WO2012035177A1 - Sistema de optimización de operación de plantas solares termoeléctricas - Google Patents

Sistema de optimización de operación de plantas solares termoeléctricas Download PDF

Info

Publication number
WO2012035177A1
WO2012035177A1 PCT/ES2010/070602 ES2010070602W WO2012035177A1 WO 2012035177 A1 WO2012035177 A1 WO 2012035177A1 ES 2010070602 W ES2010070602 W ES 2010070602W WO 2012035177 A1 WO2012035177 A1 WO 2012035177A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
module
optimization
solar
data
Prior art date
Application number
PCT/ES2010/070602
Other languages
English (en)
French (fr)
Inventor
Enrique Serrano Dorado
Ralf Wiesenberg
Original Assignee
Sun To Market Solutions S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun To Market Solutions S.L. filed Critical Sun To Market Solutions S.L.
Priority to PCT/ES2010/070602 priority Critical patent/WO2012035177A1/es
Priority to US13/256,134 priority patent/US20120303351A1/en
Publication of WO2012035177A1 publication Critical patent/WO2012035177A1/es
Priority to ZA2012/03167A priority patent/ZA201203167B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/028Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using expert systems only

Definitions

  • the present invention relates to a system for the optimization of the operation of thermoelectric solar plants, as well as the aid for their operation, and the definition of the necessary technological infrastructure for integration with components such as dedicated servers, databases , configuration and control modules necessary for its operation.
  • thermoelectric solar plant Once a thermoelectric solar plant is built, one of the critical points for the proper development of its commercial exploitation, are the operating criteria. Each power plant will solve the objectives generation, it will be reliable and economic and 'technically feasible operation.
  • the present, optimization system provides the information and forecasts of the primary energy that could be used, of the solar resource, and the objectives that will be solved, specifically speaking of the electrical demand.
  • This planning of. the predicted operation obtained from simulations in an environment of dynamic optimization allows economically maximize operating in a plant or manage any restrictions that may occur in it, how could 'be the use of additional fuel, limits or obligations the energy injected into the network by the operator, technical problems and maintenance activities, or the availability and management of water use for cleaning and cooling.
  • the system provided by the present invention comprises a plurality of operating modules within a system that communicates and manages them with each other, which manage different aspects necessary and related to solar thermal plants, such as the collection and prediction of meteorological data, plant operations, integration with the electricity market operator systems, among others, through a single user interface.
  • the system allows to specify the operating conditions of the thermoelectric plant, consult the proposed production plan and exploit the information managed to carry out the necessary information management.
  • the system comprises a plant module which, in turn, comprises a power plant model, with a solar-thermal collector system, with the possibility of heat storage and an auxiliary boiler, for the dynamic modules of the plant.
  • the system comprises an electrical market module that is used to know the conditions of the electrical system referring to a particular region and in its version of the price forecast model which is connected to a power grid server to obtain the necessary data.
  • An optimization module in conjunction with the elements of the system, is designed to obtain forecasts for 24, 48, or 72 hours of the various meteorological variables, obtained from a meteorological module, the location of the solar plant and the prices of sale and demand of electricity that will be satisfied.
  • the optimization module comprises a series of sub-modules, such as the solar resource module that consists of a model that improves the estimation of direct solar radiation, which turns out to be a critical variable for this technology, but always taking Consider the rest of the weather conditions, such as wind, humidity, temperature, etc.
  • This sub- The module incorporates self-study systems to reflect the local and specific conditions of the location and the weather that help in the exploitation of the plant, such as fog or dust suspended due to wind.
  • the demand forecast may depend on the estimated prices of the electricity market.
  • the plant module integrates a dynamic model that will later be described in detail, which includes its control system and an operating mode editor, which are connected to an exploitation and optimization strategy manager, where planning will eventually be obtained. in the selected time horizon (24, 48 or 72 hours).
  • the criteria for optimizing production planning can be several: maximize the profit for the sale of electricity through the predicted electric market prices, minimize load fluctuations in the steam turbine, maximize hours of operation, etc.
  • additional fuel use, technical and operational restrictions and thermal storage management, if any, are of special importance Brief description of the drawings
  • Figure 1 illustrates a diagram showing the architecture and interconnection of the system for the optimization of the operation of thermoelectric solar plants, in accordance with the present invention.
  • Figure 2 shows a graph of the data concerning the solar resource available for the operation of the thermoelectric solar plant, in accordance with the present invention.
  • FIG. 3 shows a block diagram, which represents the orientation of one of the thermoelectric solar plant, in accordance with the present invention. Detailed description of the invention
  • a system 100 is provided to optimize and specify the operating conditions of a thermoelectric solar plant, which is represented by a plant module 114, consult the proposed production plan, exploit the information managed to perform the calculations (meteorological variables, market prices, etc.), which comes from a file transmission protocol (FTP) server 102 to host and compare it in a database 106 (DB) and provide it to a user interface 118 of a control unit 120 so that the user 108 can manipulate it and work with each expert module (110, 112, 114, 116) intended for a particular function.
  • FTP file transmission protocol
  • DB database 106
  • the process inputs can be specified, the information stored in the database 106 can be used and the results calculated by the expert modules can be collected (1 0, 112, 114, 116 ) ..
  • the system also provides the necessary mechanisms for expert modules (110, 112, 114, 116) to work in an integrated manner providing an integral system 100 that allows each module to work in context, resolving communications between modules.
  • the system 100 has sufficient capacity to be able to execute the modules it uses (110, 112, 114, 116), host the database 106, execute the tools used by the modules (110, 112, 114, 116) and to arrange Internet access to allow the external connection of some modules, such as the weather module 110, which requests information from the FTP server 102, which connects to the Internet in order to provide and compare information between the database 106 and the meteorological module 110, which can comprise meteorological and radiation variables.
  • the system shows a plant module 114 that reflects the physical and dynamic reality of a thermoelectric plant.
  • a control system receives the inputs of the plant model and can operate it through the reflection of the reality included, through the data collected through the database 106, through an electricity market node 116 and the weather module 110.
  • Plant module 114 comprises a dynamic model of the plant that includes the physical configuration and the main systems of the plant.
  • the model considers the inertia (thermal, mechanical, among others) and the synchronizations in the dynamics of the operation of the plant, having the possibility of adjusting and calibrating while the real experience of the operation is being obtained.
  • the plant is managed according to the modes of operation, which include the operating parameters of the plant subsystems and their logic of action. These modes are previously edited depending on the configuration and the physical possibilities of the plant, they are editable in case of changes by the user 108 either through the user interface 118 or through the initial parameters of the system 100.
  • the system 100 also comprises an optimization module 112, from which the parameters related to the solar field, warehouse, gas and block can be specified; as well as the restrictions and criteria necessary to make modifications and simulations on the operation of the plant module 114, by means of which the operation can be consulted! of the plant.
  • the database 106 controls the number of users 108 that may exist and that it can have access to the manipulation of the information of said database 106 and of the user interface 118 by means of information encryption and access passwords to the system 100.
  • the infrastructure analysis of the system 100 comprises, as mentioned above, a series of expert modules (110, 112, 114, 116), considered as subsystems, which perform a specific function, which will be described in detail below.
