WO2012034747A1 - Method for calibrating a measuring sensor - Google Patents

Method for calibrating a measuring sensor Download PDF

Info

Publication number
WO2012034747A1
WO2012034747A1 PCT/EP2011/062507 EP2011062507W WO2012034747A1 WO 2012034747 A1 WO2012034747 A1 WO 2012034747A1 EP 2011062507 W EP2011062507 W EP 2011062507W WO 2012034747 A1 WO2012034747 A1 WO 2012034747A1
Authority
WO
WIPO (PCT)
Prior art keywords
targets
transducer
track
camera system
measuring
Prior art date
Application number
PCT/EP2011/062507
Other languages
German (de)
French (fr)
Inventor
Christian Wagmann
Volker Uffenkamp
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2012034747A1 publication Critical patent/WO2012034747A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/275Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/12Method or fixture for calibrating the wheel aligner

Definitions

  • the invention relates to a method for calibrating a transducer, in particular a method for calibrating a transducer with two camera systems.
  • An inventive method for calibrating a transducer with at least two camera systems, wherein each of the camera systems is aligned in a respective measuring direction comprises the steps:
  • An inventive method allows a simple, reliable and cost-effective calibration of a transducer with at least two camera systems with high accuracy. Only simple and cost-effective aids, such as inexpensive track rulers needed.
  • At least four targets are arranged along a common line on a single track ruler.
  • the track ruler is aligned in the first step of the method such that in each case two of the four targets are in the field of vision of one of the camera systems.
  • the calibration is particularly simple and inexpensive to carry out.
  • the two straight lines connecting two targets each other are not aligned parallel to each other.
  • two track rulers may be used that are not aligned parallel to one another.
  • the deviation of the two straight lines defined by the track rulers from the parallelism is known before the calibration procedure is carried out and is taken into account when determining the difference between the measuring directions of the two camera systems.
  • Two shorter track rulers with two targets each are easier to handle than a long track ruler on which all four targets are applied. Since the deviation of the two straight lines from the parallelism is known, this deviation can be taken into account during calibration. Calibration is feasible with this method even with short track rulers with high accuracy.
  • the deviation of the two straight lines from the parallelism prior to calibration is not known.
  • the deviation is determined by aligning the transducer in a first step in such a way that all four targets are in the field of vision of one of the at least two camera systems. Each of two of the four targets defines a straight line.
  • images of the targets with the one rasystem and the positions of the targets are determined. In this case, since both lines have been taken with the same camera system, the difference in the spatial orientations of the straight lines from the recorded positions of the targets can be determined.
  • the measuring transducer is brought into a position in which each of the at least two camera systems can each view at least two targets that together define a straight line.
  • the inventive method for calibrating the transducer is performed as described above.
  • the calibration of the transducer can be performed with high accuracy using two (relative)
  • 15 tiv short track rulers are performed when the relative spatial orientation of the two track rulers to each other is not known. In particular, it is not necessary to align the two track rulers for calibration exactly parallel to one another, and during calibration no errors or deviations can occur that result from the track rulers not being parallel to one another.
  • the measurements for determining the relative orientation of the two track rulers and the measurements for calibrating the transducer can be made simultaneously and without intermediate movement of the transducer.
  • the process can be carried out faster as the step of converting the transducer
  • each of the targets on the track ruler is configured as an array of a number of measurement points.
  • Each measuring point arrangement comprises at least three measuring points, wherein the arrangement of the measuring points 35 to each other and in relation to a straight line which connects two measuring point arrangements is known.
  • Such measuring point arrangements allow an accurate calibration of the transducer even if the spatial arrangement the camera systems to each other is unknown or only a single (mono) camera is used.
  • the targets are arranged on a track ruler, which is designed such that it can also be used as a crash panel.
  • calibrating the transducer and then calibrating the measurement system can be performed with a common tool. This simplifies full calibration of the measurement system and reduces costs by requiring fewer tools to perform the procedure.
  • Figure 1 shows schematically an arrangement for calibration with a single track ruler
  • FIG. 2 schematically shows an arrangement for calibrating with two track rulers; and
  • FIG. 3 shows an exemplary embodiment of a target.
  • FIG. 1 schematically shows an arrangement for calibrating with the aid of a single track ruler 4 with four targets 61, 62, 63, 64 according to a first exemplary embodiment of a method according to the invention.
  • a transducer 2 to be calibrated has two camera systems K1, K2, which are each aligned in an associated measuring direction M1, M2.
  • the measuring directions M1, M2 of the two camera systems K1, K2 are essentially aligned in the opposite direction but not completely parallel to one another. Due to the deviation from the parallelism, a tracking error occurs with each measurement.
  • the aim of the invention is to eliminate or minimize this tracking error by the calibration method described below.
  • the transducer 2 and the track ruler 4 are arranged such that two of the four targets 61, 62, 63, 64 are located in the field of vision of one of the two camera systems K1, K2 of the transducer 2.
  • the four targets 61, 62, 63, 64 are arranged on the common, straight track ruler 4, they lie on a straight line g defined by the track ruler 4. Images of the targets 61, 62, 63, 64 are generated by the respective camera system K1,
  • the positions of the targets 61, 62, 63, 64 are determined in a common coordinate system. From the positions of the targets 61, 62, 63, 64 in the common coordinate system, the directions L1, L2 of the two straight lines gl, g2 are determined, which each connect two of the targets 61, 62, 63, 64 to one another.
  • the directions L1, L2 of the two straight lines g1, g2 are identical and identical to the direction of the straight line g defined by the track ruler 4.
  • the direction determined by the second camera system K2 is shown L2 'of the straight line g2, which is defined by the targets 63, 64 detected by the second camera system K2, not parallel to the direction L1 of the straight line L1 determined by the first camera system K1, but differs therefrom by the angle ⁇ .
