on the second surface opposite to the first surface on which the gas supply flow path forming section, the gas flow path forming section, and the gas movement flow path forming section are respectively formed. A separator having a liquid flow path forming part for forming a liquid flow path for circulating the liquid. - 燃料電池であって、
膜電極接合体を含む積層体と、
前記積層体の両側に配置される請求項1ないし請求項14に記載のセパレータと、を備える、燃料電池。 A fuel cell,
A laminate including a membrane electrode assembly;
A fuel cell comprising: the separator according to claim 1 disposed on both sides of the laminate. - 燃料電池であって、
膜電極接合体を含む積層体と、
前記積層体の両側に配置される請求項14に記載のセパレータと、をそれぞれ複数備え、
各前記セパレータは、前記液体流路形成部が他の前記セパレータの前記液体流路形成部と対向するように重ねて配置されている、燃料電池。 A fuel cell,
A laminate including a membrane electrode assembly;
A plurality of separators according to claim 14 disposed on both sides of the laminate,
Each of the separators is a fuel cell in which the liquid flow path forming portion is arranged so as to face the liquid flow path forming portion of another separator. - 請求項15もしくは請求項16に記載の燃料電池において、
前記積層体は、前記膜電極接合体と接触して配置されるガス拡散層を備え、
前記セパレータは、前記ガス拡散層と接触している、燃料電池。 The fuel cell according to claim 15 or 16, wherein
The laminate includes a gas diffusion layer disposed in contact with the membrane electrode assembly,
The fuel cell, wherein the separator is in contact with the gas diffusion layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/005665 WO2012035584A1 (en) | 2010-09-16 | 2010-09-16 | Separator for fuel cell and fuel cell |
JP2011543017A JPWO2012035584A1 (en) | 2010-09-16 | 2010-09-16 | Fuel cell separator, fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/005665 WO2012035584A1 (en) | 2010-09-16 | 2010-09-16 | Separator for fuel cell and fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012035584A1 true WO2012035584A1 (en) | 2012-03-22 |
Family
ID=45831089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/005665 WO2012035584A1 (en) | 2010-09-16 | 2010-09-16 | Separator for fuel cell and fuel cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012035584A1 (en) |
WO (1) | WO2012035584A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013045553A (en) * | 2011-08-23 | 2013-03-04 | Magunekusu Kk | Separator of solid oxide fuel cell |
WO2013178989A1 (en) * | 2012-05-28 | 2013-12-05 | Intelligent Energy Limited | A bipolar plate for a fuel cell |
JP2017004595A (en) * | 2015-06-04 | 2017-01-05 | パナソニックIpマネジメント株式会社 | Separator for fuel battery and fuel battery |
JP2018097977A (en) * | 2016-12-09 | 2018-06-21 | トヨタ自動車株式会社 | Fuel cell separator and fuel cell |
JP2019186067A (en) * | 2018-04-11 | 2019-10-24 | トヨタ自動車株式会社 | Fuel battery |
CN111509254A (en) * | 2019-01-31 | 2020-08-07 | 丰田纺织株式会社 | Separator for fuel cell |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146309A (en) * | 2002-10-28 | 2004-05-20 | Nissan Motor Co Ltd | Fuel cell separator, and fuel cell using it |
JP2005085626A (en) * | 2003-09-09 | 2005-03-31 | Nissan Motor Co Ltd | Fuel cell |
JP2005141979A (en) * | 2003-11-05 | 2005-06-02 | Nissan Motor Co Ltd | Fuel cell |
JP2005190983A (en) * | 2003-12-02 | 2005-07-14 | Denso Corp | Fuel cell |
JP2007005237A (en) * | 2005-06-27 | 2007-01-11 | Honda Motor Co Ltd | Fuel cell |
JP2008123707A (en) * | 2006-11-08 | 2008-05-29 | Mitsubishi Electric Corp | Fuel battery |