  • the meteorological module 110 collects the data of general predictions of a satellite service through an FTP server 102 for information exchange and generates predictions for the next 72 hours for the area where the installation is located, or from where the information was requested. . ,
  • the electricity market module 116 collects data from an electricity network server 104, referring to the market prices of public files of the electricity network, including electricity prices, and generates price predictions for each kilowatt-hour (Kwh ) for the next 72 hours and provides them to database 106 so that they are stored, organized and can be provided to plant module 114.
  • Kwh kilowatt-hour
  • the floor module 114 allows to combine. several options of elements, design and configuration of the installation together with the parameters provided by the remaining modules, to provide an output of energy to be produced.
  • the optimizer module 112 determines the best design or operation strategies of the plant 114, based on the data provided by the previous modules and the criteria specified by the local user (s) to the plant.
  • the system 100 provides a control unit 120 with a user interface 118 that allows the user 108 to configure the operating conditions of the thermoelectric plant and to exploit the information generated by the expert modules (110, 112, 114, 116) and the data used in calculations.
  • the optimization module 112 is configured to obtain from the database 106 the data relating to the market prices of the electric power and to send to the plant module 114 simulation conditions according to the conditions configured by the user 108 through of the user interface 118
  • the optimization module 112 additionally contains sub-modules, which handle the data and generate the graphical representation of the meteorological parameters, the graphical representation of the market prices indicating the actual and estimated values, allows through a Production Plan, indicate the necessary parameters to simulate the solar field, warehouse, gas, block, restrictions and simulation criteria, allows to indicate the configurations associated with solar field, gas, salt tanks, block and modes of operation and .
  • the objective of optimization is to achieve the objective according to the selected criteria.
  • the values and possible states of the plant are modified, with the forecast and uncertainty of primary energy (solar resource) being able to achieve the objectives of electricity sales and maximize the exploitation of the plant.
  • the optimization process begins once the predictions and their uncertainties of meteorological values and electricity market prices are known. After this the operator will define the conditions of the state of the plant and the possible restrictions within the time horizon of the optimization, both technical and operational by different criteria. With this, the optimization module 112, once the optimization criteria has been defined, will perform simulations and adjustments with feedback between its modules, and value adjustments until the optimum production program is achieved according to the criteria and scenario envisaged.
  • the optimization process is iterative and with constant flow of values between its modules, managing the forecast values and their associated uncertainties.
  • a better forecast metaleorology or electricity price
  • a new production plan adjustment will occur.
  • System 100 allows those responsible for operating the power plant 114 to allocate resources and maintain high viability in the results and consumption in the operation of their plant, being able to handle a highly variable primary energy such as solar.
  • the optimization criteria are taken from the income of the maximum energy sales, for which it is necessary to know the use of auxiliary fuel and the management of thermal storage.
  • the solar field loops as the basic units include, 'distributed in various subfields.
  • Each tie is made up of. solar collector assembly units (SCA) that include the main systems, being able to give parameters and govern independently from the rest of the field. Additionally, the thermal and load losses of each element, through which the fluid can circulate, have been included in this model.
  • SCA solar collector assembly units
  • the floor module 114 allows the optimal dynamic evolution of the simulations and enables the activity of the control system and the transition modes in a real way, load and synchronization curves, etc.
  • the conventional part of the plant includes a steam generator, turbine stages, condensation and cooling tower, preheaters and . degassing In the same way the storage system and the auxiliary boiler are built, if they exist.
  • the floor module 114 reproduces e! control and the physical and dynamic characteristics of the plant, in combination with the appropriate forecast of the electricity demand and solar resources and is configured to obtain from the database 106 the prediction data and update the dynamic model of the plant, and to send the simulation results obtained according to the conditions' set by the simulation optimization module 1 February.
  • System 100 provides two access profiles for user 108 in order to obtain various functions and rights of administration of system information.
  • the operator mode has access to the Solar Resource sub-modules shown in Figure 2, Electricity Market and Production Plan managed by modules 112 and 116. In these modules you can perform all available operations and access the data without No type of restriction. While the Plant Manager mode has access to the same sub-modules as the Operator and, in addition, to the Configuration and Analysis sub-modules. In these modules you can perform all available operations and access the data without any restrictions. From the solar resource sub-module, shown in Figure 2, you can consult the estimated and actual data of the hourly hourly weather variables up to the current day, and those corresponding to the forecasts for the next 72 hours. These data are collected by meteorological module 110, which are read directly from database 106.
  • the user interface 118 When the user wishes to know information about the available solar resources, through the user interface 118 in which a graph that shows data simultaneously from two days (current and next). The division between the two is represented by a continuous vertical line. The current moment is represented by a vertical dashed line, plus a visible mark on the x-axis, where the current date and time is also reported. The x-axis represents time (divided into 1-hour intervals) and the y-axis is used to represent two scales of values (left and right).
  • DNI Global Horizontal Irradiation
  • DI Diffuse Irradiation
  • W / m 2 Dry Bulb Temperature
  • RH Relative Humidity
  • W Wind Speed
  • P Atmospheric Pressure
  • the actual and estimated data of the electricity market prices can be consulted, hour by hour. Actual information is available, up to the next 24 hours at most, and estimated data up to the next 72 hours from the previous 24, that is, the system gives information up to a limit of 4 days from the current one.
  • These data are those collected by the electricity market module 116, although, the application reads them directly from the database 106 and as can be seen in the flow of Figure 1, the information can be displayed to the user interface , 118.
  • Figure 3 shows a block diagram 300, of the plant module 114 on which it will work in a feedback loop and the optimization module 112, which through the user interface 118, allows the user 108 to make plant simulations, with based on the configurations of the plant module 114 with different scenarios, through which the various parameters of each condition that you want to control or optimize can be controlled, such as In the case of the behavior of the solar resource, warehouse, gas, block, as well as their respective criteria and restrictions, which can be interpreted by block 302, by which, it is intended to indicate that numerous values of the elements and variables can be controlled above, such as solar field parameters, such as the maximum and minimum thresholds departure or sunset, the transmissibility, the one absorption, reflectivity, among others.
  • solar field parameters such as the maximum and minimum thresholds departure or sunset
  • the transmissibility the one absorption, reflectivity, among others.
  • Ef block 304 represents the auxiliary fuel boiler that can be used as support in the generation and operation of the plant.
  • the gas parameters are configured, which are used for antifreeze and generation, among others.
  • the power data such as the maximum and minimum power values for each hour, as well as the lower heating heat (LHV).
  • the blocks 306 and 308 of thermal storage include a group of elements consisting of: hot tank load, hot tank temperature and cold tank temperature, the losses in the tanks, the maximum and minimum volumes of the tanks, the density of salts, among others.
  • the blocks represented by references 310, 312 and 314 represent, respectively, the initial turbine temperature and cold water temperature.
  • the block parameters are configured, such as the minimum, maximum temperatures and cold, warm and hot start time, the degradation of power and / or performance, among others.