  • the direction L2 'of the track line 4 and the line g2, which is perceived by the second camera system K2, are shown by dashed lines in FIG.
  • the deviation ⁇ is stored in the system as a correction value and taken into account in all subsequent measurements.
  • measurement errors resulting from the deviation of the measurement directions M1, M2 'from the parallelism are corrected in the following measurements. Therefore, the following wheel alignment measurements can be performed with high accuracy; In particular, the accuracy of the measurement results is not impaired by incomplete parallelism of the two measurement directions M1, M2 '.
  • the directions L1, L2 of the two straight lines g1, g2 defined by the targets 61, 62, 63, 64 on the track ruler 4 are not aligned parallel to each other , eg because the track ruler 4 itself is not rectilinear but e.g. is formed angled.
  • the constant deviation of the directions L1 and L2 from the parallelism is previously, e.g. immediately after the production of the track ruler 4, has been measured in the laboratory and is taken into account during calibration. In this way, an exact calibration can also be performed with a non-rectilinear track ruler 4.
  • a non-rectilinear track ruler 4 can be designed such that its targets 61, 62, 63, 64 are particularly clearly recognizable by the camera systems K1, K2.
  • the minimum distance of the track gauge 4 from the transducer 2, in which the targets 61, 62, 63, 64 can be well detected by the camera systems K1, K2, for an angled track ruler 4 is smaller than for a straight track ruler 4.
  • a Angled track ruler 4 therefore requires less space in order to be able to carry out the method according to the invention.
  • FIG. 2 schematically shows an arrangement for calibrating according to a second exemplary embodiment of a method according to the invention, in which instead of a common, long track ruler 4 with four targets 61, 62, 63, 64 two shorter track rulers 66, 68 are used, on each of which two targets 61, 62 and 63, 64 are arranged.
  • Shorter track rulers 66, 68 are easier to handle and have a higher mechanical stability than a long track ruler 4. They are therefore more robust and have high accuracy in continuous operation as they are less prone to sagging than a long track ruler 4. Since the rigidity requirements are less, shorter track rulers 66, 68 can be made simpler and less expensive.
  • the two track rulers 66, 68 are typically not aligned completely parallel to one another.
  • the angle ⁇ between the two straight lines gl, g2 defined by the track rulers 66, 68 is predetermined, e.g. with the aid of the measured value sensor 2 to be calibrated.
  • the transducer 2 is first positioned in a first position A, in each of which two targets 61, 62; 63, 64 are located on each of the two track rulers 66, 68 in the field of view of a single camera system K1 of the measuring transducer 2.
  • at least some of the targets 61, 62; 63, 64 formed so that they are recognizable from both sides of the camera system K1. This allows a particularly flexible positioning of the transducer 2 and the track rulers 66, 68.
  • the targets 61, 62, 63, 64 are recorded with the camera system K1 and the positions of the targets 61, 62, 63, 64 are determined. From the so determined
  • Positions of the targets 61, 62, 63, 64 are determined by the directions L1, L2 of the two straight lines gl, g2 defined by the targets 61, 62, 63, 64 arranged on the two track rulers 66, 68 ,
  • the angle ⁇ between the two straight lines g1, g2, which describes the deviation from the parallelism ( ⁇ 0), is determined and stored for the following calibration of the measuring transducer 2.
  • the transducer 2 is then moved to a second position B, in each of which at least two targets 61, 62, respectively of each of the two camera systems K1, K2; 63, 64 one of the two
  • Track rulers 66, 68 are visible. After the transducer 2 has been positioned in the second position B, the calibration is performed as described for the first embodiment (FIG. 1). In addition, the previously determined and now known angle ⁇ between the two straight lines g1, g2 is taken into account.
  • a high-accuracy calibration can also be carried out with two (short) track rulers 66, 68 which are not arranged parallel to one another and whose relative position in space is initially unknown.
  • the angle ⁇ between the two straight lines defined by the two track rulers 66, 68 is gl, g2 is already z. B. from the previous calibration of another transducer 2, known, it can be on the steps for determining the angle ß between the two straight lines gl, g2, in which the transducer is in the position A, be dispensed with.
  • the determination of the angle ⁇ can also be carried out with an additional measuring transducer, not shown in FIG Position A, in which a camera system of the transducer can view all four targets 61, 62, 63, 64, is positioned, or an additional camera system, which is provided solely for the determination of the angle ß, made.
  • an additional measuring transducer or camera system the calibration process can be speeded up because it is not necessary to move the transducer from position A to position B during the calibration process.
  • Figure 3 shows an embodiment of a target 61, as it is attached to a track ruler 4, from a viewing direction L1 which is aligned parallel to the longitudinal extent g of the track ruler 4 (see Figure 1).
  • the target 61 has an arrangement of three measuring points 61 1, 612, 613.
  • the relative position of the three measuring points 61 1, 612, 613 of the measuring point arrangement relative to one another and with respect to the straight line g defined by the track ruler 4 is known before the measurement is carried out.
  • the targets 61, 62, 63, 64 are each formed as an arrangement of at least three measuring points 61 1, 612, 613, an accurate calibration of the transducer 2 is possible even if the spatial arrangement of the camera systems K1, K2 is not known to each other or only a single (mono) camera is used.
  • Such a track ruler 4 therefore allows accurate calibration in a variety of applications.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A method for calibrating a measuring sensor (2) with at least two camera systems (K1, K2), which are each oriented in a measuring direction (M1, M2), comprises the steps of: orienting the measuring sensor (2) in such a manner that at least two targets (61, 62, 63, 64) in each case are visible to each of the camera systems (K1, K2), wherein a straight line (g1, g2) is defined by the at least two targets (61, 62, 63, 64) in each case; recording images of the targets (61, 62, 63, 64) using the camera systems (K1, K2); determining the positions of the targets (61, 62, 63, 64); determining the spatial orientations of the two straight lines (g1, g2) defined by at least two targets (61, 62, 63, 64) in each case; determining the difference (δ) between the measuring directions (M1, M2) of the two camera systems (K1, K2) from the difference (δ) between the orientations of the straight lines (g1, g2).