JP2010186659A (en) * | 2009-02-13 | 2010-08-26 | Toyota Motor Corp | Fuel battery |
-
2010
- 2010-09-16 JP JP2011543017A patent/JPWO2012035584A1/en active Pending
- 2010-09-16 WO PCT/JP2010/005665 patent/WO2012035584A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146309A (en) * | 2002-10-28 | 2004-05-20 | Nissan Motor Co Ltd | Fuel cell separator, and fuel cell using it |
JP2005085626A (en) * | 2003-09-09 | 2005-03-31 | Nissan Motor Co Ltd | Fuel cell |
JP2005141979A (en) * | 2003-11-05 | 2005-06-02 | Nissan Motor Co Ltd | Fuel cell |
JP2005190983A (en) * | 2003-12-02 | 2005-07-14 | Denso Corp | Fuel cell |
JP2007005237A (en) * | 2005-06-27 | 2007-01-11 | Honda Motor Co Ltd | Fuel cell |
JP2008123707A (en) * | 2006-11-08 | 2008-05-29 | Mitsubishi Electric Corp | Fuel battery |
JP2010186659A (en) * | 2009-02-13 | 2010-08-26 | Toyota Motor Corp | Fuel battery |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013045553A (en) * | 2011-08-23 | 2013-03-04 | Magunekusu Kk | Separator of solid oxide fuel cell |
WO2013178989A1 (en) * | 2012-05-28 | 2013-12-05 | Intelligent Energy Limited | A bipolar plate for a fuel cell |
CN104428930A (en) * | 2012-05-28 | 2015-03-18 | 智慧能量有限公司 | A bipolar plate for a fuel cell |
JP2017004595A (en) * | 2015-06-04 | 2017-01-05 | パナソニックIpマネジメント株式会社 | Separator for fuel battery and fuel battery |
JP2018097977A (en) * | 2016-12-09 | 2018-06-21 | トヨタ自動車株式会社 | Fuel cell separator and fuel cell |
US11450862B2 (en) | 2016-12-09 | 2022-09-20 | Toyota Jidosha Kabushiki Kaisha | Separator for fuel cell and fuel cell |
JP2019186067A (en) * | 2018-04-11 | 2019-10-24 | トヨタ自動車株式会社 | Fuel battery |
JP7059767B2 (en) | 2018-04-11 | 2022-04-26 | トヨタ自動車株式会社 | Fuel cell |
CN111509254A (en) * | 2019-01-31 | 2020-08-07 | 丰田纺织株式会社 | Separator for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012035584A1 (en) | 2014-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10727511B2 (en) | Fuel cell | |
JP5445592B2 (en) | Fuel cell separator and fuel cell | |
US8921000B2 (en) | Fuel cell | |
CN107342429B (en) | Fuel cell | |
US10553881B2 (en) | Fuel cell | |
US20120040259A1 (en) | Fuel cell system | |
WO2012035584A1 (en) | Separator for fuel cell and fuel cell | |
JP4549617B2 (en) | Fuel cell | |
WO2015049863A1 (en) | Separator and fuel cell | |
US20100239931A1 (en) | Fuel cell | |
US10658681B2 (en) | Separator for fuel cell and fuel cell stack | |
US8409767B2 (en) | Fuel cell | |
JP2012099382A (en) | Separator for fuel cell, fuel cell | |
KR101315622B1 (en) | Fuelcell stack using branched channel | |
JP6050158B2 (en) | Fuel cell | |
JP5286070B2 (en) | Fuel cell separator | |
KR102540924B1 (en) | Fuel cell stack | |
JP2004342442A (en) | Fuel cell separator | |
JP2008027804A (en) | Fuel cell | |
KR102610727B1 (en) | Separator for fuel cell and fuel cell comprising thereof | |
KR20180063623A (en) | Separator, and Fuel cell stack comprising the same | |
JP5233184B2 (en) | Fuel cell separator | |
JP2022092379A (en) | Gas diffusion layer | |
JP2017059439A (en) | Fuel battery module | |
JP2023089338A (en) | Air-cooling fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011543017 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10857220 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10857220 Country of ref document: EP Kind code of ref document: A1 |