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Sistema de optimización de operación de plantas solares (100) y para la especificación de las condiciones de funcionamiento de la misma, que comprende un servidor (102) de protocolos de transmisión de archivos (FTP) que recoge datos de predicciones generales de un servicio de satélite datos y un servidor de red eléctrica (104) que recoge datos referentes a los precios de mercado de ficheros públicos de Ia red eléctrica, donde Ia información recopilada por ambos servidores (102, 104) es suministrada a una pluralidad de módulos expertos (110,112,114,116), comparada y almacenada en una base de datos (106) (BBDD), Ia cual se proporciona a una unidad de control (120) y mediante una interfaz de usuario (118) un usuario (108) tiene Ia oportunidad de manipularla y trabajar con cada módulo experto con el fin de definir las condiciones adecuadas para Ia operación y optimización de actividades de Ia planta solar.

Description

SISTEMA DE OPTIMIZACIÓN DE OPERACIÓN DE
PLANTAS SOLARES TERMOELÉCTRICAS
Campo de la invención
La presente invención se refiere a un sistema para la optimización de la operación de plantas solares termoeléctricas, así como la ayuda para la operación de las mismas, y la definición de la infraestructura tecnológica necesaria para la integración con componentes como servidores dedicados, bases de datos, módulos de configuración y control necesarios para su funcionamiento.
Antecedentes de la invención
Una vez que se construye una planta solar termoeléctrica, uno de los puntos críticos para el desarrollo apropiado de la explotación comercial de la misma, son los criterios de funcionamiento. Cada planta de energía resolverá los objetivos propuestos de generación, será confiable y hará la operación económica y ' técnicamente factible.
El presente, sistema de optimización proporciona la información y pronósticos de la energía primaria que podría ser utilizada, del recurso solar, y los objetivos que serán resueltos, hablando específicamente de la demanda eléctrica. Utilizando un modelo dinámico de una planta termoeléctrica que refleja la realidad física y operacional de la misma (posibles modos de operación, sistemas de control, inercias, etc.). Este planeamiento de. la operación pronosticada, obtenido de simulaciones dentro de un entorno de optimización dinámica, permite maximizar económicamente la explotación en una planta o manejar las restricciones posibles que pueden ocurrir en ella, como podía' ser el uso del combustible adicional, los límites o las obligaciones de la energía inyectada en la red por eí operador, los problemas técnicos y las actividades de mantenimiento, o la disponibilidad y gestión del uso del agua para la limpieza y refrigeración.
Por lo tanto, existe una necesidad en la técnica de un sistema que, en conjunto con módulos de gestión y obtención de datos, permita una administración apropiada del gas y del uso del almacenamiento térmico que pueda llevar a una mejora económica hasta el 10% en la venta de la energía de la planta mediante una sola ¡nterfaz de usuario.
Descripción de la invención
El sistema proporcionado mediante la presente invención comprende una pluralidad de módulos de operación dentro de un sistema que los comunica y los gestiona entre sí, los cuales gestionan distintos aspectos necesarios y relacionados con las plantas termosolares, como son la recopiiación y predicción de datos meteorológicos, operaciones de la planta, integración con los sistemas de operadores del mercado de electricidad, entre otros, mediante una interfaz única de usuario.
El sistema permite especificar las condiciones de funcionamiento de la planta termoeléctrica, consultar el plan de producción propuesto y explotar la información manejada para realizar las gestiones de información necesarias.
El sistema comprende un módulo de planta que a su vez, comprende un modelo dé planta de energía, con un sistema de colectores solar-térmicos, con posibilidad de almacenamiento de calor y una caldera auxiliar, para los módulos dinámicos de la planta.
Ei sistema comprende un módulo eléctrico de mercado que se utiliza para conocer las condiciones del sistema eléctrico referente a una región eñ particular y en su versión del modelo de pronóstico de precios el cual se conecta a un servidor de red eléctrica para obtener los datos necesarios.
Un módulo de optimización, en conjunción con los elementos del sistema, está diseñado para obtener pronósticos sobre 24, 48, ó 72 horas de las diversas variables meteorológicas, obtenidas a partir de un módulo meteorológico, de la localización de planta solar y de los precios de venta y demanda de la electricidad que será satisfecha.
Asimismo, el módulo de optimización comprende una serie de sub-módulos, como es el módulo de recurso solar que consiste en un modelo que mejora la estimación de la radiación solar directa, la cual resulta ser una variable crítica para esta tecnología, pero tomando siempre en cuenta el resto de condiciones meteorológicas, como son el viento, la humedad, la temperatura, etc. Este sub- módulo incorpora sistemas autodidácticos para reflejar las condiciones locales y específicas de la localización y de la meteorología que ayudan en la explotación de la planta, como podía ser la niebla o polvo suspendido debido al viento. El pronóstico de demanda puede depender de los precios estimados del mercado eléctrico.
El módulo de la planta integra un modelo dinámico que posteriormente será descrito detalladamente, que incluye su sistema de control y un editor de modos de operación, ios cuales está conectados con un administrador de estrategias de explotación y optimización, de donde eventuaimente se obtendrá la planeación en el horizonte de tiempo seleccionado (24, 48 ó 72 horas).