Description

Beschreibung  description
Titel title
Verfahren zum Kalibrieren eines Messwertaufnehmers Method for calibrating a transducer
Die Erfindung betrifft ein Verfahren zum Kalibrieren eines Messwertaufnehmers, insbesondere ein Verfahren zum Kalibrieren eines Messwertaufnehmers mit zwei Kamerasystemen. The invention relates to a method for calibrating a transducer, in particular a method for calibrating a transducer with two camera systems.
Stand der Technik State of the art
Zur Fahrzeug- und insbesondere zur Achsvermessung sind Messwertaufnehmer bekannt, die zwei Kamerasysteme aufweisen. Um Messfehler, insbesondere Fehler bei der Bestimmung des Sturzes, zu vermeiden, sind die Kamerasysteme derartiger Messwertaufnehmer vor der Fahrzeug- bzw. Achsvermessung zu kalibrieren. For vehicle and in particular for wheel alignment transducers are known which have two camera systems. In order to avoid measurement errors, in particular errors in the determination of the camber, the camera systems of such transducers are to be calibrated before the vehicle or axle measurement.
Offenbarung der Erfindung Disclosure of the invention
Es ist eine Aufgabe der Erfindung, ein zuverlässiges und kostengünstiges Verfahren zum Kalibrieren eines Messwertaufnehmers mit zwei Kamerasystemen bereit zu stellen. Ein erfindungsgemäßes Verfahren zum Kalibrieren eines Messwertaufnehmers mit wenigstens zwei Kamerasystemen, wobei jedes der Kamerasysteme in eine jeweilige Messrichtung ausgerichtet ist, umfasst die Schritte: It is an object of the invention to provide a reliable and inexpensive method for calibrating a transducer with two camera systems. An inventive method for calibrating a transducer with at least two camera systems, wherein each of the camera systems is aligned in a respective measuring direction, comprises the steps:
Ausrichten des Messwertaufnehmers derart, dass sich jeweils wenigstens zwei Targets im Blickfeld jedes der Kamerasysteme befinden, wobei durch die je zweiAligning the transducer such that in each case at least two targets are in the field of view of each of the camera systems, wherein by the two each
Targets jeweils eine Gerade definiert ist; Targets each a straight line is defined;
Aufnehmen von Bildern der Targets mit den beiden Kamerasystemen; Taking pictures of the targets with the two camera systems;
Bestimmen der Positionen der aufgenommenen Targets; Bestimmen der räumlichen Ausrichtungen der beiden durch die Targets definierten Geraden; und Determining the positions of the captured targets; Determining the spatial orientations of the two straight lines defined by the targets; and
Bestimmen der Differenz zwischen den Messrichtungen der beiden Kamerasys- teme aus der Differenz der räumlichen Ausrichtung der beiden Geraden. Determining the difference between the measuring directions of the two camera systems from the difference in the spatial orientation of the two lines.
Ein erfindungsgemäßes Verfahren ermöglicht ein einfaches, zuverlässiges und kostengünstiges Kalibrieren eines Messwertaufnehmers mit wenigstens zwei Kamerasystemen mit hoher Genauigkeit. Dabei werden nur einfache und kos- tengünstige Hilfsmittel, wie z.B. kostengünstige Spurlineale, benötigt. An inventive method allows a simple, reliable and cost-effective calibration of a transducer with at least two camera systems with high accuracy. Only simple and cost-effective aids, such as inexpensive track rulers needed.
In einer Ausführungsform sind wenigstens vier Targets entlang einer gemeinsamen Geraden auf einem einzigen Spurlineal angeordnet. Das Spurlineal wird im ersten Schritt des Verfahrens derart ausgerichtet, dass sich je zwei der vier Tar- gets im Blickfeld jeweils eines der Kamerasysteme befinden. Mit einem solchenIn one embodiment, at least four targets are arranged along a common line on a single track ruler. The track ruler is aligned in the first step of the method such that in each case two of the four targets are in the field of vision of one of the camera systems. With such a
Spurlineal mit vier Targets ist das Kalibrieren besonders einfach und kostengünstig durchführbar. Gauge with four targets, the calibration is particularly simple and inexpensive to carry out.
In einer Ausführungsform sind die beiden Geraden, welche jeweils zwei Targets miteinander verbinden, nicht parallel zueinander ausgerichtet. Beispielsweise können zwei Spurlineale verwendet werden, die nicht parallel zueinander ausgerichtet sind. Die Abweichung der beiden durch die Spurlineale definierten Geraden von der Parallelität ist vor der Durchführung des Kalibrierungsverfahrens bekannt und wird beim Bestimmen der Differenz zwischen den Messrichtungen der beiden Kamerasysteme berücksichtigt. Zwei kürzere Spurlineale mit je zwei Targets sind einfacher zu handhaben als ein langes Spurlineal, auf dem alle vier Targets aufgebracht sind. Da die Abweichung der beiden Geraden von der Parallelität bekannt ist, kann diese Abweichung beim Kalibrieren berücksichtigt werden. Das Kalibrieren ist mit diesem Verfahren auch mit kurzen Spurlinealen mit hoher Genauigkeit durchführbar. In one embodiment, the two straight lines connecting two targets each other are not aligned parallel to each other. For example, two track rulers may be used that are not aligned parallel to one another. The deviation of the two straight lines defined by the track rulers from the parallelism is known before the calibration procedure is carried out and is taken into account when determining the difference between the measuring directions of the two camera systems. Two shorter track rulers with two targets each are easier to handle than a long track ruler on which all four targets are applied. Since the deviation of the two straight lines from the parallelism is known, this deviation can be taken into account during calibration. Calibration is feasible with this method even with short track rulers with high accuracy.
In einer weiteren Ausführungsform ist die Abweichung der beiden Geraden von der Parallelität vor dem Kalibrieren nicht bekannt. Die Abweichung wird bestimmt, indem der Messwertaufnehmer in einem ersten Schritt derart ausgerich- tet wird, dass sich alle vier Targets im Blickfeld eines der wenigstens zwei Kamerasysteme befinden. Durch jeweils zwei der vier Targets ist jeweils eine Gerade definiert. In einem ersten Schritt werden Bilder der Targets mit dem einen Käme- rasystem aufgenommen und die Positionen der Targets werden bestimmt. Da in diesem Fall beide Geraden mit demselben Kamerasystem aufgenommen worden sind, kann die Differenz der räumlichen Ausrichtungen der Geraden aus den aufgenommenen Positionen der Targets bestimmt werden. In a further embodiment, the deviation of the two straight lines from the parallelism prior to calibration is not known. The deviation is determined by aligning the transducer in a first step in such a way that all four targets are in the field of vision of one of the at least two camera systems. Each of two of the four targets defines a straight line. In a first step, images of the targets with the one rasystem and the positions of the targets are determined. In this case, since both lines have been taken with the same camera system, the difference in the spatial orientations of the straight lines from the recorded positions of the targets can be determined.
5  5
Sobald die Differenz der räumlichen Ausrichtungen der beiden Geraden bekannt ist, wird der Messwertaufnehmer in einem zweiten Schritt in eine Position gebracht, in der jedes der wenigstens zwei Kamerasysteme jeweils wenigstens zwei Targets, die gemeinsam eine Gerade definieren, einsehen kann. Im Foli o genden wird das erfindungsgemäße Verfahren zum Kalibrieren des Messwertaufnehmers wie zuvor beschrieben durchgeführt.  As soon as the difference in the spatial orientations of the two straight lines is known, in a second step the measuring transducer is brought into a position in which each of the at least two camera systems can each view at least two targets that together define a straight line. In foli o ing the inventive method for calibrating the transducer is performed as described above.