Los criterios para optimizar la planeación de producción pueden ser varios: maximizar el beneficio para la venta de la electricidad mediante los precios de mercado eléctricos pronosticados, minimizar las fluctuaciones de carga en la turbina de vapor, maximizar las horas de la operación, etc. Dentro de esta optimización dinámica el uso adicional del combustible, las restricciones técnicas y operacionales y la gestión del almacenamiento térmico, si existe, tienen importancia especial Breve descripción de los dibujos
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.
La Figura 1 ilustra un diagrama que muestra fa arquitectura e interconexión del sistema para la optimización de la operación de plantas solares termoeléctrica, acorde con la presente invención. La Figura 2 muestra una gráfica dé los datos referentes al recurso solar disponible para la operación de la planta solar termoeléctrica, acorde con la presente invención.
La Figura 3 muestra un diagrama de bloques, que representa la orientación de una de la planta solar termoeléctrica, acorde con la presente invención. Descripción detallada de la invención
De acuerdo con el diagrama de la Figura 1 , se proporciona un sistema 100 para optimizar y especificar las condiciones de funcionamiento de una planta solar termoeléctrica, la cuál es representada mediante un módulo de planta 114, consultar el plan de producción propuesto, explotar la información manejada para realizar los cálculos (variables meteorológicas, precios de mercado, etc.), la cual proviene de un servidor 102 de protocolos de transmisión de archivos (FTP) para alojarla y compararla en una base de datos 106 (BBDD) y proporcionarla a una interfaz de usuario 118 de una unidad de control 120 para que el usuario 108 pueda manipularla y trabajar con cada módulo experto (110, 112, 114, 116) destinado a una función en particular.
Por medio de la interfaz de usuario 118 de la unidad de control 120 se pueden especificar las entradas del proceso, explotar la información alojada en la base de datos 106 y recoger los resultados calculados por los módulos expertos (1 0, 112, 114, 116).. El sistema además proporciona los mecanismos necesarios para que los módulos expertos (110, 112, 114, 116) trabajen de forma integrada proporcionando una sistema integral 100 que permita trabajar a cada módulo en su contexto, resolviendo las comunicaciones entre módulos.
El sistema 100 tiene la capacidad suficiente para poder ejecutar los módulos que utiliza (110, 112, 114, 116), alojar la base de datos 106, ejecutar las herramientas utilizadas por los módulos (110, 112, 114, 116) y para disponer de acceso a Internet para permitir la conexión externa de algunos módulos, como sería en el caso del módulo meteorológico 110, el cual solicita información desde el servidor FTP 102, el cuál se conecta a la Internet con el fin de proporcionar y comparar información entre la base de datos 106 y el módulo meteorológico 110, la cual puede comprender variables meteorológicas y de radiación. El sistema muestra un módulo de planta 114 que refleja la realidad física y dinámica de una planta termoeléctrica. Un sistema de control (no mostrado) recibe las entradas del modelo de planta y puede operarlo mediante la reflexión de la realidad incluida, a través de los datos recolectados por medio de la base de datos 106, a través de un niódulo de mercado eléctrico 116 y el módulo meteorológico 110. El módulo de planta 114 comprende un modelo dinámico de ia planta que incluye !a configuración física y los sistemas principales de la planta. El modelo considera las inercias (térmicas, mecánicas, entre otras) y las sincronizaciones en la dinámica de operación de la planta, teniendo la posibilidad de ajusfar y calibrar mientras la experiencia real de la operación se estén obteniendo.
La planta se maneja según los modos de operación, que incluyen los parámetros de funcionamiento de los subsistemas de la planta y su lógica de la acción. Estos modos se editan previamente dependiendo de la configuración' y de las posibilidades físicas de la planta, son editables en caso de cambios por el usuario 108 ya sea a través de la interfaz de usuario 118 o a través del los parámetros iniciales del sistema 100.
El sistema 100 comprende también un módulo de optimización 112, desde el cuál se pueden especificar los parámetros relacionados con el campo solar, almacén, gas y bloque; así como las restricciones y criterios necesarios para hacer modificaciones y simulaciones sobre el funcionamiento del módulo de planta 114, por medio del cual se puede'consultar el funcionamiento rea! de la planta. Con el fin de proporcionar un nivel de seguridad alto al sistema 100, así como al manejo y gestión de los módulos expertos (110, 112, 114, 116), la base de datos 106 controla el número de usuarios 108 que pueden existir y que pueda tener acceso a la manipulación de la información de dicha base de datos 106 y de la interfaz de usuario 118 por medio de encriptación de información y contraseñas de acceso al sistema 100.
A continuación, se explica más a detalle la infraestructura del sistema 100, mediante el análisis de las características y requisitos de los componentes que lo comprenden. El análisis de la infraestructura del sistema 100 comprende, conio ha sido mencionado anteriormente, una serie de módulos expertos (110, 112, 114, 116), considerados como subsistemas, que realizan una función en específico, que será descrita a detalle a continuación.
El módulo meteorológico 110 recoge los datos de predicciones generales de un servicio de satélite a través de un servidor FTP 102 de intercambio de información y genera predicciones para las próximas 72 horas para la zona concreta donde se encuentra la instalación, o desde donde se haya solicitado la información. . ,
El módulo de mercado eléctrico 116 recoge los datos provenientes de un servidor de red eléctrica 104, referentes a ios precios de mercado de ficheros públicos de la red eléctrica, incluyendo precios de electricidad, y genera predicciones de los precios de cada kilowatio-hora (Kwh) para las próximas 72 horas y los proporciona a la base de datos 106 de modo que sean almacenados, organizados y puedan ser proporcionados al módulo de planta 114.
El módulo de planta 114 permite combinar. varias opciones de elementos, diseño y configuración de la instalación junto a los parámetros proporcionados por los restantes módulos, para proporcionar una salida de energía a producir. Asimismo, el módulo optimizador 112 determina las mejores estrategias de diseño o de operación de la planta 114, en función de los datos proporcionados por los módulos anteriores y los criterios especificados por el/los usuario(s) local(es) a la planta. El sistema 100 proporciona una unidad de control 120 con una interfaz de usuario 118 que permite al usuario 108 configurar las condiciones de funcionamiento de la planta termoeléctrica y explotar la información generada por los módulos expertos (110, 112, 114, 116) y ios datos utilizados en los cálculos. El módulo de optimización 112 está configurado para obtener de la base de datos 106 los datos referentes a los precios de mercado de la energía eléctrica y enviar al módulo de planta 114 unas condiciones de simulación de acuerdo a las condiciones configuradas por el usuario 108 a través de la interfaz de usuario 118 El módulo de optimización 112 adicionalmente contiene sub-módulos, que manejan los datos y generan la representación gráfica de los parámetros meteorológicos, la representación gráfica de los precios de mercado indicando los valores reales y los estimados, permite mediante un Plan de Producción, indicar los parámetros necesarios para hacer la simulación del campo solar, almacén, gas, bloque, restricciones y criterios de simulación, permite indicar las configuraciones asociadas a campo solar, gas, tanques de sales, bloque y modos de operación y .
- 7 - permite analizar y cargar los datos reales de funcionamiento de la planta, todo lo anterior para lograr el objetivo de optimización del funcionamiento de la planta.
El objetivo de la optimización, realizada mediante simulaciones reiteradas, es lograr el objetivo según el criterio seleccionado. En las simulaciones se modifican los valores y estados posibles de la planta, para con el pronóstico e incertidumbre de energía primaria (recurso solar) poder lograr cumplir los objetivos de venta de electricidad y maximizar la explotación de la planta.
El proceso de optimización comienza una vez conocidas las predicciones y sus incertidumbres de valores meteorológicos y precios de mercado eléctrico. Tras esto el operador definirá las condiciones de estado de la planta y las posibles restricciones dentro del horizonte horario de la optimización, tanto técnicas como operativas por distintos criterios. Con esto el módulo de optimización 112, una vez definido el criterio , de optimización, realizara simulaciones y ajustes con retroalimentación entre sus módulos, y ajustes de valores hasta lograr el programa de producción óptimo según criterio y escenario previsto.
El proceso de optimización es iterativo y con flujo constante de vaiores entre sus módulos, manejando los valores de pronóstico y sus incertidumbres asociadas. Además, una vez que es conocido un pronóstico mejor (meteorología o precio de electricidad) se producirá un nuevó ajuste del plan de producción.
El sistema 100 permite a los responsables de explotación de la planta de energía 114 asignar los recursos y mantener alta viabilidad en los resultados y consumos en la operación de su planta, siendo capaces de manejar una energía primaria altamente variable como es la solar.
Los criterios de optimización son tomados a partir de ios ingresos de las ventas de energía máximas, para lo cual es necesario conocer el uso de combustible auxiliar y la administración de almacenamiento térmico.
El campo solar se compone dé lazos como las unidades básicas,' distribuidos en diversos subcampos. Cada lazo se compone de. unidades de ensambles de colectores solares (SCA) que incluyen los sistemas principales, pudiendo dar parámetros y gobernar independientemente del resto del campo. Adicionalmente, las pérdidas térmicas y de carga de cada elemento, por las cuales el fluido puede circular, han sido incluidas en este modelo.
El módulo de planta 114 permite la evolución dinámica óptima de las simulaciones y habilita la actividad del sistema de control y los modos de transición de una manera real, curvas de carga y sincronización, etc. La parte convencional de la planta incluye un generador de vapor, etapas de turbina, torre de condensación y enfriamiento, precalentadores y. desgasificadores. De la misma manera se construyen el sistema del almacenamiento y la caldera auxiliar, si existen..
El módulo de planta 114 reproduce e! control y las características físicas y dinámicas de la planta, en combinación con el pronóstico apropiado de la demanda eléctrica y los recursos solares y está configurado para obtener de la base de datos 106 los datos de predicciones y actualizar el modelo dinámico de la planta, y para enviar los resultados de la simulación obtenidos de acuerdo a las condiciones de ' simulación establecidas por el módulo de optimización 1 2.