In dieser Ausführungsform des Verfahrens kann das Kalibrieren des Messwertaufnehmers auch dann mit hoher Genauigkeit unter Verwendung von zwei (rela-In this embodiment of the method, the calibration of the transducer can be performed with high accuracy using two (relative)
15 tiv kurzen) Spurlinealen durchgeführt werden, wenn die relative räumliche Orientierung der beiden Spurlineale zueinander nicht bekannt ist. Insbesondere ist es nicht notwendig, die beiden Spurlineale zum Kalibrieren exakt parallel zueinander auszurichten und beim Kalibrieren können keine Fehler bzw. Abweichungen auftreten, die sich aus daraus ergeben, dass die Spurlineale nicht parallel zueinan-15 tiv short) track rulers are performed when the relative spatial orientation of the two track rulers to each other is not known. In particular, it is not necessary to align the two track rulers for calibration exactly parallel to one another, and during calibration no errors or deviations can occur that result from the track rulers not being parallel to one another.
20 der ausgerichtet sind. 20 are aligned.
In einer Ausführungsform wird die Bestimmung der relativen Orientierung der beiden Spurlineale mit einem zweiten Messwertaufnehmer und/oder einem separaten Kamerasystem, das unabhängig von dem zu kalibrierenden Messwertauf-In one embodiment, the determination of the relative orientation of the two track rulers with a second transducer and / or a separate camera system, which is independent of the measured value to be calibrated
25 nehmer ist, durchgeführt. Dadurch können die Messungen zur Bestimmung der relativen Orientierung der beiden Spurlineale und die Messungen zum Kalibrieren des Messwertaufnehmers gleichzeitig und ohne zwischenzeitliche Bewegung des Messwertaufnehmers vorgenommen werden. Das Verfahren kann so schneller durchgeführt werden, da der Schritt des Umsetzens des Messwertaufnehmers25 is done. As a result, the measurements for determining the relative orientation of the two track rulers and the measurements for calibrating the transducer can be made simultaneously and without intermediate movement of the transducer. The process can be carried out faster as the step of converting the transducer
30 von der ersten in die zweite Position entfällt. 30 from the first to the second position deleted.
In einer Ausführungsform ist jedes der Targets auf dem Spurlineal als Anordnung einer Anzahl von Messpunkten ausgebildet. Jede Messpunktanordnung umfasst wenigstens drei Messpunkte, wobei die Anordnung der Messpunkte zueinander 35 und in Bezug auf eine Gerade, welche jeweils zwei Messpunktanordnungen verbindet, bekannt ist. Derartige Messpunktanordnungen ermöglichen ein genaues Kalibrieren des Messwertaufnehmers auch dann, wenn die räumliche Anordnung der Kamerasysteme zueinander nicht bekannt ist oder nur eine einzige (Mono-) Kamera verwendet wird. In one embodiment, each of the targets on the track ruler is configured as an array of a number of measurement points. Each measuring point arrangement comprises at least three measuring points, wherein the arrangement of the measuring points 35 to each other and in relation to a straight line which connects two measuring point arrangements is known. Such measuring point arrangements allow an accurate calibration of the transducer even if the spatial arrangement the camera systems to each other is unknown or only a single (mono) camera is used.
In einer Ausführungsform sind die Targets auf einem Spurlineal angeordnet, welches derart ausgebildet ist, dass es auch als Sturztafel verwendbar ist. Durch die Kombination des Spurlineals mit einer Sturztafel können das Kalibrieren des Messwertaufnehmers und das folgende Kalibrieren des Messsystems, welches mehrere (kalibrierte) Messwertaufnehmer umfasst, mit einem gemeinsamen Hilfsmittel durchgeführt werden. Dadurch wird ein vollständiges Kalibrieren des Messsystems vereinfacht und die Kosten werden reduziert, da weniger Hilfsmittel zur Durchführung des Verfahrens benötigt werden. In one embodiment, the targets are arranged on a track ruler, which is designed such that it can also be used as a crash panel. By combining the track ruler with a lintel, calibrating the transducer and then calibrating the measurement system, which includes multiple (calibrated) transducers, can be performed with a common tool. This simplifies full calibration of the measurement system and reduces costs by requiring fewer tools to perform the procedure.
Die Erfindung wird im Folgenden anhand der beigefügten Figuren näher erläutert. Dabei zeigt: The invention will be explained in more detail below with reference to the attached figures. Showing:
Figur 1 schematisch eine Anordnung zum Kalibrieren mit einem einzigen Spurlineal; Figure 1 shows schematically an arrangement for calibration with a single track ruler;
Figur 2 schematisch eine Anordnung zu Kalibrieren mit zwei Spurlinealen; und Figur 3 ein Ausführungsbeispiel eines Targets. FIG. 2 schematically shows an arrangement for calibrating with two track rulers; and FIG. 3 shows an exemplary embodiment of a target.
Figur 1 zeigt schematisch eine Anordnung zum Kalibrieren mit Hilfe eines einzigen Spurlineals 4 mit vier Targets 61 , 62, 63, 64 gemäß einem ersten Ausführungsbeispiel eines erfindungsgemäßen Verfahrens. FIG. 1 schematically shows an arrangement for calibrating with the aid of a single track ruler 4 with four targets 61, 62, 63, 64 according to a first exemplary embodiment of a method according to the invention.
Ein zu kalibrierender Messwertaufnehmer 2 hat zwei Kamerasysteme K1 , K2, die jeweils in eine zugehörige Messrichtung M1 , M2 ausgerichtet sind. Die Messrichtungen M1 , M2 der beiden Kamerasysteme K1 , K2 sind im Wesentlichen in entgegengesetzter Richtung aber nicht vollständig parallel zueinander ausgerichtet. Durch die Abweichung von der Parallelität tritt bei jeder Messung ein Spurfehler auf. Ziel der Erfindung ist es, diesen Spurfehler durch das im Folgenden beschriebene Kalibrierungsverfahren zu eliminieren bzw. zu minimieren. Zur Durchführung des erfindungsgemäßen Verfahrens werden der Messwertaufnehmer 2 und das Spurlineal 4 so angeordnet, dass sich je zwei der vier Targets 61 , 62, 63, 64 im Blickfeld eines der beiden Kamerasysteme K1 , K2 des Messwertaufnehmers 2 befinden. A transducer 2 to be calibrated has two camera systems K1, K2, which are each aligned in an associated measuring direction M1, M2. The measuring directions M1, M2 of the two camera systems K1, K2 are essentially aligned in the opposite direction but not completely parallel to one another. Due to the deviation from the parallelism, a tracking error occurs with each measurement. The aim of the invention is to eliminate or minimize this tracking error by the calibration method described below. To carry out the method according to the invention, the transducer 2 and the track ruler 4 are arranged such that two of the four targets 61, 62, 63, 64 are located in the field of vision of one of the two camera systems K1, K2 of the transducer 2.
Da die vier Targets 61 , 62, 63, 64 auf dem gemeinsamen, geradlinigen Spurlineal 4 angeordnet sind, liegen sie auf einer durch das Spurlineal 4 definierten Geraden g. Bilder der Targets 61 , 62, 63, 64 werden von dem jeweiligen Kamerasystem K1 ,Since the four targets 61, 62, 63, 64 are arranged on the common, straight track ruler 4, they lie on a straight line g defined by the track ruler 4. Images of the targets 61, 62, 63, 64 are generated by the respective camera system K1,
K2 aufgenommen und aus den aufgenommenen Bildern werden die Positionen der Targets 61 , 62, 63, 64 in einem gemeinsamen Koordinatensystem ermittelt. Aus den Positionen der Targets 61 , 62, 63, 64 im gemeinsamen Koordinatensystem werden die Richtungen L1 , L2 der beiden Geraden gl , g2 bestimmt, die je- weils zwei der Targets 61 , 62, 63, 64 miteinander verbinden. K2 recorded and from the recorded images, the positions of the targets 61, 62, 63, 64 are determined in a common coordinate system. From the positions of the targets 61, 62, 63, 64 in the common coordinate system, the directions L1, L2 of the two straight lines gl, g2 are determined, which each connect two of the targets 61, 62, 63, 64 to one another.