El sistema 100 proporciona dos perfiles de acceso para el usuario 108 con el fin de obtener diversas funciones y derechos de administración de la información del sistema. El modo operador cuenta con acceso a los sub-módulos de Recurso Solar mostrado en la Figura 2, Mercado Eléctrico y Plan de Producción gestionados por los módulos 112 y 116. En estos módulos se pueden realizar todas las operaciones disponibles y acceder a los datos sin ningún tipo de restricción. Mientras que el modo de Jefe de Planta cuenta con acceso a los mismos sub-módulos que el Operador y, además, a los sub-módulos de Configuración y Análisis. En estos módulos se pueden realizar todas las operaciones disponibles y acceder a los datos sin ningún tipo de restricción. Desde el sub-módulo de recurso solar, mostrado en la figura 2, se pueden consultar los datos estimados y reales de las variables meteorológicas hora a hora hasta el día actual, y los correspondientes a las previsiones para las próximas 72 horas. Estos datos son los que recoge el módulo meteorológico 110, los cuales son leídos directamente de la base de datos 106.
Cuando el usuario desea conocer información acerca de los recursos solares disponibles, mediante la interfaz de usuario 118 en la que se dispone de una gráfica que muestra datos simultáneamente de dos días (el actual y el siguiente). La división entre ambos se representa con una línea continua vertical. El instante actual se representa con una línea discontinua vertical, más una marca visible en el eje de las x, donde se informa además de la fecha y hora actuales. El eje de las x representa el tiempo (dividido en intervalos de 1 hora) y el eje de las y se utiliza para representar dos escalas de valores (a izquierda y derecha).
En la parte inferior de la Figura 2, se muestra la leyenda explicativa de los valores representados, diferenciándose las variables meteorológicas por una línea continua o discontinua según se trate de . valores reales o estimados respectivamente. Los valores reales están disponibles hasta el día y hora actuales a lo sumo, mientras que los estimados se ofrecen hasta las 72 horas siguientes. El intervalo máximo permitido solo permite consultar datos desde hace 2 años hasta los 3 días siguientes a la fecha actual, entre los valores obtenibles, controlables y modificables, se encuentran la Irradiación Normal .Directa (DNI), la Irradiación Horizontal Global (GHI), la Irradiación Difusa (DI) medidas en W/m2, así como la Temperatura de Bulbo Seco (Ta, medida en °C), Humedad Relativa(RH, medida en %), Velocidad del Viento (WS, medida en Km/h) y la Presión Atmosférica (P, medida en mbar).
Mediante la interacción del servidor de red eléctrica 104, el módulo de mercado eléctrico 116 y la base de datos 106, se pueden consultar los datos reales y estimados de precios de mercado eléctrico, hora a hora. Se dispone de información real, hasta las próximas 24 horas a lo sumo, y de datos estimados hasta las siguientes 72 horas a partir de las 24 anteriores, es decir, el sistema da información hasta un límite de 4 días a partir del actual. Estos datos son los que recoge el módulo de mercado eléctrico 116, si bien, la aplicación los lee directamente de la base de datos 106 y como se puede observar en el flujo de la Figura 1 , la información puede ser desplegada hacia la interfaz de usuario, 118.
La Figura 3 muestra un diagrama de bloques 300, del módulo de planta 114 sobre el cual trabajará en un bucle de retroalimentación eí módulo de optimización 112, el cual mediante la interfaz de usuario 118, permite al usuario 108 hacer simulaciones de la planta, con base en las configuraciones del módulo de planta 114 con distintos escenarios, mediante el cual se pueden controlar los varios parámetros de cada condición que se desea controlar u optimizar, como puede ser ei caso del comportamiento del recurso solar, almacén, gas, bloque, así como sus respectivos criterios y restricciones, los cuales pueden ser interpretados por el bloque 302, mediante el cual , se pretende indicar que se pueden controlar numerosos valores de los elementos y variables antes mencionados, como por ejemplo los parámetros del campo solar, como pueden ser los umbrales máximo y mínimo de la salida o puesta del sol, la transmisibilidad, la 1 absorción, la reflectividad, entre otros. Dichos valores pueden ser almacenados en una memoria, pero a su vez, sirve para configurar los parámetros. Ef bloque 304 representa la caldera de combustible auxiliar que puede ser usado como apoyo en la generación y operación de la planta. Se configuran los parámetros de gas, que son usados para el anticongelamiento y generación, entre otros. Por medio de éstos se establecen parámetros de restricciones mediante los cuales se permite indicar los datos de potencia, como son los valores de máxima y mínima potencia para cada hora, así como el calor de calentamiento inferior (LHV).
Los bloques 306 y 308 de almacenamiento térmico, incluyen un grupo de elementos que consisten en: carga de tanque caliente, temperatura de tanque caliente y temperatura de tanque frío, las pérdidas existentes en los tanques, los volúmenes máximos y mínimos de los tanques, la densidad de las sales, entre otros.
Los bloques representados mediante las referencias 310, 312 y 314 representan, respectivamente, la temperatura inicial .de turbina y temperatura de agua fría. Al igual que en el casó anterior, por medio de estos bloques representativos de la orientación de la planta termoeléctrica, se configuran los parámetros de bloque, como pueden ser las temperaturas mínimas, máximas y tiempo de arranque frío, templado y caliente, la degradación de potencia y/o de rendimiento, entre otros.
De acuerdo con la descripción de la invención antes expuesta, será posible para aquellos expertos en la técnica el realizar modificaciones obvias, sin apartarse del espíritu y alcance de la presente invención, donde dichas modalidades quedarán comprendidas mediante la¾ descripción antecedente y las reivindicaciones acompañantes.

Claims

REIVINDICACIONES
1. Sistema para la optimización de operación de plantas solares, caracterizado porque comprende:
un servidor (102) encargado de recoger datos de predicciones generales de un servicio de satélite de datos;
un servidor de red eléctrica (104) encargado de recoger datos referentes a los precios de mercado de la energía eléctrica,
una unidad de control (120) que comprende:
- una pluralidad de módulos expertos, incluyendo:
un módulo meteorológico (110), en comunicación con el servidor (102) y encargado de recibir de éste los datos dé predicciones;
un módulo de planta (1 14) que incluye un modelo dinámico de la planta que reproduce las características físicas y dinámicas de la planta solar;
un módulo de mercado eléctrico (116), encargado de recoger los datos provenientes dei servidor de red eléctrica (104); y
un módulo de optimización (1 12), desde el cuái se especifican y se optimizan los parámetros relacionados con el funcionamiento de la planta solar mediante simulaciones reiteradas, en las cuales se modifican los valores y estados de la planta (114);
- una base de datos (106) que almacena los datos de predicciones obtenidos por ei módulo meteorológico (110) y los datos referentes a los precios de mercado de la energía eléctrica provenientes del módulo de mercado eléctrico (116);
- un interfaz de usuario 1 18, que permite a un usuario (108) acceder a la información almacenada en la base de datos (106), manipular dicha información y trabajar con cada módulo experto (110, 112, 114, 116) con el fin de definir las condiciones adecuadas para la operación y optimización de actividades de la planta solar;
porque el módulo de optimización (112) está configurado para obtener de la base de datos (106) los datos referentes a los precios de mercado de la energía eléctrica y enviar al módulo de planta (1 4) unas condiciones de simulación de acuerdo a las condiciones configuradas por el usuario (108) a través de la interfaz de usuario (118); y porque el módulo de planta (114) está configurado para obtener de la base de datos (106) los datos de predicciones y actualizar el modelo dinámico de la planta, y para enviar los resultados de la simulación obtenidos de acuerdo a las condiciones de simulación establecidas por el módulo de optimización (112).
2. Sistema para la optimización de operación de plantas solares de conformidad con la reivindicación 1 , caracterizado porque e! módulo de optimización (1 12) contiene sub-módulos, que contienen los datos y generan la representación gráfica de los parámetros meteorológicos, la representación gráfica de los precios de mercado indicando los valores reales y los estimados.
3. Sistema para la optimización de operación de plantas solares de conformidad con la reivindicación 1 , caracterizado porque por medio del módulo de planta (114) se puede consultar el funcionamiento real de la planta.
4. Sistema para la optimización de operación de plantas solares de conformidad con la reivindicación 1 , caracterizado porque el módulo de planta (1 14) permite combinar varias opciones de elementos, diseño y configuración de la instalación junto a los parámetros proporcionados por los restantes módulos, para proporcionar una salida de energía a producir.
5. Sistema para la optimización de operación de plantas solares de conformidad con la reivindicación 1 , caracterizado porque el módulo de planta (1 4) reproduce el control y las características físicas y dinámicas de la planta, en combinación con el pronóstico apropiado de la demanda eléctrica y los recursos solares.
6. Sistema para la optimización de operación de plantas solares de conformidad con la reivindicación 1 , caracterizado porque el módulo de optimización ( 12) comprende un sub-módulo de recurso solar, mediante el cuál se pueden consultar los datos estimados y reales de las variables meteorológicas, dichos datos son los que recoge el módulo meteorológico (1 10), los cuales son leídos directamente de la base de datos (106).
7. Sistema , para la optimización de operación de plantas solares de conformidad con la reivindicación 1 , caracterizado porque los datos de predicciones comprenden variables meteorológicas y de radiación.
8. Sistema para la optimización de operación de plantas solares de conformidad con la reivindicación 1 , caracterizado porque el módulo de mercado eléctrico (116) genera predicciones de los precios. de cada kilowatio-hora y las proporciona a la base de datos (106) de modo que sean almacenados, organizados y puedan ser proporcionados al módulo de planta (114).
PCT/ES2010/070602 2010-09-16 2010-09-16 Sistema de optimización de operación de plantas solares termoeléctricas WO2012035177A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/ES2010/070602 WO2012035177A1 (es) 2010-09-16 2010-09-16 Sistema de optimización de operación de plantas solares termoeléctricas
US13/256,134 US20120303351A1 (en) 2010-09-16 2010-09-16 System for optimizing the operation of solar thermal electric plants
ZA2012/03167A ZA201203167B (en) 2010-09-16 2012-05-02 System for optimizing the operation of solar thermal electric plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070602 WO2012035177A1 (es) 2010-09-16 2010-09-16 Sistema de optimización de operación de plantas solares termoeléctricas