Sind die Messrichtungen M1 , M2 der beiden Kamerasysteme K1 , K2 exakt parallel zueinander ausgerichtet, sind auch die Richtungen L1 , L2 der beiden Geraden gl , g2 gleich und identisch mit der Richtung der durch das Spurlineal 4 definier- ten Geraden g. If the measuring directions M1, M2 of the two camera systems K1, K2 are aligned exactly parallel to one another, the directions L1, L2 of the two straight lines g1, g2 are identical and identical to the direction of the straight line g defined by the track ruler 4.
Sind die beiden Messrichtungen M1 , M2 nicht vollständig parallel zueinander ausgerichtet, wie in der Figur 1 durch die Messrichtung M2', die um einen Winkel δ von der zur Messrichtung M1 parallelen Messrichtung M2 abweicht, gezeigt, ist die durch das zweite Kamerasystem K2 bestimmte Richtung L2' der Geraden g2, welche durch die von dem zweiten Kamerasystem K2 erfassten Targets 63, 64 definiert wird, nicht parallel zu der von dem ersten Kamerasystem K1 bestimmten Richtung L1 der Geraden gl , sondern weicht um den Winkel δ von dieser ab. Die von dem zweiten Kamerasystem K2 wahrgenommene Richtung L2' des Spurli- neals 4 und der Geraden g2 sind in der Figur 1 gestrichelt gezeigt. If the two measuring directions M1, M2 are not completely aligned parallel to one another, as shown in FIG. 1 by the measuring direction M2 ', which deviates by an angle δ from the measuring direction M2 parallel to the measuring direction M1, the direction determined by the second camera system K2 is shown L2 'of the straight line g2, which is defined by the targets 63, 64 detected by the second camera system K2, not parallel to the direction L1 of the straight line L1 determined by the first camera system K1, but differs therefrom by the angle δ. The direction L2 'of the track line 4 and the line g2, which is perceived by the second camera system K2, are shown by dashed lines in FIG.
Sind die Richtung L1 der Geraden gl , welche durch die von dem ersten Kamerasystem K1 erfassten Targets 61 , 62 definiert wird, und der Richtung L2', welche durch die von dem zweiten Kamerasystem K2 erfassten Targets 63, 64 definiert wird, bekannt, und ist bekannt, dass die Geraden gl und g2 im globalen Koordinatensystem parallel zueinander sind (z.B. weil sie auf dem gemeinsamen, ge- radlinigen Spurlineal 4 angeordnet sind), kann die Abweichung δ der beiden Messrichtungen M1 , M2' von der Parallelität (δ = 0) berechnet werden. The direction L1 of the straight line gl defined by the targets 61, 62 detected by the first camera system K1 and the direction L2 'defined by the targets 63, 64 detected by the second camera system K2 are known, and are It is known that the lines gl and g2 in the global coordinate system are parallel to each other (eg because they are located on the common, straight line track ruler 4 are arranged), the deviation δ of the two measuring directions M1, M2 'of the parallelism (δ = 0) can be calculated.
Der Abweichung δ wird im System als Korrekturwert gespeichert und bei allen folgenden Messungen berücksichtigt. Dadurch, dass die Abweichung δ berücksichtigt wird, werden Messfehler, die sich aus der Abweichung der Messrichtungen M1 , M2' von der Parallelität ergeben, bei den folgenden Messungen korrigiert. Daher können die auf das Kalibrieren folgenden Fahrwerksvermessungen mit hoher Genauigkeit durchgeführt werden; insbesondere wird die Genauigkeit der Messergebnisse nicht durch eine nicht vollständige Parallelität der beiden Messrichtungen M1 , M2' beeinträchtigt. The deviation δ is stored in the system as a correction value and taken into account in all subsequent measurements. By taking the deviation δ into account, measurement errors resulting from the deviation of the measurement directions M1, M2 'from the parallelism are corrected in the following measurements. Therefore, the following wheel alignment measurements can be performed with high accuracy; In particular, the accuracy of the measurement results is not impaired by incomplete parallelism of the two measurement directions M1, M2 '.
In einer in den Figuren nicht gezeigten Variante des in der Figur 1 gezeigten Ausführungsbeispiels sind die Richtungen L1 , L2 der beiden Geraden gl , g2, die durch die Targets 61 , 62, 63, 64 auf dem Spurlineal 4 definiert werden, nicht parallel zueinander ausgerichtet, z.B. weil das Spurlineal 4 selbst nicht geradlinig sondern z.B. gewinkelt ausgebildet ist. Die konstante Abweichung der Richtungen L1 und L2 von der Parallelität ist zuvor, z.B. unmittelbar nach der Herstellung des Spurlineals 4, im Labor vermessen worden und wird beim Kalibrieren berücksichtigt. Auf diese Weise kann eine exakte Kalibrierung auch mit einem nicht geradlinigen Spurlineal 4 durchgeführt werden. Ein nicht geradliniges Spurlineal 4 kann so ausgebildet sein, dass seine Targets 61 , 62, 63, 64 von den Kamerasystemen K1 , K2 besonders gut erkennbar sind. Insbesondere ist der Mindestabstand des Spurlineals 4 von dem Messwertaufnehmer 2, in dem die Targets 61 , 62, 63, 64 gut von den Kamerasystemen K1 , K2 erfasst werden können, für ein gewinkeltes Spurlineal 4 kleiner als für ein geradliniges Spurlineal 4. Bei Verwendung eines gewinkelten Spurlineals 4 wird daher weniger Platz benötigt, um das erfindungsgemäße Verfahren durchführen zu können. In a variant of the embodiment shown in FIG. 1, not shown in the figures, the directions L1, L2 of the two straight lines g1, g2 defined by the targets 61, 62, 63, 64 on the track ruler 4 are not aligned parallel to each other , eg because the track ruler 4 itself is not rectilinear but e.g. is formed angled. The constant deviation of the directions L1 and L2 from the parallelism is previously, e.g. immediately after the production of the track ruler 4, has been measured in the laboratory and is taken into account during calibration. In this way, an exact calibration can also be performed with a non-rectilinear track ruler 4. A non-rectilinear track ruler 4 can be designed such that its targets 61, 62, 63, 64 are particularly clearly recognizable by the camera systems K1, K2. In particular, the minimum distance of the track gauge 4 from the transducer 2, in which the targets 61, 62, 63, 64 can be well detected by the camera systems K1, K2, for an angled track ruler 4 is smaller than for a straight track ruler 4. When using a Angled track ruler 4 therefore requires less space in order to be able to carry out the method according to the invention.
Die Figur 2 zeigt schematisch eine Anordnung zum Kalibrieren gemäß einem zweiten Ausführungsbeispiel eines erfindungsgemäßen Verfahrens, bei dem anstelle eines gemeinsamen, langen Spurlineals 4 mit vier Targets 61 , 62, 63, 64 zwei kürzere Spurlineale 66, 68 verwendet werden, auf denen jeweils zwei Targets 61 , 62 bzw. 63, 64 angeordnet sind. Kürzere Spurlineale 66, 68 sind leichter zu handhaben und weisen eine höhere mechanische Stabilität als ein langes Spurlineal 4 auf. Sie sind daher robuster und weisen auch im Dauerbetrieb eine hohe Genauigkeit auf, da sie weniger anfällig für Durchbiegen sind als ein langes Spurlineal 4. Da die Anforderungen an die Steifigkeit geringer sind, können kürzere Spurlineale 66, 68 einfacher und kostengünstiger hergestellt werden. FIG. 2 schematically shows an arrangement for calibrating according to a second exemplary embodiment of a method according to the invention, in which instead of a common, long track ruler 4 with four targets 61, 62, 63, 64 two shorter track rulers 66, 68 are used, on each of which two targets 61, 62 and 63, 64 are arranged. Shorter track rulers 66, 68 are easier to handle and have a higher mechanical stability than a long track ruler 4. They are therefore more robust and have high accuracy in continuous operation as they are less prone to sagging than a long track ruler 4. Since the rigidity requirements are less, shorter track rulers 66, 68 can be made simpler and less expensive.
An jedem der beiden Spurlineale 66, 68 jeweils zwei Targets 61 , 62; 63, 64 angeordnet, die jeweils eine Gerade gl , g2 definieren. At each of the two track rulers 66, 68 in each case two targets 61, 62; 63, 64, each defining a straight line g1, g2.
Die beiden Spurlineale 66, 68 sind typisch erweise nicht vollständig parallel zueinander ausgerichtet. Der Winkel ß zwischen den beiden durch die Spurlineale 66, 68 definierten Geraden gl , g2 wird vorab, z.B. mit Hilfe des zu kalibrierenden Messwertaufnehmers 2, bestimmt. The two track rulers 66, 68 are typically not aligned completely parallel to one another. The angle β between the two straight lines gl, g2 defined by the track rulers 66, 68 is predetermined, e.g. with the aid of the measured value sensor 2 to be calibrated.
Dazu wird der Messwertaufnehmer 2 zunächst in einer ersten Position A positioniert, in der sich jeweils zwei Targets 61 , 62; 63, 64 auf jedem der beiden Spurlineale 66, 68 im Blickfeld eines einzigen Kamerasystems K1 des Messwertaufnehmers 2 befinden. In einem Ausführungsbeispiel sind wenigstens einige der Targets 61 , 62; 63, 64 so ausgebildet, dass sie von beiden Seiten von dem Kamerasystem K1 erkennbar sind. Dies ermöglicht eine besonders flexible Positionierung des Messwertaufnehmers 2 und der Spurlineale 66, 68. For this purpose, the transducer 2 is first positioned in a first position A, in each of which two targets 61, 62; 63, 64 are located on each of the two track rulers 66, 68 in the field of view of a single camera system K1 of the measuring transducer 2. In one embodiment, at least some of the targets 61, 62; 63, 64 formed so that they are recognizable from both sides of the camera system K1. This allows a particularly flexible positioning of the transducer 2 and the track rulers 66, 68.
Die Targets 61 , 62, 63, 64 werden mit dem Kamerasystem K1 aufgenommen und die Positionen der Targets 61 , 62, 63, 64 bestimmt. Aus den derart bestimmtenThe targets 61, 62, 63, 64 are recorded with the camera system K1 and the positions of the targets 61, 62, 63, 64 are determined. From the so determined
Positionen der Targets 61 , 62, 63, 64 werden die Richtungen L1 , L2 der beiden Geraden gl , g2, die durch die Targets 61 , 62, 63, 64, die auf den beiden Spurlinealen 66, 68 angeordnet sind, definiert werden, bestimmt. Die Winkel ß zwischen den beiden Geraden gl , g2, der die Abweichung von der Parallelität (ß = 0) beschreibt, wird bestimmt und für die folgende Kalibrierung des Messwertaufnehmers 2 gespeichert. Positions of the targets 61, 62, 63, 64 are determined by the directions L1, L2 of the two straight lines gl, g2 defined by the targets 61, 62, 63, 64 arranged on the two track rulers 66, 68 , The angle β between the two straight lines g1, g2, which describes the deviation from the parallelism (β = 0), is determined and stored for the following calibration of the measuring transducer 2.
Um die eigentliche Kalibrierung durchzuführen, wird der Messwertaufnehmer 2 danach in eine zweite Position B bewegt, in der von jedem der beiden Kamera- Systeme K1 , K2 jeweils mindestens zwei Targets 61 , 62; 63, 64 eines der beidenIn order to carry out the actual calibration, the transducer 2 is then moved to a second position B, in each of which at least two targets 61, 62, respectively of each of the two camera systems K1, K2; 63, 64 one of the two
Spurlineale 66, 68 sichtbar sind. Nachdem der Messwertaufnehmer 2 in der zweiten Position B positioniert worden ist, wird die Kalibrierung durchgeführt, wie es für das erste Ausführungsbeispiel (Figur 1 ) beschrieben worden ist. Dabei wird zusätzlich der zuvor bestimmte und nun bekannte Winkel ß zwischen den beiden Geraden gl , g2 berücksichtigt. Track rulers 66, 68 are visible. After the transducer 2 has been positioned in the second position B, the calibration is performed as described for the first embodiment (FIG. 1). In addition, the previously determined and now known angle β between the two straight lines g1, g2 is taken into account.
Mit diesem Verfahren kann eine Kalibrierung mit hoher Genauigkeit auch mit zwei (kurzen) Spurlinealen 66, 68 durchgeführt werden, die nicht parallel zueinander angeordnet sind und deren relative Position im Raum zunächst unbekannt ist. With this method, a high-accuracy calibration can also be carried out with two (short) track rulers 66, 68 which are not arranged parallel to one another and whose relative position in space is initially unknown.
Ist der Winkel ß zwischen den beiden durch die beiden Spurlineale 66, 68 definierten Geraden gl , g2 bereits, z. B. aus der vorangehenden Kalibrierung eines anderen Messwertaufnehmers 2, bekannt, so kann auf die Schritte zur Bestimmung des Winkels ß zwischen den beiden Geraden gl , g2, in denen sich der Messwertaufnehmer in der Position A befindet, verzichtet werden. If the angle β between the two straight lines defined by the two track rulers 66, 68 is gl, g2 is already z. B. from the previous calibration of another transducer 2, known, it can be on the steps for determining the angle ß between the two straight lines gl, g2, in which the transducer is in the position A, be dispensed with.
Alternativ zu dem beschriebenen Verfahren, bei dem der Winkel ß mit Hilfe eines der Kamerasysteme K1 , K2 des zu kalibrierenden Messwertaufnehmers 2 bestimmt wird, kann die Bestimmung des Winkels ß auch mit einem zusätzlichen, in der Figur 2 nicht gezeigten, Messwertaufnehmer, der in einer Position A, in der eine Kamerasystem des Messwertaufnehmers alle vier Targets 61 , 62, 63, 64 einsehen kann, positioniert ist, oder einem zusätzlichen Kamerasystem, welches allein zur Bestimmung des Winkels ß vorgesehen ist, vorgenommen werden. Durch die Verwendung eines zusätzlichen Messwertaufnehmers bzw. Kamerasystems kann der Kalibrierungsvorgang beschleunigt werden, da es nicht notwendig ist, den Messwertaufnehmer während des Kalibrierungsvorgangs von der Position A in die Position B zu bewegen. As an alternative to the described method, in which the angle β is determined with the aid of one of the camera systems K1, K2 of the measuring transducer 2 to be calibrated, the determination of the angle β can also be carried out with an additional measuring transducer, not shown in FIG Position A, in which a camera system of the transducer can view all four targets 61, 62, 63, 64, is positioned, or an additional camera system, which is provided solely for the determination of the angle ß, made. By using an additional transducer or camera system, the calibration process can be speeded up because it is not necessary to move the transducer from position A to position B during the calibration process.
Figur 3 zeigt ein Ausführungsbeispiel eines Targets 61 , wie es an einem Spurlineal 4 angebracht ist, aus einer Blickrichtung L1 die parallel zur Längserstreckung g des Spurlineals 4 (siehe Figur 1 ) ausgerichtet ist. Figure 3 shows an embodiment of a target 61, as it is attached to a track ruler 4, from a viewing direction L1 which is aligned parallel to the longitudinal extent g of the track ruler 4 (see Figure 1).
Das Target 61 weist eine Anordnung von drei Messpunkten 61 1 , 612, 613 auf. Die relative Position der drei Messpunkte 61 1 , 612, 613 der Messpunktanordnung zueinander und in Bezug auf die durch das Spurlineal 4 definierte Gerade g ist vor der Durchführung der Messung bekannt. Mit einem derartigen Spurlineal 4, bei dem die Targets 61 , 62, 63, 64 jeweils als Anordnung von wenigstens drei Messpunkten 61 1 , 612, 613 ausgebildet ist, ist ein genaues Kalibrieren des Messwertaufnehmers 2 auch dann möglich, wenn die räumliche Anordnung der Kamerasysteme K1 , K2 zueinander nicht bekannt ist oder nur eine einzige (Mono-)Kamera verwendet wird. Ein derartiges Spurlineal 4 ermöglicht daher eine genaue Kalibrierung in einer Vielzahl von Anwendungsfällen. The target 61 has an arrangement of three measuring points 61 1, 612, 613. The relative position of the three measuring points 61 1, 612, 613 of the measuring point arrangement relative to one another and with respect to the straight line g defined by the track ruler 4 is known before the measurement is carried out. With such a track ruler 4, in which the targets 61, 62, 63, 64 are each formed as an arrangement of at least three measuring points 61 1, 612, 613, an accurate calibration of the transducer 2 is possible even if the spatial arrangement of the camera systems K1, K2 is not known to each other or only a single (mono) camera is used. Such a track ruler 4 therefore allows accurate calibration in a variety of applications.