Publications (1)

Publication Number Publication Date
WO2012035177A1 true WO2012035177A1 (es) 2012-03-22

Family

ID=45831036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070602 WO2012035177A1 (es) 2010-09-16 2010-09-16 Sistema de optimización de operación de plantas solares termoeléctricas

Country Status (3)

Country Link
US (1) US20120303351A1 (es)
WO (1) WO2012035177A1 (es)
ZA (1) ZA201203167B (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059583B2 (ja) * 2017-11-20 2022-04-26 株式会社Ihi エネルギーマネジメントシステム、電力需給計画最適化方法、および電力需給計画最適化プログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080046387A1 (en) * 2006-07-23 2008-02-21 Rajeev Gopal System and method for policy based control of local electrical energy generation and use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084655A1 (en) * 2000-12-29 2002-07-04 Abb Research Ltd. System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility
US7584024B2 (en) * 2005-02-08 2009-09-01 Pegasus Technologies, Inc. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080046387A1 (en) * 2006-07-23 2008-02-21 Rajeev Gopal System and method for policy based control of local electrical energy generation and use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WIESENBERG, RALF: "Cut Costs Through Improved Operations and Maintenance", 1ST CSP TODAY CONCENTRATED SOLAR THERMAL POWER SUMMIT INDIA, 7 September 2010 (2010-09-07), NUEVA DELHI, INDIA, pages 6 - 17, Retrieved from the Internet <URL:http://www.s2msolutions.com/Download/S2m_CSP%20TODAY%20INDIA2010%20Plant%20optimization.pdf> *
WITTMANN, M. ET AL.: "Case Studies on the Use of Solar Irradiance Forecast for Optimized Operation Strategies of Solar Thermal Power Plants", IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, vol. 1, no. 1, March 2008 (2008-03-01), pages 18 - 27 *

Also Published As

Publication number Publication date
US20120303351A1 (en) 2012-11-29
ZA201203167B (en) 2013-07-31

Similar Documents

Publication Publication Date Title
Ranaboldo et al. Renewable energy projects to electrify rural communities in Cape Verde
Hedegaard et al. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks
Fitriaty et al. Predicting energy generation from residential building attached Photovoltaic Cells in a tropical area using 3D modeling analysis
US20110040550A1 (en) Energy resource allocation including renewable energy sources
US20080046387A1 (en) System and method for policy based control of local electrical energy generation and use
Karami et al. Optimal scheduling of residential energy system including combined heat and power system and storage device
Reddi et al. System dynamics modelling of hybrid renewable energy systems and combined heating and power generator
CN103283104A (zh) 电力管理系统及电力管理方法
KR20230011950A (ko) 분산 에너지 자원 시스템 설계 및 운영
Hirmiz et al. Analytical and numerical sizing of phase change material thickness for rectangular encapsulations in hybrid thermal storage tanks for residential heat pump systems
KR20200057820A (ko) 제로에너지 타운 구축을 위한 에너지 진단 시스템 및 이의 방법
ES2307174T3 (es) Sistema y procedimiento de mando de equipos de acondicionamiento de ambiente en un recinto.
Carrera et al. Energy efficiency analysis of east-west oriented photovoltaic systems for buildings: a technical-economic-environmental approach
Hirvonen et al. Effect of apartment building energy renovation on hourly power demand
Jahangir et al. Using solar energy to meet thermal demand in smart buildings due to different climate conditions: cases of Iran
Van Asselt et al. Policy recommendations for using cool thermal energy storage to increase grid penetration of renewable power sources (1607-RP)
Lu Investigation on characteristics and application of hybrid solar-wind power generation systems
Lee et al. A design methodology for energy infrastructures at the campus scale
Hu et al. Improved robust model predictive control for residential building air conditioning and photovoltaic power generation with battery energy storage system under weather forecast uncertainty
WO2012035177A1 (es) Sistema de optimización de operación de plantas solares termoeléctricas
Rehman et al. Technical implementation
CA2710905C (en) Energy resource allocation including renewable energy sources
Ouammi et al. Centralized controller for the optimal operation of a cooperative cluster of connected microgrids powered multi-greenhouses
Srimathi et al. Performance Evaluation and Estimation of Energy Measures of Grid‐Connected PV Module
Graabak et al. Norway as a battery for the future European power system–Comparison of two different methodological approaches

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13256134

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857201

Country of ref document: EP

Kind code of ref document: A1