Claims

Patentansprüche claims
1 . Verfahren zum Kalibrieren eines Messwertaufnehmers (2) mit wenigstens zwei Kamerasystemen (K1 , K2), die jeweils in einer Messrichtung (M1 , M2) ausgerichtet sind, wobei das Verfahren die Schritte umfasst: 1 . Method for calibrating a transducer (2) with at least two camera systems (K1, K2), each aligned in a measuring direction (M1, M2), the method comprising the steps:
A) Ausrichten des Messwertaufnehmers (2) derart, dass sich jeweils wenigstens zwei Targets (61 , 62, 63, 64) im Blickfeld jedes Kamerasystems (K1 , K2) befinden, wobei durch die jeweils wenigstens zwei Targets (61 , 62, 63, 64) je eine Gerade (gl , g2) definiert ist; A) aligning the transducer (2) such that in each case at least two targets (61, 62, 63, 64) are in the field of view of each camera system (K1, K2), wherein at least two targets (61, 62, 63, 64) one straight line (gl, g2) is defined;
B) Aufnehmen von Bildern der Targets (61 , 62, 63, 64) mit den Kamerasystemen (K1 , K2); B) taking pictures of the targets (61, 62, 63, 64) with the camera systems (K1, K2);
C) Bestimmen der Positionen der Targets (61 , 62, 63, 64); C) determining the positions of the targets (61, 62, 63, 64);
D) Bestimmen der räumlichen Ausrichtungen der durch jeweils wenigstens zwei Targets (61 , 62, 63, 64) definierten Geraden (gl , g2); D) determining the spatial orientations of the straight lines (g1, g2) defined by at least two targets (61, 62, 63, 64);
E) Bestimmen der Differenz (δ) zwischen den Messrichtungen (M1 , M2) der beiden Kamerasysteme (K1 , K2) aus der Differenz (δ) der Ausrichtung der Geraden (gl , g2). E) Determining the difference (δ) between the measuring directions (M1, M2) of the two camera systems (K1, K2) from the difference (δ) of the alignment of the straight line (gl, g2).
2. Verfahren nach Anspruch 1 , wobei die wenigstens vier Targets (61 , 62, 63, 64) auf einer gemeinsamen Gerade (g) angeordnet sind. 2. The method of claim 1, wherein the at least four targets (61, 62, 63, 64) are arranged on a common straight line (g).
3. Verfahren nach Anspruch 1 , wobei die beiden Geraden (gl , g2), welche jeweils zwei Targets (61 , 62, 63, 64) miteinander verbinden, nicht parallel zueinander sind. 3. The method of claim 1, wherein the two straight lines (gl, g2), each of which two targets (61, 62, 63, 64) connect to each other, are not parallel to each other.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei wenigstens vier Targets (61 , 62, 63, 64) auf einem gemeinsamen Spurlineal (4) angeordnet sind, welches im Schritt A) derart ausgerichtet wird, dass sich jeweils zwei der vier Targets (61 , 62, 63, 64) im Blickfeld eines der Kamerasysteme (K1 , K2) befinden. 4. The method according to any one of claims 1 to 3, wherein at least four targets (61, 62, 63, 64) are arranged on a common track ruler (4), which is aligned in step A) such that in each case two of the four targets (61, 62, 63, 64) in the field of view of one of the camera systems (K1, K2) are located.
5. Verfahren nach einem der Ansprüche 1 bis 3, wobei jeweils zwei Targets (61 , 62, 63, 64), die einer Gerade (gl , g2) definieren, auf einem gemeinsamen Spurlineal (66, 68) angeordnet sind. 5. The method according to any one of claims 1 to 3, wherein in each case two targets (61, 62, 63, 64) which define a straight line (gl, g2) are arranged on a common track ruler (66, 68).
6. Verfahren nach einem der Ansprüche 3 bis 5, wobei der Winkel (ß) zwischen den beiden Geraden (gl , g2) bekannt ist und beim Bestimmen der Differenz (δ) zwischen den Messrichtungen (M1 , M2) der beiden Kamerasysteme (K1 , K2) berücksichtigt wird. 6. The method according to any one of claims 3 to 5, wherein the angle (ß) between the two straight lines (gl, g2) is known and in determining the difference (δ) between the measuring directions (M1, M2) of the two camera systems (K1, K2) is taken into account.
7. Verfahren nach einem der Ansprüche 3 bis 5, wobei der Winkel (ß) zwischen den beiden Geraden (gl , g2) nicht bekannt ist und vor dem Schritt A) durch ein Verfahren bestimmt wird, das die folgenden Schritte enthält: a) Ausrichten eines Kamerasystems (K1 ) derart, dass sich vier Targets (61 , 62, 63, 64) im Blickfeld des Kamerasystems (K1 ) befinden, wobei durch jeweils wenigstens zwei der wenigstens vier Targets (61 , 62, 63, 64) je eine Gerade (gl , g2) definiert ist; b) Aufnehmen von Bildern der Targets (61 , 62, 63, 64) mit dem Kamerasystem (K1 ); c) Bestimmen der Positionen der Targets (61 , 62, 63, 64); d) Bestimmen der räumlichen Ausrichtungen der Geraden (gl , g2) 7. The method according to any one of claims 3 to 5, wherein the angle (ß) between the two straight lines (gl, g2) is not known and prior to step A) is determined by a method comprising the following steps: a) Alignment a camera system (K1) such that there are four targets (61, 62, 63, 64) in the field of view of the camera system (K1), wherein in each case at least two of the at least four targets (61, 62, 63, 64) each have a straight line (gl, g2) is defined; b) taking pictures of the targets (61, 62, 63, 64) with the camera system (K1); c) determining the positions of the targets (61, 62, 63, 64); d) Determining the Spatial Orientations of the Lines (g1, g2)
) Bestimmen des von den beiden Geraden (gl , g2) eingeschlossenen Winkels ) Determine the angle enclosed by the two lines (gl, g2)
8. Verfahren nach Anspruch 7, wobei das Kamerasystem (K1 ) ein Kamerasystem (K1 ) des zu kalibrierenden Messwertaufnehmers (2) ist. 8. The method according to claim 7, wherein the camera system (K1) is a camera system (K1) of the transducer to be calibrated (2).
9. Verfahren nach Anspruch 7, wobei das Kamerasystem (K1 ) ein Kamerasystem (K1 ) eines zusätzlichen Messwertaufnehmers (2) und/oder ein zusätzliches Kamerasystem ist. 9. The method of claim 7, wherein the camera system (K1) is a camera system (K1) of an additional transducer (2) and / or an additional camera system.
10. Verfahren nach einem der vorangehenden Ansprüche, wobei wenigstens eines der Targets (61 ) auf dem Spurlineal (4) als Messpunktanordnung ausgebildet ist, welche jeweils wenigstens drei Messpunkte (61 1 , 612, 613) umfasst und wobei die Anordnung der Messpunkte (61 1 , 612, 613) zueinander und in Be- zug auf die Gerade (gl ), welche die Messpunktanordnungen (61 , 62) miteinander verbindet, bekannt ist. 10. The method according to any one of the preceding claims, wherein at least one of the targets (61) on the track ruler (4) is designed as a measuring point arrangement, each comprising at least three measuring points (61 1, 612, 613) and wherein the arrangement of the measuring points (61 1, 612, 613) to one another and with respect to the straight line (gl) which connects the measuring point arrangements (61, 62) to one another.
PCT/EP2011/062507 2010-09-13 2011-07-21 Method for calibrating a measuring sensor WO2012034747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010040637 DE102010040637A1 (en) 2010-09-13 2010-09-13 Method for calibrating a transducer
DE102010040637.6 2010-09-13

Publications (1)

Publication Number Publication Date
WO2012034747A1 true WO2012034747A1 (en) 2012-03-22

Family

ID=44514667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062507 WO2012034747A1 (en) 2010-09-13 2011-07-21 Method for calibrating a measuring sensor

Country Status (2)

Country Link
DE (1) DE102010040637A1 (en)
WO (1) WO2012034747A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675515A (en) * 1995-12-28 1997-10-07 Hunter Engineering Company Apparatus and method for determining vehicle wheel alignment measurements from three dimensional wheel positions and orientations
US5809658A (en) * 1993-09-29 1998-09-22 Snap-On Technologies, Inc. Method and apparatus for calibrating cameras used in the alignment of motor vehicle wheels
US20050078304A1 (en) * 2003-10-09 2005-04-14 Dorrance Daniel R. Common reference target machine vision wheel alignment system
US20090179986A1 (en) * 2006-01-26 2009-07-16 Rolf Klett Method and device for the recording of body movements
DE102008042018A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Method for adjusting or calibrating a vehicle surroundings sensor and vehicle surroundings sensor adjustment or calibration arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809658A (en) * 1993-09-29 1998-09-22 Snap-On Technologies, Inc. Method and apparatus for calibrating cameras used in the alignment of motor vehicle wheels
US5675515A (en) * 1995-12-28 1997-10-07 Hunter Engineering Company Apparatus and method for determining vehicle wheel alignment measurements from three dimensional wheel positions and orientations
US20050078304A1 (en) * 2003-10-09 2005-04-14 Dorrance Daniel R. Common reference target machine vision wheel alignment system
US20090179986A1 (en) * 2006-01-26 2009-07-16 Rolf Klett Method and device for the recording of body movements
DE102008042018A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Method for adjusting or calibrating a vehicle surroundings sensor and vehicle surroundings sensor adjustment or calibration arrangement

Also Published As

Publication number Publication date
DE102010040637A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2093537B1 (en) Process and device for the determination of the alignment of two rotatable machine parts
DE3911307C2 (en) Method for determining whether two shafts arranged one behind the other are aligned or offset with respect to their central axis
EP1711777B1 (en) Method for determining the position and the relative motion of an object in a space
DE69909709T2 (en) Assembly site and administrative procedure for it
EP2603767B1 (en) Method for calibrating a measurement system and device for carrying out the method
WO2012101166A1 (en) Calibration of laser light section sensors during simultaneous measurement
EP2166510B1 (en) Method for calculating the position and orientation of a camera in a vehicle
WO2003091660A1 (en) Method and device for determining the spatial co-ordinates of an object
EP2489977A2 (en) Method and device for determining the 3D coordinates of an object and calibrating an industrial robot
DE102008001339A1 (en) Method and device for wheel alignment
EP1342051A1 (en) Calibration of a measuring sensor on an appliance for measuring co-ordinates by means of a ball and two parameter fields
EP2133659A1 (en) Method and device for determining the position of a sensor
EP2356400B1 (en) Robot for automatic 3-d measurement and method
EP3707569B1 (en) Calibration of a stationary camera system for detecting the position of a mobile robot
DE102007021106B4 (en) Method and device for calibrating a camera system
DE10048096A1 (en) Swivel unit has optical sensor calibration sensor creates coordinate transformations
DE602004005388T2 (en) Apparatus and method for measuring and analyzing the shape of an object, and corresponding program
DE102019113441A1 (en) Method for assigning the intrinsic coordinate system of a first unit of a vehicle for recording the space to the side of the vehicle relative to a vehicle-related coordinate system and device for carrying out the method
DE102007058293A1 (en) Calibrating device for adjusting robot coordinate system of industrial robot, has base carrier and multiple markers which are indirectly fastened to base carrier and lie in level
WO2012034747A1 (en) Method for calibrating a measuring sensor
DE3909855A1 (en) Method for determining the position of a positionable surface, and a position sensor (encoder)
DE102017003629A1 (en) Device and method for calibrating optical sensors of a vehicle
DE102018208189B4 (en) Method and device for determining the torsional errors of a machine axis
DE102020208567A1 (en) Calibration of a reference body for determining the guidance error of a machine axis
DE102007056773A1 (en) Method for determining position of virtual bias point relative to coordinate system of industrial robot, involves determining well-known position of virtual bias point for determining position of measuring point in coordinate system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11749104

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11749104

Country of ref document: EP

Kind code of ref document: A1